Лучи смерти. Из истории геофизического, пучкового, климатического и радиологического оружия Фейгин Олег
Великий датский физик, один из основателей квантовой теории атома, родился в Копенгагене, в семье известного профессора-физиолога. Уже на защите магистерской диссертации в Копенгагенском университете он выделился своей работой, посвященной исследованию поверхностного натяжения жидкостей. Эта диссертация до сих пор считается своеобразным гидродинамическим эталоном. Новоиспеченный магистр был награжден за эту работу золотой медалью Академии наук Дании и обратил на себя внимание многих датских физиков. Это было первое и последнее экспериментальное исследование молодого ученого, после которого он всецело переключился на теоретическую физику, которой и посвятил всю свою оставшуюся жизнь. Прежде всего Бор занялся проблематикой, связанной с нарождавшейся атомной физикой. Тема его докторской диссертации была связана с поведением электронов в металлах. В 1911 г. молодой постдок отправился в Англию для стажировки в кембриджской лаборатории первооткрывателя электрона Д. Д. Томсона. Затем он переехал в Манчестер, где влился в группу Эрнеста Резерфорда, подтвердившего экспериментально наличие положительного атомного ядра. Там ему удалось всего за несколько месяцев создать знаменитую модель атома Бора – Резерфорда, положившую начало современному пониманию субатомного мира.
Новая планетарная модель атома быстро завоевала признание физиков, позволяя объяснить многие трудности в интерпретации атомных спектров, а сам Бор занял должность профессора в Копенгагенском университете. Через три года датское правительство приняло решение о строительстве для него знаменитого Института теоретической физики в Копенгагене, ставшем на долгие годы главным центром европейских теоретиков. Все более-менее крупные разработчики квантовой физики побывали там, работая вместе с Бором. Там же родилась так называемая копенгагенская интерпретация, которая послужила основой для последующего развития квантово-механической теории.
В 1922 г. Бор стал лауреатом Нобелевской премии по физике с формулировкой: «За создание теории строения атома». В 1930-е гг. увлекся ядерной тематикой, переориентировав на нее свой институт, и занялся теоретическим моделированием процессов ядерного распада урана и разработкой ядерного реактора и атомной бомбы. Вскоре после начала Второй мировой войны ученый нелегально эмигрировал из оккупированной Дании в Британию, а затем в США, где участвовал в Манхэттенском атомном проекте по разработке ядерного оружия.
Абрам Александрович Слуцкин (1891–1950)
Доктор физико-математических наук, профессор Харьковского университета, был выдающимся ученым, исследователем и педагогом, создателем научной школы советских радиофизиков. Окончив физико-математический факультет Харьковского университета, А. А. Слуцкин свыше 30 лет работал на его кафедре.
В 1924 г. вместе с Д. С. Штейнбергом им был разработан новый способ генерирования высокочастотных колебаний в магнетронах на волнах 7–50 см. С 1929 г. Слуцкин руководил отделом Украинского физико-технического института (УФТИ).
Результаты исследований Слуцкина позволили в 1938 г. построить в УФТИ действующий макет импульсного трехкоординатного радиолокатора в диапазоне дециметровых волн. Под руководством Слуцкина в послевоенные годы были разработаны многорезонаторные магнетроны сантиметрового и миллиметрового диапазонов, изучалось распространение и поглощение сверхвысоких частот в различных средах. Слуцкиным опубликовано свыше 50 научных трудов и подготовлено много молодых специалистов.
Петр Леонидович Капица (1894–1984)
Выдающийся советский физик-экспериментатор, родился в Кронштадте. Окончил Кронштадтское реальное училище (1912), затем Петроградский политехнический институт (1918). Руководителем дипломной работы Капицы был академик А. Ф. Иоффе. На его же кафедре Капица остался работать после окончания института.
В 1921 г. вместе с Иоффе и другими учеными Капица отправился в командировку в Англию. Работал в Кембриджском университете у Э. Резерфорда, выполнил исследования по альфа– и бета-излучению, создал метод получения сильных магнитных полей. За эти работы в 1923 г. получил премию им. Дж. Максвелла. В том же году получил степень доктора философии Кембриджского университета.
С 1924 г. – помощник директора Кавендишской лаборатории. В 1925 г. был избран членом совета Тринити-колледжа, в 1929 г. – членом Лондонского королевского общества и членом-корреспондентом АН СССР. В 1930 г. возглавил лабораторию им. Монда Королевского общества, специально созданную для проведения работ под руководством Капицы.
В 1934 г. Капица приехал в отпуск в СССР, но вернуться обратно в Кембридж ему не разрешили. В 1935 г. он возглавил Институт физических проблем в Москве. В 1939 г. был избран действительным членом Академии наук СССР. Лауреат Сталинских премий 1941 и 1943 гг. по физике.
В 1946 г. Капица был снят с поста директора Института физических проблем, а в 1955 г. вновь назначен на эту должность. В том же году стал главным редактором «Журнала экспериментальной и теоретической физики».
Исследования в области физики низких температур, создание техники для получения импульсных сверхсильных магнитных полей, работы по физике плазмы, создание ожижителя водорода, в 1934 г. – ожижителя гелия, а в 1939 г. – установки низкого давления для промышленного получения кислорода из воздуха… Эти и другие исследования обогатили багаж научных достижений страны в области физики.
Капица был членом многих зарубежных академий наук и научных обществ, награжден медалями М. Фарадея (1942), Б. Франклина (1944), М. В. Ломоносова (1959), Н. Бора (1964), Э. Резерфорда (1966).
Вернер Карл Гейзенберг (1901–1976)
Выдающийся немецкий физик-теоретик, родился в семье профессора истории Мюнхенского университета. В 1920 г. поступил на физико-математический факультет, где начал с кафедры математики, перейдя затем на кафедру теоретической физики. Защитив магистерский диплом в 1923 г., приступил к теоретическим исследованиям строения атома. Весной-летом 1925 г., болея сенной лихорадкой, уединился на отрезанном от внешнего мира острове Гельголанд, где и разработал теорию матричной квантовой механики.
Матричная механика, как показало время, в математическом понимании эквивалентна появившейся год спустя квантово-волновой механике, заложенной в уравнении Шредингера с точки зрения описания процессов квантового мира. Однако на практике использовать аппарат матричной механики оказалось труднее, и сегодня физики-теоретики в основном пользуются представлениями волновой механики. В 1926 г. Гейзенберг стал ассистентом Нильса Бора в Копенгагене. Именно там в 1927 г. он и сформулировал свой принцип неопределенности – и можно с основанием утверждать, что это стало его самым большим вкладом в развитие науки. В том же году Гейзенберг стал профессором Лейпцигского университета – самым молодым профессором в истории Германии. Начиная с этого момента он вплотную занялся созданием единой теории поля, но, по большому счету, безуспешно. За ведущую роль в разработке квантово-механической теории в 1932 г. Гейзенберг был удостоен Нобелевской премии по физике за создание квантовой механики. С исторической же точки зрения личность Вернера Гейзенберга, вероятно, навсегда останется синонимом неопределенности несколько иного рода. С приходом к власти партии национал-социалистов в его биографии открылась самая труднопонимаемая страница. Во-первых, будучи физиком-теоретиком, он оказался вовлеченным в идеологическую борьбу, в которой теоретическая физика как таковая получила ярлык «жидовской физики», а сам Гейзенберг был публично назван новыми властями «белым евреем». Лишь после ряда личных обращений к самым высокопоставленным лицам в рядах нацистского руководства ученому удалось остановить кампанию публичной травли в свой адрес. Гораздо проблематичнее выглядит роль Гейзенберга в германской программе разработки ядерного оружия в годы Второй мировой войны. В то время, когда большинство его коллег эмигрировали или вынуждены были бежать из Германии под давлением гитлеровского режима, Гейзенберг возглавил германскую национальную ядерную программу. Под его руководством она всецело сконцентрировалась на постройке ядерного реактора, однако у Нильса Бора при его знаменитой встрече с Гейзенбергом в 1941 г. сложилось впечатление, что это лишь прикрытие, а на самом деле в рамках этой программы разрабатывается ядерное оружие. Так что же произошло на самом деле? Действительно ли Гейзенберг умышленно и по велению совести завел германскую программу разработки атомной бомбы в тупик и направил ее на мирные рельсы, как он впоследствии утверждал? Или просто он допустил какие-то просчеты в своем понимании процессов ядерного распада? Как бы то ни было, Германия атомного оружия создать не успела. Как показывает блестящая пьеса Майкла Фрейна «Копенгаген», эта историческая загадка, вероятно, даст достаточно материалов еще не для одного поколения беллетристов.
Джон фон Нейман (1903–1957)
Выдающийся американский физик-теоретик и кибернетик австро-венгерского происхождения. Родился в Будапеште в семье состоятельного венгерского банкира, учился в Австрии, Швейцарии и Германии. В 1930 г. эмигрировал в США и через три года приступил к научной работе в принстонском Институте перспективных исследований, славящемся своей свободой выбора направления научной деятельности. В институте фон Нейман встретился с Альбертом Эйнштейном и многими другими выдающимися теоретиками.
Во время Второй мировой войны он активно участвовал в секретном американском атомном проекте «Манхэттен», имевшем целью создание ядерного оружия, примененного впоследствии при бомбардировке японских городов Хиросима и Нагасаки. В тот же период фон Нейман принял участие в еще одном секретном военном проекте, включавшем создание электронно-вычислительного комплекса ЭНИАК. В ходе выполнения этого исследования и анализа конструкционных просчетов комплекса фон Нейман разработал логическую схему и архитектуру нового типа компьютерных систем. Впоследствии при его непосредственном участии был создан весьма успешный вариант компьютера, названный в его честь ДЖОНИАК. Эта электронно-вычислительная система сыграла большую роль в успешном проектировании и сопутствующей обработке информации при реализации атомного проекта следующего поколения – создания водородной бомбы.
В послевоенный период фон Нейман завершил свои теоретические работы по построению основ теории автоматических устройств статьей «Вероятностная логика и синтез надежных организмов из ненадежных элементов», что явилось крупнейшим достижением в данной области кибернетики и указало дальнейший путь для создания компьютеров второго и даже третьего поколений.
В середине 1950-х гг. фон Нейман переехал из Принстона в Вашингтон, чтобы занять очень престижную должность члена сенатской федеральной комиссии «по атомной энергетике США». Однако вскоре у него была диагностирована редкая форма рака кости, и в феврале 1957 г. Джон фон Нейман безвременно завершил свой жизненный путь, так и не закончив книгу всей своей жизни – «Вычислительная машина и мозг».
Джулиус Роберт Оппенгеймер (1904–1967)
Американский физик-теоретик, профессор физики Калифорнийского университета в Беркли, член Национальной академии наук США. Широко известен как научный руководитель Манхэттенского проекта, в рамках которого в годы Второй мировой войны разрабатывались первые образцы ядерного оружия; из-за этого Оппенгеймера часто называют «отцом атомной бомбы».
В 1925 г. окончил Гарвардский университет, был принят в Кембриджский университет и работал в Кавендишской лаборатории под руководством Э. Резерфорда. В 1926 г. был приглашен М. Борном в Геттингенский университет, где в 1927 г. защитил докторскую диссертацию. В 1928 г. работал в Цюрихском и Лейденском университетах. В том же году возвратился в США. С 1929 по 1947 г. преподавал в Калифорнийском университете и Калифорнийском технологическом институте. С 1939 по 1945 г. Джулиус Оппенгеймер активно участвовал в работах по созданию атомной бомбы в рамках Манхэттенского проекта, возглавляя специально созданную для этого Лос-Аламосскую лабораторию. В течение следующих семи лет был советником правительства США по вопросам атомной политики, с 1947 по 1952 г. возглавлял генеральный консультативный комитет Комиссии по атомной энергии США.
После Второй мировой войны, в 1947–1966 гг., занимал пост директора Института перспективных исследований в Принстоне (штат Нью-Джерси). В 1954 г. за выступление против создания водородной бомбы и за использование атомной энергии лишь в мирных целях был снят со всех постов, связанных с проведением секретных работ, и обвинен в «нелояльности». В этот период Оппенгеймер оставался главным советником в Комиссии США по атомной энергии, выступая в поддержку международного контроля над ядерной энергией с целью предотвращения распространения атомного оружия и ядерной гонки вооружений. В конечном итоге его лишили допуска к секретной работе, и он был вынужден перейти к исследованиям в области теоретической физики.
«Дело Оппенгеймера» породило большие споры. Многие из сторонников ученого восприняли как реабилитацию присуждение Оппенгеймеру через девять лет, в 1963 г., премии Э. Ферми, учрежденной Комиссией по атомной энергии США, «в знак признания его выдающегося вклада в теоретическую физику, а также за научное и административное руководство работами по созданию атомной бомбы и за активную деятельность в области применения атомной энергии в мирных целях».
Оппенгеймер известен не только как создатель американской атомной бомбы. Ему принадлежат многие работы по квантовой механике, теории относительности, физике элементарных частиц и теоретической астрофизике. Наиболее значительные достижения Оппенгеймера в физике включают: приближение Борна – Оппенгеймера для молекулярных волновых функций, работы по теории электронов и позитронов, процесс Оппенгеймера в ядерном синтезе и первое предсказание квантового туннелирования. Вместе со своими учениками он внес важный вклад в современную теорию нейтронных звезд и черных дыр, а также в решение отдельных проблем квантовой механики, квантовой теории поля и физики космических лучей.
Оппенгеймер также автор ряда популярных книг, в том числе – «Наука и обыденное познание» (1954), «Открытый разум» (1955), «Некоторые размышления о науке и культуре» (1960).
Лев Давидович Ландау (1908–1968)
Выдающийся советский физик-теоретик, основатель научной школы, доктор физико-математических наук, профессор, академик АН СССР.
Родился в Баку (Азербайджан) в семье инженера-нефтяника Давида Львовича Ландау. С 1916 г. учился в бакинской гимназии, где его мать, Любовь Вениаминовна, была преподавателем естествознания. Необыкновенно одаренный математически, Ландау шутя говорил о себе: «Интегрировать научился лет в 13, а дифференцировать умел всегда». В 14 лет поступил в Бакинский университет, где обучался одновременно на двух факультетах: физико-математическом и химическом. За особые успехи был переведен в Ленинградский университет. Окончив в 1927 г. физическое отделение Ленинградского университета, Ландау стал аспирантом, а в дальнейшем сотрудником Ленинградского физико-технического института, в 1926–1927 гг. опубликовал первые работы по теоретической физике. В 1929 г. был в научной командировке для продолжения образования в Германии, в Дании у Нильса Бора, в Англии и Швейцарии. Там он работал вместе с ведущими физиками-теоретиками, в том числе с Нильсом Бором, которого с тех пор считал своим единственным учителем. В 1932 г. Ландау возглавил теоретический отдел украинского Физико-технического института в Харькове. С 1937 г. работал в Институте физических проблем АН СССР.
Академик Ландау (близкие друзья и коллеги звали его Дау) считается легендарной фигурой в истории отечественной и мировой науки. Квантовая механика, физика твердого тела, магнетизм, физика низких температур, физика космических лучей, гидродинамика, квантовая теория поля, физика атомного ядра и физика элементарных частиц, физика плазмы – вот далеко не полный перечень областей, в разное время привлекавших внимание Ландау. Про него говорили, что в «огромном здании физики XX в. для него не было запертых дверей».
С 1932 по 1937 г. Ландау работал в УФТИ; после увольнения из Харьковского университета и последовавшей за ней забастовки физиков в феврале 1937 г. принял приглашение Петра Капицы занять должность руководителя теоретического отдела только что построенного Института физических проблем (ИФП) и переехал в Москву. После отъезда Ландау начинается разгром УФТИ органами областного НКВД. Были арестованы иностранные специалисты А. Вайсберг, Ф. Хоутерманс, а в августе – сентябре 1937 г. арестованы и в ноябре расстреляны физики Л. В. Розенкевич (соавтор Ландау), Л. В. Шубников, В. С. Горский («дело УФТИ»). В апреле 1938 г. Ландау в Москве редактирует написанную М. А. Корецем листовку, призывающую к свержению сталинского режима, в которой Сталина называют фашистским диктатором. Текст листовки был передан антисталинской группе студентов ИФЛИ для распространения по почте перед первомайскими праздниками. Это намерение было раскрыто органами госбезопасности СССР, и Ландау, Кореца и Ю. Б. Румера арестовали за антисоветскую агитацию. В тюрьме Ландау провел год и был выпущен благодаря письму в свою защиту от Нильса Бора и вмешательству Капицы, взявшего ученого на поруки. После освобождения, до самой смерти в 1968 г., Ландау был сотрудником ИФП.
Семен Яковлевич Брауде (1911–2003)
Выдающийся ученый в области радиофизики и радиоастрономии, основатель двух новых научных направлений: радиоокеанографии и декаметровой радиоастрономии, член украинской Академии наук (1969), заслуженный деятель науки и техники Украины (1991).
Научные исследования начал 1933 г. в Харьковском физико-техническом институте в лаборатории электромагнитного излучения под руководством А. А. Слуцкина. Ученый выяснил закономерности движения электронов в электрических и магнитных полях с учетом пространственного заряда, участвовал в разработке первых в мире мощных многорезонансных магнетронов сверхвысокочастотных колебаний. В 1950-е гг. Брауде основал новое научное направление – радиоокеанографию. Под его руководством проведены первые детальные исследования распространения ультракоротких волн над морем в условиях прямой видимости и за горизонтом и рассеяние электромагнитного излучения взволнованной морской поверхности. Ученый выявил и обосновал эффект дальнего тропосферного распространения радиоволн, а также явление атмосферного волновода. Установленные им закономерности взаимосвязи характеристик рассеянного электромагнитного поля со свойствами морской поверхности в дальнейшем позволили разработать новый неконтактный метод определения параметров морского волнения на дальних расстояниях – метод дистанционного зондирования.
В 1960-е гг. широкое признание принесли Брауде работы, которыми было начато еще одно научное направление – декаметровой радиоастрономии. Вместе с коллегами и учениками он создал крупнейшие радиоастрономические системы декаметровых волн, уникальные по своей чувствительности и пространственному разрешению – радиотелескоп УТР-2 и радиоинтерферометры УРАН. С их помощью получены результаты мирового уровня: составлен первый каталог космических источников декаметрового излучения (более 4000 дискретных объектов), изучены особенности радиоизлучения Солнца, обнаружены новые виды космических пульсаров и необычные закономерности в распределении радиояркости небесных тел.
Значительным научным достижением Брауде стало обнаружение в космическом излучении первой предельно низкочастотной спектральной линии возбужденных атомов углерода, что открыло новые возможности в диагностике межзвездной среды. При решении ряда задач астрофизики Брауде теоретически определил эффекты совместного действия синхротронного и теплового излучения, эффекты поглощения в ионизированном газе, а также закономерности синхротронного излучения объектов с большой оптической толщиной.
Ричард Филлипс Фейнман (1918–1988)
Выдающийся американский физик, родился в Нью-Йорке в семье заведующего отделом сбыта фабрики по изготовлению форменной одежды. С детства питал большой интерес к естественным наукам и проведению экспериментов в домашней лаборатории, демонстрируя членам семьи и соседям нехитрые химические фокусы. Еще школьником зарабатывал на карманные расходы починкой радиоприемников и решал головоломные математические задачи, изобретая новые способы рассматривать их в целом и избегая громоздких вычислений.
По окончании средней школы в 1935 г. успешно поступил в Массачусетский технологический институт (МТИ) и в 1939 г. окончил его с дипломом бакалавра по физике. В МТИ, как говорил впоследствии Фейнман в своей нобелевской речи, он впервые осознал, что наиболее важной проблемой того времени было неудовлетворительное состояние квантовой теории электричества и магнетизма – квантовой электродинамики, занимавшейся изучением взаимодействия между элементарными частицами и между частицами и электромагнитным полем.
В 1942 г. Фейнман защитился в Принстонском университете, получив степень доктора философии, продолжив там работать свободным исследователем. В 1940-х гг. принял самое непосредственное участие в создании ядерного оружия, проведя много уникальных исследований в Лос-Аламосской лаборатории. В 1950-х гг. – профессор на кафедрах физики Корнелльского университета и Калифорнийского технологического института в Пасадене. Основные работы Фейнмана связаны со специальными вопросами квантовой электродинамики, квантовой механики и статистической физики. С помощью созданной Фейнманом современной версии квантовой электродинамики удалось успешно преодолеть многие трудности, связанные с применением квантовой механики в теории взаимодействия электронов и других заряженных элементарных частиц с электромагнитным полем. В конце 1940-х гг. ученому удалось разработать оригинальные схемы, иллюстрирующие возможные превращения элементарных частиц, названные «диаграммы Фейнмана». В 1958 г. совместно с М. Гелл-Манном он предложил новую количественную теорию слабых взаимодействий, а в 1969 г. – новую модель нуклона. В 1972 г. Фейнман создал полуфеноменологическую картину генерации новых частиц при их столкновениях и создал метод интегрирования по траекториям квантовых объектов. В последние годы он занимался разработкой теории квантованных вихрей в сверхтекучем гелии и настойчиво делал попытки применить методы теории возмущений в задаче квантования гравитационных полей. Кроме всего прочего Фейнман был замечательным педагогом и одним из создателей знаменитого университетского курса лекций по физике.
Нобелевский лауреат 1965 г. по физике «За фундаментальный вклад в развитие квантовой электродинамики, имевший глубокие последствия для физики элементарных частиц».
Словарь терминов
Аннигиляция – процесс столкновения частицы и ее античастицы, при котором происходит рождение новых частиц и взрывное выделение энергии, а исходные частицы взаимно уничтожают друг друга.
Античастица – у каждой частицы материи есть соответствующая античастица. При соударении частицы и античастицы происходит их аннигиляция, в результате которой выделяется энергия и рождаются другие частицы.
Атмосфера – газовая оболочка, окружающая Землю. Атмосферой принято считать ту область вокруг Земли, в которой газовая среда вращается вместе с Землей как единое целое. Атмосфера обеспечивает возможность жизни на Земле и оказывает большое влияние на разные стороны жизни человечества.
Атмосферное электричество – совокупность электрических явлений и процессов в атмосфере. Раздел физики атмосферы, изучающий электрические явления в атмосфере и ее электрические свойства. При исследовании атмосферного электричества изучают электрическое поле в атмосфере, ее ионизацию и проводимость, электрические токи в ней, объемные заряды, заряды облаков и осадков, грозовые разряды и многое другое. Все проявления атмосферного электричества тесно связаны между собой, и на их развитие сильно влияют метеорологические факторы – облака, осадки, метели и т. п. К области атмосферного электричества обычно относят процессы, происходящие в тропосфере – нижнем и стратосфере – верхнем слое атмосферы.
Атом – наименьшая частица каждого химического элемента. Атом состоит из ядра, занимающего крайне незначительную часть общего условного объема и состоящего из нуклонов – протонов и нейтронов, вокруг которых обращаются электроны.
Бета-распад – радиоактивное превращение атомных ядер с генерацией электронов, позитронов, нейтрино и антинейтрино.
Вакуум (вакуумное состояние) – в квантовой физике представляет собой «физический вакуум» как основное состояние с минимальной энергией, нулевыми импульсом, угловым моментом, электрическим зарядом и другими квантовыми числами квантованных полей. В математической физике используется понятие «математического вакуума», определяемого как состояние, в котором отсутствуют какие-либо реальные частицы и действие на который операторов уничтожения дает нулевой результат. По современным представлением, вакуум перенаселен виртуальными частицами, участвующими в виртуальных процессах, проявляющихся в специфических эффектах взаимодействия с реальными частицами.
Векторное поле – физическое поле, состоящее из трех независимых компонент, преобразующихся при поворотах координатных осей или преобразованиях Лоренца как компоненты вектора или 4-вектора. Примером векторного поля может служить поле скоростей или электромагнитное поле, описываемое четырехмерным вектор-потенциалом. В квантовой теории поля квантами векторного поля являются векторные частицы с единичным спином. При этом действительному векторному полю соответствует электрически нейтральная частица, а комплексному – заряженная частица (и ее античастица с зарядом противоположного знака). По поведению относительно пространственной инверсии с заменой координат векторные поля делят на собственно векторные, меняющие знак при инверсии, и аксиальные, или аксиально-векторные, не меняющие знака.
Гравитационная волна – возмущение метрики пространства-времени в виде гравитационного поля, распространяющееся со скоростью света. Образ гравитационных волн возник в теоретической физике при поиске решений волновых уравнений, входящих в общую теорию относительности. Гравитационные волны представляют собой поперечный процесс и описываются двумя независимыми поляризационными компонентами. В теории гравитационные волны должны излучать любые ускоренно движущиеся массы, а в реальности для их детектирования существенной амплитуды требуются чрезвычайно большие массы и ускорения, поскольку амплитуды гравитационных колебаний прямо пропорциональны данным параметрам. Астрофизики предполагают, что идеальными генераторами возмущений метрики пространства-времени могут быть гипотетические космические объекты – гравитационные коллапсары, или черные дыры. При слиянии и вращении пар подобных объектов от них должна распространяться существенная «рябь» пространства-времени, которую можно было бы зафиксировать в окрестностях нашей планеты с помощью строящихся космических обсерваторий.
Гравитация (всемирное тяготение, притяжение) – одно из главных фундаментальных природных взаимодействий сверхуниверсального типа, которому подвержены абсолютно все материальные тела, называемые гравитирующей материей. По современным данным, тяготение не только абсолютно универсально, но и всем телам, состоящим из гравитирующей материи, вне всякой зависимости от их массы сообщает совершенно одинаковое ускорение. Гравитационное взаимодействие входит в четыре фундаментальных силовых поля: электромагнитное, сильное и слабое. В классической механике гравитация описывается законом всемирного тяготения, установленным Ньютоном и гласящим, что сила притяжения между двумя телами прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. При этом сила всемирного притяжения всегда приводит только к притяжению любых тел. Современная концепция тяготения описывается теорией гравитации Эйнштейна, или общей теорией относительности (ОТО). Согласно ОТО любое массивное тело искажает метрику пространства-времени, что и определяет видимое действие гравитационного поля. Гигантские космические объекты, такие как звезды и их компактные скопления – галактики, составляют колоссальные массы, создавая очень значительные даже по космическим масштабам гравитационные поля. Гравитация, будучи слабейшим из известных полей, в то же время является важнейшей силой во Вселенной, поскольку в отличие от других взаимодействий она универсальна при действии на любую материю и энергию. До сих пор в природе не обнаружены негравитирующие и антигравитирующие объекты.
Длина волны – расстояние между двумя соседними гребнями волны или между двумя ее соседними впадинами.
Ионизация – превращение атомов и молекул в ионы и свободные электроны; процесс, обратный рекомбинации. Ионизация в газах происходит в результате отрыва от атома или молекулы одного или нескольких электронов под влиянием внешних воздействий. В некоторых случаях возможно прилипание электронов к атому или молекуле и образование отрицательного иона. Энергия, необходимая для отрыва электронов, называется энергией ионизации. Происходит ионизация при поглощении электромагнитного излучения (фотоионизация), при нагревании (термическая ионизация), при воздействии сильного электрического поля (полевая ионизация), при столкновении частиц с электронами и возбужденными частицами (ударная ионизация).
Ионосфера – ионизованная часть верхних слоев атмосферы Земли, расположенная на высотах от 50 до 400 км. Характеризуется значительным содержанием атмосферных ионов и свободных электронов. Верхней границей ионосферы является внешняя часть магнитосферы Земли. Причина повышенной ионизации атмосферы – разложение молекул и ионизация атомов газов, составляющих атмосферу, под действием ультрафиолетовой и рентгеновской радиации солнечного ветра и космического излучения. Только благодаря ионосфере возможно распространение радиоволн на дальние расстояния.
Инфразвуковое оружие – принцип его действия основан на излучении звуковых и инфразвуковых волн определенных частот. Представляет собой варианты звуковых пушек, способных генерировать сверхсильные колебания на расстоянии сотен метров. При этом получают мощные импульсы с частотой от 2000 до 3000 Гц с уровнем свыше 150 децибел. Звук такой силы вполне может произвести устойчивое повреждение органов слуха. Люди, находящиеся недалеко от данной пушки, теряют самообладание, у них появляются страх, головокружение, тошнота. Если же они находятся на близком расстоянии, то у них начинаются психические расстройства и разрушение внутренних органов.
Квантовая механика – область физики, изучающая свойства и поведение атомов и субатомных частиц. Квантовая (волновая) механика основывается на корпускулярно-волновом дуализме и принципе неопределенности, объясняя и корпускулярные, и волновые свойства микромира. Любая квантово-механическая система описывается комплексной волновой функцией, фаза и амплитуда которой полностью определяют ее состояние. При этом аппарат квантовой теории позволяет естественным образом рассматривать волновые явления интерференции и дифракции элементарных частиц. Вероятность найти любую микрочастицу в определенном состоянии определяется квадратом модуля волновой функции. Отличие квантовой механики от классической физики состоит в том, что вероятность локализации микрочастицы не полностью определяет ее состояние. Для полного описания состояния квантового микрообъекта необходимо вычислить комплексную вероятность как волновую функцию.
Магнитное поле – поле, создающее магнитные силы. Магнитное и электрическое поля объединяются в электромагнитное поле.
Метеопатология – реакция человеческого организма на метеорологические факторы в канун резкой смены погоды. В 1930 г. А. Л. Чижевский, а затем и другие исследователи обратили внимание на связь между развитием ряда заболеваний и процессами, происходящими на Солнце. На основе статистических данных, полученных за много лет, Чижевский показал связь между возрастанием солнечной активности и вспышками эпидемии чумы, холеры, дифтерии, гриппа, менингита и даже возвратного тифа. Английскими учеными установлен четко выраженный рост нервно-психических заболеваний при 67 магнитных бурях. Подобные данные получены на 40 000 заболеваний. В период 1957–1961 гг. на 30 000 заболеваний было прослежено влияние 7-, 14-, 21– и 35-дневных систематических возрастаний магнитной напряженности на тяжесть протекания заболеваний. Обнаружено подобное влияние на развитие нарушения сердечно-сосудистой деятельности. В периоды солнечной активности возрастают размножение и токсичность ряда болезнетворных бактерий, повышаются скорость свертывания крови и число лимфоцитов. Установлены четкие изменения биопотенциалов по амплитуде, частоте и форме кривых, происходящие во время магнитных бурь. Характерная особенность действия магнитного поля на живой организм заключается в том, что оно действует на весь организм сразу – от системы органов до клеточных структур.
Микроволновое сверхвысокочастотное излучение (СВЧ-излучение) – электромагнитное излучение, включающее в себя сантиметровый и миллиметровый диапазон радиоволн (от 30 см – частота 1 ГГц до 1 мм – 300 ГГц). Границы между инфракрасным, терагерцовым, микроволновым излучением и ультравысокочастотными радиоволнами приблизительны и могут определяться по-разному. Микроволновое излучение большой интенсивности используется для бесконтактного нагрева и термообработки металлов в микроволновых печах, а также для радиолокации.
Молния – гигантский электрический искровой разряд в атмосфере, проявляющийся обычно яркой вспышкой света и сопровождающим ее громом. Наиболее часто возникает в кучево-дождевых облаках, и тогда они называются грозовыми; иногда образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.
Общая теория относительности (ОТО) – теория гравитации, выражающая тяготение через геометрию пространства-времени. Создана в 1915–1916 гг. Альбертом Эйнштейном. ОТО по своей сути является развитием специальной теории относительности, что и отражает ее название. Главная идея ОТО заключается в том, что гравитация обусловлена не силовым взаимодействием гравитирующей материи, а искривлением самого пространства-времени под воздействием массы и энергии. Так, в ОТО тяготение – не силовое взаимодействие, а кривизна пространства– времени, возникающая под распределением космических масс и энергетических потоков. ОТО является общепризнанной теорией гравитации, подтвержденной многочисленными наблюдениями. ОТО получила признание после объяснения аномальной прецессии перигелия Меркурия и отклонения световых лучей вблизи солнечной поверхности при полном затмении. С тех пор опытные наблюдения подтвердили такие предсказания ОТО, как гравитационное красное смещение, гравитационное замедление времени и запаздывание электромагнитных сигналов в сильных гравитационных полях. Кроме всего этого, астрономические наблюдения отчасти подтверждают такое необычное предсказание ОТО, как гравитационный коллапс, заканчивающийся возникновением черных дыр, или застывших звезд.
Поле – силовое воздействие, существующее во всех точках пространства и времени, в отличие от частицы, которая существует только в одной точке в каждый момент времени.
Полярное сияние – свечение верхних слоев атмосферы Земли (ионосферы) и других планет: Юпитера, Сатурна, Урана, Нептуна, возникающее вследствие их взаимодействия с солнечным ветром — потоком микрочастиц, испускаемых Солнцем со скоростью 300–1200 км/с в окружающее космическое пространство. Порывы солнечного ветра, вызванные солнечными вспышками, вызывают мощные магнитные бури, резко поднимающие уровень авроральной активности вплоть до высшей степени ионосферных суббурь, влияющих на радиосвязь и электропередачу.
Протон – положительно заряженная частица. Протоны образуют примерно половину всех частиц, входящих в состав ядер большинства атомов.
Радар – система, использующая импульсы радиоволн для определения положения объектов путем измерения времени, которое требуется импульсу, чтобы достичь объекта и, отразившись, вернуться обратно.
Радиоактивность – самопроизвольное превращение (спонтанный распад) одного атомного ядра в ядро другого типа.
Радиоизлучение – электромагнитное излучение с длинами волн 5 10–5–1010 м и частотами, соответственно, от нескольких герц и до 6 1012 Гц. Радиоволны используются при передаче данных в радиосетях.
Радиолокация (РЛ) – техническая наука, объединяющая методы и средстваобнаружения, измерения координат, а также определение свойств и характеристик различных объектов, основанных на использовании радиоволн. Различают активную, полуактивную, активную с пассивным ответом и пассивную радиолокацию. Они подразделяются по используемому диапазону радиоволн, по виду зондирующего сигнала, числу применяемых каналов, числу и виду измеряемых координат, месту установки радиолокационной станции.
СВЧ-оружие – нарушает работу головного мозга и центральной нервной системы, человек слышит сильные фантомные звуки и теряет ориентацию в пространстве и времени. Один из видов такого типа оружия – система активного отбрасывания (Active Denial System – ADS) – разработан для американской армии и представляет собой мощный СВЧ-излучатель. Установка излучает направленную энергию в диапазоне миллиметровых радиоволн, которая оказывает кратковременное шоковое воздействие на людей на расстоянии до 1 км. Испытания ADS-установки продемонстрировали, что при облучении люди испытывают сильный болевой шок, сопровождаемый рефлекторным стремлением, названным Goodbye Effect, немедленно выйти из зоны поражения.
Спектр – расщепление волны (например, электромагнитной) на частотные компоненты.
Специальная теория относительности (СТО) – теория Эйнштейна, отправная точка которой состоит в том, что законы науки должны быть одинаковы для всех свободно движущихся наблюдателей независимо от того, с какой скоростью они перемещаются.
Стратосфера – слой атмосферы между тропосферой и мезосферой (от 8–16 км до 45–55 км); температура в стратосфере в общем растет с высотой. Газовый состав воздуха в стратосфере сходен с тропосферным, но в нем меньше водяного пара и больше озона с наибольшей концентрацией в слое от 20 до 30 км. Тепловой режим стратосферы в основном определяется лучистым теплообменом, в меньшей степени – вертикальными движениями и горизонтальным переносом воздуха.
Теория великого объединения – теория, объединяющая электромагнитные, сильные и слабые взаимодействия. В ее основе лежит понятие энергии великого объединения, выше которой электромагнитные, слабые и сильные взаимодействия предположительно должны стать неразличимыми.
Тропосфера – нижний, основной слой атмосферы до высоты 8–10 км в полярных, 10–12 км – в умеренных и 16–18 км – в тропических широтах. Тропосфера – слой, наиболее подверженный воздействию земной поверхности. В тропосфере сосредоточено более 80 % всей массы атмосферного воздуха, сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, формируются воздушные массы и атмосферные фронты, развиваются циклоны, антициклоны и другие процессы, определяющие погоду и климат.
Ускоритель частиц – устройство, которое с помощью электромагнитов дает возможность ускорять движущиеся заряженные частицы, постоянно увеличивая их энергию.
Фотон – квант электромагнитного излучения (света).
Тепловое излучение – электромагнитное излучение непрерывного спектрального состава, испускаемое нагретыми телами. Основной математической моделью теплового излучения служит абсолютно черное тело, описываемое классическими законами Стефана – Больцмана, Кирхгофа и Вина, а также квантовым законом Планка. Тепловое излучение вместе с конвекцией и теплопроводностью представляет собой один из основных видов переноса тепла. Важную роль в физике играет понятие равновесного теплового излучения как находящегося в термодинамическом равновесии с веществом.
Ударно-волновой излучатель (УВИ) – взрывной источник электромагнитного излучения высокой мощности. УВИ со сферически-симметричным сжатием поля напоминает устройство атомной бомбы имплозивного типа и состоит из магнитной системы в виде перекрещивающихся обручей с магнитными полюсами в виде усеченных конусов, направленных в центр образовавшейся сферы. Внутри магнитопроводов располагается сферический заряд мощного взрывчатого вещества с высокой скоростью детонации с ядром из монокристалла йодида цезия. Главная ось монокристалла проходит по направлению магнитного поля системы. При подрыве сферического заряда формируется детонационная волна с давлением в сотни атмосфер, воздействующая на поверхность монокристалла йодида цезия, при этом на его поверхности скачкообразно увеличивается давление до миллиона атмосфер. Это формирует в монокристалле ударную волну, распространяющуюся от его поверхности к центру и превращающую вещество в плазму. При этом магнитное поле внутри монокристалла испытывает очень быстрое сферически-симметричное сжатие, формируя сверхмощный электромагнитный импульс.
Применяется в боевых частях мощных электромагнитных бомб, снарядов, мин и иного электромагнитного оружия, действие которого основано на поражении целей радиочастотным электромагнитным излучением.
Флуктуация – случайное отклонение некоторой физической величины от заданного (в экспериментах) или среднего (в природе) значения. Среди флуктуаций встречаются: квантовые – в силу фундаментальных свойств материи, термодинамические – из-за неустойчивости потоков тепла, а также броуновское движение – молекулярные тепловые перемещения.
Электрический заряд – свойство частицы, благодаря которому она отталкивает (или притягивает) другие частицы, имеющие заряд того же (или противоположного) знака.
Электромагнитная (электронная) бомба – оружие нелетального действия в виде генератора радиоволн высокой мощности, приводящих к уничтожению электронного оборудования командных пунктов, систем связи и компьютерной техники. Создаваемая электрическая наводка по мощности воздействия на электронику оказывается сравнимой с ударом молнии. Разделяется на низкочастотные, разрушающие наводкой линии электропередачи, и высокочастотные, наводящие разрушающий импульс непосредственно в элементах электронных устройств.
Как вариант генератора чаще всего используется цилиндрическая конструкция, в которой генерируется стоячая волна, и в момент активации стенки цилиндра быстро сжимаются направленным взрывом, в результате чего возникает микроволновое излучение. Применяются как мощные боеприпасы с использованием ударно-волновых излучателей, так и менее мощные – с использованием пьезоэлектрических генераторов частоты.
Электромагнитное взаимодействие – взаимодействие, которое возникает между частицами, обладающими электрическим зарядом. Второе по силе из четырех фундаментальных взаимодействий.
Электромагнитное излучение, или электромагнитные волны – распространяющееся в пространстве возмущение электрических и магнитных полей. Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию. Длина волны зависит от скорости распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света.
Электрон – частица, обладающая отрицательным электрическим зарядом и обращающаяся в атоме вокруг ядра.
Электронная лампа – прибор, используемый для генерации, усиления или стабилизации электрических сигналов. Электронная лампа представляет собой, по существу, герметичную ампулу, в вакууме или газовой среде которой движутся электроны. Ампулу обычно изготавливают из стекла или металла. Управление электронным потоком осуществляется посредством электродов, имеющихся внутри лампы. Хотя в большинстве приложений на смену электронным лампам пришли полупроводниковые приборы, лампы все еще находят применение в видеотерминалах, радиолокаторах, спутниковой связи и во многих других электронных приборах. В лампе имеется несколько проводящих элементов, называемых электродами. Эмиссию электронов в лампе осуществляет катод. Эта эмиссия вызывается либо нагревом катода, в результате которого электроны «закипают» и испаряются с его поверхности, либо воздействием света на катод. Движением эмитированных электронов управляют электрические поля, создаваемые другими электродами внутри лампы. В большинстве случаев они изолированы друг от друга и посредством проволочных выводов соединены с внешними схемами. Электроды, которые служат для управления движением электронов, называются сетками; электроды, на которые электроны собираются, называются анодами. В электронной лампе относительно просто управлять величиной, продолжительностью, частотой и другими характеристиками электронного потока. Эти простота и легкость управления делают ее ценным прибором в многочисленных приложениях.
Электронная пушка или прожектор – служит для создания направленного потока электронов в составе электронного луча или пучка лучей требуемой формы и интенсивности. Состоит из источника электронов – катода, модулятора, изменяющего интенсивность луча, и устройств его фокусировки. Используют в клистронах, электронно-оптических преобразователях, газовых лазерах, электронных микроскопах, установках для плавки и сварки металлов и другом подобном оборудовании.
Электронно-лучевая трубка (ЭЛТ) – устройство для воспроизведения изображения на люминесцентном экране; используется пучок электронов, получаемых с нагретого катода. Этот пучок тщательно фокусируется в луч, создающий на экране маленькое пятно и возбуждающий электроны люминофора экрана, что и приводит к излучению света. Этот луч отклоняется под действием электрического или магнитного поля, описывая при этом траектории на экране, а интенсивность луча можно изменять посредством управляющего электрода, меняя тем самым яркость пятна. Часть ЭЛТ, в которой создается сфокусированный электронный луч, называется электронным прожектором.
Электрочувствительность – повышенная чувствительность к компонентам электросмога – электромагнитным полям различного диапазона. Страдающим от электросмога чаще всего ставят диагноз «астено-вегетативный, или астенический синдром». При этом общие симптомы таковы: нарушение концентрации внимания, головные боли, слабость, потеря работоспособности, непреходящая усталость, приступы головокружения, плохой сон, потеря сил, аллергические реакции. Нервно-соматические реакции: функциональные нарушения центральной и вегетативной нервной системы, изменение электроактивности мозга – электроэнцефалограммы, неврастенические проявления, тремор – дрожание конечностей. Нарушение деятельности сердечно-сосудистой системы, нестабильность пульса и артериального давления.
Основной причиной электрочувствительности считают пониженный порог реакции тканей и систем организма на воздействие электромагнитных полей различных частот. Гипотезой, объясняющей действие электросмога, служит явление торможения электрическим и магнитным полем частоты выработки гормона мелатонина шишковидной железой – эпифизом в головном мозге у человека. Мелатонин регулирует биологические ритмы, в том числе околосуточный ритм.
Литература
1. Арсенов О. Никола Тесла. Гений или шарлатан? – М.: Эксмо, 2009.
2. Арсенов О. Никола Тесла: засекреченные изобретения. – М.: Эксмо, 2010.
3. Арсенов О. Никола Тесла. Открытия реальные или мифические. – М.: Эксмо, 2010.
4. Бабакин А. Битва в ионосфере. – М.: Цейхгауз, 2008.
5. Бегич Н., Мэннинг Д. Программа HAARP: Оружие Армагеддона. – М.: Яуза, Эксмо, 2007.
6. Бегич Н., Мэннинг Д. Никола Тесла и его дьявольское оружие: Главная военная тайна США. – М.: Яуза, 2009.
7. Берд К. Книга о странном. – М.: Бестселлер, 2003.
8. Бэгготт Д. Тайная история атомной бомбы. – М.: Эксмо, 2011.
9. Гинзбург В. О науке, о себе и о других. – М.: Физматлит, 1997.
10. Горелик Г. Советская жизнь Льва Ландау глазами очевидцев. – М.: Вагриус, 2009.
11. Дайер Г. Климатические войны. – М.: АСТ, 2011.
12. Зегвельд В. Стратегическая оборонная инициатива: технологический прорыв или экономическая авантюра? – М.: Прогресс, 1989.
13. Ионин С. Параллельное оружие, или чем и как будут убивать в ХХI веке. – М.: Звонница-МГ, 2009.
14. Коган В. Семнадцать рассказов старого физика. – Харьков: МД, 2002.
15. Козырев М., Козырев В. Необычное оружие Третьего рейха. – М.: Центрполиграф, 2010.
16. Кузнецов Д. События 11 сентября 2001 г. и проблема международного терроризма в зеркале общественного мнения. – М.: УРСС, 2009.
17. Мейсан Т. 11 сентября 2001 года: Чудовищная махинация. – М.: Карно, 2003.
18. Образцов П. Никола Тесла: Ложь и правда о великом изобретателе. – М.: Эксмо, 2009.
19. Первушин А. Битва за звезды: Космическое противостояние. – М.: АСТ, 2004.
20. Первушин А. Звездные войны: американская республика против советской империи. – М.: Эксмо, Яуза, 2005.
21. Первушин А. Тайны забытого оружия: Один шаг до конца света. – СПб.: Невский проспект, Вектор, 2007.
22. Пресман А. Электромагнитное поле и природа. Электромагнитные поля в биосфере. – М.: Наука, 1983.
23. Рыков А. Тесла против Эйнштейна. – М.: Эксмо, 2010.
24. Рухадзе А. События и люди. – М.: Научтехлитиздат, 2010.
25. Сейфер М. Никола Тесла. Повелитель Вселенной. – М.: Яуза, 2011.
26. Такетт К. Теория заговора: тайны и сенсации. – М.: Фаир-пресс, 1999.
27. Тарасенко М. Военные аспекты советской космонавтики. – М.: АРП, Николь, 1992.
28. Телицын В. Никола Тесла и тайна Филадельфийского эксперимента. – М.: Яуза, Эксмо, 2009.
29. Усиков А., Канер Э., Трутень И. и др. Электроника и радиофизика миллиметровых и субмиллиметровых радиоволн. – М.: Наука, 1988.
30. Уэллс К. Б. Проект «Монток»: Раскрыть тайну «Феникса». – СПб.: Весь, 2007.
31. Фейгин О. Физика нереального. – М.: Эксмо, 2010.
32. Фейгин О. Тесла и сверхсекретные проекты Пентагона. – М.: Эксмо, 2009.
33. Фейгин О. Никола Тесла – повелитель молний. – СПб.: Питер, 2010.
34. Фейгин О. Лев Ландау. Последний гений физики. – М.: Эксмо, 2010.
35. Фейгин О. Никола Тесла: Наследие великого изобретателя. – М.: АНФ, 2012.
36. Фейгин О. Цепная реакция. Неизвестная история создания атомной бомбы. – М.: АНФ, 2012.
37. Фридман В. 11 сентября: вид на убийство. – М.: Энас, 2009.
38. Хайленд Г. Никола Тесла и утерянные секреты нацистских технологий. – М.: Эксмо, 2010.
39. Хозин Г. Великое противостояние в космосе (СССР – США): Свидетельство очевидца. – М.: Вече, 2001.
40. Черток Б. Ракеты и люди. Горячие дни холодной войны. – М.: Машиностроение, 1999.
41. Чейни М. Тесла: Человек из будущего. – М.: Эксмо, 2009.
42. Червов Н. Ядерный круговорот: что было, что будет. – М.: Олма-пресс, 2001.
43. Широкорад А. Чудо-оружие СССР. Тайны советского оружия. – М.: Вече, 2004.