Информационные технологии в СССР. Создатели советской вычислительной техники Ревич Юрий
Новизна технических решений защищена 18 свидетельствами на изобретения и 5 свидетельствами на промышленные образцы[68].
Большой объем внутренней памяти машины М-10 потребовал и значительного количества оборудования. Если все оборудование машины размещалось в 31 типовом шкафу, то оперативная память первого уровня, выполненная на ферритовых сердечниках типа М-100П2 с внешним диаметром в 1 мм, занимала восемь таких шкафов, постоянная память — конденсаторного типа со сменными металлическими перфокартами в качестве носителя информации — занимала также восемь шкафов, большая память (память второго уровня) на сердечниках М-100П2 размещалась в четырех шкафах. С целью сокращения общего объема машины М-10 было принято решение провести исследование возможностей создания запоминающих устройств с теми же объемами памяти, но более компактных. Эти исследования дали положительные результаты: в 1974 году началась разработка новых запоминающих устройств. В качестве носителей информации в оперативной памяти первого уровня и в большой памяти (памяти второго уровня) использовались интегральные схемы; в постоянной памяти использовались тороидальные магнитные сердечники с диаметральными отверстиями, обеспечивающие неразрушающее считывание информации. В 1975 году конструкторская документация была передана на завод-изготовитель. Были изготовлены головные образцы этих устройств. Весь объем оперативной памяти первого уровня разместился в одном типовом шкафу. Объем большой памяти — в двух шкафах, объем постоянной памяти — также в двух шкафах. По своему функционированию новые устройства полностью обеспечивали все тактико-технические характеристики машины М-10.
С 1980 года машина стала выпускаться с новыми запоминающими устройствами и получила обозначение М-10М. Машины М-10 и М-10М были программно совместимы и полностью взаимозаменяемы.
Сам Михаил Александрович в докладе [6.2] в год пятнадцатилетия института так вспоминал о памятных годах его становления: «В 1967 году мы вышли с довольно дерзким предложением — проектом вычислительного комплекса М-9. Это было в год 50-й годовщины Октябрьской революции, поэтому вычислительный комплекс назывался „Октябрь“. Для Минприбора, где мы тогда пребывали, это оказалось уж слишком. Нам сказали: „Идите вы к Калмыкову, раз уж работаете на него“. И вот эту дату, это пятнадцатилетие мы сегодня и празднуем.
Проект М-9 остался неосуществленным. Но в 1969 году началась разработка вычислительной машины М-10, которая в 1973 году впервые вышла на места эксплуатации. В течение ряда лет эта машина была мощнейшей в Советском Союзе и сейчас продолжает выпускаться и эксплуатироваться. На машине удалось получить уникальные научные результаты, в особенности в области физики. Нельзя сказать, что разработка М-10 была встречена с распростертыми объятиями. Нам говорили, по правде сказать, что мы психи, что нельзя собрать воедино такую груду металла, что все это никогда не заработает. Это мы теперь приучили, так сказать, психологически, что большая вычислительная машина может состоять из такого количества аппаратуры. Тогда никто к этому готов не был. Да и работать нам было невероятно трудно: коллектив тогда трудился на „Соколе-1“, в Большом Власьевском переулке (в полуподвале), в полуподвале на улице Бурденко, в полуподвале на Плющихе, на большой Почтовой улице, в полуподвале на улице Щукина и еще в нескольких местах по всей Москве.
Выделившись из ИНЭУМ, коллектив получил помещение бывшей столярной мастерской одного из предприятий на „Соколе“ площадью 590 кв. метров. Чтобы разместить весь коллектив, пришлось искать по всей Москве и арендовать нежилые помещения, в основном полуподвального типа. Собственное здание — типовую школу — институт построил в 1975 году, а лабораторный корпус по специальному проекту — в 1985–1986 годах.
Но всегда была деловая и дружеская поддержка со стороны руководства Министерства, со стороны П. С. Плешакова (министр — Прим. авт.), его заместителя В. И. Миркова, а сейчас — О. А. Лосева, со стороны руководства объединения, со стороны высших партийных органов, Госплана, комиссии Президиума Совета Министров СССР, со стороны дружественных предприятий, со стороны заказчика. Они помогали нам работать, помогали вытянуть это дело.
И мы вытянули. Работа была отмечена Государственной премией СССР».
«Нам говорили…, что мы психи, что… это никогда не заработает», — сказал М. А. Карцев по поводу отношения многих авторитетов к ЭВМ-10 и вычислительным комплексам, включавшим две и три ЭВМ.
Скептиков нетрудно понять, если познакомиться с некоторыми цифрами. В БЭСМ-6 использовалось 60 тыс. транзисторов, 180 тыс. полупроводниковых диодов, 12 млн ферритных сердечников. Вычислительный комплекс из трех ЭВМ М-10 содержал 2100 тыс. микросхем, 1200 тыс. транзисторов, 120 млн ферритных сердечников. Это не только «груда металла», как сказал Карцев, но и труднопредставимое количество электронных элементов, объединенных в сложные схемы, которые надо было заставить слаженно работать.
И тем не менее, вычислительные комплексы заработали… По мере отработки математического обеспечения и частичных аппаратурных доработок прекращение автоматической обработки данных за год составило всего 10 минут!
Не все относились с одобрением к выдающимся успехам Карцева и его замечательного коллектива. Вспоминаю такой случай. Где-то в конце 60-х или начале 70-х годов мне в Киев позвонил Карцев и обратился с просьбой быть оппонентом по докторской диссертации сотрудника его института В. А. Брика, участника работ по ВК М-9. Ознакомясь с присланной в Киев диссертацией, я убедился, что она далеко не заурядна — предлагались совершенно новые методы ускоренного выполнения ряда операций и соответствующие, проверенные практикой оригинальные схемные решения. В досконально исследованной области науки и техники, где, казалось, уже все изучено и расставлено по своим местам, автор диссертации сумел сказать новое и весьма весомое слово. Такого же мнения придерживался и второй оппонент, известный ученый, написавший ряд книг по вычислительной технике, А. А. Папернов. Поддержали диссертанта и выступавшие.
Нас обоих шокировало отрицательное решение ученого совета, возглавляемого академиком
B. C. Семенихиным. Оно было явно необъективным. Члены совета, недоброжелательно относившиеся к Карцеву, «отыгрались» на его ученике.
Последний бой…
В 1978 году М. А. Карцев предложил приступить к работам по созданию новой многопроцессорной векторной вычислительной машины, используя опыт, полученный при разработке, изготовлении и эксплуатации машин М-10 и М-10М, а также новейшие достижения в технологии и в электронной технике. Решено было присвоить этой машине условное обозначение М-13.
В 1979 году коллектив начал разработку конструкторской документации. Были определены и заводы-изготовители, на которых предполагалось вести производство машины М-13. В течение 1980–1981 годов конструкторская документация комплектно по устройствам была передана на эти заводы.
М-13 стала машиной четвертого поколения. В качестве элементной базы в ней были использованы большие интегральные схемы. В архитектуре этой многопроцессорной векторной ЭВМ, предназначенной в первую очередь для обработки в реальном масштабе времени больших потоков информации, предусмотрены четыре основных части: центральная процессорная часть, аппаратные средства поддержки операционной системы, абонентское сопряжение, специализированная процессорная часть.
ЭВМ М-13
Центральная процессорная часть включает: арифметические процессоры (4, 8 или 16), главную оперативную память, главную постоянную память, оперативную память второго уровня, центральный коммутатор, центральное управление, устройство редактирования, мультиплексный канал. Аппаратные средства поддержки операционной системы имеют: центральный управляющий процессор, таблицы виртуальной трехуровневой памяти, средства поиска. Абонентское сопряжение включает: стандартизированное электрическое сопряжение, программируемый интерфейс, сопрягающие процессоры (от 4 до 128). Специализированная процессорная часть состоит из контроллера технического управления, управляющей памяти гипотез, процессоров когерентной обработки (от 4 до 80).
Машина М-13 имела модульное построение и допускала переменную комплектацию, способную оптимально обеспечить пользователю необходимые технические характеристики. Так, центральная процессорная часть имела три конфигурации и могла иметь производительность в зависимости от исполнения 12 106, 24 106 и 48 106 операций в секунду. При этом также соответственно изменялся и объем внутренней памяти, пропускная способность центрального коммутатора и пропускная способность мультиплексного канала. Так, объем внутренней памяти мог составлять 8,5, 17,0или 34,0 Мбайт, пропускная способность центрального коммутатора — 800, 1600 или 3200 Мбайт/с, пропускная способность мультиплексного канала — 40, 70 или 100 Мбайт/с.
Абонентское сопряжение и специализированная процессорная часть могли комплектоваться еще более гибко.
Специализированная процессорная часть машины предназначена для обработки больших массивов относительно малоразрядной информации (быстрое преобразование Фурье, вычисление корреляционных функций, сравнение с порогом, проверка гипотез и др.) и имеет в качестве базовой операции произведение двух комплексных чисел (двухточечное преобразование Фурье). Специальный (комплексный) арифметический процессор выполняет эту базовую операцию за один машинный такт. Эквивалентное быстродействие линии комплексных процессоров на порядок превышает быстродействие линии арифметических процессоров на сопоставимых форматах данных.
Эквивалентное быстродействие специализированной процессорной части машины М-13 в максимальной комплектации при решении указанных выше задач может достигать 2,4 109 операций в секунду.
Абонентское сопряжение машины М-13 содержит операционную систему, систему программирования и отладки, файловую систему, систему документирования, библиотеку типовых программ и др.
Свое выступление в мае 1982 года в день пятнадцатилетия института М. А. Карцев закончил следующими словами [6.2]:
«…Нам сейчас кажется, что мы никогда не выпускали в свет такой хорошей разработки (имеется в виду машина М-13. — Прим. авт.), как мы пытаемся выпустить сейчас, и что никогда так трудно не было выпустить разработку в свет, как сейчас, никогда мы не встречались с такими трудностями. Но я хочу вам просто напомнить, что мы переживали очередную влюбленность в каждую нашу разработку и трудности у нас всегда были неимоверные. Я вот сейчас просыпаюсь ночами в холодном поту от того, что так медленно и с таким трудом идет производство нашего нового детища. Но понимаете, это, в общем, относится просто, наверное, к старческой бессоннице. А на самом деле ведь от того дня, как мы получили задание правительства, прошло не очень много, прошло всего два года и восемь месяцев. И не может быть, чтобы наш коллектив, в котором есть и убеленные сединами и умудренные опытом ветераны, и энергичная и образованная молодежь, чтобы мы не вытянули это наше детище!
„Когда-нибудь мы вспомним это, и не поверится самим, но нам сейчас нужна одна победа, одна на всех, мы за ценой не постоим!“».[69]
М. А. Карцев, 1970-е годы
Последняя фраза взята М. А. Карцевым из песни, впервые прозвучавшей в памятном для многих фильме «Белорусский вокзал». И это не случайно. Бывший сержант-танкист остался фронтовиком, работал с максимальным напряжением сил и нервов, что на фронте приводило к подвигу (медаль «За отвагу» и орден Красной Звезды в 20 лет!), а в мирное время позволило ему и его коллективу совершать, казалось бы, невозможное.
Завершающие проникновенные слова выступления М. А. Карцева перед сотрудниками созданного им с таким трудом института стали как бы его завещанием. Через год — 23 апреля 1983 года — его не стало…
Один из немногих
Директором института и главным конструктором машины М-13 был назначен Ю. В. Рогачев, работавший при М. А. Карцеве главным инженером института и первым заместителем главного конструктора (см. приложение «Ю. В. Рогачев. Биографическая справка» в конце этого очерка). Выполнить завещание основателя института и успешно завершить начатые им работы стало основной задачей коллектива НИИВК. Рогачев активно занялся поиском возможностей подключения специализированного завода к производству машины М-13 — последнего детища Карцева. Эти поиски увенчались успехом: в 1984 году промышленное производство машины М-13 было начато.
Под руководством Ю. В. Рогачева, при активном участии первого заместителя главного конструктора канд. техн. наук Л. Я. Миллера, заместителей главного конструктора канд. техн. наук Р. П. Шидловского, канд. техн. наук А. А. Крупского, канд. техн. наук А. Ю. Карасика, Е. И. Цибуля, а также руководителей отделов и лабораторий, ведущих специалистов по вычислительной технике и программированию были успешно проведены работы по выпуску и вводу в эксплуатацию машин М-13 вместе с программным обеспечением. Успешно продолжались работы и по созданию новых вычислительных комплексов на базе машин М-10М, в том числе и с использованием волоконных оптических линий.
Вклад коллектива института в развитие отечественной вычислительной техники был высоко оценен правительством: в 1986 году Научно-исследовательский институт вычислительных комплексов был награжден орденом Трудового Красного Знамени.
Высокие награды получили многие сотрудники института, в том числе Ю. В. Рогачев (орден Трудового Красного Знамени).
В продолжение всей своей деятельности М. А. Карцев проявлял высокую творческую активность. Его монографии по основам теории арифметических устройств и основам проектирования структуры ЭВМ стали настольными книгами для разработчиков вычислительной техники. Менее известны созданные под руководством Карцева ЭВМ, имевшие специальное назначение и находившиеся на вооружении Советской Армии. ЭВМ М-4М (шифр 5Э71, 5Э72, 5Э73) на порядок превосходили современные им М-220, БЭСМ-4 и др. Они несли дежурство на ответственных объектах с 1967 года до 1981 года, выпускались серийно; наработка на отказ или сбой составляла в них 700–1000 часов.
ЭВМ М-10 (шифр 5Э66) значительно превосходила современные ей отечественные ЭВМ (БЭСМ-6, ЕС-1060).
Из ЭВМ 5Э71-5Э73 и 5Э66 был создан и находился в постоянной круглосуточной эксплуатации крупнейший в стране многомашинный комплекс, в котором по единому алгоритму работали 76 ЭВМ, соединенных каналами передачи данных длиной в десятки тысяч километров.
Карцев понимал, что ЭВМ, разработанные в Институте вычислительных комплексов, способны не только нести службу в оборонительной системе предупреждения ракетного нападения, но могут принести огромную пользу в научном исследовании при выполнении наиболее сложных научно-технических расчетов, которые в то время не могли быть выполнены ни на одной отечественной машине не только из-за более низкого быстродействия, но и изза значительно меньшей емкости внутренней памяти. Несмотря на сопротивление военного административного аппарата, он добился разрешения на публикацию материалов об ЭВМ М-10, активно способствовал установлению связей с организациями, нуждавшимися в высокопроизводительной технике. По его инициативе на М-10 были проведены особо сложные научные расчеты: по механике сплошной среды (в 40–45 раз быстрее, чем на ЕС-1040), по моделированию плазмы (в 20 раз быстрее, чем на БЭСМ-6, для вариантов, помещающихся в ОЗУ БЭСМ-6, и в сотни раз быстрее для реальных вариантов). Впервые в мире на модели получены данные по явлению коллапса в плазме, чего не удалось сделать на СДС-7600 в США; часть этих результатов опубликована в докладах АН СССР (т. 245, 1979, № 2, с. 309–312), трудах XV Международной конференции по явлениям в ионизированных газах (Минск, июль 1981 года), доложена на европейской конференции в Москве осенью 1981 года.
По оценкам Института прикладной математики АН СССР, быстродействие М-10 на 64-разрядном формате превосходит БЭСМ-6 (48 разрядов) в 3,6–4,6 раза, ЕС-1060 — в 3–5,6 раза, ЭВМ «Эльбрус-1» (48 разрядов) — в 2,4 раза.
Разработки М. А. Карцева были основаны на новых технических решениях, опережавших свое время: страничная организация памяти, сочетание операций с плавающей и фиксированной запятой в М-2 (1952–1956 гг.), микроэлементная структура команд («модальности операций») в машине М-4 (1957–1959 гг.), магистральная («конвейерная») структура в М-4М (1962–1964 гг.), программно-перестраиваемая линейка синхронных процессоров, векторная структура, быстродействующая оперативная память 2-го уровня в М-10.
В многопроцессорной системе 4-го поколения М-13 впервые реализована аппаратура пооперационных циклов(обеспечивающая независимость программы от числа процессоров в системе), аппаратура сегментно-страничной организации памяти (перекрывающая возможности файловой системы), программно-управляемый периферийный процессор для операций типа преобразования Фурье, Уолша, Адамара, Френеля, вычисления корреляционных функций, пространственной фильтрации и т. п. Среднее быстродействие центральной части — до 50 млн операций в секунду (или до 200 млн коротких операций в секунду), внутренняя память — до 34 Мбайт, скорость внешнего обмена — до 100 Мбайт в секунду, эквивалентное быстродействие периферийного процессора на своем классе задач — до 2 млрд операций в секунду.
М. А. Карцев — автор фундаментальных теоретических работ по вычислительной технике (5 монографий, 55 статей и отчетов, 16 изобретений). Книги «Арифметические устройства электронных цифровых машин» (русское издание — 1958 год, позднее переиздавалась за рубежом), «Арифметика цифровых машин» (1969) заложили основы теории арифметических устройств; их выводы вошли в учебники. В последних монографиях «Архитектура цифровых вычислительных машин» и «Вычислительные системы и синхронная арифметика» (1978) практически впервые сделана попытка поставить на научную основу проектирование общей структуры ЭВМ и аппаратуры для выполнения параллельных вычислений.
М. А. Карцев — один из инициаторов развертывания в СССР работ по использованию достижений оптоэлектроники в вычислительной технике. Впервые в СССР в НИИ вычислительных комплексов была создана волоконно-оптическая система для многомашинного комплекса из шести ЭВМ М-10.
Трудовые достижения М. А. Карцева отмечены орденом Ленина (1978), орденом Трудового Красного Знамени (1971), орденом «Знак почета» (1966) и медалью «За доблестный труд». В 1967 году ему была присуждена Государственная премия СССР.
М. А. Карцев, 1980-е годы
В 1993 году Научно-исследовательскому институту вычислительных комплексов присвоено имя его основателя.
Рассказ о М. А. Карцеве я завершаю словами из письма его сына Владимира:
«Те немногие страницы, что я Вам посылаю, — это, конечно, гораздо меньше, чем заслужил отец.
Чем больше я думаю о нем, тем труднее мне ответить самому себе на вопрос, каким же он был. Несомненно, основным для него была его работа, но так же несомненно и то, что он достиг бы успехов и в ином деле, если бы судьбе было угодно заменить ему конструирование вычислительных машин на что-нибудь другое.
Отец очень ценил в человеке любой талант и умение, будь то способность решить теоретическую проблему или хорошо водить машину. К сожалению, очень часто ему приходилось общаться с теми, кто этими талантами не обладал, но от них зависела судьба его дела. В этих случаях многое приходилось ему брать на себя. Была и другая причина такого поведения отца. Однажды он прочитал мне вслух примерно такой эпиграф, предваряющий книгу по теории графов: „Узнав, что его собирается посетить тетушка, ковбой Джон развил бурную деятельность, и когда тетушка приехала, ее встретили обедом. Тетушка была удивлена только тем, что тарелки были прибиты к столу гвоздями. После трапезы Джон свистнул собак, они примчались и вылизали все тарелки. «Приучить вас прибегать к столу, — сказал Джон, обращаясь к собакам, — было не так просто. Но дело того стоило. Тетушка тотчас уехала». Прочитав эпиграф, отец добавил: «Руководитель каждого проекта должен быть готов к тому, чтобы выполнить его весь своими руками. Это не так просто, но дело того стоит!»“.
Как бы между делом отец читал лекции студентам-вечерникам (днем он был на работе) и также между делом стал профессором. Тогда мне казалось это естественным, я думал, что с возрастом все становятся профессорами. Как-то я все же спросил его, когда он готовится к лекциям. „Да я просто рассказываю студентам главу за главой из моей новой книжки“, — ответил отец. Действительно просто! Но и я был не лыком шит. „А что ты будешь делать, когда все главы кончатся, ведь книжка-то еще не дописана?“ — спросил я. „А к тому времени и курс кончится“, — отшутился отец. Больше вопросов у меня не было. А теперь их появляется все больше. Когда же отец успевал писать свои книги и статьи? Очень сомневаюсь, чтобы он мог хоть что-нибудь написать на работе.
Вот чего ему не надо было делать, так это „врабатываться“ в дело. Этот термин поймут многие люди творческих профессий, которым надо ловить вдохновение, чтобы взяться за перо. Он же писал книги в любую свободную минуту. Писал без черновиков. Рукопись сразу шла машинистке. Теперь уже никто не узнает, какой процесс предшествовал тому моменту, когда мысли переходили на бумагу, и действительно ли легко отцу писалось. У него не было хобби типа коллекционирования марок или строительства дачи. Наверное, в этом секрет того, что он постоянно был в форме и ему не надо было „врабатываться“: в какой-то мере создание книг и являлось его хобби.
Непрофессионализма отец не любил в любой области. Помню слова негодования, когда он собирал приемник из детского набора, в котором ни одна деталь не помещалась на отведенное ей место. Зато в преодолении трудностей, заслуживающих, на его взгляд, внимания, отец бывал безгранично терпелив. Когда отец занимался, он был удивительно спокоен.
Принимая экзамен у студентов, отец разрешал им приносить с собой любые книги. И уж конечно — я безгранично уверен в этом — он не требовал, чтобы они знали столько же, сколько он сам. И все же его экзамен не считали самым легким. Он требовал не запоминания информации, а понимания предмета. Многие ли могут похвастаться этим?
Интеллект отца остался в его разработках и книгах, работах его последователей, интеллигентность — только в памяти тех, кто знал его. Последнее качество делало отца более уязвимым в тех случаях, когда надо было договориться с власть предержащими или потребовать что-то. Без интеллигентности, как и без чувства юмора, не было бы того человека, которого мы все помним.
Одними из любимых книг отца были „Двенадцать стульев“ и „Золотой теленок“ Ильфа и Петрова. Читали мы также их „Одноэтажную Америку“, „Двух капитанов“ Каверина (одно время у нас была привычка читать вслух). „Евгения Онегина“ отец знал наизусть. Пожалуй, не только научные книги, но и литературу в более широком смысле можно назвать его увлечением. Довольно свободно читал также по-английски (научную литературу), а однажды довольно ловко и поговорил на этом языке с двумя арабами, с которыми мы попали за один столик в кафе. Когда я учил в школе немецкий и зубрил текст, отец, запомнив его на слух раньше меня, вдруг стал подсказывать мне и по-немецки. Вообще-то он учил только английский, но давным-давно заинтересовался популярным в те годы немецким и прочитал все школьные учебники. Этого оказалось достаточно.
По особому отец относился к „Педагогической поэме“ Макаренко. Он находил здесь много параллелей со своей работой и своими трудностями в становлении нового дела. Цитировал то место, где говорится, что можно относиться к своим воспитанникам как угодно, но они никогда не будут уважать тебя, если ты не специалист в своем деле. Это не случайная цитата. На первом месте у отца была наука, администрирование (политика) было вторичным. Создавая свои машины, он был готов работать бесплатно. И уж потом к идеям приложились институт, место в депутатском корпусе, поздравления министра в полагающихся случаях. При отцовской интеллигентности (это качество вкралось в мое повествование почти как постулат — очень трудно его доказывать) быть преуспевающим начальником было для него также неестественно, как печь блины на крышке от котелка, что пришлось ему делать как-то во время войны. Однако он пек их. Я-то, ничего не понимая в его науке, видел, как ему было непросто. И все же я берусь утверждать, что его друзья любили его сильнее, чем не любили враги. Возможно, по степени такой асимметрии и следует в итоге судить людей. Но кто возьмется судить? Предполагаю, что его занятие преподаванием было подготовкой запасных позиций, если бы Институт, ныне носящий его имя, не состоялся. Но он, к счастью, состоялся.
Одним из отцовских любимых фильмов была киноэпопея „Укрощение огня“. Нет, отец вовсе не был чужд романтики, я бы сказал, романтики интеллектуалов. Вероятно, отец увидел в этом фильме много близкого ему. За это он любил и книгу Виктора Некрасова „В окопах Сталинграда“, хотя обычно книг о войне не читал, говоря, что в них нет ничего общего с тем, что ему довелось видеть самому. Заботиться о своем здоровье отец терпеть не мог. Наверное, если бы он для профилактики выезжал в санаторий, посещал бассейн, совершал прогулки, он прожил бы дольше. Однако это был бы не совсем он. А он хотел жить и умереть, не поступившись своим отношением к жизни, хотел оставаться настоящим директором созданного им института и лидером собственного направления в вычислительной технике».
Он был дорог всем, работавшим с ним, не только как авторитетнейший лидер и великий труженик, но и как добрый, внимательный к людям человек, очень честный и очень скромный. И если был у него недостаток, то только один — он был очень доверчив и считал, что все люди прекрасны, честны, добры и справедливы, как и он сам.
Памятник на могиле М. А. Карцева на Новокузнецком кладбище в Москве
М. А. Карцев был и останется крупнейшей фигурой в мировой компьютерной науке и технике. Его имя золотыми буквами вписано в историю ее становления и развития.
В сборнике «Вопросы радиоэлектроники» [6.3], посвященном 70-летию со дня рождения М. А. Карцева, д-р техн. наук Л. B. Иванов справедливо написал: «…Он относился к той немногочисленной категории людей, которые составляют цвет нации и без которых нация не может существовать».
ПРИЛОЖЕНИЯ
ЭУМ М-4
Система счисления — двоичная, с фиксированной запятой, 23 разряда Скорость работы — 50 тыс. операций сложения или вычитания в секунду; 15 тыс. операций умножения в секунду; 5,2 тыс. операций деления или извлечения квадратного корня в секунду; средняя скорость в режиме универсального счета — 10–15 тыс. операций в секунду.
Объем внутренней памяти: оперативная память — 1024 24-разрядных числа; постоянная память — 1024 23-разрядных числа.
Ввод информации — с перфоленты со скоростью 45–50 чисел в секунду.
Вывод информации — на устройство БП-20 со скоростью 42 слова в секунду.
В качестве элементной базы использовались транзисторы П14, П15, П16, П203, диоды Д2, Д9, Д12 и некоторые другие. Оперативная и постоянная памяти строились на ферритовых сердечниках, в качестве генераторов тока в этих ЗУ использовались радиолампы (всего около 100 штук).
Главный конструктор машины М. А. Карцев, старший конструктор В. В. Белынский.
Участники разработки: ст. научн. сотрудник, д-р. физ. — мат. наук А. Л. Брудно, научный сотрудник, канд. физ. — мат. наук Е. В. Гливенко, научный сотрудник, канд. физ. — мат. наук Д. М. Гробман, ст. научн. сотрудник, канд. техн. наук Ю. В. Поляк; ведущие инженеры Г. И. Танетов, Н. А. Дорохова, Л. В. Иванов, Р. П. Шидловский, Е. Н. Филинов; инженеры: Ю. Н. Глухов, А. Н. Чернов, Л. Я. Чумаков, Ю. В. Рогачев, И. З. Блох, Р. П. Макарова, В. П. Кузнецов, Е. С. Шерихов; конструкторы: Е. И. Цибуль, Ю. И. Ларионов, В. Ф. Сититков, Ю. А. Шмульян.
На различных этапах разработки и настройки принимало участие от 10 до 40 человек научных сотрудников, инженеров, конструкторов, техников и лаборантов ИНЭУМ.
ЭВМ М-4М
Разрядность — 29 двоичных разряда.
Объем внутренней памяти: постоянная память — 819–16 384 слова, оперативная память — 4096–16 384 слова.
Быстродействие — 220 тыс. операций в секунду.
Скорость ввода-вывода при межмашинном обмене — 3125 29-разрядных слов в секунду или 6250 14-разрядных слов в секунду.
Ввод с перфоленты — 500 строк в секунду.
Вывод на печать (БП-20) — 10–12 строк в секунду.
ЭВМ М-10
Среднее быстродействие — 5 млн операций в секунду.
Быстродействие на малом формате (16 разрядов) — около 10 млн операций в секунду.
Общий объем внутренней памяти — 5 млн байт.
Первый уровень — оперативная 0,5 млн байт; постоянная 0,5 млн байт.
Второй уровень — 4 млн байт.
Пропускная способность мультиплексного канала — более 6 млн байт в секунду (при одновременной работе 24 дуплексных направлений связи).
Емкость буферной памяти мультиплексного канала — более 64 тыс. байт.
Система прерывания программ — 72-канальная, с 5 уровнями приоритетов.
Показатели надежности:
• коэффициент готовности — не менее 0,975;
• время (среднее) безотказной работы — не менее 90 часов.
Степень унификации: коэффициент повторяемости — 346, коэффициент применяемости — 46 %.
Обеспечивается одновременная работа восьми пользователей на восьми математических пультах.
Математическое обеспечение машины М-10 включает: операционную систему, обеспечивающую разделение времени и оборудования, диалоговый режим одновременной отладки до 8 независимых программ и мультипрограммный режим автоматического прохождения до 8 независимых задач; систему программирования, включающую машинно-ориентированный язык АВТОКОД и проблемно-ориентированный язык АЛГОЛ-60, соответствующие трансляторы и средства отладки; библиотеку типовых и стандартных программ; диагностические программы; программы контроля функционирования (тесты).
Основные особенности машины
Машина М-10 содержит две линии арифметических процессоров. За один машинный такт одновременно выполняются операции с фиксированной и плавающей запятой, а также целочисленные операции:
• над 16 парами 16-разрядных чисел;
• над 8 парами 32-разрядных чисел;
• над 4 парами 64-разрядных чисел;
• над 2 парами 128-разрядных чисел.
Предусмотрены также векторные операции. Например, за 1 такт может быть произведено вычисление скалярного произведения векторов (в каждой линии процессоров — сумма произведений до 8 пар 16-разрядных или до 4 пар 32-разрядных чисел и, если необходимо, суммирование с результатом аналогичной операции, выполненной в предыдущем такте).
Одновременно с получением результатов основных операций в обеих линиях арифметических процессоров вырабатываются до 5 строк булевых переменных (признаки переполнения, признаки равенства результатов нулю, знаки результатов и т. д.). Специальный процессор, работающий одновременно с арифметическими процессорами, может выполнять логические операции над строками булевых переменных. В свою очередь, строки булевых переменных могут использоваться как маски для линий арифметических процессоров.
Адресация памяти осуществляется в 2 ступени: сначала формируется математический адрес путем суммирования содержимого базового регистра с 22-разрядным смещением: затем с помощью аппарата дескрипторных таблиц математический номер листа (старшие разряды математического адреса) подменяются физическим номером листа, при этом получается физический адрес. В качестве базовых и индексных используются 16 специальных регистров. Каждый пользователь имеет доступ к виртуальной памяти в 8 мегабайт, адресуемый с точностью до полуслова. К аппарату формирования физических адресов имеет доступ только операционная система; с этим аппаратом совмещен также аппарат защиты памяти.
Организация оперативной памяти позволяет за одно обращение выбирать от 2 до 64 байт одновременно, начиная от произвольного адреса.
Ю. В. Рогачев. Биографическая справка
Рогачев Юрий Васильевич родился 18 августа 1925 года в Калининской области. В январе 1943 года был призван в Советскую Армию и направлен на Дальний Восток. В 1945 году принимал участие в войне с Японией. В 1946 году окончил курсы военных радиотехников и до 1950 года занимался обслуживанием и ремонтом радиоаппаратуры в войсках. После демобилизации в июне 1950 года поступил на работу к И. С. Бруку в лабораторию электросистем Энергетического института АН СССР им. Г. М. Кржижановского. Принимал участие в работах по созданию одной из первых ЭВМ — машины М-1. В 1952 году поступил учиться на радиотехнический факультет Московского энергетического института (МЭИ). После окончания МЭИ в марте 1958 года вернулся (по распределению) в тот же коллектив, ставший к этому времени самостоятельной организацией — Институтом электронных управляющих машин (ИНЭУМ). Работал инженером, старшим инженером, старшим конструктором, руководителем лаборатории. Принимал участие под руководством М. А. Карцева в создании машин М-4 и М-4М.
Юрий Васильевич Рогачев, 1980-е годы
Разработка системы логических элементов, внедренная в одну из первых серийных транзисторных ЭВМ М-4М, явилась основой кандидатской диссертации, которую Ю. В. Рогачев успешно защитил в 1967 году.
С 1967 года — главный инженер созданного на базе отдела спецразработок ИНЭУМа Научно-исследовательского института вычислительных комплексов (НИИВК). Принимал участие в создании вычислительных машин М-10, М-10М, М-13 и построении вычислительных комплексов на их основе в качестве заместителя главного конструктора, а с 1983 года — в качестве главного конструктора. В 1977 году за разработку машины М-10 в составе коллектива присуждена Государственная премия СССР.
С 1983 года — директор Научно-исследовательского института вычислительных комплексов. Награжден орденами Отечественной войны, Трудового Красного Знамени, «Знак Почета». В настоящее время пенсионер. Передал автору многочисленные архивные документы (в копии), освещающие жизнь и творчество М. А. Карцева.
Опыт внедрения «Эльбрус-1»
Борис Александрович Андреев
(письмо Ю. Ревичу от 23.04.2012 г.)
От составителя
Я решил включить это письмо именно в этот очерк о М. А. Карцеве, хотя значительная его часть посвящена описанию мытарств эксплуатационщиков при установке ЭВМ «Эльбрус-1» разработки ИТМ И ВТ. С. А. Лебедев не виноват в том, что его ученики не смогли как следует наладить серийный выпуск замечательной в своей задумке машины «Эльбрус». Зато в ее сравнении с карцевскими М-10 и М4-2М очень хорошо видно, насколько был высоким уровень разработок коллектива, возглавляемого М. А. Карцевым. Публикуется с разрешения автора.
Уважаемый Юрий Всеволодович Ревич, в своей статье [6.4] Вы пишете: «„Эльбрус“ так и остался в истории единственным примером конкурентоспособных отечественных разработок после 1970-х годов». Позвольте рассказать Вам, как под моим руководством запускался первый и единственный в Ленинграде 2-х процессорный МВК «Эльбрус-1».
В 1982 году я работал в должности зам. главного инженера подразделения «Объект 6» в Ленинградском производственно-техническом предприятии, которое, в частности, занималось разработкой программного обеспечения для управляющих ЭВМ, входивших в состав супер РЛС комплексов. МВК «Эльбрус-1» и предназначался для управления одной из таких РЛС. Он и ставился на нашем предприятии для предварительной разработки рабочей программы.
Поскольку я в единственном лице разрабатывал планировку помещений для установки оборудования «Эльбрус-1» и лично разрабатывал всю систему энергообеспечения вплоть до шкафов управления агрегатами ПСЧ-50, обеспечивавшими «Эльбрус-1» электропитанием 220 В/400 Гц, а также проектировал систему трубопроводов водяного охлаждения «Эльбруса», я тщательно изучил руководящие технические мероприятия (РТМ) ИТМ и ВТ в части применяемых для этого материалов. В РТМ категорически запрещалось применять в системе водяного охлаждения латунную арматуру и красномедные трубы, а вентили и краны из нержавеющей стали на давление меньше 25 атмосфер в СССР практически не выпускались. Каково же было наше удивление, когда в секции охлаждения в первых пришедших стойках «Эльбруса» мы увидели и латунную арматуру, и красномедные трубы. Казалось бы — проблема решена, но она вылезла через год эксплуатации, когда из-за электрохимической коррозии на дистиллированной воде стали выходить из строя алюминиевые теплообменники, встроенные в шкафы «Эльбруса» из-за появившихся в них дыр. Кстати, ресурс указанных теплообменников равнялся 500 часам. Как же можно было в такую дорогостоящую (22 млн рублей) ЭВМ вставлять такие теплообменники? Но это были пока еще цветочки, ягодки нас ждали впереди.
Наконец установили все шкафы, раскатали кабельное хозяйство и попытались включить «Эльбрус». Не тут-то было. Оказалось, у «Эльбруса» отсутствует центральный пульт (который так и не появился, ну, не смогли в ИТМ и ВТ его разработать). Соединители в шкафах для подключения пульта есть, а пульта нет. Ну разобрались, какие контакты надо замкнуть, чтобы разрешить включение питания, перемкнули их канцелярскими скрепками (я не шучу, ответных-то частей соединителей нет) и начали наладку.
Первое, что выяснилось, никакой постоянной памяти в «Эльбрусе» нет, и чтобы его оживить, необходимо закачать в оперативную память с перфоленты нечто в виде BIOS. А перфолента бумажная, от частого использования рвется. Да и выполнена она была в коде, который устройство подготовки данных ЕС ЭВМ, поставляемое с «Эльбрусом», не поддерживает (код более старого ГОСТ). Пришлось мне бегать по Питеру в поисках пластмассовой перфоленты.
Наконец аппаратные тесты прошли, пора ставить операционную систему. Поехал я в ИТМ и ВТ договариваться о ее поставке. Тут-то меня и огорошили. Ты, говорят, мужик, заводи у себя журнал изменений и отступлений и, либо у тебя «Эльбрус» соответствует электрическим схемам и не работает, либо ты в соответствии со своим пониманием переделываешь электрические схемы, и «Эльбрус» худо-бедно начинает работать. Наш комплект «Эльбруса» имел заводской номер 22. От него, кстати, отказался академик Харитон, иначе не видеть бы нам его, как своих ушей. И везде, где стоял такой «Эльбрус», его ковыряли как кому придется. Загорский завод вконец потерял контроль над схемотехническим решением выпущенных. Пару раз на моей памяти они (загорчане) пытались объявить какой-то комплект «Эльбруса» эталонным, и произвести доработку всех выпущенных «Эльбрусов» к единой схемной реализации, но у них так ничего и не вышло.
Перейдем теперь к операционной системе. В ИТМ и ВТ мне было заявлено, что для того, чтобы установить операционную систему, необходимо привезти в ИТМ и ВТ мастер-диски дисководов, установленных у нас. Они у себя в ИТМ и ВТ отберут наиболее близкий мастер-диск по юстировочным параметрам, а мы у себя отюстируем дисководы по этому отобранному мастер-диску и можем приезжать со стандартным пакетом дисков для закачки на него операционной системы.
Во всех нормальных ЭВМ операционная система поставляется на магнитной ленте. В составе МВК «Эльбрус-1» было аж 8 лентопротяжек ЕС ЭВМ, но для них не был написан, как теперь говорится, драйвер, и они стояли в зале мертвым грузом.
Теперь скажем пару слов о накопителях на магнитных барабанах. Поначалу я никак не мог понять, откуда в ЭВМ 4-го поколения появляются магнитные барабаны, когда весь мир давно от них отказался. И вот, после долгих размышлений, я выскажу свою гипотезу. В ИТМ и ВТ был отдел накопителей на магнитных барабанах и, чтобы его не разгонять, ему поручили поучаствовать в разработке ЭВМ 4-го поколения. Мы, как всегда, идём своим путём.
У нашего предприятия были весьма тесные связи с Загорским электромеханическим заводом (ЗЭМЗ), одним из лучших заводов электроники в Союзе, так вот руководство завода в частных беседах весьма нелестно высказывалось о выпускаемых им «Эльбрусах», а в это время у них в течение 5-ти лет лежала документация на ЭВМ М-13 разработки М. А. Карцева, которая должна была стать сердцем Красноярской РЛС. Таким образом, можно сказать, макет МВК «Эльбрус-1», который выпускал ЗЭМЗ в угоду ИТМ и ВТ, стал причиной, по которой не была построена Красноярская РЛС (это мое личное мнение).
Вся убогость и халтурность МВК «Эльбрус-1» особенно контрастировала по сравнению с ЭВМ М-10 М. А. Карцева, которая стояла в 50-ти метрах у нас на предприятии. Это, кстати, было единственное место в СССР, где обе советские суперЭВМ стояли бок о бок и могли нами сравниваться.
Хочу добавить несколько слов по поводу МВК «Эльбрус-2». По моим сведениям три 10-процессорных МВК «Эльбрус-2» были использованы как управляющие ЭВМ в РЛС ПРО «Дон» под Москвой в Софрино. Мне лично неизвестно, как это удалось, но разработчики из РТИ им. академика Минца добились, чтобы ИТМ и ВТ сделали-таки из «Эльбруса-2» управляющие ЭВМ, тем более, что их прежние разработки РЛС использовали управляющие ЭВМ, разработанные М. А. Карцевым, и они знали, как должны работать управляющие ЭВМ.
Теперь несколько слов насчет ЭВМ М4-2М, год начала выпуска которой — 1964 и год прекращения выпуска — 1984. С 1971 года я лично принимал участие во вводе в эксплуатацию 9-ти этих ЭВМ сначала как инженер, а затем как руководитель пуско-наладочной бригады. Эти ЭВМ были заменены на компьютеры IBM PC к середине 2000 годов. Причем замена была произведена не переписыванием боевых программ, а созданием на IBM PC эмулятора команд ЭВМ М4-2М и загрузкой в IBM PC программ в кодах М4-2М. Дело в том, что архитектура ЭВМ М4-2М предвосхищала архитектуру IBM PC, и это в 1963 году!
Отдельно хочется сказать о последовательном синхронном шлейфе с пропускной способностью 100 Кбит/с ЭВМ М4-2М. Эта синхронная сеть разбивалась на 64, 128 или 256 каналов по 16 разрядов, и все устройства РЛС были синхронно привязаны к своим каналам и принимали или передавали в ЭВМ М4-2М соответствующую информацию в двоичном коде. Таким образом, это была одна из первых, если вообще не первая промышленная сеть обмена информацией между ЭВМ. Кстати, РЛС СПРН «Днепр» на базе ЭВМ М4-2М были полностью автоматическими, то есть обслуживающий персонал только наблюдал за работой РЛС, и все данные о ее работе автоматически пересылались на командный пункт в подмосковный Солнечногорск.
Отсюда можно сделать вывод, что ЭВМ М4-2М за свою долгую жизнь достойна Книги рекордов Гиннесса.
Николай Петрович Брусенцов
Б. Н. Малиновский
От составителя
Достижение Н. П. Брусенцова — троичный компьютер — для лучшего понимания требует некоторого теоретического введения. При разработке первых компьютеров перед конструкторами встал вопрос об экономичности систем счисления с различными основаниями. Основанием системы называется количество цифр в ней, то есть отдельных символов для написания чисел. В десятичной системе их 10, от 0 до 9, в двоичной — всего две цифры, 0 и 1. А под экономичностью системы понимается тот запас чисел, который можно записать с помощью данного количества знаков. Чтобы записать 1000 чисел (от 0 до 999) в десятичной системе, нужно 30 знаков (по десять в каждом разряде), а в двоичной системе с помощью 30 знаков можно записать 215 = 32 768 чисел, что гораздо больше 1000. То есть двоичная система явно экономичнее десятичной. В общем случае, если взять n знаков в системе с основанием x, то количество чисел, которые при этом можно записать, будет равно x n/x. Легко найти максимум такой функции, который будет равен иррациональному числу е = 2,718282… Но поскольку система с основанием е может существовать только в воображении математиков, то самой экономичной считается система счисления с основанием 3, ближайшим к числу е: с помощью 30 знаков в троичной системе можно записать 310 = 59 049 чисел. В компьютере, работающем по такой системе, число элементов, необходимых для представления числа определенной величины, минимально.
Именно такой компьютер и создал Николай Петрович Брусенцов. Он имеет и другие преимущества перед двоичными, кроме экономичной элементной базы (см. приложение в конце этого очерка). Почему же троичный компьютер, ныне знаменитый во всем мире (все западные историки науки, приезжая в Россию, первым делом стремятся встретиться с Н. П. Брусенцовым, о чем говорит и Борис Николаевич в данном очерке), так и остался тупиковой ветвью на древе компьютерной эволюции? Причин много, и, главная та, что именно двоичная величина, бит, является наименьшим возможным количеством информации. Передача данных от одного устройства к другому в условиях помех происходит намного надежнее, если производится всего двумя устойчивыми состояниями — высоким уровнем напряжения и низким. Эти состояния просто воспроизвести в электронных устройствах — троичный триггер на транзисторах или лампах устроен куда сложнее двоичного и будет менее надежен в работе, пусть и самих таких триггеров будет требоваться меньше. Брусенцову просто повезло натолкнуться на крайне надежную элементную базу, которая хорошо работает как раз в троичной логике, но при переводе его схем на полупроводниковую основу вместо упрощения получится усложнение.
Текст Бориса Николаевича дополнен фрагментами интервью Н. П. Брусенцова журналу «Upgrate» [7.1] — они выделены мелким шрифтом.
21 июня 1941 года, накануне дня начала Великой Отечественной войны, восьмиклассник Коля Брусенцов был в Днепропетровске, участвовал в олимпиаде молодых музыкантов — дирижировал хором, исполнявшим его песню о дзержинцах. Все прошло замечательно.
А утром 22-го его и остальных, приехавших из Днепродзержинска, срочно отправили домой. Уже дома услышал по радио выступление Молотова. Запомнились слова «Победа будет за нами» и «Богатырская симфония» Бородина, зазвучавшая вслед за ними.
Так закончилось детство Николая.
Он родился 7 февраля 1925 года на Украине в городе Каменское (теперь Днепродзержинск). Отец, Петр Николаевич Брусенцов — сын рабочего железнодорожника, окончил рабфак, а в 1930 году — Днепропетровский химический институт. Участвовал в строительстве Днепродзержинского коксохимического завода. Умер в 1939 году в возрасте 37 лет.
Николай Петрович Брусенцов, 1960-е годы
Мать, Мария Дмитриевна (урожденная Чистякова), заведовала детским садом при заводе, где работал муж. Молодая женщина стойко вынесла тяжелый удар. Надо было позаботиться о троих детях. Николай был старшим из братьев. Младшему шел всего второй год. Не успели оправиться, как началась война. Начались бомбежки. Рядом с домом вырыли щели и прятались в них при налетах. Детский сад, где работала мать, вместе с Днепродзержинским коксохимическим заводом эвакуировали в Оренбургскую область. Урал встретил сорокаградусными морозами. Эвакуированные жили вначале в палатках, потом соорудили саманные бараки. Строили Орско-Халиловский металлургический комбинат. Николай работал учеником столяра. Весной 1942-го года во время разлива реки Урал саманный барак, в котором жила семья Брусенцовых, оказался под водой, и они лишились остатков имущества.
И все-таки он не бросил учебу. Зимой посещал девятый класс вечерней школы в г. Новотроицке, а летом поехал в Екатеринбург (тогда Свердловск) и поступил в находившуюся там в эвакуации Киевскую консерваторию на факультет народных инструментов.
Через полгода — в феврале 1943 года, когда исполнилось 18 лет, его призвали в армию и послали на курсы радистов в том же Свердловске, а еще через полгода направили в 154-ю стрелковую дивизию, где он стал радистом в отделении разведки 2-го дивизиона 571-го артиллерийского полка. Дивизия находилась на переформировании под Тулой. Через две недели ее направили под Невель, где наши части находились в полуокружении. Ему запомнились слова немецкой листовки: «Вы в кольце, и мы в кольце, посмотрим, что будет в конце». До декабря 1943 года дивизия занимала оборону, а потом вместе с остальными частями перешла в наступление и вышла к Витебску. Дивизион, в котором служил Николай, участвовал в неудачном наступлении на город. На болотистой местности гаубицы дивизиона при стрельбе погружались в болотную жижу, и стрельба становилась невозможной. Прекратился подвоз продуктов. Есть было нечего. Ноги Николая от холодной болотной воды распухли и покрылись волдырями. В одном из боев ему под ноги упала мина, но, к счастью, не разорвалась. «По семейному преданию, мама меня родила „в рубашке“», — сказал Николай Петрович, вспоминая об этом. Потом было легче — успешные наступательные бои в Белоруссии, в Прибалтике, Восточной Пруссии. Молодого солдата — вчерашнего школьника наградили медалью «За отвагу» и орденом Красной Звезды. Из тех 25 восемнадца— тилетних ребят, что в августе 1943 года пополнили дивизию, к тому времени осталось пятеро… Здесь, за Кенигсбергом, Брусенцов встретил запомнившийся на всю жизнь День Победы.
После демобилизации он вернулся в Днепродзержинск и устроился на завод, где раньше работал отец. В 1946 году, когда его отчима перевели в Калинин, он вместе со своей семьей переехал в этот город. Начал учиться в музыкальной школе и школе рабочей молодежи одновременно. В 1948 году окончил десятый класс, получив аттестат отличника, и по совету товарища-москвича подал заявление на радиотехнический факультет Московского энергетического института.
На вопрос, почему решил вместо музыки заняться радиотехникой, а потом вычислительной техникой, он ответил: «Я не мечтал стать ни композитором, ни творцом вычислительных машин, ни кем-либо еще. Странно, но мне никогда не приходило в голову делать что-либо ради успеха или выгоды. Пожалуй, главным, если не единственным, что двигало мной, было стремление сделать то, за что взялся, как можно совершеннее. Когда это удавалось, я испытывал (и испытываю) удовлетворение, а иногда и радость. У меня не было музыкальных способностей. Помню, как в Свердловске профессор продемонстрировал мне 6-летнего мальчика, безошибочно называвшего ноты, „извлекаемые“ из рояля. Я не умел — не было абсолютного слуха. Страстного стремления стать музыкантом, похоже, тоже не было: когда ходил в 1-й или 2-й класс школы, родители затеяли обучить меня игре на фортепьяно, но ничего не вышло, а от скрипки я отказался, не пробуя. Правда, попросил приобрести пионерский горн, самостоятельно освоил этот инструмент и стал неплохим горнистом. Охота к музыке появилась только в 5-м классе, играл на балалайке и домре в школьном оркестре. Подтолкнули к этому украинские песни („Посiяла огiрочки“, „Iхали козаки“, „I шумить, i гуде“, музыка Глинки, которую и теперь боготворю, как и песни) и наш школьный музыкальный учитель П. П. Шпитяк, который не завлекал, а лишь показывал, как надо делать. Так что никакой мечты не было: понравилась песня — подобрал и играю, попробовал свою сочинить — тоже получилось и другим понравилась — поют. В Днепропетровске песня о дзержинцах исполнялась хором в сопровождении оркестра народных инструментов, — всего нас приехало около ста человек, собранных из нескольких школ. Помню лишь, что в общежитии после концерта мы долго не могли уснуть, швыряя друг в друга подушками».
Набор студентов в институт уже закончился, но он добился своего. Медкомиссию при приеме каким-то образом обошел, зная, что у него начался туберкулез. Но на первом курсе это открылось, и его хотели исключить из института. Послали в районную поликлинику для заключения о возможности продолжать учебу. Повезло на врача. Узнав в чем дело, доктор сказал: «Мой сын лишился одного легкого и прекрасно учится. Значит и вам это не противопоказано!».
Первый год учебы он не столько учился, сколько спал, пытаясь сном и лекарствами победить начавшуюся болезнь, и ему это удалось! Когда здоровье поправилось, он не только наверстал упущенное, но и стал одним из самых успевающих студентов. Вместе с ним учился М. А. Карцев. В общежитии их комнаты были рядом. Карцев занимался самозабвенно, не считаясь со здоровьем, за год кончил два курса института, но к концу учебы нажил туберкулез, которым заболевали в то время многие из студентов МЭИ.
Радиотехника очень увлекла Брусенцова. В ней было что-то от музыки — стройность теоретических выводов, возможность проектировать радиосхемы с нужными свойствами. Только палочку дирижера заменяли карандаш или ручка, которыми записывались формулы или делались расчеты.
Но главным было стремление овладеть ею, чтобы понять, как можно улучшить то громоздкое и тяжелое радиооборудование, с которым так нелегко приходилось работать на войне. Радиотехнический факультет предоставлял для этого реальную возможность. «Не только я, но и Карцев, Матюхин, Легезо, Александриди обязаны своими успехами нашим превосходным учителям, в особенности таким как физик Ю. М. Кушнир, радиотехники В. А. Котельников, С. И. Евтянов, Н. С. Свистов, радиолокаторщик Ю. Б. Кобзарев, антенщики А. Н. Казанцев, Г. З. Айзенберг, а также Б. В. Пестряков — конструктор навигационной самолетной аппаратуры и той радиостанции, которая была моим оружием на войне, — писал мне Брусенцов. — Говорили, кому Б. В. поставит 4, тот конструктором будет, а я могу похвалиться, что получил у него 5».
Учась на последнем курсе и готовя дипломный проект, Брусенцов столкнулся с необходимостью расчета сложных таблиц, освоил численные методы вычислений и составил таблицы дифракции на эллиптическом цилиндре (известны как таблицы Брусенцова). Так закладывался фундамент для его последующей работы в области вычислительной техники.
В 1953 г. после окончания института Н. П. Брусенцова направили на работу в СКБ при Московском университете, пообещав помощь в получении жилья. СКБ только становилось на ноги. Разработки носили случайный характер. Вначале Брусенцову поручили разработать ламповый усилитель нового типа. С задачей он справился, но удовлетворения от этой работы не получил, а в перспективе ничего интересного не было. «Поплакался» Карцеву, работавшему в лаборатории И. С. Брука. Тот пригласил посмотреть уже работавшую ЭВМ М-2. Машина буквально покорила Брусенцова, впервые увидевшего новое и столь многообещающее техническое средство. На его счастье, ЭВМ М-2 заинтересовался С. Л. Соболев. Он договорился о передаче машины университету. Брусенцова направили в лабораторию Брука осваивать М-2, чем он и занялся с огромным желанием. Но случилось непредвиденное. На выборах в Академию наук СССР Соболев проголосовал за кандидатуру С. А. Лебедева (в академики), а не И. С. Брука. Исаак Семенович обиделся и отменил передачу М-2 университету.
По словам Брусенцова, С. Л. Соболев, узнав об этом, сказал: «Может, это к лучшему. Надо при создаваемом ВЦ МГУ организовать проблемную лабораторию по разработке ЭВМ для использования в учебных заведениях». И добился перевода Брусенцова на механикоматематический факультет.
Вспоминая свое первое знакомство с Соболевым, Н. П. Брусенцов говорил мне: «Когда я вошел в кабинет Сергея Львовича, то меня словно озарило солнечным светом при взгляде на его открытое, доброе лицо. Мы сразу нашли взаимопонимание, и я благодарен судьбе, что она свела меня с этим изумительным человеком, блестящим математиком, широко эрудированным ученым, одним из первых понявших значение ЭВМ».
Соболев загорелся идеей создания малой ЭВМ, пригодной по стоимости, размерам, надежности для институтских лабораторий. Организовал семинар, в котором участвовали М. Р. Шура-Бура, К. А. Семендяев, Е. А. Жоголев и, конечно, сам Сергей Львович. Разбирали недостатки существующих машин, прикидывали систему команд и структуру (то, что теперь называют архитектурой), рассматривали варианты технической реализации, склоняясь к магнитным элементам, поскольку транзисторов еще не было, лампы сходу исключили, а сердечники и диоды можно было достать и все сделать самим. На одном из семинаров (23 апреля 1956 года) с участием Соболева задача создания малой ЭВМ была поставлена, сформулированы основные технические требования. Руководителем и вначале единственным исполнителем разработки новой ЭВМ был назначен Брусенцов. Заметим, что речь шла о машине с двоичной системой счисления на магнитных элементах.
Соболев договорился с Л. И. Гутенмахером, в лаборатории которого в ИТМ и ВТ АН СССР к этому времени была создана двоичная ЭВМ на магнитных элементах[70], о стажировке Брусенцова в его лаборатории.
Авторитет Соболева «открыл двери» закрытой для всех лаборатории. «Мне показали машину и дали почитать отчеты, которые в электротехническом отношении, на мой взгляд, оказались весьма слабыми, — вспоминает Н. П. Брусенцов. — Например, одна из главных проблем — подавление „возврата информации“ в феррит-диодных регистрах, как нетрудно было подсчитать, вообще была надуманной; практически не использовались пороговые возможности элементов. Но главное, что мне бросилось в глаза, — каждый второй ферритовый сердечник не работал, а использовался для „компенсации помех“, которая в том исполнении принципиально не могла быть достигнута ни при каком подборе характеристик сердечников, чем только и занимались, выбрасывая в брак до 90 % тороидов. Разобравшись в этих заблуждениях, я легко нашел схему, в которой работают все сердечники, но не одновременно, что и требовалось для реализации троичного кода. О достоинствах этого кода я, конечно, знал из книг, в которых ему уделяли тогда значительное внимание. Впоследствии я узнал, что небезызвестный американский ученый Грош („закон Гроша“[71]) интересовался троичной системой представления чисел, но до создания троичной ЭВМ в Америке дело не дошло».
Именно тогда у него возникла мысль использовать троичную систему счисления. Она позволяла создать очень простые и надежные элементы, уменьшала их число в машине в семь раз по сравнению с элементами, используемыми Л. И. Гутенмахером. Существенно сокращались требования к мощности источника питания, к отбраковке сердечников и диодов, и, главное, появлялась возможность использовать натуральное кодирование чисел вместо применения прямого, обратного и дополнительного кода чисел (см. приложение в конце этого очерка).
После стажировки он разработал и собрал схему троичного сумматора, который сразу же и надежно заработал. С. Л. Соболев, узнав о его намерении создать ЭВМ с использованием троичной системы счисления, горячо поддержал замысел и позаботился о том, чтобы помочь молодыми специалистами. Изобрести сумматоры, счетчики и прочие типовые узлы не составило особого труда для Брусенцова: «Летом 1957 г. на пляже в Новом Афоне все детали были прорисованы в тетрадке, которую я захватил с собой, — вспоминает он. — Следующим летом мы с Карцевым плавали до Астрахани на теплоходе, но рисовать мне было уже нечего».
ЭВМ «Сетунь», опытный образец
В 1958 году сотрудники лаборатории (к этому времени их набралось почти 20 человек) своими руками изготовили первый образец машины.
Какова же была их радость, когда всего на десятый день комплексной наладки ЭВМ заработала! Такого в практике наладчиков разрабатываемых в те годы машин еще не было! Машину назвали «Сетунь» — по имени речки неподалеку от Московского университета.
Из интервью Н. П. Брусенцова журналу «Upgrade»: «Осенью 1959 года нас пригласили на Коллегию Государственного Комитета Радиоэлектроники — ГКРЭ. И там мы узнали, что наша машина не нужна. И Госплан, и ВСНХ заняли отрицательную позицию. На Коллегии нас записали в черный список закрываемых разработок. Мы никогда никаких дополнительных денег на создание машины ни копейки не получали. Мы работали только за зарплату здесь, в МГУ. Использовали оборудование, списываемое заводами при снятии изделий с производства. Тем не менее, ради экономии средств нас решили закрыть.
UP: Но какое-то объяснение этому должно быть?
Н. Б.: Соболев спросил: „А вы хотя бы видели эту машину, ведь она уже существует?“ Директор СКБ-245 В. В. Александров ответил: „Нам не надо ни видеть, ни знать — должна быть авторитетная бумага с печатями и подписями“. После Коллегии Сергей Львович пошел в ЦК КПСС. Уже вечером к нам приехал сотрудник отдела ЦК Ф. К. Кочетов и привез с собой М. К. Сулима — начальника восьмого управления ГКРЭ. „Сетунь“ нормально работала и производила необыкновенно хорошее впечатление. Обычно ведь как было: на выставке стоят машины, а сзади люди в белых халатах что-то там налаживают. У нас все работало как часы. Ну, понятно, после этого закрывать нас не стали, ведь машина уже сделана. Было принято решение провести ее межведомственные испытания. Испытания были проведены в апреле 1960 г. На них „Сетунь“ показала 95 % полезного времени. А в то время, если машина показывала 60 %, это считалось очень хорошим результатом».
Характеризуя роль участников создания «Сетуни», Н. П. Брусенцов писал: «Инициатором и вдохновителем всего был, конечно, Соболев. Он же служил примером того, как надо относиться к людям и к делу, непременно участвуя в работе семинара, причем в качестве равноправного члена, не более. В дискуссиях он не был ни академиком, ни Героем соцтруда, но только проницательным, смышленым и фундаментально образованным человеком. Всегда добивался ясного понимания проблемы и систематического, надежно обоснованного решения. „Кустарщина“ — было одним из наиболее ругательных его слов. К сожалению, золотой век участия Соболева в нашей работе закончился в начале 60-х годов с его переездом в Новосибирск. Все дальнейшее стало непрерывной войной с ближним и прочим окружением за право заниматься делом, в которое веришь.
Е. А. Жоголев был нашим „главным программистом“, а по существу, именно вдвоем с ним мы разрабатывали то, что впоследствии стало называться архитектурой машины. Он знал, чего хотел бы от машины программист, а я прикидывал, во что это обойдется, и предлагал альтернативные варианты. Когда же приняли троичную систему, то архитектурные проблемы радикально упростились, — важно было только не намудрить, но наш семинар с Соболевым, Семендяевым и Шурой-Бурой разносил мудрствования в пух и прах.
Достоинства Жоголева намного превосходили его слабости. Он был подлинным генератором оригинальных идей и настойчиво продвигал их в практику. Достаточно указать такую его идею, как программирование на основе польской инверсной записи (ПОЛИЗ), благодаря которой „Сетунь“ в весьма сжатые сроки и при минимальных программистских ресурсах (в группе Жоголева единовременно работало 7 человек) была оснащена вполне удовлетворительной по тем временам, добротной и, прямо скажем, блестящей системой программирования и набором типовых программ, таких как всевозможная обработка экспериментальных данных, линейная алгебра, численное интегрирование и т. п., что было важнейшим условием быстрого и продуктивного освоения машины пользователями. К сожалению, работа эта так и не была вознаграждена. Сам Жоголев, правда, получил серебряную медаль ВДНХ, но — как разработчик машины.
Как собирали первый экземпляр „Сетуни“? Во-первых, троичная машина оказалась намного регулярней и гармоничней, чем двоичные, поэтому проектирование ее не было мучительным и в проекте практически не было ошибок. На последнем этапе исправления потребовала только схема нормализации, а все прочее пошло сходу. Во-вторых, логические пороговые элементы были в такой степени отработаны и исследованы на физическом уровне, что дальнейшее построение из них устройств производилось по четко установленным правилам, не затрагивая более вопросов технической реализации. В-третьих, требования к существенным характеристикам всех деталей, элементов, узлов и блоков были четко определены и строго контролировались на соответствующих этапах изготовления при помощи специально разработанных для этого стендов, сравнительно простых, но проверяющих именно те параметры, от которых зависела правильность и надежность функционирования. Все это вместе создало условия, в которых ошибки своевременно устранялись на самых ранних стадиях, а необходимость переделок была сведена к минимуму. Работа была проделана в короткие сроки и необыкновенно малыми силами. Осенью 1956 г., когда возникла идея троичного кода, в лаборатории было, кроме меня самого, два выпускника физфака МГУ (С. П. Маслов и В. В. Веригин), два выпускника факультета ЭВПФ МЭИ (В. С. Березин и Б. Я. Фельдман) и 5 техников или лаборантов, в большинстве подготовленных мной из учившихся до того специальностям электрика или механика. К концу 1958 г., когда машина стала функционировать, число сотрудников лаборатории приближалось к 20. Механические работы по изготовлению блоков, стоек, а также плат, на которых монтировались элементы, выполнялись по нашим эскизам в мастерской ВЦ и отчасти в мастерских физического факультета. Кроме того, первый вариант ЗУ на магнитном барабане был разработан по нашим спецификациям отделом Л. С. Легезо, работавшим в тесном контакте с нами. Впоследствии это устройство с несерийным барабаном на базе гироскопа с ламповой электроникой было заменено магнитно-полупроводниковым блоком с барабаном от машины „Урал“.
Производственный процесс был организован так. Все мы работали в одной комнате площадью около 60 кв. м, уставленной лабораторными столами, на которых находились полученные по протекции Соболева списанные осциллографы ИО-3 и источники питания УИП-1. Все прочее проектировали и строили сами — стенды для исследования и сортировки ферритов, диодов, проверки ячеек, блоков. Рабочий день начинался „зарядкой“: каждый сотрудник лаборатории* не исключая заведующего, получал пять ферритовых сердечников диаметром три миллиметра, предварительно проверенных на стенде, и при помощи обычной иголки наматывал на каждый пятьдесят два витка обмотки. Затем эти сердечники использовались лаборантами и техниками, которые наматывали на них обмотку питания и управляющие обмотки с меньшим числом витков (5 и 12 соответственно), монтировали ячейку на плате, припаивали диоды, проверяли кондиционность параметров, проставляли маркировку и личное клеймо контролера. Затем ячейки устанавливались в блоках (до 15 штук), и производился монтаж сигнальных и питающих проводов по монтажной схеме. Далее на стенде проверялась выполняемая блочком логическая функция (сумматор, дешифратор, распределитель управляющих импульсов того или иного типа…). Блочки устанавливались в блок, и проверялись функции, выполняемые блоком. Наконец, блоки устанавливались в стойку, выполнялся и проверялся межблочный монтаж жгутов. После этого, как правило, все работало, а если что-то не так, то обнаружить и исправить было сравнительно легко.
Внутри лаборатории функции распределялись так. Запоминающими устройствами занимались С. П. Маслов и В. В. Веригин, к которым позднее подключилась поступившая к нам Н. С. Карцева (жена М. А. Карцева, окончившая вместе с ним наш РТФ МЭИ); управлением внешних устройств занималась А. М. Тишулина, выпускница ЭВПФ МЭИ, выполнившая в нашей лаборатории дипломную работу по созданию устройства быстрого умножения. Дипломники из МЭИ, МВТУ, МИФИ, МИЭМ, Лесотехнического института и др. работали в лаборатории регулярно и немало делали, надеюсь, не без пользы для себя. В. П. Розин, окончивший физфак МГУ по ядерной физике, достался нам в качестве лаборанта, которому не находилось применения, однако он явился для меня надежной опорой в ответственнейшем деле бездефектного изготовления элементов, включая отбраковку ферритовых сердечников и диодов».
Постановлением Совмина СССР серийное производство ЭВМ «Сетунь» было поручено Казанскому заводу математических машин. Первый образец машины демонстрировался на ВДНХ. Второй пришлось сдавать на заводе, потому что заводские начальники при помощи присланной из Минрадиопрома комиссии пытались доказать, что машина (принятая Межведомственной комиссией и успешно работающая на ВДНХ) неработоспособна и не годится для производства. «Пришлось собственными руками привести заводской (второй) образец в соответствие с нашей документацией, — вспоминает Брусенцов. — И на испытаниях он показал 98 % полезного времени при единственном отказе (пробился диод на телетайпе), а также солидный запас по сравнению с ТУ по климатике и вариациях напряжения сети. 30.11.61 г. директор завода вынужден был подписать акт, положивший конец его стараниям похоронить неугодную машину».
Желания наладить крупносерийное производство у завода не было, выпускали по 15–20 машин и год. Вскоре и от этого отказались: «Сетунь» поставляли за 27,5 тыс. руб., так что смысла отстаивать ее не было — слишком дешева. Тот факт, что машины надежно и продуктивно работали во всех климатических зонах от Калининграда до Магадана и от Одессы и Ашхабада до Новосибирска и Якутска, причем, без какого-либо сервиса и, по существу, без запасных частей, говорит сам за себя. Казанский завод выпустил 50 ЭВМ «Сетунь», 30 из них работали в высших учебных заведениях СССР.
ЭВМ «Сетунь», серийный образец. ВДНХ, 1961 год
К машине проявили значительный интерес за рубежом. Внешторг получил заявки из ряда стран Европы, не говоря уж о соцстранах. Но ни одна из них не была реализована.
Из интервью Н. П. Брусенцова журналу «Upgrade»:
UP: Американский аналог «Сетуни» — это PDP-8, на которой тинэйджер Билл Гейтс составлял свои первые программы?
Н. Б.: Да. Кстати, интересно сравнить «Сетунь» и PDP-8. Процессор PDP-8 — восьмибитный. У «Сетуни» процессор в пересчете на биты был 30-битным. PDP-8 стоила 20 тысяч долларов без всякой периферии[72], только один процессорный блок. Считалось, что это рекордно низкая цена.
«Сетунь» стоила 27,5 тысяч рублей со всей периферией. Чехи считали, что могли хорошо продавать «Сетунь» в соответствии с рыночными ценами и получать порядка полумиллиона долларов прибыли с каждой машины. По их приглашению я ездил в Чехословакию, мне показали завод, который планировалось использовать для производства машины «Сетунь», — «Зброевка Яна Швермы». Этот завод, кстати, во время войны делал самые лучшие пушки для немецкой армии, вроде нашей ЗИС-3. Завод меня просто восхитил. Они уже приготовили для «Сетуни» магнитные барабаны, печатающее устройство, устройство ввода. В общем, все было готово для производства «Сетуни». И они мне задают вопрос: «Ну, когда же, наконец, мы получим документацию? Нам обещали еще в декабре, а ее до сих пор нет». А я молиться готов был на такой завод — настоящая высокая культура производства.
Когда я вернулся в СССР, меня вызвал референт Косыгина и попросил передать чешским товарищам, как тогда говорилось, что документацию на «Сетунь» они получат сразу после освоения крупносерийного производства этой машины в Советском Союзе. Но какое к черту крупносерийное производство, когда принимались все возможные меры, чтобы заморозить «Сетунь». Понятно, что тут не обошлось без ГКРЭ. Тот же самый Сулим был заместителем главного конструктора М-20. А с М-20 в КБ провозились 2,5 года, прежде чем передать ее на завод. Для «Сетуни» никакого КБ не дали — завод указан, езжайте и выпускайте. Хорошо В. М. Глушков предложил свое КБ за символическую плату в сто тысяч рублей, чтобы выпустить конструкторскую документацию.
UP: Сто тысяч рублей — это символическая плата?
Н. Б.: Ну конечно! Те 2,5 года, которые в КБ разрабатывали М-20, обошлись в десятки миллионов рублей. Что такое КБ того времени? Это несколько сот человек с высокой оплатой по первой категории и т. д. Позднее я узнал, что чехам говорили: все равно мы эту машину снимем с производства, так что вы ее не заказывайте. Вот так все и закончилось с «Сетунью». В начале 70-х нас из главного корпуса ВЦ переселили на чердак. «Сетунь», несмотря на то, что она была полностью исправной и загруженной задачами, через пару лет была уничтожена — ее разрезали и выкинули на свалку.
В 1961–1968 годах на основе опыта «Сетуни» Брусенцов вместе с Жоголевым разработали архитектуру новой машины, названной затем «Сетунь-70». Алгоритм ее функционирования был с исчерпывающей полнотой записан на несколько расширенном «Алголе-60» (за рубежом подобное делали затем на специально изобретаемых языках описания архитектуры, например, на ISP). Это описание заведующий ВЦ МГУ И. С. Березин утвердил в 1968 году в качестве ТЗ на машину. Оно задавало инженерам предписание того, какую машину надлежит сделать, а программисты имели точное до битов описание, позволявшее заблаговременно создавать для нее программное оснащение, готовить эмуляторы ее архитектуры на имевшихся машинах и т. д. Было намечено, что к 1970 году лаборатория Брусенцова создаст действующий образец, а отдел Жоголева — систему программного обеспечения. «Сроки были в обрез, но в апреле 1970 г. образец уже действовал, — писал Н. П. Брусенцов. — Работал он на тестах, которые мне пришлось написать самому, потому что Жоголев не сделал по своей части буквально ничего. Он увлекся другой работой в сотрудничестве с Дубной. Машину мы все же „оседлали“, помог программист из команды Жоголева — Рамиль Альварес Хосе, а еще через год, „слегка“ модернизировав „Сетунь-70“, сделали ее машиной структурированного программирования[73].
Машина задумана так, что обеспечивалась эффективная возможность ее программного развития. Теперь это называют RISC-архитектурой. Троичность в ней играет ключевую роль. Команд в традиционном понимании нет — они виртуально складываются из слогов (слоги-адреса, слоги-операции, длина слога — 6 тритов, иначе; трайт — троичный аналог байта). Длина и адресность команд варьируются по необходимости, начиная с нульадресной. На самом деле программист не думает о командах, а пишет в постфиксной форме (ПОЛИЗ) выражения, задающие вычисления над стеком операндов. Для процессора эти алгебраические выражения являются готовой программой, но алгебра дополнена операциями тестирования, управления, ввода-вывода. Пользователь может пополнять набор слогов своими операциями и вводить (определять) постфиксные процедуры, использование которых практически не снижает быстродействия, но обеспечивает идеальные условия для структурированного программирования — то, чего не обеспечил Э. Дейкстра, провозглашая великую идею. Результат — трудоемкость программ уменьшилась в 5–10 раз при небывалой надежности, понятности, модифицируемости и т. п., а также компактности и скорости. Это действительно совершенная архитектура, и к ней всё равно придут».
Из интервью Н. П. Брусенцова журналу «Upgrade»:
UP: А «Сетунь-70»?
Н. Б.: К 100-летию со дня рождения Ленина все должны были делать всякие производственные подарки. Разумеется, и мы взяли обязательство к этой дате сделать «Сетунь-70». Но это уже совсем другая машина. Это была стековая машина, вроде наших «Эльбрусов». Но у «Эльбруса» был всего один стек — стек операндов. У PDP-11 также был всего один стек — процедурный. А «Сетунь-70» имела два стека — команд и операндов. Надо сказать, что эти стеки мы сделали независимо от PDP-11, которая появилась позднее. Когда Дейкстра выступил с идеей структурного программирования, мы увидели, что сделали машину как раз для реализации его идеи. Программирование на «Сетунь-70» было даже не структурированное, а структурирующее. Программы получались легко читаемыми и осваиваемыми, легко модифицированными. Главное, что программы не подвергались отладке, а делалась так называемая контрольная сборка. После того как программу сверху вниз написали, ее проходили снизу вверх. В хороших КБ всегда так делается — типичный конструкторский прием. После этого программа оказывается, как правило, безошибочной. Позднее «Сетунь-70» была эмулирована на двоичных машинах в форме диалоговой системы структурного программирования ДССП.
К сожалению, лаборатория Н. П. Брусенцова после создания машины «Сетунь-70» была лишена возможности, а точнее — права заниматься разработкой компьютеров и выселена из помещений ВЦ МГУ на чердак студенческого общежития, лишенный дневного света. Создание ЭВМ — не дело университетской науки, так полагало новое начальство. Первое детище Брусенцова — машина «Сетунь» (экспериментальный образец, проработавший безотказно 17 лет) была варварски уничтожена, — ее разрезали на куски и выбросили на свалку. «Сетунь-70» сотрудники лаборатории забрали на чердак и там на ее основе создали «Наставник» — систему обучения с помощью компьютера. «Наставником» занялись по рекомендации Б. В. Анисимова, который был тогда заместителем председателя НТС Министерства высшего образования СССР. Выслушав Брусенцова, он сказал ему: «Займитесь обучением с помощью компьютера, этого никто не запретит».
ЭВМ «Сетунь-70»
«Мне, конечно, было горько от того, что нас не поняли, но затем я увидел, что это нормальное положение в человеческом обществе, и что я еще легко отделался, — с горьким юмором написал Брусенцов. — А вот Уильям Оккам, проповедовавший трехзначную логику в XIII веке, с большим трудом избежал костра и всю жизнь прожил изгоем. Другой пример — Льюис Кэррол, которому только под личиной детской сказки удалось внедрить его замечательные находки в логике, а ведь эта наука до сих пор их замалчивает и делает вид, что никакого Кэррола не было и нет. Последний пример, показывающий, что и в наши дни дело обстоит так же (если не хуже), — Э. Дейкстра, открывший (в который раз!) идеи структурирования. Сколько было шума — конференция НАТО, сотни статей и десятки монографий, „структурированная революция“ бушевала едва ли не 20 лет, а теперь опять все так, будто ничего и не было.
Полноценная информатика не может ограничиться общепринятой сегодня по техническим причинам двоичной системой — основа должна быть троичной. Как-то я встретился с Глушковым и попытался поговорить об этом. Как истинный алгебраист Глушков сказал тогда, что вопрос о том, включать пустое или не включать, давно решен: включать! Но в действительности все не так просто. Современные математики, в особенности Н. Бурбаки, в самом деле считают, что Аристотель не знал „пустого“, поэтому его логика несовместима с математической логикой и математикой вообще. Если бы они почитали Аристотеля, то могли бы узнать, что именно им введено не только это понятие, но и буквенные обозначения переменных и прочих абстрактных сущностей, которыми кормится современная математика, не всегда осознавая их смысл. Оказалось, что Аристотель за 2300 лет до появления компьютеров и расхожего теперь термина „информатика“ не только заложил достоверные основы этой науки (у него это называлось „аналитика“, „диалектика“, „топика“, „первая философия“), но и поразительно эффективно применил ее методы к исследованию таких областей, как этика, поэтика, психология, политика, о чем мы со своими ЭВМ пока и мечтать боимся.
Отдельные примеры алгебраизации (достоверной) аристотелевской логики я опубликовал в виде статей „Диаграммы Льюиса Кэррола и аристотелева силлогистика“ (1977 г.), „Полная система категорических силлогизмов Аристотеля“ (1982 г.).
У меня налицо убедительные доказательства верности открытого пути. С какой лег-костью была создана „Сетунь“, как просто ее осваивали и продуктивно применяли пользователи во всех областях, и как они плевались, когда пришлось переходить на двоичные машины. Наивысшее достижение сегодня — RISC-архитектура — машины с сокращенным набором команд (типично — 150 команд), но где им до „Сетуни“, у которой 24 команды обеспечивали полную универсальность и несвойственные RISC эффективность и удобство программирования! Истинный RISC может быть только троичным.
В сущности мы его уже сделали, это „Сетунь-70“ — машина, в которой неизвестные в то время (1966–1968 гг.) RISC-идеи счастливо соединились с преимуществами трехзначной логики, троичного кода и структурированного программирования Э. Дейкстры, реализованного как наиболее совершенная и эффективная его форма — процедурное программирование в условиях двухстековой архитектуры. Впоследствии на этой основе была создана реализуемая на имевшихся двоичных машинах диалоговая система структурированного программирования ДССП, а в ней множество высокоэффективных, надежных и поразительно компактных продуктов, таких как „Наставник“, кросс-системы программирования микрокомпьютеров, системы разработки технических средств на базе однокристальных микропроцессоров, системы обработки текстов, управления роботами-манипуляторами, медицинский мониторинг и многое другое.
Сейчас мы развиваем ДССП в „процедурный ЛИСП“. Известно, что ЛИСП — единственный язык, на котором можно сделать все: от управления простейшими системами до проблем искусственного интеллекта и логического программирования. Но ЛИСП с его функциональным программированием и списковыми структурами программ и данных — это магия, доступная немногим. Мы обеспечим те же (и больше) возможности, но без магии. К сожалению, приходится делать это не на троичной машине и полного совершенства достичь не удается, но и в двоичной среде многое можно значительно упростить и улучшить. Правда, отдельные фрагменты трехзначной логики используются в двоичной ДСПП как логика знаков чисел (—, 0, +), также в виде трехзначных операций конъюнкции и дизъюнкции, существенно ускоряющих принятие решений.
Все же главным применением трехзначной логики стала у меня теперь силлогистика и модальная логика Аристотеля. Арифметические и машинные достоинства троичности в достаточной степени были освоены нами уже в „Сетуни-70“ — операции со словами варьируемой длины, оптимальный интервал значений мантиссы нормализованного числа, единый натуральный код чисел, адресов и операций, идеальное естественное округление при простом усечении длины числа, алгебраические четырехвходные сумматоры и реверсивные счетчики, экономия соединительных проводов и контактов за счет передачи по каждому проводу двух несовместимых двузначных сигналов (т. е. одного трехзначного). Короче говоря, всё, о чем мечтает Д. Кнут в „Искусстве программирования для ЭВМ“, мы уже осуществили. Адекватное отображение логики Аристотеля в трехзначной системе откроет выход компьютерам на те проблемы, которые он в свое время исследовал и которые сегодня, по-моему, актуальней вычислительной математики и электронной почты, а тем более одуряющих компьютерных игр. К тому же логика приобретет естественный вид и ее можно будет наконец пустить в школу, чтобы учились соображать, а не занимались зубрежкой».
Тяготы войны и напряженная работа без достаточного отдыха сказались на здоровье: в конце семидесятых годов Н. П. Брусенцов тяжело заболел. Во Всесоюзном центре хирургии в Москве ему вначале отказали в операции, считая положение безнадежным. И только вмешательство директора центра Бориса Васильевича Петровского спасло ему жизнь: он сам взялся прооперировать приговоренного к смерти ученого. Операция (она имеет специальное название — операция Гартмана) шла пять часов. Семидесятивосьмилетний знаменитый хирург подарил Н. П. Брусенцову вторую жизнь… Был еще один человек, которому ученый не менее обязан: его жена Наталия Сергеевна Казанская взяла на себя все тяготы ухода за мужем и в больнице, и дома. Через год пришла еще одна победа — на этот раз над, казалось, неизлечимой болезнью…
Прав или не прав Н. П. Брусенцов — покажет время. Со своей стороны приведу лишь один факт. В декабре 1993 года я встретился с известным специалистом в области компьютерной науки профессором С. В. Клименко, работающим в вычислительном центре Института физики высоких энергий (г. Протвино Московской области). Ученый только что возвратился из США, где по просьбе американской стороны прочитал небольшой курс лекций по истории развития компьютерной науки и техники в Советском Союзе. На мой вопрос — о чем и о ком спрашивали его американские слушатели, он ответил: «Почему-то только о Брусенцове и его машине „Сетунь“».