Философия Бучило Нина

Вещество

Обобщение достижений науки XIX века явилось некоторой реабилитацией аристотелевского качественного движения. XX век подошел к аналогичной, столь же условной реабилитации аристотелевского субстанциального движения – порождения и уничтожения. Речь идет об уничтожении или порождении данного качественного типа вещества, о трансмутации (превращении) его элементов. Атомная физика сводила качественные различия к составу атомов, к субатомам; иначе говоря, она продолжала на новом, более детальном уровне анализа классическую традицию. Ядерная физика и теория элементарных частиц понимают указанные различия совершенно по-иному: процессы трансмутации элементарных частиц объясняются уже не перегруппировкой еще меньших частиц; эти процессы меняют массу, заряд частиц и другие их свойства, которые теряют смысл без представления о поле.

В результате идея неисчерпаемости электрона и тем самым всей иерархической лестницы дискретных частей вещества утрачивает традиционную физическую форму деления на все меньшие частицы и на уровне элементарных частиц приобретает иную физическую форму.

Классическая атомистика не теряла надежды найти последние, не отличающиеся качественно одна от другой и в этом смысле чисто картезианские, частицы, расположение которых объясняет качественные различия более крупных частиц. Такая надежда не являлась общей и была достаточно далека от реального развития физики и химии, которые приходили к многочисленным качественно различным элементам бытия, продолжая традицию не столько Демокрита, сколько Эмпедокла. Неклассическая физика начала иную линию эволюции атомистики, придающую новый смысл аристотелевским понятиям уничтожения и рождения частиц.

С точки зрения теории относительности возможно превращение частицы, обладающей ненулевой массой покоя, в частицу, обладающую нулевой массой покоя. Такое превращение означает уничтожение частицы лишь с точки зрения классического разделения физической реальности на вещество, которое обладает массой покоя, и пространство, которое обладает лишь геометрическими свойствами. Современная физика связывает существование частиц с полем. Поле же в принципе можно рассматривать как ту или иную деформацию пространства – во всяком случае именно таким представляется гравитационное поле в общей теории относительности. Можно ли создать аналогичное представление для других полей? Попытки Эйнштейна в 20-50-е годы не дали такого результата. Сейчас поиски единой теории элементарных частиц ведутся широким фронтом. Но не этот вопрос нас здесь интересует.

Для философского обобщения достижений современной науки важно наличие некоторой тенденции в космологии и в теории элементарных частиц, направленной к сближению представлений о веществе и геометрических понятий. Однако такое сближение идет не по линии «геометризации» вещества, а, напротив, скорее по линии «физикализации» представлений о пространстве, поисков физических эквивалентов усложняющихся геометрических понятий. Картезианская апория – невозможность выделения тела из пространства, динамическая концепция частицы и концепция пространства в монадологии Лейбница, превращение частицы в особую точку динамических взаимодействий у Бошковича и затем у Фарадея – все это концепции, сменявшие друг друга, противоречившие друг другу, но никогда не устранявшие единства противоположности локального средоточия вещества и противостоящего ему и сливающегося с ним окружающего пространства.

Особенность неклассической науки состоит в том, что указанная проблема становится непосредственным и явным стержнем преобразования физических представлений. Философское обобщение данных квантовой механики прямо подводит к отношению здесь-теперь и вне-здесъ-теперъ. Философское обобщение данных теории относительности ведет к тому же, совпадая по направлению с тем, что содержится в завещании Эйнштейна – его автобиографических заметках, где идет речь о поисках единой теории, в которой свойства пространства выводились бы из атомистической структуры вещества.

Квазифизические концепции

Философские обобщения достижений современной науки опираются не только на однозначно установленные научные положения, но и на гипотетические, еще не обладающие строгой достоверностью. В этом отношении философия всегда опережала науку и, более того, философское обобщение было движущей силой приобщения гипотетических концепций к числу достоверных. Кант считал ньютоново объяснение начальных условий небесной техники с помощью тангенциальной составляющей движения планет недостойным философа решением проблемы. Ее философски корректное, по мнению Канта, решение – гипотеза первичной туманности и перехода молекулярного движения в движение небесных тел – опиралось на ряд неоднозначных гипотез. В течение второй половины XVIII века и первой половины XIX века астрономия, астрофизика и небесная механика принесли гипотезе первичной туманности немало элементов внешнего оправдания (процесс этот еще не завершен, космогонические гипотезы и сейчас не обладают однозначной достоверностью). Одновременно происходило и внутреннее совершенствование гипотезы первичной туманности. Ф. Энгельс считал ее первым звеном перехода от статической картины мира к динамической.

Переход от ограниченных частных утверждений к более общим, от конечного к бесконечному свидетельствует о внутреннем совершенстве теории; experimentum crucis, решающий эксперимент, дает ей внешнее оправдание. В истории познания диалог философии и науки остается диалогом и не превращается в параллельные монологи, пока собеседники не только произносят свои реплики, но и слушают встречные. Бывают моменты, когда реплики науки, связанные с экспериментом, с внешним оправданием, особенно тесно связаны и с ожиданием ответа, с вниманием к ожидаемой реплике, с тревожными поисками внутреннего совершенства и философского обобщения. Такая ситуация возникла на рубеже XIX и XX веков, когда поиски объяснения результатов оптических и электродинамических экспериментов настоятельно требовали пересмотра и наиболее общих представлений о мире. И ныне бесконечные значения массы и энергии в физике элементарных частиц и различные пути устранения таких значений ожидают теории, обладающей внутренним совершенством.

Гипотетические концепции, возникающие сейчас почти непрерывно, обладают одной особенностью: они иллюстрируют если не структуру мира, то структуру и тенденции познания мира. С тех пор как философия обобщает не только и даже не столько достижения специальных наук на определенном, ограниченном данным временем уровне их развития, сколько живую их динамику (а именно это и делает философия, исходящая из бесконечного приближения к абсолютной истине), анализ тенденций такого развития становится одной из основ философского обобщения. Концепции, о которых идет речь, придают современной науке совершенно новый, не имеющий традиции, специфический стиль. Современные представления о веществе, пространстве, времени, его одномерности, течении и необратимости опираются в значительной части на классическую термодинамику, учитывают выводы теории относительности и квантовой механики и отнюдь не подгоняют эти выводы под априорные схемы. Многие из подобных представлений можно назвать не физическими, а скорее квазифизическими концепциями, достоверно описывающими не столько результаты физического исследования, сколько его тенденции и вероятные пути.

Современная наука не может обойтись без того, что можно было бы назвать ее самопознанием (это проявилось, хотя и не столь явно, уже в классической науке XVIII-XIX веков). А последнее все более тесно сближается с содержанием ее выводов, с изменением самых общих принципов при поисках этих выводов.

Самопознание науки – одна из основ гносеологического оптимизма, устраняющего призрак исчерпания познания, какую бы форму этот призрак ни принимал – непознаваемого предела или же познаваемого априорно того или иного «зафизического» или «сверхфизического» абсолюта либо окончательно познанного субстрата бытия. Когда речь идет о наиболее полном и общем постижении Вселенной и того, что казалось ее элементами, а оказалось «микроотображением» Вселенной, физика сопоставляет различные варианты своего дальнейшего развития. Они еще не являются физическими концепциями, но служат их необходимым условием. Чтобы строить новые сверхмощные ускорители, нужно думать о том, что будет открыто с их помощью, а это однозначно неизвестно, иначе не нужно было бы строить ускорители. Неоднозначные прогностические концепции, еще не нашедшие эмпирического подтверждения, уже готовы к применению этого физического критерия. Поэтому они и могут быть названы квазифизическими. Значение квазифизических концепций возрастает исторически, по мере перехода к более точным представлениям о мире, а также при переходе ко все более фундаментальным проблемам. Если раньше фундаментальная наука включала поиски подлинно неподвижного фундамента, на котором можно было бы строить с полным убеждением в его устойчивости, то сейчас фундаментальные исследования неотделимы от нерешенных проблем. Сейчас это область, где наиболее явственно самопознание науки, где многое высказывается «в кредит», в расчете на дальнейшие шаги науки, где однозначные, собственно физические представления о мире в целом и его ультрамикроскопических элементах особенно часто предваряются неоднозначными прогностическими конструкциями.

Такой характер приобретает развитие в современной физике представлений об отражении неисчерпаемости мира в локальных здесь-теперь. Ограничимся для примера одной из концепций дискретного пространства-времени – схемой трансмутаций в минимальных пространственно-временных областях, где ход вещей может быть объяснен воздействием конечной Метагалактики.

Эта концепция – современная форма высказанной еще в античной философии идеи: «движения нет, есть только результат движения» (подобные исторические сближения демонстрируют необратимость познания: возвращение к прошлому происходит на несравненно более высоком уровне приближения к действительности). В 1949-1950 годах Я. И. Френкель высказал мысль о том, что движение частицы происходит как серия регенераций: данная частица превращается в частицу иного типа, которая в свою очередь превращается в частицу исходного типа. В конце 50-х годов была сделана попытка связать идею регенерации с идеей дискретного пространства-времени; существуют неделимые далее пространственные расстояния и временные интервалы; регенерация, передвигающая частицу в следующую пространственно-временную клетку, реализуется на расстоянии р порядка 10^-15 см, через т порядка 10^-25 сек., что дает скорость результирующего ультрамикроскопического перемещения, равную скорости света [12]. Если эти регенерации-сдвиги происходят с– одной и той же вероятностью пространственных направлений, то после большого числа сдвигов частица останется вблизи того же места, ее макроскопическая скорость окажется равной нулю. Если же в пространстве существует асимметрия вероятностей, макроскопическая скорость будет различной, но не сможет превысить ультрамикроскопическую скорость – скорость света. Асимметрию можно связать с силовым полем, а противостоящую ей симметрию – с массой и объяснить последнюю воздействием Метагалактики.

Можно представить себе, что квазифизические концепции, подобные только что изложенной, уже в ближайшие десятилетия окажут существенное воздействие на освещение и решение такого фундаментального историко-научного вопроса, как определение понятий неклассическая физика и неклассическая Наука.

Начиная с Эпикура и Лукреция материалистическая философия отказывала в существовании времени вне пространства. Пространственное движение рассматривалось как измеряющее течение времени и служащее его исходным определением. Материалистическая диалектика, характеризующая движение как форму существования материи, вводит время, неотделимое от пространства, в определение субстанции, считает мир движущейся материей. Общая линия развития классической науки находится в русле пространственно-временного определения мира, однако в ней сохраняются вневременное, абсолютное пространство и внепространственное время, хотя и объективное, но не способное воздействовать на органы чувств. С этой точки зрения основная посылка теории относительности – концепция четырехмерного мира с исключением в принципе внепространственного времени и вневременного пространства – лежит целиком в русле материалистической диалектики.

Неклассическая физика – несколько неопределенное понятие в том смысле, что теорию относительности иногда считают наряду с квантовой механикой неклассической, а иногда оставляют этот титул лишь для квантовой механики. С той точки зрения, с которой современная физика рассматривается в этой книге, т. е. с точки зрения философского смысла релятивистских и квантовых теорий, первый из названных вариантов ответа обладает несомненными преимуществами. В сущности, квантовая механика углубила и продолжила то, что сделала с пространством теория относительности, которая превратила пространственные расстояния в четырехмерные и отнюдь не мгновенные процессы. Она приобщила к четырехмерному миру пространственную точку, сообщив ей четвертую координату – время. Квантовая механика рассматривает пребывание частицы в данной точке как четырехмерное событие, придавая такому пребыванию протяженный и временной характер. Сведение пребывания и импульса к нулю, т. е. выпадение точки из протяженного и длящегося мира, оказывается невозможным. Правда, нерелятивистская (относящаяся к малым скоростям движения частиц по сравнению со скоростью света) квантовая механика включает понятие единого времени, дискредитированное теорией относительности, но тут нужно иметь в виду направление проектируемого развития физики.

Релятивистская квантовая механика (и квантовая теория вообще) ведет к исключению из картины микромира абсолютного времени, а ее квазифизические прогностические концепции, превращая квантованное пространство-время, элементарную пространственно-временную клетку, в основу физического бытия, позволяют (вернее говоря, может быть, позволят) вывести из ультрамикроскопической картины пространственно-временного бытия макроскопическую и космическую неразделимость пространства и времени. По-видимому, единая для квантовой механики и теории относительности четырехмерность бытия является определяющей идеей неклассической физики, хотя, пожалуй, она окажется недостаточной для понятия неклассической науки, поскольку ни в квантовой электронике, ни в молекулярной биологии, ни в других областях, на которые влияет современная физика, единство релятивистских и квантовых идей еще не осуществлено. Однако современная наука воздействует на философию не только своей наличной ситуацией, но и тенденциями своего развития.

Бесконечность

Попробуем выяснить, как влияют тенденции науки второй половины нашего столетия на разработку таких философских проблем, как актуальная и потенциальная бесконечность, соотношение бесконечно большого и бесконечно малого, бесконечного или конечного пространства и бесконечного времени, бесконечная сложность бытия.

Для Аристотеля было характерным противопоставление пространства как конечного – времени как бесконечному. Такое противопоставление связано со статическим характером перипатетической схемы мировой гармонии. На статический каркас естественных мест тел и центра мироздания натянуто абсолютно покоящееся пространство, существующее вне времени. С другой стороны (это специфично для сенсуалистического стиля античной мысли), существует то, что может быть объектом чувственного постижения, т. е. конечные тела. У Аристотеля статика бытия и его динамика еще не слились. Соответственно пространство и время противостояли друг другу: пространство было статичным и конечным, время – динамичным и бесконечным.

Попробуем сопоставить такую концепцию с современной релятивистской космологией. Первое, что лежит на поверхности и сразу бросается в глаза, – это различие мира Эйнштейна с бесконечным временем и конечным пространством, с одной стороны, и концепции Аристотеля – с другой. Пространство Эйнштейна конечно, но не ограниченно. У Аристотеля эти понятия совпадают. Их четкое разграничение появилось у Б. Римана в 1854 году. В знаменитой геттингенской лекции «О гипотезах, лежащих в основании геометрии» Риман заявил: «При распространении пространственных построений в направлении неизмеримо большого следует различать свойства неограниченности и бесконечности: первое из них есть свойство протяженности, второе – метрическое свойство. То, что пространство есть неограниченное трижды протяженное многообразие, является допущением, принимаемым в любой концепции внешнего мира; в полном согласии с этим допущением область внешних восприятий постоянно расширяется, производятся геометрические построения в поисках тех или иных объектов, и допущение неограниченности ни разу не было опровергнуто. Поэтому неограниченности пространства свойственна гораздо большая эмпирическая достоверность, чем какому бы то ни было другому продукту внешнего восприятия.

Но отсюда никоим образом не следует бесконечность пространства; напротив, если допустим независимость тел от места их нахождения, т. е. припишем пространству постоянную меру кривизны, то придется допустить конечность пространства, как бы мала ни была мера кривизны, лишь бы она была положительной. Если бы мы продолжили кратчайшие линии, начальные направления которых лежат в некотором плоскостном элементе, то получили бы неограниченную поверхность с постоянной положительной мерой кривизны, т. е. такую поверхность, которая в плоском трижды протяженном многообразии приняла бы вид сферы и, следовательно, является конечной» [13].

Одним из существенных событий в истории науки явилась реализация такой возможности. Бесконечность стала понятием, допускающим локальный эксперимент. Можно определить экспериментально, обладает ли пространство положительной кривизной и является ли оно тем самым бесконечным.

Так в науку вошло представление о зависимости бесконечного от локального, причем о зависимости самой констатации бесконечности от локальных измерений кривизны. Тем самым бесконечность стала относительным определением, допускающим локальное, экспериментальное подтверждение.

Идея Римана физически реализовалась в концепции Эйнштейна, согласно которой пространство конечно, но отнюдь не ограниченно, а время бесконечно. Конечные размеры пространства у Эйнштейна не означают границы, на которую наталкивается движущееся в этом пространстве предоставленное самому себе тело. Такое тело будет двигаться по сфере, повторяя свой путь, так же как на конечной двухмерной сферической поверхности движение становится циклическим и тем самым перестает быть бесконечным. Время – бесконечно, и оно придает бесконечность пространственно-временному миру, потому что стрела времени, когда речь идет о бытии в целом, не обладает кривизной и не возвращается к прошлому. Старый, идущий от древности образ циклического времени («Ахиллес снова будет послан в Трою») так же далек от современной науки, как средневековый образ вечности – остановившееся и исчезнувшее время. Таким образом, мы возвращаемся к необратимому и в этом смысле бесконечному усложнению мироздания.

Бросающееся в глаза различие между концепциями Аристотеля и Эйнштейна, вполне определенное в рамках космологии и физики, становится гораздо более сложным, относительным, не закрывающим сходства между ними, как только мы приступаем к философскому обобщению.

Уже у Аристотеля проблема бесконечности разделилась на две проблемы, которые решались раздельно. Первая из них касалась актуальной, т. е. существующей в настоящее время, бесконечности. Вторая относилась к потенциальной бесконечности, т. е. к безграничной возможности роста величины, остающейся конечной, но принимающей сколь угодно большие, неограниченно растущие значения. Бесконечность пространства – актуальна, существует в данное мгновенье, она вневременна. Аристотель ее отвергает. Потенциальная бесконечность понимается как неограниченный рост во времени. «Вообще говоря, бесконечное существует таким образом, что всегда берется иное и иное, и взятое всегда бывает конечным, но всегда разным и разным» [14].

В не умолкавших никогда спорах о бесконечности актуальная бесконечность чаще всего отрицалась. Но ее защитники находили некоторые аргументы в классической науке. Таким аргументом служит понятие «область определения функции». Она может быть задана заранее. Если функция описывает движение материальной точки, то мы заранее можем указать область, где положение точки для каждого мгновения определено в соответствии с видом функции. Область определения функции можно рассматривать как образ актуальной бесконечности.

Но классическая наука создала некоторые более общие концепции, которые перешли в науку XX века и этим лишний раз продемонстрировали необратимость научного прогресса. К числу таких концепций принадлежали логически и исторически связанные друг с другом понятие истинной бесконечности и весьма общее, характерное для XIX века представление о переходе одних специфических законов в другие. Принадлежащая XX веку концепция бесконечного и конечного явилась в некоторой мере обобщением этих понятий и представлений.

Понятие истинной бесконечности, т. е. бесконечности, воплощенной в каждом ее конечном элементе, выражает прежде всего весьма общий принцип классической науки: каждая конкретная сенсуально постижимая локальная ситуация, в которой находятся конечные объекты, подчинена универсальному закону, управляющему бесконечным числом подобных ситуаций. Это – обобщение уже известного нам образа актуальной бесконечности – области определения функции, т. е. множества локальных воплощений закона, выраженного данной функцией.

В XIX веке классическая наука нарисовала иерархию несводимых друг к другу форм движения со специфическими законами, которые в граничных пунктах переходят в иные законы. Переход от данного закона к другому снимает (в гегелевском смысле, т. е. вместе с тем и сохраняет) данный закон, оконтуривает область его применения, область определения выражающей этот закон функции. Этот процесс кажется выражением актуального характера бесконечности локальных воплощений закона, т. е. основой актуальной истинной бесконечности. Теория относительности меняет такое заключение: поле как область определения распространяется с конечной скоростью и превращает истинную бесконечность в последовательный временной ряд, лишает ее мгновенного бытия – определяющего признака актуальной бесконечности. В квантовой механике каждая локальная ситуация, каждый эксперимент, характеризующий ее подчинение некоторому общему закону, одновременно нарушает этот закон и, что еще важнее, изменяет все множество таких ситуаций.

Квантовая механика и теория относительности развивают и модифицируют понятие потенциальной бесконечности как единства пространства и времени и вместе с тем исключают чисто пространственную, мгновенную бесконечность бытия. Таким образом, современная наука преемственно связана с аристотелевским понятием времени как поля бесконечного многообразия, но она включает и пространство в процесс временной бесконечной эволюции. Такая эволюция проходит через краевые пункты специфических форм движения: здесь заканчивается некоторая бесконечная по числу локальных элементов область и начинается новая, более общая. В результате появилась новая форма выражения потенциальной бесконечности, связанная со структурностью и гетерогенностью бытия, с переходом от одних элементов бесконечности к другим.

Каждая область определения функции, подчиненная данному закону, не ограничивает числа реализующих закон ситуаций. Поэтому можно в общем случае говорить о специфическом законе как о некой бесконечности, а переход к новым специфическим законам рассматривать как увеличение числа бесконечных систем в мироздании. Бесконечно растущее число бесконечно растущих по своей размерности структур означает необратимый и беспредельный рост структуры мира.

Жизнь

Начиная с 50-х годов в биологии было найдено то звено в иерархии дискретных частей материи, которое определяется эволюцией вида в прошлом и определяет дальнейший ход онтогенеза, наследственность и будущее вида. Это – молекулы живого вещества, обеспечивающие самовоспроизведение организма. Группировка атомов и радикалов в таком веществе зависит от генетического кода. В микроскопическом объеме живого вещества сосредоточивается своеобразный пространственно-временной мир, заполненный сложными процессами органической жизни, повторяемостью и изменчивостью ее форм.

Конечно, процессы органического синтеза молекул не всегда являются квантовыми, они носят специфически иной характер. Вместе с тем молекулярная биология находится в фарватере некоторого радикального изменения картины мира, изменения той формы, в которой воспринимается свойственная миру и возрастающая со временем сложность, отображение структуры мира в каждом его элементе. В теории относительности эта связь локальных элементов с целым выражается, как уже отмечалось, в четырехмерном континууме, меняющем свою метрику в каждой мировой точке, в квантовой механике – в квантовании полей, в сосредоточении поля в дискретных частицах, в биологии – в сосредоточении сложности онтогенеза в генетическом коде.

Австрийский физик, один из создателей квантовой механики, Э. Шредингер пояснил это представление о локальном как выражении временного и пространственного многообразия мира следующим примером. Если в кристалле молекулярная структура повторяется, то иначе обстоит дело со все более и более сложной органической молекулой, в которой каждый атом, каждая группа атомов играет индивидуальную роль, не вполне равнозначную роли других атомов и групп. Молекулы, содержащие генетический код, «представляют наивысшую степень упорядоченности среди известных нам ассоциаций атомов… в силу той индивидуальной роли каждого атома и каждого радикала, которую они здесь играют» [15]. Неклассическая наука отказывается от игнорирования индивидуума, будь то молекула, атом или другое локальное образование, что было характерно для статических концепций классической науки. Дальнейшее развитие этой тенденции связано с возрастанием значения тех философских обобщений, представлений о пространстве, времени, веществе, которые вытекают из теории относительности, квантовой механики и других отраслей современного естествознания.

Познание

Меганаука и философия

В чем отличие философии от того, что иногда называют меганаукой или «большой наукой» (имеются в виду наиболее фундаментальные научные исследования)? И в чем связь между ними, в частности каково воздействие меганауки на развитие философии?

Для ответа на эти вопросы необходимо остановиться на критериях включения тех или иных исследований в число наиболее фундаментальных. Подобное включение отнюдь не лишает такие исследования критерия эмпирического подтверждения, которое состоит и в эксперименте, и в логических и математических операциях, позволяющих сблизить эксперимент и концепцию, вывести экспериментальный результат из теоретических положений. Соответственно наиболее фундаментальные исследования в общем случае сохраняют структуру науки: они остаются физическими, астрофизическими, химическими или биологическими, не выходя из рамок данной отрасли науки. Однако результаты фундаментальных исследований могут быть перенесены в другие области науки в качестве исходных звеньев анализа, хотя и не становятся при этом философскими положениями. Требуется долгий путь обобщения, охватывающего не только эти результаты, но и гораздо более значительную сумму данных, чтобы оно вошло в философскую мысль. Вместе с тем результаты фундаментальных исследований оказываются наиболее динамичной и важной частью той суммы данных, которая служит непосредственным объектом философского обобщения. Фундаментальные исследования ограничены определенным рядом явлений, определенной пространственно-временной областью и в то же время связаны с ясной перспективой последующего переноса их результатов в другие области.

В XVII– XVIII веках именно такими были механико-математические исследования. Наклонная плоскость Галилея и другие методы опирались на вполне конкретные и в этом смысле ограниченные экспериментальные или теоретические данные, но универсальный характер механико-математических соотношений представлялся бесспорным. Фундаментальный характер указанных соотношепий являлся выражением сводимости картины мира к механико-математическим представлениям. Материалистическая философия видела в такой сводимости свою опору, но отнюдь не себя самое, поскольку опиралась на обобщение результатов всей науки и всей практики своего времени. Лишь очень редко в экспериментах и дедукциях механиков и математиков XVIII века видели некий experimentum crucis, однозначно решающий философские споры. Эксперименты и дедукции Галилея, Гюйгенса, Ньютона, Лагранжа и т. д. приобретали такой характер вместе со всей суммой фактов и выводов научного исследования в качестве материала для философского анализа и обобщения.

В XIX веке механико-математические исследования оставались фундаментальными в той мере, в какой здесь создавались универсальные законы. Но само понятие универсальных законов изменилось, и соответственно изменилось понятие фундаментальных исследований, которые, впрочем, не фигурировали тогда в явной форме под этим названием ни в науке, ни в философии. Это связано с утвердившейся в науке идеей несводимости к механическому движению более сложных его форм. По существу, в XIX веке наиболее фундаментальными исследованиями были эксперименты и наблюдения, демонстрирующие неотделимость сложных процессов от механического движения и вместе с тем их специфическую, несводимую к механике, природу.

Такие исследования в XIX веке шли от конечного к бесконечному, по преимуществу к бесконечно малому. Аналитическая механика сделала соотношение бесконечно малых приращений пространства и времени исходным соотношением механики. Другая тенденция фундаментальных исследований-поиски специфических закономерностей сложных форм движения – выражалась в развитии молекулярно-атомистических представлений. В результате основным направлением науки XIX века стали поиски структуры микромира. Б. Риман заявлял, что бесконечно большое не представляет существенного интереса для науки, основной путь познания мира – изучение бесконечно малого. «От той точности, с которой нам удается проследить явления в бесконечно малом, существенно зависит наше знание причинных связей. Успехи в познании механизма внешнего мира, достигнутые на протяжении последних столетий, обусловлены почти исключительно благодаря точности того построения, которое стало возможно в результате открытия анализа бесконечно малых и применения основных простых понятий, которые были введены Архимедом, Галилеем и Ньютоном и которыми пользуется современная физика». [16]

За рамки этой тепденции не выходили и поиски начальных условий, без которых дифференциальные законы не могут объяснить ход событий во Вселенной. Наиболее яркой демонстрацией таких поисков еще в XVIII веке было содержание теории первичной туманности. Кант понимал, что помимо законов движения планет для объяснения начальных условий – ньютонова первого толчка – необходимо нарисовать картину предыдущей эволюции Вселенной. Но такие поиски начальных условий шли в значительной мере в сторону микромира. Поэтому для классической науки замечание Римаиа оставалось справедливым, и роль наиболее фундаментальных исследований принадлежала исследованиям микромира, впрочем в очень широком смысле, включая изучение клеточной структуры живого вещества и онтогенеза живых существ. Даже тогда, когда исследования приводили к статистическому игнорированию индивидуальных судеб в микромире и исходили из макроскопических представлений, условием подобных исследований была атомистика. В этом отношении XIX век отличался от XVII-XVIII веков, когда астрономия давала научной картине мира наиболее мощные импульсы. Эти импульсы сделали свое дело – механика уже располагала универсальным методом исследования движений в бесконечно малых областях и перехода от бесконечно малых областей к конечным.

Теперь о наиболее фундаментальных исследованиях в науке XX века. Здесь они уже не устанавливают связи различных областей знания с некоторыми неизменными едиными законами. Напротив, эти исследования имеют своим прямым результатом эволюцию единых законов бытия. Связь отдельных дисциплин и частных проблем с единой картиной мира реализуется при изменении как раз единой картины, причем эта связь оказывается настолько тесной, что становится возможным говорить о единой науке, охватывающей и космос в целом, и его мельчайшие элементы. Замечание Римана о сравнительно большей важности исследования бесконечно малых областей неприменимо к науке XX века, поскольку в пей бесконечно большое и бесконечно малое если не сливаются, то во всяком случае выступают как близкие объекты исследования.

Исследования, непосредственным результатом которых является изменение фундаментальных представлений о пространстве, времени, веществе и жизни, образуют некоторый комплекс, характерный именно для современной науки. В классической науке эти фундаментальные представления менялись очень медленно и поэтому могли служить неизменными критериями выбора частных научных теория. Каждая область науки требует какой-то устойчивой системы отсчета, каких-то относительно устойчивых принципов, чтобы новые положения в этой области могли быть логически выведенными из общих принципов. В этом отношении частная проблема или частная научная дисциплина напоминает систему аксиом, как она представляется в свете теоремы Гёделя. Напомним, что в 30-е годы XX века австрийский логик и математик Гёдель доказал теорему, согласно которой для аксиоматической системы доказательство ее непротиворечивости и полноты требует апелляции к более общей системе. Аналогичным образом каждая система выводов в современной науке, если ее свести к исходным независимым утверждениям, требует выхода за пределы последних для доказательства их непротиворечивости. Решение проблемы может быть заведомо непротиворечивым при выходе в более общую мета-проблему.

То, что называют меганаукой, включает подобные метапроблемы, наиболее общие для современной науки. Все дело в том, что сейчас ответы на такие вопросы, как: какова геометрия Вселенной, бесконечна ли Вселенная, обратима ли ее эволюция, дискретно ли пространство – потеряли свойственный классической науке устойчивый характер и они решаются и перерешаются по мере все новых и новых наблюдений и экспериментов, прежде всего относящихся к физике элементарных частиц. Те проблемы, которые в прошлом веке являлись царством наибольшей устойчивости, сейчас представляют собой царство наиболее быстрого и радикального пересмотра основных концепций. То же отчасти относится и к сущности жизни: молекулярная биология в ответ на этот вопрос, дает серию решений, сводящихся иногда к программам дальнейших экспериментов. Конечно, поток новых концепций пространства, времени, вещества и жизни, смена представлений о границах конечного и бесконечного, непрерывного и дискретного, мертвого и живого – все это отнюдь не философия; указанный поток слишком явно и непосредственно связан с экспериментом. Но он связан и с философией, причем очень тесно и совсем не так, как наука была связана с философией в классические времена.

Теория относительности, релятивистская космология, квантовая механика, молекулярная биология лишили науку былых инвариантов, которые служили для нее исходными критериями истины при поисках внутреннего совершенства или при переходе к более общим системам. Та система экспериментов и выводов, которая виновна в такой потере, и есть меганаука. Каковы же принципы, из которых выводятся ее утверждения? Здесь мы подходим к наиболее важному пункту ее связи с философией. Для меганауки характерна непосредственная связь с принципами философии, на которые и опираются в конечном счете общие концепции пространства, времени, вещества, жизни.

Возьмем первый шаг неклассической физики – теорию относительности Эйнштейна в ее отличии от лоренцевой концепции продольного сокращения. Эйнштейн исходил не из электродинамической гипотезы, а из четырехмерного бытия, из неотделимости пространства от времени. Конечно, теория Эйнштейна опиралась на электродинамические эксперименты, но вместе с тем исходной идеей относительности было отрицание вневременной, не меняющейся во времени реальности. Идея эта является достижением философской мысли.

Логика

Существуют ли специфические тенденции в логике, связанные с наукой второй половины XX века? Анализ структуры теории относительности и квантовой механики приводит к представлению о мобильности исходных математических и логических норм науки, которая в классические времена скрывалась медленным темпом их изменения.

У Аристотеля теория движения, основанная на концепции естественных мест, включала два ответа на вопрос о пребывании тела в его естественном месте, две оценки высказывания о его пребывании: «истинно» и «ложно». Перипатетические картина мира, теория познания и критерии ценности были пронизаны идеей статической гармонии и не выходили за рамки бивалентной логики. Классическая теория движения с ее динамическими и континуальными принципами, с описанием движения от точки к точке и от мгновения к мгновению задавала бесконечное число вопросов о пребывании частицы в точке и давала бесконечное число ответов «да» или «нет» для истинной или иной траектории точки. Таким образом, здесь онтологический смысл приобрела бесконечно-бивалентная логика. Такой же является релятивистская логика, которая отличается от классической тем, что вопрос задается не о пребывании в точке, а о событии в мировой точке. Что же касается квантовой механики, то здесь существен переход от логики постоянной валентности к логике переменной валентности.

Теория относительности в сущности не меняла логических норм, не вызывала металогических преобразований, хотя такие преобразования отнюдь не исключались. Это легко понять. Теория относительности, какой она была в те годы, т. е. без квантово-релятивистского продолжения, продемонстрировала физическую природу изменений метрики, подчинив математические понятия физическим условиям. Квантовая механика, напротив, явилась своего рода интервенцией физики в логику, поскольку содержала (при определенных физических предпосылках – неявно) новую логику. Впоследствии, в 50-е годы и позже, физические теории, характерные для второй половины века, опять-таки явно либо неявно нашли свой особый логический эквивалент – они вызвали к жизни квантово-релятивистскую логику.

Какой эвристической ценностью обладает квантовая логика? Нужна ли логика квантовой механике? Попытаемся показать, что ответ будет различным в зависимости от того, имеем ли мы в виду нерелятивистскую квантовую механику или же релятивистскую.

Начнем с нерелятивистской теории. Н. Бор замечал, что если под «явлением» понимать нечто, в принципе допускающее информацию, а под «измерением» – сравнение с эталоном, то утверждения квантовой механики о явлениях и измерениях не противоречат обычной логике и не требуют ее поливалентного обобщения.

Условия, о которых идет речь, связаны с существованием принципиально макроскопических, освобожденных от квантовой детализации тел, например экранов с узкими отверстиями, регистрирующими положение частицы, или с дверцей, измеряющей своим отклонением импульс частицы. Макроскопичность этих тел дает возможность получать информацию о поведении частицы и измерять ее динамические переменные. Взаимодействие частицы с таким макроскопическим прибором позволяет перейти для данной переменной (ценой обратного перехода для сопряженной переменной) к бивалентной логике, т. е. рассматривать квантовые явления как нечто в принципе допускающее бивалентную информацию и сравнение с эталоном.

Но в случае релятивистской квантовой теории положение существенно меняется. Здесь постулат классического прибора уже не может рассчитывать на безусловное применение. Нужно сказать, что при полной неоднозначности конкретных прогнозов в теории элементарных частиц некоторые общие логические контуры вырисовываются с относительной достоверностью. Представляется вероятным существование субквантового мира ультрарелятивистских процессов, которые состоят не в движении тождественных себе частиц, а в их превращениях. В этом мире локализация частицы не может быть гарантирована макроскопическим прибором и соответственно нельзя делить пространство и время до бесконечности, рассматривая все меньшие отрезки как траектории движущейся частицы. Здесь само пространство-время, по-видимому, может рассматриваться как дискретное.

Вернемся к изложенной ранее квазифизической концепции дискретного пространства-времени. Какая логика соответствует такой концепции? Если частица при элементарных «сдвигах» перестает быть тождественной себе, если эти «сдвиги» в ультрамикроскопическом плане являются трансмутациями, т. е. превращениями частицы одного типа в частицу другого типа, то локализация частицы (частица находится в такой-то пространственно-временной клетке) может иметь только одну оценку: «истинно». Здесь уже область моновалентной логики.

Однако моновалентная логика не может иметь физической интерпретации. Понятие трансмутации теряет физический смысл, если нет макроскопически непрерывных линий. Исходный образ современной картины мира соединяет ультрамикроскопический аспект с макроскопическим; друг без друга они теряют физический смысл. Поэтому физической интерпретацией в квантово-релятивистской физике может обладать логика, переходящая от моновалентных суждений к поливалентным, к суждениям с переменной валентностью.

Пока речь шла о соотношении Гейзенберга, между физической теорией и логикой существовала относительно неявная связь; новая логическая структура науки могла оставаться в тени, и логические коллизии разрешались частными, «подручными» средствами физики. Во второй половине века начался систематический перенос некоторых физических понятий в другие области.

Это сказывается и на взаимосвязи науки с логикой, прежде всего с определенными отраслями математической логики. Быстрое развитие последней позволяет точнее и конкретнее описывать сложные объекты, изучаемые современным естествознанием. С другой стороны, усиление дифференциации и структурализации мира как объекта исследования влияет и на усложнение логики, создание различных ее систем, переходов между ними, делает их более содержательными средствами отображения бытия.

Математика и ее место в современной науке

На пороге нашего столетия Б. Рассел говорил, что математика – это наука, которая не знает, о чем она говорит и истинно ли то, что она говорит. Такая независимость математики от физического содержания была основой ее универсальности. Сейчас, однако, математика знает, о чем она говорит. Начиная с общей теории относительности, выбор геометрии стал вопросом, адресованным природе в форме астрофизических наблюдений. Переходя от геометрии Евклида к геометрии Римана или Лобачевского, математика исходит из физической содержательности каждой из этих геометрий, причем эксперимент и наблюдение решают вопрос, истинно ли то, что она говорит о Вселенной.

Математика не потеряла своего универсального характера. Она говорит обо всем. Но это все стало физической системой пли, вернее, становится такой системой по мере выяснения физической связи между Метагалактикой и ультрамикроскопическим миром. Математика охватывает в растущей степени не только эти полюсы, но и все, что находится между ними. Основой универсальности математики становится сейчас не освобождение от критериев физического существования объектов, а их развитие.

В этих условиях в математике происходит быстрое развитие интегральных методов и функционального анализа. Но здесь есть и собственно философская сторона дела. В логико-математических дедукциях имеются своеобразные интервалы, которые можно перешагнуть только с помощью известного компромисса, т. е. путем игнорирования реальной нетождественности. Логико-математическая дедукция допускает компромисс каждый раз, когда она ставит знак равенства. Немецкий математик Г. Фреге отмечал, что в формулах, где фигурируют только объемы, – реальные тела, равные по объему, отнюдь не тождественны («Если я буду рассматривать дом соседа, равный моему по объему, как мой собственный…» [17]). Такое игнорирование нетождественности основано на аргументах, не включенных в ткань логико-математических дедукций, и устраненные нетождественные предикаты таят в себе нетавтологичность логико-математических дедукций. В современной науке подобное устранение нетождественности уже не может оставаться незамеченным. Разброс результатов измерений динамической переменной при измерении сопряженной переменной ставит более общий вопрос об условности теоретических конструкций. Эйнштейн называл логико-математическую идентификацию «грехом против разума». Но он добавлял при этом, что без такого греха познание не может идти вперед.

Компромисс, сопровождающий логико-математическую дедукцию, часто вытекает из физической интуиции – физической в широком смысле, т. е. в смысле еще логически не упорядоченного представления о реальности, постижимой через наблюдение и эксперимент. То, что называют математической интуицией, включает интуитивное физическое представление. Такая физическая интуиция, как растущий по своему значению компонент математического мышления, требует определенного философского обобщения и прежде всего анализа стиля современного научного мышления, его общих особенностей, выходящих за рамки отдельных отраслей науки.

Стиль научного мышления

Понятие стиля науки было выдвинуто физиками М. Борном и В. Паули в самом начале 50-х годов XX века в связи с разъяснением особенностей квантовой механики, прежде всего с необходимостью учитывать то воздействие, которое наблюдение вносит в наблюдаемый эффект. «Стили бывают и у физической теории, – писал М. Борн в статье „Состояние идей в физике и перспективы их дальнейшего развития“, – и именно это обстоятельство придает своего рода устойчивость ее принципам. Последние являются, так сказать, относительно априорными по отношению к данному периоду. Будучи знакомым со стилем своего времени, можно сделать некоторые осторожные предсказания» [18].

Во второй половине нашего столетия темп развития научных обобщений, меняющих не только содержание, но и стиль науки, настолько ускорился, что возникло представление об эволюции стиля. Это представление вошло в анализ и прошлого науки и привело к попыткам дать некоторое исторически инвариантное определение стиля, как того, что характеризует особенности творчества того или иного ученого, школы, особенности науки той или иной эпохи.

В средние века в пределах официальной, господствующей системы представлений стиль получал минимальное отображение в научном творчестве. Индивидуальные особенности мыслителя, особенности школы и времени не могли стать явными в науке, которая была канонической и которую стремились свести к повторению канонизированных текстов. В художественном творчестве стиль был явным. Существовало нечто общее, характеризующее индивидуальные особенности творчества и инвариантное при переходе от одного собора к другому, от одного сюжета картины или скульптуры к другому и далее– от одного жанра искусства к другому. В науке также существовали стилевые особенности, но они становились все менее явными при переходе к общей картине мира, неизменный характер которой охранялся традицией, а ее функция как раз и состояла в устранении индивидуальной, групповой окраски творчества, в вытеснении светских, временных, земных ценностей в пользу вечных ценностей «божьего града».

Возрождение явилось апофеозом индивидуального видения мира. Оно началось поэмой Данте, где структура и заселение потустороннего мира были продиктованы не традицией, а индивидуальными эмоциями и групповыми симпатиями и антипатиями флорентийского изгнанника. Оно привело к новой, гелиоцентрической системе, а затем и к творчеству Галилея.

Одним из наиболее характерных заявлений в «Диалоге» Галилея служит известная реплика Сальвиати о достоверности человеческого разума в познании частных истин, где он равен божественному разуму. Человеческий разум экстенсивно познает «как бы ничто», но интенсивно он познает бытие совершенно достоверно. В «Беседах», отвечая Симпличио, говорившему о невозможности разделения конечной линии на бесконечное число частей, Сальвиати предлагает согнуть прямую линию в кольцо и сразу получить многоугольник с бесконечным числом граней. Налицо научное мышление, оперирующее бесконечностью, реализованной в бесконечно малом.

Представление о бесконечности, реализованной в ее локальном элементе, примененное ко все большему числу объектов, становилось методом познания в форме дифференциального представления о движении, методов дифференциального и интегрального исчисления. Это представление воздействовало и на философию. Идея истинной бесконечности, реализуемой в ее конечных элементах, была обобщением научного представления о всеобщем законе, применимом к бесконечному числу объектов, и локальном эксперименте, подчиненном этому закону.

Ныне научное мышление уже оперирует не только бесконечностями, сосредоточенными в локальных ситуациях, как это делала, начиная с Галилея, наука XVII-XIX веков, но и локальными объектами, вплоть до пространственно-временных ячеек порядка 10^-15 см и 10^-25 сек. в качестве исходных пунктов макроскопических и космических (даже метагалактических) процессов. Эйнштейновские критерии внешнего оправдания и внутреннего совершенства существовали и в классической науке, но в неклассической они вообще оказываются неразделимыми. Когда развитие науки приводит к «пограничным конфликтам» на границе познанного и непознанного и теоретическая мысль ищет выхода из радикальных противоречий в металогическом переходе, в преобразовании логико-математических норм, новая концепция должна сразу же предстать в сознании как располагающая экспериментальными доказательствами, внешним оправданием. Такое интуитивное представление иногда называют озарением и тем самым проводят некоторую аналогию между научной мыслью и вдохновением художника.

Существенна концентрация целого, которого еще нет, в здесь-теперь, т. е. интегральное, а не дифференциальное представление о системе, вырастающей из новой идеи и ожидающей внешнего оправдания. Когда А. Эйнштейн в отличие от X. Лоренца пришел к идее пространственно-временного мира, где нет вневременных процессов, как к объяснению продольного сокращения масштабов, новая универсальная схема мира демонстрировала лишь возможное богатство своего внешнего оправдания, приведшего впоследствии к решающему наблюдению, исключившему другие объяснения. Интегральное озарение без предварительного представления о содержании и результатах эксперимента было компонентой науки уже тогда, когда И. Ньютон увидел падающее яблоко и в его сознании блеснула мысль о роли тяготения, а Р. Майер впервые подумал о сохранении энергии, наблюдая цвет крови у обитателей тропиков. Новая идея порождает массу прогнозов, конкретных картин и ассоциаций. В начале XX века подобные ансамбли прогнозов и ассоциаций сопровождались такими радикальными изменениями физических представлений, математических и логических идей, которые кавались парадоксальным нарушением норм. Во второй половине столетия парадоксальность сама стала нормой и даже больше – стилем научного мышления. Известная фраза Н. Бора о нелинейной концепции В. Гейзенберга: эта концепция недостаточно безумна, чтобы быть правильной, – характеризует не только выводы науки, но и подход, позицию мыслителя.

Так современная наука выявляет свое сходство с научной мыслью прошлого и вместе с тем остается во многом новой, неожиданной, нетрадиционной. Взгляд в историю науки позволяет раскрыть неизбывный ее динамизм, вопрошающие и реконструирующие компоненты.

Истина

Проблема необратимости познания, новый стиль научного мышления – все это тесно связано с проблемой критериев научной истины.

Наука не могла бы развиваться, если бы под истиной понимали нечто окончательное. Тем не менее в прошлом фундаментальные истины изменялись так медленно, что каждая частная истина представлялась статичной и была в каком-то смысле таковой, если она входила непротиворечивым образом в общую систему представлений о мире. Декарта не смущала искусственность и неоправданность частных кинетических моделей, и он (а эпигоны картезианства еще больше) считал свои модели истинными, адекватными действительности, если они иллюстрировали общие идеи его физики. Ньютон ввел в науку принцип однозначности частных истин, но, несмотря на индуктивистские формулы знаменитых «Начал», требовал от истин соответствия общим принципам. В целом частные истины складывались в общую концепцию мира как куски мозаики в единую картину.

Сейчас концепция мира напоминает скорее картину на мольберте, где почти каждый новый значительный мазок кисти меняет общий колорит, свет, композицию. Уже не стабильность картины мира, а все большее приближение ее к необратимой эволюции самого мироздания становится одним из исходных критериев верности каждого элемента картины. Отсюда изменение самого понятия истины и соответственно-ошибки. М. Шеврель после своего столетнего юбилея, подводя итоги творческой жизни, говорил, что его девизом было: «Всегда стремиться к истине и никогда на нее не претендовать». Этот девиз мыслителя, начавшего жить в XVIII веке и продолжавшего работать вплоть до 80-х годов XIX века, как бы реализовался в XX веке. Неклассическая наука в большей мере, чем это было раньше, сблизила стремление к истине, приближение к ней с отказом от претензий на ее окончательный характер.

Понятие истины изменялось вместе с ее содержанием. «Истина – дочь времени» – это утверждение справедливо не только для содержания, но и для самого понятия истины. В рамках перипатетической научной мысли содержанием наиболее общих физических и астрономических представлений была статическая гармония мироздания. Игнорирование качественной эволюции мироздания закрывало путь к признанию изменений в познании и в самих понятиях истины и заблуждения. В средние века эти понятия были закреплены в официальной идеологии антитезой канонизированной истины и неканонических ошибок. Возрождение внесло некоторые элементы относительности в понятия истины и заблуждения. «Афинская школа» Рафаэля – это апофеоз различий во мнениях, апофеоз многогранности истины и относительности заблуждений и ошибок, в отличие от еще средневековой фрески Андреа да Фиренце, изображающей апофеоз Фомы Аквинского, где языческие философы вместе с еретиками попираются представителем канонизированной истины [19]. Для мыслителей Возрождения ошибки представляются воззрениями, не только не согласными с опытом, но и уводящими от науки, от гетерогенной истины в сторону гомогенной догматики. Идея, выраженная в изречении: «Истина едина, заблуждения различны», т. е. идея однозначности истины, уже потеряла свой средневековый смысл, но еще не приобрела нового, свойственного новому времени экспериментального и логико-математического смысла.

В XVII веке и Декарт, и Ньютон были апостолами однозначной истины и множественности заблуждений. Декарт ставил акцент на внутреннем совершенстве, т. е. на логическом выводе частных теорий из общего принципа. Для Декарта ошибка – то, что противоречит кинетической предпосылке. Ньютон ставил акцент на внешнем оправдании: различие между истиной и ошибкой – эмпирическое, ошибка – то, что противоречит опыту.

Наука XIX века ввела новый критерий истины и ошибочности. Для статистической термодинамики и статистических концепций вообще различие между истиной и ошибкой существенно в рамках макроскопической картины явлений. Когда мы переходим от положений и движений частиц к их вероятностям, последние реализуются в достоверной макроскопической картине. Подобного рода критерий существенности истин и ошибок превращается в принципиальную ошибку, когда абсолютизируется различие между макромиром и микромиром. Вообще в науке XIX века появляется понятие принципиальной ошибки, которая состоит в отрицании связи между существованием микромира и законами макромира или же в отрицании специфичности процессов макромира.

Принесенные XIX столетием критерии истины и ошибки получили свое развитие и гораздо более явную форму в XX веке.

Изложение теории относительности часто происходит в форме вопроса о том, какой наблюдатель прав и какой заблуждается, когда каждый из них приписывает себе покой либо движение. Из принципа относительности следует, что каждый наблюдатель прав или же ошибается в зависимости от того, к какой системе отсчета отнесены понятия покоя и движения. По существу, вероятно, уже дискуссии о падающих «вниз» антиподах включали коллизии ошибочности и истинности мнений различных наблюдателей о «верхе» и «низе».

Аналогичные коллизии отражены в спорах о «центре Вселенной» и завершены в теории Эйнштейна. Но вместе с тем становилась однозначно истинной констатация покоя или движения, отнесенная к данной системе отсчета, и абсолютно ошибочной констатация, отнесенная к пространству, лишенному материальных тел.

Эта коллизия приняла еще более отчетливый вид в квантово-механической концепции. Переход от вероятности, как неопределенного синтеза реальных и возможных констатаций, к достоверности происходит здесь не по отношению к статистическому ансамблю частиц (как это было в классической статистике), а по отношению к локальной здесь-теперь ситуации и к индивидуальной частице.

Наука второй половины XX века впитала из обоих своих истоков – теории относительности и квантовой механики – оба метода такого перехода: и включение определенных систем отсчета, и переход от волнового определения сопряженных переменных к корпускулярному. Тем самым слились макроскопическая картина и микроскопическая (даже ультрамикроскопическая), относящаяся к локальным элементам бытия.

С развитием науки менялось и понятие ошибочности, отступления от истины, и отношение к таким отступлениям. Для средневековья характерно сближение ошибочности и ереси. Оценка истины и заблуждения принимала форму официальной канонизации и апологии для первой и анафемы для другой. Истина и заблуждение казались необходимои нивелировкой личности в первом случае, ее греховной автономией – во втором. В эпоху Возрождения истина и заблуждение, оставаясь связанными с человеком, поменялись ролями: канонизированная истина казалась ошибкой, заблуждением, грехом против Разума, а знание, свидетельствующее об автономии личности, представлялось истиной. Разумеется, речь идет только об одной тенденции, встречалось и немало противоположных. Но такая тенденция была характерной, отличавшей стиль оценочных суждений в XV– XVI веках от прошлого.

В XVII– XVIII веках и картезианство, и ньютонианство опирались на идею единственной, однозначно определенной истины. Соответственно по отношению к ошибке возможна была только одна реакция: ее отбрасывали с порога, причем картезианцы, как уже отмечалось, отбрасывая чуждые им взгляды как ошибочные, ссылались на априорные аргументы, а ньютонианцы на эксперимент. В XIX веке положение изменилось. Мир, а также и истина оказались гетерогенными, и ошибочные утверждения чаще всего состояли в распространении специфических закономерностей одного ряда явлений на другой ряд, т. е. в забвении несводимости, специфики главной формы движения или же, напротив, в игнорировании побочной формы движения, того, что связывает различные ряды явлений. Таковы были, например, виталистические взгляды. Элементарные ошибки все в большей степени уходили в прошлое, а вернее, становились кратковременными заблуждениями. Точность эксперимента росла относительно быстро, и сама экспериментальная деятельность приобретала все более непрерывный характер, поэтому уточнения результатов приходилось ждать недолго. Принципиальные ошибки вызывали длительные дискуссии, но и здесь рано или поздно появлялись решающие эксперименты, которые однозначно разрешали проблему.

В первой половине XX века акцент перешел на другой критерий научных поисков. Теория продольного сокращения, выдвинутая Лоренцем, не противоречила экспериментальным данным, но она не вытекала из более общих принципов, не обладала внутренним совершенством. Во второй половине столетия понятие ошибки в науке нередко становилось условным, ее ценность оказалась очень высокой.

Таким образом, начиная с XVII века и даже с Возрождения понятие научной ошибки весьма радикально трансформировалось. Найти ошибку все в большей степени означает определить область применимости концепции, ошибочно примененной вне этой области. Н. Винер как-то заметил, что проблема зла решается либо по пути, на котором зло представляется некоторым подобием энтропии, либо по пути манихейцев – зло персонифицируется, и ответственность за него приписывается некоему злому духу. Если со всеми необходимыми оговорками применить такое разделение к научной ошибке, то эволюция этого понятия идет от манихейской версии к первой, ошибка становится неотделимой от истины, ее даже можно в растущей степени сравнивать с вариациями, определяющими истинную кривую.

Конечно, такая тенденция не отменяет субъективных ошибок, экспериментальных и теоретических, связанных с неправильными общими позициями, и, наконец, случайных. Речь идет о том, что наряду с «броуновским движением» научной мысли происходит ее неуклонное приближение к объективной истине, и в этом смысле движение познания является и, несомненно, останется необратимым. В. И. Ленин характеризовал этот процесс, говоря о живом дереве истинного человеческого познания, на котором могут расти и пустоцветы, но которое тем не менее остается деревом абсолютного и объективного познания.

Ценность

Познание и действие

Связь науки второй половины XX века с понятием ценности вытекает из более явной, чем раньше, связи между познанием и преобразованием мира. Именно отсюда – современное представление о связи между гносеологией и аксиологией. Гносеологические проблемы, вытекающие из обобщения достижений неклассической науки, и особенно науки второй половины XX века, неотделимы от аксиологических проблем. Ценность познания стала одной из основных проблем философии, науки, всей культуры нашего времени. В той или иной форме она не может не волновать людей: с надеждой и тревогой они думают о том, как наука может повлиять на их судьбу. Рациональный ответ на подобный вопрос невозможен без раскрытия понятия науки, ее потенций и перспектив, а также понятия ценности науки, ее экономического, культурного, морального, эстетического эффекта.

Основной критерий и исходное определение ценности познания – преобразование мира. Воздействие человека на мир опирается на объективные процессы, как обратимые, так и необратимые, на их иерархию. Существует, следовательно, объективная основа ценностных определений, подобно тому как существует объективная основа самой деятельности по преобразованию мира. Для современной науки, изучающей природу, такой основой выступают в конечном счете объективные процессы структуризации и деструктуризации бытия. Естественно, что указанная сторона не исчерпывает сущности аксиологических проблем – проблем социальной, моральной, культурной и эстетической ценности.

Ценность познания связана в первую очередь с отображением его результатов и методов в других областях, где имеют право гражданства и определения должного, понятие цели. Но и в самой науке критерий должного находит место, как только мы начинаем рассматривать ее как деятельность, как сферу общественного труда, как совокупность не только констатаций, но и целесообразных действий, поисков, экспериментальных проверок и т. д., т. е. всего, что человек должен делать для того, чтобы достичь того или иного результата. Причем речь вовсе не идет о результатах только прикладного характера. Уже давно, с самого начала существования классической науки, можно было говорить о ценности логики для математики и механики, о ценности механических моделей для физики, о ценности физических методов, понятий и схем для химии и т. д. Нужно подчеркнуть, что применимость понятия ценности в указанном смысле явилась результатом структуризации науки, выделения специфических дисциплин, исследующих специфические формы движения.

Оценочные суждения и переходы от одного ряда понятий к другому входят в содержание науки и в ином смысле: ценность общих принципов определяется через их воздействие на внешнее оправдание, а ценность эмпирических проверок – через их преобразующее воздействие на внутреннее совершенство теорий.

Ценность науки определяется и в историческом плане. Можно говорить, например, о ценности науки Возрождения, исходя из ее активного воздействия на картину мира, созданную в XVII веке, или о ценности современной науки в переосмыслении прошлого и предвидении будущего. Такое понимание ценности соответствует пониманию активной роли науки в процессе ее исторического развития.

Во всех указанных случаях речь идет о целесообразном воздействии науки на самое себя, о воздействии ее констатаций на выбор методов, на перенос понятий и методов из одной дисциплины в другую, на направление поисков и характер задуманных экспериментов, на то, что определяется уже сформулированной целью и задачей исследования. Познание не может ограничиться пассивной констатацией объективного состояния, оно активно, неразрывно связано с действием.

Значение содержания науки, ее результатов, ее констатаций для последующих поисков, методов, экспериментов может быть названо своего рода гносеологической ценностью познания. В этом эффекте научных констатаций, в их необратимом преобразовании, в последовательном усложнении картины мира состоит связь между ценностью познания и его необратимостью. Сила научных преобразований принимает форму научной задачи и, таким образом, как бы переходит в сферу должного, создает возможность некоторого прогноза. Все это рождает мироощущение, которое можно назвать гносеологическим оптимизмом [20].

Значение того или иного процесса, явления нередко определяется воздействием его на более общий процесс, воздействием данной системы на включающую. Так, ценность индивидуальной человеческой жизни, ее смысл – в воздействии на жизнь окружающих людей, на жизнь общества, того или иного общественного строя, в определенном ее вкладе в необратимую эволюцию общества, в развитие человека.

Можно сказать, что ценность в этом смысле связана с интенсивностью того процесса, который лежит в основе необратимого течения времени.

Истоки понимания последнего восходят к идеям Возрождения. Для средневековой мысли в ее официальных направлениях критерием ценности служит десекуляризация, т. е. переход от секулярного, временного, относительного, свойственного «земному граду», к невременному, к неподвижной сакральной вечности, свойственной «божьему граду». Временные события и процессы обладают ценностью, если они в эволюции мира, длящейся до скончания веков, проникнуты ощущением сакральной вечности. Выражение «до скончания веков» имело в средние века не тот смысл, который ему придают начиная с Возрождения. Средневековые мыслители полагали, что в «конце веков» века перестанут существовать, время остановится и исчезнет. Эта концепция, ставшая архаической уже в XVI веке, была связана со статической гармонией мироздания – основной идеей античной и средневековой космологии. Новая концепция ценности, возникшая в рамках Возрождения, явилась некоторым предварительным вариантом учения о вечности времени, о бесконечном временном процессе изменения мира, о динамической гармонии бытия.

Обобщением длящейся, динамической вечности явилось затем, гегелевское понятие истинной бесконечности. Современное, связанное с неклассической наукой, понятие бесконечности отличается тем, что бесконечность не только присутствует в каждом конечном элементе, но и взаимодействует с каждым конечным или бесконечно малым элементом. Такое понятие бесконечности подчеркивает связь бесконечности с действием, бесконечность становится как бы объектом действия – антитезой средневекового провиденциализма, мысли о провидении, заменившем античный фатум, но столь же незыблемом в своих предначертаниях. Бесконечность, зависящая от локального элемента, – одно из самых нетрадиционных и парадоксальных понятий физики XX века.

Может показаться искусственным непосредственный переход от физического взаимодействия бесконечно малого с бесконечно большим к взаимодействию в других областях реальности. Однако ранее уже говорилось о влиянии теории относительности и других разделов неклассической науки на философские обобщения, что является исходным пунктом подобного перехода.

Обобщение достижений теории относительности и квантовой механики в значительной мере совпадает с исторической эволюцией. В первой половине XX века теорию относительности считали по преимуществу макроскопической теорией быстро движущихся тел. Во второй половине века теория относительности становится единой теорией Вселенной и микромира и вступает в значительно более явный и тесный союз с квантовой теорией, которая также становится универсальной, охватывающей космические процессы. Подобная универсализация созданных в первой половине века физических теорий означает переход из теории микромира в теорию космоса и обратно физических констант, моделей, законов, уравнений, понятий, которые по своей общности в какой-то степени приближаются к философским (или к общенаучным) категориям, оставаясь при этом в пределах физики.

Здесь уместно вспомнить, что в физике Эпикура гипотеза спонтанных отклонений атомов от предписанных законом прямолинейных путей имела философский смысл.

Она относилась к бытию во всех его формах и служила основой освобождения человека от абсолютной «власти физики», как называл Эпикур макроскопическую детерминированность бытия. Эта нота – выведение относительной автономии индивида из спонтанных движений атомов – звучит очень явственно и у Эпикура, и у Лукреция. В той или иной форме, явно или неявно она звучала и позже. Какие же новые моменты внесла сюда неклассическая наука?

Она не ограничивается некоторым возвратом к спонтанным отклонениям в атомной физике, а включает и обратную операцию: локальный процесс видоизменяет макроскопическое и даже космическое целое. В теории познания аналогичное положение выразилось в том, что Эйнштейн называл «бегством от парадокса», т. е. в освобождении от парадоксальности эксперимента путем перехода к новой, парадоксальной, максимально общей теории. Но автономия частицы означает максимальное воплощение, локальную реализацию бесконечного, и именно в такой реализации – ценность локального акта, локального эксперимента.

Из большого числа замечаний Эйнштейна о смысле познания и жизни можно привести одно, тесно связанное с проблемой бесконечности. В автобиографических заметках 1949 года он писал о познании объективного «вне-личного» и «надличного» мира как об основном идеале своей юности: «Там, во вне, существовал большой мир, существующий независимо от нас, людей, и стоящий перед нами как огромная вечная загадка, доступная, однако, по крайней мере отчасти, нашему восприятию и нашему разуму. Изучение этого мира манило как освобождение, и я скоро убедился, что многие из тех, кого я научился ценить и уважать, нашли свою внутреннюю свободу и уверенность, отдавшись целиком этому занятию. Мысленный охват, в рамках доступных нам возможностей, этого внеличного мира представлялся мне, наполовину сознательно, наполовину бессознательно, как высшая цель» [21],

Была ли эта высшая цель только импульсом для выбора науки как поглощающего всю жизнь занятия, или она в какой-то мере была связана с исходными идеями теории относительности? Конечно, Эйнштейн в те годы, о которых идет речь, еще не знал того, что впоследствии привело к новой картине мира. Но он знал, что постижение «внеличного мира» включает свободу, неотделимую от постижения мира в его бесконечной сложности.

Представление о бесконечной сложности мира, о бесконечном множестве опосредствований, связывающих бесконечно малое здесь-теперь с бесконечно большим вне-здесъ-теперь, явилось психологическим и моральным истоком того ощущения ценности познания, без которого, по словам Эйнштейна, не может быть научного творчества.

Развитие науки неразрывно связано с развитием общества. Поэтому ее ценность не является самодовлеющей, а имеет и более сложный, опосредствованный характер; она состоит в воздействии науки на технику и структуру производства, на социальные отношения и другие стороны развития общества. Такое воздействие можно называть культурной ценностью познания.

Экономическая ценность познания

Познание мира воздействует не только на самого себя, но и на субъект познания; на темпы и направление преобразующей деятельности человека, на результаты этой деятельности, т. е. на преобразованную человеком природу, на структуру ноосферы; на методы преобразования, т. е. на технологию, на уровень и характер производительных сил. Остановимся на экономической ценности познания, а именно – на изменении структуры производства под влиянием современной неклассической науки.

Одним из основных прогнозов, связанных с обобщением достижений современной науки, является уверенность в возрастании значения прикладной науки, производственного применения научных выводов.

В «Капитале» К. Маркса систематически разработана проблема промышленности как прикладного естествознания. В XVIII-XIX веках, вплоть до начала XX века включительно, промышленность получала непосредственные революционизирующие импульсы от того, что тогда называли прикладными исследованиями. Последние резко отделялись от фундаментальных исследований. Долженствование, вопрос «зачем», т. е. вся аксиологическая сторона дела, фигурировали здесь совсем в иной форме, чем в фундаментальных исследованиях. Фундаментальная наука включает эту сторону дела: эксперимент, выбор сфер наблюдения, выбор математических и логических дедукций подчиняются определенной цели («чтобы проверить, увлекает ли движение тела эфир, нужно расположить интерферометр…» и т. п.). В фундаментальных исследованиях, противостоящих прикладным, подобные «чтобы… нужно» подчинены не преобразованию мира; конечная их цель – познание мира.

В неклассической науке подобное разграничение сглаживается. Возникает новое отношение науки к производству, характеризующееся непосредственной прикладной функцией фундаментальных исследований. В производстве все большую роль начинает играть производство информации, причем не только технической и технико-экономической, но и собственно научной. Впрочем, слова «собственно научная информация» оказываются условными: трудно определить заранее, прибавит ли такая информация какие-то новые штрихи и краски к картине мира или послужит его непосредственному преобразованию.

В основе такой эволюции лежит неклассическая по самой своей сути близость эксперимента, способного стать основой технической конструкции или технологического процесса, к фундаментальным проблемам бытия. Эксперимент решает сейчас проблемы конечности или бесконечности, бесконечной делимости или дискретности пространства-времени. С другой стороны, преобразование мира приобрело масштабы, близкие к масштабам основных объективных процессов природы, что связано с расширением ноосферы и ее углублением в направлении бесконечно малого микромира. Таким образом, фундаментальные исследования в неклассической науке подводят познание к оперированию бесконечным.

В настоящее время эти исследования приобрели непосредственный экономический эффект, что помимо колоссального значения для экономики имеет первостепенное значение для философии. Тезис К. Маркса о философии, которая лишь объясняла мир и призвана перейти к его преобразованию, в свете практического значения фундаментальной науки и тесно связанного с ней философского обобщения представлений о мире получает новую конкретизацию.

Диалектическая идея перехода от абстрактных определений к более конкретным, обладающим растущим множеством опосредствований, нашла свой отчетливый физический эквивалент в современной неклассической физике, где «мировая линия» определяется по бесконечно усложняющемуся, растущему множеству непривилегированных систем отсчета (теория относительности) и по бесконечному множеству локальных ситуаций (квантовая механика). Это – неклассический тип систем, в которых локальные элементы системы не только зависят от нее, но и воздействуют на нее в целом.

Представления о взаимодействии системы и ее локального элемента не было в классической макроскопической физике с ее статистическими законами. Его не было в классической эволюционной биологии, где статистически реализуемое, необратимое развитие вида опиралось на усреднение индивидуальных судеб. Его не было и в классической политической экономии – теории статистически складывающегося динамического равновесия производства и потребления. К. Маркс увидел в самом простом, локальном элементе экономики – в обладающем стоимостью товаре средоточие всей бесконечной сложности общественного разделения труда. Стоимость – это воплощенная в данном товаре часть общественно необходимого, абстрактного труда, т. е. локальное выражение распределения труда, его структуры, причем каждый элемент структуры связан с другими элементами через неопределенно большое множество стоимостных соотношений.

При этом важно подчеркнуть связь двух процессов: теоретического, философского обобщения экономических категорий и реального преобразования экономических отношений. Теоретический анализ исходит из некоторых общих отношений между системой и ее элементами, причем он вовсе не ограничивается констатацией иррациональных форм распределения труда, стоимостных отношений, а объясняет, почему подобные отношения принимают иррациональную фетишизированную форму, и показывает историческую ограниченность этой формы. Такой анализ служит в конечном счете теоретической основой преобразования, действия.

Так же как «анатомия человека – ключ к анатомии обезьяны» (К. Маркс), а структура гармонического общества – ключ к анатомии общества, где динамическое равновесие производства реализуется стихийно, структура классической науки раскрывается при сопоставлении со структурой современной науки – в этом основа историко-научной ретроспекции.

Неклассическая наука характеризуется явным и непосредственным переходом от данного эксперимента к весьма общей системе выводов и принципов. Соответственно проведение отдельных экспериментов приводит к более широким выводам, к ряду больших и разнообразных преобразований в технологии и к серьезным сдвигам в структуре производства. Это восхождение от локального к общему требует рациональной связи между экспериментами и общими результатами, между производством и наукой. Иррациональное, стихийное восстановление динамического равновесия в экономике, влияющее на характер связи между локальными элементами прогресса и общими сдвигами в технологии, в производстве, не соответствует сути научно-технического прогресса, связанного, в частности, и с неклассической наукой.

Из многочисленных замечаний К. Маркса о замене чисто стоимостных критериев производства более рациональными критериями обратим внимание читателя на те его положения, в которых выражена мысль о превращении всеобщего знания в непосредственную производительную силу [22].

Экономическая ценность научного познания измеряется в конечном счете уровнем производительности труда как функции научно-технического прогресса. Скорость технического прогресса и скорость роста производительности труда возрастают в результате прикладных, технологических и конструктивных исследований, а также под влиянием теоретических фундаментальных научных исследований, меняющих целевые каноны технологических и конструктивных поисков – физические и химические циклы [23].

В определенной мере можно количественно определить экономический эффект наиболее фундаментальных исследований. Это позволяет несколько конкретнее представить себе эффект научного познания в целом и его перспективы.

Вместе с тем эффект меганауки проявляется в изменении общих представлений о пространстве, времени, веществе, движении. А такой переход требует философского обобщения, подводит к собственно философским проблемам.

Речь идет, в частности, о проблеме необратимости времени. Эта необратимость выступает как обобщение всех процессов структурализации мира – космических, ультрамикроскопических, биологических, психологических, историко-культурных и т. д.

В области науки необратимыми являются изменения, которые вызываются не теми или иными естественнонаучными открытиями, а всем интегральным прогрессом науки, основывающимся в конечном счете на прогрессе общества в целом, на развитии производительных сил. Развитие философии связано с обобщением как естественнонаучных идей, так и выводов социальных наук, причем не в качестве суммирования параллельных направлений анализа, а путем отражения того, что происходит и будет происходить и в природе, и в обществе.

Развитие общества – это необратимый процесс, связанный с переходом от стихийного общественного разделения труда, включающего его отчуждение, к гармоничному общественному устройству. Такой переход требует и реализации философских идей, служащих теоретической основой преобразования общества. Из социального прогноза следует собственно философский: будущее принадлежит диалектике как отображению необратимой эволюции мира, как орудию социального прогресса.

Моральные и эстетические критерии

В неклассической науке XX века, особенно во второй его половине, резко возросло значение моральных и эстетических критериев. Это объясняется прежде всего уже неоднократно упоминавшейся социальной действенностью науки. Освобождение атомной энергии в середине столетия явилось в этом отношении определенным историческим рубежом. Ф. Жолио-Кюри, после того как была открыта цепная реакция деления урана, беседовал со своими сотрудниками о моральном праве продолжать исследования, которые приведут не только к повышению индустриального и культурного потенциала, но и к созданию атомной бомбы. Аналогичные соображения высказывались и раньше, в XIX веке, в связи с открытием новых разрушительных взрывчатых веществ и по другим поводам. Но здесь – существенная разница. Тогда речь шла о прикладных открытиях, теперь – о фундаментальных. Развитие атомной физики – один из главных фарватеров не только физики, но и познания в целом. Здесь нельзя, как в случае прикладных исследований, заменить одно направление исследований другим. В неклассической науке фундаментальные исследования тесно связаны с общей концепцией пространства, времени, вещества и движения, с преобразованием стиля научного мышления, с углублением разума в самого себя, т. е. с необратимостью познания. Поэтому прекращение исследований, которыми занимались тогда Ф. Жолио-Кюри и его сотрудники, означало бы остановку научного прогресса, торможение развития культуры.

Анализ тех соображений и интуитивных прогнозов, которые заставили Ф. Жолио-Кюри и других продолжить ядерные исследования, позволяет увидеть характерные особенности моральных критериев в неклассической науке. По мнению А. Пуанкаре, мораль отличается от пауки тем, что она всегда – в повелительном наклонении, а наука – в изъявительном. Наука не исчерпывается только ее гносеологическим содержанием, она имеет и деятельностную сторону. Моральным эффектом и обладает наука как деятельность.

Неклассическая наука в большей мере, чем предшествующая, характеризуется слиянием содержания науки и такой ее стороны, как деятельность. Эксперимент и применение, т. е. деятельность, неотделимы здесь от констатаций, от содержания науки, а последнее от воздействия на мораль.

В литературе встречается утверждение о существовании двух тенденций современной науки: абсолютизирующей тенденции, связанной с поисками инвариантов мироздания, которая гуманизирует науку, и формализующей и релятивирующей тенденции, которая дегуманизирует ее [24]. Действительно, для неклассической науки, начиная с теории относительности, характерна явная связь релятивирующей тенденции и утверждения об инвариантности пространственно-временных интервалов, их независимости от выбора систем отсчета.

Однако именно это единство релятивирования и абсолютизации картины мира, релятивирования пространственных и временных масштабов и признания инвариантности скорости света, а также преобразований, связанных с переходом от одного макроскопического прибора к другому, становится проявлением гуманизации науки. Ведь гуманизация знания – это не субъективизация его и не превращение его в пассивное отображение мира. Она связана с выявлением активной действенной роли человека в познании объективного мира. Теория относительности утверждает объективную гармонию бытия, познаваемую через величины, варьирующиеся при переходе от одной системы к другой, и через иные величины, которые служат инвариантами преобразования.

Что касается эстетических критериев, то они известны и классической науке, особенно критерий изящества, столь существенный для математики. Изящество – это в известной мере свидетельство гносеологической мощи той или иной концепции или метода, возможности при минимальном числе исходных допущений получить максимальное множество выводов, что означает максимально прямой путь доказательства, наименьшее число промежуточных логических или математических операций. А. Пуанкаре сравнивал изящную теорему с античной архитектурной конструкцией, где небольшое число колонн поддерживает тяжелый ордер и делает это с легкостью, отражающей совершенство архитектурного замысла.

Основой эстетического впечатления может служить не только максимальный эффект данной теории или метода, но и широта и емкость исходной теории и выводов. Впечатление красоты создается приближением к идеалу, к картине, выведенной из одной принципиальной концепции. Таково, например, выведение всей структуры космоса из отождествления гравитации и неевклидовой геометрии мира.

В автобиографии Альберт Эйнштейн, говоря о «естественных» постоянных, т. е. о безразмерных соотношениях между массами, зарядами, расстояниями, длительностями различных процессов, отмечал: «Относительно этих последних мне бы хотелось высказать одно предложение, которое нельзя обосновать пока ни на чем другом, кроме веры в простоту и понятность природы. Предложение это – следующее: таких произвольных постоянных не существует. Иначе говоря, природа устроена так, что ее законы в большой мере определяются уже чисто логическими требованиями настолько, что в выражения этих законов входят только постоянные, допускающие теоретическое определение (т. е. такие постоянные, что их численных значений нельзя менять, не разрушая теории)» [25].

Идеал абсолютного внутреннего совершенства картины мира не может быть полностью реализован. Мир неисчерпаем, и речь идет о программе, уходящей в бесконечность. Бесконечное приближение к идеалу воплощается уже сейчас в идеальном образе Вселенной без теоретически не объясненных, чисто эмпирических констант, и эстетическая ценность такого понятия – иллюстрация традиционного и всегда нового определения красоты как воплощения бесконечности. Во второй половине нашего столетия поиски единой теории элементарных частиц, попытки логического выведения таких констант, как масса и заряд частиц, независимо от успехов и неудач, становятся одним из важных отправных пунктов философского обобщения достижений науки.

Мысль о необратимом сближении истины и красоты, о плодотворном влиянии поисков истины на поиски красоты – один из элементов философского прогноза. Она опирается и на характеристику научных идеалов, ставших во второй половине XX века программой неклассической науки.

Уже в эпоху Возрождения, когда опорой науки перестала быть традиция и истину называли дочерью времени, в число ее критериев вступает эстетическая ценность, понятие красоты. В заметках Леонардо да Винчи видно, как определения красоты перерастают в определения истины, а позднее в натурфилософских произведениях Джордано Бруно можно услышать уже не столь явные отзвуки эстетических идей. В XVII-XVIII веках происходила некоторая эволюция эстетических критериев науки. «Прекрасный мир» Спинозы уступал место изяществу математических построений и экспериментальных методов Лагранжа и Эйлера. Эстетические критерии выражают степень внутреннего совершенства теории. Однако теперь внутреннее совершенство перестало играть ту роль, которую оно играло в начале XVII века. Наука дифференцировалась, и включение обособившихся форм движения в единую и универсальную систему каузальных связей происходило в форме сведения специфических законов к законам механики. Критерием истины стало совпадение теории с результатом частного эксперимента.

Представим себе теперь эксперимент, который не дает внешнего оправдания существующей теории. Результаты эксперимента кажутся парадоксальными. Затем происходит то, что Эйнштейн назвал бегством от чуда, – начинается бегство от парадокса. Возникает парадоксальная теория, которая снимает с эксперимента ореол парадоксальности. Далее парадоксальная теория должна получить внутреннее совершенство. Тогда сравнивают различные исходные принципы, причем сравнивают на первых порах по интуитивно представимым множествам выводов, связей, по экспериментам, подтверждениям, т. е. по представлению о логической корректности данного варианта, о соответствии новой концепции максимально реконструирующему воздействию на мир, по корректности, естественности новой идеи, а также по ее интегральным характеристикам, отнесенным к сравнительно неясному еще объему экспериментальных доказательств и практических применений, по моральной ценности этих применений, по общности идеи.

История науки и философия

Историко-философская ретроспекция

Неклассическая наука не может идти вперед без гносеологического анализа – анализа, обращенного в будущее – прогнозов познания и обращенного в прошлое – ретроспекции, отыскивающей «не пепел, а огонь прошлого». «Огонь прошлого» является в истории познания символом философского обобщения, демонстрирующего необратимое движение познания, связь прошлого с настоящим и их различие. Ретроспекция – основа прогноза, но и прогноз – основа ретроспекции, которая познает более простое через более сложное, подобно тому как это делает современная наука, анализирующая элементарные частицы и их движение, ссылаясь на сложные понятия волнового поля, на волновые уравнения, на такие полевые константы, как скорость света.

Выявляя в прошлом динамический компонент познания, историческая ретроспекция приходит к тем апориям и проблемам, которые позволяют прогнозировать его будущее. Последние не всегда были сформулированы в явном виде, они выступали в виде гипотез, еще не обладавших внешним оправданием и внутренним совершенством, и таких темных пятен, каким была, например, по мнению Канта, ньютонова теория первого толчка.

Подобная, по существу прогностическая, вопрошающая компонента познания все чаще становится объектом историко-философского анализа. Важными установками для такого анализа служат, например, замечания В. И. Ленина об ищущем, противоречивом, разноголосом стиле философского мышления Аристотеля [26], а также его замечания в конспекте лекций Гегеля по истории философии. Значение неклассической науки для указанного направления анализа состоит в том, что ее развитие явилось демонстрацией возрастающей ценности вопрошающей компоненты, а в будущем будет связано с дальнейшим повышением «потенциала поисков» в сфере научного мышления.

Следует заметить, что история мысли не является расписанной по вехам логической схемой. Она выступает как разработка конкретной, собственно исторической, несводимой к абстрактной логике картины с ограниченными отрезками кривой познания, продолжением и закреплением этих отрезков. История мысли все конкретнее и точнее показывает, как – сквозь шаги познания в сторону и назад – проходит необратимая бесконечная эволюция познания, направленная к абсолютной истине и складывающаяся из относительных истин.

Древность и средние века

Философская и научная мысль древности, средних веков и Возрождения обычно оценивалась с позиций уже достигнутого уровня представлений о мире. Воззрения прошлого привлекались к суду не исторически трансформирующихся воззрений, а совпадавшей с ними, как тогда думали, абсолютной истины. Таким образом, оценки не были привязаны ко времени, а казались абсолютными. В наше время диалектические по своему характеру фундаментальные представления о мире связаны с иным подходом к идеям прошлого. При этом происходит пересмотр традиционных оценок, переход к новым оценкам; некоторые идеи, находившиеся на заднем плане, в настоящее время, при новом освещении, выходят на авансцену.

Возьмем в качестве примера атомистику Эпикура и Лукреция – известные и уже упоминавшиеся отклонения атомов. Их рассматривали с позиций абсолютного механического детерминизма. С подобной точки зрения положения о спонтанном отклонении атомов оказывались оторванными от необратимой эволюции познания, единичным отходом от истины.

Однако уже в диссертации К. Маркса о натурфилософии Демокрита и Эпикура был высказан нетрадиционный взгляд на отклонение атомов, а сопоставление их движения с движением электронов было сделано В. И. Лениным в конспекте лекций Гегеля по истории философии [27]. В связи с этим важно проанализировать указанные отклонения атомов в свете учения о виртуальных частицах и вакууме. В орбиту такого анализа войдет и анализ представлений эпикурейцев о непрерывном движении частицы как результате несводимых к такому движению дискретных актов.

Другой пример – оценка связи между диалектикой, математикой и эмпирическим познанием в философии Платона. В. Гейзенберг отмечал, что новейшая физика близка к представлению Платона о математике как второй ступени познания, связывающей первую ступень – диалектику, учение о едином, с регистрирующим локальные элементы бытия эмпирическим познанием [28]. Но собственно исторический анализ и выход за пределы неклассической физики в более общую область неклассической науки заставляют видеть в математике отнюдь не отображение априорных нематериальных сущностей, а, напротив, отображение всего многокрасочного и меняющегося гетерогенного бытия, которое раскрывается в эмпирическом познании. С такой, более общей, точки зрения мы видим сквозную, очень сложную тенденцию физикализащии самой математики, выталкивающей из картины мира априорные сущности. Истоки подобной тенденции мы находим у Платона и тем самым обнаруживаем у него противоречия, эволюцию, внутренний диалог, столь характерный, впрочем, для античной мысли в целом.

И при историческом анализе философии Аристотеля раскрывается диалогичность философского мышления, а через нее – собственно исторические истоки философии. Диалогичность взглядов Аристотеля, как и всей греческой философии, особенно велика в проблеме общего и частного, непрерывной материи и организующей ее и сообщающей ей структурное бытие формы, которая обладает энергией и способна превратить возможное в действительное. Когда мы идем к Аристотелю с неклассическими критериями и ассоциациями, мы глубоко проникаем в сущность внутреннего диалога, противопоставления и слияния полярных определений. И тогда нам становится понятнее внешнее поле развивающейся мысли, в частности весьма глубокие соображения Гегеля о связи философии Аристотеля с атмосферой, созданной в империи Александра Македонского. Таким образом, неклассическая ретроспекция ведет к уточнению общего представления о путях античной мысли, к выявлению специфической культурно-исторической атмосферы, в которой она развивалась.

В средневековой мысли можно проследить такую же линию: выявление внутреннего диалога – апелляция к внешнему полю, т. е. к собственно историческим условиям развития познания. Так, коллизия средневекового реализма и номинализма оказывается внутренней коллизией в самих основных течениях средневековой мысли. Они выступают как продолженные, абсолютизированные отрезки кривой познания. Тем самым открывается дорога от логической схемы к реальной истории, где история познания связывается и с общеисторическими факторами, с борьбой общественных групп.

Возрождение

Само название культуры XV-XVI веков (к этим двум столетиям оно применяется без оговорок и почти без дискуссий) содержит в себе большую проблему. Слово «Возрождение» говорит о возврате, о повторении и вместе с тем о новом, о том, чего еще не было и что уже не повторится. Но ведь это можно сказать о каждой эпохе. Почему же название «Возрождение» так быстро и так прочно закрепилось за этим периодом?

В представлении об истории познания классическая наука ставила акцент на слабой необратимости. Историки философии, науки, культуры понимали, что прошлое отличается от будущего, но, рассматривая какую-либо эпоху, видели в ней либо реминисценцию, повторение прошлого, либо предвосхищение будущего. Особенно отчетливыми и явными были такие суждения, когда речь шла о Возрождении. Но как раз Возрождение и было эпохой, когда прошлое и будущее сблизились в беспрецедентной мере, стали силами настоящего и вступали между собой в конфликт, а иногда в диалог, в котором участники, обмениваясь репликами, меняют свои позиции.

Это была эпоха, которая находила «золотой век» не в прошлом и не в будущем, а в настоящем. Для Возрождения характерна как бы динамизация «золотого века».

Этот диалог прошлого и будущего, эта демонстрация сильной необратимости развития познания и культуры, это переплетение ретроспекции, обращенной к Данте, и прогноза, обращенного к Галилею, может многое объяснить в истории познания [29].

Характерно, что в XX веке начался длящийся уже на протяжении нескольких десятилетий диалог прошлого – всей классической науки XVII-XIX веков – и будущего как радикального отказа от классических устоев в рамках квантово-релятивистской картины космоса и микромира. Неклассическая ретроспекция открывает немало нового в истории мысли XV-XVI веков. Ближе всего связаны с такой ретроспекцией исследования, посвященные эволюции понятий пространства, времени, движения, вещества, каузальной связи, бесконечности. В то же время исследование эволюции перечисленных понятий в эпоху Возрождения делает более пластичными современные представления о пространстве, времени, движении и т. д. и, таким образом, обладает эвристической ценностью.

Новое время и современность

Если иметь в виду современное обобщение достижений неклассической физики, то можно увидеть два основных этапа такого обобщения. На первом этапе оно касалось теории относительности и квантовой механики и как связанных между собой, но параллельных концепций с самостоятельными истоками. На втором этапе, начавшемся в середине столетия, выяснилась более фундаментальная связь этих концепций, что нашло свое выражение в квантово-релятивистских идеях, в теории ультрарелятивистских эффектов, трансмутаций, взаимодействий частицы с вакуумом, в попытках создания единой теории элементарных частиц и различных (гравитационных, слабых, электромагнитных, сильных) взаимодействий. То обстоятельство, что здесь перед нами во многом еще пунктирные, прогностические линии развития науки, только увеличивает эвристическую эффективность философского обобщения.

В начале нашего столетия наибольшее воздействие на стиль мышления о мире оказывала, если говорить о неклассической науке, теория относительности. Ее первые утверждения исключили из картины мира абсолютное пространство и абсолютное время и покончили с раздельным пространственным и временным бытием. Здесь можно видеть некоторое сближение с кинетическим мировоззрением Галилея, Декарта, Гассенди и Спинозы, с идеей непрерывного движения как основы космической гармонии. Эта идея вошла в классическую науку из науки Возрождения, и поэтому философия XVII века явилась прямым продолжением, реализацией того, что было высказано мыслителями Возрождения в беспорядочной и полуинтуитивной форме. Достаточно сравнить идею относительности у Бруно и у Декарта, чтобы увидеть их преемственность и различие.

Что же касается XVIII-XIX веков, то здесь теория относительности позволяет заново оценить эволюцию представлений о пространстве, времени, математического и физического постижения мира. Такая ретроспекция помогает яснее увидеть последовательное развитие динамического понимания бытия в философии XVIII-XIX веков. Для французского материализма XVIII века бытие – это пространственное, трехмерное бытие. Гольбах, Ламетри и их последователи знали о повторении циклов во времени, но они не знали о необратимости времени как компоненте бытия. В лице Канта философия выступила против фигурировавшего в «Началах» Ньютона первого толчка, т. е. против внепространственной акции во времени, и против действия на расстоянии – вневременной акции в пространстве. У Гегеля пространство неотделимо от времени, но их связь – внешняя, время персонифицировано в непространственной эволюции абсолютного духа, пространство – статическое инобытие духа.

Теперь, когда мы знаем, что время и пространство неразделимы, нам легче увидеть и необратимую эволюцию познания пространственно-временного мира, и противоречащую ей абсолютизацию ее элементов – субъективизацию пространства и времени у Канта и разделение пространства и времени между природой и абсолютным духом у Гегеля.

Квантовая механика позволила проследить развитие понятия гетерогенности в философии XVIII-XIX веков. В первой половине XX века квантовая механика, как уже отмечалось, оказалась объектом философского обобщения по преимуществу в своей первоначальной, нерелятивистской форме. Акцент ставился на констатации связи между квантовыми объектами микромира и классическими, макроскопическими объектами. Философское обобщение достижений квантовой механики, связей между классическими и квантовыми понятиями («классический прибор», принцип соответствия) позволило увидеть в новом свете и эволюцию некоторых представлений, в частности идей гетерогенности бытия.

Вселенная, какой она представлялась Гольбаху и другим французским материалистам XVIII века, была гетерогенной в самом простом, механическом смысле. Она казалась иерархией систем, элементы которых связаны силами различной интенсивности. Переход от частицы к макроскопическому телу и дальше, к планетам, звездным системам и галактикам, не означал модификации фундаментальных законов бытия. Познание такой иерархии было делом рассудка, регистрирующего подчинение все новых явлений неизменным законам, а не разума, радикально преобразующего сами законы.

Уже Кант столкнулся с парадоксами перехода от подчиненных одним и тем же законам явлений к иным законам; с парадоксами бесконечности как симптомом такого перехода; с парадоксами разума. Анализ антиномий привел Канта к заключению: источник антиномий – уход разума от исследования своих собственных возможностей, обращение его к объективному миру. Гегель показал, что противоречия, парадоксы, антиномии, апории сохраняются и при уходе в трансцендентное. Более того, именно противоречия и служат движущей силой развития абсолютной идеи, которая является основой мирового процесса. Если Кант освобождает разум от противоречий и антиномий, приписывая их выходу разума за свои пределы, то Гегель сохраняет за разумом противоречия и антиномии.

Концепция Гегеля вводит в философию мысль о диалектическом разуме, развивающемся в противоречиях, черпающем в них свою гетерогенность и динамику и сообщающем эти свойства бытию. Она завершает переход от картины мира, в которой царят неизменные законы, распространенные на все формы бытия, к картине мира, которым управляет гетерогенная система нетождественных, переходящих один в другой законов. Но пока еще над законами природы стоят логические понятия. Завершением перехода от панлогизма Гегеля к логике, отображающей гетерогенную природу, философская мысль обязана марксизму.

Начавшееся во второй половине XX века обобщение достижений науки названо выше квантово-релятивистским. Исходные физические представления о мире, получающие более общую форму при таком обобщении, – это уже не релятивистская схема «мировых линий» при игнорировании их микроструктуры и не схема неопределенных по своим динамическим переменным процессов, которые приобретают ту или иную определенность в актах взаимодействия микрообъектов с макрообъектами при игнорировании микроструктуры последних. Теперь исходным является охватывающее весь мир взаимодействие квантованных полей, вся природа, включая все ее модусы и разграничения, включая микромир и мегамир, как арена неклассических законов.

Современная квантово-релятивистская картина природы (вернее, те тенденции, которые ведут к такой картине) противоположна гегелевскому панлогизму. Не логика управляет природой, а, напротив, природа управляет логикой, которая дифференцируется по мере приближения ко все более точному и общему представлению о мире.

В связи с этим возрастает необходимость решения философских проблем и близких к ним проблем фундаментальной науки для разработки вопросов, которые казались или действительно были частными или прикладными. Когда Гейзепберг анализирует философию Платона в связи с изложением квантовой механики, то дело здесь не только в личных интересах ученого. В тех областях, которые получили название философии науки, обобщение современных знаний неизбежно приводит к ретроспективным переоценкам, к историко-философскому, историко-научному анализу. В указанных областях в возрастающей мере поднимаются вопросы, которые нельзя рассматривать без оглядки на весь исторический путь познания.

Подобная тенденция имела место и раньше, но сейчас она стала более интенсивной и явной. Заметим попутно, что тяга к общефилософским проблемам – это не отдельные прорывы в философию, а длительная культурная традиция. Достаточно напомнить имена Ньютона, Лобачевского, а в искусстве – имена Гете, Достоевского. Но сейчас это требует систематического анализа философии в собственном смысле. Экскурсы в философию становятся обязательными для физиков, причем не только для теоретиков, но и для экспериментаторов и проектировщиков, а также для всех, кто связан в своих поисках с фундаментальной наукой. Они обязательны и для культурного творчества в целом, в частности для теории искусства – ведь интеллектуальные коллизии становятся все более существенным содержанием художественного отображения действительности в самых различных жанрах.

Конечно, научное и философское мышление не идентичны, но тенденция к их сближению лежит в самой основе необратимого движения и того, и другого.

Стремление перейти от частных эмпирических утверждений к мировоззрению рождается вместе с наукой, само появление которой связано с переходом от эмпирических утверждений к каузальным обобщениям. Но и для философии основой ее возникновения и развития явилось стремление положить в основу картины мира принципиально наблюдаемые начала. При обобщении эмпирические начала модифицируются: огонь Гераклита – не просто огонь, а эмпирически представленная трансформация всего и вся, апейрон еще дальше от эмпирии, но принципиальная связь с ней сохраняется, как и у многих других претендентов на роль общей субстанции мира. Философия идет навстречу науке, развивая и усложняя общие определения бытия и познания, выявляя их гетерогенность и демонстрируя их принципиальное единство. О познании в целом можно сказать то же, что выше было сказано о физической теории: последняя должна обладать внутренним совершенством, т. е. логически вытекать из наиболее общих принципов, и внешним оправданием, т. е. эмпирической доказательностью. И для философии, и для науки необходимы оба эти критерия, но философия идет к науке от первого в поисках второго, а наука идет к философии, исходя из внешнего оправдания, в поисках внутреннего совершенства.

В рамках античной культуры подобные встречные потоки были мало различимы по той простой причине, что в сущности они и не были потоками: интеграция эмпирических данных, как и дифференциация общих идей, происходила крайне медленно. Сама природа казалась неподвижной или движущейся циклически; соответственно и познание ее развивалось очень медленно. В средние века канонизация представлений о мире еще более затормозила основную тенденцию их развития, но не прекратила его. Воплощение в пространственно-временные образы абстрактных схем и обобщение эмпирических данных – весь этот двуединый необратимый процесс продолжался, принимая форму комментирования старых текстов, антидогматических ересей и подчас не выявлявших свою внутреннюю тенденцию эмпирических описаний.

Освобождение познания от статических и априорных абсолютов и генезис динамического представления о мире первоначально происходили в форме натурфилософского, по существу априорного, выведения научных представлений из абстрактных конструкций, а с другой стороны – в форме воинствующего сциентизма, который начался еще до Ф. Бэкона и не кончился О. Контом. Но и здесь под поверхностными течениями, уводившими философию от экспериментальной пауки, а претендующую на индуктивную достоверность науку – от философии, под декларациями априорной натурфилософии и близорукого индуктивизма шел глубинный двуединый ток. Индуктивистские тенденции «Начал» Ньютона не помешали классической механике стать одним из истоков французского материализма, а априоризм картезианской натурфилософии не помешал ей стать истоком физических открытий XVIII-XIX веков.

Что нового внесла неклассическая наука XX века в проблему границ философии и ее отношения к науке? Мы уже не раз говорили о некоем «всё» как о предмете философского и научного познания. Все, или Вселенная как целое, имеет в современной науке определенный и притом совершенно специфический смысл. Это совсем не логическая конструкция, фигурировавшая в философии уже много веков, не нечто выходящее за пределы познания. В неклассической науке это Метагалактика, определенная как известная нам часть Вселенной, т. е. нечто, зависящее от уровня наблюдений, как реальность, обладающая радиусом, конечным или бесконечным, растущим или стабильным, а быть может, пульсирующая. Причем эти определения зависят от эксперимента и расчета, от наблюдаемых астрофизических констант и астрофизических явлений. В ряде современных физических и астрофизических гипотез структура Метагалактики объясняет и свойства частиц.

Если «всё» входит в мир модусов, то тем самым натурфилософия окончательно становится не ко двору. Она была не ко двору уже в классической науке, с тех пор как механика и математика XVII-XVIII веков и физика XIX века сделали бесконечность постижимой. Поэтому уже в XIX веке она ушла в прошлое, и попытки возрождения априорно-логического стиля исследования встречали скорее насмешку, чем успех. В XX веке вторжение науки в пределы «всего» и трансформация этого понятия окончательно исключили возможность традиционного натурфилософского подхода к природе.

Лишилось почвы и другое традиционное направление – индуктивистский сциентизм. Индуктивизм в чистом виде вообще не имеет смысла, и претензии на исключение неиндуктивных гипотез из научного мышления выражали в лучшем случае лишь естественную реакцию против априоризма, законную в узких рамках отдельных областей и периодов развития науки. Наука, эксперимент не могут постичь Метагалактику без высокого взлета обобщающей мысли, не только следующей за экспериментом, но и опережающей его.

Образ «всего», как он существует в неклассической науке, отнюдь не закрытое понятие. Если с самой полной достоверностью будет установлен радиус исследуемой нами Вселенной, закон его изменения во времени, структура Вселенной окажется, насколько можно сейчас судить, зависящей от неисчерпаемого по сложности комплекса локальных процессов, и «всё» отойдет дальше, маня за собой исследователя. Столь же незакрытым представляется другой полюс картины мира – элементарная пространственно-временная ячейка. Даже если будет непререкаемым образом установлено существование минимальных ячеек, дискретность пространства-времени, то ход и характер происходящих в этих ячейках процессов окажется, по-видимому, зависимым от бесконечного по сложности комплекса других процессов, в том числе космических, и в бесконечно малом исследователь не встретит предельного пункта своих поисков. Только поиски в обоих случаях пойдут не от малого к еще более малому (от макроскопического тела к клетке, молекуле, атому) и не от большого к большему (от планеты к системе, галактике и т. д.), как в классической науке, а от малого к большому и от большого к малому.

Отсюда следует, что процесс сближения философии и науки, процесс включения все новых наблюдений в трансформирующиеся общие представления, не может быть завершенным. Это сближение, в котором взаимодействие становится все большим. Необходимость дальнейшего внутреннего совершенствования научной теории становится импульсом для эксперимента, и этот процесс принимает все новые формы. Он обусловливает движение мысли к общим представлениям о бытии, движение, рисующее контуры теории, еще не получившей внешнего оправдания, и указывающее пути достижения такого оправдания. Отсюда – эвристическая роль философского и научного прогноза как реализации связи внутреннего совершенства и внешнего оправдания научной теории.

* * *

В этой книге развитие философских обобщений рассматривалось в сравнительно узком плане, как производная от происходящего сейчас фундаментального преобразования представлений о космосе и микромире. Но даже такой, в основном квантово-релятивистский, «срез» не может не затронуть усиливающуюся ныне связь между естественными и общественными науками. Дело в том, что выросшие на основе теории относительности и квантовой механики концепции атомных и ядерных процессов, а также звездных реакций, по существу тоже ядерных и субъядерных, потребовали для своего развития и применения беспрецедентной концентрации человеческих сил и средств. Неклассическая наука несопоставима с классической по требованиям, предъявляемым к обществу, и по воздействию на общество. При этом социальный, экономический и культурный эффект фундаментальных исследований (а такие исследования невозможны без философских обобщений) приобрел непосредственный характер.

Растет удельный вес тех общественно-научных проблем, которые непосредственно связаны с фундаментальными физическими, астрономическими, математическими и биологическими исследованиями, с их условиями и результатами. Вместе с тем происходит перенос понятий и методов из естествознания в общественные науки и из общественных наук в естественные. Такой процесс имел место и раньше, о чем писал В. И. Ленин в связи с полемикой против Струве [30]. Дело не ограничивалось переносом понятий и методов из одних областей науки в другие (например, внесением в политическую экономию понятий силы, импульса и равновесия во времена Адама Смита). Развитие производства оказывало существенное влияние на развитие всей науки, в том числе и общественной. Так, в первой половине XX века электрификация производства поставила весьма важные проблемы перед общественной мыслью. Во второй половине века научно-технические процессы оказались связанными с еще более существенными экономическими и социальными вопросами. Их разработка требует новых методологических концепций, и, следовательно, философские проблемы естествознания будут все теснее смыкаться с философскими проблемами других областей науки.

Страницы: «« 12

Читать бесплатно другие книги:

«Экстравагантная поэзия» — это сборник стихов разнообразных жанров: верлибры, пунктиры, версеты, тер...
Он не считает себя ни волшебником, ни колдуном, ни магом.Он не умеет наводить порчу и передвигать пр...
Настоящий, мужской роман, посвященный становлению молодого бойца из юного романтика в бойца спецназа...
Жила 16-летняя девушка по имени Кэсси, у нее был лучший друг, но с ним случилось страшное: он в коме...
В книге представлена история возникновения и логика развития краткосрочной психотерапии, начиная с р...