Микрокосм: E. coli и новая наука о жизни Циммер Карл
«Мы впервые начинаем различать общую филогенетическую структуру живого мира», — объявили ученые.
В течение следующих 30 лет ученые двигались по пути, указанному Вёзе, и изображение древа жизни становилось все подробнее. Исследователи обнаружили и изучили рибосомную ДНК у многих видов живых организмов; нашли другие гены, пригодные для сравнения; применили новые статистические методы, позволявшие получить более надежные результаты; обнаружили множество новых видов архей и подтвердили обоснованность выделения их в отдельный домен. На первый взгляд кажется, что археи похожи на бактерии, но на самом деле они обладают вполне конкретными отличительными свойствами: к примеру, клеточная стенка у них состоит из совершенно уникальных молекул.
Пытаясь измерить разнообразие жизни, Вёзе и его коллеги подсчитали число мутаций рибосомной РНК, накопившихся в различных ветвях эволюционного древа. Чем больше мутаций, тем длиннее ветвь — и дерево Вёзе оказалось совсем не похожим на дерево Геккеля. Все животное царство съежилось до небольшого пучка веточек, угнездившихся гдето в глубине домена эукариот. Нередко оказывалось, что две бактерии, которые выглядят под микроскопом совершенно одинаково, разделяет более глубокая эволюционная пропасть, чем та, что пролегает между нами и морскими звездами или, к примеру, губками. Одного взгляда на дерево Вёзе было достаточно, чтобы ясно понять: эволюционная история любого вида бактерий — к примеру E. coli — вылилась бы в настоящий и весьма объемный роман.
Дерево или паутина?
В 1980–е гг. у специалистов по древу жизни появились серьезные основания для беспокойства. Мало — помалу становилось ясно, что горизонтальный перенос генов — не просто забавная особенность лабораторной жизни бактерий и не следствие появления антибиотиков. Гены переходили от одного вида к другому задолго до того, как человек начал свои эксперименты с жизнью на Земле. Некоторые ученые опасались, что беспорядочные прыжки геов, если они происходят слишком часто, могут сделать построение эволюционного древа попросту невозможным.
При реконструкции древа жизни ученые сравнивают ДНК разных видов и получают наиболее вероятную схему взаимного расположения эволюционных ветвей, при котором могли возникнуть соответствующие различия. Генетический маркер, присутствующий у двух биологических видов и отсутствующий у всех остальных, может означать, что эти виды находятся в близком родстве. Но вся система генетических маркеров имеет смысл лишь в том случае, если гены живых организмов передаются ими только по наследству, от поколения к поколению. Ген, свободно переходящий от одного вида к другому, может создать иллюзию родства там, где на самом деле никакого родства нет.
Поначалу ученые в большинстве своем попросту отмахивались от подобных мыслей. Им по — прежнему казалось, что в течение миллиардов лет горизонтальный перенос генов не играл заметной роли. Восстанавливая структуру древа жизни, ученые предполагали, что редкими случайными прыжками генов можно пренебречь.
Позже ученые смогли лучше оценить частоту горизонтального переноса генов путем сравнения геномов.
В геномах человека и других животных свидетельств недавнего переноса генов обнаружить не удалось — и не удивительно, если принять во внимание наш способ размножения. В организме животного лишь несколько клеток — яйцеклетки и сперматозоиды — имеют шанс стать когданибудь новым организмом. А эти клетки практически не контактируют с другими видами, клетки которых могли бы в принципе передать им какието гены. (Главное исключение из этого правила — тысячи вирусов, обосновавшихся в нашем геноме.) Но в этом отношении животные — скорее исключение, чем правило. Оказалось, что бактерии, археи и одноклеточные эукариоты обмениваются генами с удивительной неразборчивостью. А передаваемые туда и сюда гены, по утверждению некоторых ученых, представляют серьезную угрозу мечтам о построении когданибудь полного и точного древа жизни.
В 2000 г. в журнале Scientific American вышла статья, в которой биолог Форд Дулиттл из Университета Далхаузи в Галифаксе проиллюстрировал серьезность этой угрозы. В статье были помещены две иллюстрации с изображением деревьев. На одной из них было древо жизни в том виде, в каком оно открывается при изучении рибосомной РНК: бактерии, археи и эукариоты аккуратно и упорядоченно расходились от общего предка. На втором рисунке автор попытался показать, как могло бы в действительности выглядеть древо жизни; там было изображено дерево, растущее, подобно мангровым зарослям, из множества корней и представляющее собой беспорядочный клубок побегов. Некоторые его части походили не столько на дерево, сколько на паутину.
Как большинство научных дискуссий в биологии, спор «Дерево или паутина?» не имеет однозначного, единственно верного решения. Сторонники паутинной теории, такие как Дулиттл, не отрицают, что организмы связывает друг с другом более или менее близкое общее происхождение. Они просто считают, что поиски истинного древа жизни путем сравнения генов ни к чему не приведут. Сторонники классической древесной версии, в свою очередь, не отрицают ни факта горизонтального переноса генов, ни его значения в истории жизни. Они просто утверждают, что исследование правильно выбранных генов поможет вскрыть истинные отношения между всеми живыми организмами на Земле.
Когда ученые впервые стали сравнивать полные геномы многих видов, некоторые из них решили, что эволюционная схема в виде дерева остается в силе. В частности, к этому выводу пришел Говард Охман с коллегами, которые исследовали E. coli и дюжину других бактерий. Ученые обнаружили ряд генов, которые, по всей видимости, переместились в их геномы с помощью горизонтального переноса. Но большинство этих генов переменили место жительства недавно, уже после того как исследованные виды отделились друг от друга.
Как выяснили ученые, горизонтальный перенос генов — вещь обычная, но немногим генам — иммигрантам удается удержаться на новом месте. Многие из них выводятся из строя мутациями, превращаясь в псевдогены. Время от времени другие мутации полностью вырезают их из генома, и бактерия не замечает потери. Но часть генов, перенесенных в геном предков E. coli и других бактерий, закрепляется в новых хозяевах надолго и обнаруживается там и в наши дни. Чтобы избежать забвения, они становятся домоседами и прекращают свои скитания. После того как вирус встраивает их в геном хозяина, они больше не покидают насиженного места. Охман и его коллеги сделали заключение, что даже с учетом генов, курсирующих между ветвями древа жизни, эти ветви остаются вполне обособленными.
Дорога к эшерихии
Новейшая версия эволюционного древа совершенно не похожа на стройную зеленую колонну Геккеля. Сегодня ученые могут без труда сравнивать тысячи видов одновременно, и единственный способ нарисовать все выявленные при этом ветви — это расположить их по кругу, как спицы в колесе. В центре колеса находится последний общий предок всей современной земной жизни. От центра можно двигаться наружу, от ветки к ветке, по следам конкретной эволюционной линии. Чтобы добраться до нашего собственного побега на этом дереве, следует сначала подняться до общего предка архей и эукариот, а оттуда уже свернуть на ветвь эукариот и дальше двигаться по ней. Наши предки были одноклеточными простейшими еще примерно 700 млн лет назад. На этом участке находятся развилки, на которых наша ветвь разошлась с теми, что в дальнейшем дали начало многоклеточным растениям и грибам; нас же со временем выбранный путь приведет в царство животных. Держитесь верного пути и доберетесь вслед за нашими предками до момента, когда они стали позвоночными. По пути будут ответвляться боковые побеги, ведущие к другим позвоночным: рыбкам данио, курам, мышам, шимпанзе. В конце концов ветвь, по которой вы следуете, завершится видом Homo sapiens.
Но достаточно о нас. К E. coli от общего предка ведет совсем другая дорога. Если пойти по ней, то путешествие получится столь же длинным и нисколько не менее интересным.
Последний общий предок всех живых организмов на Земле был, вероятно, куда проще E. coli. Сегодня каждый биологический вид на планете несет в себе некоторое количество уникальных генов, но существуют и гены, которые можно обнаружить у всех без исключения современных видов. Вероятно, эти универсальные гены — наследие последнего общего предка. Простой поиск универсальных генов дает короткий список, где их содержится всего лишь около двухсот. Вероятно, геном общего предка был длиннее, ведь в процессе эволюции много генов было утрачено. По оценке Христоса Узуниса и его коллег из Европейского института биоинформатики в Кембридже, полный геном общего предка содержал от 1000 до 1500 генов. Но даже если Узунис прав, у последнего общего предка всех живых существ было втрое или вчетверо меньше генов, чем имеет сегодня типичный штамм E. coli.
Последний общий предок не был единственным властелином древней Земли. Он делил планету с бессчетным количеством других микроорганизмов. Со временем, однако, все прочие ветви древа жизни высохли, и уцелела только одна — наша. Мир, где жили эти древние микроорганизмы, принципиально отличался от современного нам мира. Четыре миллиарда лет назад Землю то и дело сотрясали космические катастрофы — результаты ее столкновений с гигантскими астероидами и небольшими планетами. Во время некоторых из этих столкновений, возможно, на Земле выкипали даже океаны. Затем вода медленно возвращалась на поверхность планеты и вновь собиралась в моря; пока это происходило, жизнь пряталась в трещинах на океанском дне. Возможно, тот факт, что часть древнейших веточек на эволюционном дереве принадлежит теплолюбивым видам, обитающим в подводных гидротермальных источниках, — не просто совпадение.
Как только Земля стала более пригодной для жизни, потомки общего предка не замедлили по ней расселиться. Они распространились по морскому дну, образовали рифы и бактериальные маты[22]. Над морской гладью поднялись материки, и древние существа двинулись на сушу, формируя налеты и корки на камнях. Одновременно они брали на вооружение новые способы питания и роста. Некоторые бактерии и археи поглощали двуокись углерода и использовали в качестве источника энергии железо или другие химические вещества из глубоководных термальных источников. Именно они создали запас органического углерода, которым начали питаться другие микроорганизмы.
Не исключено, что от этих древних нахлебников и произошла E. coli. Ясно, что 3 млрд лет назад ее предки никак не могли жить внутри организма человека, да и никакого другого животного тоже. Данные о некоторых ближайших современных родичах E. coli (группа, известная под названием гамма — протеобактерии) позволяют сделать некоторые предположения о том, чем могли заниматься предки E. coli 3 млрд лет назад. Одни из них питаются нефтью, которая просачивается сквозь океанское дно. Другие живут на склонах подводных вулканов и приклеиваются к проплывающим мимо кусочкам белка, которые потом расщепляют. Возможно, E. coli получила свой обмен веществ в наследство именно от таких иждивенцев — добытчиков углерода.
Сложную общественную жизнь — привычку к формированию биопленок, применение колицинов в качестве биологического оружия и тому подобное — E. coli, вполне возможно, тоже унаследовала от свободноживущих морских предков. По крайней мере современные водные бактерии ведут исключительно активную общественную жизнь и гораздо чаще обитают в биопленках, нежели свободно плавают сами по себе.
Около 2,5 млрд лет назад предки E. coli сильно пострадали от катастрофы планетарного масштаба: в атмосфере Земли начал накапливаться кислород. Для нас кислород — необходимое условие жизни, но на древней Земле это был настоящий яд. Первоначально атмосфера планеты представляла собой густой туман из смеси разных молекул, включая и такой парниковый газ, как метан; его вырабатывали бактерии и археи. Свободный кислород был редок — отчасти потому, что его молекулы очень быстро вступали в реакцию с железом и другими элементами и образовывали новые молекулы. Жизнь сумела изменить химию планеты, когда некоторые из бактерий развили способность поглощать и использовать солнечный свет. Кислород у них возникал как побочный продукт реакции, и спустя 200 млн лет он начал накапливаться в атмосфере. Но кислород может быть смертелен для живых существ, которые не умеют себя защитить. Его атомная структура такова, что кислород способен вырывать атомы из других молекул и вступать с ними в связь. Возникающие при этом кислородосодержащие соединения могут натворить в клетке немало дел: они разрушают ДНК и другие попавшиеся на пути молекулы.
Первые 1,5 млрд лет существования жизни планета, к счастью, была свободна от этой напасти. Но 2,5 млрд лет назад уровень содержания кислорода в воздухе вырос десятикратно. За это время многие виды, вероятно, вымерли, а другие укрылись в таких местах, где содержание кислорода по — прежнему оставалось низким, — в толще ила, к примеру, или на океанском дне. Но некоторые виды — включая и предков E. coli — приспособились. Они обзавелись генами, способными защитить их от токсичного действия кислорода, а защитившись, изменили свой метаболизм так, чтобы получать от кислорода пользу; при помощи кислорода они научились значительно более эффективно, чем прежде, извлекать энергию из пищи. Однако и до сего дня E. coli сохраняет способность пользоваться как древним бескислородным метаболизмом, так и более новой кислородной версией, а также переключаться между ними в зависимости от того, сколько кислорода микроорганизм обнаруживает в окружающей среде.
Еще одна серьезнейшая революция, которую пережили предки E. coli, была результатом деятельности наших собственных предков. Биологи считают, что в древности примитивные эукариоты были главными хищниками на Земле. Эти существа очень напоминали сегодняшних амеб и так же рыскали в толще земли и воды в поисках добычи, которую они в состоянии поглотить. Естественный отбор благоприятствовал тем бактериям, которые способны были защитить себя от этих хищников. Надо сказать, что сегодня бактерии располагают внушительным арсеналом средств защиты от амеб и других хищников — эукариот. Они умеют производить токсины и вводить их внутрь амебы при помощи микроскопического «шприца». Хищникам не такто легко проникнуть в созданные ими биопленки. Даже будучи съеденными, бактерии продолжают бороться и всячески пытаются избежать гибели.
В некоторых случаях бактериям, возможно, удалось поменяться с хищником местами. Сегодня амеба может заболеть от бактериальной инфекции, вызванной теми видами, которые научились проникать в клетки хищников — простейших и прекрасно там себя чувствуют. Другие бактерии выказывают больше благодарности и в обмен на жилище обеспечивают одноклеточных простейших необходимыми для жизни химическими веществами. Когдато эукариоты таким образом обзавелись бактериями, дышащими кислородом[23], и эти бактерии с тех пор стали частью наших с вами клеток. В свою очередь, предки водорослей обзавелись фотосинтезирующими бактериями, и среди их потомков — все растения, которые делают нашу Землю такой зеленой. Благодаря партнерам — бактериям на материках получили возможность развиваться крупные экосистемы с лесами, степями и болотами, ставшие домом для животных всех сортов — от насекомых до млекопитающих.
Потомки хищников — эукариот, гонявшихся несколько миллиардов лет назад за бактериями, теперь сами стали новой экосистемой, которую бактерии успешно освоили. Тысячи микроорганизмов сумели приспособиться к богатому пищей царству — кишечнику животных; среди этих тысяч и предки нашей E. coli. Эти бактерии принесли с собой способность расщеплять органические вещества, обмениваться между собой информацией и сотрудничать. Они прошли долгий путь от общего предка всех живых организмов, но, выбрав в качестве среды обитания внутренности животных, они по — своему вновь соединили давно разошедшиеся ветви древа жизни.
E. coli в суде
Здание федерального суда в городе Гаррисберг (штат Пенсильвания) представляет собой невыразительную коробку из темного стекла. Здешние судьи разбирают в основном скучные конфликты по поводу работы похоронных контор, лицензий на продажу алкоголя, парковок при аэропортах. Но в 2005 г. здание суда оказалось неожиданно наводнено толпами людей — репортеров, фотографов и просто зевак. Всех их привлекло одно и то же дело: Китцмиллер против управления образования округа Дувр. Одиннадцать родителей из небольшого городка Дувр подали иск против местного совета по образованию. Обвинение состояло в том, что совет ввел религию в программу занятий по естественнонаучным дисциплинам. Дело привлекло внимание мировой общественности, поскольку суду впервые предстояло рассмотреть креационизм в его самом свежем воплощении, известном как теория разумного замысла. Процесс стартовал 26 сентября 2005 г. В зале установили проекторы, чтобы адвокаты и эксперты, приглашенные в качестве свидетелей, могли демонстрировать на большом экране картинки, иллюстрирующие их точку зрения. На экране снова и снова появлялась одна и та же картинка: изображение жгутика E. coli.
За последние 25 лет этот самый жгутик стал буквально иконой креационизма — молекулярным оружием, при помощи которого сторонники креационизма рассчитывали поразить зло, олицетворением которого служили Дарвин и его последователи. Десятилетиями креационисты демонстрировали жгутик бактерии на лекциях и в книгах как явный пример мастерства божественного дизайнера. Но до судебного процесса в Дувре у них не было возможности представить жгутик миру.
Их стратегия потерпела полное поражение. По завершении процесса судья Джон Джонс вынес решение против школьного совета — отчасти потому, что доказательства разумного замысла при конструировании жгутика оказались такими слабыми. Более того, бактериальный жгутик — прекрасный пример того, какработает эволюция; из этого примера ясно видно, почему креационизм как наука терпит поражение.
Креационизм — вера в то, что разнообразие земной жизни возникло в результате целенаправленных действий божественного творца — впервые проявил себя как серьезная сила в американской истории в начале XX в. Но креационизм никогда не был единым комплексом непротиворечивых идей. Некоторые его сторонники утверждали в соответствии со Священным Писанием, что миру всего несколько тысяч лет, тогда как другие все же принимали геологические доказательства возраста нашей планеты. Одни твердили, что теория эволюции должна быть неверна, поскольку противоречит Библии. Другие пытались оспаривать конкретные доказательства эволюции, утверждая, что биологические виды слишком отличаются друг от друга и никак не могли произойти от одного общего предка. Они указывали на отсутствие среди окаменелостей переходных форм — таких, к примеру, которые могли бы связать китов с сухопутными млекопитающими; эти пробелы, говорили они, доказывают со всей очевидностью, что промежуточные формы просто не могли существовать. Когда же палеонтологи обнаружили окаменелости некоторых переходных форм — таких, например, как киты с ногами, — креационисты просто переметнулись на другие лакуны в знаниях.
Креационистам не удалось нарушить сложившийся в научном мире консенсус, но в средней школе им повезло больше. В 1920–е гг. законодатели штатов начали запрещать преподавание теории эволюции в школах, и многие из этих законов действовали более 30 лет. Только в 1968 г. Верховный суд США постановил, что запрет на преподавание теории эволюции в школах равноценен навязыванию учащимся религии. Поняв, что изолировать школу от теории эволюции не удастся, креационисты сменили тактику и решили ввести в школьную программу и креационизм. Они утверждали, что креационизм — это строгая научная дисциплина, которая, безусловно, заслуживает, чтобы ее преподавали в школах. Самозваные «ученые — креационисты» основали множество организаций со звучными названиями, таких как Институт креационистских исследований, и стали работать над учебником, который затем рассчитывали ввести в школах. Для этого они начали искать в природе вещи, которые можно было бы объявить научными доказательствами теории разумного замысла.
Надо сказать, что со времени рождения креационизма биология очень изменилась. Молекулярные биологи научились погружаться в изысканную сложность клетки, где обнаружились целые комплексы белков, работающих по общему сценарию, как части единого механизма. Креационистам необходимы были структуры, которые можно было бы объявить результатом разумного акта творения, а не эволюции; они выбрали несколько объектов, в том числе и жгутик E. coli.
В 1981 г. Ричард Блисс, председатель отдела образования Института креационистских исследований, приехал в двухгодичный колледж на западе Арканзаса, чтобы прочитать лекцию о креационистской науке. Он рассказал своей аудитории о том, что в креационистской модели мира «нам следовало бы ожидать фантастической упорядоченности — и она реально существует, ребята. Существует упорядоченность на макрои микроуровне. Чем глубже мы проникаем на молекулярный уровень, тем чаще видим ее. Упорядоченность всюду; она буквально бросается в глаза». В качестве примера такой упорядоченности Блисс показал слушателям изображение E. coli.
Блисс подробно описал жгутик бактерии, назвал белки, задействованные в его сборке (а их немало), объяснил, как они, работая совместно, заставляют жгутик вращаться. «Мне нравится называть это двигателем автомобиля “мазда”», — сказал Блисс. Он выразил надежду на то, что школьникам, наряду с «эволюционной моделью» жгутика E. coli, будут преподавать и его «креационистскую модель», а затем учащиеся смогут сделать самостоятельный выбор. «Это интереснейшая наука и интереснейшее образование», — заметил Блисс.
Аргументы такого рода убедили законодательные органы некоторых штатов принять законы, требующие включения креационистской науки в школьную программу наряду с теорией эволюции. Однако в 1980–е гг. Верховный суд отменил эти законы. Суд постановил, что креационистская наука таковой не является.
Креационисты вновь провели перегруппировку. Они убрали из своей риторики всякие упоминания о креационизме, акте творения или творце. Вместо этого они выдвинули утверждение о том, что жизнь демонстрирует признаки того, что они назвали «разумным замыслом». ДНК, белки и молекулярные машины попросту слишком сложны, чтобы появиться в результате эволюции и естественного отбора, утверждали они. Эти молекулы были организованы таким образом путем сознательного усилия, и их упорядоченность говорит о том, что все это — работа разумного дизайнера. Кто такой — или что такое — этот разумный дизайнер, сторонники этой теории не говорили, по крайней мере публично.
Одно из самых поразительных свидетельств превращения креационизма в теорию разумного замысла — это трансформация учебника, который первоначально назывался «Креационистская биология», или «Биология творения» (Creation Biology). Одно из техасских издательств начало работу над рукописью этого учебника в начале 1980–х гг., но после постановлений Верховного суда редакторы начали потихоньку заменять слово «креационизм» в нем на «разумный замысел», слово «творец» — на «разумный дизайнер», а слово «креационист» — на «сторонник теории разумного замысла». В остальном текст практически не менялся. В 1989 г. учебник вышел наконец из печати, но вместо «Биологии творения» издатели назвали его «О пандах и людях» (Of Pandas and People).
Разумеется, все доказательства творения, в том числе и пресловутый жгутик, теперь стали свидетельствами разумного замысла. Ричард Ламсден из Института креационистских исследований в статье, опубликованной 1994 г. в журнале Общества креационистских исследований (организация, в которой заправляют сторонники «креационизма молодой Земли»), описывал его очень подробно и с восторгом: «В отношении биофизической сложности бактериальный мотор — жгутик не имеет аналогов в живой природе, — писал Ламсден. — Он стал источником вдохновения для конструкторов и промышленных микромехаников, хотя даже самые передовые достижения в области новейших технологий не позволяют реализовать подобный механизм на практике. Тем не менее потенциально в нем скрыты богатейшие практические возможности. Для эволюционистов эта система представляет полнейшую загадку; креационистам она предлагает ясное и убедительное свидетельство целенаправленного разумного замысла».
Пока одни сторонники разумного замысла продолжали называть себя креационистами, другие громогласно отрекались от этого термина. Они утверждали, что разумный замысел не имеет никакого отношения к религии, что это просто научный поиск доказательств разумного устройства природы. У них жгутик E. coli тоже служил любимым примером. Уильям Дембски, философ из Юго- Западной баптистской теологической семинарии, даже поместил его на обложку своей книги «Бесплатных завтраков не бывает» (No Free Lunch). В книге же он представил расчет вероятности того, что жгутик E. coli мог образоваться случайным образом. Вероятность у него получилась исчезающе малой, и Дембски счел это доказательством того, что жгутик был сотворен разумным дизайнером. Правда, и биологи, и математики отвергают доводы Дембски, потому что они, в сущности, не имеют никакого отношения к делу. Мутация может быть случайной (по крайней мере в том смысле, что возникают при мутациях не только те варианты, которые действительно будут полезны организму), но естественный отбор подхватывает только вполне определенные мутации.
Дембски и другие пропагандисты теории разумного замысла утверждали, что реальным творцом, или дизайнером, мог быть какойнибудь инопланетянин или путешественник во времени. Но сами они были уверены, что этот дизайнер — Господь Бог. Дембски писал, что теория разумного замысла — это, по существу, теология новозаветного Евангелия от Иоанна. И никакие разговоры о пришельцах и путешественниках во времени не отпугивали от этого учения консервативные религиозные организации. Напротив, эти организацииприветствовали появление теории разумного замысла. Так, крупная американская евангелическая организация Focus on the Family призывала своих членов требовать, чтобы книгу «О пандах и людях» использовали в школах одновременно с изучением теории эволюции. В 2002 г. журнал этой организации опубликовал статью Марка Хартвига, в которой автор до небес превозносил теорию разумного замысла. Через двадцать с лишним лет после лекции Блисса в Арканзасе креационисты по — прежнему представляли E. coli в числе главных и лучших примеров.
«Дарвинисты не учитывают аргументов, выдвигаемых сторонниками разумного замысла, они лишь твердят, что живые организмы созданы этими безмозглыми процессами — случайными мутациями и естественным отбором, — писал Хартвиг. — Но достижения молекулярной биологии не оставляют камня на камне от этих утверждений. Представьте себе, к примеру, крошечный навесной моторчик, который такие бактерии, как E. coli, используют для передвижения. Это хитроумное устройство с водяным охлаждением, называемое жгутиком, снабжено также реверсивным двигателем, универсальным шарниром и длинным гибким пропеллером. Оно делает 17 000 оборотов в минуту». Хартвиг указывал, что для создания жгутика должны согласованно работать 50 генов. Если хотя бы один ген из этого комплекта окажется изменен в результате мутации, жгутик получится ущербным. Поэтому не существует промежуточных шагов, посредством которых жгутик мог развиться постепенно в ходе эволюции. «Подобные системы попросту отвергают дарвиновские объяснения», — объявил Хартвиг.
Focus on the Family была не единственной организацией, пытавшейся протащить книгу «О пандах и людях» в государственные средние школы. В 2000 г. христианская юридическая организация «Правовой центр имени Томаса Мора» начала рассылать юристов по школьным советам Соединенных Штатов. Адвокаты убеждали советы ввести изучение этой книги и обещали защищать их в суде, если последуют иски. «Мы станем вашим щитом против подобных атак», — сказал Совету по образованию города Чарльстона Роберт Миз, один из таких адвокатов. (Правовой центр имени Томаса Мора называет себя «мечом и щитом людей веры».) Школьные советы Мичигана, Миннесоты, Западной Вирджинии и других штатов отвергли предложение организации.
Но в 2004 г. в сельском округе Дувр (штат Пенсильвания) адвокатам Центра имени Томаса Мора наконец повезло. Дуврский совет по образованию решил внедрить в своих школах изучение теории разумного замысла. Один из членов совета договорился о том, что в дар школьной библиотеке будет преподнесено 60 экземпляров книги. Местный школьный совет добавил новое положение к программе изучения естественных наук. «Учащимся, — говорилось в ней, в частности, — необходимо сообщить о пробелах/проблемах теории Дарвина и о других теориях эволюции, включая теорию разумного замысла, но не ограничиваясь ею».
Совет по образованию также потребовал, чтобы учителя зачитывали учащимся на уроках биологии еще одно заявление. Они должны были говорить, что эволюция — это лишь теория, а не факт (запутывая при этом природу и факта, и теории). «Разумный замысел — это объяснение происхождения жизни, отличающееся от взглядов Дарвина, — говорилось далее в заявлении. — Справочное издание “О пандах и людях” может помочь учащимся при желании изучить этот взгляд на происхождение жизни глубже и понять, что на самом деле представляет собой разумный замысел. Учащимся предлагается воспринимать эту теорию, как и любую другую, непредвзято».
Дуврские учителя — естественники отказались зачитывать этот текст. Они заявили, что сделать это означало бы нарушить данную ими клятву никогда не предоставлять своим ученикам ложной информации. Вместо них текст пришлось зачитывать представителям школьной администрации, специально для этого появлявшимся в классе. Когда любопытные школьники интересовались, что представляет собой разумный дизайнер, стоящий за этой теорией, администратор советовал им спросить у родителей и уходил.
Два месяца спустя одиннадцать родителей подали в суд. Их адвокаты попытались доказать, что текст заявления нарушает первую поправку к конституции, поскольку представляет собой запрещенную ею попытку навязывания определенной религии. И однажды осенним днем судебный процесс начался.
Родители и учителя, вызванные в суд по просьбе истцов, рассказывали, как совет по образованию давил на учителей, вынуждая их прекратить преподавание «эволюции от обезьяны к человеку», и обещал вернуть в школу Бога. Защита пригласила в суд двух экспертов — биологов — Скотта Миннича из Университета Айдахо и Майкла Бехе из Лехайского университета. Как и Дембски, Миннич и Бехе активно сотрудничают с организацией Discovery Institute, которая базируется в Сиэтле и является ведущей силой в продвижении теории разумного замысла.
Майклу Бехе, несмотря на неоднократные попытки, так и не удалось опубликовать статью с обоснованием теории разумного замысла по результатам оригинальных исследований в рецензируемом биологическом журнале. Вместо этого ему приходилось довольствоваться устными выступлениями и выражением своего мнения в книгах и специальных газетных колонках. Бехе заявляет, что некоторые биологические системы никак не могли развиться в результате естественного отбора, поскольку они имеют, как он выражается, «не подлежащий упрощению уровень сложности». Он утверждает, что системой с не подлежащим упрощению уровнем сложности называется «единая система, состоящая из нескольких хорошо подогнанных, взаимодействующих между собой частей, которые участвуют в выполнении общей функции; при этом удаление хотя бы одной из частей приводит к нарушению функциональности». С его точки зрения естественный отбор не мог постепенно привести к возникновению подобной системы, потому что он должен был начать с чегото, что не способно работать. «Если некая биологическая система не может быть получена путем постепенных изменений, значит, она должна была появиться вся разом, уже как сложное целое», — заключает он.
Бехе приводит несколько примеров не подлежащей упрощению сложности. Один из любимых примеров — уже знакомый нам бактериальный жгутик. Бехе утверждает, что эта система, очевидно, слишком сложна, чтобы развиться из более простого предшественника. На фоне загадки и чуда жгутика, пишет Бехе, «Дарвин смотрится жалко».
На процессе в Дувре Бехе вывел на экран в зале суда иллюстрацию из учебника с изображением жгутика E. coli и принялся традиционно восхищаться его устройством. «Вероятно, мы могли бы назвать этот процесс Судом над бактериальным жгутиком», — сказал один из адвокатов школьного совета.
Бехе тщательно перечислил многочисленные составные части жгутика и сказал судье Джонсу, что эволюция по Дарвину никак не могла привести к возникновению такой не подлежащей упрощению сложности. «Когда видишь целенаправленное сочетание частей, сразу понимаешь, что без проекта не обошлось», — сказал он. Жгутик, объяснил Бехе, сконструирован специально как средство передвижения бактерий и построен из множества взаимодействующих частей, точно так же, как навесной мотор для лодки. «Это настоящая машина, подобный механизм вполне мог бы сконструировать человек», — сказал он.
Свидетели истцов тоже готовы были поговорить о бактериальном жгутике, чтобы на конкретном материале опровергнуть утверждения Бехе по поводу не подлежащей упрощению сложности. Биолог Кеннет Миллер из Университета Брауна указал, что заявления Бехе о не подлежащей упрощению сложности можно проверить. Бехе, напомнил Миллер суду, определил систему с не подлежащей упрощению сложностью как систему, которая не могла бы работать без любой из своих составных частей. После этого Миллер показал суду компьютерную анимацию работы жгутика. Он начал разбирать «механизм», снимая с него детали не по одной, а десятками. Пропала нить жгутика. Исчез универсальный шарнир. Пропал мотор. Когда Миллер закончил, остался только молекулярный «шприц», при помощи которого бактерия подает в жгутик новые формирующие нить молекулы.
Миллер удалил значительную часть системы с не подлежащей упрощению сложностью, о которой так много говорилось. Согласно определению Бехе, осташееся никак не должно было бы функционировать отдельно. Однако остаток тоже работает. Те десять белков, из которых состоит «шприц», почти идентичны как по последовательности, так и по расположению, известной молекулярной машине — так называемой секреторной системе III типа[24]. Это тот «шприц», при помощи которого E. coli 0157: Н7 и другие болезнетворные штаммы вводят токсины в клетку — хозяина.
«Мы действительно разбираем этот механизм на составные части и — глядитека! — получаем целый набор разных полезных функций, одну из которых я только что вам указал; это секреторная система III типа, — свидетельствовал Миллер. — В обычных научных терминах это означает, что аргумент, представленный доктором Бехе, опровергнут, неверен; ему пора возвращаться к исходной точке».
Бехе попытался принизить значение показаний Миллера. Когда он говорил, что система, теряя часть, теряет и функциональность, пояснил он, что на самом деле имел в виду утрату конкретной функции. Удалив часть жгутика, заявил Бехе, Миллер получил некое устройство, которое никак не сможет приводить микроорганизм в движение. «Если убрать эти части, система уже не сможет работать как роторный двигатель», — сказал Бехе.
Затем он заявил, что из рассказа Миллера большинство слушателей сделало вывод о том, что жгутик развился именно из секреторной системы III типа, — утверждение, с которым согласны не все биологи — эволюционисты. Некоторые говорили об обратной возможности — о том, что жгутик эволюционировал в секреторную систему III типа; третьи считали, что обе структуры развились от общего предка независимо. Стоит заметить, что на самом деле Миллер ничего такого не говорил. Он просто проверил утверждения Бехе, тщательно следуя его собственным словам. И заявление Бехе проверки не выдержало.
В ходе судебного процесса стало ясно, что Бехе выдвигает перед учеными, которые взялись бы объяснить происхождение бактериального жгутика — или любой другой системы, предположительно обладающей не подлежащей упрощению сложностью, — довольно странные требования. «Чтобы меня убедить, потребуется не только пошаговый анализ, мутация за мутацией, — сказал он. — Я хотел бы также получить другую важную информацию: узнать, к примеру, размер популяции, в которой происходят эти мутации, какова их селективная ценность, нет ли у них какогото негативного эффекта. Подобных вопросов множество».
Конкретно для жгутика Бехе предложил эволюционным биологам идею следующего эксперимента по опровержению принципа не подлежащей упрощению сложности. «Чтобы опровергнуть такое утверждение, ученому следовало бы отправиться в лабораторию, подвергнуть несколько видов бактерий, не обладающих жгутиками, давлению отбора в направлении приобретения подвижности, затем вырастить, скажем, 10000 поколений и посмотреть, появится ли у них жгутик или какаянибудь другая, но столь же сложная система. Если это произойдет, мои утверждения действительно можно будет считать опровергнутыми».
Затем Бехе был подвергнут перекрестному допросу с участием Эрика Ротшильда, одного из адвокатов со стороны истцов, то есть дуврских родителей. Ротшильд указал на явные нестыковки в показаниях свидетеля. Предложение пронаблюдать процесс эволюции жгутика в лаборатории, к примеру, демонстрирует неуважение свидетеля к масштабу эволюции. Эксперимент на 10 000 поколений бактерии может продлиться около двух лет, тогда как в природе эти существа эволюционировали три с лишним миллиарда лет. Кроме того, в типичном микробиологическом эксперименте ученые изучают в лучшем случае несколько миллиардов бактерий, а мировая популяция микроорганизмов насчитывает их буквально бессчетное количество. Так что отсутствие эволюционных изменений в лабораторной культуре микроорганизмов не докажет решительно ничего — и уж, конечно, не станет свидетельством разумного замысла.
Выдвигая биологам — эволюционистам абсурдные требования, Бехе практически ничего не требовал от себя. Он не считал нужным пояснить пошагово, как именно разумный дизайнер создавал бактериальный жгутик (а также когда, где и зачем). Разумный замысел, сообщил он суду, «не предлагает никакого механизма в смысле пошагового описания того, как возникли эти структуры». Чтобы назвать некую систему творением разумного замысла, Бехе достаточно было убедиться, что она похожа на результат разумной конструкторской деятельности. «Видя сложную структуру из нескольких согласованно работающих частей, мы всегда обнаруживаем, что это результат целенаправленного конструирования, — говорил он. — На что же еще можно опереться, кроме как на внешние проявления?»
Подобные аргументы убедили судью Джонса в том, что как научная теория разумный замысел ничего собой не представляет. В декабре 2005 г. суд постановил, что книге «О пандах и людях» нечего делать в школьных классах Дувра. «Прозвучавшие на процессе свидетельства продемонстрировали, что разумный замысел — не что иное, как дитя креационизма», — записал Джонс в своем решении. На примере бактериального жгутика он показал, насколько близки и неразличимы две концепции.
«Креационисты утверждали, что сложность бактериального жгутика свидетельствует о его сотворенности; сегодня профессор Бехе и Миннич говорят то же самое о разумном замысле», — записал он.
Дуврский процесс стал катастрофой для креационистов. Члены школьного совета, поддержавшие введение «О пандах и людях» в школьную программу, еще до конца процесса потерпели поражение от противников такой политики. Члены советов по образованию Канзаса и Огайо, поддерживавшие преподавание разумного замысла, тоже потеряли свои места. Решение судьи Джонса было весьма тщательно проработано, и теперь оно, вероятно, станет прецедентом для всех будущих судебных дел о преподавании креационизма, под какой бы маской он ни прятался.
Примечательно, что креационисты несмотря ни на что по — прежнему обожают E. coli. Доступная научно- исследовательская сеть (Access Research Network) — еще одна организация, занятая пропагандой разумного замысла, — разместила изображение ее жгутика на футболках, фартуках, пивных и кофейных кружках, бейсбольной форме, календарях, открытках, пакетах и декоративных подушках. Все эти вещи с креационистской символикой можно приобрести в Интернете. На сайте сказано: «Этот механизм обеспечивает работу нескольких роторных реверсивных двигателей с постоянным крутящим моментом на протонной тяге; двигатели передают свою энергию через микроскопический редуктор, вращая спиралевидный жгутик со скоростью от 30000 до 100000 оборотов в минуту. Эта сложная система позволяет бактерии перемещаться со скоростью около десяти собственных длин в секунду. Не могли бы вы выяснить, кому принадлежит патент на эту штуку?»
На фартуке с рисунком жгутика вы увидите гораздо более короткое и простое послание. Над картинкой написано «Теория разумного замысла», а внизу — «Если чтото выглядит специально сконструированным, может быть, так оно и есть?».
Жгутик после дуврского процесса
По случайному, но очень приятному совпадению дуврский процесс, в результате которого жгутик E. coli оказался в центре внимания мировой общественности, проходил примерно в то же время, когда ученые начали постепенно разбираться в происхождении и эволюции этого самого жгутика. Они стали прослеживать историю развития генов, отвечающих за синтез жгутика, отыскивая родственные гены у E. coli и других бактерий. Их совокупная генеалогия начинает складываться в цельную и логичную историю возникновения жгутика — наглядную иллюстрацию того, как жизнь в процессе эволюции порождает сложные признаки.
Важнейший урок этих новых исследований состоит в том, что говорить о жгутике вообще, как будто существует лишь одна его разновидность, абсурдно. У разных видов микроорганизмов можно обнаружить огромное количество вариантов его конструкции. Даже в пределах одного вида разные популяции бактерий могут использовать различные типы жгутиков.
Жгутики различаются между собой на самых разных уровнях; различия между ними могут быть и два заметными, и принципиальными. Возьмите, к примеру, флагеллин — белок, который использует E. coli для строительства нити жгутика. Ученые насчитали 40 разновидностей флагеллина у разных штаммов E. coli и рассчитывают найти еще больше при расширении круга исследований. У разных видов бактерий флагеллин отличается еще сильнее. В 2003 г. микробиологи и генетики провели траление Саргассова моря и исследовали гены найденных микроорганизмов. Было обнаружено 300 генов, отвечающих за производство различных сортов флагеллина.
В свете теории эволюции такие находки закономерны. Единственный флагеллин, который был у предков современных бактерий, через дупликацию генов и мутации вполне мог дать начало множеству новых разновидностей. По мере того как различные виды микроорганизмов адаптировались к разным условиям — от обитания внутри человеческого кишечника до плавания в Саргассовом море, — их флагеллины тоже эволюционировали. И после того как несколько десятков миллионов лет назад сформировался вид E. coli, его флагеллины продолжали эволюционировать. Изменения флагеллина, вероятно, стимулировались необходимостью избегать излишнего внимания иммунной системы хозяина. Дело в том, что иммунная система распознает чужаков по белкам их поверхностного слоя (а это, в частности, флагеллин). Если какаянибудь мутация сделает внешнюю поверхность флагеллина менее заметной для иммунной системы, то естественный отбор, возможно, подхватит такую мутацию. И, как и следовало ожидать, большая часть вариаций в структуре флагеллина E. coli сосредоточена в частях, обращенных наружу. Части, обращенные внутрь, — а они должны аккуратно стыковаться с другими молекулами флагеллина — похожи друг на друга гораздо больше. Естественный отбор не слишком хорошо относится к мутациям, нарушающим плотно подогнанные соединения.
Жгутики могут различаться и еще по нескольким параметрам. У E. coli моторы вращаются за счет движения протонов, но у некоторых других видов для этой цели используются ионы натрия. E. coli вращает свой жгутик в жидкости. Другие виды формируют жгутики для скольжения по различным поверхностям. Ученым известны виды бактерий, способные строить жгутики того или другого вида в зависимости от того, в какой среде и как им предстоит плавать.
В 2005 г. Марк Паллен с коллегами из Бирмингемского университета в Англии обнаружили комплект генов для строительства скользящего жгутика в совершенно неожиданном месте: в геноме E. coli. На самом деле E. coli не умеет синтезировать такие жгутики, потому что ген- включатель, который должен их активировать, выведен из строя мутацией. У некоторых штаммов ученые обнаружили все 44 гена, необходимые для строительства всех без исключения частей жгутика. У других штаммов некоторые гены успели полностью исчезнуть. Так, у К-12 от этого комплекта осталось всего два гена, причем эти гены так деградировали, что ученые не сразу разобрались в их происхождении и природе.
Открытие Паллена вполне закономерно, если жгутик — продукт эволюции, и не имеет никакого смысла, если он — результат разумного замысла. Сложная система развивается и передается от родителей потомству. В некоторых линиях она теряет функциональность и распадается. Дарвин в свое время описал немало рудиментарных органов — от прикрытых плотью глаз пещерных рыб до коротких страусиных крыльев. Дарвин утверждал, что, если естественный отбор по какимто причинам прекращает поддерживать функционирование тех или иных органов, это значит, что живые существа получили возможность выжить и без них. E. coli тоже несет в себе следы таких рудиментов — как обрывки древних текстов под свежими письменами палимпсеста.
E. coli несет в себе и свидетельства того, как первоначально сформировался ее жгутик. Как указал на дуврском судебном процессе Кеннет Миллер, «шприц», доставляющий флагеллин для формирования нити сквозь мембрану микроорганизма, полностью — до единого белка — соответствует секреторной системе III типа, при помощи которой микроорганизмы выводят наружу токсины и другие химические вещества. Это сходство говорит об общем предке. Секреторная система III типа — далеко не единственная структура, имеющая отношение к устройству жгутика. Белки его мотора, к примеру, родственны белкам других двигателей, при помощи которых E. coli и другие бактерии перекачивают различные молекулы изнутри наружу.
В настоящее время ученые, опираясь на эти сведения, разрабатывают гипотезы, объясняющие развитие жгутика. Одну гипотезу предложили в 2006 г. Паллен и Николас Матцке, выпускник Калифорнийского университета в Беркли. До появления жгутика, утверждают Паллен и Матцке, существовали более простые устройства, выполнявшие иные функции. При дупликации генов возникли дополнительные копии этих устройств, а мутации позволили им объединиться в единый развивающийся механизм — жгутик. Сегодня жгутик выполняет одну основную функцию: обеспечивает движение в жидкости. Но различные части этого механизма были предназначены совсем для другого.
Возможно, что «шприц» жгутика поначалу представлял собой просто пору, через которую молекулы химических веществ проникали сквозь внутреннюю мембрану. Затем к этому отверстию присоединился протонный мотор, при помощи которого наружу выталкивались даже крупные молекулы. Не исключено, что эта примитивная система позволяла древним бактериям обмениваться химическими сигналами и выпускать токсины. Из нее же со временем сформировались два различных вида структур: секреторная система III типа и «шприц», выталкивающий части будущего жгутика за пределы мембраны.
Следующий шаг к формированию жгутика, возможно, был сделан в тот момент, когда «шприц» начал выталкивать наружу специальные белки, обладающие способностью прикрепляться к мембранам. Вместо того чтобы уплывать прочь, молекулы этих белков скапливались вокруг поры. Бактерии могли, вероятно, использовать их так, как их используют и сегодня многие виды микроорганизмов, — для прикрепления к различным поверхностям. Более того, бактерии добавляли к этой структуре новые и новые молекулы белка так, что из них образовались нитевидные выросты — фимбрии, при помощи которых можно было прикрепиться к поверхности издалека.
На следующем этапе эти выросты начали двигаться. Появился второй тип мотора, способный заставить их дрожать. Теперь уже бактерия могла с их помощью перемещаться. Эта довольнотаки грубая конструкция позволяла микроорганизмам двигаться случайным образом и рассеиваться в случае опасности или стресса. В дальнейшем такой протожгутик не раз претерпевал модернизацию и настройку. Дупликация генов позволила белкам, из которых строились выросты, взять на себя разные функции — из одних сформировался гибкий крюк у основания, из других — жесткие изогнутые волокна вдоль оси. В конце концов бактерии научились даже рулить. Одна из химически чувствительных систем, связанная теперь со жгутиком, позволяет им изменять направление движения.
Эта гипотеза не является неоспоримой и не раскрывает абсолютной истины. Абсолютная истина вообще не во власти ученых. Ученые могут лишь создавать гипотезы, которые согласуются со всеми предыдущими наблюдениями — в данном случае это различные варианты жгутика, отдельные его компоненты, выполняющие в бактериальной клетке другие роли, и тот факт, что эволюция часто сводит вместе любые подходящие гены для выполнения новых функций. Гипотеза Паллена и Матцке вполне может оказаться ошибочной, но единственный способ выяснить это — отыскать в геноме E. coli и других микроорганизмов дополнительные указания на то, как был сформирован жгутик, разобраться, как на самом деле работают промежуточные структуры, возможно, даже воспроизвести при помощи генной инженерии некоторые промежуточные этапы, исчезнувшие в ходе эволюции. Не исключено, что в ходе этих экспериментов появится новая гипотеза. Но в любом случае эта гипотеза намного лучше, чем та, что основывается лишь на внешнем виде и личной вере — точнее, неверии.
Как строятся сети
При сооружении жгутика E. coli не просто штампует все белки в произвольном порядке. Она управляет процессом синтеза и сборки при помощи целой сети генов, которые включаются только тогда, когда бактерия чувствует признаки опасности; при этом она старается избежать «ложных срабатываний», для чего использует противопомеховый фильтр. По ходу синтеза жгутика E. coli включает нужные гены в определенной последовательности, а затем снова выключает. И, подобно самому жгутику, эта управляющая сеть тоже имеет собственную длинную историю.
В 2006 г. биолог Мадан Бабу из Кембриджского университета с коллегами опубликовали серьезное исследование о происхождении управляющих схем E. coli. Ученые начали с поиска у бактерии генетических переключателей — белков, которые связываются с ДНК и занимаются тем, что включают и выключают гены или воздействуют на них иным образом. Они насчитали более 250 таких переключателей. Затем они изучили научную литературу и попытались разобраться, какие именно гены контролируются этими переключателями. В конце концов Бабу с коллегами составили схему плотной паутины из 755 генов и 1295 связей между ними.
Схема, составленная командой Бабу, очень напоминает схему структурной иерархии правительства или корпорации. На верхушке пирамиды находится несколько мощных генов, каждый из которых непосредственно контролирует несколько других генов. Эти гены среднего звена управления контролируют, в свою очередь, множество других генов и так далее. Такая организация позволяет E. coli справляться с изменениями окружающей среды при помощи очень быстрых и серьезных изменений собственной биологии. Схема Бабу позволила ему изучить управляющую сеть E. coli вплоть до мельчайших контуров.
Завершив построение управляющей схемы E. coli, Бабу получил возможность реконструировать и ее историю. Он сравнил схему E. coli со схемами 175 других видов микроорганизмов. Он обнаружил, что управляющая схема имеет своеобразное ядро, общее для всех этих видов. В нее входит 62 генетических переключателя, под управлением которых находится 376 генов; всего в этом ядре 492 связи. Бабу пришел к выводу, что оно имелось уже у общего предка всех живых организмов.
Ядро схемы позволяет сделать некоторые предположения о том, как выглядел наш общий предок. У него уже были сенсоры, позволявшие этому существу различать разные виды сахаров и следить за собственным энергетическим уровнем. Он мог регистрировать кислород, но не дышать им, поскольку в атмосфере кислорода почти не было; вероятно, кислородные сенсоры были нужны ему, чтобы защититься от собственных токсичных кислородосодержащих отходов. Этот микроорганизм уже использовал генетические переключатели; с их помощью он контролировал приток железа, а также создавал кирпичики для строительства белков и ДНК. Иными словами, это было достаточно гибкое и легко адаптирующееся существо.
От этого общего предка путем эволюции произошли все присутствующие сегодня на планете живые организмы. Естественно, их управляющие схемы тоже эволюционировали. Эволюционная ветвь, в конце которой находится E. coli, обзавелась в процессе развития дополнительными системами регуляции: к примеру, теми, что позволяют микроорганизму ощущать и расщеплять новые сахара. Эксперименты на живых E. coli помогли пролить свет на то, как мутации и естественный отбор когдато перестраивали управляющую схему бактерии. Один из самых распространенных типов мутаций — тот, при котором случайно дублируется тот или иной участок ДНК. В некоторых случаях E. coli может оказаться обладательницей двух переключателей, контролирующих один и тот же ген. Если ген, отвечающий за один из этих переключателей, мутирует, то переключатель может начать контролировать еще какойто ген. В других случаях дополнительные копии генов, получившиеся при дупликации, контролируются переключателем, который включает и первоначальный ген.
Предки E. coli перестраивали свои схемы по мере адаптации к новому образу жизни. Иногда самого крохотного изменения в схеме достаточно для получения нового важного приспособления; к примеру, таким изменением может стать добавление лишнего переключателя или удаление одного из имеющихся. Один из подобных слегка измененных контуров позволяет E. coli почувствовать падение уровня кислорода и вовремя перейти на древний бескислородный метаболизм. Этот контур почти полностью — с точностью до гена — идентичен контуру, отвечающему за чувствительность к кислороду у Haemophilus influenzae — вида бактерий, обитающих в крови. У Haemophilus один переключатель активирует два гена, которые затем активируют все остальные гены, необходимые бактерии для перехода на бескислородный обмен. Это быстрый механизм, вполне соответствующий потребностям Haemophilus influenzae, поскольку обитает эта бактерия в крови и всякий раз при переходе из артерий в вены сталкивается с резким падением уровня кислорода в окружающей среде.
С другой стороны, E. coli не спешит переключаться, ощутив лишь легкое падение уровня кислорода. Поскольку обитает она в относительно стабильной обстановке — в кишечнике, ей, в отличие от гемофилюса, редко приходится испытывать его внезапное и долгосрочное падение. Легкая флуктуация уровня кислорода может оказаться ложной тревогой, и мгновенная реакция легко могла бы заставить E. coli потратить кучу энергии на производство ферментов, которые потом не пригодятся. Это жизненное обстоятельство отразилось в кислородном контуре E. coli. Он во всем идентичен контуру Haemophilus influenzae, за исключением одного лишнего гена — narL.
У гемофилюса переключатель /л г сразу же включает гены frdB и frdC. Но у E. coli для их активации требуется также сигнал от narL. Чтобы fnr сумел поднять уровень белка NarL до величины, нужной для получения двумя генами обоих необходимых сигналов, требуется определенное время. При небольшом падении уровня кислорода этот процесс просто не успеет завершиться.
В ходе эволюции управляющая схема E. coli стала весьма и весьма устойчивой. Развитие искусственных, созданных человеком сетей помогает представить себе, как это происходило. Интернет, способный донести ваши электронные письма в любой уголок земного шара, появился не сразу в готовом виде. Он возник в 1969 г. как примитивная связь между компьютерами Калифорнийского университета в Лос — Анджелесе и Стэнфордского исследовательского института в Пало- Альто (штат Калифорния). Постепенно, с годами, к системе подключались новые организации, между ними возникали новые связи. Интернет стал устойчивым благодаря принципам своей архитектуры. Но ведь в 1969 г.никто не писал и не разрабатывал точных спецификаций на весь Интернет! Они появились сами по ходу развития. Компьютерщики, как правило, заботились в первую очередь о том, как работает каждый небольшой участок сети. Их беспокоила стоимость дальних соединений между серверами, поэтому они старались сделать все связи как можно более короткими.
Управляющая схема E. coli формировалась похожим образом. По мере того как происходила случайная дупликация генов, сеть усложнялась. Мутации соединяли заново некоторые новые гены, так чтобы они могли взаимодействовать с другими генами. Естественный отбор подхватывал благоприятные мутации и отвергал остальные. Создавая эффективные небольшие контуры, эволюция заодно формировала и устойчивую сеть.
На дуврском судебном процессе по поводу преподавания разумного замысла в школе креационисты с удовольствием сравнивали биологические системы с техническими устройствами. С их точки зрения, если чтото в устройстве E. coli или другого организма напоминает машину, значит, это чтото было сконструировано и создано неким разумом. И все же в конечном итоге все доказательства разумного замысла притянуты за уши. Тот факт, что E. coli и созданная человеком сеть в некоторых отношениях поразительно похожи, вовсе не означает, что микроорганизмы появились в результате разумного замысла. На самом дее факт сходства означает, что конструкторская мысль человека намного менее разумна, чем мы привыкли полагать. Наши лучшие изобретения возникают не в результате величественного полета к сияющим вершинам мысли, а в результате медленного близорукого перебора бесконечных вариантов.
Первые слова
Уберите из генома E. coli новые гены — выскочек, обеспечивающих сопротивляемость к пенициллину и другим лекарствам. Уберите более старые гены, которые E. coli приобрела в течение миллионов лет после отделения от других бактерий. Удалите более глубокие слои — те, что отвечают за строительство жгутиков, и те, которые к настоящему моменту настолько разрушены, что ни на что не годны. Удалите гены, отвечающие за муреиновый мешок, за сенсоры, регистрирующие появление пищи и опасности, за фильтры и усилители. Избавьтесь от генов, кодирующих белки, которые присутствовали еще у последнего общего предка всех живых организмов около 4 млрд лет назад.
Что же у вас останется? Не подумайте, что чистый лист. По — прежнему останется целый ряд отдельных загадочных кусочков ДНК. Это не совсем обычные гены. E. coli использует их для синтеза РНК, но никогда не использует эту РНК для производства белков. Эти гены — аналог первого, самого древнего текста на нашем палимпсесте. Ученые подозревают, что многие из них — следы древнейших организмов, существовавших на Земле до появления ДНК.
Сырье, которое использует жизнь, ничем не отличается от обычной безжизненной материи. Углерод, фосфор и другие элементы, входящие в состав нашего тела, возникли в глубинах звезд. Многие необходимые для жизни химические вещества могут быть созданы без ее участия. Полетав немного по Солнечной системе, можно было бы собрать на метеоритах и кометах немало аминокислот, формальдегида и других соединений, найденных в организме живых существ. Многие из этих веществ вошли в состав нашей планеты при ее формировании 4,5 млрд лет назад; позже их доставляли на Землю и постоянно падающая комическая пыль, и — время от времени — более крупные куски камня или льда. Сама планета работала как огромный химический реактор: калила, смешивала, фильтровала эти вещества, производя, вероятно, из них новые соединения, тоже необходимые для жизни; они присутствовали на Земле задолго до того, как появилась сама жизнь. Но есть великая тайна, которая из века в век привлекает к себе внимание ученых: как именно в этом реакторе появилась жизнь такая, какой мы ее знаем, — вместе с закодированной в двойной спирали ДНК информацией, РНК и белками.
В 1960–е гг. ученые, разобравшись более или менее с основами молекулярной биологии, пришли к единому мнению о том, что все три типа молекул не могли возникнуть на безжизненной Земле одновременно. Но какие появились первыми? Пусть ДНК — прекрасное хранилище информации, но без участия белков и РНК это всего лишь необычная нитевидная молекула. С другой стороны, белки выполняют невероятное количество функций, они способны захватывать проплывающие мимо атомы, штамповать новые молекулы или делить уже существующие молекулы на части. Но они не слишком подходят для хранения информации о строительстве белков и для передачи этой информации следующим поколениям.
В середине 1960–х гг. Фрэнсис Крик и его кембриджский коллега химик Лесли Оргел провели немало часов в размышлениях о происхождении жизни. Оба ученых пришли к одному и тому же принципиальному выводу — тому же самому, к какому самостоятельно пришел и Карл Вёзе. Может быть, ДНК и белки появились на Земле намного позже, чем жизнь? Возможно, до ДНК и белков существовала жизнь, основанная только на РНК?
В то время предположение ученых звучало довольно дико. Считалось, что основная роль РНК в клетке сводится к роли посыльного и заключается в доставке информации от генов к рибосомам, где собираются молекулы белков. Но Крик, Оргел и Вёзе обратили внимание на то, что в экспериментах на E. coli молекулы РНК выполняют и другие функции. Рибосома, к примеру, и сама состояла из нескольких десятков белков и нескольких молекул РНК. Еще одна разновидность РНК, именуемая транспортной, помогала присоединять очередную аминокислоту к концу растущей молекулы белка. Возможно, предположили ученые, РНК обладает скрытой способностью к той химической акробатике, к которой так хорошо приспособлены белки? Может быть, именно РНК первой из трех молекул возникла на безжизненной Земле, причем одни ее разновидности играли роль ДНК, а другие — белков? Может быть, ДНК и белки появились позже и оказались более приспособленными для хранения информации и организации химических реакций соответственно?
Много лет спустя Крик и Оргел признались, что после публикации в 1968 г. идея первичной РНК не получила никакого развития. Не было никаких серьезных доказательств того, что РНК обладает достаточной гибкостью и может, подобно белкам, служить катализатором химических процессов. Прошло 15 лет, прежде чем ученые начали всерьез размышлять над этой гипотезой. Через год после того, как Крик предложил свою гипотезу жизни, основанной на РНК, в Кембридж приехал молодой канадский биохимик по имени Сидней Олтмен; вместе с Криком он начал исследовать транспортную РНК. Олтмен обнаружил, что при синтезе транспортной РНК E. coli приходится отрезать от нее кусочек, чтобы молекула работала правильно. Олтмен назвал участвующий в этом процессе фермент рибонуклеазой Р (сокращенно РНКаза Р). В Кембридже, а затем и в Йельском университете Олтмен медленно и терпеливо препарировал рибонуклеазу Р, выясняя ее структуру. Он с удивлением узнал, что на самом деле это химера: наполовину белок, наполовину РНК. Исследователи выяснили, что ферментное лезвие, которое непосредственно перерезает молекулу транспортной РНК, представляет собой тоже РНК — РНК без всякой примеси. Олтмен обнаружил молекулу РНК, которая ведет себя как фермент, — нечто, о чем прежде никто и никогда не сообщал.
В 1989 г. Олтмен разделил Нобелевскую премию с биохимиком Томасом Чехом, работающим в настоящее время в Колорадском университете. Чех обнаружил аналогичную странную РНК у одноклеточного эукариота Tetrahymena thermophila, обитающего в прудах. В отличие от прокариот, эукариотам приходится вырезать большие куски РНК из разных участков молекулы, прежде чем ее можно будет использовать для синтеза белков. Как правило, куски эти вырезают белки, которые строятся с помощью матричной РНК. Но Чех обнаружил, что некоторые молекулы РНК у Tetrahymena способны разрезать себя сами, без какой бы то ни было помощи со стороны белков. Они просто складываются точно в нужном месте и отрезают сами от себя бесполезные части.
Открытия Чеха и Олтмена наглядно продемонстрировали, что РНК может быть гораздо более гибкой и многофункциональной, чем предполагалось ранее. Многие биологи вновь обратились к провидческим идеям Крика, Оргела и Вёзе. Возможно, РНК действительно могла когдато играть роли и генов, и ферментов? Может быть, еще до появления ДНК и белков на Земле существовало то, что Уолтер Гилберт из Гарварда назвал «миром РНК»?
Если когдато давным — давно живые существа на базе РНК бороздили земные океаны, то у них молекулы РНК должны были обладать намного большим числом функций, чем те, которые обнаружили Олтмен и Чех. Некоторые из них должны были исполнять функции генов — хранить информацию и передавать ее следующим поколениям. Другие — извлекать информацию из этих генов и использовать ее для строительства других молекул РНК, которые, в свою очередь, должны были исполнять функции ферментов. Эти рибозимы, как их назвали, должны были уметь поглощать энергию и питательные вещества, а также осуществлять репликацию генов.
Гипотеза о существовании мира, основанного на РНК, подтолкнула ученых к тщательному исследованию эволюционного потенциала этой загадочной молекулы. В 1990–е гг. биохимик Рональд Брейкер из Йельского университета предпринял попытку сконструировать основанные на РНК сенсоры. Он рассуждал так: эти сенсоры должны работать примерно как детекторы сигналов E. coli — уметь захватывать определенные молекулы или атомы а затем изменять свою форму таким образом, чтобы вступать в реакции с другими молекулами бактериальной клетки.
Брейкеру не пришлось самому придумывать такие сенсоры — вместо этого он воспользовался творческой силой эволюции. Он поместил смесь различных молекул РНК в колбу и добавил туда химическое вещество, которое его сенсор, по задумке, должен был регистрировать. Несколько РНК — молекул неуклюже присоединились к молекулам вещества, остальные никак на него не отреагировали. Брейкер выловил эти несколько молекул и растиражировал их во множестве экземпляров. Копировал он намеренно небрежно, так что иногда последовательность нуклеотидов в молекулах слегка менялась. Иными словами, его РНК мутировала. Когда Брейкер подверг эти мутировавшие молекулы РНК действию все того же химического вещества, некоторые из них смогли более эффективно связываться с его молекулами. Брейкер многократно повторил цикл мутирования и отбора, и в конце эксперимента молекулы РНК у него связывались с молекулами заданного химического вещества в мгновение ока.
В ходе дальнейших экспериментов ученому удалось получить молекулы РНК, способные не только связываться с нужными молекулами, но и изменять при этом свою форму. Они оказались способны играть роль фермента и резать пополам другие молекулы РНК. По сути дела, Брейкер создал молекулу РНК, способную ощущать некие изменения в окружающей среде и на базе полученной информации совершать те или иные действия с молекулами РНК. Он назвал ее РНК — переключателем, или рибо- переключателем.
В последующие годы Брейкер, продолжая свои исследования, собрал большую библиотеку рибопереключателей. Одни из них реагируют конкретно на кобальт, другие — на антибиотики, третьи — на ультрафиолет. Способность эволюционировать и превращаться в рибопереключатели самого разного назначения может служить косвенным подтверждением теории о существовании «мира РНК». Затем у Брейкера появилась новая идея. Если теория «мира РНК» верна, то позже многие функции были переданы от молекул РНК белкам и молекулам ДНК. Но, может быть, РНК отказалась не от всех своих прежних обязанностей? Может быть, рибопереключатели уцелели кое — где у основанных на ДНК организмах? В самом деле, в некоторых случаях РНК — сенсоры могут оказаться лучше белковых. Рибопереключатели синтезировать проще, отмечал Брейкер, потому что клетке для этого достаточно просто считать ген и изготовить его РНК — копию.
Брейкер и его студенты начали планомерные поиски природных рибопереключателей. Через несколько месяцев им удалось обнаружить один из них у E. coli. С его помощью бактерия определяет количество витамина В12. Дело в том, что E. coli производит собственный В12, который необходим ей для жизни. Но сверх определенной концентрации этот витамин становится бесполезным. Брейкер обнаружил, что рибопереключатель E. coli связывается с витамином В12 и, когда это происходит, сворачивается таким образом, что может после этого заблокировать фермент, отвечающий за его производство. Более красивого рибопереключателя не придумал бы и сам Брейкер!
Позже Брейкер обнаружил немало других рибопереключателей в клетках E. coli, а затем и в клетках самых разных видов. Судя по всему, большинство из них поддерживают нужный уровень различных химических веществ, при необходимости мгновенно выключая гены. После того как Брейкер открыл рибопереключатели, другие ученые обнаружили, что молекулы РНК выполняют у E. coli и другие функции. Одни из них при необходимости блокируют определенные гены, другие, наоборот, включают. Некоторые не дают определенным молекулам РНК участвовать в процессе синтеза белков, в то время как другие поддерживают баланс железа. Ряд молекул РНК обеспечивают связь E. coli с другими микроорганизмами, помогают противостоять голоду. Молекулы РНК образуют скрытую управляющую сеть, контуры которой лишь теперь начинают проявляться. С обнаружением этой скрытой сети теория «мира РНК» стала казаться еще более убедительной.
И все же споры о том, как именно появилась на Земле жизнь, основанная на РНК, и каким образом из нее на следующем этапе развилась ДНК — жизнь, и не думают стихать. Некоторые ученые утверждают, что РНК могла появиться на Земле непосредственно из неживого. К примеру, ее рибозный «остов» в принципе мог сформироваться в пустынных озерах, где благодаря присутствию солей борной кислоты создаются условия, в которых неустойчивые молекулы рибозы способны сохранять стабильность десятилетиями. Другие исследователи склоняются к мысли, что еще до этого должны были возникнуть какието другие реплицирующиеся вещества и что «мир РНК» был всего лишь одним из этапов развития.
РНК — жизнь, как и вообще любые живые организмы, должна была както отграничивать себя от окружающего мира. Некоторые ученые считают, что РНК — организмы не формировали собственных мембран, а просто жили в крохотных порах океанских скал. По мере репликации молекул РНК их новые копии могли распространяться на соседние полости, все дальше и дальше. Другие ученые полагают, что РНК — жизнь существовала в более привычных для нас формах — в виде клеток. Они даже пытаются создать подобные организмы в пузырьках с искусственными фосфолипидными оболочками, способными захватывать молекулы РНК. Их стратегия — изобрести практический способ зарождения жизни, доказав тем самым его возможность.
Вероятно, искусственное создание форм жизни, в основе которой лежит РНК, если оно окажется возможным, не должно быть предметом опасений. Большинство специалистов полагает, что такая жизнь сможет существовать только в замкнутом пространстве лаборатории, поскольку жизнь, базирующаяся на ДНК, намного превосходит ее в эволюционном плане. Но это не означает, что формы жизни, основанные на ДНК, полностью отказались от наследия своих предков. Для некоторых задач РНК и сегодня подходит лучше прочих химических веществ; именно поэтому она до сих пор сохранила управление E. coli и другими видами. В какомто смысле можно сказать, что «мир РНК» никуда не исчез. Он и сегодня вокруг нас.
Оревуар, мой слон!
Произнося знаменитую фразу про E. coli и слона, Жак Моно во многих отношениях был гораздо ближе к истине, чем можно было предположить. У нас иу. coli один и тот же базовый генетический код. Многие важнейшие белки, при помощи которых мы извлекаем энергию из пищи, у нас такие же, как и у этой бактерии. E. coli нередко сталкивается с теми же проблемами, что и наши собственные клетки. Необходимо заботиться о том, чтобы граница с внешним миром была нерушимой, но не совсем непроницаемой. ДНК E. coli всегда должна быть аккуратно сложена, но доступна для быстрого считывания. Необходимо поддерживать в порядке внутреннюю структуру. Необходимо объединить тысячи генов в единую сеть, способную согласованно реагировать на изменения внешней среды. Эта сеть должна всегда оставаться надежной и устойчивой, несмотря на внешние помехи. E. coli поддерживает связь с другими представителями вида — с одними сотрудничает, с другими воюет, иногда жертвует жизнью. Подобно нам, она стареет.
Некоторые черты сходства между нами — результат общего происхождения и наследие самых ранних стадий развития жизни на Земле. В других случаях сходство — результат конвергенции[25] разных эволюционных путей, которые привели нас к одному и тому же решению проблемы. Но случаи конвергенции лишь подтверждают слова Моно. Они свидетельствуют о том, что несмотря на 4 млрд лет независимого развития и человек, и E. coli сформированы одними и теми же мощными эволюционными силами.
Однако мне доводилось встречать ученых, которые выходят из себя всякий раз при упоминании замечания Моно. Ничего удивительного — ведь оно игнорирует самые фундаментальные различия между слоном и E. coli. Геном слона — а также человека, лишайника и всех прочих эукариот — намного больше генома E. coli. В геноме человека, к примеру, генов примерно впятеро больше. Крое того, наш геном разбавлен большим количеством ДНК, в которой не закодированы никакие белки. Еще одно серьезное различие заключается в белках, при помощи которых происходит репликация ДНК. Судя по всему, они никак не связаны с белками, которые используют E. coli и другие бактерии. Эукариоты иногда обмениваются генами, но происходит это намного реже, чем у E. coli. Невозможно через рукопожатие получить от приятеля гены голубых глаз. Да и способы размножения у нас и у coli совершенно разные. Лишь крохотная доля клеток человеческого тела способна успешно передать гены следующему поколению, и геном человека несет в себе достаточно информации для величественного развития нового тела с триллионом клеток, двумя сотнями клеточных типов и десятками органов.
Различия между нами велики и бесспорны, но ученые на удивление слабо представляют себе, как они могли возникнуть. Вопрос о том, почему мы в некоторых отношениях так мало похожи на E. coli, остается открытым. Должно быть, ответ на него кроется гдето в туманных глубинах прошлого, в тех временах, когда жизнь на Земле только начинала свое развитие. Ученые сходятся в том, что жизнь очень рано разделилась на три ветви, и различия между ними — особенно отделяющие эукариот от бактерий и архей — с самого начала были очень глубокими. Однако в данный момент среди специалистов распространено несколько принципиально разных теорий о том, как возникло такое деление. Одни утверждают, что эукариоты произошли от архей, заглотивших аэробные (кислорододышащие) бактерии. Другие считают, что раскол произошел намного раньше, еще до того, как жизнь пересекла границу, разделяющую «мир РНК» от «мира ДНК».
Лично мне особенно интересным представляется другое объяснение, выдвинутое Патриком Фортером, биологом — эволюционистом из парижского Института Пастера. Он полагает, что принципиальный раскол между нами и E. coli — результат работы вирусов.
Действие в сценарии Фортера начинается в «мире РНК» еще до разделения всего живого на три ветви. РНК- содержащие организмы беспорядочно обменивались генами. Через какоето время некоторые из этих генов «выбрали» для себя специализацию паразитов и начали развиваться в этом направлении. Они отказались от собственных устройств для репликации генов, но стали проникать в другие организмы и использовать их механизмы. Это были первые вирусы, и они до сих пор с нами; это РНК- содержащие вирусы, такие как вирусы гриппа и обычной простуды, а также ВИЧ.
Именно РНК — содержащие вирусы, утверждает Фортер, «изобрели» ДНК, ведь именно вирусы получили от нее немедленное и очень мощное преимущество. Вирус мог объединять комплементарные однонитевые молекулы РНК в двойные спирали, которые более защищены от атак ферментов хозяина. Это был как бы прообраз будущей ДНК — гораздо более устойчивой и стабильной молекулы. Для появления ДНК должны были образоваться ферменты, способные превращать субстраты для синтеза РНК (рибонуклеотиды) в субстраты для синтеза ДНК (дезоксирибонуклеотиды). Первые ДНК появились в результате синтеза на матрице РНК. Для этого тоже понадобились специальные ферменты. Наконец, появление еще одного нового класса ферментов, с помощью которых происходит репликация ДНК, ознаменовало закат «мира РНК» и возникновение «эпохи ДНК». Превращение клеток с РНК — геномом в клетки с привычным для нас ДНК- геномом произошло, по предположению Фортера, в результате заражения ДНК — содержащими вирусами.
Первые вирусы, вероятно, сформировали целый спектр различных вариантов взаимоотношений с хозяевами. Полезно вспомнить современные вирусы, паразитирующие на E. coli: смертельно опасные, от которых бактерия просто лопается, выпуская наружу сотни новых вирусов; тихие, которые вызывают у хозяина проблемы только в стрессовой ситуации; и полезные, которые навсегда встроились в организм хозяина и живут с ним в мирном сотрудничестве. Фортер утверждает, что и в те далекие времена некоторым ДНК — содержащнм вирусам удалось прочно и навсегда обосноваться в РНК — содержащих хозяевах. Одомашнившись, они потеряли гены, нужные для выхода из хозяина наружу и для формирования белковой оболочки, и превратились в «голую» ДНК, хранящую гены, нужные для собственного воспроизводства.
Только так, считает Фортер, РНК — жизнь могла перейти к использованию ДНК. Время от времени возникали мутации, в результате которых гены из РНК — хромосомы встраивались в ДНК — хромосому вируса. Они оказывались более стабильными и менее склонными к губительным мутациям, чем прежние РНК — гены. Естественный отбор благоприятствовал организмам с большим количеством генов в ДНК — хромосоме, чем в РНК. Со временем РНК- хромосома съеживалась, а ДНК — хромосома, наоборот, росла, и в конце концов организм полностью перешел на хранение информации в двойной спирали. На язык ДНК оказались переведены даже гены рибопереключа- телей и других реликтов «мира РНК». Фортер предполагает, что подобный «вирусный захват» в истории жизни на Земле произошел трижды, и каждое из трех вторжений ДНК — содержащих вирусов привело к рождению одной из трех ветвей жизни.
Фортер утверждает, что его сценарий объясняет, в частности, принципиальную разницу между генами, общими для всех трех доменов (надцарств) живой природы, и генами, уникальными для каждого из них в отдельности. В начале своей научной карьеры Фортер занимался изучением ферментов, при помощи которых E. coli синтезирует ДНК. Подобные ферменты существуют и у других видов бактерий. Но у архей и эукариот вы ничего подобного не найдете. Разница, по мнению Фортера, состоит в том, что предки E. coli и других бактерий получили свои ферменты, участвующие в репликации ДНК, от какогото одного штамма вирусов, архей — от другого, в то время как для появления эукариот потребовалось несколько разных вирусов — основателей.
После того как три ветви жизни разошлись, их развитие пошло разными путями. Наши собственные предки — первые эукариоты — возможно, получили ряд признаков также от вирусов. Эукариоты со временем стали крупнее, чем бактерии и архей, а их популяции, соответственно, малочисленнее. Надо сказать, что в небольших популяциях мутации с незначительным вредным эффектом распространяются легче просто благодаря случайным процессам, и, может быть, только в этот период геном эукариот начал расширяться. Вставки некодирующей ДНК в геном, возможно, поначалу мешали их обладателю, но со временем они, вероятно, дали эукариотам способность осуществлять перестановки генных сегментов, чтобы кодировать разные белки. У человека насчитывается 18 000 генов, но с их помощью каждый из нас может синтезировать около 100000 различных белков.
Сегодня предположение Фортера радикально примерно настолько же, насколько радикальным было в 1968 г. предположение о том, что вся жизнь на Земле когдато основывалась на РНК. И проверка этой гипотезы потребует не меньше усилий. Но размышлять о том, что означала бы правота Фортера, чрезвычайно интересно. В этом случае разница между слоном и E. coli означала бы на самом деле еще одно фундаментальное сходство. Мы — все живые существа — различаемся между собой только потому, что болеем от разных вирусов.
Глава 10. Играющая природа
Портрет в протоплазме
В лаборатории Кристофера Войта в Калифорнийском университете в Сан — Франциско E. coli может изготовить для вас портрет. Войт поместит вашу фотографию перед специально затененным хитроумным устройством. Отраженный от картинки свет попадает на пластинку покрытую тонким слоем E. coli. Этот штамм Войт и его коллеги создали в 2005 г. Они пересадили бактерии гены, часть из которых позволяет им чувствовать свет, а часть — продуцировать темный пигмент. Гены подключены таким образом, что если микроорганизм ощущает свет — к примеру, отраженный от фотографии, — то гены, отвечающие за синтез пигмента, блокируются. Бактерии, на которые попадают фотоны, отразившиеся от светлой части фотографии, остаются прозрачными. Те же, на которые свет не попадает, продолжют вырабатывать пигмент и постепенно темнеют. На пластинке проявляется изображение — мутноватое и нерезкое, но вполне узнаваемое.
Кристофер Войт — доцент с длинным списком научных публикацией. Но, помимо этого, он настоящий сын века биотехнологий. Он еще не родился, когда в 1970–е гг. ученым впервые удалось встроить чужеродные гены в геном E. coli. Этот успех стал одним из важнейших событий в истории биологии. При помощи генной инженерии ученым удалось разобраться в некоторых загадочнейших особенностях генома. E. coli превратили в рабочую лошадку. Возникла целая отрасль промышленности, в которой задействовано $75 млрд. Освоив искусство встраивания генов в геном на E. coli, специалисты начали встраивать их в другие микроорганизмы, а затем в животных и растения. Сегодня козы вместе с молоком вырабатывают лекарства, а на 250 млн га сельскохозяйственных земель выращиваются растения с искусственно встроенными в них генами, обеспечивающими устойчивость к гербицидам и пестицидам.
Но это не значит, что E. coli как объект исследований отошла в тень. Ученые по — прежнему с удовольствием используют ее при разработке новых инструментов и методов управления жизнью. Работа Войта, к примеру, — часть новой разновидности генной инженерии, получившей название синтетической биологии. Вместо того чтобы переносить гены поштучно от одного вида к другому, специалисты по синтетической биологии стремятся создавать с нуля целые генетические схемы. Они соединяют гены разных видов в систему, а затем настраивают ее на выполнение новых функций. Пока им удается создавать лишь красивые и наглядные доказательства принципиальной осуществимости этой идеи — такие, к примеру, как бактериальная фотокамера Войта. Однако в будущем эти эксперименты могут привести к созданию микроорганизмов, вырабатывающих электроэнергию из солнечного света или лекарства, но только в заданных условиях (назовем их «умными» лекарствами). Специалисты по синтетической биологии пытаются даже разобрать E. coli на составные части и вновь использовать некоторые из них при создании жизни.
В новом направлении исследований полно противоречий. В настоящий момент идут горячие споры о рисках, связанных с синтетической биологией и другими достижениями биотехнологии. Эти риски разнообразны и многочисленны — это и случайное попадание в природу опасных искусственных организмов, и намеренное создание всевозможных типов биологического оружия. «Умные» лекарства несложно превратить в «умную» инфекцию. Кроме того, синтетическая биология дала новый толчок старым спорам о моральной допустимости биотехнологий как таковых. Сегодня мир столкнулся с массой самых разных научных исследований, разобраться в которых порой просто невозможно, — от мышей, выращивающих в своем мозгу человеческие нейроны, до созданных смертоносных вирусов. Чтобы прийти в этих спорах хоть к какомуто результату, нам необходимо серьезно обдумать, что значить быть живым и как биотехнология меняет смысл этого понятия. E. coli, главный микроорганизм биотехнологического века, может многое нам рассказать. Лицо на пластинке смотрит на оригинал — это скорее зеркало, чем портрет.
Неолитические биотехнологии
Биотехнологии рождались многократно, и каждый раз это происходило вслепую.
Человек начал манипулировать другими формами жизни по крайней мере 10 000 лет назад: его целью было получение полезных вещей, таких как пища и одежда. В Юго — Восточной Азии, Турции, Западной Африке и Мексике люди одомашнивали животных и растения. Вероятно, сначала это происходило неосознанно. Собирая растения, люди предпочитали определенные разновидности, и их семена случайно сыпались на землю возле стоянки. Дикие предки собак, бродившие вокруг костров и питавшиеся объедками, вероятно, передавали своим щенкам гены общительности. Эти виды адаптировались к жизни с человеком посредством естественного отбора. Как только человек начал возделывать землю и выращивать скот, естественный отбор уступил место отбору искусственному, поскольку человек уже сознательно отбирал для продолжения рода особей с нужными ему свойствами. Эволюция ускорилась, и человек создал целую галерею гротескных тварей — от плоскомордых мопсов до тыкв размером с приличный валун.
Надо сказать, что неолитические биотехнологи манипулировали и микроорганизмами тоже. Они научились делать пиво и вино или, вернее, поняли, как заставить дрожжи сделать пиво и вино. Человеку достаточно было просто создать условия, при которых дрожжам удобнее всего будет превращать сахар в спирт. Дрожжи, выделяя углекислый газ, заставляли хлеб подниматься. Одомашненные микроорганизмы эволюционировали, точно так же как дикорастущий злак теосинте эволюционировал в кукурузу, а жилистая дикая курица — в упитанную домашнюю птицу. Дрожжи сегодняшних виноделов отличаются от своих диких родичей, покрывающих древесную кору.
К примеру, с появлением йогурта развилась целая бактериальная экосистема. Его изобрели пастухи — кочевники, жившие на Ближнем Востоке, около 5000 лет назад. Возможно, однажды они обратили внимание на то, что молоко загустело и приобрело характерный вкус, а протухать не торопилось. По всей видимости, бактерии, которые прежде питались растениями, случайно попали в молоко и, размножаясь в нем, изменили его химический состав. Пастухи обнаружили, что если положить немного такого загустевшего продукта в свежее молоко, то оно тоже изменится. Бактерии в этих культурах оказались в плену новых экосистем и адаптировались к подобным условиям, развивая умение все лучше утилизировать молоко и отбросив ненужные для этого гены.
Человек полуосознанно экспериментировал с животными, растениями и микроорганизмами тысячи лет. Но в XIX в., когда началось проникновение в микромир, у ученых появились новые способы управлять природными объектами. При первых попытках такого рода методы использовались простые, но мощные и наглядные. Луи Пастер продемонстрировал, что именно бактерии делают вино кислым, а молоко — опасным. Сильное нагревание убивает эти вредные бактерии, отчего дети становятся здоровее, а любители и знатоки вина — счастливее.
Обнаружив подобные алхимические свойства бактерий, микробиологи начали активно искать виды микроорганизмов, которые могли бы выполнять новые полезные химические задачи. Хаим Вейцман, первый президент Израиля, первоначально прославился именно в области биотехнологий. Во время Первой мировой войны, проживая в Британии, он открыл бактерии, способные производить ацетон — важный компонент взрывчатых веществ. Уинстон Черчилль быстро воспользовался этим открытием, построив целую сеть фабрик, на которых бактерии делали дешевый ацетон для военно — морского флота Великобритании. Следующее поколение микробиологов, пытаясь заставить бактерии работать эффективнее, занималось уже их генами. Подвергнув пенициллиновую плесень облучению, ученые получили мутантные экземпляры с дополнительными копиями генов, отвечающих за производство пенициллина, которые позволили увеличить производство ценного лекарства.
Научившись манипулировать живыми организмами, ученые задумались о том, что ожидает нас впереди. В 1923 г. британский биолог Джон Холдейн написал произведение в жанре научной фантастики. От лица воображаемого историка будущих времен он рассказывает о создании в 1940 г. нового штамма водорослей, способных извлекать азот из воздуха. Будучи рассыпанными над полем, они так эффективно удобряли почву, что удваивали урожай. Но затем часть водорослей случайно попала в море, и поверхность Атлантики превратилась практически в желе. Это вызвало вспышку численности рыбы, которой после этого стало столько, что ею могло прокормиться все человечество.
«Разумеется, именно в результате вторжения Porphyrococcus море приобрело фиолетовый цвет, который сегодня кажется нам столь естественным, но который очень расстраивал эстетически настроенную часть наших прародителей, бывших свидетелями перемены, — писал Холдейн. — Нам, конечно, любопытно читать о том, что море когдато было голубым или зеленым».
Следующие 50 лет ученые разрыались между надеждой и страхом. Некоторые надеялись, что биотехнологии помогут человечеству создать альтернативу загрязненному современному миру, работающему на ядерной энергии; они придумали для себя утопию, в которой бедные страны могли обеспечить себе пищу и здоровье, не разрушая собственных природных ресурсов. Тем не менее идея о том, что можно заново написать рецепт жизни, вызывала у некоторых не восторг, а отвращение. Да, возможно, ученым удастся создать съедобный штамм дрожжей, способных питаться нефтью. Но кто же захочет его есть?
Помимо ученых, мало кто принимал все эти рассуждения скольконибудь всерьез. Несмотря на все успехи биотехнологий, к 1970 г. не наблюдалось никаких признаков того, что жизнь в обозримое время может измениться. А затем, совершенно неожиданно, ученые осознали, что могут менять генетический код по своему желанию и создать химеру, совместив в одном организме гены разных видов. И они вместе с E. coli занялись преобразованием нашей жизни. Девиз Моно приобрел еще одно значение: если ученые могут конструировать штаммы E. coli методами генной инженерии, то есть все основания полагать, что когданибудь они доберутся и до слонов.
Вырезать и вставить
До 1970 г. E. coli не играла в биотехнологиях никакой роли. В природе она не производила пенициллин или какоенибудь другое ценное вещество. Она не превращала ячмень в пиво. Целью большинства ученых, исследовавших в те времена E. coli, была не прибыль, а знания о том, как устроены живые организмы. Они много узнали о том, как E. coli при помощи генов строит молекулы белков, как включаются и выключаются эти гены, как белки обеспечивают жизнь бактерии. Но, чтобы понять, как живет E. coli, им пришлось изготовить инструменты, при помощи которых с бактерией можно было работать. Со временем с помощью этих же инструментов ученые будут не только исследовать жизнь, но и зарабатывать состояния.
Возможности генетического конструирования застали специалистов по E. coli практически врасплох. В конце 1960–х гг. биолог Джонатан Беквит из Гарварда занимался исследованием lac — оперона — набора генов, которые включает E. coli, переходя на утилизацию лактозы. Чтобы разобраться в природе бактериального переключателя,
Беквит решил «вырезать» оперой из хромосомы E. coli. Он воспользовался тем фактом, что некоторые вирусы, инфицирующие эту бактерию, иногда случайно копируют lac — оперон вместе с собственными генами. Беквит с коллегами разделил двойные спирали ДНК двух разных вирусов и свел вместе по одной нити от каждого вируса. На участках, содержащих lac — оперон, нуклеотидные последовательности были комплементарными и смогли соединяться. Остальные части ДНК остались в виде одинарных нитей. Беквит с коллегами добавил к смеси вирусов вещества, разрушающие одинарные нити ДНК, и получил чистый оперон. Впервые в истории человеку удалось выделить определенные гены.
22 ноября 1969 г. Беквит встретился с прессой и объявил о своем открытии. И сообщил всему миру о том, что глубоко встревожен собственным достижением. Если он смог выделить гены из E. coli, то, возможно, в скором времени ктото другой обернет его метод во зло — создаст с его помощью новую чуму или сконструирует новые разновидности человека. «Сегодня таких методов не существует, — сказал он, — но, скорее всего, пройдет не так уж много времени, и их можно будет использовать. Становится все страшнее и страшнее — особенно когда видишь, как наше правительство использует результаты биологических исследований во Вьетнаме, разрабатывает химическое и биологическое оружие».
Беквит мелькнул крупными заголовками на первых полосах The New York Times и других газет и пропал. Споры об опасностях генной инженерии смолкли. Ученые, не думая об опасности, вернулись к поискам новых способов работы с генами. Те, кто изучал человека, с завистью смотрели на инструменты, при помощи которых Беквит и его товарищи экспериментировали на E. coli.
Для исследования одного — единственного мышиного гена ученому может потребоваться ДНК сотен тысяч мышей. В результате было очень мало известно о том, каким образом генетическая информация в клетках животных транслируется в белки. Еще меньше было известно о самих генах — к примеру, о том, сколько их у человека или какую функцию каждый из них выполняет.
Пол Берг из Стэнфордского университета много лет посвятил изучению того, как E. coli синтезирует молекулы, и в конце 1960–х гг. его всерьез заинтересовал вопрос о том, нельзя ли применить те же методы для исследования клеток животных. В то время ученые изучали новые типы вирусов, навсегда поселившихся в хромосомах животных. Эти вирусы имеют огромное значение для медицины, потому что способны заставить клетки хозяина бесконтрольно размножаться и порождать опухоли. Берг увидел сходство между этими вирусами животных и некоторыми из вирусов, инфицирующих E. coli. В 1950–е гг. ученые выяснили, как можно использовать вирусы бактерии E. coli для переноса генов от одного хозяина к другому. Берг хотел узнать, нельзя ли заставить вирусы животных служить переносчиками генов.
Берг начал экспериментировать с канцерогенным вирусом обезьян SV40. Для начала нужно было придумать, каким образом можно встроить дополнительный ген в вирусную ДНК. Берг решил, что для этого ему придется разрезать кольцевую хромосому SV40 в строго определенном месте. Однако молекулярного ножа, при помощи которого можно было бы осуществить эту операцию, у него не было.
По случайному совпадению именно в тот момент другие ученые обнаружили такой нож. В 1960–е гг. у E. coli были открыты ферменты рестрикции, которые связывались с определенной короткой последовательностью нуклеотидов и разрезали чужеродную ДНК. Среди исследователей, совершивших это открытие, был и Герберт Бойер, микробиолог из Калифорнийского университета в Сан — Франциско. Бойер предоставил Бергу недавно открытый фермент рестрикции, названный EcoRl.
Берг с коллегами сумели при помощи EcoRl расщепить хромосому вируса SV40. К одному из концов ДНК вируса SV40 ученые добавили ДНК бактериофага лямбда, паразитирующего на E. coli. Чтобы сшить два фрагмента ДНК воедино, Берг с коллегами добавил к концу каждого фрагмента некоторое количество нуклеотидов, азотистые основания которых могли образовывать с концом другого фрагмента комплементарные связи. В результате всех этих операций получился искусственный вирусный гибрид. Строго говоря, это был гибрид трех видов, потому что бактериофаг лямбда включил в свой геном и некоторые участки ДНК хозяина — E. coli.
Поскольку у гибрида присутствовали гены фага лямбда, отвечающие за внедрение в клетку E. coli, Берг решил проверить, сможет ли гибрид тоже проникнуть в бактерию. Он попросил одну из своих студенток, Дженет Мерц, разработать план эксперимента. Для Берга и Мерц тот эксперимент начался как попытка получить ответ на еще один интересный вопрос. Но остальные, узнав об их планах, пришли в ужас.
Одним из первых, кто поделился с Бергом своим беспокойством по этому поводу, стал специалист по биоэтике Леон Касс. Когдато он, как и Берг, работал с E. coli, но затем разочаровался в науке, увидев, как стремительно расширяются ее достижения и как мало при этом внимания уделяется этической стороне дела. Касс предостерег Берга, сказав, что манипулирование генами может завести человечество в моральный тупик. Если биологи научатся встраивать гены в человеческий зародыш, родители получат возможность заранее выбирать характеристики своих детей. Они не ограничатся модификацией генов, которые, к примеру, ответственны за развитие таких болезней, как серповидноклеточная анемия или другие наследственные генетические заболевания. Они захотят улучшить даже совершенно здоровых детей.
«Достаточно ли мы разумны, чтобы ставить под угрозу равновесие генетического банка?» — задал вопрос Касс.
Берг отмахнулся от этого предупреждения, но, когда сомненияначали высказывать и другие специалисты по вирусам, он призадумался. Мерц объяснила остальным исследователям, как именно они с Бергом собирались создать своеобразную матрешку: SV40 в фаге лямбда, фаг лямбда в E. coli. Один из коллег ответил: «Ну да, а E. coli в человеке».
Некоторые ученые опасались, что если E. coli с вирусом SV40 внутри случайно вырвется из лаборатории Берга, то через какоето время она сможет найти себе хозяина — человека. Устроившись там, она начнет размножаться, производя при этом в огромных количествах канцерогенные вирусы. Никто не мог предсказать, как все обернется в подобном случае: может, обойдется без последствий, а может, разразится невиданная эпидемия рака. Перед лицом таких неопределенностей Берг и Мерц приняли решение отказаться от задуманного эксперимента.
«Я не хотела стать человеком, создавшим изза собственного упрямства чудовище, которое убьет миллионы людей», — сказала позже Мерц.
В то время лаборатория Берга была единственной в мире, где активно проводились опыты по генной инженерии. В ней пользовались хитроумными, сложными и очень медленными методами. Закрыв эксперимент по созданию химеры, ученые могли быть уверены, что никто не сможет продолжить их исследования. Но прошло совсем немного времени, и генная инженерия стала намного проще технически — и, конечно, еще противоречивее.
Берг и Бойер продолжали изучать механизм, при помощи которого EcoRl разрезает молекулу ДНК. Они выяснили, что фермент оставляет после себя отнюдь не чистый ровный срез; наоборот, на каждом конце одна из нитей ДНК оказывается длиннее другой. Этот свисающий кончик может спонтанно соединиться с другим болтающимся кончиком, также отрезанным при помощи EcoRl. По существу, при разрезании получались так называемые «липкие» концы. И не нужно было ничего дополнительно делать с фрагментами ДНК разных видов, чтобы соединить их: они сами делали все необходимое.
Вскоре Бойер сумел реализовать возможности, которые давали ему «липкие» концы ДНК. Вместо вирусов он выбрал плазмиды — колечки ДНК, которыми бактерии обменивались друг с другом. Вместе со специалистом по плазмидам Стенли Коэном Бойер разрезал две плазмиды при помощи EcoRl. «Липкие» концы молекул соединились, объединив две плазмиды в одно кольцо. Каждая из плазмид несла в себе гены, отвечающие за устойчивость к какомуто одному антибиотику, и когда Бойер и Коэн ввели получившуюся плазмиду в клетку E. coli, бактерия получила резистентность к обоим лекарствам. После деления этой бактерии оба новых микроорганизма получили по одинаковой плазмиде, созданной методами генной инженерии. Впервые в истории живой микроб стал носителем генов, сознательно соединенных человеком.
Соединив между собой две плазмиды E. coli, Бойер и Коэн обратились к другому биологическому виду. В сотрудничестве с Джоном Морроу из Стэнфордского университета они вырезали фрагмент ДНК из клетки африканской шпорцевой лягушки и вставили его в плазмиду, которую затем ввели в клетку E. coli. Таким образом они создали химерный организм, который одновременно был и бактерией, и животным.
Когда Бойер описал результаты своих экспериментов на конференции в Нью — Гемпшире в 1973 г., его сообщение произвело эффект разорвавшейся бомбы. Никто не мог сказать, безопасны ли подобные эксперименты. Участники конференции направили в Национальную академию наук США письмо, в котором изложили свои опасения, и в научных кругах разгорелась дискуссия. Что практически полезного можно сделать с E. coli, полученной в результате подобных генетических экспериментов? Насколько серьезны риски?
Возможности на тот момент казались совершенно фантастическими — примерно настолько же, насколько фантастическими выглядели мечты Холдейна ровно за полвека до этого. E. coli могла бы производить ценнейшие органические вещества, такие как человеческий инсулин, необходимый при лечении диабета. E. coli можно было бы снабдить генами для расщепления целлюлозы — химически стойких растительных волокон. Тогда человек, проглотивший некоторое количество таких, способных расщеплять целлюлозу бактерий, смог бы извлекать питательные вещества из травы и других растений. С другой стороны, игры с геномом E. coli могли закончиться катастрофой. Так, при помощи целлюлозорасщепляющей E. coli человек, возможно, стал бы получать слишком много калорий и растолстел бы до невероятных размеров. А может быть, эти бактерии лишили бы человека той пользы, которую он получает от непереваренных растительных волокон, в том числе, к примеру, и защиты от рака.
Пол Берг и 30 других видных ученых написали в 1974 г. письмо в Национальную академию наук США, в котором призывали к мораторию на искусственный перенос генов до тех пор, пока ученые не договорятся о некоторых общих рекомендациях. Первым шагом к формулированию таких рекомендаций стала организованная Бергом в феврале 1975 г. встреча в конференц — центре государственного парка «Асиломар» на побережье Калифорнии (в Пасифик — Гроув). Вместо того чтобы полностью запрещать генную инженерию, ученые призвали к созданию системы контроля с несколькими уровнями жесткости. Чем выше вероятность того, что эксперимент может нанести вред, тем больше внимания ученые должны уделять предотвращению утечки экспериментального материала — организмов с искусственно измененным генотипом. Некоторые особенно опасные эксперименты, такие как интегрирование в геном живых организмов чужеродных генов, отвечающих за производство мощных токсинов, нельзя проводить вовсе. По следам Асиломарской конференции Национальный институт здоровья США создал комитет, который должен был в том же году разработать официальные рекомендации.
С точки зрения таких ученых, как Берг, подобная стратегия, безусловно, представлялась разумной. Они не спеша поразмыслили над перспективами генной инженерии и решили, что связанные с ней риски не так уж велики и с ними можно работать. Так, генная инженерия вряд ли способна вызвать новую эпидемию рака, поскольку большинство людей сталкивается с подобными вирусами еще в детстве. Многие ученые пришли к выводу, что после десятилетий безбедной жизни в лабораториях штамм E. coli К-12 настолько ослабел, что не сможет выжить в жестких условиях человеческого кишечника. Биолог Уильям Смит объявил, что выпил раствор E. coli К-12, но не обнаружил следов бактерии в своем стуле. Но для пущей уверенности в том, что генная инженерия не будет представлять опасности, микробиолог из Алабамского университета Рой Кертисс создал сверхслабый штамм E. coli, в сотню миллионов раз более слабый, чем пресловутый К-12.
На других ученых, однако, эти успокоительные заверения не подействовали. Биохимик Либе Кавальери из Мемориального онкологического центра имени Слоана — Кеттеринга в Нью — Йорке опубликовал в New York Times Magazine очерк под названием «Новые штаммы жизни — или смерти» (New Strains of Life — or Death). Чуть ниже заголовка в журнале размещался гигантский групповой портрет E. coli, обнимающих друг друга своими тонкими инопланетными фимбриями. Познакомьтесь — новый Франкенштейн.
Очень скоро к критикам — ученым присоединились политики и общественные деятели. Конгресс США начал слушания по генной инженерии, и депутаты сразу же внесли в парламент десяток биллей, предусматривающих различные степени контроля. Не дремали и политики муниципального уровня. Так, мэр города Кембриджа (штат Массачусетс) Альфред Веллуччи провел бурные слушания по поводу начала в Гарварде исследований в области генной инженерии. Город полностью запретил генную инженерию на несколько месяцев. На научных конференциях протестующие вывешивали лозунги, экологические организации подавали в суд на Национальный институт здоровья за пренебрежение рисками генной инженерии.
Многие критически настроенные люди были возмущены тем, что ученые вроде бы собирались сами решить, как поступить с рисками, связанными с генной инженерией. «В намерения той части научного мира, которую можно было бы назвать молекулярно — биологической общественностью, никогда не входило выность этот вопрос на обсуждение широкой публики», — откровенно написал в 1981 г. Джеймс Уотсон. Критики утверждали, что публика имеет право решать, как быть с рисками генной инженерии, потому что все беды и отрицательные последствия обрушатся, разумеется, на обычных людей. Сенатор от штата Массачусетс Эдвард Кеннеди жаловался, что «ученые сами решили наложить мораторий, а затем сами же решили его снять».
Некоторые критики также высказывали сомнения, что ученые могут быть объективны в вопросе генной инженерии. Они заинтересованы в том, чтобы законодательные ограничения были как можно менее строгими, потому что так им удастся за меньшее время провести больше экспериментов. «Путеводная звезда Нобелевской премии — мощный стимулятор, придающий исследователям силы и энергию», — предостерегал Кавальери. Вместе с научной славой приходят и сверкающие перспективы богатства. Корпорации и инвесторы уже начинали обхаживать специалистов по молекулярной биологии, надеясь найти генной инженерии коммерческое применение. Финансовые интересы многих могут заставить преувеличить грядущие выгоды новой науки и преуменьшить связанные с ней риски. Так, компания Cetus, активно привлекавшая в свои ряды молекулярных биологов, сделала поразительное предсказание: «Мы, работники Cetus, предрекаем, что к 2000 году буквально все основные человеческие болезни будут без труда излечиваться специальными, разработанными отдельно для каждой болезни искусственными белками, которые будут вырабатывать специализированные гибридные микроорганизмы».
Критики же видели в генной инженерии не чудо, а лишь иллюзию простого решения. В 1977 г. Национальная академия наук США организовала публичный форум по рискам и преимуществам новой технологии. Протестующие устраивали пикеты, пытаясь остановить мероприятие, и называли генных инженеров нацистами. Среди этого хаоса вице — президент по исследованиям компании Eli Lilly Ирвинг Джонсон рассказал о том, как можно использовать генную инженерию в лечении диабета. Eli Lilly, крупнейший в США производитель инсулина, получала этот гормон из поджелудочной железы свиней. При падении уровня потребления свинины или заметном увеличении числа диабетиков, сказал Джонсон, этого источника, возможно, окажется недостаточно. Создание методами генной инженерии бактерии, способной производить человеческий инсулин, может обеспечить его неограниченное и дешевое производство. «Это настоящая “наука для народа”», — сказал Джонсон.
Рут Хаббард, биолог из Гарварда и ведущий критик генной инженерии, выступила с опровержением этой радужной картины. Она указала на то, что инсулин не предотвращает диабет и даже не лечит его. Он всего лишь нейтрализует некоторые симптомы болезни. «Прежде чем хвататься за технические фокусы и пытаться лечить с их помощью сложные болезни, — предостерегла она, — мы должны сначала понять, что вызывает эти болезни, как работает терапия, о которой нам прожужжали все уши; мы должны знать, какая доля больных действительно в ней нуждается… Но что нам сейчас совершенно точно не нужно, так это новая потенциально опасная технология производства инсулина, которая принесет выгоду только тем, кто его производит».
Мало того что генная инженерия отвлекает общество от реальных способов решения проблемы, предупреждали критики, она может поставить под угрозу само существование нашего мира. Особенно рискованной ее делает то, что технология эта полностью зависит от E. coli. «С точки зрения общественного здоровья, — заявил Кавальери, — эта бактерия представляет собой наихудший возможный вариант. Это обычный обитатель человеческого пищеварительного тракта, легко проникающий в организм через рот или нос. Оказавшись внутри, он способен размножаться и может остаться там навсегда. Таким образом, любая лаборатория, работающая с рекомбинантными штаммами E. coli, битком набита потенциальными носителями, способными при случае разнести опасный штамм по всему миру».
Даже если ученые будут использовать для генной инженерии только ослабленный штамм E. coli, эти микробы смогут прожить вне лаборатории достаточно долго, чтобы передать свои измененные гены более выносливым штаммам. Критики предсказывали эпидемии рака, вызванные небрежно вылитым в раковину раствором, содержащим клетки E. coli. Бактерия, производящая инсулин, может выработать такое его количество в организме человека, что тот от инсулинового шока впадет в кому Генетически измененные организмы могут вызвать катастрофы посерьезнее, чем токсичные вещества, просто потому, что они живые и обладают репродуктивными способностями. Видный биолог из Колумбийского университета Эрвин Чаргафф назвал генную инженерию «необратимым вмешательством в биосферу».
«Этот мир дан нам взаймы, — предупреждал Чаргафф. — Мы приходим и уходим; через какоето время мы оставляем землю, и воздух, и воду другим — тем, кто приходит после нас. Мое поколение или, может быть, предыдущее первым под руководством точных наук вступило в разрушительную колониальную войну с природой. Будущее проклянет нас за это».
Такие атаки буквально ошеломили сторонников генной инженерии. Как заявил в 1979 г. Берг, дебаты об этом новом направлении в науке стали «кошмарными и провальными». Стэнли Коэн назвал их «рассадником бесчисленных публицистов».
Джеймс Уотсон, как обычно, был откровеннее всех: «Мы были ослами, — сказал он, вспоминая о собственной поддержке моратория 1974 г. — Я сожалею об этом решении и осознанно стыжусь его». Изза того давнего решения общественность отвлеклась от реальных угроз на иллюзию апокалипсиса.
«Я боюсь, что, пугая народ и себя опасностями, по поводу которых у нас не было причин тревожиться, мы уподобились двум моим маленьким сыновьям, — писал он. — Они обожают говорить о чудовищах, потому что уверены в том, что в реальной жизни никогда ни одного чудовища не встретят».
E. coli incorporated
Герберт Бойер — тот самый ученый, чьи работы послужили поводом к дискуссии о генной инженерии, — в спорах не участвовал. У него были другие дела. Он искал компании и инвесторов, которые придумали бы способ сделать на его рестрикционных ферментах деньги. В 1976 г. он вступил в партнерство с молодым предпринимателем Робертом Свонсоном. Сложившись по $500 каждый, они основали компанию под названием Genentech (сокращение от genetic engineering technology). Бойеру пришлось занять деньги, чтобы внести свою долю.
Бойер и Свонсон решили продавать ценные химические вещества, производимые полученными с помощью методов генной инженерии штаммами E. coli. В качестве первой цели они выбрали человеческий инсулин — в основном по тем же причинам, о которых говорил Ирвинг Джонсон на форуме Национальной академии наук. Бойер обратился за помощью к Артуру Риггсу и Кэйити Итакуре из больницы «Город Надежды» в Дуарте (штат Калифорния). Риггс и Итакура одними из первых научились конструировать гены. Когда Бойер начал с ними сотрудничать, они занимались созданием своего первого человеческого гена, отвечающего за синтез гормона соматостатина[26]. Работая с Genentech, Риггс и Итакура придумали способ добавить к искусственному гену «липкие» концы и вставить его в плазмиду. Они ввели эту плазмиду в клетку E. coli, и бактерия начала выделять соматостатин. Так в молодой науке был достигнут очередной рубеж. В 1973 г. Бойер, Коэн и Морроу сумели вставить в геном E. coli фрагмент гена животного. Четыре года спустя у Genentech уже была E. coli, способная производить человеческий белок.
Но ученые не собирались почивать на лаврах. Опубликовав в 1977 г. предварительные результаты экспериментов, они обратились к инсулину. Бойер знал, что начинается гонка и следует спешить. Уолтер Гилберт, блестящий молекулярный биолог из Гарварда, тоже работал над получением инсулина. Но у Бойера перед Гилбертом было принципиальное преимущество: он работал с искусственной молекулой ДНК. Гилберт же пытался выделить гены, отвечающие за производство инсулина, из живых клеток, так что его исследования подпадали под жесткие правитльственные ограничения. Его команда вынуждена была принимать чрезвычайные меры предосторожности, чтобы только иметь возможность продолжать эксперименты; они даже летали в Англию, чтобы работать в лаборатории, где создавалось биологическое оружие.
У Бойера дело продвигалась быстрее, потому что его ДНК не была «природной». Вместо того чтобы, подобно Гилберту, выделять ДНК из живых клеток, Риггс и Итакура начали с другого конца — они двигались от структуры белка инсулина к соответствующей последовательности нуклеотидов. В итоге Бойер, не связанный никакими ограничениями, выиграл гонку, б сентября 1978 г. фирма Genentech официально объявила, что ее ученым удалось получить от E. coli 20 миллиардных долей грамма человеческого инсулина.
Еще два года исследователи Genentech работали над увеличением производительности. Они внесли такие изменения в геном E. coli, что бактерия стала сама выводить произведенный инсулин наружу сквозь мембрану, и тем самым серьезно облегчили процесс сбора продукта. В 1980 г. Genentech была готова передать технологию производства инсулина компании Eli Lilly. В следующем году фармацевтический гигант построил у себя специальные баки емкостью по 40 000 л и начал разводить в них E. coli. Genentech акционировался, и бойеровы $500 превратились в $66 млн.
С началом шумихи вокруг Genentech споры о допустимости работы с E. coli затихли сами собой. Конгресс, отчасти благодаря яростному лоббированию со стороны ученых, так и не принял никакого закона о генной инженерии. Национальный институт здоровья ослабил свои ограничения. Ученым, работающим с E. coli, уже не надо было наряжаться в специальные скафандры. Корпорации расхватывали специалистов по работе с E. coli, как горячие пирожки. Все 14 ученых, подписавших в свое время вместе с Бергом письмо — мораторий, в конце концов связали свою карьеру с тем или иным коммерческим предприятием. Уолтер Гилберт стал одним из основателей компании Biogen, которая начала использовать методы генной инженерии на E. coli, чтобы наладить производство различных белков, казавшихся перспективными в плане борьбы с раком. На торжественной церемонии открытия штаб — квартиры Biogen в Кембридже ленточку перерезал бывший мэр города Альфред Веллуччи — когдато непримиримый противник генной инженерии и лично Гилберта.
Компания Genentech стала лидером новой биотехнологической отрасли. Хумулин — произведенный бактериями инсулин — был выпущен на рынок в 1983 г., и сегодня это лекарство принимает 4 млн человек по всему миру. Другие компании начали выпуск собственных сортов инсулина, производимых E. coli, и сегодня их тоже принимают миллионы диабетиков. Биотехнологические компании разработали множество других лекарств, синтезируемых E. coli, — от человеческого гормона роста до средств для уменьшения вязкости крови. Сегодня E. coli послушно выдает на — гора витамины и аминокислоты. Если традиционно при производстве сыра в молоко добавляли сычужный фермент — реннин, получаемый из коровьих желудков, то сегодня значительная доля сыров на прилавке супермаркета изготовлена с использованием реннина, произведенного E. coli. Ученые продолжают вводить в геном E. coli новые гены, пытаясь понять, какие еще полезные вещества может производить эта бактерия. Речь идет о самых разных соединениях — от биоразлагаемых пластмасс до этилового спирта.
Нельзя сказать, что все эти достижения дались ученым легко. E. coli — не завод и относиться к ней, как к машине, нельзя. Микроорганизм — живое существо, и на любое действие он может отреагировать совершенно неожиданным образом. Оказавшись в гигантском баке, бактерии могут задохнуться в собственных отходах. Вообще, бактерии, настроенные на производство больших количеств инсулина или другого чужеродного белка, испытывают сильнейший стресс. Молекулы белка могут начать денатурироваться, и E. coli, чтобы вернуть им правильную форму, придется синтезировать белки теплового стресса. Энергию, которую бактерия тратит на борьбу со стрессом, уже невозможно использовать на питание и рост. Ученым, как поварам, занятым поисками идеального рецепта, пришлось искать решения и этих, и многих других проблем.
И сегодня, 30 лет спустя после превращения E. coli в чудовище и тягловую лошадку генной инженерии, эта бактерия по — прежнему остается любимым объектом биотехнологов. Ученые продолжают экспериментировать с ней в поисках новых способов работы с генами и белками. Ее ферменты рестрикции — любимый инструмент для разрезания ДНК, а ее плазмиды — любимое средство получения новых копий генов. Но сегодня ученые умеют встраивать эти гены в клетки многих других видов. В 1980–е гг. они, воспользовавшись полученными от E. coli уроками, начали переносить гены в другие бактерии и грибы. Кроме того, исследователи научились вводить гены в клетки животных и растений. Сбылась первоначальная мечта Берга: сегодня можно встроить ген в вирус, к примеру в SV40, и инфицировать этим вирусом клетку млекопитающего. (Ученые предпочитают использовать для этого клетки яичников китайского хомячка.) Модифицированная таким образом клетка может затем размножиться и образовать лабораторную колонию, которая станет вырабатывать какойнибудь ценный белок.
Но этого мало. Сегодня можно вводить новые гены в клетки живых животных и растений. Генетически модифицированные культуры распространились во многих странах уже в большей части сельскохозяйственных угодий. Некоторые из них производят токсины, убивающие вредных насекомых; в обычных условиях такие токсины синтезировались бактериями. Другие способны противостоять пестицидам. Ученым удалось также создать растения, способные вырабатывать человеческие антитела и вакцины.
Даже в клетки животных теперь вводят чужеродные гены с помощью модифицированных вирусов. Некоторые исследователи надеются найти способ излечивать генетические заболевания, снабжая клетки работающими копиями ключевых генов. Другие вводят гены непосредственно в зародышевые клетки, чтобы получить животных с чужеродными генами во всех клетках тела. Некоторые ученые пытаются при помощи методов генной инженерии снизить загрязнение окружающей среды отходами сельского хозяйства. Основные загрязнения от сельскохозяйственной деятельности — соединения фосфора и кислорода, поступающие в почву с удобрениями. Когда дожди и вешние воды уносят фосфаты с полей в реки и в конечном итоге в океан, они вызывают вспышку размножения водорослей и другие экологические катастрофы, которые постепенно приводят к появлению обширных мертвых зон, где не может выжить ни один живой организм. Одна из причин, почему в удобрениях содержится так много фосфатов, заключается в том, что значительную часть удобрений получают из навоза домашних животных, к примеру свиней и кур. Дело в том, что эти животные лишены пищеварительных ферментов, необходимых для расщепления фосфатов, поэтому они проходят сквозь пищеварительную систему неизмененными. E. coli, как и многие другие бактерии, вырабатывает ферменты для расщепления фосфатсодержащих молекул. И когда исследователи ввели свиньям гены E. coli, фосфатов в навозе модифицированных животных стало вчетверо меньше, чем у обычных.
В какомто смысле все перевернулось с ног на голову: если 30 лет назад ученые вводили бактериям гены животных, то сегодня они, наоборот, вводят животным гены E. coli.
Азбука жизни расширяется
В начале своего существования генная инженерия была всего лишь инструментом, который ученые смогли создать на базе своих знаний о E. coli. Однако в последние годы грань между генной инженерией и наукой постепенно стирается. Герберт Бойер использовал свои глубокие знания о E. coli, чтобы разработать методы генной инженерии. Сегодня генная инженерия использует методы Бойера, чтобы узнавать новое не только о E. coli, но и о фундаментальных законах жизни.
Ученые долгое время спорили о том, почему жизнь на Земле, практически без исключений, использует при стрительстве белков всего лишь 20 аминокислот[27]. (. coli и ряд других видов, в том числе человек производят и двадцать первую аминокислоту под названием селеноцистеин.) В природе существуют сотни замечательных аминокислот, из которых жизнь, кажется, могла бы свободно выбирать. Вообще, чтобы присоединиться к Клубу аминокислот, молекуле нужно всего лишь обладать подходящими концами. На одном конце у нее должна быть аминогруппа — атом азота, ковалентно связанный с двумя атомами водорода, а на другом — карбоксильная группа, состоящая из атома углерода, двух атомов кислорода и атома водорода. Аминогруппа и карбоксильная группа легко стыкуются между собой, как кирпичики конструктора «Лего», и при этом почти не важно, что находится между ними. Любой химик может синтезировать в лаборатории сотни различных аминокислот; тот же процесс легко протекает в открытом космосе. В 1969 г. на Землю упал метеорит, покрытый слоем дегтеобразной слизи. Ученые насчитали в составе этой слизи 79 разновидностей аминокислот.
Так почему же у нас их всего двадцать? Один из способов разобраться в этом вопросе — попытаться искусственно получить организм, способный производить не двадцать аминокислот, а двадцать одну. В 2001 г. Питер Шульц из Научно — исследовательского института Скриппса в Ла- Хойя (Сан — Диего, Калифорния) с коллегами сделал именно это — естественно, на основе E. coli. Как и все остальные живые организмы, E. coli использует генетический код, в котором каждые три нуклеотида в составе ДНК кодируют одну аминокислоту. Существует 64 триплета, или, как их называют, кодона, большая часть которых у E. coli используется регулярно. Но Шульц с коллегами обнаружили один кодон, который используется очень редко. Они модифицировали E. coli таким образом, что этот редкий кодон теперь отдавал команду добавить в строящуюся молекулу белка необычную аминокислоту.
Журнал Science назвал это достижение «первой искусственной формой жизни, химия которой не похожа ни на что, встречающееся в природе». В дальнейшем ученые добавили в репертуар E. coli еще более 30 необычных аминокислот. Первоначально бактерия могла строить эти новые белки только при условии бесперебойного снабжения ее нестандартными аминокислотами, но затем ученые начали модифицировать E. coli так, чтобы она могла сама синтезировать их из обычной пищи.
Благодаря этим исследованиям споры о генетическом коде переместились на другую почву. Никто не может с уверенностью утверждать, что только те самые 20 аминокислот делают жизнь возможной. Некоторые даже считают, что генетический код — это всего лишь исторический артефакт. Первые живые организмы синтезировали свои белки из тех аминокислот, которых вокруг было больше всего, и этот случайный выбор закрепился навсегда. Некоторые ученые уверены, что у нас самый лучший генетический код из всех возможных — ведь он позволяет хранить информацию о максимальном количестве белков в минимальном числе генов. Другие возражают, что естественный отбор мог бы предпочесть генетический код и поустойчивее, с меньшей вероятностью возникновения летальных мутаций, при которых происходит синтез белков с полностью измененной структурой.