Эйнштейн. Его жизнь и его Вселенная Айзексон Уолтер
© Walter Isaacson, 2007
© И. Каганова, перевод на русский язык (гл. 12–25), 2015
© Т. Лисовская, перевод на русский язык (гл.1–11), 2015
© А. Бондаренко, художественное оформление, макет, 2015
© ООО “Издательство Аст”, 2015
Моему отцу, самому умному, доброму и порядочному человеку из всех, кого я знаю
В Санта-Барбаре, 1933 г.
Жизнь – как езда на велосипеде. Чтобы сохранить равновесие, ты должен двигаться.[1][2]
Благодарности
В работе над книгой мне помогало множество людей.
Диана Кормос Бухвальд, главный составитель сборника “Документы Эйнштейна”, сделавшая развернутые комментарии и исправления в многочисленных черновиках этой книги. Благодаря ей я получил быстрый и полный доступ к множеству новых бесценных документов, открытых для читателей только в 2006 году. Она помогла мне в них сориентироваться, была моим куратором и радушной хозяйкой во время моих посещений Калтеха, где я работал с документами проекта “Документы Эйнштейна”. К своей работе она относится со страстью, у нее отменное чувство юмора, что понравилось бы герою ее исследований.
Двое ее помощников тоже очень помогли мне сориентироваться в ставших недавно доступными документах и огромной массе неизученных архивных материалов: Тильман Зауэр подробно проверил и снабдил примечаниями эту книгу, особенно разделы, посвященные проблемам вывода Эйнштейном уравнений общей теории относительности и борьбы по созданию единой теорией поля, а Зеэв Розенкранц, редактор по вопросам истории издания “Документы Эйнштейна”, разъяснил отношение Эйнштейна к Германии и своему еврейскому происхождению. Раньше он был куратором архива Эйнштейна в Еврейском университете в Иерусалиме.
Барбара Вольф, которая теперь ведает этими архивами в Еврейском университете и которая тщательно проверила факты, изложенные на всех страницах рукописи и сделала как крупные, так и мелкие исправления. Она с самого начала предупредила, что у нее репутация придиры, но я очень благодарен ей за каждую обнаруженную неточность. Я также высоко ценю поддержку, оказанную Рони Гроссом – куратором архива.
Брайан Грин – профессор Чикагского университета и автор книги “Ткань космоса”, который был незаменимым другом и редактором. Он предложил многочисленные исправления, уточнил формулировки в разных научных фрагментах и прочитал окончательную версию рукописи. Он мастерски владеет и языком, и научным материалом. Он не только проводит свои исследования в области теории струн, но и с женой Трейси Дэй организует ежегодные фестивали науки в Нью-Йорке, которые помогают пробудить интерес к занятиям физикой, столь явственно ощутимый в его работе и книгах.
Лоуренс Краусс – профессор физики в независимом университете Кейс-Вестерн-Резерв и автор книги “Скрытое в зеркале”, который тоже прочитал мою рукопись, проверил разделы, касающиеся специальной теории относительности и космологии, и сделал много дельных предложений и исправлений. Он тоже настолько увлечен физикой, что заражает энтузиазмом окружающих.
Краусс помог мне найти помощника, Крейга Дж. Копи, – своего подопечного из университета Кейс-Вестерн-Резерв, где тот читает курс теории относительности. Я нанял его, и он проверил все, что касается науки и математики, в рукописи, и я благодарен ему за тщательную редактуру.
Дуглас Стоун – профессор физики в Йельском университете, который тоже проверил научные разделы книги. Он занимается физикой твердого тела и сейчас пишет интересную книгу о вкладе Эйнштейна в квантовую механику. Кроме того что он проверил научные разделы, он помог мне написать главы о работе Эйнштейна 1905 года по световым квантам, квантовой теории, статистике Бозе – Эйнштейна и кинетической теории.
Мюррей Гелл-Манн, лауреат Нобелевской премии по физике 1969 года, который с начала и до конца написания книги был замечательным и неравнодушным советчиком. Он помог мне переделать первоначальный черновик книги и поправил главы о теории относительности и квантовой механике, а также внес изменения в черновики тех глав, где описываются возражения Эйнштейна по поводу неопределенности в квантовой механике. Благодаря сочетанию эрудиции и юмора в его характере, а также пониманию характеров героев книги общение с ним доставило огромную радость.
Артур И. Миллер – почетный профессор истории и философии науки из Университетского колледжа Лондона, автор книг “Эйнштейн, Пикассо” и “Империя звезд”. Он читал и перечитывал разные варианты моих научных глав и помог сделать многочисленные исправления, особенно в рассказе о создании Эйнштейном специальной теории относительности (тема, по которой он написал основополагающую работу), общей теории относительности и квантовой теории.
Сильвестр Джеймс Гейтс-младший – профессор физики в Мэрилендском университете, который согласился прочитать мою рукопись во время своего приезда в Аспен на конференцию по Эйнштейну. Он тщательно отредактировал рукопись, сделал глубокие замечания и переформулировал некоторые научные утверждения.
Джон Д. Нортон, профессор Университета Питтсбурга, специализирующийся на анализе хода мыслей Эйнштейна при создании им специальной и общей теорий относительности. Он прочитал соответствующие главы моей книги, отредактировал их и сделал полезные комментарии. Я благодарен также за советы двум его ученикам, также специализирующимся на работе Эйнштейна над этими теориями, – Юргену Ренну из Института Макса Планка в Берлине и Мишелю Яннсену из Университета Барселоны.
Джордж Странахан, основатель Физического центра в Аспене, который также согласился прочитать и проверить рукопись. Особенно полезна была его редактура разделов, посвященных световым квантам, броуновскому движению, истории создания и сущности специальной теории относительности.
Роберт Ринасиевич, философ науки из Университета Хопкинса, прочитавший многие научные разделы и сделавший полезные предложения по описанию проблем общей теории относительности.
Н. Дэвид Мермин – профессор теоретической физики из Корнельского университета, автор книги “О времени: постигая теорию относительности Эйнштейна”, который отредактировал и внес правку в окончательный вариант глав 1, 5 и 6, посвященных статьям Эйнштейна, вышедшим в 1905 году.
Джералд Холтон, профессор физики из Гарварда, который одним из первых начал изучать наследие Эйнштейна и до сих пор является в этой области авторитетом. Мне очень лестно, что он захотел прочитать эту книгу, сделал замечания и великодушно одобрил работу. Помог также и его коллега по Гарварду Дадли Хершбах, который сделал очень много для развития научного образования. И Холтон, и Хершбах внесли полезные замечания, прочитав черновик, и провели несколько часов со мной в кабинете Холтона, обсуждая предложения и уточняя описания исторических персонажей.
Эштон Картер, профессор международного права из Гарварда, который любезно прочитал и проверил первоначальный вариант книги. Фриц Штерн, автор сборника “Немецкий мир Эйнштейна”, который одобрил мою рукопись и дал советы в начале работы. То же самое сделал и Роберт Шульман, один из первых редакторов проекта “Документы Эйнштейна”. А Джереми Бернстайн, который написал множество прекрасных книг об Эйнштейне, предупредил меня о том, как сложно порой понять научные результаты. Он оказался прав, и я благодарен ему за это.
Кроме того, я попросил двух преподавателей физики старших классов порекомендовать мне книгу, понятную тем, кто в последний раз имел дело с физикой в старших классах школы, чтобы я ее мог внимательно прочитать и убедиться, что я правильно разобрался в полученных результатах. Одна из них – Нэнси Стравински Айзексон – преподавала физику в Новом Орлеане, до тех пор пока, к сожалению, из-за урагана Катрин у нее не появилось больше свободного времени. Второй преподаватель, Дэвид Дербес, преподает физику в экспериментальной школе при Чикагском университете. Их замечания были очень глубокими, и они окажутся полезными для непрофессионального читателя.
Известно некое следствие принципа неопределенности, которое гласит, что, сколько бы раз ни прочитывали книгу, все равно в ней останутся какие-то ошибки. Вина за эти оставшиеся ошибки лежит на мне.
Прочтение рукописи неучеными тоже было очень полезно, и они, будучи непрофессионалами, сделали очень полезные замечания как по отдельным главам, так и по всей рукописи. Это и Уильям Майер, и Орвилл Райт, и Дэниел Окрент, и Стив Вайсман, и Строб Тэлботт.
В течение двадцати пяти лет Алиса Мэйхью из издательства Simon&Schuster была моим редактором, а Аманда Урбан – моим агентом в ICM. Я не могу себе представить лучших партнеров, и на этот раз они опять охотно помогали и сделали полезные комментарии к книге. Я также высоко ценю помощь Кэролин Рейди, Дэвида Розенталя, Роджера Лэйбри, Виктории Мейер, Элизабет Майер, Серены Джонс, Мары Лурье, Джудит Гувер, Джеки Сиу и Дана Слоуна из издательства Simon&Schuster. Я также благодарен Эллиот Равец и Патрисии Зиндулке за их постоянную поддержку на протяжении многих лет, Наташа Хоффмейер и Джеймс Хоппес перевели для меня немецкую переписку Эйнштейна и его тексты, особенно новые материалы, которые до сих пор не были переведены, и я очень ценю их усердие. Творческую работу по отбору фотографий для этой книги проделал и Джей Колтон, бывший фоторедактором выпуска журнала Time, посвященного человеку столетия (Эйнштейну).
У меня было еще два с половиной читателя, которые для меня были самыми ценными. Первым был мой отец Ирвин Айзексон, инженер, который привил мне любовь к науке и был самым лучшим учителем, которого я когда-либо встречал. Я благодарен ему за атмосферу, которую он и моя покойная мать создали для меня, а также моей блестящей и мудрой мачехе Джулианне.
Другим очень важным читателем была моя жена Кэти, умная и любознательная, с бездной здравого смысла, прочитавшая каждую страницу книги. И половинкой читателя – очень ценной для меня – была моя дочь Бетси, которая, как обычно, прочитывала отдельные фрагменты моей книги. Хаотичность ее чтения компенсировалась уверенностью, с которой она делала свои заявления. Я люблю их обеих очень сильно.
Сольвеевский конгресс, 1911 г.
Основные действующие лица
Бессо, Мишель Анджело (1873–1955). Самый близкий друг Эйнштейна. Талантливый, но несобранный человек, инженер. Познакомился с Эйнштейном в Цюрихе, затем последовал за ним в Берн, поступив на работу в то же патентное бюро. Был резонатором идей Эйнштейна по специальной теории относительности, изложенных в статье 1905 года. Женился на Анне Винтелер, сестре первой возлюбленной Эйнштейна.
Бор, Нильс (1885–1962). Пионер квантовой теории родом из Дании.
На Сольвеевском конгрессе и последующих встречах интеллектуалов он оппонировал Эйнштейну, когда тот яростно возражал против его копенгагенской интерпретации квантовой механики.
Борн, Макс (1882–1970). Немецкий физик и математик. В течение сорока лет состоял в интереснейшей личной переписке с Эйнштейном. Пытался убедить Эйнштейна в правильности квантовой механики. Его жена Гедвига обсуждала с Эйнштейном личные вопросы.
Вайцман, Хаим (1874–1952). Химик, родившийся в России, эмигрировавший в Англию и ставший президентом Всемирной сионистской организации. В 1921 году он устроил первую поездку Эйнштейна в Америку, используя его как приманку для сбора средств. Стал первым президентом Израиля, и этот пост после его смерти был предложен Эйнштейну.
Винтелеры. Эйнштейн столовался у них во время учебы в швейцарской деревушке Арау. Йост Винтелер преподавал ему историю и греческий язык, его жена Роза заменила Альберту мать. Из их семерых детей дочь Мари стала первой девушкой Эйнштейна, ее сестра Анна вышла замуж за лучшего друга Эйнштейна Мишеля Бессо, а брат Пауль женился на сестре Эйнштейна Майе.
Габер, Фриц (1868–1934). Немецкий химик, первым изобрел и применил химическое оружие в Первой мировой войне. Помог уговорить Эйнштейна перебраться в Берлин и стал посредником в спорах между ним и Марич. Еврей, обратившийся в христианство в попытке стать добропорядочным немцем, он уверял Эйнштейна в преимуществах ассимиляции до тех пор, пока нацисты не пришли к власти.
Габихт, Конрад (1876–1958). Математик и изобретатель-любитель, член “Академии Олимпия”, образованной тремя друзьями-интеллектуалами в Берне. Получатель двух знаменитых писем 1905 года от Эйнштейна, в которых сообщалось о скором выходе его статей в журнале.
Гейзенберг, Вернер (1901–1976). Немецкий физик. Пионер квантовой механики, сформулировавший принцип неопределенности, который Эйнштейн многие годы оспаривал.
Гильберт, Давид (1862–1943). Немецкий математик, в 1915 году наперегонки с Эйнштейном выводивший математические уравнения общей теории относительности.
Гроссман, Марсель (1878–1936). Однокашник Эйнштейна по Цюрихскому политехникуму. Добросовестно посещал все занятия и делился конспектами математических лекций с Эйнштейном. Впоследствии помог ему получить работу в патентном бюро. Позже стал профессором начертательной геометрии в Политехникуме и консультировал Эйнштейна в тех областях математики, которые были ему необходимы для вывода уравнений общей теории относительности.
Дукас, Хелен (1896–1982). Преданная Эйнштейну секретарша, охранявшая его как цербер. Соседка по дому с 1928 года и до его смерти, а после смерти – попечительница его наследия и документов.
Ленард, Филипп (1862–1947). Венгерско-немецкий физик, чьи экспериментальные наблюдения фотоэффекта были объяснены Эйнштейном в его работе 1905 года по световым квантам. Впоследствии стал антисемитом, нацистом и врагом Эйнштейна.
Лоренц, Хендрик Антон (1853–1928). Гениальный и мудрый голландский физик, чьи теории проложили путь к созданию специальной теории относительности. Для Эйнштейна стал непререкаемым авторитетом. Марич, Милева (1875–1948). Сербская студентка-физик Цюрихского политехникума, ставшая первой женой Эйнштейна. Мать Ганса Альберта, Эдуарда и Лизерль. С одной стороны, натура страстная и целеустремленная, преодолевшая многие (хотя и не все) препятствия, с которыми тогда сталкивались женщины, стремящиеся стать физиками. А с другой стороны – скрытная, со временем становившаяся все более мрачной.
С 1914 года жила отдельно от Эйнштейна, а в 1919 году они развелись. Милликен, Роберт Эндрюс (1868–1953). Американский физик-экспериментатор, который подтвердил закон фотоэлектрического эффекта Эйнштейна и уговорил его стать приглашенным ученым в Калифорнийском технологическом институте.
Минковский, Герман (1864–1909). Преподавал математику Эйнштейну в Цюрихском политехникуме, назвал его “ленивым щенком” и сформулировал математический аппарат специальной теории относительности в терминах четырехмерного пространства – времени.
Николаи, Георг Фридрих, настоящая фамилия Левинштейн (1874–1964). Врач, пацифист, харизматичный авантюрист и бонвиван. Друг и доктор Эльзы Эйнштейн и, вероятно, любовник ее дочери Ильзы.
В соавторстве с Эйнштейном в 1915 году написал пацифистский трактат.
Пайс, Абрахам (1918–2000). Физик-теоретик голландского происхождения, работавший с Эйнштейном в Принстоне и написавший его научную биографию.
Планк, Макс (1858–1947). Прусский физик-теоретик, ставший одним из первых покровителей Эйнштейна и содействовавший его приглашению в Берлин. Его консервативные взгляды как в жизни, так и в физике были полной противоположностью взглядам Эйнштейна, но они находились в теплых отношениях и оставались уважающими друг друга коллегами до тех пор, пока нацисты не пришли к власти.
Соловин, Морис (1875–1958). Румынский студент-философ, который в Берне основал “Академию Олимпия” совместно с Эйнштейном и Габихтом. Стал издателем работ Эйнштейна во Франции и всю жизнь переписывался с ним.
Сциллард, Лео (1898–1964). Физик венгерского происхождения, обаятельный и эксцентричный, встречался с Эйнштейном в Берлине и запатентовал совместно с ним холодильник. Придумал ядерную цепную реакцию и был автором идеи письма, написанного Эйнштейном и отправленного им в 1939 году президенту Франклину Рузвельту, призывающего обратить внимание на возможность создания атомной бомбы.
Флекснер, Абрахам (1866–1959). Американский реформатор образования. Основал в Принстоне Институт перспективных исследований и пригласил туда на работу Эйнштейна.
Франк, Филипп (1884–1966). Австрийский физик. Преемник своего друга Эйнштейна в должности профессора в Немецком университете Праги. Позднее написал книгу о нем.
Хоффман, Банеш (1906–1986). Математик и физик, сотрудничавший с Эйнштейном в Принстоне, а затем написавший книгу о нем.
Цангер, Генрих (1874–1957). Профессор физиологии в Университете Цюриха. Сдружился с Эйнштейном и Марич и помогал им разрешать споры и вопросы с разводом.
Шредингер, Эрвин (1887–1961). Австрийский физик-теоретик, стоявший у истоков квантовой механики, но, как и Эйнштейн, испытывавший дискомфорт от того, что она базируется на неопределенностях и вероятностях.
Эддингтон, Артур Стэнли (1882–1944). Британский астрофизик и ярый пропагандист теории относительности, чьи наблюдения солнечного затмения 1919 года блестяще подтвердили предсказания Эйнштейна о том, насколько изгибается луч света под действием гравитации.
Эйнштейн, Ганс Альберт (1904–1973). Первый сын Милевы Марич и Эйнштейна. Ему досталась сложная роль, с которой он справлялся с изяществом. Учился на инженера в Цюрихском политехникуме. Женился в 1927 году на Фриде Кнехт (1895–1958). У них было два сына – Бернар (1930–2008) и Клаус (1932–1938) – и приемная дочь Эвелин (1941–2011). В 1938 году он переехал в США, впоследствии стал профессором гидравлики в Беркли. После смерти Фриды в 1959 году женился на Элизабет Робоз (1904–1995). У Бернара родилось пятеро детей, это единственные известные правнуки Альберта Эйнштейна.
Эйнштейн, Герман (1847–1902). Отец Эйнштейна, выходец из еврейской семьи, осевшей в сельской Швабии. Вместе со своим братом Якобом создал электрические компании в Мюнхене, а затем в Италии, дела компаний шли не очень успешно.
Эйнштейн, Ильза (1897–1934). Дочь Эльзы Эйнштейн от первого брака. Была в связи с предприимчивым врачом Георгом Николаи, а в 1924 году вышла замуж за литературного журналиста Рудольфа Кайзера, который позже под псевдонимом Антон Райзер опубликовал книгу о Эйнштейне.
Эйнштейн, Лизерль (1902–?). Добрачная дочь Эйнштейна и Милевы Марич. Эйнштейн, вероятно, никогда ее не видел. Скорее всего, она была оставлена в родном городе ее матери – Нови-Саде в Сербии – для удочерения и, возможно, умерла от скарлатины в конце 1903 года.
Эйнштейн, Марго (1899–1986). Дочь Эльзы Эйнштейн от первого брака.
Застенчивая девушка, ставшая скульптором. Вышла замуж в 1930 году за Дмитрия Марьянова, гражданина СССР, детей у них не было. Позже Марьянов написал книгу об Эйнштейне. Марго развелась с ним в 1937 году, переехала к Эйнштейну в Принстон и жила там до смерти на Мерсер-стрит, 112.
Эйнштейн, Мария (Майя) (1881–1951). Единственная сестра Эйнштейна, была одним из его ближайших друзей. Вышла замуж за Пауля Винтелера, детей не было, а в 1938-м уехала из Италии от мужа в Принстон и жила там со своим братом.
Эйнштейн, Паулина Кох (1858–1920). Волевая и практичная мать Эйнштейна. Дочь зажиточного еврейского торговца зерном из Вюртемберга. Вышла замуж за Германа Эйнштейна в 1876 году.
Эйнштейн, Эдуард (1910–1965). Второй сын Милевы Марич и Эйнштейна. Умный и артистичный, он увлекся Фрейдом и надеялся стать психиатром, но, когда ему было двадцать с небольшим, его собственной душой овладели демоны шизофрении, и он был помещен в специальную лечебницу в Швейцарии, где и провел большую часть жизни.
Эйнштейн, Эльза (1876–1936). Двоюродная сестра Эйнштейна и его вторая жена. Мать Марго и Ильзы Эйнштейн, родившихся в первом браке с торговцем текстилем Максом Левенталем. После развода в 1908 году она и ее дочери вернули ее девичью фамилию – Эйнштейн. Вышла замуж за Эйнштейна в 1919 году, сумела с ним ужиться. Умнее, чем старалась казаться.
Эренфест, Пауль (1880–1933). Физик, родившийся в Австрии, яркий и очень ранимый человек. Подружился с Эйнштейном во время своего визита в Прагу в 1912 году, стал профессором в Лейдене, где его часто навещал Эйнштейн.
Глава первая
Верхом на луче света
Однажды молодой патентный эксперт написал своему другу: “Я обещаю тебе написать четыре статьи”. В этом письме, как позже выяснилось, одни из самых важных за всю историю науки новости, но его историческое значение было замаскировано насмешливым тоном, характерным для автора письма. Например, обращался к своему другу он так: “Ты, замороженный кит…” И извинялся за то, что написал письмо, полное “несущественной болтовни”. Только когда он дошел до разбора статей, написанных им в свободное время, он намекнул, что понимает их значимость[3].
Он описал их так: “Первая посвящена излучению и энергии света и очень революционна”. И она была действительно революционна. В ней доказывалось, что свет можно рассматривать не только как волну, но и как поток маленьких частиц, называемых квантами. Из этой теории с неизбежностью следовало, что во Вселенной отсутствует строгая причинность и детерминированность, и этот вывод будет пугать его всю оставшуюся жизнь.
“Вторая работа касается определения истинных размеров атомов”. Хотя даже сама идея существования атомов все еще находилась в стадии обсуждения, эта статья была самой понятной из всех, и именно поэтому Эйнштейн, в последний раз предприняв попытку получить докторскую степень, посчитал, что она будет самым безопасной темой диссертационной работы. Он готовился совершить революцию в физике, но каждый раз терпел фиаско, когда пытался получить академическое место или просто защитить докторскую диссертацию, что, как он считал, помогло бы ему подняться в патентном бюро с должности клерка третьего разряда до клерка второго разряда.
В третьей статье объяснялось беспорядочное движение микроскопических частиц в жидкости с помощью статистического анализа случайных столкновений. В процессе работы им было доказано, что атомы и молекулы действительно существуют.
“Четвертая работа пока существует в виде черновика, она посвящена электродинамике движущихся тел, что потребовало пересмотра представлений о пространстве и времени”. Да, это, несомненно, было нечто большее, чем несущественная болтовня. Базируясь в основном на мысленных экспериментах, проведенных в голове, а не в лаборатории, он решил пересмотреть ньютоновские концепции абсолютного пространства и времени. Эта работа ляжет в основу знаменитой “специальной теории относительности”.
Он не написал своему другу, поскольку еще не знал, что это произойдет, что он в этом году напишет пятую статью, краткое дополнение к четвертой, в которой будет выведено соотношение между энергией и массой. Оно станет самым известным во всей физике уравнением: E = mc.
Оглядываясь назад на век, который запомнится своим стремлением скинуть оковы классической физики, и смотря вперед в эпоху, которая стремится воспитывать в ученых креативность, необходимую для научных инноваций, мы видим, что один человек выделяется на общем фоне как главный символ нашей эпохи. Добродушный политэмигрант, чей образ – растрепанная шевелюра, сияющие глаза, обаятельная доброта и необычайный блеск – сделал его лицо символом эпохи, а имя – синонимом гениальности. Альберт Эйнштейн был “слесарем”[4], наделенным воображением, ведомым верой в гармонию творений природы. Увлекательная история его жизни – это свидетельство взаимосвязи креативности и свободы, и в ней отразились как триумфы, так и смятение современной эпохи.
Теперь, когда его архивы полностью открыты, возможно проследить, как черты его характера – нонконформизм, бунтарство, любопытство, его страсти и отстраненность – переплетались с политическими пристрастиями и научными интересами. Узнав человека, начинаешь лучше понимать источники его научной мысли, и наоборот. Характер, воображение человека и его гениальные творческие способности – все это связано между собой, словно элементы некоего единого поля.
Несмотря на репутацию равнодушного человека, на самом деле он был очень страстным и в своих личных отношениях, и в занятиях наукой. В колледже он безумно влюбился в единственную девушку в своей физической группе – смуглую пылкую сербку Милеву Марич. У них родилась дочь вне брака, потом они поженились, и у них родилось два сына. Она была камертоном его научных идей и помогала ему в проверке математических выкладок, но со временем их отношения разладились Эйнштейн предложил ей сделку. Он сказал, что если когда-нибудь получит Нобелевскую премию и если она даст согласие на развод, то он отдаст ей деньги за премию. Марич подумала неделю и согласилась. Но из-за того, что его теории были столь радикальны, прошло семнадцать лет между его чудесным освобождением из патентного бюро и получением премии, деньги за которую она и получила.
Стиль жизни Эйнштейна и его работа являлись отражением распада социальных и моральных абсолютов в атмосфере модернизма, воцарившейся в начале XX века. В воздухе витал дух творческого нонконформизма: Пикассо, Джойс, Фрейд, Стравинский, Шёнберг и многие другие своим творчеством ломали традиционные каноны. В эту атмосферу вписывалась концепция Вселенной, согласно которой считалось, что пространство, время, а также свойства частиц определялись условиями наблюдений.
Однако Эйнштейн не был настоящим релятивистом, каковым его считали многие, в том числе и те, чье предвзятое отношение к нему основывалось на антисемитизме. Во всех его теориях, включая теорию относительности, он пытался найти инварианты, определенность и абсолют. Эйнштейн чувствовал, что в основе законов природы лежит гармония сущего и цель науки – найти ее.
Его поиски начались в 1895 году, когда шестнадцатилетним юношей он вообразил, что было бы, если бы можно было лететь рядом со световым лучом. Десятилетием позже наступил 1905 год – год чудес, описанных в процитированном выше письме, когда был заложен фундамент двух важнейших революций в физике XX века: теории относительности и квантовой теории.
А еще через десятилетие, в 1915 году, он вырвал у природы ее сокровенную тайну и построил одну из красивейших теорий во всей науке – общую теорию относительности. Как и при построении специальной теории относительности, он использовал метод мысленных экспериментов. В одном из них он предположил, что человек находится в закрытом лифте, движущемся с ускорением вверх в пустом пространстве. Тогда его ощущения должны быть такими же, что и при воздействии силы тяжести.
Он предположил, что гравитация – это искривление пространства и времени, и выписал уравнение, описывающее изменение их кривизны в результате взаимовлияния материи, движения и энергии. Это можно себе представить с помощью еще одного мысленного эксперимента – двухмерной поверхности сетки батута, на которую мы закатываем шар для боулинга, а затем туда же вкатываем бильярдные шары. Эти шары покатятся в направлении шара для боулинга не потому, что он обладает каким-то магическим притяжением, а потому, что так изогнулась сетка батута. А теперь вообразим, что это происходит с четырехмерной тканью пространства – времени. Конечно, представить это себе нелегко, но это потому что мы не Эйнштейны, а он Эйнштейн.
Резкий перелом в его карьере наступил еще через десятилетие после этого, в 1925 году. Квантовая революция, которая произошла при его участии, породила новую механику, базирующуюся на неопределенностях и вероятностях. В тот год он сделал свои последние важнейшие работы по квантовой механике, но одновременно у него возникло чувство неудовлетворенности ею. Он упрямо критиковал то, что называл неполнотой квантовой механики, и пытался встроить ее в теорию единого поля. В последующие три десятилетия он будет работать над несколькими незавершенными уравнениями, начертав их в последний раз в 1955 году, уже на смертном одре.
Но и в те тридцать лет, когда он был революционером, и в последующие тридцать, когда стал ретроградом, Эйнштейн был последователен в своем стремлении остаться невозмутимым одиночкой, которому комфортно всегда оставаться при своем особом мнении. Независимый в своих идеях, он слушался только своего воображения, которое рвалось за пределы общепринятых истин. Он принадлежал к редкой породе благоговейных бунтарей, им руководила вера в Бога, не играющего в кости, то есть не позволяющего событиям происходить случайно, и эту веру он нес легко, с улыбкой.
Нонконформизм был важной чертой характера Эйнштейна, проявлявшейся и в личных отношениях, и в политических взглядах. Хотя он и разделял социалистические идеи, но был слишком большим индивидуалистом, чтобы чувствовать себя комфортно в условиях излишнего контроля государства или централизованной власти. Его дерзость, которая сослужила ему хорошую службу в юности, когда он был молодым ученым, стала хорошей прививкой от национализма, милитаризма и всего, что основывалось на стадном чувстве. И пока он не пересмотрел из-за Гитлера свои геополитические “уравнения”, Эйнштейн оставался стихийным пацифистом, осуждавшим войны.
Его теории охватывают широкий круг областей современной науки, имеющих дело и с бесконечно малыми, и бесконечно большими величинами – от излучения фотонов до расширения космоса. И через столетие после его великих триумфальных открытий мы все еще живем во Вселенной, устроенной по законам Эйнштейна, один из которых – теория относительности – управляет всем на макроуровне, а другой – квантовая механика – на микроуровне, причем последняя выстояла, несмотря на то что продолжает приводить в замешательство.
Его открытия лежат в основе всех современных технологий. И фотоэлементы, и лазеры, и ядерная энергия, и волоконная оптика, и космические путешествия, и даже полупроводники – все это основывается на его теориях. Он написал письмо Франклину Рузвельту, предупреждая его о возможности создания атомной бомбы, и, когда мы воображаем себе атомный гриб, в нашем сознании возникают буквы его уравнения, связывающего энергию и массу.
Путь Эйнштейна к славе начался с того момента, когда его предсказания о том, как гравитация искажает ход луча света, подтвердились при измерениях во время затмения 1919 года. С этого началась его известность, он стал научной суперновой и иконой сторонников гуманизма и вообще одним из самых известных людей на планете. Публика серьезно размышляла над его теориями, возвела его в ранг гения и канонизировала в качестве светского праведника.
Но возникает вопрос: если бы у него не было этого ореола пышных волос и этого пронзительного взгляда, стал ли бы он и тогда изображаться на всех плакатах? В качестве мысленного эксперимента предположим, что он выглядел бы как Макс Планк или Нильс Бор. Остался ли бы он в нашей памяти таким же простым научным гением? Или же все равно попал бы в пантеон, в котором обитают Аристотель, Галилей и Ньютон?[5]
Полагаю, верно второе. Его работы имели очень специфический характер, индивидуальный почерк, который позволял их отличать от других работ, подобно тому как Пикассо – это всегда Пикассо, и он отличим от других художников. Эйнштейн давал волю своему воображению и распознавал важнейшие принципы с помощью мысленных экспериментов, а не методичного изучения экспериментальных результатов. Теории, которые в результате появлялись, временами были удивительными, таинственными и противоречащими интуиции. Но в них делались выводы, которые могли захватить воображение обычных людей: относительность пространства и времени, Е = mc, изгиб световых лучей и искривление пространства. Простота и человечность добавляли харизматичности его личности. Его внутренняя обособленность гармонировала со смирением, которое было следствием того благоговения, которое он испытывал к Природе. Он мог быть черств и равнодушен к близким людям, но в отношении человечества в целом он испытывал истинно добрые чувства и искренне ему сочувствовал.
Но при всей популярности и кажущейся доступности работ Эйнштейна они сформировали ощущение, что современная физика – это то, что обычные люди не могут воспринять (по словам профессора Гарварда Дадли Хершбаха, “сфера деятельности экспертов-жрецов”[6]). Так было не всегда. И Галилей, и Ньютон были величайшими гениями, но их описание мира, в котором царила детерминированность и простые причинно-следственные связи, большинство мыслящих людей могло воспринять. В XVIII веке, веке Бенджамина Франклина, и в XIX веке, веке Томаса Эдисона, образованный человек мог считать себя немного знакомым с научными достижениями и даже по-любительски заниматься аукой.
Сейчас, учитывая непростые задачи, которые ставит XXI век, нужно по возможности восстанавливать популярность научной деятельности. Это не означает, что каждый крупный литератор должен прослушать упрощенный курс физики или что каждый юрист – специалист в области корпоративного права должен понимать квантовую механику. Скорее это означает, что понимание научной методики было бы полезно для ответственных членов гражданского общества. Самое важное, чему нас учит наука, – взаимосвязь между общими теориями и реальными фактами. Это как раз то, что хорошо демонстрирует опыт жизни Эйнштейна.
Кроме того, восхищение величием науки всегда присуще членам здорового общества. Это помогает нам сохранить детскую способность удивляться таким простым вещам, как падение яблок и лифтов, – способность, которая была свойственна Эйнштейну и другим великим физикам-теоретикам[7].
Вот почему стоит изучать наследие Эйнштейна. Наука вдохновляет и воодушевляет, ее миссия благородна, о чем нам напоминают жизнеописания ее героев. В конце жизни Эйнштейна чиновники департамента просвещения штата Нью-Йорк попросили сказать, на чем следует сделать акцент в школьном обучении. Он ответил: “При изучении истории нужно подробно обсуждать тех людей, которые принесли человечеству пользу благодаря независимости их характеров и суждений”[8]. Сам Эйнштейн вполне вписывается в эту категорию.
Сейчас, когда расставляются новые акценты, перед лицом глобальной конкуренции в области научного и математического образования нужно обратить внимание и на другую часть ответа Эйнштейна: “Критические замечания студентов нужно принимать без раздражения. Приобретение знаний не должно задушить независимость мышления студента”. Побеждает в глобальном соревновании не то государство, в школах которого хорошо учат таблицу умножения или периодическую таблицу элементов, а то, в школах которого стимулируют творческий подход и воображение.
И здесь, как мне кажется, лежит и разгадка уникальности Эйнштейна, и урок, который он преподал нам своей жизнью. В ранние студенческие годы он никогда не занимался зубрежкой. Позже, когда он стал физиком-теоретиком, успех к нему пришел не из-за его выдающихся мыслительных способностей, а из-за необычайной силы воображения и креативности. Он смог вывести сложные уравнения, но главное – он понимал: математика – это язык, который природа использует для описания своих чудесных тайн. И он мог представить, как уравнения отражают реальность, в своем воображении. Например, как уравнения электромагнитного поля, открытые Джеймсом Клерком Максвеллом, описывают то, что увидит мальчик, оседлавший световой луч. Однажды он заметил: “Воображение важнее знаний”[9].
Этот подход требовал от него нонконформизма. “Да здравствует нахальство! Это мой ангел-хранитель в этом мире” – так он торжественно объявил любовнице, впоследствии ставшей его женой. Через много лет, когда все подумали, что его нежелание принять квантовую механику вызвано тем, что он потерял чутье, он сетовал: “Судьба, наказывая меня за презрение к авторитетам, сделала авторитетом меня самого”[10].
Его успех обусловлен тем, что он подвергал сомнению общепринятые точки зрения, не преклонялся перед авторитетами и удивлялся чудесам, которые остальные принимали как данность. Это привело к тому, что он выработал систему моральных и политических воззрений, основанных на уважении свободы мысли, свободы духа и свободы проявления индивидуальности. Тирания вызывала у него омерзение, а толерантность он воспринимал не только как добродетель, но и как необходимое условие существования креативного общества. “Важно содействовать воспитанию индивидуальности, – говорил он, – поскольку только индивидуум может генерировать новые идеи”[11].
Выработав в себе это мировоззрение, Эйнштейн стал бунтарем, восхищенным гармонией природы, в котором воображение и мудрость сочетались в идеальной пропорции, и это позволило ему изменить наши представления о Вселенной. Эти черты стали жизненно необходимыми в наш век глобализации, когда успех зависит от креативности, но они были не менее важны и в начале XX столетия, когда Эйнштейн работал над тем, чтобы приблизить современную эпоху.
Майя, три года, и Альберт, пять лет
Глава вторая Детство
1879–1886
Швабия
Он медленно учился говорить. Впоследствии он вспоминал: “Мои родители были настолько обеспокоены этим, что консультировались с врачом”. Даже когда он начал произносить слова – где-то в возрасте двух лет, – у него выработалась странная привычка. Когда он хотел что-то сказать, он сначала пробовал сказать это про себя, повторяя шепотом до тех пор, пока фраза не начинала звучать достаточно хорошо, чтобы быть произнесенной вслух. Это послужило поводом служанке семьи окрестить его Der Depperte – тупицей, а остальные члены его семьи считали его “почти отсталым”. Обожавшая его младшая сестра говорила, что это очень тревожило всех. Она вспоминала: “Каждое предложение, которое он произносил, независимо от того, насколько оно было сложным, он сначала проговаривал про себя, медленно шевеля губами. У него были такие сложности с языком, что окружающие думали – он никогда не выучится говорить”[12].
Его медленное развитие сочеталось с дерзостью и бунтарством по отношению к учителям. Дошло до того, что один учитель выгнал его, а другой объявил, что ничего путного из него не выйдет – этот случай стал историческим анекдотом. Эти черточки сделали Альберта Эйнштейна покровителем всех рассеянных школьников[13]. Но эти же черты (по крайней мере, так он позднее предполагал) помогли ему стать самым креативным научным гением современности.
Его дерзкое презрение к авторитетам привело к тому, что он подвергал сомнению общепризнанные истины и пересматривал их под таким углом зрения, под которым хорошо образованные сотрудники научных институтов никогда их не рассматривали. А что касается замедленного развития речи, он пришел к заключению, что это позволило ему удивляться обыденным явлениям, в то время как другие принимали их как данность. Эйнштейн однажды объяснил это так: “Когда я спрашиваю себя, как такое случилось, что именно я открыл теорию относительности, ответ, как мне кажется, в том, что тут сыграли роль следующие обстоятельства. Обычно взрослый никогда не забивает себе голову вопросами о пространстве и времени. Это вещи, которые он воспринял в детстве. Но я развивался так медленно, что начал задаваться вопросами о пространстве и времени тогда, когда уже вырос. Поэтому я погрузился в проблему более глубоко, чем обычный ребенок”[14].
Проблема развития Эйнштейна преувеличивалась, вероятно, даже им самим, поскольку имеются письма обожавших его дедушки и бабушки, из которых понятно, что он был таким же умненьким и милым, как все внуки. Но на протяжении всей жизни Эйнштейн страдал легкой формой эхолалии, проявлявшейся в том, что он проговаривал фразы про себя по два-три раза, особенно если они озадачивали его. Вообще он предпочитал думать образами, что особенно заметно проявлялось в его знаменитых мысленных экспериментах, таких как наблюдение за молнией из движущегося поезда или за силой тяжести в падающем лифте. Позже он скажет психологу: “Я очень редко думаю словами. Сначала мне приходит мысль, а уже потом я могу попытаться ее выразить”[15].
По линиям обоих родителей Эйнштейн был потомком еврейских купцов и мелких торговцев, которые, селясь в швабских деревеньках на юго-западе Германии, по крайней мере в течение двух столетий скромно зарабатывали себе на жизнь. С каждым поколением они все больше ассимилировались (или, по крайней мере, им так казалось) и врастали в любимую ими немецкую культуру. Хотя они и были евреями по культурной принадлежности и родовому инстинкту, к иудаизму и его ритуалам они проявляли слабый интерес.
Эйнштейн постоянно отрицал роль наследия предков в формировании его личности. В конце жизни он сказал своему другу:
“Расследование [влияния] моих предков ни к чему не привело”[16]. Это не совсем верно. Ему повезло, что его родственниками были интеллигентные и независимо мыслящие люди, традиционно ценившие образование. И безусловно, на его жизнь, как в прекрасных ее проявлениях, так и в трагических, повлияла его принадлежность к еврейству, в религиозной, интеллектуальной и исторической традиции которого было ощущение себя странниками и чужаками. Конечно, то, что ему случилось жить в Германии в начале ХХ столетия, сделало его больше странником и чужаком, чем ему бы хотелось, но и это тоже сыграло ключевую роль в том, кем он стал и какую роль он сыграл в мировой истории.
Отец Эйнштейна Герман родился в швабской деревушке Бухау в 1847 году, когда члены местной процветающей еврейской общины только-только добились права свободно выбирать любую профессию. Герман продемонстрировал “заметную склонность к математике”[17], и у родителей была возможность послать его учиться в старшие классы школы в Штутгарт, расположенный в семидесяти пяти километрах к северу от Бухау. Но в университет родители послать его уже не смогли, впрочем, большинство университетов в любом случае были закрыты для евреев, так что ему пришлось вернуться домой в Бухау и заняться торговлей.
Через несколько лет, когда в конце XIX века пошла массовая миграция немецких евреев из сельской местности в промышленные центры, Герман с родителями перебрался в более богатый Ульм, расположенный в тридцати пяти километрах от Бухау и гордящийся своим пророческим девизом Ulmenses sunt mathematici (“Жители Ульма – математики”)[18].
Там Герман стал партнером в компании своего кузена, занимавшейся изготовлением перин. Его сын потом напишет, что “он был необычайно дружелюбным, мягким и мудрым”[19]. Из-за своей мягкости, переходящей в безволие, Герман оказался неумелым бизнесменом и всю жизнь в финансовых делах оставался непрактичным. Но его мягкость, как оказалось, помогла ему стать замечательным семьянином и хорошим мужем для своей волевой жены. Женился он в двадцать девять лет на восемнадцатилетней девушке Паулине Кох.
Отец Паулины Юлиус Кох сколотил значительное состояние, будучи перекупщиком зерна и поставщиком королевского дома Вюртембергов. Паулина унаследовала отцовский практицизм, а суровый отцовский нрав у нее уравновешивался остроумием, временами довольно едким. Она любила подтрунивать над людьми, иногда это было смешно, а иногда могло и ранить (черта, унаследованная ее сыном). Так или иначе, брак Германа и Паулины был счастливым, и сильная воля жены “абсолютно гармонично”[20] сочеталась с пассивностью мужа.
Первый ребенок родился в 11:30 в пятницу, 14 марта 1879 года, в Ульме, который незадолго до этого вместе с остальной Швабией присоединился к Германской империи. Герман и Паулина собирались назвать сына Авраамом – в честь деда по отцу. Но, как позже заметил Эйнштейн, пришли к заключению, что имя звучит “слишком по-еврейски”[21]. И тогда они оставили первую букву А и назвали его Альбертом Эйнштейном.
Мюнхен
В 1880 году, всего через год после рождения Альберта, перинный бизнес отца прогорел, и его брат Якоб, который открыл в Мюнхене газо- и электроснабжающую компанию, уговорил Германа перебраться туда. Якоб, младший из всех детей, в отличие от Германа смог получить высшее образование и стал дипломированным инженером. Компания боролась за контракты на поставку генераторов и обеспечение электричеством муниципалитетов в южной Германии, причем Якоб отвечал за техническую часть контрактов, а Герман – за продажи, используя свои очень небольшие навыки по этой части и, что, возможно, гораздо более важно, обеспечивая компанию кредитами от семьи жены[22].
Паулина и Герман в ноябре 1881 года родили второго и последнего ребенка – дочь, которую нарекли Марией, но всю свою жизнь звали уменьшительным именем Майя. Альберта убедили, что сестричка – чудесная игрушка, которой он будет наслаждаться, и поэтому, когда ему показали ее в первый раз, его первой реакцией при взгляде на нее было недоумение: “Да, но где же у нее колеса?”[23] Это, возможно, не самый адекватный вопрос, но он показал, что на третьем году жизни языковые трудности уже не мешали ему произносить некоторые запоминающиеся фразы. Несмотря на несколько детских ссор, Майя станет для своего брата самым духовно близким другом.
Эйнштейны поселились в предместье Мюнхена в комфортабельном доме с элегантным садом, в котором росли большие деревья. Так что по крайней мере большая часть детства Альберта прошла в этом вполне респектабельном буржуазном окружении. Мюнхенская архитектура отражала вкус безумного короля Людвига II (1845–1886), город изобиловал церквями, художественными галереями и концертными залами, построенными, чтобы создать нужные условия работы для главного жителя города – Рихарда Вагнера. К 1882 году – времени переезда в Мюнхен семейства Эйнштейнов – население города составляло 300 тыс. жителей, из которых 85 % были католиками, а 2 % – иудеями. В Мюнхене организовали первую в Германии электрическую выставку, и на улицах города были установлены электрические фонари.
Во внутреннем садике Эйнштейнов часто бывало шумно: там играли двоюродные братья и сестры, а также другие знакомые дети. Но Альберт избегал их игр и вместо этого “занимался более спокойными делами”. Одна гувернантка прозвала его “занудой”. Он вообще был одиночкой и склонность к одиночеству лелеял в себе всю жизнь. Но это была особого рода отстраненность, сочетавшаяся с тягой к дружбе и интеллектуальному общению. Как утверждает Филипп Франк, коллега Эйнштейна на протяжении многих лет, “с самого начала он старался отгородиться от детей его возраста и погрузиться в сны наяву и глубокие размышления”[24].
Он любил возиться с головоломками, сооружать фигуры из детских конструкторов, играть с игрушечной паровой машиной, которую подарил ему дядя, и строить карточные домики. Майя рассказывала, что Эйнштейн мог строить конструкции из карт высотой в четырнадцать этажей. В ее утверждении о том, что “настойчивость и упорство, очевидно, уже тогда стали чертами его характера”, скорее всего, много правды, даже если учесть, что это воспоминания младшей сестры, боготворившей брата.
Но в раннем детстве он был склонен к истерикам. Майя вспоминала: “В такие моменты его лицо становилось совершенно желтым, кончик носа белел, и он полностью терял контроль над собой”. Однажды в возрасте пяти лет он схватил стул и швырнул его в учителя, так что тот убежал и больше не появлялся. В голову Майи тоже нередко летели всякие твердые предметы, Позже она шутила: “Если у вас брат-интеллектуал, ваш череп приобретает прочность”. В отличие от настойчивости и упорства истерики с возрастом ушли[25].
Говоря языком психологов, способность юного Эйнштейна к систематизации (то есть к определению того, какими законами управляется система) были намного выше его способности сопереживать (то есть чувствовать то, что чувствуют другие люди, и не оставаться безразличным к этому). И кое у кого возникал вопрос, не было ли это проявлением симптомов какого-либо нарушения развития[26]. Однако важно заметить, что, несмотря на его отчужденную, а временами бунтарскую манеру поведения, он тем не менее обладал способностью заводить близких друзей и сопереживать и своим коллегам, и человечеству в целом.
Когда ребенок в раннем детстве открывает для себя какие-то важные вещи, он обычно позже об этом открытии забывает. Но для Эйнштейна важное открытие, изменившее всю его жизнь, произошло, когда ему было 4–5 лет, и оно навсегда запечатлелось в его мозгу – и в истории науки.
Однажды он лежал в постели больной, и отец принес ему компас. Позже он вспоминал, что пришел в такое возбуждение, увидев, как таинственно ведет себя стрелка компаса, что весь задрожал и похолодел. Тот факт, что магнитная стрелка двигалась как будто под действием какого-то скрытого силового поля, а не под действием обычного механического контакта или прикосновения, вызвал у него ощущение чуда, пронесенное им через всю его жизнь.
“Я помню еще и сейчас – или мне кажется, что я помню, – что тот случай произвел на меня глубокое и длительное впечатление и надолго запомнился, – написал он в одном из своих многочисленных воспоминаний об этом эпизоде, – за этими вещами должно было скрываться что-то еще, глубоко скрытое”[27][28].
Деннис Овербай в своей книге “Влюбленный Эйнштейн” заметил: “Это символичная история. Маленький мальчик трепещет, чувствуя невидимый порядок, скрывающийся за хаотической реальностью”.
Эта история рассказывается и в фильме “Коэффициент интеллекта”, в котором Эйнштейн в исполнении Уолтера Маттау носит на шее компас. Этот же эпизод является центральным и в детской книжке “Спасти компас Альберта”, автор которой – Суламифь Оппенгейм, чей свекр услышал об этой истории от самого Эйнштейна в 1911 году[29].
Эйнштейн был загипнотизирован тем, как стрелка компаса безропотно повинуется невидимому полю, и отсюда возникла его длящаяся всю жизнь приверженность теориям поля как способу описания законов природы. В теориях поля для описания того, как условия в одной точке пространства воздействуют на материю или поле в другой точке, используются такие математические понятия, как числа, векторы или тензоры. Например, в гравитационном или электромагнитном поле возникают силы, которые могут воздействовать на частицу в любой точке, а уравнения теории поля показывают, как они изменяются при движении в этих полях. Первый раздел его великой статьи 1905 года, посвященной специальной теории относительности, начинается с рассмотрения воздействия электрических и магнитных полей; его общая теория относительности основывается на уравнениях, описывающих гравитационное поле, а в самом конце жизни он упорно выводил новые уравнения поля в надежде, что они явятся базой для “теории всего”. Как заметил историк науки Джеральд Холтон, Эйнштейн считал “классическую концепцию поля величайшим вкладом, повлиявшим на сам дух науки”[30].
Его мать, дипломированная пианистка, примерно тогда же тоже сделала ему подарок, и тоже на всю жизнь. Она организовала ему уроки игры на скрипке. Сначала его раздражало механическое повторение упражнений, но потом, когда он стал играть сонаты Моцарта, музыка наполнилась для него и волшебством, и эмоциями. Он говорил: “Я думаю, что любовь – учитель лучший, чем чувство долга, по крайней мере для меня”[31].
Вскоре он стал исполнять произведения Моцарта для скрипки и фортепиано вместе с матерью, аккомпанировавшей ему на рояле. Позже он скажет другу: “Музыка Моцарта такая чистая и красивая, что я чувствую в ней отражение красоты самой Вселенной”. И добавит слова, отражающие его восприятие не только музыки Моцарта, но и математики и физики: “Конечно, как и все по-настоящему красивое, его музыка – это чистота и простота”[32].
Музыка была не просто развлечением. Она помогала ему думать. “Когда ему казалось, что он зашел в тупик или возникала серьезная трудность в работе, – вспоминал его сын Ганс Альберт, – он уходил в музыку и там решал все свои проблемы”. В частности, скрипка сыграла важную роль в годы, проведенные в одиночестве в Берлине, когда он сражался с общей теорией относительности. Его друг вспоминал: “Когда он размышлял над сложными проблемами, он часто поздно ночью на своей кухне играл на скрипке, импровизировал. Потом, прервав исполнение, он неожиданно возбужденно объявлял: «Я понял!» Как будто во время музицирования решение проблемы приходило к нему через озарение”[33].
Его преклонение перед музыкой, особенно музыкой Моцарта, могло быть отражением его восхищения гармонией природы. Как заметил Александр Мошковский, который написал в 1920 году биографию Эйнштейна, основанную на беседах с ним, “ощущения музыки, природы и Бога слились в его душе, определив его сложное восприятие реальности, некую моральную целостность, которая проявлялась на протяжении всей его жизни”[34].
На всю жизнь Альберт Эйнштейн сохранил детскую интуицию и благоговение перед чудесными явлениями природы: магнитным полем, гравитацией, инерцией, ускорением, лучами света – всеми вещами, которые взрослым людям кажутся обыденными. Он сохранил способность обдумывать одновременно две мысли, удивлялся, когда они вступали в противоречие друг с другом, и приходил в восхищение, когда понимал, что в их основе лежат общие закономерности. “Люди вроде нас с тобой никогда не станут взрослыми, – написал он позднее своему другу, – мы никогда не перестанем, словно любопытные дети, удивляться великому таинству, в котором мы, родившись, оказались”[35].
Школа
В старости Эйнштейн будет рассказывать анекдот о своем дяде-агностике, который единственный из всей семьи ходил в синагогу. Когда его спрашивали, зачем он это делает, он отвечал: “Мало ли что!” А родители Эйнштейна, напротив, были “совершенно нерелигиозны” и не чувствовали желания подстраховаться. Они не соблюдали кашрут и не ходили в синагогу, а отец Эйнштейна и вовсе называл еврейские обычаи “древними суевериями”[36].
Соответственно, когда Альберту исполнилось шесть лет и он должен был пойти в школу, его родителей не волновало, что поблизости от дома нет ни одной еврейской школы, и его отправили в ближайшую большую католическую Petersschule[37]. Поскольку он был единственным евреем среди семидесяти учеников, он вместе со всеми прошел обычный курс католической религии, и в конце концов она ему очень понравилась. Действительно, у него так хорошо шло изучение католицизма, что он в этом предмете помогал своим одноклассникам[38].
Однажды учитель на урок принес большой гвоздь и сказал: “Гвозди, которыми Иисуса прибивали к кресту, выглядели так же”[39].
Несмотря ни на что, Эйнштейн позднее говорил, что не чувствовал дискриминации со стороны учителей. Он писал: “Учителя были либеральными и не различали учеников по конфессиональному признаку”. Но, что касается соучеников, тут ситуация была иной. По его воспоминаниям, “среди учеников начальной школы преобладали антисемитские настроения”.
Из-за насмешек, которым он подвергался по дороге в школу и из школы по причине его “расовых особенностей, о которых дети имели странное представление”, он еще острее чувствовал себя чужаком, и это чувство не оставляло его в течение всей его жизни. Он вспоминал: “По дороге в школу на меня часто нападали и оскорбляли, но по большей части не слишком злобно. Тем не менее этого оказалось достаточно, чтобы даже в детстве у меня развилось четкое ощущение, что я чужак”[40].
Когда Эйнштейну исполнилось девять лет, он перешел в среднюю школу недалеко от центра Мюнхена – гимназию Луитпольда, известное своей свободой от предрассудков заведение с углубленным изучением математики и других наук, а также латыни и греческого. Кроме того, в школе имелся специальный учитель для обучения всех учащихся-евреев религиозным традициям иудаизма.
Несмотря на секуляризм родителей, а может быть, именно из-за него, у Эйнштейна внезапно развилась страстная тяга к иудаизму. Его сестра вспоминала: “Он был настолько пылок в своих чувствах, что, по его собственному признанию, вникал во все подробности канонов иудаизма. Он не ел свинины, питался по законам кашрута и соблюдал шабат. Все это было достаточно сложно, учитывая, что остальные члены семьи к таким проявлениям религиозных чувств были не просто равнодушны – их равнодушие граничило с презрением. Он даже сочинил собственный гимн, прославляющий Бога, и напевал его про себя по дороге из школы домой”[41].
Существует широко распространенный миф о том, что Эйнштейн в школе плохо успевал по математике. В десятках книг и на сотнях веб-сайтов такое утверждение часто сопровождается словами “как известно” и призвано успокоить неуспевающих студентов. Эта история даже была напечатана в известной газетной колонке Рипли “Хотите верьте, хотите нет!”.
Увы, в детстве Эйнштейна историки могут найти много пикантных историй, но этот апокриф не из их числа. В 1935 году один раввин из Принстона показал ему текст колонки Рипли, озаглавленной: “Величайший из ныне живущих математиков провалился на экзамене по математике”. Эйнштейн рассмеялся. “Я никогда не проваливал экзамена по математике, – возразил он вежливо, – когда мне не было еще и пятнадцати лет, я уже знал дифференциальное и интегральное исчисление”[42].
На самом деле он был замечательным учеником, по крайней мере в интеллектуальном смысле. В начальной школе он был лучшим в классе. “Вчера Альберт получил свои отметки, – писала его мать тете, когда ему было семь лет, – опять он стал лучшим”. В гимназии он невзлюбил механическое заучивание языков, таких как латынь и греческий, что усугублялось, как он позднее выразился, “плохой памятью на слова и тексты”. Но и по этим предметам он получал высшие оценки. Через много лет, когда праздновалось пятидесятилетие Эйнштейна и повсюду рассказывали истории о том, как плохо великий гений успевал в гимназии, тогдашний директор гимназии поставил точку в дискуссии, опубликовав письмо, из которого стало ясно, насколько хороши на самом деле были его оценки[43].
Что касается математики, он не только не был неуспевающим, но его знания “намного превосходили школьный уровень”. Его сестра вспоминала, что “к двенадцати годам у него проявилась склонность к решению сложных задач по прикладной арифметике”, и он решил попробовать, сможет ли он самостоятельно выучить геометрию и алгебру. Его родители купили ему учебники для следующих классов, чтобы он мог их проштудировать во время летних каникул. И он не только выучивал доказательства из этих учебников, но и придумывал новые теории и пытался самостоятельно доказать их. “Игры и товарищи по играм были забыты, – писала она, – целыми днями напролет он сидел в одиночестве, пытаясь найти решение, и не сдавался, пока не находил его”[44].
Благодаря его дяде Якобу, инженеру, он узнал об удовольствии, которое могут доставить алгебраические вычисления. “Это веселая наука, – объяснял Якоб, – животное, на которое мы охотимся и пока не можем поймать, временно обозначим как х и будем охотиться до тех пор, пока его не подстрелим”. Он продолжал занятия и задавал мальчику все более трудные задачи, при этом, как вспоминала Майя, “добродушно сомневаясь, что тот сможет решить их”. А когда Эйнштейн находил решение, как это неизменно и бывало, он “казался переполненным радостью и уже тогда знал, в каком направлении ведут мальчика его таланты”.
Среди теорем, которые подбросил Альберту дядя Якоб, была теорема Пифагора (квадрат длины гипотенузы в прямоугольном треугольнике равен сумме квадратов длин катетов). “Приложив массу усилий, я «доказал» теорему, используя подобие треугольников, – вспоминал Эйнштейн, – мне казалось «очевидным», что отношение сторон в прямоугольном треугольнике полностью задается одним острым углом”[45]. Это еще одна иллюстрация того, как он мыслил образами.
Сестра Майя, гордившаяся старшим братом, называла доказательство Эйнштейном теоремы Пифагора “совершенно оригинальным и новым”. Хотя, возможно, оно и было новым для Эйнштейна, трудно представить, что его подход был совершенно оригинальным. Наверняка он был похож на стандартный, основывающийся на пропорциональности сторон подобных треугольников. Тем не менее этот пример демонстрирует, как юный Эйнштейн восхищался возможностью доказательства элегантных теорем с помощью простых аксиом, а также развеивает миф о том, что он провалился на экзамене по математике. “Когда я был двенадцатилетним мальчиком, я пришел в возбуждение, обнаружив, что можно найти решение задачи самостоятельно, не прибегая к помощи чужого опыта, – рассказал он спустя годы репортеру из газеты, выходившей в одной из школ в Принстоне, – я все больше и больше убеждался, что природу можно описать как сравнительно простую математическую структуру”[46].
Больше других к интеллектуальным занятиям Эйнштейна подтолкнул бедный студент-медик, который приходил в дом к Эйнштейнам раз в неделю на семейный обед. Это старинный еврейский обычай – делить субботнюю трапезу с бедным учащимся иешивы. Но Эйнштейны слегка изменили традиции и звали вместо этого студента-медика, и не по субботам, а по четвергам. Его звали Макс Талмуд (позднее, когда он переехал в США, он сменил фамилию на Талмей). Его еженедельные визиты к Эйнштейнам начались, когда ему был двадцать один год, а Альберту – десять. “Это был симпатичный темноволосый парнишка, – вспоминал Талмуд, – и все эти годы я никогда не видел, чтобы он читал какую-либо легкую книжицу. Не видел я его и в компании товарищей-одноклассников или других мальчишек его возраста”[47].
Талмуд приносил ему научные книги, включая книги из иллюстрированной серии “Популярные книги по естественной истории”, про которые Эйнштейн говорил, что он “читал эти книги, затаив дыхание”. Двадцать один небольшой томик был написан Аароном Бернштейном, причем особый упор делался на взаимосвязь физики и биологии. Автор очень подробно описывал научные эксперименты, проводившиеся в то время, особенно те, что велись в Германии[48].
Во введении к первому тому Бернштейн рассказывал о скорости света – очевидно, эта тема весьма интересовала автора. Он возвращался к ней и в последующих томах, посвятил ей одиннадцать очерков в восьмом томе. Судя по тем мысленным экспериментам, которые Эйнштейн проводил при создании своей теории относительности, книги Бернштейна, по-видимому, оказали на него влияние.
Например, Бернштейн просил читателей вообразить, что они едут в скором поезде. Если пуля влетит в окно, будет казаться, что она летела под углом, поскольку поезд сдвинулся за то время, что пуля летела от окна, в которое влетела, к окну с другой стороны. Похожее явление должно происходить при движении луча света через телескоп, из-за того что Земля летит через космическое пространство с большой скоростью. Что удивительно, говорил Бернштейн, так это то, что во всех экспериментах наблюдался один и тот же эффект независимо от того, с какой скоростью движется источник света. В предложении, которое, кажется, произвело на Эйнштейна впечатление, учитывая его сходство с его более поздним знаменитым заключением, Бернштейн утверждал: “Поскольку любой свет, как оказалось, распространяется абсолютно с одной и той же скоростью, закон, описывающий скорость света, может быть назван наиболее общим законом природы”.
В другом томе Бернштейн пригласил своих юных читателей в воображаемое путешествие по космосу. Способ передвижения – на волне электромагнитного поля. Его книги излучали радостное восхищение перед научными исследованиями, а иногда там встречались и пафосные пассажи вроде, например, такого (посвященного правильному предсказанию положения новой планеты Уран): “Слава этой науке! Слава людям, сделавшим это! И хвала человеческому разуму, более зоркому, чем человеческий глаз”[49].
Бернштейн, как позже и Эйнштейн, пытался объединить все силы природы. Например, после обсуждения того факта, что все электромагнитные явления, такие как свет, могут рассматриваться как волны, он предполагает, что это же может относиться и к гравитации. Бернштейн писал, что единство и простота лежат в основе всех концепций, основанных на нашем восприятии. Цель науки состоит в построении теорий, описывающих основы реальности. Позже Эйнштейн вспоминал это откровение, так же как и реалистический подход, который усвоил в детстве: “Там, вдалеке, был этот огромный мир, окутанный для нас великой вечной тайной и существовавший независимо от нас, людей”[50].
Через годы, когда во время первой поездки в Нью-Йорк Эйнштейн встретился с Талмудом, тот спросил, что с высоты прожитых лет Эйнштейн думает о трудах Бернштейна. “Очень хорошая книга, – сказал он, – она оказала очень большое влияние на мое общее развитие”[51].
Еще Талмуд помог Эйнштейну продолжить постигать чудеса математики, принеся ему учебник геометрии за два года до того, как этот предмет начинали изучать в гимназии. Впоследствии Эйнштейн назовет этот учебник “маленькой библией геометрии” и вспомнит о нем с благоговением: “Там содержались утверждения, например, о пересечении трех высот в треугольнике в одной точке, хотя и не очевидные, но доказанные с такой определенностью, что любые возникающие сомнения, казалось, исчезали. Эта прозрачность и определенность произвела на меня неописуемое впечатление”. Много лет спустя, читая лекцию в Оксфорде, Эйнштейн заметил: “Если Евклиду не удалось зажечь ваш юношеский энтузиазм, значит, вы не рождены быть учеными”[52].
В ту пору, когда Талмуд приходил в их дом каждый четверг, Эйнштейну нравилось показывать ему задачи, которые он решил за предыдущую неделю. Вначале Талмуд мог помочь ему, но вскоре ученик превзошел своего учителя. Талмуд вспоминал: “Уже через небольшое время – примерно через несколько месяцев – он проработал весь учебник. После этого он занялся высшей математикой…. Вскоре его математический гений поднял его на такие высоты, что я уже не мог за ним угнаться”[53].
И тогда восхищенный успехами Эйнштейна студент-медик пошел дальше и познакомил его с философией. “Я рекомендовал ему почитать Канта, – вспоминал он, – и хотя в это время он был ребенком – ему только исполнилось тринадцать лет, – книги Канта, непонятные простым смертным, ему казались ясными”. На какое-то время Кант стал любимым философом Эйнштейна, а его “Критика чистого разума” в конце концов подвела его к тому, что он углубился в чтение трудов Давида Юма, Эрнста Маха и других авторов по проблемам познаваемости реальности.
Увлечение Эйнштейна наукой привело его в возрасте двенадцати лет – как раз тогда, когда мальчики готовятся к бар-мицве[54], – к неожиданному разочарованию в религии. Бернштейн в своих научно-популярных книгах попытался примирить науку и религиозные чувства. Он использовал следующее выражение:
“Религиозные чувства вырастают из туманных представлений человеческих существ о том, что все сущее, включая людей, возникло никак не в результате игры случайностей, а как результат действия закономерностей, которые и составляют основную причину всего сущего”.
Позднее Эйнштейн придет к похожему заключению, но тогда его отход от веры был радикальным. “Читая научные книги, я вскоре пришел к убеждению, что многие библейские рассказы не могут быть правдивыми. Как следствие, в моей голове возникла фанатичная вакханалия свободомыслия, сочетающаяся с ощущением того, что власти сознательно обманывают молодежь и подсовывают им ложь; это произвело сокрушительное впечатление”[55].
В результате Эйнштейн всю остальную жизнь избегал участия в религиозных ритуалах. Как позже отметил его друг Филипп Франк, “у Эйнштейна росло чувство отвращения к ортодоксальной иудейской и всем другим традиционным религиям и богослужениям, и от этого чувства он никогда не избавился”. Однако он с детства сохранил религиозное чувство глубокого преклонения перед красотой и гармонией того, что он называл Божественным разумом, воплощенным в создании Вселенной и ее законов[56].
Бунт Эйнштейна против религиозных догм в значительной мере определил его общее критическое отношение к традиционным истинам. Он подвергал сомнению любые догмы и авторитеты, и это повлияло как на его занятия наукой, так и на политические взгляды. Позже он скажет: “Подозрительное отношение к авторитетам любого рода выросло из этого опыта и уже никогда больше не покидало меня”. И в самом деле, до конца его дней именно эта, удобная ему позиция нонконформиста определяла как его образ мыслей в науке, так и его общественную позицию.
Позже, когда он уже был признанным гением, он мог с присущим ему милым изяществом заставить всех считаться со своим своеволием. Но, когда он был еще только нахальным учеником мюнхенской гимназии, это не выглядело таким милым. Согласно воспоминаниям его сестры, “он в школе был несносен”. Метод обучения, основанный на механическом зазубривании и раздражении от вопросов, был ему отвратителен. “Военная муштра и систематические требования уважать начальство, по-видимому, призванные приучать детей с раннего возраста к военной дисциплине, были особенно неприятны”[57].
Эта прусская приверженность к прославлению милитаристского духа чувствовалась даже в Мюнхене, где баварский дух ослаблял строгую регламентацию. Дети обожали играть в солдатики, и, когда мимо проходили отряды военных с трубами и барабанами, ребятишки выбегали на улицы, чтобы присоединиться к параду и промаршировать вместе с солдатами в ногу. Но это все было не для Эйнштейна. Однажды, увидев эту картину, он заплакал и сказал родителям:
“Когда вырасту, я не хочу быть таким, как эти бедняги”. Позднее он объяснял: “Если человеку доставляет удовольствие маршировать в ногу под музыку, этого достаточно, чтобы оттолкнуть меня от него. Значит, он получил свой замечательный мозг по ошибке”[58].
Неприятие им всех видов строгой дисциплины делало его обучение в гимназии все более трудным и неэффективным. Он жаловался, что механическое заучивание в гимназии “очень походило на муштру в прусской армии, где дисциплины добивались бесконечным повторением бессмысленных команд”. В поздние свои годы он сравнит своих учителей с военными разных рангов. “Учителя начальной школы казались мне сержантами на строевой подготовке, – говорил он, – а учителя в гимназии – лейтенантами”. Однажды он спросил Ч. П. Сноу, английского писателя и ученого, знает ли он, что означает немецкое слово Zwang. Сноу сказал, что, вероятно, знает: это принуждение, ограничение, обязательство, насилие. Но почему Эйнштейн спрашивает? И тот ответил, что в мюнхенской школе он нанес свой первый удар по Zwang и с тех пор это помогало ему определять свою позицию[59].
Скептическое отношение к азбучным истинам и стало отличительной чертой его стиля жизни. В 1901 году он писал в письме к другу отца: “Слепая вера в авторитеты – самый главный враг истины”[60].
В течение шести десятилетий его научной деятельности, и когда он участвовал в совершении квантовой революции, и позже, когда он стал ее оппонентом, этот подход помогал Эйнштейну формулировать научную позицию. “Его критическое отношение к авторитетам, возникшее в раннем возрасте и никогда полностью не исчезавшее, должно быть, оказало решающее влияние, – говорил Банеш Хоффман, работавший с Эйнштейном в последние его годы, – без этого качества он бы не выработал такую сильную независимость мышления, давшую ему мужество противостоять установившимся научным догмам и тем самым произвести революцию в физике”[61].
Это презрение к авторитетам не прибавило любви к нему у немецких “лейтенантов”, учивших его в школе. Дошло до того, что один из учителей заявил: высокомерие Эйнштейна делает его присутствие в классе нежелательным. Когда Эйнштейн стал настаивать, что никого не оскорблял, учитель ответил: “Да, это правда, но вы сидите в последнем ряду и улыбаетесь, одним своим присутствием подрывая мой авторитет перед классом”[62].
Дискомфорт, ощущаемый Эйнштейном, стремительно вел его к депрессии, а может, даже к нервному срыву, но как раз в это время в судьбе бизнеса его отца произошел резкий разворот. Крах был стремительным. Большую часть времени, пока Эйнштейн учился в школе, дела компании братьев шли вполне успешно. В 1885 году в ней было двести сотрудников, и она обеспечивала первое уличное электрическое освещение Мюнхена во время праздника “Октоберфест”[63]. В течение нескольких последующих лет она выиграла контракты на проведение электричества в Швабинге – пригороде Мюнхена с населением десять тысяч человек – с использованием газовых моторов, приводящих в движение пару динамо-машин, сконструированных Эйнштейнами. Якоб Эйнштейн получил шесть патентов на усовершенствованные дуговые лампы, автоматические прерыватели электрических цепей и электросчетчики. Компания готовилась составить конкуренцию “Сименсу” и другим процветающим тогда компаниям. Чтобы поднять деньги, братья заложили свои дома и заняли больше шестидесяти тысяч марок под 10 %, то есть влезли по уши в долги[64].
А в 1894 году, когда Эйнштейну стукнуло пятнадцать лет, компания обанкротилась, после того как проиграла конкурсы на электрификацию центрального района Мюнхена и других мест. Его родители с сестрой и дядя Якоб переехали в Северную Италию – сначала в Милан, а затем в ближайший к нему городок Павия, где, как думали итальянские партнеры компании, имелись более комфортные условия для маленьких фирм. Их элегантный особнячок был снесен, поскольку застройщик решил возвести на этом месте многоквартирный дом. Эйнштейна оставили в Мюнхене в доме дальних родственников, чтобы он окончил там три последних класса школы.
Не вполне понятно, было ли Альберту в ту печальную осень 1894 года приказано уйти из гимназии Луитпольда или ему просто вежливо дали понять, что будет лучше, если он ее покинет. Несколькими годами позже он утверждал, что учитель, который заявлял, что его “присутствие подрывает уважение к нему класса”, продолжил “выражать желание, чтобы я ушел из школы”. В более ранних воспоминаниях какого-то члена его семьи говорилось, что это было его собственным решением. “Альберт все больше склонялся к решению не оставаться в Мюнхене и для этого разработал некий план”.
Этот план включал письмо от семейного доктора, старшего брата Макса Талмуда, который написал, что Эйнштейн страдает нервным истощением. Он использовал письмо, чтобы оправдать свой уход из школы во время рождественских каникул и больше туда не возвращаться. Вместо этого он сел в поезд и отправился через Альпы в Италию, где проинформировал своих “встревоженных” родителей, что никогда не вернется в Германию. Вместо этого он пообещал, что будет учиться самостоятельно и попытается поступить в технический колледж в Цюрихе следующей осенью.
Возможно, у него была еще одна причина уехать из Германии. Если бы он остался там до семнадцати лет – а это должно было случиться через год, – ему пришлось бы пойти в армию, а о такой перспективе, как говорила его сестра, “он думал с ужасом”. Поэтому, кроме того что он объявил о том, что не вернется в Мюнхен, он вскоре попросил отца помочь ему оформить отказ от немецкого гражданства[65].
Арау
Весну и лето 1895 года Эйнштейн провел с родителями в их квартире в Павии, помогая в делах семейной фирмы. Там он приобрел опыт обращения с магнитами, катушками и электрогенераторами. То, как Эйнштейн принялся за дело, произвело впечатление на семью. Однажды у дяди Якоба возникли проблемы с расчетами новой установки, и Альберт взялся за них. “Мы с моим помощником-инженером несколько дней ломали головы над проблемой, а этот юнец всю проблему расщелкал за пятнадцать минут, – рассказывал Якоб своему другу. – Вы еще услышите о нем”[66].
В горах он смог утолить свою тягу к гордому одиночеству и целыми днями бродил по Альпам и Апеннинам, в частности, однажды совершил поход из Павии в Геную, где жил брат матери Юлиус Кох. Путешествуя по Северной Италии, он был очарован не свойственным немцам обаянием и “деликатностью” местных жителей. Его сестра вспоминала, что итальянцы с их “естественностью” резко отличались от “духовно сломленных и послушных автоматов” – жителей Германии.
Своим родителям Эйнштейн пообещал самостоятельно подготовиться к поступлению в технический колледж – Цюрихский политехнический институт[67]. Для этого он купил три тома учебника современной физики Жюля Виоля и испещрил поля своими соображениями. Как вспоминала сестра, стиль его работы продемонстрировал его способность концентрироваться. “Даже когда вокруг находилась шумная компания людей, он мог уйти в себя, сесть на диван, взять ручку и бумагу, поставить на подлокотник чернильницу и полностью погрузиться в проблему, а громкие разговоры вокруг не мешали ему, а скорее стимулировали”[68].
Тем летом в возрасте шестнадцати лет он написал свой первый очерк по теоретической физике – “Об исследовании состояния эфира в магнитном поле”. Предмет важный, учитывая, какую роль эфир сыграет в научной судьбе Эйнштейна. В то время ученые рассматривали свет исключительно как волны, так что они считали, что Вселенная должна быть заполнена всепроникающим, но невидимым веществом, в котором возникают и распространяются волны, точно так же как вода в океане – это среда, которая колеблется вверх и вниз при распространении волны. Они назвали эту невидимую среду эфиром, и Эйнштейн (по крайней мере на тот момент) принял это допущение. В своем очерке он описал это так: “Электрический ток приводит окружающий эфир в состояние мгновенного движения”.
Написанная от руки статья, состоящая из четырнадцати параграфов, перекликалась с учебником Виоля и с некоторыми статьями в научно-популярных журналах, посвященными недавним открытиям Генриха Герца, касающимся электромагнитных волн. В ней Эйнштейн предложил сделать определенные эксперименты, которые могли бы объяснить, как “магнитное поле формируется вокруг электрических токов”. Он писал, что это было бы интересно, “потому что исследование упругих свойств эфира в этом случае позволило бы нам пролить свет на загадочную природу электрического тока”.
Бросивший среднюю школу ученик честно признался, что легко делает допущения, не зная, к чему они могут привести. Он писал: “Поскольку у меня совершенно не было материала, который бы позволил мне глубже изучить предмет, я мог только рассуждать и прошу не считать это обстоятельство признаком поверхностности”[69].
Он послал статью своему дяде Цезарю Коху, одному из самых любимых родственников, – торговцу, жившему в Бельгии и время от времени оказывавшему Эйнштейну финансовую помощь. С притворным смирением Эйнштейн писал: “Работа очень наивна и несовершенна, ведь иного нельзя ожидать от такого молодого человека, как я”. В письме он добавил, что его цель – попасть следующей осенью в Цюрихский политех, но его беспокоит, что он моложе, чем того требуют правила института: “Я должен был бы быть по крайней мере на пару лет старше”[70].
Чтобы помочь ему обойти это правило, друг семьи Эйнштейнов написал письмо директору Политехникума, прося об исключении из правил. О тоне письма можно судить по ответу директора, в котором высказан скептицизм относительно признания за Эйнштейном “так называемой детской одаренности”. Тем не менее Эйнштейн получил разрешение сдать вступительные экзамены и в октябре 1895 года сел на поезд в Цюрих, испытывая “обоснованное чувство неуверенности в себе”.
Неудивительно, что он легко сдал экзамены по математике и естественным наукам, но срезался на основном экзамене, включавшем разделы по литературе, французскому языку, зоологии, ботанике и политике. Ведущий физик Политехникума, профессор Генрих Вебер, предложил Эйнштейну остаться в Цюрихе и ходить на его лекции, но Эйнштейн по совету директора решил посвятить следующий год подготовке в школе кантона, расположенной в деревне Арау, в сорока километрах к западу от Цюриха[71].
Для Эйнштейна лучшей школы нельзя было найти. Все преподавание основывалось на идеях, сформулированных в начале XIX века швейцарским реформатором преподавания Иоганном Генрихом Песталоцци, который считал, что визуальные образы способствуют лучшему усвоению материала. Он также считал, что важно воспитывать “внутреннее достоинство” каждого ребенка. Песталоцци учил, что школьники должны сами приходить к умозаключениям, к которым ведет цепочка шагов, причем начинать надо с доступных наблюдений, а дальше подключать интуицию, концептуальное мышление и зрительные образы[72]. Таким способом можно было даже выучивать – и действительно понимать – математические и физические законы. Следовало избегать только механической зубрежки, заучивания и насильного вдалбливания информации.
Эйнштейн полюбил Арау. “К школьникам применялся индивидуальный подход, – вспоминала его сестра, – акцент делался скорее на развитии независимого мышления, чем на объеме знаний, и школьники рассматривали учителя не как незыблемый авторитет, а как человека с определенной индивидуальностью, такой же подход был и к школьникам”. Система обучения была прямо противоположной немецкой, которую Эйнштейн ненавидел. “Когда я сравнил это с шестью годами обучения в немецкой авторитарной гимназии, – вспоминал он позже, – я ясно понял, насколько совершеннее образование, основанное на свободе действий и персональной ответственности, чем то, которое зиждется на ложных авторитетах”[73].
Визуальное представление концепций, как тому и учил Песталоцци и его последователи из Арау, стало важной особенностью мышления Эйнштейна. “Обучение визуальному видению – существенный и единственно правильный метод обучения тому, как правильно понимать вещи, – писал Песталоцци, – а обучение языкам и арифметике, несомненно, должно быть вторично”[74].
Неудивительно, что именно в этой школе Эйнштейн приохотился к мысленным экспериментам, которые помогут ему в дальнейшем стать величайшим научным гением своего времени: он попытался вообразить себе, на что может быть похож полет рядом со световым лучом. “В Арау я провел свой первый, довольно детский мысленный эксперимент, имеющий непосредственное отношение к специальной теории относительности, – рассказывал он позднее другу. – Если человек мог бы лететь за световой волной с той же самой скоростью, что и свет, волновая картина совершенно не зависела бы от времени. Конечно, такое невозможно”[75].
Этот тип мысленного эксперимента – Gedankenexperiment – стал фирменным знаком и творческим методом Эйнштейна. В разное время он будет рисовать в своем воображении и удары молнии, и ускоряющиеся лифты, и падающих художников, и двухмерных жуков, ползущих по кривым веткам, а также различные хитроумные устройства, сконструированные для того, чтобы хотя бы в теории точно определить местоположение и скорость движущихся электронов.
Когда Эйнштейн учился в школе в Арау, он столовался в пансионе, который содержало замечательное семейство Винтелеров, и его жизнь надолго переплелась с жизнью членов этой семьи. Это были глава семьи Йост Винтелер, который преподавал в школе историю и древнегреческий язык, его жена Роза, которую Эйнштейн вскоре стал звать Мамерл, то есть мамочка, и их семеро детей. Дочь Мари стала первой любовью Эйнштейна, другая дочь, Анна, стала женой ближайшего друга Эйнштейна – Мишеля Бессо. А их брат Пауль женился на любимой сестре Эйнштейна Майе.
“Папа” – Йост Винтелер – был либералом, в основном разделявшим отвращение Эйнштейна к милитаризму и национализму. Его максимальная честность и политический идеализм помогли сформироваться социальной философии Эйнштейна. Как и его учитель, Эйнштейн станет сторонником федерализма, интернационализма, пацифизма и демократического социализма с акцентом на индивидуальной свободе и свободе выражения.