Начала экскретологии Романов Вадим
Приведём несколько другую редакцию этого определения, имеющую также право на существование.
Мусор природный – чужеродные для биологических объектов твёрдые или условно твёрдые тела, вещества, продукты, возникающие в больших количествах при авариях или явлениях катастрофического характера и препятствующие нормальному развитию живых организмов.
Естественный (природный) мусор реализуется в виде мусорных выбросов, например, в виде грязекаменного потока при оползнях и селях, в восходящих потоков токсичного пепла, а также в застывших реках магмы – при извержениях вулканов. При штормах – возникают мусорные выбросы плавуна, при цунами – выбросы жилой инфраструктуры пострадавших островов, при вихрях и смерчах возникают мусорные выбросы вовлечённых в них тел и предметов и т. п.
Примеры естественно-природного мусора:
– обломки и ветки растений в виде фрагментов древесины;
– оторвавшиеся от корней водоросли;
– минеральные и органические вещества и продукты (грунт, камни, песок, пепел, магма и т. п.), появившиеся в новом месте после катаклизма или аварии.
Рассмотрим более подробно некоторые естественные процессы, приводящие к появлению природного мусора.
Огромное количество природного мусора и жертв в биоценозах возникает при извержениях вулканов. Активная деятельность вулканов опасна для жизни любых форм. Она сопровождается выбрасыванием в атмосферу обломков горных пород, ядовитого газа и пепла, излиянием на земную поверхность раскалённой лавы. Извержение вулкана может продолжаться от нескольких часов до многих лет. При взрывных извержениях выбрасывается большое количество обломочного материала: вулканических бомб (размером от горошины до нескольких метров) и вулканического пепла.
Лава и другие раскалённые извергаемые вещества стекают по склонам вулканической горы и выжигают всё, что встречают на своем пути, принося неисчислимые жертвы (виктимы). Не менее опасен и пепел, который проникает буквально всюду. Он выпадает непрерывным серо-чёрным «пеплопадом», который заваливает улицы и водоёмы, двери домов, крыши, рушащиеся под его тяжестью. Греческий город Помпея погиб именно так: под слоем пепла в 7–8 метров.
Достаточно большие территории оказываются погребёнными под слоем лавы, а выброшенные в атмосферу пыль и зола затрудняют доступ солнечных лучей к земной поверхности, что может сказаться на глобальном климате.
Во время вулканических извержений гибнет огромное количество объектов флоры и фауны; спастись удаётся только пернатым.
Вулкан опасен не только во время извержения. Кратер ещё долго может таить под внешне крепкой коркой кипящую магму. Опасны и кислотные или щёлочные газы, напоминающие туман. Выброс пепла на большую высоту в атмосферу сказывается на погоде Земли в течение долгого времени.
На Земле около 600 действующих вулканов [117]. Самые высокие из них находятся в Эквадоре (Котопахи – 5896 и Сангай – 5410 метров) и в Мексике (Попокатепетль – 5452 метра). В России находится четвертый в мире по высоте вулкан – это Ключевская Сопка высотой 4750 метров.
В истории катастроф особое место занимает страшное извержение Везувия. 24 августа 79 года над Неаполитанским заливом раздался взрыв, и началось извержение вулкана. Это извержение было столь продолжительным и мощным, что под слоем пепла, лавой и кипящей грязью похоронило три города: Помпею, Геркуланум и Стабию с населением около 10 тысяч человек.
В 1883 году в августе в Индонезии на острове Кракатау (высота 800 м) произошло одно из самых знаменитых и мощных из зафиксированных человеком извержений вулкана, отзвуки которого проявили себя на всей планете похолоданием. Целый год в атмосфере после извержения небосвод украшали необычайные красочные разводы и в воздухе витали частицы вулканического пепла. Вылилось —18 куб км лавы и огромная 35-ти метровая волна смела сотни прибрежных посёлков и городов Явы и Суматры; в результате погибло около 36 тысяч человек.
Песчаная буря. Вид из космоса. Архив: httv://snesovad. net
Примером мусора как природного экскрета служат естественные выпадения фрагментов разрушенных тел и пыли, происходящие при экстремальных метеоусловиях типа штормов, торнадо или песчаных бурь. При подобных явлениях природы пылевидный мусор, движущийся с большими скоростями, способен парализовать жизнь биоценозов на значительных ареалах. Песчаные бури для некоторых стран – явление заурядное. Спутники NASA регулярно передают на Землю трёхмерные изображения кучевых и дождевых облаков, а также информацию о песчаных бурях [118].
Исследованием песчаных бурь в последнее время активно занимаются космические агентства. Дело в том, что согласно последним научным открытиям, было доказано, что песчаные бури являются крупнейшими переносчиками бактерий, вирусов и спор грибов. Оказалось, что глобальное потепление климата оказывает влияние на формирование и распределение песчаных бурь на планете, а те в свою очередь, влияют на распространение инфекций и болезней на различных континентах. Учёные подсчитали, что сегодня объём земной пыли составляет 3 млрд, тонн, а в каждом грамме пыли содержатся миллионы бактерий, сотни тысяч вирусов и десятки тысяч грибных спор.
Учёные отмечают, что сегодня крайне важно контролировать перемещение песчаных бурь. Это даёт возможность прогнозировать и оценивать риски различных заболеваний. С учётом того, что в пылях в больших концентрациях встречаются такие тяжёлые металлы как никель, алюминий, свинец и стронций, наблюдение и контроль за перемещением песчаных и пыльных бурь является весьма важной задачей в защите климата нашей планеты и здоровья её жителей.
Много мусора возникает не только во время природных катаклизмов или катастрофических явлений природы, но и при экстремальных метеорологических условиях: при наводнениях и цунами, бурях и смерчах, сходе лавин и цунами. Случаются и экзотические проявления метеорологии, и тогда мусор появляется в огромных количествах. Например, зимой 2010 года жителям Центральной России, довелось узнать, что такое ледяной дождь, за которым последовал ледяной шторм. Возникли эти природные явления из-за того, что с юга страны пришёл мощный циклон с огромным запасом влаги, а навстречу ему двигался холодный антициклон. Сошлись эти два воздушных течения недалеко от Москвы. Результатом столкновения стал сильный ветер и мокрый снег, перемежающийся дождём. На дорогах возникли снежные заносы и гололёд и, как следствие, – огромные пробки и перебои с общественным транспортом. Мокрый снег налипал на провода и деревья, что привело к обрывам проводов и перебоям с энергообеспечением города. Возникло большое количество нависших под тяжестью льда сучьев, много деревьев из-за обледенения сломалось и упало. В столице пострадало 8,5 тысячи деревьев [103]. Древесный мусор и завалы сучьев в некоторых местах города удалось убрать только к лету.
Появление объектов космического происхождения в околоземном пространстве также, очевидно, можно отнести к природному мусору, а именно к внеземным экскретам. Дадим им определение.
Внеземные (космические) экскреты – тела, предметы, вещества внеземного происхождения, появляющиеся в природных средах нашей планеты при вторжениях в околоземное космическое пространство (ОКП) космических объектов (НЛО, комет, метеоров). В частности, с внеземными экскретами связывают появление новых вирусных болезней. Внеземные (космические) экскреты – являются разновидностью природного мусора.
Потерпевшие бедствие летательные аппараты инопланетян после их приземления или приводнения на поверхности нашей планеты могли служить источниками биологической «рассады». Известно, что некоторые биологические объекты способны сохранять свою жизнеспособность после длительных воздействий негативных факторов – таких как холод и высокоэнергетическое излучение. Например, сперматозоиды не теряют своей оплодотворяющей способности после пребывания в атмосфере жидкого азота (-143 °C) в течение многих десятилетий.
Засорением околоземного пространства и возникающими угрозами для населения озаботилась Организация объединённых наций (ООН). Управление этой организации по вопросам космического пространства подтвердило важность для всех стран Руководящих принципов предупреждения образования космического мусора. «Устав внеземной чистоты» был одобрен резолюцией Генассамблеей ООН в декабре 2007 г.
Реальной угрозой для землян остаётся возможность получить себе на голову космический «подарок» в виде космического тела типа метеорита или астероида, а также рукотворного космического мусора. С космическим мусором – антропогенным или природным – человечество со временем обязательно справится, чего пока нельзя сказать об угрозах другого рода – природных. К Земле настойчиво стремятся «посланцы вечности» – астероиды и всевозможные кометы. Наибольшую тревогу у учёных вызывает астероид «Апофиз», который по уточнённым данным пройдет в 2029 г. на минимальном расстоянии от Земли. По мнению петербургского астронома Сергея Смирнова, «при таком сценарии шестисотметровая глыба ничего хорошего, в частности, для планируемых к тому времени телекоммуникационных платформ со спутниками связи на геостационарной орбите не сулит. В настоящее время невозможно максимально точно рассчитать будущую орбиту астероида». Иными словами, огромный кусок с определенной долей вероятности может свалиться на нас со всеми вытекающими последствиями. Вот когда мусора всех типов и видов будет предостаточно! Слегка утешает мысль о том, что в 2012 г. этот самый «Апофиз» несколько приблизится к Земле, после чего появится возможности более точно определить его орбиту к 2029 г.
3.3. Виктимы
Природные виктимы представляют собой насильственно лишённые роста, развития или жизни тела и плоды (а также их фрагменты) животных, растений и других представителей флоры и фауны (икры, семян, личинок и др.). Природными виктимами становятся плоды, цветы, части растительных организмов, убитые объекты фауны или фауны, ставшие жертвами катастрофических явлений природы.
Виктимы составляют наиболее массовую долю природных экскретов, являясь элементами устоявшихся пищевых «цепочек» земных организмов. Они являются необходимой составной частью жизни на планете, сменяя друг друга в непрерывной череде насильственных смертей. Таким образом, если отбросить привнесённую для приличия шелуху гуманизма, жизнь дикой природы – это поглощение сегодняшних экскретов (виктимов) экскретами завтрашними.
Отметим, что виктимы, как жертвы, бывают катастрофического происхождения, и в этом случае они приобретают массовый характер. В средствах массовой информации периодически освещаются случаи массовых падежей скота, гибели птиц и рыб и других представителей флоры и фауны (см. также раздел З.1.). Большое количество виктимов появляется в природных средах после стихийных бедствий и экстремальных проявлений метеорологических параметров при наводнениях, засухах, морозах, песчаных бурях и т. п. Проявляются они в виде массовых падежах скота, заморах рыбы в водоёмах, гибели пернатых.
Возникающие повсеместно массовые скопления таких экскретов представляют собой опасность появления природных эпизоотий и эпидемий, а также распространения их на домашних животных и людей.
Виктимы как экскреты следует рассматривать в качестве отдельных элементов пищевых цепей – структур взаимосвязанных видов, последовательно извлекающих органическое вещество и энергию из исходного пищевого вещества. Каждое предыдущее звено цепи питания является пищей для следующего звена [90].
Виктимы заготавливаются не только человеком, но и многими другими живыми существами, живущими во всех природных средах. Они являются устоявшимся источником пополнения пищевых цепочек и в отсутствии внешних непредвиденных воздействий не нарушают биоценозов.
Многие животные заготавливают впрок семена и орехи, культивируют разведение грибов и некоторых простейших организмов, закапывают или прячут в укрытиях убитых зверей и насекомых. Рассмотрим действие пищевой цепи на примере водных объектов. Известно, что более 90 % органических веществ, составляющих основу жизни в море, синтезируется при солнечном освещении из минеральных веществ и других компонентов фитопланктоном, населяющим верхние слои водной толщи океана [89]. Некоторые организмы, входящие в состав зоопланктона, поедают эти растения и в свою очередь являются источником пищи для более крупных животных, обитающих на большей глубине. Тех поедают более крупные животные, живущие ещё глубже, и такая закономерность прослеживается до самого дна океана, где наиболее крупные беспозвоночные получают необходимые им питательные вещества из остатков отмерших организмов – органического детрита, опускающегося на дно из вышележащей толщи воды. Так беспрерывно обновляется запас различных органических веществ, растворённых или взвешенных в воде и отложенных на грунте.
Замыкают пищевую цепь бентоносные животные – это животные, населяющие дно или внедряющиеся в верхние слои донных отложений. Пища морских животных концентрируется преимущественно в поверхностном слое вод и на дне. В поверхностном слое в результате фотосинтеза постоянно пополняются запасы органического вещества; некоторая часть отмершего органического вещества погружается на дно и поедается бентоносными животными – трупоедами, а также разлагается бактериями. Добываемая трупоедами так называемая «микроскопическая» пища бывает самой разнообразной. Она может представлять собой как неживые органические частицы, так и живые, то есть бактерии, простейшие растения или животные: диатомеи, жгутиковые, ресничные инфузории, крошечные беспозвоночные, различные личинки и пр.
В детрите, представляющем собой различные остатки растительного, животного и минерального происхождения, оседающие на дно из водной толщи, может быть сосредоточено до 99 процентов всего органического вещества толщи воды. Четыре процента их общей массы приходится на живущих в детрите микробов. Так называемый «морской снег» – это частички фекального детрита величиной в несколько миллиметров, опускающиеся на дно с относительно большой скоростью (около 50– 100 метров в сутки)[91].
Детрит играет важную роль в круговороте органического вещества (детритная пищевая цепь) и служит пищей многим донным животным. В кишечниках всех обитателей дна, кроме детрита, встречаются раковины диатомей. Почти у всех можно найти минеральные частички и фораминифер. Половина детритофагов поедает фекальные комочки донных животных. Очищают воду двустворчатые – животные фильтраторы. Они обволакивают частицы, находящиеся во взвешенном состоянии в воде, тонкой плёнкой слизи. Затем частицы направляются к ротовым щупальцам, где пищевые частицы отфильтровываются.
Из брюхоногих моллюсков детритом, содержащимся в поверхностной плёнке, питаются Turritella, Aporrhais и различные другие близкие их формы; эти животные, обитающие в грунте, собирают частицы, создавая направленный спереди назад ток воды. Голотурии (морские огурцы) – продолговатые животные обитают на морском дне, некоторые из них питаются отмершими органическими остатками, которые они с помощью щупалец извлекают из морских осадков. Детритофаги, питаясь, перемещаются по поверхности грунта, постоянно воздействуют на поверхностные слои осадков, изменяя их физические и геохимические свойства. Масштабы этого воздействия огромны: большая часть дна океана, от границ глубоководной безжизненной зоны до прибрежных песчаных мелководий, занята поселениями «пожирателей» детрита.
Важную роль в жизни водных объектов принадлежит редуцентам. Это – гетеротрофные организмы-восстановители, они возвращают вещества из отмерших организмов снова в неживую природу, разлагая органику до простых неорганических соединений и элементов в ходе жизнедеятельности. Они выделяют пищеварительные ферменты на мёртвые тела или отходы жизнедеятельности и поглощают продукты их переваривания. Возвращая в водную среду биогенные элементы, редуценты завершают биохимический круговорот. Это делают в основном бактерии, большинство других микроорганизмов и грибы. Таким образом, редуценты – заключительное звено в пищевой цепи экологической пирамиды.
Что касается бактерий, то они, как правило, представляют собой микроскопические, обычно одноклеточные организмы, обладающие клеточной стенкой, но не имеющие оформленного ядра. В природе бактерии выполняют функции редуцентов.
Для беспозвоночных все бактерии являются не только энергетическим, но и олигодинамическим источником пищи, ибо синтезируют различные витамины группы В и провитамин D. При оценке роли бактерий в питании глубоководного бентоса необходимо учитывать то важное обстоятельство, что гетеротрофные бактерии имеют более высокую, чем другие степени пищевой пирамиды, эффективность использования энергии пищи, позволяющую им превращать в живую материю до 3040 %лёртвых органических остатков, которые они минерализуют.
Гетеротрофные бактерии производят живое вещество, используемое для питания животными, занимающими вторую ступень пищевой пирамиды, то есть микрофагами. Деятельность гетеротрофных микроорганизмов важна не только для обеспечения круговорота основных элементов (углерода, азота, фосфора, серы и т. д.); в океане она дополняет синтез живой органической материи на его глубинах.
Микроорганизмы существуют повсюду и в водной толще, и в донных отложениях, причём в количествах порой весьма ощутимых. Наибольшее количество бактерий обнаруживается в подповерхностных слоях, где обычно накапливаются продукты обмена и останки организмов, развивающихся в поверхностных слоях.
С дальнейшим возрастанием глубины бактериальное население уменьшается; одновременно происходит и уменьшение количества неживого органического вещества, взвешенного или растворённого в воде. В непосредственной близости от поверхности грунта, который на значительной глубине бывает рыхлым, значительно увеличивается содержание неживой органической материи, как в грунтовой воде, так и на поверхности самого осадка. Одновременно наблюдается увеличение бактериального населения.
Глубинные бактерии поселяются на различных частицах на дне и в непосредственной близости от него; там деятельность бактерий более заметна, чем на любом другом вышележащем уровне.
Отмечается [89], что деятельность гетеротрофных микроорганизмов важна не только для обеспечения круговорота основных элементов в океане, она дополняет синтез живой материи на глубинах.
Все участники водных трофических цепочек являются типичными виктимами. Аналогичные пищевые цепочки существуют и в других природных средах. Таким образом, виктимы как жертвы являются необходимым элементом любого жизненного процесса на планете, при нарушении которого угасает сама жизнь.
3.4. Экскреты на завершающем этапе существования
Наряду с элементарными экскретами – продуктами выделения и отторжения человеческим обществом и природой веществ, тел или предметов можно говорить об экскретах глобальных, представляющих собой массовые скопления или конгломераты элементарных экскретов. Такие массовые объёмы элементарных экскретов могут возникать на завершающих стадиях процессов диссимиляции живого вещества или деструкции и выпадения вещества неорганического (минерального или металлического).
Глобальные экскреты некогда живых организмов возникают под действием бактерий, простейших организмов, грибов и червей. Примером подобного глобального экскрета может служить почва, как результат процессов совместного разложения растительных и животных остатков биосферы Земли, а также минеральных пород. Рассмотрим процесс возникновения почвенного покрова Земли как глобального экскрета [87].
На завершающем этапе земного существования экскретов как индивидуальных объектов микробы разрушают трупы животных, остатки корней, стеблей и листьев растений и превращают мёртвое органическое вещество в гумус или плодородный перегной. Некоторые органические вещества они преобразуют в более простые минеральные вещества, растворимые в воде и поэтому доступные для растений. Так обеспечивается на Земле непрерывность процессов образования новой живой материи.
Роль животных в круговороте веществ в природе известна натуралистам давно. К. Линней писал, что «в тропиках три мухи с их потомством съедают труп лошади быстрее, чем лев».
Наблюдения петербургского профессора П. А. Костычева, современника В. В. Докучаева, показали, что именно деятельность животных (в его опытах личинок грибных комариков) способствует превращению гниющих листьев в аморфный перегной. Если разложение происходит без животных, только при участии грибов и бактерий, то листья много лет сохраняют свою структуру. В трудах В. В. Докучаева можно прочитать: "Попробуйте пройтись по такой целинной древней степи и вырезать из неё кубик почвы, увидите вы, что в нём больше корней, трав, ходов жучков, личинок, чем земли. Все это бурлит, сверлит, точит, роет почву, и получается несравнимая ни с чем губка". Эта «губка», представляющая собой скопище органических и минеральных остатков бывшей жизни, используемой для построения новой жизни, и есть почва как глобальный экскрет.
Деятельность животных в почвах многообразна. Они не только непосредственно перерабатывают растительный опад, но и стимулируют активность микроорганизмов. При отсутствия животных микробы разлагают опад в несколько раз медленнее и он накапливается на поверхности. При этом в лесах резко возрастает опасность пожаров.
Рассеивая экскременты по поверхности и в толще почвы, животные разносят и микробов, создают благоприятные очаги для их размножения и деятельности. Пропуская через кишечник массу растительных тканей, примитивные животные размельчают их и тем самым многократно увеличивают суммарную поверхность растительного материала, доступную микроорганизмам, а также воздействию воздуха и воды.
С помощью собственных ферментов и ферментов симбиотических микроорганизмов беспозвоночные расщепляют целлюлозные компоненты клеток и высвобождают лигнин, который находится в сложном соединении с клетчаткой, что имеет большое значение для развития процессов гумификации органических остатков в почве. В ходе пищеварения в кишечнике почвенных беспозвоночных происходит частичная минерализация растительных остатков, а у некоторых групп – и частичная гумификация. Таким образом, экскременты животных – одна из составляющих почвенного гумуса.
Многие почвенные животные – такие как черви – заглатывают вместе с органическими пищевыми веществами минеральные частицы почвы, способствующие перетиранию в кишечнике пищи. Проходя через кишечник, минеральные частицы (глинистые, песчаные) перемешиваются, спрессовываются и склеиваются выделениями кишечника, образуя зернистые комочки разной величины. Чем их больше, тем плодороднее почва. Совершая вертикальные миграции в почве, животные заносят растительные остатки в глубокие горизонты и перемешивают органические и минеральные частицы. Передвижения животных способствуют и улучшению аэрации почвы, что также стимулирует аэробные процессы разложения органических остатков.
Следует отметить, что почвы как глобальные экскреты изменяются со временем. Во всех этих явлениях действующей силой выступают живые организмы: сначала микробы, затем лишайники, мхи и высшие растения. Им всюду сопутствуют и почвенные животные: простейшие, нематоды, клещи, ногохвостки, личинки насекомых и дождевые черви. При этом горная порода, на которой формируется почва, превращается в структуру, более мощную и более богатую гумусом.
Важную роль в этом процессе, называемом эволюцией почвы, играют воздействия атмосферного воздуха, воды и растворённых в ней химических веществ. Наконец, в современную эпоху, названную в начале века известным нашим геологом академиком А. П. Павловым антропогенной, то есть определяемой деятельностью человека, на почвенный покров всё большее влияние оказывает человек.
Растения также активно участвуют в процессах почвообразования. Они обеспечивают значительную часть биогенного круговорота на суше, избирательно накапливают отдельные химические элементы и соединения.
Большинство современных растений создаёт круговорот веществ, в котором на первом месте стоят азот, фосфор, калий, кальций, магний и натрий, на втором – кремнезем, а на третьем – различные окислы, изредка хлор и сера.
А вот древнейшие растения – хвощи и плауны резко отличаются по своему зольному питанию. Хвощи накапливают в первую очередь кремнезём (окись кремния), а плауны – глинозём (окись алюминия). Нетрудно сделать вывод, что характер почвообразования под палеозойскими хвощовыми и плауновыми лесами был иным, нежели сейчас, и возникающие на ней глобальные экскреты могли сформироваться в залежи нефти или алюминия.
Именно эволюция живого покрова планеты – биоты является постоянно действующим фактором активного изменения биогеоценоза, а с ним и почвы и других глобальных экскретов.
На этот счёт имеется гипотеза, что жизнь возникла именно в грунте первичных материалов Земли и что древнейшие существа планеты – почвенные микробы появились первыми в земном реголите – грунте, похожем на грунт Луны. Кстати, низшие растения действительно могут расти на грунте такого состава, что доказано экспериментально.
Важной составляющей почвообразования является процесс разложения минералов той горной породы, на которой образовалась почва. Разложение микробами горных пород имеет огромное значение для биосферы. Не будь его, живые организмы очень быстро исчерпали бы ресурсы большинства биогенных элементов. Особенно важно это в условиях влажного климата, где дожди постоянно промывают почву и выносят все растворимые элементы минерального питания, которые не успели перехватить другие микроорганизмы или же корни растений.
Существует множество микроорганизмов (в их числе бактерии, водоросли, грибы, актиномицеты, дрожжи), способных разрушать минералы и извлекать нужные им элементы или химические соединения – такие как кислород, азот, железо, серу, калий и др. Бактерии способны эффективно разрушать горные породы. Для этого у них есть целый арсенал «химического оружия»: ферменты, слизи, кислоты. Ферменты – средство строго избирательного воздействия. Например, с помощью ферментов серобактерии окисляют содержащие серу минералы. Многие микробы, попав в анаэробные условия, то есть в условия, где нет кислорода, способны с помощью особых ферментов "отнимать" кислород у окислов железа. А содержащие железо минералы при этом разрушаются.
Не столь избирательное, но ещё большее по масштабам действие оказывают на минералы различные слизи, выделяемые микробами. Многие бактерии в почвах буквально погружены в слизь. Именно она составляет основную массу органических полимеров, особенно полисахаридов. Содержащиеся в слизи кислоты могут разрушать кристаллические решётки минералов, тем самым переводя в раствор, в усвояемое состояние нужные микробам вещества.
Микробы выделяют кислоты и в чистом виде, даже такие сильные, как азотная и серная. Иногда эти кислоты для микробов являются не оружием нападения на минералы, а просто экскретами, отбросами. Отмечается [87], что автотрофные микроорганизмы, в частности нитрификаторы и серобактерии, могут порой "захлебнуться" в выделяемых ими же самими кислотах.
В биогеоценозе живут и другие существа, которые охотно поглощают минеральные соединения растворенных горных пород, но наиболее ярко выражена способность к кислотообразованию у микроскопических грибов. С помощью кислот микробы извлекают из минералов фосфор, многие металлы. В разложении горных пород достаточно велика и роль гумусовых кислот, фенольных соединений.
В процессе жизнедеятельности микробы выделяют и щёлочи, особенно при разложении органики, аммонификации. Накоплению в почве щёлочей способствует внесение навоза и других органических удобрений, если они содержат много азота. И вот уже щёлочи растворяют кварц, трудно растворимые фосфаты, алюмосиликаты, нефелины. Микробы выделяют и такие сильные химические реагенты, как водород, сероводород, метан, которые также разрушают минералы.
Все эти явления очень важны для почвообразования, для снабжения растений элементами минерального питания, для всей жизни биогеоценозов. Но совершенно очевидно, что эти же процессы ещё важнее для эволюции почвы, для формирования почвенного слоя, накопления запаса биогенных элементов в живом веществе экосистемы при развитии почв на чистой скальной поверхности, песке или глине. Здесь свободно поселяются автотрофные микроорганизмы, лишайники (они тоже выделяют кислоты и могут растворять минералы), а всё остальное – дело времени.
Однако микробы не только разрушают минералы, но и способствуют созданию многих новых, особенно содержащих кальций, фосфор, кремний, железо и алюминий. На их основе могут возникнуть залежи полезных ископаемых – глобальных экскретов. Например, плесневые грибы в опытах за неделю извлекали из размельченного базальта 54 % железа, 59 % – магния, 11 % – алюминия, немало кремния.
Как видим, важнейшие химические процессы в почвах регулируются деятельностью живого вещества, особенно микробов и высших растений. Поэтому почвы столь же изменчивы, непостоянны по своим свойствам, как и жизнь организмов, которые их создали.
Подобные процессы возникновения глобальных экскретов наблюдаются и в других природных средах. Рассмотрим механизм возникновения и трансформацию глобального экскрета на примере возникновения залежей подводного метана. Метан является самым «опасным» парниковым газом, так как выбросы этого газа провоцируют очередной этап глобального потепления. На определённом этапе повышения температуры на планете учёные предсказывали начало выбросов метана из океанов и зон вечной мерзлоты в полярных зонах Земли. В частности, в последние годы исследователи обнаружили выбросы значительных запасов метана со дна Северного ледовитого океана [92]. По мере потепления мирового океана вода прогревает его дно, и это провоцирует выбросы метана.
Предположительно этот глобальный экскрет возникает так. В океане организмы умирают, опускаются на дно и частично разлагаются в метан. Под высоким давлением и под воздействием низких температур молекулы метана «попадают в капкан» – превращаются в супрамолекулярное соединение метана с водой, известное как газовый гидрат [93], который стабилизируется в плотный тонкий слой под дном океана.
Энциклопедия [94] определяет этот продукт так. «Гидрат метана – супрамолекулярное соединение метана с водой, устойчив при низких температурах и повышенных давлениях, наиболее широко распространённый в природе газовый гидрат».
Отмечается, что гидрат метана может стать ценным источником экологически чистой энергии, так как горящий метан вырабатывает значительно меньше углекислого газа, чем любые горючие ископаемые минералы. Гидрат метана – это похожая на лёд субстанция, состоящая из воды и метана, которая стабильна только в холодной воде и под большим давлением. Газовые гидраты внешне напоминают спрессованный снег, могут гореть, легко распадаются на воду и газ при повышении температуры. Благодаря своей структуре газовый гидрат объёмом 1 см3 может содержать до 160–180 см3 чистого газа.
Распадающийся гидрат метана служит своеобразным индикатором изменения планетарного климата. «Так как придонная температура растёт, гидрат распадается, следовательно мы имеем ещё одно подтверждение роста температур в океане под влиянием меняющегося климата", – считают исследователи [92]. Заметим, что по предварительным данным, за последние 30 лет температура воды в Северном Ледовитом океане увеличилась в среднем на 1 градус по Цельсию.
В 40-е годы прошлого века советские учёные высказывают гипотезу о наличии залежей газовых гидратов в зоне вечной мерзлоты. В 60-е годы они же обнаруживают первые месторождения газовых гидратов на севере СССР. С этого момента газовые гидраты начинают рассматриваться как потенциальный источник топлива. Постепенно выясняется их широкое распространение в океанах и нестабильность при повышении температуры. Поэтому сейчас природные газовые гидраты приковывают особое внимание как возможный источник ископаемого топлива, а также участник изменений климата.
Как следует из фазовой диаграммы гидрата метана, для его образования требуются низкие температуры и относительно высокое давление и чем больше давление, тем выше температура, при которой гидрат метана устойчив. Так, при О °С он стабилен при давлении порядка 25 бар и выше. Такое давление достигается, например, в океане на глубине около 250 м. При атмосферном давлении для устойчивости гидрата метана нужна температура около-80 °C. Однако, метангидраты всё же могут довольно долго существовать в условиях низких давлений и при более высокой температуре, но обязательно отрицательной – в этом случае они находятся в метастабильном состоянии, их существование обеспечивает эффект самоконсервации, – при разложении метангидраты покрываются ледяной коркой, что мешает их дальнейшему разложению. При увеличении мощности осадков в море и погружении или уменьшении мощности мерзлоты, гидрат метана распадётся и на небольшой глубине образуется газовый резервуар, из которого газ может прорваться на поверхность. Такие взрывы метановых месторождений, существующих в виде глобальных экскретов, действительно наблюдаются в тундре и иногда в морях.
Кстати, катастрофический распад гидрата метана предположительно считается причиной Поздне-палеоценового термального максимума – геологического события на границе палеоцена и эоцена, приведшего к вымиранию многих видов животных и изменению климата [95].
Процессом прорыва метана из морских залежей газовых гидратов можно объяснить таинственные исчезновения кораблей в Бермудском треугольнике и некоторых других местах Мирового океана. Дело в том, что при подъёме метана к поверхности вода насыщается пузырьками газа и плотность воздушно-водяной смеси резко падает. Её несущая способность уменьшается, корабль «проваливается», теряет плавучесть и тонет.
Ещё одним примером глобального экскрета могут служить залежи полезных ископаемых морского дна, имеющие космическое происхождение. Мировой океан занимает около 71 % земной поверхности. На его дне находятся разнообразные полезные ископаемые, и протекает интенсивный рудогенез (возникновение залежей). Вклад космического материала в океанические осадочные породы (например, накопление таких компонентов, как железо, никель, кобальт) морские геологи и геохимики связывают со значительными поставками на дно океана космической пыли [110], оседающей на дне в виде ила.
Многочисленные измерения, выполненные в различных лабораториях мира, показали, что глубоководные илы растут со скоростью примерно 1 миллиметр за тысячу лет. В масштабах существования нашей планеты такое казалось бы мизерное выпадение космического вещества даёт вполне ощутимые величины: ~1 метр осадков за 1 миллион лет и 1 км – за 1 миллиард лет.
Такие илистые образования находят практически во всех морях и океанах, а также нередко и в озёрах. Однако только глубоководные океанические конкреции залегают с большой плотностью (до 200 кг/м), образуя рудные поля, перспективные с точки зрения разработки полезных ископаемых. Конкреции имеют неправильную сферическую форму с диаметром 8 мм. Они предотавляют собой полиметаллические руды: кроме марганца и железа (основных своих компонентов) содержат много Ni, Си, Со, а также Pt (до 4 г на тонну) и другие металлы. Считается, что железомарганцевые конкреции занимают около 10 % площади океанического ложа. Их запасы составляют примерно 340 млрд. т. Таким образом, космические экскреты заметно пополняют Землю полезными сырьевыми ресурсами.
Захоронения углерода на дне океана в виде панцирей микроорганизмов и моллюсков, а также геологические образования, такие как месторождения нефти и угля, возникшие из растительных остатков, очевидно, также являются глобальными экскретами. С процессами их формирования можно ознакомиться в многочисленных литературных источниках, поэтому они здесь не приводятся.
Ещё одним примером глобального экскрета, появление которого предсказано задолго до его возникновения, являются «рудные тела» мусорных полигонов и свалок.
Некоторые мусорные (гарбологические) объекты – такие как крупные свалки и мусорные полигоны представляют собой многотонные скопления разнородных и разнофазных элементов, спрессованных силой тяжести и приобретающих со временем свойства некоторой осреднённой среды – сродни геологической среде. Современные представления о геологической среде [111,112], широко используются в настоящее время в науках о Земле.
Понятие "геологическая среда" по-разному трактуется у различных авторов в зависимости от направлений их исследований. Формулировки этого термина базируются на том, что геологическая среда это сложный объект природы, объективно существующий независимо от человека и его деятельности. Геологическая среда состоит из отдельных элементов – рельефа, горных пород, подземных вод, многолетней мерзлоты, а также природных процессов и т. д.
Основное свойство создаваемой на наших глазах геологической среды – гарбологической – это её многокомпонентность и крайняя неоднородность. Можно считать, что она состоит из бесчисленного множества элементов (горные породы, почвы, отходы человеческой деятельности, микроорганизмы, растворы, газы, элементы структуры, физические поля и т. д.). Все их в принципе невозможно учесть, да и в этом нет необходимости, так как многие из них не играют существенной роли применительно к рассматриваемой в данной работе проблеме. Поэтому с методологической точки зрения, необходимо ограничиться теми элементами, которые непосредственно оказывают влияние на объекты цивилизации. В общем, элементы гарбологической геологической среды можно условно разделить на четыре категории [113]:
– Твёрдая фаза; – Жидкая фаза; – Газообразная фаза; – Структурные элементы.
Элементы этих категорий испытывают между собой постоянное взаимодействие и взаимопревращение, которые собственно и определяют устойчивость и стабильность геологической среды, а также конечный состав возникающего глобального экскрета в виде залежи комплексного полезного ископаемого.
Заключение
Современное общество испытывает острую потребность в однозначной и непротиворечивой классификации отторгаемых им объектов, связанных с хозяйственной и духовной деятельностью человека. Отсутствие такой классификации мешает наладить процессы цивилизованного использования и уничтожения мусора, отходов и отбросов, а также упорядочить многие вопросы гуманитарной и правовой жизни общества.
Введение в оборот экскретологических понятий должно, на наш взгляд, повлиять на общество и на бытовом уровне. Вместо речевых оборотов типа «плохая экология» или «грязная экология» люди возможно будут использовать грамотные обозначения экскретов и экскретологической обстановки. Кроме того, устранение смешения и неразберихи в обозначениях экскретов позволит наконец разобраться с «феноменом мусорной свалки» и преградит мусорной мафии получать многомиллиардные барыши в ущерб нереализуемых социальных программ.
Основными задачами экскретологии в ближайшее время будут установление закономерностей накопления и отторжения человечеством мусора, отходов и отбросов, уменьшение количества этих экскретов, их утилизация и уничтожение. Другие проблемы, затрагиваемые этой наукой, связанные преимущественно с гуманитарными и социальными задачами, ждут своего решения.
Наша книга посвящена изучению теоретических основ материальных объектов экскретологии – предметов, изделий, тел и веществ, с которыми человек постоянно сталкивается в повседневной жизни. Развитие экскретологии как науки нам видится в философском понимании её проблем.
В перспективе экскретология, изучающая проблемы отторгнутых природой и обществом объектов, не может обойти стороной вопросы жизни и смерти – вечные темы духовной культуры человечества во всех её проявлениях. О них размышляли пророки и основоположники религий, философы и моралисты, деятели искусства и литературы, педагоги и медики.
Вряд ли найдется взрослый человек, который рано или поздно не задумывался бы о смысле своего существования и предстоящей смерти. Нельзя принять и безоговорочно смириться с жестокими и неумолимыми законами природы, в которой происходит бесконечная череда поглощений одних организмов другими – фактически беспрерывный каскад насильственных смертей.
В осмыслении проблем жизни и смерти живых организмов несколько аспектов. Первым аспектом проблем жизни, смерти и непрерывных «цепочек» пожирающих друг друга организмов – это их биологическое начало. Давно уже была высказана гипотеза панспермии, постоянного наличия жизни и смерти во Вселенной, постоянного их воспроизводства в подходящих условиях. Известно определение Ф. Энгельса: "Жизнь есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел". Это определение фактически акцентирует космический и экскретный аспекты жизни.
Рождаются, живут и умирают звезды, туманности, планеты, кометы и другие космические тела, и в этом смысле не исчезает никто и ничто. Данное положение наиболее разработано в восточной философии и мистических учениях, исходящих из принципиальной невозможности только разумом понять смысл этого вселенского кругооборота. Материалистические концепции строятся на феномене самозарождения жизни и её самопричинности, когда, по словам Ф. Энгельса, "с железной необходимостью порождается жизнь и мыслящий дух в одном месте Вселенной, если в другом он исчезает " [120].
Осознание единства жизни человека и человечества со всем живым на планете, с её биосферой, как и потенциально возможными формами жизни во Вселенной имеет большое мировоззренческое значение. Это идея святости жизни, права на жизнь для любого живого существа уже в силу самого факта рождения принадлежит к числу вечных идеалов человечества. В пределе, вся Вселенная и Земля рассматриваются как живые существа, а вмешательство в ещё плохо познанные законы их жизни чревато экологическим и моральным кризисами. Считается, что современное общество вплотную столкнулось с этими кризисами, и их появления способны погубить цивилизацию.
Другой проблемой, к которой косвенно может быть причастна экскретология – это обретение бессмертия, например, путём мумификации или замораживания тела с расчётом на вечное его сохранение [121,122]. Опыт ещё египетских фараонов, а также практика современного бальзамирования тела В.И. Ленина, Мао-Дзэдуна, Хо-Ши-Мина и некоторых других авторитарных вождей говорят о том, что в ряде цивилизаций это считается принятым.
Достижения техники конца XX века сделали возможным криогенезацию (глубокое замораживание) тел умерших с расчётом на то, что медики будущего оживят и вылечат ныне неизлечимые болезни. Такая фетишизация человеческой телесности характерна в основном для тоталитарных обществ, где геронтократия (власть стариков) становится основой стабильности государства.
Ещё одним способом избежать статуса экскрета может быть вид бессмертия как упование на "растворение" тела и духа умершего во Вселенной, вхождение их в космическое "тело", в вечный кругооборот материи. Это характерно для ряда восточных цивилизаций, особенно японской. К такому решению близка исламская модель отношения к жизни и смерти и разнообразные материалистические или точнее натуралистические концепции [123]. Здесь речь идет об утрате личностных качеств умершего и сохранении частиц (элементов) бывшего тела, могущих войти в состав других организмов. Такой крайне абстрактный вид бессмертия неприемлем для большинства людей и эмоционально отвергается.
Нетрудно принять мысль, которая подтверждается наукой и просто здравым рассудком, что в мире невозможно полное уничтожение даже элементарной частицы, и действуют законы сохранения. Сохраняется вещество, энергия и, как полагают, информация и организация сложных систем. Следовательно, частицы нашего "я" после смерти войдут в вечный кругооборот бытия и в этом смысле будут бессмертными. Правда, они не будут обладать сознанием, душой, с которой связывается наше "я". Более того, этот вид бессмертия обретается человеком в течение всей жизни. Можно сказать в форме парадокса: мы живы только потому, что ежесекундно умираем. Ежедневно отмирают эритроциты в крови, клетки эпителия, выпадают волосы и т. д. Поэтому зафиксировать жизнь и смерть как абсолютные противоположности в принципе невозможно ни в действительности ни в мыслях.
Отметим, что имеется и другой путь в бессмертие, связанный с результатами жизненного творчества человека. Недаром членов различных академий награждают титулом "бессмертные". Научное открытие, создание гениального произведения литературы и искусства, указание пути человечеству в новой вере, творение философского текста, выдающаяся военная победа и демонстрация государственной мудрости – всё это оставляет имя человека в памяти благодарных потомков. Увековечиваются герои и пророки, страстотерпцы и святые, зодчие и изобретатели. Следует однако иметь в виду, что гениальные сегодня теории и открытия со временем устаревают – становятся духовными экскретами. Но они являются необходимыми ступенями в общем «научном каскаде» цивилизационного развития общества.
Навечно сохраняются в памяти человечества и имена жесточайших тиранов и величайших преступников. Это ставит вопрос о неоднозначности оценки масштабов личности человека. Создаётся впечатление, что чем большее количество человеческих жизней и сломанных человеческих судеб лежит на совести того или иного исторического персонажа, тем больше у него шансов попасть в историю и обрести там бессмертие. Способность влиять на жизнь сотен миллионов людей, "харизма" власти вызывает у многих состояние мистического ужаса, смешанного с почтением. О таких людях слагают легенды и предания, которые передаются от поколения к поколению.
Третий путь к бессмертию, как правило, выбирают люди, масштаб деятельности которых не выходит за рамки их дома и ближайшего окружения. Не ожидая вечного блаженства или вечных мук, не вдаваясь в "хитрости" разума, соединяющего микрокосмос (т. е. человека) с макрокосмосом, миллионы людей просто плывут в потоке жизни, ощущая себя его частицей. Бессмертие для них – не в вечной памяти облагодетельствованного человечества, а в повседневных делах и заботах и в продолжении жизни в детях.
Всё имеет свое начало, развитие и конец. Этот закон органического мира никто не опровергнет. Здесь уместно привести одну мысль Л.Фейербаха, касающуюся этой проблемы [124]. "В природе не существует другого бессмертия, кроме продолжения рода, при котором данное существо продолжается в существах себе подобных, т. е. на место умершего индивидуума постоянно заступает новый". Эти вопросы нуждаются в осмыслении и творческом развитии.
Использованная литература
1. Политехнический словарь, М.: Советская энциклопедия, 1989 г.
2. Ожегов С.И. Словарь русского языка, М.: Русский язык, 1981 г., 816с.
3. Советский энциклопедический словарь. М.: Советская энциклопедия, 1984 г.
4. Даль В. Толковый словарь живого великорусского языка, С.-Петербург, Москва, 1881 г.
5. Маршалл, Основные опасности химических производств, Москва: Мир, 1989 г.-672С.
6. Глоссарий. ру, http://www.glossary.m/cgi-bin/gl_sch2.cgi?RC: hwux:
7. Химический энциклопедический словарь. М.: «Советская энциклопедия», 1983 г.,792С.
8. Романов В.И., Романова Р.Л. Выбросы вредных веществ и их опасности для живых организмов (Справочно-познавательное пособие). – М.:Физматкнига.– 2009. – 376 С.
9. Романов В.И. Аварии и инциденты на объектах химического оружия. – 2008. – 24 °C.
10. Романов В.И. Прикладные аспекты аварийных выбросов в атмосферу. Справочное пособие – М.: Физматкнига.-2006.-368С.
11. Романов В.И. Физические процессы на объектах химического оружия (Справочное пособие). М.: Физматкнига, 2007 г, 336 С.
12. Романов В.И., Романова Р.Л. О возможности утилизации пластикового мусора, В трудах IX научно-практическая конференция «Проблемы прогнозирования чрезвычайных ситуаций, «Антистихия», Москва, 14–15 октября 2009 г.243-25 °C.
13. Романов В.И. Формирование первичного атмосферного выброса при разрушительной аварии на АЭС. Журнал" Атомная энергия",т. 79, вып. 4, октябрь 1995 г., 264–269 С.
14. Романов В.И. Метод расчёта характеристик кратковременного испарительного выброса при аварийном проливе токсичного вещества. Журнал "Химическая промышленность", N 6, 1992 г, стр. 50(362)– 53(365).
15. Романов В.И. Расчет начальных характеристик паровоздушного выброса при гипотетической аварии на АЭС. Журнал" Атомная энергия", т.71, вып.1,1991 г. стр.38 – 43.
16. Википедия – свободная энциклопедия.
17. Горовой А. Ф., Горовая Н. А.Техногенная геология – наука об отходах. Труды Вой Международной конференции "Сотрудничество для решения проблемы отходов", 5–6 февраля 2004 г. Харьков.
18. Кац Я.Г., Комарова Н.Г., Ушакова И.С. Экологические основы природопользования. Словарь-справочник москвича. М.: Издание МГУ, 2000 г.
19. Дедю. И. И. Экологический энциклопедический словарь, Кишинёв: Главная редакция МСЭ, 1989 г., 408С.
20. Реймерс Н.Ф. Природопользование. Словарь-справочник, М.: «Мысль», 1990 г., 639С.
21. Романов В.И. Неорганизованные объекты химического оружия. Технологии гражданской безопасности, № 1–2(15–16), стр. 112–115, 2008 г.
22. Англо-русский словарь, 2-ое издание, М.: ГОНТИ СССР, 1938 г., 688с.
23. Словарь иностранных слов, М.: Русский язык, 1989 г., 624с.
24. Источник: www.vokrugsveta.ru/quiz/78/; yakimov.mfo/cm/item_760.html].
25. Информация с сайта http://ru.wikipedia.org/wiki/.
26. Предыстория классификации наук. Информация с сайта narod.ru.
27. Материал из Википедии – свободной энциклопедии.
28. Б.М. Кедров, Классификация наук, т.1, М., 1961, с. 42.
29. Хмелевской В.К. Геофизические методы исследования земной коры. Геовикипедия wiki.web.ru. Международный университет природы, общества и человека "Дубна", 1997 г.
30. Энгельс Ф. «Диалектика природы». 1952 г., стр. 140.
31. Мусор. Коллекция фактов. Интернет-издание «Экология в мире» от 22.06.2008 г.
32. Большая Советская Энциклопедия. – М., 1975, т. 10, с. 21.
33. Колесников А. А. Рациональное использование и вопросы экономической оценки отходов промышленного производства. – Экономика Советской Украины, 1970, № 8, с. 53.
34. Методические указания для проведения исследований в отраслях промышленности по планированию использования вторичных материальных ресурсов в промышленности. – Киев, 1973, с. 17.
35. Бедин Т. П., Тряпкин А. И., Чернин Г. Б. Организация и техника заготовки вторичного сырья.—М.: Лёгкая индустрия, 1971.
36. Кальченко В. Н., Педан М. П., Борисенко Н. И. и др. Комплексное использование минерального сырья в перспективном развитии и размещении производительных сил Украинской ССР. – В кн.: Проблемы комплексного использования отходов промышленности в народном хозяйстве. Киев, СОПС, 1972, вып. 3, с. 9.
37. Еськов К.Ю. История Земли и жизни на ней. Библиотека Svitk, М.2004 г.
38. В возникновении жизни на Земле заподозрили инопланетную падаль. Источник: "Lenta.Ru от 11 ноября 2010 г.
39. Учёные недовольны внеземными микробами. Сообщение Lenta.ru от 08.01.2006 г.
40. Остатки внеземной жизни. Сообщение сайта www.blogs.privet.ru от 07.08.2010 г.
41. Сообщение сайта Лента. ру от 16.02.2010 г.
42. Откуда мы? Происхождение человека. Происхождение жизни на земле, информация с сайта www.mmoment.ru
43. Физический энциклопедический словарь. М.: Советская
энциклопедия, 1983 г., 928 С.
44. Управление твёрдыми бытовыми отходами. Раздельный сбор и сортировка отходов. Проект Европейского Сообщества INTERREG ША «Кооперация в совместном создании системы управления отходами в Псковской области», 2008 г.
45. Марков А. В. Происхождение жизни. Глава 1. // Рождение сложности. CORPUS, «Астрель», 2010 г.
46. Чернавский Д. С. Проблема происхождения жизни и мышления с точки зрения современной физики // Успехи физических наук. Т. 170, 2000 г., № 2. С. 157–183.
47. И на Марсе будут яблони цвести… Тайны НЛО. Ч.З. Чистильщики Вселенной, Глава 26. Онлайн библиотека.
48. Толковый словарь русского языка под ред. Д. Н. Ушакова, М.:2010 г.
49. Борейко В.Е. “Популярный словарь по экологической этике и гуманитарной экологии.” Серия: Природоохранная пропаганда. Вып.
22. Киев: КЭКЦ. 2003 г. 96 стр.
50. Археолог выступил в защиту космического мусора. Источник: MEMBRANA/ Космос, авиация/ от 24 мая 2006 г. Сайт http: //news. samaratodav.ru/news/85647/.
51. Понятие науки, её структура и функции. Сайт «Цифровая библиотека по философии».
52. Толковый словарь русского языка под ред. Д. Н. Ушакова, 2010 г.
53. Международное совещание-семинар “Естественные права природы”, “Трибуна—9”, Киев, май, 2003 г.
54. Отчёт регионального бюро Всемирной организации здравоохранения "ФЛОТ 2017" от 22 октября 2010 г.
55. Здоровье населения России в социальном контексте 90-х годов: проблемы и перспективы. /Под ред. В.И. Стародубова, Ю.В. Михайловой, А.Е. Ивановой. М.: Медицина. № 181 – 182. 2003 г.
56. Иванова А., Семёнова В., Дубровина Е. Маргинализация российской смертности. Демоскоп от 6 – 19 декабря 2004 г.
57. Интернет-издание «Люди. Вегетарианцы». Ноябрь 2008 г.
58. Сообщение сайта http://www.veggv.ru/r.html.
59. Полмиллиона особей форели погибло в заражённой химикатами реке. Источник РИА Новостию. Опубликовано 13/11/2010 г.
60. Учёные назвали болезни, которые уничтожают мир. По материалам сайта health.mail.ru.
61. Исторические реликвии. Сайт «12Талеров» от 18.01.2011 г.
62. Нетленные мощи. Сайт библиотеки «АТЕО-КЛУБА» от 22 апреля 2009 г.
63. Опасные находки. Информация с сайта XABEZ.RU от 16 декабря 2009 г.
64. Почему их нельзя трогать? Информация сайта http://xlt.narod.ru.
65. Зеленцова О.В. Сохранение археологического наследия и проблема грабительских раскопок. Институт археологии РАН, 2006 – 2011 г.
66. Клад. Материал из Википедии – свободной энциклопедии.
67. Плугатарёв И. Об исторической памяти. Независимое военное обозрение от 7 сентября 2007 г.
68. Россия заняла первое место в Европе по числу убийств среди молодёжи, Лента. Ру" от 13.11.2011 г.
69. Иоганзен Б. Г. Основы экологии. – Томск, 1959 г. – 390 с.
70. Ткаченко К. В. Микробиология: конспект лекций. Введение в микробиологию, Издание FictionBook. lib, Лит Рее, 2009 г.
71. Шмелева А. Научно-образовательный сайт Neuroscience.ru. Ответ на статью "Эксперименты на животных и гуманизм",10 мая 2005 г.
72. Инструкция о порядке похорон и содержании кладбищ в РФ, М.: АО «ДИАС» 2000 г.
73. Накошная Ю. Что такое крионика? Бессмертие – миф или реальность? Школа жизни. ру. Опубликовано 27.08.2006 г.
74. Основы социальной работы: Учебник/ отв. Ред. П.Д. Павленок. – М.: ИНФРА-М, 1998 г.
75. Социальные отклонения – 2-е издание, переработанное и дополненное. – М.: С69 Юридическая. литература, 1989 г.
76. Отчёт VIII-го Отдела Народного Комиссариата Юстиции Съезду Советов // Отрывки из журнала «Революция и церковь», № 9-12. 1920 г.
77. Кирьянова О. Г. Участь мощей святых в России после 1917 года // Миссионерское обозрение № 10, 2005 г.
78. Криминальный маховик в России набирает обороты. Правда Москвы № 30 от 25 октября 2011 г.
79. Назаретян А. П. Насилие и ненасилие в исторической ретроспективе М.: Мир. 2004 г.
80. Пегов, С. А., Пузаченко, Ю. Г. Общество и природа на пороге XXI века. Общественные науки и современность 5: 1994 г. С. 146–151.
81. Агрохимия под редакцией Б.А. Ягодина – М.: Колос, 1989 г.-655с.
82. Ефимов В.Н., Донских И.Н., Царенко В.П. Система удобрения – М.: Колос, 2003 г, – 320с.
83. Минеев В.Г. Агрохимия – М.: МГУ, 1990 г.-486с.
84. Артюшин А. М., Державин Л. М., Краткий справочник по удобрениям. 2 изд., М., 1984 г.
85. На австралийское побережье выбросились 80 китов и дельфинов. Лента. ру от 15.10.1011 г.
86. Миллионы дохлых рыб всплыли в одной из гаваней в пригороде Лос-Анджелеса. Источник РИА Новости, 2011 г.
87. Гиляров М. Жизнь в почве. Электронная библиотека. Информация сайта ModemLib.Ru.