О чем говорят цифры. Как понимать и использовать данные Дэвенпорт Томас
Хотя на этапе формулирования проблемы полезно мыслить широко, но к его окончанию надо иметь четкое понимание ее сути, конкретную формулировку и перечень показателей, которые подлежат анализу. Это необходимо, поскольку в количественном анализе от формулировки проблемы зависит очень многое. Например, представьте себе, что вы топ-менеджер телекомпании, желающий выяснить, какие каналы предпочитают ваши зрители. Два аналитика-консультанта предложили вам разные подходы к проведению исследования. Из чистого любопытства вы решили нанять обоих и посмотреть, насколько будут отличаться их результаты.
Один из консультантов предложил зрителям каждый день в течение недели записывать (в онлайновом режиме либо на бумаге) те каналы и программы, которые они смотрят. Второй провел анкетирование зрителей, попросив их расположить телеканалы, которые они смотрели в течение нескольких последних месяцев, в порядке предпочтения. Оба отобрали репрезентативную выборку зрителей, отражавшую особенность всей аудитории.
Хотя оба консультанта пытаются получить ответ на один и тот же вопрос, они, скорее всего, получат весьма различающиеся результаты. Тот, кто предложил участникам целевой группы записывать просмотренные телепередачи, вероятно, получит результаты более точные, но зато процент откликнувшихся на это предложение будет ниже, поскольку процедура опроса связана с дополнительными затратами времени. (Компания Nielsen Media Research ведет постоянный мониторинг телеканалов и программ, и среди участников целевой группы каждый раз около 50 процентов отказываются вести записи, а ведь эта процедура выполняется автоматически.) Кроме того, этот консультант столкнется с проблемой влияния на зрительские предпочтения времени года или программ телеканалов в ту неделю, когда предполагается вести записи.
Точность исследования, проведенного вторым консультантом, возможно, будет ниже, но зато и сезонные факторы окажут меньше влияния за счет охвата более продолжительного периода. В результате расхождения в результатах будут настолько значительными, что сгладить их не удастся. Поэтому очень важно на этапе идентификации проблемы четко определить, что именно вы собираетесь изучать.
Шаг 2. Изучение предыдущих поисков решения
После того как проблема определена, следует выяснить, проводились ли ее исследования ранее и каковы были их результаты. Это второй шаг первого этапа количественного анализа (формулирование проблемы), поскольку информация о предшествующих исследованиях помогает аналитику и менеджеру оценить разные варианты формулировки проблемы и ее концептуализации.
Довольно часто аналитики находят в отчетах о ранее проводившихся исследованиях нечто такое, что заставляет их пересмотреть собственный вариант определения проблемы. Не исключено, что после этого придется пересмотреть отчеты о более ранних исследованиях.
Обычно на этом этапе аналитик задает себе вопрос: «Похож ли мой проект на те, которые выполнялись раньше?» Если да, то из отчетов можно почерпнуть идеи для собственного анализа. Обзор предшествующих исследований помогает уточнить ряд вопросов:
• В чем особенности нашего исследовательского проекта? Включает ли он опрос, предсказание, эксперимент, отчет?
• Какие данные нам необходимо собрать?
• Какие параметры изучали в предшествующих исследованиях?
• Какие виды анализа нам придется провести?
• Будут ли результаты нашего анализа отличаться от полученных ранее и как представить их в интересной форме?
Одна из ключевых особенностей количественного анализа (и вообще научного метода исследований) – это учет результатов более ранних исследований. Например, поиск относящейся к теме информации в книгах, отчетах и статьях очень важен для всестороннего понимания проблемы. Это помогает установить ключевые параметры и связи между ними.
Комплексный обзор результатов любых предыдущих исследований той же тематики обязателен для любого вида количественного анализа. В аналитике невозможно получить нечто из ничего. Приступать к решению проблемы можно только ознакомившись с опытом тех, кто делал это до вас. Помните простую вещь: любая проблема не настолько уникальна, как вам кажется, и не исключено, что многие уже сделали то, что вы только собираетесь делать. Не стоит заново изобретать колесо, достаточно выяснить, кто сделал это до вас. В наше время при помощи поисковика вроде Google нетрудно получить большую часть материалов по теме. Одна только систематизация и оценка имеющейся информации играет важную роль в уточнении модели анализа или подходов к решению проблемы.
Пример успешного обзора результатов более ранних исследований можно найти в истории Второй мировой войны. Адольф Гитлер приказал начать производство новой мощной управляемой ракеты ФАУ-2, и с ее помощью в 1944 году люфтваффе терроризировало жителей Лондона. В течение нескольких следующих месяцев 1358 из 3172 запущенных по целям в Англии ФАУ-2 упали на Лондон, в результате чего погибли 7250 человек – военных и гражданского населения.
Во время обстрела Лондона многие наблюдатели отмечали, что большая часть ракет падала в определенных районах города. Британцы хотели выяснить, является ли падение ракет случайным или управляемым. Если поражение целей возможно только случайно, то размещения бомбоубежищ и укрытий в окрестностях города будет вполне достаточно для обеспечения безопасности населения Лондона. Если же ракеты управляемые, то опасность намного больше и равномерно распределенные убежища особой пользы не принесут. Британское правительство пригласило известного статистика Р. Д. Кларка для решения этой задачи. Кларк провел простой статистический тест, основанный на информации о предыдущих попаданиях ракет. В частности, он понимал, что для этого анализа можно применить так называемое распределение Пуассона, которое показывает вероятность совершения ряда событий в фиксированный период времени, в определенном регионе или объеме, если эти события происходят с известной частотой. Если ракеты падают случайным образом, то количество ракет, попадающих в каждый квадрат местности, будет соответствовать распределению Пуассона. Например, если на каждый квадрат приходится в среднем по одной ракете, то с помощью формулы Пуассона можно подсчитать вероятность попадания в один квадрат одной, двух, трех, четырех и более ракет или непопадания ракет в один квадрат вообще.
Чтобы рассчитать количество ракет, которые могут попасть в определенный квадрат местности, Кларк разделил Южный Лондон на 576 квадратов площадью в четверть квадратного километра каждый и подсчитал количество квадратов, в которые попадали 0, 1, 2, 3, 4 и более ракет.
Если обстрел производился наугад, тогда количество квадратов с определенным количеством попаданий ракет подчинялось бы распределению Пуассона. Совпадение реального количества попаданий с рассчитанными по распределению Пуассона оказалось очень тесным, что опровергло предположение об управляемом обстреле определенных целей (см. сайт авторов этой книги). Выводы Кларка принесли британцам большое облегчение. К счастью, в 1945 году Германия капитулировала, так и не успев доработать управляемые ракеты ФАУ-2. (В скобках заметим: несмотря на то что их нельзя было точно наводить на цель, именно ФАУ-2 стали технической основой развития космической программы США.)
Вы можете последовать примеру Кларка, то есть вернуться назад и пересмотреть содержание этапа формулирования проблемы после изучения предыдущих попыток ее решить (см. вставку «Некоторые методы изучения предыдущих исследований»).
Некоторые методы изучения предыдущих исследований• Интернет-поиск по ключевым терминам, используемым в анализе.
• Поиск в учебниках по статистике примеров анализа, сходного с предполагаемым.
• Собеседование с вашими аналитиками на предмет того, не приходилось ли им делать что-либо подобное.
• Анализ системы управления знаниями в вашей компании, если таковая имеется.
• Обсуждение проблемы с аналитиками из других (не конкурирующих с вами) компаний.
• Посещение конференций по аналитике (или хотя бы просмотр программ подходящих по тематике конференций в интернете) и выступлений по смежной тематике.
Возможно, вам придется изменить аналитический проект, масштаб анализа, варианты решений, а может быть, даже пересмотреть состав заинтересованных. Если вы это сделали или, наоборот, остались при первоначальном мнении по всем этим вопросам, то можно считать, что формулирование проблемы завершено, и переходить к ее решению методами количественного анализа.
Уточнение формулировки проблемы
Хотя мы обрисовали аналитический процесс решения проблемы как линейную последовательность из шести шагов, объединенных в три этапа, но так или иначе этот процесс должен быть итеративным, предполагающим в случае необходимости возврат к предыдущим шагам и повторение их. Каждый следующий шаг способен выявить новые грани исходной проблемы, и всегда полезно задуматься над тем, как новая информация может изменить принятые на ранних этапах решения. Конечно, нельзя без конца пересматривать уже принятые решения, но полезно иногда задумываться над тем, как изучение предыдущих попыток решения способно повлиять на формулировку проблемы.
Этапы формулирования проблемыАдекватна ли разработанная формулировка проблемы? Если да, то ответ на большинство этих вопросов будет положительным.
• Удалось ли вам выявить проблему или возможности, касающиеся действительно важных для вашей организации вещей?
• Рассматривали ли вы альтернативные варианты решения проблемы?
• Определены ли те, кто сильнее всего заинтересован в решении, проводилось ли с ними обсуждение?
• Уверены ли вы в том, что способ, который выбран для решения проблемы, придется по вкусу всем заинтересованным и они смогут использовать полученные результаты для обоснования управленческих решений?
• Отдаете ли вы себе отчет в том, какие именно решения и в какие сроки будут приниматься на основе полученных в результате анализа данных и кто будет это делать?
• Вы начали с широкого определения проблемы, затем сузили его до конкретных, четко сформулированных вопросов, определили круг информации, которую надо собрать и представили возможные результаты?
• Способны ли вы определить вид аналитического проекта, который нужен для решения проблемы?
• Есть ли у вас сотрудники, способные помочь в реализации этого конкретного вида аналитического проекта?
• Провели ли вы комплексный анализ предыдущих исследований, проводившихся внутри или вне вашей организации по этой тематике, ознакомились ли с их результатами?
• Пытались ли вы пересматривать формулировку проблемы на основе изучения предыдущих поисков ее решения?
В своем блоге аналитик в сфере розничной торговли Рама Рамакришнан, в настоящее время СEO стартапа CQuotient, приводит прекрасный пример, в котором потребовалось переформулировать проблему для анализа[24].
Рассмотрим проблему таргетирования (определения целевой аудитории), типичную для прямого маркетинга. Необходимо принять решение, кому из потребителей разослать коммерческие предложения, потому что рассылка по всем адресам обойдется слишком дорого. Эта проблема возникла давно; ее изучением занимались многие исследователи и практики. Наиболее распространенный подход к ее решению такой.
1. Рассылка тестовых предложений только выборке покупателей.
2. Использование результатов тестовой рассылки для построения «модели реагирования» потребителей на рассылку в зависимости от их характеристик, истории покупок и т. п.
3. Рейтинговая оценка каждого потребителя, включенного в базу, и рассылка предложений тем, кто получил максимальный рейтинг.
Эта последовательность действий выглядит вполне логичной и способной обеспечить необходимый результат. А может быть, и нет.
Термин «модель откликов» предполагает, что рассылка станет непосредственной причиной покупки. Но в действительности потребитель мог бы просто зайти в супермаркет и купить этот продукт (речь идет о торговцах, имеющих несколько каналов сбыта, а не о фирмах, торгующих по каталогам).
Модели откликов нацелены в первую очередь на то, чтобы отделить покупателей, склонных совершать покупки по собственной инициативе, от тех, кто совершает их под влиянием рассылок коммерческих предложений. Менеджерам требуется выявить как раз последнюю категорию. Рассылка предложений тем покупателям, которые купят продукт так или иначе, а также тем, кто не станет покупать его ни при каких обстоятельствах, это пустая трата времени, которая лишь напрасно раздражает адресатов. Поэтому особенно важно выделить ту категорию покупателей, которых именно рассылка коммерческих предложений заставит совершить покупку.
Такая модернизированная формулировка проблемы выделения целевой категории потребителей, а также методов ее решения появилась относительно недавно. У нее несколько названий: инкрементное моделирование, моделирование поведения потребителей. Разработана она гораздо менее детально по сравнению с традиционной моделью управления потенциальными продажами. Тем не менее для многих розничных сетей инкрементное моделирование – намного более подходящий и полезный метод, позволяющий сформулировать и решить проблему выделения целевого сегмента потребителей.
В этом примере изучение предыдущих поисков решения выявило новые методы, что и стало толчком к пересмотру формулировки. Рамакришнан в таких ситуациях предлагает следующее: «Хотя новые методы исследований по определению еще не опробованы в достаточной мере, но благодаря своей простоте могут дать результат достаточно быстро».
Мы завершим главу, посвященную формулированию проблемы, двумя примерами: один из области бизнеса, а другой – из области права. В обоих формулировка проблемы сыграла решающую роль с точки зрения конечного результата, но в одном случае она оказалась удачной, а во втором некорректной. Правда, мы пока не обсуждали остальные этапы количественного анализа, но думаем, что это не помешает читателям разобраться в сути приводимых примеров.
Пример аналитического мышления: Transitions Optical
Одна из наиболее распространенных проблем в бизнесе – определить сумму затрат на тот или иной вид деятельности. Особенно сложно рассчитать расходы на маркетинг. Автор концепции универсамов Джон Ванамейкер и кое-кто из розничных торговцев в Европе до него любили говорить: «Я знаю, что половину денег на рекламу трачу зря; проблема в том, что я не знаю, какую именно». Но сегодня розничные компании применяют количественный анализ, чтобы установить, какие сбытовые затраты эффективны, а какие нет и каким должно быть их распределение по отдельным статьям, чтобы общая сумма была потрачена с максимальной пользой. Обычно такой анализ называют маркетинг-микс анализом, и он приобретает все большую популярность среди компаний, продающих товары непосредственно населению.
Определение и формулирование проблемы. Компания Transitions Optical продает фотохромные линзы для очков и является дочерней компанией PPG и Essilor, которые постоянно давят на менеджеров, желая сократить маркетинговые расходы. В частности, PPG не занимается маркетингом розничных продаж, поэтому скептически воспринимает информацию о стоимости и ценности рекламных мероприятий и акций по продвижению продуктов. В целом они считают, что расходы на маркетинг неоправданно высоки, но не могут привести данные, на основе которых можно было бы определить их оптимальный уровень. Менеджеры Transitions Optical решили сформулировать проблему так: оптимизация отдельных видов затрат на маркетинг с целью стимулирования роста объема продаж на каждый инвестированный доллар. По словам директора по маркетингу Грейди Ленски, в компании «считали маркетинг своего рода искусством, но теперь требуется научный подход».
Изучение предыдущих поисков решения. Никакого поиска просто не было. В компании имелись данные о потребителях, пригодные для такого анализа, но в отрывочном виде, рассредоточенные по разным подразделениям. Ленски и некоторые его коллеги понимали, что в принципе анализ эффективности различных маркетинговых подходов провести можно, но не знали как.
Моделирование (выбор переменных). Модели оптимизации маркетинг-микса, приобретавшие все большую популярность в крупных компаниях и применявшиеся для оптимизации маркетинговых расходов, обычно включают показатели маркетингового отклика, расходов на сбыт и рентабельности отдельных видов продуктов. Ежемесячную или еженедельную сумму расходов на рекламу и сбыт, а также оптимальный уровень цен на продукты можно рассчитать с помощью оптимизационных моделей методами линейного и нелинейного программирования. В качестве критериев принимаются максимальное увеличение объема продаж, рентабельности или обоих показателей. Модели позволяют определить, какие средства массовой информации выбирать для размещения рекламы, чтобы ее эффект был максимальным. Как правило, в них включается ряд «контрольных» переменных, которые могут повлиять на расходы и поведение потребителей: это, например, погода или макроэкономические факторы.
Сбор данных. Для Transitions Optical этот шаг оказался наиболее трудным, поскольку компания работает с посредниками (например, с оптическими лабораториями), а с конечными потребителями практически не контактирует и не имеет о них информации. Соответственно, невозможно адекватно определить, заметил ли потребитель рекламу и повлияло ли это на объем продаж. Transitions Optical пришлось в течение нескольких лет вести сбор данных о потребителях через своих торговых партнеров (а среди них были и конкуренты их материнских компаний). Ленски когда-то возглавлял дистрибьюторскую фирму, поэтому занимался организацией сбора данных. Данные о потребителях попадали в Transitions Optical в тридцати разных форматах, но в итоге их удалось конвертировать и объединить в общую базу. Ленски замечал, что его департаменту маркетинга пришлось упорно убеждать различные подразделения в необходимости предоставить необходимые данные. Предыдущий аналитический проект пришлось проводить, не опираясь на общую базу данных.
Анализ данных. Transitions Optical наняла внешнего консультанта для анализа данных, поскольку никто из постоянных сотрудников не имел опыта работы с оптимизационными моделями маркетинг-микса. Сначала такой анализ занимал несколько месяцев, поскольку требовалось сначала собрать данные, затем разработать модель с учетом многочисленных внешних факторов, влияющих на поведение потребителей (погода, маркетинговые акции конкурентов и т. п.). Сейчас такие модели в достаточной степени апробированы и отработаны, поэтому результат можно получить в течение нескольких дней.
Результаты и необходимые меры. Менеджеры компании чувствовали, что интерпретация результатов анализа и оформление их для клиента – очень серьезная работа, так что для этого в штат наняли специальных сотрудников. Они ознакомились с разработанной внешним консультантом оптимизационной моделью, совместно с топ-менеджерами обсудили ее особенности и степень соответствия их взглядам на ситуацию на рынке. В итоге Transitions Optical приняла решение увеличить расходы на сбыт, в частности на телевизионную рекламу.
Пример аналитического мышления: People vs. Collins
Под названием People vs. Collins известен суд присяжных, слушавший нашумевшее дело супругов Коллинз, в ходе которого математические методы и теория вероятности были использованы для доказательства виновности подсудимых. Однако проблему идентифицировали неверно, и результат оказался неутешительным[25]. Суд признал Малкольма Коллинза и его жену Джанет Коллинз виновными в ограблении второй степени. Малкольм обжаловал это решение, и Верховный суд штата Калифорния отменил его, подвергнув сомнению результаты статистических выкладок и способ их представления в суде. Рассмотрим этот случай в соответствии с требованиями к стандартной процедуре количественного анализа.
Определение проблемы. Сделав кое-какие покупки, миссис Хуанита Брукс шла домой по переулку в районе Сан-Педро. Внезапно ее швырнул на землю человек, лица которого ей не удалось разглядеть. Придя в себя от шока и болезненного ушиба, миссис Брукс обнаружила пропажу кошелька, в котором оставалось от 35 до 40 долларов. Очевидец происшествия сообщил, что грабителей было двое: чернокожий мужчина с бородой и усами и белая женщина с белокурыми волосами, завязанными в конский хвост. Они скрылись с места преступления на желтой машине. Подозреваемых задержали быстро, но идентифицировать их как лиц, совершивших ограбление, не удалось и через неделю. Потерпевшая не смогла опознать Джанет Коллинз и не видела лица мужчины. Показаний свидетеля также оказалось недостаточно. Прокурор, видимо, стремясь спасти разваливающееся дело, решил построить обвинение на расчете вероятности случайного совпадения внешности обвиняемых с описанной свидетелем.
Изучение предыдущих поисков решения. Известно, что обычно суд не считает несовместимыми математические расчеты и право и не отрицает, что математику можно использовать в качестве инструмента для поиска доказательств. Существует несколько судебных прецедентов, когда обвинение использовало математическую вероятность для доказательства вины подсудимого.
Моделирование (выбор переменных). Прокурор решил рассчитать математическую вероятность того, что внешность и машина задержанных супругов Коллинз случайно совпали с описанием преступников.
Сбор данных. Прокурор вызвал в качестве свидетеля преподавателя математики из местного колледжа. В своих показаниях он постарался убедить присяжных в том, что вероятность совпадения характерных особенностей случайной пары жителей города с описанием преступников ничтожна. В данном случае частные вероятности совпадения каждой из особенностей, упомянутых в описании преступников, можно оценить следующим образом:
Анализ данных. Преподаватель математики предположил, что все эти частные вероятности независимы, и тогда вероятность их совпадения можно рассчитать, перемножив показатели из таблицы.
Р(А) = вероятность того, что произвольно выбранная пара совпадет по описанию с описанием подозреваемых равна
или один шанс из 12 миллионов.
Презентация результатов и проведение мероприятий. Прокурор заключил, что вероятность наличия у случайно выбранной пары всех указанных характерных особенностей составляет один шанс на двенадцать миллионов. Соответственно, отсюда можно сделать вывод о том, что у пары, у которой присутствуют все эти особенности, лишь один шанс из двенадцати миллионов оказаться невиновными. Жюри присяжных вынесло вердикт: «Виновны».
Коллинзы подали апелляцию. Верховный суд штата Калифорния решил, что жюри присяжных оказалось под чрезмерным впечатлением от мистики математических терминов и расчетов и не сумело оценить их значимость и связь с делом. Верховный суд отменил приговор, подвергнув сомнению статистические выкладки и способ их представления присяжным. В частности, расчеты имели два существенных недостатка. Во-первых, следствие не привело никаких доказательств надежности исходных данных. Во-вторых, существенным недостатком этих расчетов было отсутствие уверенности во взаимной независимости частных вероятностей (так, например, мужчины с бородой, как правило, носят и усы).
Еще более важно то, что прокурор неправильно сформулировал проблему. Даже если допустить, что сами расчеты выполнены корректно, из них не следует, что Коллинзы виновны, поскольку они не дают ответа на вопрос о том, что если в мире найдется несколько пар с такими характерными особенностями, то какая из них действительно виновна в преступлении?
Но самое главное – это тот факт, что расчеты отвечают вовсе не на тот вопрос, который ставило обвинение, а именно какова вероятность того, что подозреваемые случайно подошли под описание преступников. На самом деле расчеты отвечают на вопрос, какова вероятность существования других пар с аналогичными характерными особенностями при том, что обвиняемые тоже подходят под описание. В зависимости от того, сколько всего пар в Лос-Анджелесе, вероятность существования хотя бы одной пары с такими же характерными особенностями может достигать 40 процентов (см. сайт книги). В этом случае об отсутствии обоснованных сомнений в виновности Коллинзов речь уже не идет; напротив, вероятность существования в Лос-Анджелесе более чем одной такой пары и того, что именно другую пару видели на месте преступления, становится весьма существенной.
После рассмотрения всех обстоятельств дела, в том числе свидетельских показаний, Верховный суд отменил обвинительный приговор. Некорректная формулировка проблемы привела к принятию неверного решения.
Глава 3
Решение проблемы
Многие считают это словосочетание, по крайней мере в некоторых отношениях, главным в количественном анализе – ведь именно здесь проводятся аналитические процедуры и проблема получает решение. Конечно, все это очень важно. Но операции на этом этапе более структурированы и точнее определены, чем на предшествующей и последующей фазах. Если у вас нет математической и статистической подготовки, то, скорее всего, вы передадите выполнение этих операций людям с необходимыми навыками и знаниями (см. вставку «Как найти кванта»). Но вне зависимости от ваших личных познаний в математике полезно получить общее представление об основных этапах решения проблемы.
Как найти квантаЕсли для решения вашей проблемы требуется количественный аналитик, то существует несколько способов отыскать его.
• Если вы работаете в большой компании, наверняка несколько квантов найдутся в штате. Загляните в отдел маркетинговых исследований, производственную лабораторию, отдел бизнес-аналитики.
• Если ни одного кванта среди сотрудников отыскать не удалось, то можно обратиться к целой армии независимых консультантов. Проведите интернет-исследование по запросу «консультанты по бизнес-аналитике».
• Если вы хотите привлечь кванта из-за рубежа, то лучше всего обратить внимание на Индию, в частности на компании Mu Sigma, Fractal Analytics и Genpact.
• Возможно, в местном университете удастся найти профессоров или студентов-старшекурсников, специализирующихся на количественном анализе; позвоните заведующему кафедрой статистики, к примеру.
• Если вы считаете необходимым взять кванта на постоянную работу, можно просмотреть объявления на сайтах вакансий, где, как правило, есть соответствующие предложения: например, на сайте Simply Hired есть страница с резюме количественных аналитиков, а на сайте analyticrecruiting.com – с резюме статистиков. Можно обратиться в специализированную рекрутинговую фирму.
Сначала ознакомимся с последовательностью выполняемых этапов. Мы ведь помним, что речь идет об аналитическом проекте, направленном на проверку гипотезы. Сначала мы формулируем проблему (глава 2), затем переходим к моделированию и выбору переменных (первый шаг на этом этапе решения проблемы), а в результате можно будет выдвинуть гипотезу, требующую подтверждения или опровержения. Затем аналитик собирает данные и решает проблему. На каждом из этих шагов необходимо понимать или хотя бы предполагать, как функционирует исследуемый мир, и тогда на основе анализа данных можно будет сделать вывод о том, была ли правильной исходная гипотеза. Однако есть несколько видов анализа, не требующих предварительного выдвижения гипотезы. В интеллектуальном поиске данных и машинном обучении (когда модели разрабатываются на основе закономерностей, выявленных в имеющихся данных, с помощью программного обеспечения давая быстрый и оптимальный результат) аналитик просто вводит в компьютер массив данных и запускает поиск закономерностей. Все гипотезы выдвигаются уже потом, на этапе интерпретации и распространения результатов.
Нам не слишком нравится этот подход: в основном потому, что зачастую он дает необъяснимые результаты. А поскольку ни один аналитик не пытался использовать анализ данных для подтверждения своих взглядов на происходящее вокруг, то и комментировать результаты анализа или убеждать в необходимости изменить решение на их основе никто не будет. Однако иногда случаются обстоятельства, в которых подход к анализу как к «черному ящику» может сэкономить немало времени и труда аналитикам. В среде больших данных, где постоянно генерируются колоссальные массивы информации, у аналитика не всегда есть возможность формулировать гипотезы до проведения анализа данных. Например, при размещении рекламы на сайтах издательств решения принимает автоматизированная система в тысячные доли секунды, а компании, занимающиеся этой работой, генерируют несколько тысяч статистических моделей каждую неделю. Очевидно, такой вид анализа не рассчитан на выдвижение гипотез и рассмотрение результатов людьми, поэтому машинная работа здесь абсолютно необходима. Но по большей части в дальнейшем изложении мы будем иметь дело с этапами и методикой анализа на основе проверки гипотез.
Шаг 3. Моделирование (выбор факторов)
Модель – это преднамеренно упрощенное представление определенного события или ситуации. Термин «преднамеренно» означает, что модель разрабатывается специально для решения конкретной проблемы. Термин «упрощенно» говорит о том, что следует исключить из рассмотрения все банальные и несущественные детали, выделив важные, полезные и ключевые особенности, определяющие специфику проблемы. Проиллюстрируем процедуру выбора факторов на примере.
Модель можно сравнить с карикатурой. Она заостряет внимание на некоторых чертах – носе, улыбке, кудрях, – и на их фоне другие черты теряют выразительность. Хорошая карикатура отличается тем, что отдельные черты выбираются обдуманно и эффективно. Точно так же модель акцентирует внимание на отдельных особенностях реального мира. При построении любой модели вам придется действовать избирательно. Нужно выбрать именно те особенности, которые имеют отношение к решению вашей проблемы, и пренебречь остальными. Модель носит схематичный характер, чтобы помочь пользователю сфокусироваться на исследуемой проблеме[26].
Отсюда следует, что модели не могут быть абсолютно корректными. Знаменитый статистик Джордж Бокс как-то заметил, что «…все модели некорректны, но некоторые при этом полезны»[27]. Ключевая проблема в том, чтобы определить, когда модель приносит пользу, а когда она некорректна настолько, что искажает реальность. В главе 5 мы подробнее поговорим об этом. А пока заметим, что одним из ключевых является вопрос о выборе факторов для включения в модель.
Каким образом отбираются факторы для модели и прогнозируются их взаимосвязи? По большей части мы в этом вопросе руководствуемся субъективными соображениями. Гипотеза, то есть априори разработанная концепция анализа, представляет собой не более чем наукообразные предположения о том, какие факторы имеют наибольшее значение в каждом конкретном случае. На этом этапе разработка модели требует логического мышления, опыта и знакомства с предшествующими исследованиями. Только в этом случае можно с большой долей уверенности предположить, какие зависимые (те, которые нужно прогнозировать или объяснить) или независимые факторы сыграют основную роль. Можно попытаться протестировать модель – именно это отличает аналитическое мышление от менее точных методов принятия решений вроде интуиции.
Например, если вы социолог и пытаетесь прогнозировать динамику дохода семьи (зависимая переменная), то можно предположить, что независимыми переменными в вашей модели будут возраст, образование, семейный статус и количество работающих постоянно членов семьи. Именно эти переменные имеют смысл при прогнозировании семейного дохода. Впоследствии, в процессе количественного анализа (а точнее, на этапе анализа данных) вы можете обнаружить, что модель недостаточно точно отражает реальную ситуацию, и захотите пересмотреть состав переменных при условии, что по новым переменным можно получить данные.
Даже очень субъективные модели и переменные могут быть полезны для уточнения проблемы. Например, Гарт Сандем, известный популяризатор науки, математики, юморист и писатель на темы гик-культуры, многие жизненные проблемы решал путем анализа субъективно отобранных, но все равно полезных переменных[28]. В частности, так он подходил к решению вопроса о том, какое именно домашнее животное лучше выбрать и стоит ли его заводить вообще.
Какие переменные человек принимает во внимание, решая, заводить ли домашнее животное? Сандем отобрал следующие:
• Постоянная жизненная потребность в любви (D, 1–10, где 10 баллам соответствует жизнь как у начальника тюрьмы днем и честного налогоплательщика ночью).
• Общий уровень ответственности (R, 1–10, где 1 балл соответствует убежденности в том, что «дети, налоговый инспектор и дела как-нибудь сами устроятся, если оставить их в покое»).
• Наиболее продолжительная поездка в последние шесть месяцев (T, дней).
• Продолжительность сверхурочных (H, часов в день).
• Ваша терпимость к проделкам других существ (M, 1–10, где 1 балл означает, что вы ведете себя как Стервелла де Виль, а 10 баллов – как доктор Дулиттл).
• Насколько вы заботливы (N, 1–10, где 1 балл означает «мой кактус засох»).
Все эти переменные весьма субъективны, но они, по всей видимости, полезны и, уж конечно, забавны. Сандем вывел следующее уравнение (выглядит довольно устрашающе!), где обобщающим показателем является Fido – индекс готовности к заведению домашнего питомца:
Наиболее важной переменной в этом уравнении является D – потребность в любви, которая прямо пропорционально связана с результирующим показателем. Неплохо также, если у вас есть немного свободного времени (H), чтобы проводить его с питомцем, и вы ответственный человек (R). Эти две переменные также прямо пропорционально влияют на Fido. Но если вам приходится много ездить, значение вашего индекса существенно снизится. В зависимости от итогового результата Сандем предлагает выбрать одно из следующих домашних животных:
• если Fido менее 1, то даже морские рачки будут слишком обременительны;
• если Fido составляет от 1 до 2, попробуйте завести золотых рыбок;
• если Fido составляет от 2 до 3, можно завести кошку;
• если Fido превышает 3, то можно взять собаку.
Джин Хо подставил собственные значения в это уравнение и получил значение индекса готовности к заведению домашнего питомца 0,7, а значит, ему не стоит рисковать даже с кактусом.
Конечно, кто-то может сказать, что слишком большая точность расчетов при решении данного вопроса не требуется, но так или иначе этот пример показывает, что даже очень субъективные и банальные решения можно оценить количественно и смоделировать.
Какие переменные отобрать, а какие отбросить – зависит от цели разработки модели и того, связана ли переменная непосредственно с решением проблемы. Например, если вы рисуете карту Нью-Йорка, то расстояния между точками имеют большое значение и должны быть пропорциональны реальным расстояниям. Однако если вы рисуете схему нью-йоркского метро, то расстояния между станциями на карте совсем не обязательно должны быть пропорциональны расстояниям на местности. Ведь главная цель схемы метро – это показать, как можно добраться от одной станции до другой.
Еще один прекрасный пример важности тщательного выбора переменных модели – это спор по поводу того, кто является автором серии опубликованных в 1861 году писем. Десять писем, подписанных Квинтусом Куртиусом Снодграссом, появились в New Orleans Daily Crescent. В них мистер Снодграсс (ККС) описывал свои военные приключения во времена службы в Национальной гвардии Луизианы. Сразу после публикации письма не привлекли особого внимания. Они впервые попали в поле зрения широкой публики лишь в 1934 году, то есть спустя семьдесят три года после выхода из печати. О них в своей книге Mark Twain, Son of Missouri упомянула Минни Брашер. В частности, она привела текст одного из писем, пересказала содержание трех других и сделала смелый вывод о том, что «письма ККС имеют огромное значение в качестве свидетельства становления Марка Твена как юмориста; именно Марка Твена следует признать их автором, а некоторые различия в стиле можно объяснить его стремлением выработать свой собственный литературный стиль»[29]. Оставшиеся шесть писем ККС опубликовал и проанализировал Эрнст Лейзи в 1946 году[30]. Проведенный им тщательный анализ аналогий позволил утверждать, что письма действительно написаны Твеном, но кое-кто из литературных исследователей до сих пор считает, что у них был другой автор.
В русле исследований вопроса о том, действительно ли Шекспир был автором всех приписываемых ему произведений, Томас Менденхолл в конце двадцатого века опубликовал две статьи, в которых изложил статистический подход к проблеме определения авторства. Топ-менеджер нефтяной компании Клод Бринегар, имевший хорошее университетское образование и увлекавшийся коллекционированием первых изданий книг Марка Твена, изучил историю вопроса и применил метод Менденхолла, впоследствии получивший название стилометрии, или количественного анализа литературного стиля, к письмам ККС.
Этот метод основан на предположении о том, что, хочет он того или нет, каждый автор чаще использует одни слова, чем другие, и сохраняет одинаковый литературный стиль, по крайней мере в долгосрочной перспективе. С позиций количественного анализа это означает, что доля слов определенной длины будет постоянной во всех текстах, написанных данным автором. Если доля слов определенной длины в двух разных текстах существенно отличается, это можно считать подтверждением того, что тексты написаны разными авторами. В качестве переменных для анализа писем ККС выбирались слова различной длины, и их удельный вес сравнивался с аналогичными показателями из работ, определенно принадлежавших перу Твена. Для проверки авторства проводился тест по критерию согласия. Результаты тестирования показали, что расхождения по набору переменных слишком велики, чтобы считать их случайными, – поэтому вряд ли Марк Твен является автором этого произведения (подробности см. на сайте книги)[31].
Далее в этой главе мы еще поговорим об анализе текстов (в противоположность анализу чисел), а пока отметим, что Бринегар в процессе анализа перевел слова в числа.
Шаг 4. Сбор данных (измерения)
На следующем шаге анализа проводится сбор данных и измерения выбранных переменных. Измерение – это определение значения переменной; массив данных – это набор таких значений. Существуют разные способы измерения переменных (см. вставку «Способы измерения переменных»). Сформулированная проблема сначала представляется в виде набора переменных в процессе моделирования, а затем приобретает вид массива данных в результате измерения.
Способы измерения данных
Известны три основных метода измерения данных.
Двоичные переменные. Такие переменные имеют только два значения, и для целей статистического анализа лучше определять их как наличие или отсутствие определенного фактора со значениями 0 и 1. В качестве примера можно привести данные о поле респондентов, когда возможен выбор двух значений: женщина или мужчина (в первом случае переменная приобретает значение 1, во втором – 0), или о наличии гражданства США (либо гражданин, либо нет).
Категориальные (также называемые номинальными) переменные. В этом случае переменная может приобретать одно из нескольких заранее определенных значений. Так измеряются цвет глаз, вкус мороженого, штат или район проживания. Поскольку перевод таких значений в количественную форму представляет определенные сложности, существует отдельное направление статистики, занимающееся анализом категориальных данных.
Ординальные переменные. Эти переменные имеют упорядоченные количественные значения, причем чем оно больше, тем сильнее выражен соответствующий признак. Таким образом, у этих переменных разница между 1 и 2 – это не то же самое, что разница между 5 и 6. Типичный пример ординальных переменных – шкала Ликерта, получившая название в честь автора, социолога Ренсиса Ликерта. Обычно применяется в опросах и включает такие значения, как «полностью согласен», «отчасти согласен», «не могу выразить отношение», «отчасти не согласен», «не согласен». Несколько ординальных переменных, сведенных вместе, носят название шкалы Ликерта.
Количественные (интервальные и рациональные) переменные. Значения этих переменных выражены числами, обычно в стандартных единицах: вес в фунтах или килограммах, рост в дюймах или сантиметрах. Чем больше значение, тем сильнее выражен соответствующий параметр. Количественные переменные хорошо подходят для традиционных видов статистического анализа, например корреляционного или регрессионного.
Таким образом, массив данных организован с учетом переменных, выбранных на предыдущем шаге.
Если значения нужных вам переменных часто собирает и анализирует кто-то еще (иногда такие факты всплывают во время изучения предыдущих поисков решения), то этот этап будет несложным. Можно просто позаимствовать результаты измерений, полученные вашими предшественниками. Однако в некоторых случаях приходится вести работу самостоятельно. Нужно помнить, что даже субъективные события можно систематически измерять.
Предположим, что вам нужно собрать данные по волнующей в наше время многих (если судить по телевизионной рекламе) проблеме мужской потенции. Оказывается, что вам повезло: на эту тему уже проводился сбор данных, которые вполне подходят для ваших целей. Однако если бы вы были первопроходцем в этой области, то пришлось бы проводить сбор данных самостоятельно.
В 1990-е годы Р. С. Розен и его коллеги разработали компактный, надежный и простой для изучения критерий потенции, чувствительный к изменениям в состоянии здоровья пациентов в результате лечения[32]. О проблемах с потенцией можно узнать только от самого пациента. Объективных диагностических тестов не существует, и это весьма усложняет жизнь практикующим врачам. Розен и его коллеги определили, что ключевыми переменными для анализа проблемы мужской потенции являются:
• регулярность эрекции
• сила эрекции
• частота возбуждения
• способность к половому акту
• удовлетворение
В их разрезе был организован сбор информации с использованием вопросов, приведенных в табл. 3.1.
Таблица 3.1
Ключевые переменные для диагностирования эректильной дисфункции
Вопрос о том, возможно ли ответы на них перевести в диагноз, решается довольно просто. Каждому варианту ответа присваивается балл от 5 до 25. Проблему с потенцией классифицировали по пяти степеням: серьезная (5–7), умеренная (8–11), от умеренной до незначительной (12–16), незначительная (17–21) и отсутствие проблемы (22–25). Этот простой в применении диагностический тест называется IIEF-5 (вариант Международного индекса эректильной функции из пяти вопросов) и прекрасно иллюстрирует способы сбора субъективной информации.
Неважно, каким объемом данных вы располагаете, – всегда остаются возможности собрать еще больше или расширить круг показателей, по которым собирались данные. После начала работы над проектом обычно выявляется, что тех показателей, которые были отобраны на этапе идентификации проблемы, недостаточно. Талантливый квант Рама Рамакришнан, о котором мы уже говорили в главе 2, в своем блоге описал интересный способ улучшить качество данных: «Одно из моих любимых занятий – улучшать качество данных. Это означает не увеличивать их количество, а, скорее, получать новые по характеру данные по сравнению с теми, которые использовались до этого момента. Если у вас имеются демографические данные, добавьте данные об объемах закупок. Если у вас и те и другие, попробуйте добавить функцию их свободного просмотра. Если у вас есть количественные данные, добавьте к ним текстовые (кстати говоря, в последней работе мы получили весьма обнадеживающие результаты, добавив к традиционным данным об объемах продаж и сбытовых мероприятиях текстовые данные о покупателях с целью их персонификации и моделирования потребительского поведения)»[33].
Специалист по интеллектуальному поиску данных Ананд Раджараман также писал в своем блоге о возможностях улучшения качества анализа за счет включения новых данных.
Я веду курс по интеллектуальному поиску данных в Стэнфордском университете. Студентам поручают выполнить аналитический проект, включающий нетривиальный вариант интеллектуального поиска данных. Многие из них пытались разработать более совершенную методику подбора рекомендаций по поводу кино, чем в проекте Netflix Challenge.
Это яркий пример того, как действует конкуренция. Netflix предоставляет огромный массив данных о рейтингах 18 тысяч фильмов, выставленных почти полумиллионом посетителей сайта. Основываясь на этой информации, надо спрогнозировать рейтинги, которые выставят пользователи тем фильмам, которые они еще не оценивали. Первая группа аналитиков, которой удастся разработать методику, работающую лучше, чем Netflix Challenge, получит миллион долларов!
Студенты в моей группе пытались применить разные подходы для решения этой проблемы, причем одна команда использовала уже известные алгоритмы, а вторая – новые идеи. Их результаты позволяют взглянуть на проблему шире. Первая команда предложила очень сложный алгоритм, основанный на имеющихся данных. Вторая использовала довольно простой алгоритм, но зато на основе не только имеющихся, но и новых данных, которых в базах Netflix не было. Их позаимствовали из онлайновой базы данных о фильмах (Internet Movie Database). Какая из команд, по вашему мнению, добилась лучших результатов? Представьте себе, вторая! Ее результаты оказались почти так же хороши, как и результаты лучших участников конкурса Netflix![34]
В том же посте Раджараман отмечает, что появившийся недавно источник информации – гипертекстовые ссылки – стал отличительной чертой поискового механизма Google по сравнению с прочими поисковиками, использовавшими только текст на веб-страницах. В своем высокорентабельном алгоритме AdWords, предназначенном для размещения рекламы, Google также использовал дополнительные данные, которыми на тот момент не интересовался ни один из конкурентов – коэффициент эффективности баннеров (отношение числа щелчков к общему числу показов), рассчитывавшийся для каждого баннера рекламодателей.
Раджараман и Рамакришнан в один голос утверждают, что больший объем и лучшее качество данных почти в любом случае важнее, чем лучший алгоритм расчетов. Оба ссылаются на опыт розничного бизнеса и электронной коммерции, но и в других областях существует множество подобных примеров. Топ-менеджер команды НБА Houston Rockets Дэррил Морей является одним из лучших аналитиков в профессиональном баскетболе (мы вспомним о нем в главе 6). Он считает, что «реальное преимущество обеспечивают лишь эксклюзивные данные», и держит в штате нескольких квантов, анализирующих действия соперников в защите в каждой игре[35]. Кроме того, Морей стал одним из первых менеджеров в НБА, которые начали анализировать видеозаписи отдельных матчей.
В страховом бизнесе одним из факторов, долгое время отличавших компанию Progressive от менее склонных к аналитике компаний, стала ее уникальная база данных. Компания первой стала использовать кредитный рейтинг агентства FICO (этот пример рассматривается в главе 4) в качестве одной из переменных в модели страховых тарифов, а также в течение долгого времени использовала гораздо больше данных и переменных в анализе клиентского риска и расчете страховых тарифов, чем ее конкуренты. Progressive выступила первопроходцем в сборе данных о манере вождения автомобилей клиентами (конечно, с разрешения последних) и расчете страховых тарифов в зависимости от их водительских привычек (эту программу компания сейчас называет Snapshot). Вы можете не захотеть сообщать страховой компании такие сведения, но если проявите себя осторожным водителем, то получите скидку по страховке.
Ценность вторичных данных
Многие аналитики самостоятельно собирают, а затем анализируют данные. Но иногда можно воспользоваться данными, собранными кем-то другим (так называемыми вторичными данными), и существенно сэкономить время. Обычно вторичные данные получают из результатов переписей, опросов, внутренней документации и других подобных источников. Таких данных везде очень много, и они просто ждут, когда аналитики обратят на них внимание.
Иногда вторичные данные помогают получить очень важные результаты. Достаточно вспомнить, например, работу астронома Иоганна Кеплера. Он родился в бедной семье, но ему повезло получить очень точные вторичные данные о движении астрономических объектов, тщательно собиравшиеся в течение нескольких десятилетий. Необыкновенный математический талант и удача помогли ему разгадать тайны планет.
Данные достались Кеплеру в основном от датского дворянина и блестящего астронома Тихо Браге (1546–1601), который сумел сделать точные астрономические наблюдения при помощи уникальных инструментов еще до изобретения телескопа. При поддержке датского короля Браге построил исследовательский центр, получивший название Ураниборг (Небесный замок), и разместил в нем лучшую на тот момент в Европе обсерваторию. Он сам разработал и изготовил высокоточные измерительные инструменты, откалибровал их и каждую ночь в течение более чем двадцати лет вел астрономические наблюдения.
В 1600 году Браге пригласил Кеплера, блестящего, но бедного учителя, в помощники. Они не очень-то ладили: сказывалась разница в характерах и жизненном опыте. Браге опасался, что его умный молодой помощник со временем затмит его и станет лучшим астрономом своего времени. В следующем, 1601 году Браге внезапно заболел и умер. Разгорелся спор о его наследстве, и Кеплер понял, что если не будет действовать быстро, то навсегда потеряет возможность воспользоваться данными, собранными учителем. Он немедленно забрал результаты наблюдений (по его выражению, узурпировал их) и уже не выпустил из рук. Через два дня после похорон Браге Кеплер был назначен на его должность придворного математика. Наконец-то уникальная коллекция записей об астрономических наблюдениях была полностью в его распоряжении! Анализируя их, Кеплер сделал вывод, что орбиты планет имеют форму эллипса, а затем сформулировал свои знаменитые законы движения планет[36].
Конечно, можно привести массу более современных примеров использования вторичных данных. Например, источник вторичных данных компании Recorded Future прекрасно известен: интернет. Основатель компании – консультант по аналитике Кристофер Альберг, а основной вид деятельности – анализ информации в интернете на предмет частоты упоминания и классификации тех или иных событий и субъектов. Особое внимание компания уделяет подсчету предсказаний – упоминаний о будущем. Данные и аналитика пользуются спросом у государственных разведывательных служб, интерес которых к частоте упоминания террористических актов и войн легко объясним. Среди клиентов есть и финансовые компании, которые интересуются данными, отражающими настроения инвесторов и потребителей.
Первичные данные
Но если вам не так повезло, как Кеплеру или Recorded Future, и не досталось ценных вторичных данных (а может быть, данных, имеющих отношение к вашей проблеме, пока просто не существует), то вам придется собрать их самостоятельно (это первичные данные). Существует несколько методов получения первичных данных: опрос, включающий разработку анкет и проведение интервью; наблюдения, в ходе которых наблюдатель открыто или скрытно фиксирует информацию; тщательно спланированные и контролируемые «сумасшедшие» эксперименты, предназначенные для изучения специфических проблем. Выбор метода сбора данных зависит от особенностей сформулированной проблемы и включенных в анализ переменных.
Структурированные и неструктурированные данные. В течение долгого времени почти все количественные аналитики работали со структурированными данными: данными в числовой форме, которые легко можно представить в табличном виде. Независимо от того, проводится ли анализ с помощью электронных таблиц, мощной статистической программы или старомодного калькулятора, все равно данные структурируются при помощи строк и столбцов (обычно в строках отражаются события или наблюдения, а в столбцах – значения соответствующих переменных). Все, что вам оставалось выяснить, это сколько наблюдений следует сделать и сколько знаков после запятой показывать в таблице.
Но положение дел стало меняться с распространением в последние годы XX века анализа текстов. На примере истории с письмами Марка Твена мы показали, что в тексте можно искать не только числа, но и логические закономерности. Типичный вопрос: как часто повторяется в тексте то или иное слово? Текст представляет собой пример неструктурированных данных. Поскольку он состоит из определенной последовательности слов, его трудно разложить по строкам и столбцам таблицы. Однако лишь после 2000 года резко возросли объем и разнообразие неструктурированных данных. Именно этот год стал началом массированного использования интернета, когда компании вроде Recorded Future приступили к анализу огромных массивов данных в виде текста, изображений и щелчков мышки. Телекоммуникации и социальные медиа поставляют огромные объемы информации социальной направленности. Объем аудио– и видеоданных, которые хотели проанализировать организации, рос в геометрической прогрессии. Революция в генетике привела к необходимости анализировать большие объемы сведений о генах.
Сейчас мы официально вступили в век больших данных, когда обработка нескольких петабайт информации стала для организаций рутинным делом. (1 петабайт равен 1000 терабайт, или 1015 байт, то есть 1 000 000 000 000 000 единиц информации.) Например, хранилище информации eBay имеет объем более чем в 40 петабайт. Каждое ваше нажатие на изображение видеокамеры или украшенной цветочным орнаментом вазы фиксируется в общей базе данных.
Анализ данных такого рода имеет существенные отличия от анализа структурированных количественных данных, особенно на первых шагах. Во многих случаях, прежде чем приступить к подсчету, требуется провести тщательную фильтрацию и классификацию, а также другие подготовительные операции. Специалист по базам данных – это человек, глубоко разбирающийся не только в анализе данных, но и в процедурах их подготовки к проведению анализа. Такие программные инструменты, как Hadoop и MapReduce, получают все большее распространение в организациях, сталкивающихся с необходимостью анализа больших данных. Они предназначены для такой фильтрации и классификации данных, которая позволит применять количественные методы анализа. Видео– и аудиоинформация также требует серьезной обработки, прежде чем можно будет ее анализировать количественными методами. Во многих случаях после подготовки организация будет анализировать эти массивы данных при помощи традиционных статистических приложений.
Билл Франкс из компании Teradata в своем посте в блоге Международного института аналитики подчеркивает[37]:
Неструктурированные данные в последнее время очень популярный предмет для обсуждения, поскольку слишком многие распространенные источники больших данных предоставляют их в неструктурированном виде. Но зачастую забывают об очень важном обстоятельстве: никакая аналитика не имеет дела напрямую с большими данными. Последние могут стать толчком к проведению анализа, но когда дело доходит до собственно аналитических процедур, то неструктурированные данные не обрабатываются. «Как же так?» – спросите вы. Позвольте объяснить.
Вот пример: отпечатки пальцев. Если вы любите сериалы вроде «CSI: полиция Майами», то постоянно видите, как эксперты идентифицируют их. Отпечатки пальцев представляют собой неструктурированные данные, причем довольно большого объема – если изображение высококачественное. Когда полицейские – в сериале или в жизни – сравнивают их, то есть ли смысл накладывать одно изображение на другое? Нет. Сначала они определяют несколько ключевых точек на каждом отпечатке. Затем по этим точкам формируется карта (многоугольник). Именно по этим картам производится сравнение. Особое значение имеет тот факт, что карта представляет собой структурированные данные, к тому же небольшого объема, даже если исходное изображение «весило» много. Как видите, хоть неструктурированные данные и необходимы для начала анализа, но в самом процессе обрабатываются не они, а полученные из них структурированные данные.
Всем понятный пример такого рода – анализ текстов. В общедоступных средствах массовой информации в последнее время принято вести смысловой анализ множества сообщений. Но можно ли непосредственно анализировать твиты, посты в Facebook и прочие посты и комментарии в соцсетях на предмет их смысловой оценки?
В действительности – нет. Текст необходимо разбить на фразы или слова. Затем определенным фразам и словам присваивается определение «положительный» или «отрицательный». В простом случае фразе или слову, определенному как «положительное», присваивается значение 1, «отрицательному» – 1, а «нейтральному» – 0. Смысл сообщения оценивается по сумме значений входящих в него слов или фраз. Таким образом, оценка ведется на основе структурированных количественных данных, полученных из первоначально неструктурированного источника – текста. Любой дальнейший анализ тенденций или стандартных моделей полностью основывается на структурированном, количественном выражении текста, но не на самом тексте.
Так же как в ситуациях, приведенных Франксом в качестве примера, многие приложения для обработки больших данных первоначально предназначались для обработки неструктурированных данных, но после того как те проходят через такие приложения, как Hadoop и MapReduce, можно их анализировать как структурированные данные с использованием статистических программ или инструментов визуализации.
Шаг 5. Анализ данных
Поскольку сами по себе данные ни о чем не говорят, нужно проанализировать их и определить значения и взаимосвязи. Анализ данных включает выявление устойчивых моделей, или взаимосвязей между переменными, значения которых введены в массив данных. Если удается выявить взаимосвязи, тогда можно объяснить динамику переменных. Тогда будет легче решить проблему.
Предположим, что мы собрали данные по выборке избирателей относительно их намерения голосовать за того или иного кандидата. Метод сбора данных – опрос по телефону. Но в процессе анализа мы пытаемся выявить, каким образом регион проживания, образование, уровень дохода, пол, возраст и партийная принадлежность способны повлиять на выбор того или иного кандидата. Для обнаружения зависимостей в данных можно использовать целый ряд методов, начиная с достаточно простых – графиков, расчета удельного веса и средних значений переменных – и заканчивая сложными статистическими исследованиями.
Параметры массива данных и сложность предстоящего анализа подскажут, какими именно методами лучше воспользоваться. В главе 2 мы привели примеры таких методов. Если вы просто описываете сложившуюся ситуацию, то достаточно составить отчет или разработать набор графиков, показать, сколько анализируемых событий случилось в каждом временном интервале, и прокомментировать эту информацию. Обычно приходится приводить сведения о некоторых показателях, отражающих основную тенденцию, в частности о средних значениях – медианах.
Исходя из этих условий, потребуется программное обеспечение, ориентированное на составление отчетов. Сбалансированные системы показателей, сводные таблицы, тревожные сигналы – это все формы отчетов. Во вставке «Основные поставщики аналитического программного обеспечения» мы перечислили ключевых поставщиков программного обеспечения, обеспечивающего визуальное представление результатов анализа.
Основные поставщики аналитического программного обеспеченияПРОГРАММЫ – ГЕНЕРАТОРЫ ОТЧЕТОВ
• BOARD International
• IBM Cognos
• Information Builders WebFOCUS
• Oracle Business Intelligence (including Hyperion)
• Microsoft Excel/SQL Server/SharePoint
• MicroStrategy
• Panorama
• SAP BusinessObjects
ИНТЕРАКТИВНАЯ ВИЗУАЛЬНАЯ АНАЛИТИКА
• QlikTech QlikView
• Tableau
• TIBCO Spotfire
КОЛИЧЕСТВЕННЫЕ МЕТОДЫ И СТАТИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ
• IBM SPSS
• R (свободно распространяемое программное обеспечение)
• SAS
У всех этих поставщиков программного обеспечения есть программы для графического представления данных, но некоторые из них специализируются именно на интерактивной визуальной аналитике, то есть визуальном представлении данных и отчетов. Иногда такие программы используют для простого построения графиков, иногда для исследования данных: законов распределения данных, позволяющих идентифицировать выбросы (точки с нетипичными значениями) и визуальную взаимосвязь между переменными. Таких поставщиков мы выделили в отдельный список.
Кроме того, в перечне выделена группа поставщиков, специализирующихся на еще одной категории аналитических программ – количественных методах и статистическом моделировании. В них статистика используется для выявления взаимосвязи между переменными и переноса закономерностей выборки на генеральную совокупность. Его формы – предсказательная аналитика, рандомизированное исследование и различные формы регрессионного анализа. Программное обеспечение для статистического моделирования и для генерирования различных отчетов разрабатывается разными группами поставщиков, хотя со временем они начинают смешиваться между собой.
Например, самая распространенная в мире аналитическая компьютерная программа Microsoft Excel (хотя большинство пользователей считает ее всего лишь электронной таблицей) способна решать некоторые задачи статистического анализа (и визуальной аналитики), равно как и генерировать отчеты. Однако если вам необходимо обработать большой массив данных или построить сложную статистическую модель, то возможностей Excel не хватит. Поэтому к данной категории программного обеспечения она не относится. В корпоративной среде для решения аналитических задач в дополнение к Microsoft Excel часто используют и другие программы Microsoft, в том числе SQL Server (главным образом предназначенную для работы с базами данных и решения некоторых аналитических задач) и SharePoint (обеспечивает совместную работу над проектом и решение некоторых аналитических задач).
Типы моделей
Аналитики и компании для решения аналитических задач и принятия решений на основе анализа используют множество типов моделей. Мы не собираемся учить читателей статистике, но считаем, что им было бы полезно знать, какие критерии применяют количественные аналитики, выбирая наиболее адекватную модель. Это поможет читателям сделать первые шаги в бизнес-аналитике и твердо усвоить ее основы. Если мы хотим знать, какие типы моделей лучше всего подойдут в том или ином случае, надо оценить специфику ситуации с точки зрения тех, кто принимает решения (или их аналитиков).
• Чтобы правильно выбрать модель, надо ответить на три основных вопроса.
• Сколько переменных подлежат анализу? Возможны такие варианты ответа: одна переменная (одномерная модель), две переменные (двумерная модель), три и более переменных (многомерная модель). Последний вариант ответа достаточен для решения любой проблемы.
• Требуется ли нам описание решения проблемы или просто ответы на поставленные вопросы? Описательная статистика просто описывает имеющиеся данные и не пытается делать выходящих за их рамки обобщений. Средние значения, медианы и стандартные отклонения – вот классический пример описательной статистики. Они весьма полезны, но не слишком интересны с математической или статистической точки зрения. Индуктивная статистика исследует выборку из какой-либо совокупности и распространяет выводы о средних характеристиках ее объектов на всю совокупность. Примеры такой статистики – корреляционный и регрессионный анализ (см. далее): они включают оценку вероятности того, что взаимосвязи, выявленные на основе выборки, характерны и для всей совокупности. Статистики и количественные аналитики обычно отдают предпочтение индуктивной статистике по сравнению с описательной.
• Насколько точно можно оценить значения интересующих переменных? Некоторые методы оценки описаны во вставке «Методы измерения данных».
Конкретный тип используемой вами (или вашими квантами) модели зависит от того, какого вида ваш аналитический проект и какого типа данные. Некоторые характеристики проектов и массивов данных, а также моделей, выбранных для их обработки, описаны ниже. Мы рассмотрели далеко не все типы моделей, но из тех, которые изо дня в день используются организациями для аналитики, здесь представлены примерно 90 процентов.
Модели с двумя числовыми переменными. Если требуется установить взаимосвязь между двумя числовыми переменными, то проще всего это сделать с помощью корреляционного анализа. Это один из простейших видов статистического анализа. В типичном случае с его помощью можно установить, меняется ли одна переменная с изменением другой. Для примера возьмем рост и вес человека. Можно ли утверждать, что вес человека увеличивается с увеличением его роста? Как правило, так и бывает, поэтому можно утверждать, что эти две переменные коррелируют между собой. Поскольку корреляционный анализ является одним из методов индуктивной статистики, существуют способы определить: может ли определенный уровень корреляции быть случайным? Если вам, например, говорят, что «статистическая значимость связи равна 0,05», то это означает, что в пяти случаях из ста наблюдается согласованное изменение анализируемых показателей.
Две категориальные переменные или больше. Если вы используете данные опросов и они представлены номинальными категориями (например, мужской и женский пол; молодой, средний или пожилой возраст), то вам понадобится ряд аналитических процедур для анализа категориальных данных. Результаты этого вида анализа часто оформляют в виде таблицы, в ячейках которой указано количество наблюдений. Например, если вы устанавливаете связь между полом и продолжительностью жизни, то обнаружите, что численность мужчин и женщин в молодом и среднем возрасте примерно одинакова, но поскольку женщины обычно живут несколько дольше, чем мужчины, то в старшем возрасте их численность будет выше. Если эта или подобная закономерность присутствует в вашем массиве данных, то таблица покажет значимую (то есть вряд ли случайную) взаимосвязь в соответствии со значением такого статистического критерия, как хи-квадрат. Взаимосвязь может быть значимой при уровне значимости 0,05 или 0,01. Такие бинарные категориальные переменные, как пол, можно также обрабатывать с помощью регрессионного анализа, используя при этом фиктивные переменные: то есть такие, которые получают значение 0 при отсутствии признака (например, мужского пола), и 1 при его наличии.
Более чем две количественные переменные. Если количественных переменных более двух, то проводится углубленный анализ корреляционной связи, называемый регрессионным анализом: иногда множественной регрессией (если для объяснения динамики одной переменной используются несколько других переменных), а иногда линейной регрессией (если взаимосвязь между переменными остается стабильной (линейной) во всех интервалах их значений). Регрессия представляет собой метод подбора уравнения (или линии, если речь идет о графическом выражении), описывающего совокупность собранных в прошлом данных. Если вам это удалось, то с помощью уравнения регрессии можно прогнозировать поведение переменных в будущем. В регрессионной модели каждой независимой переменной приписывается определенный коэффициент, отражающий (или прогнозирующий) ее «вес» в модели.
В качестве примера множественной линейной регрессии можно привести случай из практики экономиста из Принстона Орли Ашенфельтера. Он использовал регрессионный анализ для прогнозирования аукционных цен на марочные французские вина. Его прогноз аукционных цен основывался на погоде в период сбора урожая вин этого года – и вызвал шок в среде экспертов по винам и даже привел их в ярость. (Газета New York Times опубликовала на первой странице статью об этом прогнозе под названием «Уравнение цены на вино вывело из строя многие носы»[38].) Если у вас есть хорошее уравнение, то зачем вам эксперты?
Большинство экспертов сходятся в том, что хорошее вино получается в том случае, если предшествующая зима была дождливой, в сезон созревания винограда стояла теплая погода, а в сезон его сбора – сухая. Таким образом, Ашенфельтер выбрал три независимые переменные, относящиеся к погоде и влияющие на качество винограда: средняя температура воздуха в период созревания и количество осадков в период сбора винограда, а также количество осадков в предшествующую зиму. Кроме того, поскольку вкус вина, как правило, зависит от его выдержки, еще одной независимой переменной стала продолжительность выдержки в годах.
Качество сбора винограда влияет на цену зрелого вина, которая и становится зависимой переменной, которую Ашенфельтер пытался предсказывать. Он собрал информацию о ценах на лондонском аукционе за шесть бутылок бордо шато в 1960–1969 годы. Этот период был выбран потому, что вина, сделанные из урожая сборов этих лет, уже созрели, а в их качестве не было сомнений. Данные о значениях независимых переменных предоставило бюро прогнозов погоды из района выращивания винограда.
Ашенфельтер составил регрессионное уравнение логарифма цены вина, включающее показатели возраста вина и параметров погоды. Он получил такое выражение:
Качество вина = 12,145 (константа) + 0,0238 Возраст вина + 0,616 Средняя температура периода созревания 0,00386 Количество осадков в период сбора урожая + 0,0017 Количество осадков предшествующей зимой.
Как показывают значения коэффициентов при переменных, возраст вина, умеренная температура в период созревания и количество осадков в течение предшествующей зимы оказывают прямое положительное влияние на цену вина. Осадки в период сбора урожая оказывают негативное влияние на качество вина. Коэффициент детерминации R-квадрат (подробнее см. во вставке «Основные статистические концепции и аналитические приемы») для этого уравнения составляет 0,828, что означает, что включенные в уравнение переменные на 83 процента объясняют отклонения в ценах на вино. Коротко говоря, эти переменные в совокупности играют определяющую роль в процессе установления цен. Легко понять, почему эксперты сочли эти результаты до некоторой степени спорными и менее интересными, чем бесконечные разговоры о терруаре[39], дубовых бочках и переспевшем винограде.
Основные статистические концепции и аналитические методы[40]Дисперсионный анализ (ANOVA). Статистический тест на равенство средних значений двух и более групп.
Причинно-следственная связь. Взаимосвязь между двумя событиями (причиной и следстием), когда второе событие считается последствием первого. В типичном случае причинно-следственная связь – это зависимость между рядом факторов (причинами) и результирующим фактором (следствие). Наличие причинно-следственной связи требует соблюдения трех условий:
• Событие-причина должно предшествовать событию-следствию во времени и пространстве.