Мировая энергетическая революция. Как возобновляемые источники энергии изменят наш мир Сидорович Владимир

Однако данный разумный подход к биогазовой энергетике сталкивается, так сказать, с экономической реальностью. Дело в том, что производить биогаз из отходов животноводства дороже, чем из специально выращиваемых «энергетических растений», – необходима более сложная обработка исходного сырья с соответствующими дополнительными капитальными затратами.

С этой экономической реальностью жестко столкнулась Германия. Непродуманная политика стимулирования биогазового бизнеса способствовала не переработке отходов сельского хозяйства, а ориентации биоэнергетики на усиленную культивацию энергетических растений (в первую очередь кукурузы) на сельскохозяйственных землях для последующего производства электроэнергии, привела к массовому строительству биогазовых электростанций даже в природоохранных зонах. Площадь посевов кукурузы, используемой в биоэнергетике, за последнее десятилетие удвоилась, главным образом за счет других культур[114].

В 2014 г. германская политика в области биогаза подверглась серьезной корректировке. 1 августа вступила в силу новая редакция Закона о возобновляемых источниках энергии (EEG), в соответствии с которой дальнейшее развитие биогазовой энергетики должно основываться на переработке отходов, а не использовании специально выращиваемых энергетических культур. Ужесточение выразилось также в снижении зеленых тарифов и финансовых мерах, ограничивающих строительство крупных биогазовых электростанций. Аналогичные меры рассматриваются в настоящее время и в масштабах Европейского союза.

Таким образом, дальнейшая судьба биогазовой отрасли в Европе во многом выглядит неопределенной. Можно с достаточной долей уверенности предполагать, что сокращения существующих мощностей не будет, но вот темпы дальнейшего расширения предугадать сложно. Впрочем, существующие официальные европейские планы расширения (National Renewable Energy Actions Plans) пока никто не отменял. Они предусматривают объем биогазовой электрической генерации к 2020 г. на уровне 65 000 ГВт · ч (среднегодовой прирост 1,85 ГВт · ч)[115]. Для производства такого количества энергии необходимо 28 млн кубометров биогаза (эквивалента природного газа), что составляет 5 % европейского потребления природного газа.

При этом следует также учитывать, что такие крупные экономики с развитым сельским хозяйством, как Франция и Испания, имеют сегодня крайне низкую степень распространения биогазового бизнеса. Так, Франция по итогам 2013 г. уступает в производстве биогаза Италии в четыре раза, Германии – в 14 с лишним раз. Это является фактором, повышающим вероятность достижения заявленных целей роста.

Жидкое биотопливо

В отличие от других возобновляемых источников энергии биомасса может преобразовываться непосредственно в жидкое топливо, пригодное для использования на транспорте.

Как отмечалось выше, жидкое биотопливо (спирт-биоэтанол и биодизель) обеспечивают сегодня 2,7 % мировых потребностей транспорта. По данным Международного энергетического агентства, «к 2050 г. биотопливо может обеспечивать 27 % потребления транспортного топлива, способствуя замещению дизеля, керосина и авиационного топлива. Прогнозируемый объем использования биотоплива позволит сократить выбросы CO2 на 2,1 Гт в год в том случае, если топливо будет производится экологически устойчивым способом»[116].

На мой взгляд, ценность столь долгосрочного прогноза не слишком велика. В настоящее время мир переживает бурный рост электротранспорта и появление в массовой продаже автомобилей на топливных элементах. Поэтому судьба двигателя внутреннего сгорания и топлива для него будет во многом зависеть от развития данных сегментов транспортного рынка.

Мировыми лидерами в производстве и использовании биоэтанола являются США и Бразилия, в производстве биодизеля лидирует Европейский союз (примерно 53 % мирового производства).

Этанол в основном используется как добавка к бензину для увеличения октанового числа и сокращения выбросов угарного газа и прочих вредных веществ. Некоторые современные транспортные средства, называемые «мультитопливными автомобилями», способны ездить на топливе с довольно большой долей эталона. Например, топливо марки Е 85 содержит 85 % этанола и только 15 % бензина. В Бразилии, одном из главных потребителей биоэтанола, производятся десятки моделей транспортных средств, использующих в качестве топлива смесь с большой долей спирта.

Биодизель производится путем смешивания спирта (как правило, метанола) с растительным маслом или животным жиром. Он может использоваться в качестве добавки (обычно 20 %) к обычному дизельному топливу или в чистом виде в качестве возобновляемого альтернативного топлива для дизельных двигателей. Помимо автотранспорта ведутся активные эксперименты по применению биодизеля в авиации.

Ценность биотоплива как ресурса, замещающего традиционное углеводородное сырье, сомнительна. Во-первых, биотопливо не отличается высокой энергетической окупаемостью. «Для производства одного галлона этанола требуется использовать больше одного галлона ископаемого топлива, на 29 % больше. Это происходит потому, что нужно затратить огромное количество энергии для выращивания зерна (в том числе на удобрения и орошение), его транспортировку, а затем для превращения его в этанол»[117].

Во-вторых, производство биотоплива часто связано с негативными экологическими последствиями. Например, в Юго-Восточной Азии (Индонезия, Малайзия) вырубаются массивы джунглей для культивации масличной пальмы, что нарушает природный баланс и не только не сокращает, но даже может увеличивать глобальные выбросы парниковых газов, поскольку земли зачастую расчищаются с помощью огня.

Подведем итоги. Современная биоэнергетика – самый «спорный» вид возобновляемой энергетики – в прошедшее десятилетие демонстрировала бурный рост в глобальном масштабе. Ее технологии апробированы и эффективны.

Нет сомнений, что биоэнергетика постепенно расширяет свою долю в энергетическом пироге и теснит традиционные энергоносители. Всемирная ассоциация биоэнергетики заявляет, что «мировой потенциал биоэнергетики достаточен для удовлетворения глобальной потребности в энергии в 2050 г.»[118]. По моему мнению, доля биоэнергетики вряд ли станет столь значительной, но на 10–20 % мирового энергетического рынка претендовать она может. Международное энергетическое агентство предполагает, что к 2050 г. биоэнергетика будет обеспечивать 7,5 % мирового производства электричества и 15 % тепловой энергии, а в сегменте зданий будет покрывать до 20 % потребности в тепле[119].

В отдельных странах Европы, обладающих значительными биоресурсами и усиленно развивающих биогазовые технологии, выработка тепла и электроэнергии на основе биомассы может занять лидирующее место в теплоэнергетике уже в ближайшие годы, что окажет непосредственное влияние на перспективы экспорта российского газа в западном направлении.

Биоэнергетика будет играть важную роль в системах децентрализованного, локального электро– и теплоснабжения, вплоть до полного обеспечения энергией сельскохозяйственных производств и прилегающих к ним населенных пунктов.

Современная биоэнергетика будет (и должна) являться важным дополнением сельскохозяйственного производства. Переработка отходов, в первую очередь животноводства, но также и растениеводства способствует 1) решению природоохранных задач и 2) обеспечению сельского хозяйства энергоресурсами.

В то же время чрезмерное «увлечение» производством топлива из биологического возобновляемого сырья может приводить к отрицательным последствиям для окружающей среды и конкуренции с сельскохозяйственным производством продуктов питания.

Таким образом, стимулирование развития биоэнергетики требует «точной настройки», умного государственного регулирования и должно осуществляться только в такой мере, в какой она не начинает угрожать экологии и конкурировать за площади с сельским хозяйством.

Геотермальная энергетика и тепловые насосы

Наша Земля содержит в своих глубинах тепловую энергию, которую в пересчете на физические единицы можно оценить в 1031 джоулей, что в 100 млрд раз превышает годовое потребление энергии человечеством. Собственно, на освоение крошечной части этого гигантского потенциала и работает геотермальная энергетика.

Геотермальные энергетические ресурсы практически бесконечны и неисчерпаемы. Тем не менее возможности их использования зависят как от географического положения наиболее удобных для освоения мест, так и уровня развития технологий, позволяющих извлекать энергию Земли с оправдывающими себя финансовыми затратами.

Геотермальную энергетику разделяют на гидротермальную, использующую тепло теплых поземных вод, источников, пара, и петротермальную, добывающую энергию из не жидкой подземной среды. Очевидно, что потенциал петротермального направления на порядки выше, поскольку горячие источники и подземные воды обнаруживаются на Земле точечно, а высокая температура глубин Земли существует везде – это естественная характеристика нашей планеты. В то же время с технико-экономической точки зрения извлечение энергии из сухих пород сложнее и дороже.

Тепло Земли используется как напрямую для отопления и горячего водоснабжения с помощью геотермальных источников, так и для производства электроэнергии и тепла путем преобразования тепловых ресурсов Земли с помощью специального оборудования. Для выработки электроэнергии требуется высокая, превышающая 100 °С, температура теплоисточника.

Геотермальные электростанции

Принцип работы геотермальной электростанции (ГеоЭС) практически ничем не отличается от принципа функционирования обычной тепловой электростанции (ТЭС). Различие состоит в первичном источнике энергии, которым в случае ТЭС является углеводородное топливо (мазут, уголь, газ), преобразующее воду в пар, который необходим для вращения турбины и производства электроэнергии. ГеоЭС получает пар из недр Земли в готовом виде, первичным (и возобновляемым) источником энергии здесь является тепло нашей планеты.

На прямое использование тепла недр сегодня приходится большая доля геотермальной энергетики (91 ТВт · ч). В этом направлении доминирует Китай (45 ТВт · ч в 2011 г.). Производство электричества составило в 2013 г. 76 ТВт · ч. Общий мировой объем генерирующих мощностей оценивается в 12 ГВт, в 2013 г. прирост составил 530 МВт, из которых 241 МВт пришелся на Новую Зеландию[120].

Мировым лидером в геотермальной электроэнергетике являются США с размером установленной мощности 3,4 ГВт, за ними следуют Филиппины (1,9), Индонезия (1,3), Мексика (1,0), Новая Зеландия (0,9), Италия (0,9), Исландия (0,7)[121]. России, увы, в списке лидеров нет, несмотря на богатые легкодоступные геотермальные ресурсы Камчатского края, Курильских островов и Кавказа. Наша страна располагает установленной мощностью 0,08 ГВт[122], немного уступая по этому показателю Никарагуа.

Лидером по доле геотермальной энергетики в национальной экономике, безусловно, является Исландия, славящаяся своими геотермальными источниками. «В Исландии в настоящее время более 60 % всей потребляемой энергии берут из Земли. В том числе за счет геотермальных источников обеспечивается 90 % отопления и 30 % выработки электроэнергии. Добавим, что остальная часть электроэнергии в стране производится на ГЭС, т. е. также с использованием возобновляемого источника энергии, благодаря чему Исландия служит своего рода мировым экологическим эталоном»[123].

Является ли геотермальная энергетика экологически чистой? Как и в любом ином виде человеческой деятельности, здесь многое зависит от используемых подходов и технологий.

Геотермальные водные ресурсы могут содержать целый набор газов, в частности двуокись углерода (CO2), сероводород (H2S), метан (CH4) и аммиак (NH3). В случае извлечения подземных жидкостей могут происходить выбросы данных веществ, способствующих загрязнению окружающей среды, кислотным дождям и т. п. Тем не менее существующие геотермальные электростанции характеризуются умеренным уровнем выбросов, составляющим в среднем в среднем 122 кг CO2 на мегаватт-час электроэнергии, что существенно ниже выбросов генерации на ископаемом топливе[124].

В дополнение к газам горячая вода из геотермальных источников может содержать такие токсичные элементы, как ртуть, мышьяк и бор. Эти химические вещества загрязняют окружающую среду, если после отработки использованные жидкости сливаются в грунт или водоемы. Современная практика геотермальной энергетики предусматривает закачку охлажденной геотермальной жидкости обратно в исходный водоносный горизонт, исключая ее контакт с окружающей средой. Данная технология реализуется и в России, в частности на Верхне-Мутновской ГеоЭС на Камчатке[125].

Добыча термальной воды (впрочем, как и обычной) может вызывать просадку или подвижки грунта, а чрезмерно активное использование геотермальных ресурсов с использованием технологий гидроразрыва пласта может даже провоцировать землетрясения. Например, в швейцарском Базеле геотермальный проект с участием городских властей был остановлен после того, как в результате закачки (инъекций) воды специалисты зафиксировали в течение первых шести дней более 10 000 (!) подземных толчков, сила которых достигала 3,4 балла по шкале Рихтера[126].

Таким образом, геотермальная энергетика не лишена экологических рисков, однако их уровень в целом ниже, чем у традиционной углеводородной энергетики.

Как следует из приведенных выше данных о распространении геотермальной энергетики, она занимает в мировой электрической генерации крошечную долю, которая оценивается примерно в 0,3 % выработки электроэнергии на Земле[127]. Хотя по прогнозу Международного энергетического агентства доля геотермальной энергетики будет увеличиваться и составит к 2050 г. 3,5 % мирового производства электричества, ее значение останется невысоким[128]. Поэтому создается впечатление, что с этой стороны угроза сырьевой власти отсутствует.

Тепловые насосы

Однако это не совсем так. В экономически развитых странах технологии использования тепла окружающей среды и грунта создают серьезную конкуренцию традиционным источникам тепловой энергии, а тепло – это почти половина мирового потребления энергии[129]. Речь идет об использовании воздушных и геотермальных (грунтовых) тепловых насосов, которые прочно завоевали видное место на европейском и североамериканском рынке отопительного оборудования.

Тепловой насос по своей сути и принципу работы не отличается от обычного бытового холодильника и состоит из тех же самых компонентов (компрессора, испарителя, конденсатора, расширительного клапана). Отличается лишь направленность работы. Холодильник производит холод (понижает температуру) и отдает тепло в помещение, тепловой насос отбирает тепло у окружающей среды (воды, грунта, воздуха) и использует его для повышения температуры. Например, грунтовой тепловой насос преобразует тепло грунта, который на глубине нескольких метров круглогодично имеет постоянную плюсовую температуру, в более высокую температуру теплоносителя.

Тепловой насос, как и холодильник, работает «от розетки», т. е. потребляет электроэнергию для извлечения тепла окружающей среды. При этом на единицу потребленной электроэнергии он способен выдавать до пяти единиц тепловой энергии (отношение полученной и затраченной энергии называется коэффициентом эффективности, по-английски coefficient of performance – COP). Поэтому данное оборудование считается экологичной и эффективной альтернативой традиционному отоплению на основе углеводородного топлива, годной к применению практически повсеместно (за исключением, пожалуй, регионов вечной мерзлоты). Иными словами, генерируемая тепловая энергия до 80 % является возобновляемой. Если же работа теплового насоса обеспечивается электроэнергией из возобновляемых источников, а такие схемы активно практикуются на европейском рынке, мы получаем полностью «климатически нейтральное» оборудование с нулевым расходом первичной энергии.

Другим преимуществом теплового насоса (и принципиальным его отличием, скажем, от газового котла) является возможность двусторонней работы – не только на тепло, но и на охлаждение помещений в теплое время года, т. е. способность большинства моделей работать в качестве «холодильника» для помещений.

Развитие техники, повышение эффективности оборудования, рост производства, сопровождающийся снижением цен, привели к росту популярности тепловых насосов у потребителей. Например, в последние годы на их долю стабильно приходится порядка 20 % в отопительном оборудовании в новых домах в Германии (в 2013 г. – 22,5 %), при этом еще совсем недавно, в 2000 г., доля тепловых насосов составляла всего 0,8 %[130]. В Дании, Швеции и Швейцарии тепловые насосы исторически занимают весомую долю на рынке отопительного оборудования.

По мнению Международного энергетического агентства, тепловые насосы будут покрывать 10 % потребностей в энергии на отопление в странах ОЭСР к 2020 г. и 30 % – к 2050 г.[131] При этом к 2050 г. в 50–70 % новых зданий в указанном регионе будут устанавливаться тепловые насосы[132]. В Швейцарской стратегии развития чистых технологий прямо говорится, что «большинство зданий в будущем станут отапливаться с помощью тепловых насосов… Это приведет к сокращению затрат драгоценной энергии на производство тепла на 80 %»[133].

Прогнозы развития рынка тепловых насосов в Европе зачастую в числе целей прямо указывают отказ от российских энергоносителей. Например, установка 54 млн тепловых насосов в Европе в дополнение к 6 млн уже работающих полностью снимет потребность в импорте российского газа, сообщает Европейская ассоциация теплонасосной техники (EHPA). Достижение данного объема к 2030 г. расценивается как вполне реалистичный сценарий[134].

Итак, геотермальная энергетика в целом имеет сегодня ограниченное, локальное применение, ее доля в обеспечении мирового потребления энергии крайне мала и вряд ли существенно вырастет в обозримом будущем (если только не появятся принципиально новые, прорывные технологии).

В то же время в экономически развитых странах происходит бурное распространение тепловых насосов, которые заменяют традиционные способы отопления и горячего водоснабжения на основе углеводородного топлива. Использование дизельного отопления практически сошло на нет, а доля природного газа сокращается. Таким образом, широкое распространение теплонасосной техники в странах, относящихся к числу основных потребителей традиционных сырьевых ресурсов, способствует постепенному сокращению спроса на углеводородное топливо.

Гидроэнергетика

Россия является одним из мировых лидеров возобновляемой энергетики.

Вы не ослышались. Богатые водные ресурсы и их использование для производства электроэнергии ставят Российскую Федерацию в первую десятку стран c наиболее развитой возобновляемой энергетикой, к которой относят и гидроэнергетику, занимающуюся преобразованием энергии текущей воды в электрическую энергию.

Несмотря на гигантские электростанции и огромные плотины, приведшие к созданию настоящих внутренних морей и известные большинству наших соотечественников по теленовостям, курсу истории и географии, Россия довольно скромно использует свой гидроэнергетический потенциал. По установленной мощности гидроэлектростанций (46,7 ГВт) РФ занимает пятое место в мире после Китая (260 ГВт), Бразилии (85,7 ГВт), США (78,4 ГВт) и Канады (76,2 ГВт). Также пятое место мы занимаем по годовой выработке электроэнергии гидроэлектростанциями[135].

Абсолютным мировым лидером по доле гидроэнергетики в энергетическом балансе является «нефтегазовая сверхдержава» Норвегия. Несмотря на сырьевые богатства, 96,7 % электричества производится здесь гидроэлектростанциями[136]. Норвегия стремится торговать на мировом рынке не только углеводородами, но и чистой электроэнергией, реализуя, например, проект по морской прокладке 700-километрового кабеля для экспорта энергии в Великобританию[137].

Энергия воды

Человек использует энергию воды с незапамятных времен. В Древней Индии строились водяные мельницы и водяные колеса, в Римской империи водяные мельницы использовались не только для помола зерна, но и для распиловки дерева и камня. В Китае водяные мельницы были известны еще во времена династии Хань (со II в. до н. э.).

В 1753 г. французский генерал-изобретатель Бернар де Белидор опубликовал Architecture Hydraulique, труд, где описывался принцип работы вертикально– и горизонтально-осевых гидравлических машин, которые впоследствии стали сочетать с электрическим генератором после его разработки в XIX веке. В 1767 г. английский инженер Джон Смитон создал первое водяное колесо из чугуна.

Основы современной гидроэнергетики были заложены еще в первой половине XIX века, когда была разработана и описана водяная турбина. В 1837 г. русский изобретатель Игнатий Сафонов создал первый в России двигатель нового типа, водяную турбину. Она имела КПД 0,53, который впоследствии увеличили до 0,70 в промышленных образцах. Одновременно с Сафоновым разработку вел французский инженер Фурнерон, представивший в 1834 г. первый работающий образец своей водяной турбины.

В 1848 г. переехавший в США британский инженер Джеймс Френсис усовершенствовал гидравлическую машину, создав радиально-осевую «турбину Френсиса». Его математические методы расчета и чертежи позволили конструировать высокоэффективные турбины с учетом конкретных условий водяного потока. Турбина Френсиса и сейчас является самым распространенным типом гидротурбин.

Считается, что впервые энергия воды для производства электричества была использована английским промышленником Уильямом Армстронгом в 1878 г. Электростанция служила для питания единственной электродуговой лампы в его художественной галерее.

Первая «полноценная» электростанция была запущена в 1882 г. на Фокс-Ривер в городе Эплтон, штат Висконсин, США. К 1886 г. в США и Канаде работало уже 45 гидроэлектростанций. Стремительное развитие промышленности в сочетании с переходом на электрическое освещение на рубеже веков обусловили бум в гидроэнергетике. В 1889 г. число ГЭС в Северной Америке увеличилось до 200. Первая гидроэлектростанция в России была открыта в 1892 г.

Несмотря на то что гидроэнергетика общепризнанно рассматривается в качестве важного средства, обеспечивающего экономическое развитие без загрязнения атмосферы выбросами углекислого газа, пик ее значимости для мирового энергоснабжения пройден уже давно. Привязка к географическому положению и соответствующее постепенное исчерпание гидроэнергетического потенциала, необходимость в большинстве случаев вывода из оборота земель и переселения жителей, сложность проектирования (географические и геологические условия в каждом случае уникальны), масштабные риски проектных и строительных ошибок, длительные сроки строительства – эти обстоятельства привели к уменьшению доли ГЭС в пользу других форм энергетики (тепловой и атомной).

Если в 1920–1940-х гг. гидроэнергетика обеспечивала до 40 % производства электроэнергии в США, то в настоящее время ее доля составляет 6–8 %[138]. В 1973 г. на гидроэнергетику приходилось 20,9 % мирового производства электричества, в 2012 г. – 16,2 %[139]. В России гидроэлектростанции вырабатывают в настоящее время 16–18 % производимой в стране электроэнергии, что примерно соответствует общемировому уровню.

Гидроэнергетика важна не только для производства электроэнергии. Особый подвид ГЭС – гидроаккумулирующие электростанции (ГАЭС) – выполняет важную функцию покрытия пиковых нагрузок электрической сети и ее стабилизации, о чем будет рассказано дальше в главе «Нестабильность ВИЭ и системы хранения энергии».

Издержки гидроэнергетики

Большая гидроэнергетика отличается высокой капиталоемкостью. Достаточно сложно и вряд ли целесообразно высчитывать среднемировой размер удельных капитальных затрат при возведении ГЭС, поскольку каждое строительство характеризуется своими уникальными географическими и технологическими условиями. При этом очевидно, что создание крупных плотин связано с колоссальными финансовыми и временными издержками (интересно, смог бы кто-нибудь подсчитать удельные капитальные затраты на сооружение, например, отечественной Бурейской ГЭС, которая строилась с 1976 по 2003 г.).

Данные Международного агентства по возобновляемой энергии (IRENA) дают большой разброс удельных капитальных затрат на строительство крупных гидроэлектростанций: $1050–7650 на киловатт установленной мощности[140]. Министерство энергетики США приводит показатель $2963 на киловатт[141] (для условной станции мощностью 0,5 ГВт). В России «считается, что удельные капитальные вложения в генерирующие мощности для крупных ГЭС в 1,5–2 раза выше, чем для тепловых угольных станций»[142]. При этом последующая эксплуатация ГЭС и выработка энергии не связана с использованием углеводородного топлива, соответственно, себестоимость электроэнергии и приведенная стоимость производства электричества (LCOE) с учетом длительного срока службы станций находятся на достаточно низком уровне. Упомянутое выше исследование IRENA приводит также достаточно широкий интервал затрат $0,02–0,19 на произведенный киловатт-час.

Несмотря на возобновляемую природу, большая гидроэнергетика является довольно опасным занятием. Как, впрочем, любое крупное вмешательство человека в окружающую среду в попытке подчинить себе силы и энергию природы. Еще свежа в памяти страшная катастрофа на Саяно-Шушенской ГЭС, унесшая жизнь 75 человек. Но крупнейшей техногенной катастрофой является до сих пор прорыв дамбы Баньцяо в 1975 г. в Китае, количество жертв которой составило 171 000 человек[143].

Кроме того, строительство крупных гидроэлектростанций во многих случаях влечет за собой значительные, но трудноизмеримые негативные экологические и социальные последствия. Достаточно легко подсчитать количество CO2, не попавшего в атмосферу в результате работы ГЭС, но весьма сложно оценить издержки экосистемы в целом.

После наполнения в 40-х гг. прошлого века чаши Рыбинского, крупнейшего на то время в мире, искусственного водохранилища ушла под воду и была изъята из хозяйственного оборота восьмая часть ярославской земли, в том числе 80 000 га лучших в Поволжье пойменных заливных лугов, травы которых по своему качеству не уступали травам с альпийских лугов, более 70 000 га веками возделываемой пашни, более 30 000 га высокопродуктивных пастбищ, более 250 000 га грибных и ягодных лесов[144]. В прибрежной зоне изменился микроклимат – увеличилась сила и повторяемость ветров, весной водохранилище оказывает охлаждающее воздействие, осенью – отепляющее; вегетационный период сократился на 4–5 дней[145].

При строительстве водохранилища пришлось переселить 130 000 человек, были затоплены сотни населенных пунктов, самым известных из которых являлся древний город Молога. Вместе с ним на дно искусственного моря погрузились многочисленные храмы, монастыри, памятники истории и культуры.

Крупнейшее в истории «переселение народов» в связи со строительством ГЭС произошло в Китае при возведении самой большой в мире электростанции «Три ущелья» (установленная мощность: 22,5 ГВт, строительство завершено в 2012 г.). Оно затронуло более 1,2 млн человек.

Таким образом, низкая себестоимость электричества, вырабатываемого ГЭС, имеет, простите за тавтологию, свою, и порой высокую, цену. «Большинство экологических и социальных ущербов от существования ГЭС не учитываются в цене гидроэнергии. В капитальные затраты в лучшем случае входит стоимость лесосведения, компенсационные платежи за отчуждение земель, затраты на охрану окружающей среды, подсчитанные по существующим нормативам. Последние колоссально занижены, да и экологический ущерб не сводится только к потере пастбища или поля. Уменьшение площади лесов, степей и прочих природных ресурсов является невосполнимой утратой, поскольку они теряются навсегда. Как оценить их потерю или изменение климата?»[146]

Во многом по данной причине для целей классификации принято разделять крупную гидроэнергетику, связанную с масштабной «переделкой» окружающего пространства, и ее малый подвид (small hydropower). По российской классификации к малой гидроэнергетике относятся электростанции с установленной мощностью не более 30 МВт (ГОСТ Р 51238-98). Кстати, именно малая гидроэнергетика попадает у нас в категорию возобновляемой (для целей программ государственной поддержки возобновляемой энергетики). Это в общем-то оправданно и с экологической точки зрения, поскольку малые ГЭС, очевидно, разрушают окружающую среду в меньшей степени.

Как будет развиваться гидроэнергетика в дальнейшем? Она станет расти, в особенности при ужесточении международной политики, направленной на сокращение выбросов парниковых газов. Тем не менее мы не ждем здесь бурного роста, в том числе и по естественным причинам. Многие страны близки к исчерпанию своего гидроэнергетического потенциала. В Швейцарии он использован почти на 90 %, в Норвегии и Канаде – на 70 %. Лишь богатая водными ресурсами Россия задействует свой потенциал всего на 20 % возможностей. Таким образом, несмотря на то что доля гидроэнергетики в мировом производстве электричества сокращаться не будет, ее дальнейшее развитие само по себе не окажет существенного влияния на сырьевые рынки.

Транспорт без нефти

Транспорт является основным потребителем нефти. В 1973 г. в данном секторе было сожжено 45,4 % добытого мирового черного золота, а в 2012 г. его доля составила уже 63,7 %[147]. Электроэнергетика – второстепенный рынок для нефти. Поэтому распространение возобновляемой энергетики вроде бы не является для нефтяных рынков существенной угрозой. Проблемы приходят к нефтяникам с другой стороны.

Оптимистичные прогнозы будущего потребления нефти, выдаваемые объединениями экспортеров нефти, Международным энергетическим агентством, аналитиками нефтяных компаний, основываются фактически на единственной ключевой гипотезе: благосостояние граждан Китая и Индии будет расти, соответственно, они будут покупать автомобили, а мировая нефтяная индустрия получит сотни миллионов новых клиентов.

Прогноз ОПЕК обещает умеренный мировой рост потребления нефти как в среднесрочной (до 2019 г.), так и в долгосрочной (до 2040 г.) перспективе главным образом за счет развивающихся рынков[148], поскольку спрос на нефть в странах «золотого миллиарда» стагнирует уже десятилетие. С 2010 по 2040 г. потребление нефтепродуктов в транспортном секторе в странах ОЭСР (32 страны) сократится на 10 %, считают аналитики нефтяного гиганта Exxon. В то же время в остальном мире потребление должно удвоиться. Более половины роста мирового рынка в этот период будет обеспечено совместно Китаем и Индией[149].

В то же время существуют другие точки зрения и иные тенденции. «Мы [т. е. человечество], без сомнения, заменим нефть в сфере наземного транспорта на электричество и топливные элементы. Вопрос только в том, займет это 20 или 40 лет», – говорит Джереми Грэнтам, один из крупнейших управляющих инвестициями в мире[150]. Уже сегодня, на наших глазах электромобили и автомобили на топливных элементах (fuel cells) начинают серьезно теснить двигатель внутреннего сгорания.

Прошлое и настоящее электромобиля

Что представляет собой электромобиль? Это автомобиль, приводимый в движение электрическим мотором, аккумуляторы которого заряжаются «от розетки». Различают «чистые» электромобили, источником движения которых являются только электромоторы (plug-in), и «гибридные», сочетающие в себе двигатели внутреннего сгорания и электрические (plug-in hybrids).

Электромобиль известен давно, с 80-х гг. XIX века, на рубеже XIX и XX веков он был популярен, но уступил преимущество более эффективному средству передвижения, оснащенному двигателем внутреннего сгорания. Чем объясняется происходящий на наших глазах ренессанс транспортных средств на электрической тяге? Он обусловлен сочетанием растущего понимания необходимости борьбы с глобальным потеплением климата и сокращения выбросов парниковых газов, обеспокоенности мирового сообщества непредсказуемостью цен на нефть и развития автомобилестроения, электродвигателя и аккумуляторных технологий.

Является ли электромобиль чистым транспортным средством? С точки зрения использования первичной энергии электричество считается самым «грязным» видом, поскольку для производства электроэнергии могут сжигаться невозобновляемые ресурсы, а ее доставка сопровождается сетевыми потерями. Разумеется, источник и место производства электроэнергии имеют значение. Заряжать автомобиль энергией, произведенной чадящей в черте города угольной ТЭЦ, не очень-то экологично. Поэтому в последнее время производители и регуляторы стремятся реализовывать в данной сфере комплексные или «замкнутые» экологические решения, предполагающие поставку чистой (произведенной из ВИЭ) электрической энергии для зарядки электромобилей. В Европе, Северной Америке и технологически развитых странах Азии активно строятся жилые (и нежилые) дома с интегрированными автомобильными зарядными станциями, источником энергии для которых являются также интегрированные в здание солнечные модули и системы аккумулирования энергии.

Насколько нынешнее увлечение человечества электромобилем серьезно? Ведь в истории уже отмечались случаи повышения интереса к электромобилю, потом сходившие на нет, например в 70-х гг. прошлого столетия. Сегодняшние обстоятельства, тренды и статистика показывают, что в этот раз все гораздо серьезнее.

Во-первых, современная политика крайне положительно относится к вопросам стимулирования электрического транспорта, а широкие слои граждан в разных странах мира являются горячими сторонниками экологичного образа жизни.

Во-вторых, в 2013–2014 гг. электромобиль стал товаром массового спроса, его серийное производство наладили все ведущие, в том числе китайские, игроки автомобильного рынка. Техника стала доступнее, количество проданных электромобилей доказывает еще сомневающимся потенциальным покупателям, что это обыкновенное, практичное и надежное транспортное средство. Владение автомобилями с двигателем внутреннего сгорания, особенно большого литража, постепенно становится моветоном.

По состоянию на сентябрь 2014 г. в мире было продано более 600 000 электромобилей, включая plug-in гибриды, а к концу года их парк насчитывал уже 740 000[151]. В ряде стран легковые электромобили уже начинают занимать весомую долю в продажах автотранспортных средств. Например, в Норвегии в 2013 г. она составила 6,1 %[152].

Больше, быстрее, дальше, дешевле

По прогнозам Международного энергетического агентства к 2020 г. электромобили займут 2 %-ную долю мирового легкового автомобильного парка, что в числовом выражении составит 20 млн единиц[153]. Центр исследований автотранспорта в Институте Гельзенкирхена (Германия) считает, что к 2025 г. в Европе в легковом сегменте будут продаваться исключительно электромобили и автомобили с гибридными двигателями[154]. Швеция намерена к 2030 г. обеспечить 100 %-ный переход автомобильного транспорта на неуглеродные виды топлива – речь идет об электромобилях и автомобилях на биодизеле[155]. К 2040 г. 75 % километров, пройденных легковым транспортом, будет приходиться на электромобили[156]. Стремительность распространения электротранспорта подтверждает тот факт, что количество станций зарядки электромобилей в Японии уже превысило число обычных бензиновых заправочных станций[157].

В ответ на недовольство потребителей долгими сроками зарядки электромобилей были созданы и развиваются станции быстрой зарядки, позволяющие заряжать аккумуляторы в десять раз быстрее, чем от бытовой розетки. В декабре 2014 г. в Европе начал осуществляться проект ELECTRIC (European Long-Distance Electric Clean Transport Road Infrastructure Corridor), предусматривающий строительство 155 современнейших станций быстрой зарядки на основных трассах, связывающих Швецию, Данию, Голландию и Германию[158]. Автоконцерны BMW и Volkswagen объединяются для строительства сети станций быстрой зарядки, связывающей Западное и Восточное побережье США[159].

Дальнейший рост рынка электромобилей во многом зависит от развития аккумуляторных технологий. Сегодня основным видом батарей, применяемых в электромобилях, являются литий-ионные (Li-Ion) аккумуляторы и их подвиды. Они давно известны, совершенствуются, становятся легче, мощнее, дешевле, повышая доступность электромобиля для покупателей. Цена «топливного устройства», т. е. аккумулятора, с помощью которого приводится в движение электромотор, является важным фактором стоимости и, соответственно, конкурентоспособности электромобиля. И здесь наблюдается многообещающая тенденция.

В частности, прогнозируется, что колоссальные инвестиции в производство литийионных аккумуляторов, осуществляемые Илоном Маском (бренд Tesla) и другими производителями, приведут к снижению цены батарей в два раза к 2020 г.[160] Консалтинговая компания McKinsey в 2012 г. прогнозировала падение цены с $500–600 до $200 за киловатт-час к 2020 г.[161] (на американском рынке электромобиль становится абсолютным конкурентом традиционного бензинового транспортного средства при цене примерно $250 за киловатт-час). Между тем к этому уровню цен производители приближаются уже сейчас, а Илон Маск считает, что возможно достичь ценового уровня $100 раньше 2020 г.[162]

Не исключено, что прорывом в развитии аккумуляторной техники станет использование графена в производстве батарей. Испанская компания Graphenano разработала аккумуляторы, которые на 77 % (!) дешевле и легче используемых сегодня, обеспечивают запас хода 1000 км и при этом заряжаются всего за десять минут[163].

Бурное развитие аккумуляторных технологий для автомобильной индустрии также подстегивает рост рынка систем бытового и промышленного хранения энергии и, кроме того, превращает автомобиль в составную часть будущей энергетической системы. «К 2030 г. пункты зарядки электромобилей и автомобилей на топливных элементах появятся практически везде и образуют распределенную инфраструктуру для получения энергии из электросети и возврата ее в сеть»[164].

Вернувшись к прогнозам развития нефтяного рынка и гипотезе бурного развития его азиатского сегмента, отметим, что руководство Китая и китайский народ весьма обеспокоены экологическими проблемами страны. Китайское правительство прикладывает значительные усилия для стимулирования чистого транспорта. Это и налоговые льготы, и дополнительный налог на бензин, и весомые субсидии гражданам на приобретение электромобиля (вплоть до $10 000 на автомобиль)[165]. Китай планирует довести количество электромобилей до 500 000 в 2015 г. и до 5 млн к 2020 г. К слову, по дорогам Поднебесной сегодня ездят примерно 150 млн двухколесных транспортных средств с электродвигателями. Начиная с 2016 г. 30 % государственных закупок автотранспорта должно приходиться на электромобили. В сеть, которая к концу 2015 г. должна состоять из 400 000 станций зарядки электромобилей, вкладываются десятки миллиардов долларов государственных инвестиций[166]. Собственную сеть электрозаправок строит в Китае и Tesla. Если мы добавим сюда административные возможности китайского руководства по реализации своей «политической воли», мировые перспективы двигателя внутреннего сгорания тускнеют еще больше. Последние статистические данные и прогнозы показывают, что радужные планы сырьевых гигантов в части китайского рынка могут и не сбыться и спрос на нефтяное топливо в Китае активно и долгосрочно расти не будет[167].

Другой азиатский гигант, Индия, также строит амбициозные планы по развитию возобновляемой энергетики и альтернативного транспорта. В настоящее время действует государственный план, предусматривающий реализацию 6–7 млн электромобилей до 2020 г.[168]

Кроме того, развиваются, переходя в серийную стадию, и альтернативные технологии аккумулирования энергии, приводящей в движение электромоторы. По дорогам Европы уже ездит «Квант», спортивный седан, разгоняющийся до сотни за 2,8 секунды благодаря электродвигателю мощностью 920 л. с. Откуда такие показатели, не снившиеся и Ferrari? Такую силу и динамику обеспечивает не нефть, а соленая вода – электродвигатель работает на проточных аккумуляторах (flow batteries).

Водородные технологии?

В 2014 г. в массовую продажу стали поступать автомобили на топливных элементах (fuel cells). Топливный элемент – устройство, в котором в результате химической реакции веществ вырабатывается электрический ток. Обычно этими веществами являются водород и кислород.

Технология топливных элементов известна давно, их принцип действия был открыт еще в первой половине XIX века. Серийно топливные элементы довольно длительное время используются в космической отрасли, в том числе они применялись на российском корабле многоразового использования «Буран». Автомобильная промышленность начиная с 1990-х гг. создавала экспериментальные образцы соответствующих машин, а в ряде городов мира уже курсируют автобусы на топливных элементах. Наконец, Toyota первой начала коммерческую реализацию легковых автомобилей FCV (fuel cell vehicle), выпустив свой Mirai.

В принципе, автомобиль на топливных элементах также является электромобилем, поскольку приводится в движение электромотором. Принципиальное отличие здесь в источнике энергии. Если обычный электромобиль приводится в действие электроэнергией, которая была произведена ранее и накоплена в аккумуляторах («заливаемое в бак» топливо здесь – электричество), то в автомобиле на топливных элементах электроэнергия производится «на месте» – в топливном элементе (топливо – водород).

Использование водородных технологий давно занимает умы исследователей, промышленников и политиков. Однако на пути их широкого применения существуют преграды технологического плана.

Водород не содержится в природе в чистом виде, его нужно производить, выделять, т. е. затрачивать труд, ресурсы, энергию. Подавляющая часть используемого сейчас человечеством водорода производится из природного газа. То есть сама идея экологически чистого топлива, так сказать, извращается. Водород может производиться из воды, но данный процесс связан с существенными затратами электрической энергии. Даже если мы используем для его получения чистую «зеленую» электроэнергию, это все равно воспринимается как растрата драгоценного энергоресурса. Поэтому довольно широко распространено мнение, что «автомобили на водородных топливных элементах являются тупиком с технологической, практической и климатической точки зрения»[169].

В то же время водород может производиться не путем расходования специально произведенной для этой цели электроэнергии, а посредством использования «излишков» солнечного или ветряного электричества, одновременно выступая в качестве накопителя энергии. Такой избыток, как мы знаем, возникает в энергосистемах как на микроуровне, в домохозяйствах, которые в летний сезон сталкиваются с перепроизводством электричества, так и на уровне экономики в целом, если доля ВИЭ в энергетике становится сколько-нибудь значительной. Ярким примером такого переизбытка является ситуация на германском оптовом рынке электроэнергии, на котором в солнечные летние воскресные дни зачастую устанавливаются отрицательные цены. Концепция сохранения излишков электроэнергии путем их преобразования в газ носит название power-to-gas («энергия-газ») и уже достаточно широко опробована на практике.

Таким образом, дальнейшее развитие автомобиля на топливных элементах во многом зависит от развития систем экономически и экологически оправданного получения водорода. Сегодня пока еще трудно однозначно утверждать, что его ждет счастливая судьба.

Альтернатива для большого транспорта

Возможность перехода на альтернативные виды топлива активно прорабатывается также и в сфере грузового автомобильного транспорта. Здесь помимо использования электрических аккумуляторов, топливных элементов, биотоплива и их комбинаций планируются проекты по устройству линий электропередач на автомагистралях для передвижения грузовиков-троллейбусов. Стопроцентный перевод грузоперевозок на неуглеродные виды топлива к 2050 г. предусматривается, например, в немецкой «Бизнес-модели энергетического поворота»[170].

Кроме того, давление на нефть в транспортном секторе будет происходить и со стороны конкурирующего ископаемого топлива – природного газа. Citibank в исследовании под названием «Энергетический дарвинизм» прогнозирует, что в среднесрочной перспективе газ может отобрать десятки процентов рынка грузового, морского и железнодорожного транспорта у нефти. Например, до конца десятилетия 30 % грузового транспорта в США может быть переведено на природный газ[171].

Возможности использования альтернативных видов топлива, водородных технологий и топливных элементов активно изучаются также и в авиастроении. Перевод авиатранспорта на альтернативные виды топлива пока вроде бы представляется фантастикой. Но многие ли знают, что еще в 1980-х гг. на топливных элементах летал (первым в мире!) опытный образец переоборудованного отечественного Ту-154 под маркой Ту-155?

Сегодня авиационная отрасль взяла на себя обязательства вдвое сократить выбросы CO2 к 2050 г., и авиапроизводители активно тестируют возможности использования альтернативного топлива и топливных элементов для выполнения этой задачи. Также ведутся эксперименты и с применением в авиации возобновляемого топлива (биодизеля и биоэтанола).

В 2011 г. был совершен первый трансатлантический полет с применением биотоплива. Самолет марки Gulfstream, заправленный в соотношении 50/50 обычным авиационным и «зеленым» дизелем (Honeywell Green Jet Fuel), одной из разновидностей биодизеля, вылетел из Нью-Джерси, США, и благополучно приземлился в Париже[172]. В конце 2014 г. состоялся экспериментальный полет самолета Boeing 787 (Dreamliner) на смеси традиционного авиационного топлива (85 %) и «зеленого» дизеля[173]. В 2015 г. китайская авиакомпания Hainan Airlines осуществила первый коммерческий перелет, в котором двигатели самолета Boeing 737 работали на 50 %-ной смеси биотоплива и традиционного топлива. Примечательно, что использованное биологическое сырье было разработано китайским нефтехимическим гигантом Sinopec[174].

Итак, в сфере транспорта отмечаются следующие тенденции. Альтернативные виды транспортного топлива бурно развиваются, используемые технологии становятся эффективными и доступными для потребителей. Пожалуй, мы являемся свидетелями переломного момента, в который привычные, обкатанные и казавшиеся непоколебимыми технологии в короткий промежуток времени заменяются другими. Вспомните вакуумные кинескопы телевизоров или аналоговую фотографию с проявкой снимков в ванной. Автомобиль, работающий на нефтепродуктах, скоро отправится туда же – в нашу память.

Здания – энергоэффективность и использование ВИЭ

Главным «энергоресурсом», «первичным топливом» современности является не нефть или газ и даже не солнце, а энергоэффективность. Все очень просто: самая дешевая (и чистая) энергия – та, которую мы не потребили. Экономисты утверждают, что энергоэффективность – «самый надежный источник энергии из существующих на Земле»[175]. Более того, она является основным средством уменьшения выбросов парниковых газов к 2050 г. Меры по повышению энергоэффективности могут обеспечить более 38 % сокращения выбросов CO2 на планете в том случае, если будет реализовываться мировой сценарий ограничения роста температуры 2 °C[176].

Что такое энергоэффективность? Это всего лишь рациональное использование энергетических ресурсов. Например, два одинаковых по площади, стоящих рядом здания с одинаковым числом жителей могут в десятки раз отличаться по энергетическим затратам на отопление, если одно из них энергоэффективное, спроектированное и построенное рационально и качественно, с учетом прогнозируемых параметров расхода энергии, а другое построено «как всегда».

Дома, которым не нужно отопление

История человечества – история покорения природы. Иногда она принимает формы борьбы на уничтожение (превращаясь таким образом в самоуничтожение – человек ведь тоже часть природы). Примером такой смертельной борьбы является, например, наша московская и подмосковная многоэтажная городская застройка. В «мирном варианте» речь идет об освоении или подчинении (обуздании) природных сил человеком. Климатические условия – природный фактор, и снижение зависимости от него является задачей, решаемой человечеством на протяжении всей истории. При этом в течение последнего столетия все возрастающей платой за комфорт (домашнее электричество, центральное отопление…) становилась инфраструктурная кабала – на место зависимости от природы пришла зависимость от систем тепло-, электроснабжения и т. п. Сложность, энергоемкость, уязвимость систем, их капиталоемкость, возрастающая с удаленностью объектов от места генерации, – очевидные недостатки инфраструктуры ЖКХ.

Процесс развития энергоэффективных технологий последних десятилетий, из которого Россия по ряду причин практически выпала, создает предпосылки как для качественного усовершенствования и снижения энергоемкости централизованной инфраструктуры, с одной стороны, так и для повышения степени независимости потребителей от нее путем кардинального повышения энергоэффективности зданий – с другой.

В европейских странах, Северной Америке и России на здания приходится порядка 40–50 % потребления всей вырабатываемой энергии. В глобальных энергетических затратах доля недвижимости также внушительна – почти треть, 31 % всей используемой на Земле энергии уходит на обогрев и электроснабжение зданий[177]. Объем накопленных научных, инженерно-строительных знаний и технологий позволяет существенно сократить эту колоссальную долю и уже сегодня в массовом порядке, «серийно» возводить «энергетически нейтральные» («климатически нейтральные») здания, для жизнеобеспечения которых не нужна энергия, производимая из традиционных (углеводородных) источников.

В 2010 г. была принята Директива ЕС № 2010/31/EU об энергетической эффективности зданий (Energy Performance of Buildings Directive – EPBD). В соответствии с данным документом начиная с 2021 г. (для административных построек – с 2019 г.) все новые строящиеся в Европейском союзе дома должны быть зданиями с «почти нулевым потреблением энергии» (nearly zero energy buildings). «Почти равная нулю или очень незначительная потребность в энергии такого здания должна покрываться главным образом за счет возобновляемых источников энергии, включая такие источники, расположенные в месте нахождения здания или его окрестностях»[178].

В 2012 г. была принята европейская Директива об энергетической эффективности № 2012/27/EU (Energy Efficiency Directive), которая также предусматривала ряд мероприятий, направленных на экономию энергии в сегменте недвижимости. В частности, правительства стран ЕС должны ежегодно обеспечивать реконструкцию (энергетическую санацию) 3 % (по площади) существующего фонда зданий, находящихся в государственной собственности. Приобретать в государственную собственность допускается только высокоэнергоэффективные здания, продукты и услуги. Страны Европейского союза должны разработать и принять долгосрочные стратегии по реконструкции существующего фонда зданий.

Каким образом будет решаться задача повышения энергетической эффективности зданий? С помощью хорошо известного практикам комплекса мероприятий, основными из которых являются обязательное устройство механической вентиляции с эффективной рекуперацией тепла (теплообменом), уменьшение теплопроводности ограждающих конструкций (стен, кровли, основания) с помощью дополнительного утепления, повышение качества проектирования и строительных работ для достижения нормативных показателей воздухопроницаемости здания и исключения мостиков холода (мест соприкосновения неизолированных строительных конструкций с окружающей средой, через которые происходят высокие потери тепла). Следует оговориться, что указанная задача в значительной степени решена уже сейчас, поскольку, как мы отметили выше, знания и технологии для этого уже имеются. Большинство зданий, строящихся сегодня в Германии, Австрии и Швейцарии, соответствуют требованиям директивы. В ряде регионов приняты опережающие обязательства в части строительства энергоэффективных зданий. В Брюсселе с 01.01.15 все новые здания должны соответствовать критериям пассивного домостроения, в Люксембурге – с 01.01.17, а в Баварии уже с 2010 г. все новые административные здания строятся в соответствии с данными нормами.

Концепция пассивного дома, разработанная в начале 90-х гг. XX века немецким профессором-инженером Вольфгангом Файстом, является, пожалуй, главной теоретической основой современного энергоэффективного строительства, в том числе указанной директивы. «Пассивность» означает здесь «тепловую нейтральность», или «тепловую инерционность», здания, «безразличие» внутреннего микроклимата к температуре «за бортом». Пассивный дом проектируется и строится таким образом, что потребность в тепловой энергии для его отопления ничтожно мала. Непрерывный массивный тепловой контур здания и вентиляционная система с рекуперацией (теплообменом) обеспечивают крайне низкую потерю тепла, сочетающуюся с комфортным микроклиматом (равномерный прогрев внутренних поверхностей, контролируемый обмен воздуха и его фильтрация и т. п.). Соответствующим стандартом регламентируется также и расчетный расход электрической энергии.

Нормативный расход тепла, рассчитываемый по весьма жесткой методике Института пассивного дома, не должен превышать 15 кВт · ч на 1 квадратный метр площади помещения в год, а расчетная мощность отопления – 10 Вт/м. При данных параметрах фактически отпадает необходимость в привычных для нас системах отопления, состоящих из генератора тепла (отопительного котла) и радиаторов, устанавливаемых под окнами.

Строительство таких зданий не сопряжено с использованием каких-либо уникальных, «инновационных» и т. п. материалов и не является чудом. Все дело в грамотном, квалифицированном проектировании, надлежащем теплотехническом расчете (энергетическом моделировании) и аккуратной, качественной работе строителей. Современный дом никогда не строится как «коробка». И тепловая оболочка, и инженерные системы проектируются комплексно. Только таким образом достигаются высокие потребительские качества и энергосберегающие характеристики.

ВИЭ – в каждый дом

Высокая энергетическая эффективность современных зданий рационально дополняется использованием возобновляемых источников энергии. Речь идет в первую очередь о системах солнечной электрической генерации (фотоэлектрике) и использовании солнечного тепла для нагрева воды в системах отопления и водоснабжения (солнечные коллекторы), котлах на древесном топливе (пеллетах), а также тепловых насосах, использующих энергию окружающей среды – низкопотенциальное тепло грунта и воздуха. В экономически развитых странах по мере развития энергоэффективного строительства традиционные способы отопления с использованием углеводородов теряют свое значение.

Следует подчеркнуть, что использование возобновляемых источников энергии для электро– и теплоснабжения зданий целесообразно и экономически оправданно именно в случае высокой энергетической эффективности последних. Применение ВИЭ в «обычных» зданиях, не отличающихся высокими теплотехническими параметрами, т. е. потребляющими много энергии на отопление, в большинстве случаев сродни забиванию гвоздей микроскопом.

Глава немецкого Института строительной физики (Fraunhofer Institut fuer Bauphysik) Герд Хойзер прогнозирует, что к 2020 г. строительство зданий, обеспечивающих себя энергией самостоятельно, станет обычной строительной практикой. К слову, в Европе они уже сейчас не являются экзотикой. Кровли, фасады, стекла, вырабатывающие электроэнергию и тепло, – обычные конструкции на европейском строительном рынке. «Почти все здания в стране к 2050 г. будут “климатически нейтральными”[179], потребляющими существенно меньше энергии, чем сейчас, при обеспечении этих энергопотребностей с помощью ВИЭ» – такова одна из целей немецкого «энергетического поворота».

Здания с нулевым потреблением энергии (zero energy buildings), с положительным энергетическим балансом (plus energy buildings), дома с нулевыми выбросами (zero carbon homes) – все эти концепции уже прочно вошли в языковый оборот жителей Европы и Северной Америки. Дома, оснащенные солнечными системами электрической генерации и солнечного тепла, стали составной частью ландшафта многих стран, а в Германии и Австралии число домовладений, оснащенных фотоэлектрическими модулями, превысило миллион в каждой.

Каковы базовые принципы индивидуального жилого дома с положительным энергетическим балансом (plus energy building), или, как его иногда называют у нас, «энергоактивного здания»? Как следует из названия, такое здание вырабатывает в среднем за год больше энергии, чем потребляют его обитатели. Следует подчеркнуть, что речь идет не о самообеспечении электричеством круглый год, энергетической автономии, которая в климатических условиях Центральной Европы (и Центральной России) едва ли реализуема за счет только ВИЭ с вменяемыми затратами или без принесения в жертву потребительского комфорта, а о среднегодовом значении (балансе) выработки/потребления энергии.

В простейшем варианте речь идет о замещении потребляемой домохозяйством сетевой электроэнергии на электроэнергию, вырабатываемую солнечным генератором. По нашим данным, средняя семья из четырех человек, проживающая в индивидуальном доме в европейских и российских условиях, потребляет в год 4000–5000 кВт · ч электроэнергии (без учета расхода энергии на отопление). Для выработки такого количества энергии в год в Московском регионе достаточно солнечной электростанции установленной мощностью 5–6 кВт, размещенной на южном скате кровли и занимающей приблизительно 45–60 кв. м. В летний период такое здание производит избыточное количество электричества, которое продается местной сетевой компании. Зимой, напротив, обитатели вынуждены приобретать электроэнергию, поскольку в рассматриваемых географических зонах солнечной радиации недостаточно (проблемы российского регулирования энергетического рынка, не позволяющие отдавать/продавать выработанную солнечную энергию в сеть, мы здесь оставляем за скобками и вернемся к ним в главе о нашей «энергетической сверхдержаве»).

В то же время данное решение является половинчатым, поскольку на долю бытового электричества приходится лишь малая часть энергетических затрат среднего домохозяйства. Это справедливо как для Центральной и Северной Европы, так и для России. Порядка 85 % потребляемой за год средним домохозяйством энергии приходится на отопление и горячее водоснабжение.

Таким образом, положительный баланс по всей потребляемой энергии может быть достигнут путем 1) существенного повышения энергоэффективности здания для снижения потребности в тепле, как это делается в пассивных домах, о которых мы говорили выше, и 2) применения дополнительного инженерного оборудования, использующего ВИЭ. Наиболее распространенное решение выглядит так: геотермальный тепловой насос, берущий на себя основные функции по обеспечению здания теплом и горячей водой, плюс солнечные коллекторы для поддержки горячего водоснабжения и отопления. При данной комбинации правильно рассчитанная солнечная электростанция, включающая соответствующие аккумуляторные емкости, действительно может обеспечивать годовой положительный энергетический баланс. И, как сказано выше, в ряде стран Западной Европы строительство подобных домов становится рядовой практикой уже сейчас, многие строительные компании включили подобные дома в свои стандартные продуктовые линейки. Количество построенных домов с положительным энергетическим балансом уже исчисляется тысячами.

В секторе нежилой недвижимости также наблюдается острейший интерес к повышению энергоэффективности и использованю возобновляемых источников энергии. Существуют выдающиеся примеры офисных, торговых и промышленных зданий энергетически (климатически) нейтрального уровня, например штаб-квартира датской энергетической компании Syd Energy, сертифицированная Институтом пассивного дома. Расчетный удельный расход энергии на отопление составляет здесь всего 8 кВт · ч/м в год, для отопления и горячего водоснабжения используются геотермальные тепловые насосы (общая длина зондов: 10 км), а также тепло компьютерных серверов[180].

Беспроигрышная стратегия

Вложения в энергоэффективность зданий с точки зрения народного хозяйства являются беспроигрышной (win-win) стратегией. Такие инвестиции создают новые технологичные производства и рабочие места и при этом финансово оправдываются экономией природных ресурсов, сокращением импорта, способствуют сохранению окружающей среды. Энергоэффективность даже называют «ключевым ресурсом экономического и социального развития» во всех странах[181]. Разумеется, мультипликативный эффект для национальных экономик от мероприятий, направленных на повышение энергетической эффективности зданий, в наибольшей степени достигается в случае опоры на собственные научные разработки, технологии и производства (стеновых и теплоизоляционных материалов, инженерного оборудования, оконных конструкций и т. п.). Глобальные вложения в энергоэффективность уже превышают $300 млрд ежегодно. По расчетам Международного энергетического агентства, «экономические оправданные инвестиции в энергоэффективность будут способствовать более продуктивному распределению ресурсов в рамках глобальной экономики с потенциалом повышения совокупного объема производства на $18 трлн до 2035 г. – больше, чем текущий размер экономик Северной Америки вместе взятых (а именно США, Канады и Мексики)»[182].

Сознательный отказ от использования углеводородов для отопления зданий становится заметной европейской тенденцией. Если у нас газификация населенных пунктов рассматривается однозначно в качестве блага и «противники режима» винят правительство в недостаточной протяженности газопроводов, не дотягивающихся до каждого россиянина, то в некоторых европейских странах, напротив, использование углеводородов ограничивается. Например, в Дании с 2013 г. действует запрет на установку газовых и жидкотопливных (дизельных) отопительных и водогрейных котлов в новых зданиях (в соответствии с Датским энергетическим соглашением от 22 марта 2012 г.). В стране, располагающей разветвленной и эффективной сетью центрального отопления, владельцам новых зданий оставлен скромный выбор: подключаться к этой сети или устанавливать тепловые насосы.

Итак, европейские страны взяли устойчивый курс на снижение энергопотребления и использование ВИЭ в сфере недвижимости, который подкреплен необходимыми знаниями, технологиями и энтузиазмом масс. Данный тренд уже подхвачен Северной Америкой, Японией и Китаем, который планирует до конца 2015 г. довести количество построенных квадратных метров «зеленых» зданий до одного миллиарда[183]. В долгосрочной перспективе это развитие очевидно окажет существенное влияние на сырьевые и энергетические рынки и приведет к сокращению спроса на углеводородное топливо в сегменте недвижимости.

Можно сказать, что мы наблюдаем появление классического «креста», изображаемого на экономических графиках, – нисходящую кривую энергопотребления как результат мероприятий по повышению энергоэффективности и восходящий тренд энергоснабжения на основе ВИЭ. Все меньше энергии потребляется, а это сокращающееся потребление все больше обеспечивается энергией из возобновляемых источников. Как говорит глава консультативного совета Bloomberg New Energy Finance, «энергоэффективность и распределенное производство энергии с помощью возобновляемых источников убьют поставщиков энергии»[184].

Нестабильность ВИЭ и системы хранения энергии

Одним из основных недостатков солнечной и ветряной энергетики считается нестабильный, погодозависимый характер генерации. Переизбыток электричества в течение длительных периодов летней солнечной погоды сменяется дефицитом вырабатываемой солнечной энергии в пасмурные дни. Кроме того, для солнечной генерации характерны суточные колебания, поскольку выработка электроэнергии происходит в светлое время суток.

Ветер, очевидно, также нестабилен: сегодня он дует, а завтра – нет. В данном случае важным является правильное размещение ветряных электростанций с учетом данных метеорологических наблюдений для обеспечения максимальной нагрузки ветряных электрогенераторов.

Следует отметить, что в ряде регионов мира, в частности в Центральной и Западной Европе, солнце и ветер практически идеально дополняют друг друга. В периоды интенсивной солнечной генерации ветряная генерация «отдыхает», и, напротив, в периоды слабой инсоляции ветряная энергетика «выходит на полную мощность». Это позволяет несколько сглаживать нестабильность генерации ВИЭ в целом. Кроме того, метеорологические наблюдения и накопленные статистические данные позволяют прогнозировать объемы выработки возобновляемой энергетики с высокой степенью вероятности.

Так или иначе, в условиях роста доли электроэнергии из ВИЭ для компенсации «прерывистости» генерации возобновляемой энергетики требуются некие буферные, аккумулирующие мощности, позволяющие компенсировать недостаточность генерации в неблагоприятные периоды и в то же время накапливать избыточное электричество, которое не может быть потреблено сейчас.

В качестве аккумулятора небольших объемов генерации ВИЭ вполне может выступать существующая электрическая сеть. До недавнего времени она, собственно, и выполняла эту функцию. Опыт стран, в которых доля «переменчивой» генерации ВИЭ превысила 5 %, 10 % и более от общего объема производимой электроэнергии (например, Дания, Ирландия, Германия, Испания, Португалия, Великобритания), показывает, что сеть «проглатывает» такое количество чистой энергии без каких-либо проблем. Более того, исследование, проведенное Международным энергетическим агентством, подчеркивает, что большая доля переменчивой энергии ВИЭ (до 45 %) может быть интегрирована в энергетическую систему без существенного увеличения затрат[185]. Расширение сетей передачи и распределения электроэнергии, их модернизация рассматриваются в качестве наиболее экономически эффективного способа подстройки энергетической системы под возрастающую долю ВИЭ – сеть существенно дешевле, чем аккумуляторные системы. «Новые технологии хранения станут необходимыми, когда доля возобновляемых источников энергии превысит 70 %»[186], – считают немецкие авторы из Agora Energiewende.

Тем не менее рост объемов нестабильной генерации из возобновляемых источников повышает риск потерь и перегрузок, требуя новых походов. Например, в 2010 г. в Германии были потеряны 127 ГВт · ч электрической энергии, выработанной ветряными электростанциями, на сумму €30 млн из-за «переполненности» сети в результате продолжительного периода ветреной погоды[187]. Поэтому вопрос «буферных» емкостей для энергосистемы активно разрабатывается в научном и деловом мире.

Можно условно разделить малые (бытовые), используемые в рамках небольших локальных объектов, и крупные (промышленные) системы хранения энергии, служащие энергосистеме в целом. Малые (бытовые) системы хранения энергии в настоящее время переживают бурный рост в связи с резким уменьшением размера зеленого тарифа в европейских странах, в первую очередь в Германии. В 2004 г. сетевые операторы покупали здесь солнечное электричество у граждан за 57,4 евроцента/кВт · ч, что в разы превышало стоимость электроэнергии «в розетке» и обеспечивало счстливым владельцам солнечных электростанций гарантированный дополнительный заработок. В марте 2015 г. зеленый тариф для новых электростанций был снижен до 12,5 евроцента/кВт · ч. Это более чем в два раза ниже сетевого тарифа. В результате домохозяйствам и прочим малым потребителям, имеющим солнечные электростанции, стало интереснее потреблять производимое ими электричество, а не продавать его. Для увеличения доли собственного потребления вырабатываемой солнечной электроэнергии необходимы «буферные емкости», позволяющие накапливать избыток дневной энергии и отдавать его в темное время суток. С их помощью можно увеличить собственное потребление производимой солнечной электроэнергии до 70 % и даже более (в зависимости от размеров и комбинации электростанции и аккумуляторов).

Бытовые системы

Для домашнего хранения энергии исторически главным образом используются свинцово-кислотные аккумуляторы. С развитием техники все большую рыночную долю завоевывают литийионные аккумуляторы (Li-Ion) и их разновидности, например литийжелезофосфатные (LiFePO4), которые обладают лучшими техническими характеристиками. Их цена выше, но постепенно, по мере развития техники и увеличения объемов производства, снижается. В 2014 г. стоимость литийионных батарей упала на 20 %, в 2015 г. прогнозируется падение цен еще на 15 %[188]. Кроме того, во многих европейских странах действуют программы льготного кредитования современных систем накопления энергии, стимулирующие их приобретение. К 2018 г. ожидается десятикратный рост мощностей домашних аккумуляторных систем хранения в мире – до 900 МВт, по сравнению с нынешними 90 МВт[189]. Кстати, автопроизводитель Tesla, строящий «Гигафабрику» по производству аккумуляторов в США, также уже начал продавать системы хранения энергии для домашнего пользования, диверсифицируя таким образом свой бизнес. Широко разрекламированный Powerwall от Tesla представляет собой комплект Li-Ion аккумуляторов в элегантном корпусе, оснащенный системой бесперебойного питания.

Сегодня на европейском рынке популярность завоевывают комплектные системы преобразования и хранения солнечного электричества. Такая система представляет собой единый блок – шкаф размером с небольшой холодильник, в котором размещены Li-Ion аккумуляторы, инвертор, блок бесперебойного питания и система электронного учета электроэнергии. Данные продукты упрощают процессы проектирования и монтажа домашних солнечных электростанций, что также способствует росту их распространения.

Для читателей, желающих запастись энергией впрок, заметим, что используемые в домашних хозяйствах аккумуляторные емкости при сегодняшнем развитии техники не позволяют сохранить энергию «про запас», «запастись на зиму» и т. п. Данная техника предназначена для сглаживания неравномерности инсоляции в течение суток и может быть также использована в качестве стабилизатора сети и источника бесперебойного питания. Емкость стандартных бытовых аккумуляторов, как правило, не превышает суточную потребность домохозяйства в электроэнергии. Создание больших емкостей для хранения энергии («на неделю» и более) в домашних условиях теоретически возможно, но при имеющихся технологиях и их стоимости (более €1000 за киловатт-час емкости) нерационально с экономической точки зрения.

С точки зрения электросетевого хозяйства в целом в условиях широкого распространения малой генерации (в ряде стран, как мы помним, уже действуют миллионы малых солнечных электростанций) бытовые системы накопления энергии весьма полезны – они способствуют стабилизации сети, сглаживают неравномерности нагрузки.

Промышленные системы

В масштабах страновых энергосистем и мира в целом задача создания идеальных (дешевых и эффективных) способов хранения, накопления энергии пока полностью не решена. При этом ведется гигантская научно-исследовательская и экспериментальная работа по поиску соответствующих решений. В разработку систем хранения энергии инвестируют такие известные деятели, как Билл Гейтс и Уоррен Баффетт[190], а также уже упоминавшийся Илон Маск.

Сжатый воздух (Compressed air energy storage), преобразование избыточной электроэнергии в газ (power-to-gas), криогенные системы накопления энергии (Liquid air energy storage/LAES), супермаховики (Flywheel storage) – разнообразие более или менее экзотических методов накопления энергии велико. Многие из них уже воплощены в опытных или даже промышленно-действующих образцах. Мы не сможем уделить внимание каждому из них и остановимся на наиболее важных.

В ситуации, когда на традиционную неравномерность потребления электроэнергии накладывается нестабильность генерации ВИЭ, требования к резервным и накопительным буферным мощностям существенно возрастают. Напомним, что всякая энергетическая система требует наличия так называемых выравнивающих (резервных) мощностей. Это обусловлено неравномерностью потребления электрической энергии в течение суток. Традиционно роль таких выравнивающих мощностей играют гидроаккумулирующие электростанции (ГАЭС) – одно из древнейших средств накопления энергии. Мощности действующих в мире ГАЭС пока многократно превышают любые альтернативные средства хранения энергии вместе взятые. Гидроаккумулирующая электростанция действует по следующему принципу. Имеется два резервуара, находящихся на разной высоте. Во время минимума энергопотребления ГАЭС с помощью полученной из сети (дешевой) электроэнергии перекачивает воду в верхний резервуар. Во время пиков энергопотребления станция, напротив, сбрасывает воду из верхнего резервуара в нижний, вырабатывая (дорогую) электроэнергию. При всей массивности и кажущейся неповоротливости конструкции ГАЭС отличается достаточно быстрым откликом на изменения спроса/предложения в электрической сети, запускаясь в течение нескольких минут.

Имеющиеся европейские емкости ГАЭС в принципе позволяют решать задачу накопления энергии в современных условиях. По мнению Экспертного совета правительства Германии по вопросам окружающей среды, Европа в целом обладает природными ресурсами для обеспечения с помощью ГАЭС стабильности энергосистемы, функционирующей на основе даже 100 % ВИЭ. Речь идет в первую очередь о Норвегии и Швеции, а также Австрии. Правда, для решения этой задачи потребуется существенное расширение сетей передачи энергии[191], что, собственно, и наблюдается сейчас. «Через пять лет Норвегия станет “аккумуляторной батареей” Германии» благодаря осуществлению проекта NordLink – прокладке подводной высоковольтной линии электропередачи[192].

Тем не менее ГАЭС имеет ряд существенных недостатков. Для строительства электростанции нужны подходящие рельефно-географические условия, ее возведение связано со значительным вмешательством в окружающую среду. Отмечая технологические особенности ГАЭС, связанные с перекачкой воды и соответствующими энергозатратами, противники называют ГАЭС «пожирателями энергии», хотя КПД других систем накопления энергии, как правило, не выше.

Для покрытия пиковых нагрузок в электрической сети наряду с ГАЭС традиционно применяются газотурбинные электростанции, обладающие высокой скоростью реакции – быстрым (в течение нескольких минут) набором мощности. Тем не менее с увеличением доли ВИЭ в энергетических системах регулирование нагрузки с помощью традиционных электростанций становится все более затруднительным. Кроме того, удельная приведенная стоимость производства электроэнергии (LCOE) пиковыми газовыми электростанциями, имеющими, как правило, низкий коэффициент использования установленной мощности (КИУМ), высока и в большинстве случаев превышает удельные затраты генерации ВИЭ[193].

В настоящее время бизнес газовой электрогенерации переживает не лучшие времена. Например, Германия в течение последнего десятилетия живет в условиях переизбытка электрической энергии и соответствующих низких биржевых цен (в первую очередь это связано с ростом производства электричества из возобновляемых источников). Это приводит к нерентабельности газовой генерации при существующих ценах на голубое топливо. Также следует подчеркнуть, что пиковые газовые электростанции – устройства единичного назначения, они по природе своей не способны хранить энергию.

Поэтому одним из перспективных направлений совершенствования промышленных систем хранения энергии является развитие аккумуляторной техники, несмотря на нынешние высокие удельные капитальные затраты. Электрические аккумуляторы не только заменяют газовые турбины в качестве регулятора пиковых нагрузок, но также выполняют и другую важную роль – сохраняют выработанную электроэнергию.

В сентябре 2014 г. вступил в коммерческую эксплуатацию первый в Европе «Батарейный парк», назначением которого является накопление энергии и стабилизация электросети – выравнивание неоднородности нагрузки и частоты в электрической сети с помощью накопителей энергии – аккумуляторов[194]. Мощность предприятия – 5 МВт, емкость аккумуляторов – 5 МВт · ч. Производитель используемых литийионных батарей, Samsung, гарантирует заявленные технические параметры в течение 20 лет. В отличие от традиционных электростанций, выполняющих регулирующие функции, аккумуляторная система работает быстрее и с большей точностью, реагируя на изменения в миллисекунды, что идеально подходит для энергетической системы с большой долей ВИЭ.

Другим многообещающим направлением развития аккумуляторных систем хранения являются так называемые проточные редокс-аккумуляторы (Redox flow batteries), хранение и отдача энергии которыми осуществляется путем химической реакции в жидком, как следует из названия, электролите. Такие батареи имеют на сегодняшний день уже довольно широкое промышленное применение. Они недороги (дешевле литийионных), надежны и долговечны. Их недостатком является относительно низкая плотность энергии, поэтому для создания сколько-нибудь значительных электрических емкостей требуются большие объемы электролита и габариты самих батарей. Тем не менее активные исследования и эксперименты с химическим составом проточных аккумуляторов постепенно повышают их эффективность. Американские производители утверждают, что через два-три года использование данного вида накопителей энергии будет дешевле, чем применение пиковых газовых электростанций[195].

Таким образом, вполне вероятно, что промышленные системы накопления энергии на основе электрических аккумуляторных батарей займут видное место в энергетической системе будущего.

Интересные перспективы развития «оптовых» систем хранения электроэнергии, вырабатываемой ВИЭ, связаны с водородной энергетикой, которая сегодня рассматривается в качестве одного из главных потенциальных направлений энергетики будущего. Водород является эффективным и экологически чистым видом топлива. Однако для его производства из воды путем электролиза нужна электрическая энергия. В то же время установленные мощности солнечной и ветряной генерации периодически производят «излишки» энергии. Это, в частности, проявляется в отрицательных оптовых ценах на электроэнергию, время от времени фиксируемых на немецком биржевом рынке. При дальнейшем сокращении зеленых тарифов возникает проблема реализации чистой электроэнергии, например в летние солнечные воскресные дни, когда спрос на электричество минимален. Вот здесь и может использоваться технология «power-to-gas» (энергия-газ), позволяющая производить водород электролизом с помощью «лишнего» электричества и обеспечивать длительное хранение его больших объемов с последующим использованием по потребности. Обратное преобразование водорода в электричество происходит путем химической реакции водорода и кислорода в топливном элементе. Несмотря на довольно высокий процент потерь, использование данного метода все равно рационально по сравнению с потерей энергии или ее продажей по отрицательным ценам.

Впрочем, и на бытовом уровне системы power-to-gas могут быть востребованы. Еще в 2006 г. в США был реализован пилотный проект независимого от централизованного электроснабжения индивидуального жилого дома, в котором избытки летней солнечной электроэнергии преобразовывались в водород, закачиваемый в газгольдер и используемый в холодное время года для производства тепла и электроэнергии посредством топливного элемента[196]. В настоящее время активные исследования в области домашнего использования водородных систем хранения ведутся и в других странах.

Поскольку водород является довольно сложным с точки зрения хранения и применения веществом, рассматриваются иные способы преобразования солнечного электричества в жидкое топливо посредством химических реакций. Например, ученые Гарварда разрабатывают технологию, которая дополняет процесс электролиза путем использования бактерий, в результате чего получается более удобное для хранения жидкое топливо[197].

Изыскания в области усовершенствования систем хранения энергии идут рука об руку с развитием так называемых умных электрических сетей (smart grids), о которых подробнее будет рассказано в главе об энергетической системе будущего. Основной характеристикой smart grid является точная («умная») настройка процессов производства и потребления энергии для минимизации как сетевых потерь, так и объемов мощностей для хранения энергии. Другими словами, в идеале сама конфигурация сетей будет обеспечивать соответствие объемов генерации и потребления, что сократит потребность в промежуточных звеньях в виде емкостей для хранения энергии.

По мере развития умных сетей одним из важных элементов систем хранения энергии в течение ближайших 15–20 лет может стать электромобиль, точнее вся совокупность электромобилей. По статистике, средний автомобиль простаивает 95 % времени. Для зарядки электромобиля на современной станции требуется менее получаса. Все остальное, свободное от зарядки и передвижения время он может служить накопителем энергии для нужд локальной, городской и национальной электросети, накапливая и отдавая энергию. Концепция, называющаяся по-английски vehicle-to-grid (V2G), или «транспортное средство – сеть», уже активно тестируется в рамках пилотных проектов, осуществляемых в США, Дании и Германии.

Подведем итоги. Современный уровень развития систем накопления и хранения энергии не создает значимых препятствий для дальнейшего развития возобновляемой энергетики. Да, имеющиеся на рынке системы не идеальны. Тем не менее, даже без учета вероятного будущего технологического прогресса, уже сейчас допустимо функционирование энергетических систем с большей долей ВИЭ. Колоссальные финансовые вложения в разработку и совершенствование систем хранения энергии позволяют предположить повышение эффективности и доступности данных технологий в ближайшем будущем.

Экономика возобновляемой энергетики: «дороговизна» и субсидии

Сужденья черпают из забытых газет…

А. Грибоедов «Горе от ума»

В Российской Федерации широко распространено убеждение в чрезвычайной дороговизне возобновляемой энергетики и ее нежизнеспособности без массированной государственной поддержки. Например, В. Путин на Экономическом форуме в Петербурге в 2013 г. заявил: «Сегодня эффективность альтернативных видов энергии такова, что абсолютно не является конкурентоспособной по сравнению с ядерной энергетикой и с углеводородной. Она, прямо надо сказать, неконкурентоспособна. Она живет только потому, что ее субсидируют…»

Для человека естественно встречать новое с недоверием. Литература полна высказываний известных исторических персонажей, выражавших непонимание перспектив воздухоплавания, телефона, радио или компьютера. Такое непонимание часто маскируется изложением «рациональных» аргументов, призванных объяснить ненужность или несвоевременность тех или иных новшеств. В случае ВИЭ основным аргументом является высокая стоимость, «дороговизна» в сравнении с традиционной энергетикой.

Это заблуждение простительно, поскольку возобновляемая энергетика была дорогой в совсем недавнем прошлом, мы уже видели графики, демонстрирующие, сколь высоки были цены на солнечные модули еще несколько лет назад. При этом темпы изменений в возобновляемой энергетике таковы, что многие эксперты не успевают на них реагировать. Утверждения, справедливые еще пять лет назад, сегодня оказываются ложными.

Посудите сами, падение цены на фотоэлектрические панели более чем в 100 раз за последние 40 лет в сочетании со среднегодовыми темпами роста солнечной энергетики 49 % в последние десять лет – действительно сумасшедшая динамика. Еще вчера возобновляемая энергетика была дорогой игрушкой любителей экологии, а сегодня стала доступной для каждого.

«Лошади будут всегда, а автомобили всего лишь новинка, временная причуда», – говорили в начале прошлого века. Однако повышение производительности труда, усовершенствование индустриальной системы производства в сочетании с развитием и внедрением широкого спектра новых технологий привели к снижению себестоимости и цены, день ото дня повышая доступность «временной причуды» для потребителей. С 1909 по 1916 г. Генри Форд снизил цену на свою Ford Model Т с $950 до $360. Каждый год продажи удваивались. Если в 1908 г. было продано менее 6000 автомобилей, то в 1917 г. – уже 800 000. То же самое произошло и происходит на наших глазах с новыми технологиями в энергетике.

Разбираясь с вопросами стоимости возобновляемой энергетики, часто натыкаешься на весьма курьезные примеры. Так, немецкий Институт экономических исследований пишет, что Европейская комиссия регулярно недооценивала расходы на атомную энергетику и при этом столь же последовательно переоценивала затраты на энергию возобновляемую. «Это особенно касается фотоэлектрики, капитальные затраты в которой сегодня лежат ниже прогнозных значений, установленных Комиссией на 2050 г.»[198]

Итак, постараемся разобраться с «затратной частью». Простите за банальную истину: утверждения о «дороговизне» (или, напротив, дешевизне) чего-либо, в том числе ВИЭ, должны подкрепляться соответствующими расчетами и анализом. Когда мы произносим словосочетание «дорогая вещь», подразумевается сравнение с некими другими, «дешевыми» объектами. Так же и в случае энергетики. Необходимо сопоставление разных видов электрической генерации.

Академик и нобелевский лауреат Ж. Алферов выразился по поводу «затратной части» возобновляемой энергетики однозначно: если бы на развитие альтернативной энергетики было потрачено хотя бы 15 % из тех средств, что мы вложили в энергетику атомную, то АЭС нам сейчас вообще были бы не нужны[199]. Действительно, мы покажем это ниже, в традиционные способы генерации вкладывалось и вкладывается значительно больше ресурсов, чем в возобновляемую энергетику. Но в первую очередь посмотрим на цифры и показатели, которые расскажут нам о стоимостных параметрах возобновляемой энергетики в сравнении. Модели и методики расчетов, позволяющие сравнивать разные виды энергетики, широко представлены во множестве источников.

Капитальные затраты

Первое, что приходит на ум: сопоставить удельные инвестиции, т. е. капитальные вложения в электрическую генерацию на киловатт установленной мощности.

В мировом масштабе наблюдаются существенные различия в стоимости строительства энергетических объектов, обусловленные разницей в оплате труда, используемыми технологиями, разными требованиями к безопасности электростанций и т. п. Поэтому для сравнения целесообразно использовать широкие массивы данных из разных источников.

Обратим внимание на исследование немецкого института Fraunhofer ISE под названием «Стоимость производства электроэнергии»[200], опубликованное в ноябре 2013 г., содержащее следующие данные по инвестиционным затратам на новое строительство разных видов генерации (€/кВт):

Как мы видим, удельные инвестиции в ВИЭ не поражают своим размером и вполне сопоставимы с капитальными затратами на строительство традиционных генерирующих мощностей. Да, установленные в море (offshore) ветряные электростанции дороже по понятным причинам, но они и вырабатывают примерно в два раза больше энергии на единицу установленной мощности, чем береговые. Биогазовая генерация является особым случаем. Удельные капитальные затраты здесь (в немецком варианте) относительно высоки, но необходимо учитывать, что биоэнергетика в большинстве случаев работает в режиме когенерации, т. е. производит не только электроэнергию, но и тепло, а также целесообразность ее использования в качестве дополнения сельскохозяйственной деятельности – для решения не только энергетических, но и экологических задач.

Данные по атомной энергетике в исследовании не приводятся, поскольку Германия полностью отказывается от данного вида генерации к 2022 г. и, соответственно, не строит больше атомные электростанции.

В 2010 г. Международным энергетическим агентством было опубликовано исследование «Прогнозируемые расходы на производство электричества», где среди прочего оценивались капитальные затраты на строительство разных типов генерирующих мощностей[201]. Хотя данные для ВИЭ и потеряли уже свою актуальность по причине быстрого удешевления оборудования, изменения в капитальных затратах традиционных видов генерации происходят не столь быстро, и сравнительная таблица может представлять интерес:

Официальные данные США на 2012 г.[202] позволяют составить следующую картину стоимости строительства разных типов электростанций (без учета стоимости финансирования):

Следует дополнительно подчеркнуть, что здесь приведены данные за 2012 г., с тех пор цены на солнечные модули сократились примерно на 20 %.

Таким образом, газовая генерация в среднем является на текущий момент самым экономичным способом производства электричества с точки зрения объемов необходимых удельных инвестиционных вложений. В то же время стоимость самых эффективных и экологичных современных парогазовых электростанций, применяющих технологии улавливания и захоронения углекислого газа (CCS), зачастую может превышать удельные капитальные затраты на строительство солнечных и ветряных энергетических установок.

Кроме того, продолжающееся снижение стоимости оборудования для строительства солнечных, в первую очередь, электростанций постепенно опускает объем требуемых капитальных затрат до еще более низких уровней. Например, в начале 2015 г. калифорнийская компания Siva Power заявила о начале производства самых дешевых солнечных модулей стоимостью $0,4 за ватт, которая в течение двух лет может опуститься ниже $0,28[203]. При такой стоимости модулей удельные капитальные затраты системы (электростанции) в целом вполне могут быть ниже $1 за ватт установленной мощности.

Показатель удельных капитальных затрат имеет право на существование, хотя очевидна его ограниченность. Стоимость мощности – важный вопрос, но не менее важно понимать, какова будет стоимость производимой электроэнергии (удельные затраты на произведенный киловатт-час).

Стоимость производства электричества

Традиционная энергетика обеспечивает стабильную, круглосуточную, независимую от погоды генерацию и работает с ископаемым сырьем, для которого характерна высокая плотность энергии. То есть на единицу (площади, объема, мощности) электростанция вырабатывает существенно больше электричества, чем, скажем, солнечный модуль, «улавливающий» рассеянное солнечное излучение.

В то же время очевидно, что эксплуатационные расходы, скажем, в ветро– и солнечной энергетике на несколько порядков ниже, чем в традиционной. Солнечным и ветряным электростанциям не нужны сырье и инфраструктура по его доставке. Существенно ниже и затраты на природоохранные мероприятия.

Поэтому для оценки эффективности разных видов электрической генерации применяется показатель, учитывающий, наряду с инвестициями и финансовыми издержками, эксплуатационные расходы в течение жизненного цикла объектов. Таким показателем является приведенная стоимость производства электричества (англ. levelized cost of electricity – LCOE).

Он включает в себя капитальные затраты, расходы на топливо, эксплуатацию, техническое обслуживание, затраты на финансирование… LCOE представляет собой точку безубыточности – цену, при которой производство электроэнергии из того или иного источника оправдывает расходы, связанные с этим производством. Чем ниже LCOE, тем выгоднее инвестировать в генерацию на основе данного источника.

В упомянутом выше исследовании немецкого Fraunhofer ISE (2013 г.) представлены следующие показатели приведенной стоимости производства электричества (€/кВт · ч)[204]:

Разница между максимальными и минимальными величинами обусловлена как используемыми технологиями, так и (в случае солнечной и ветряной энергетики) географическим положением.

Очевидно, что на значение показателя LCOE в возобновляемой энергетике влияют природные условия (например, инсоляция). В представленном выше примере учитывались показатели инсоляции в Германии – 1000–1200 кВт · ч/м в год, которые примерно соответствуют солнечной радиации в средней полосе России. В регионах, расположенных южнее и имеющих более высокие показатели инсоляции, при равных инвестиционных затратах LCOE будет ниже. Нетрудно заметить, что уже сейчас солнце и ветер конкурируют с газовой генерацией по показателю стоимости производства электричества в условиях весьма посредственной инсоляции в Германии (на уровне Московской области), на юге Германии солнечная генерация уже сейчас дешевле газовой.

Страницы: «« 1234 »»

Читать бесплатно другие книги:

Жизнь постоянно ставит нас в тупик перед выбором. И только от нас зависит, куда мы направим свою лод...
Данная книга рассказывает подлинную историю, которая случилась с автором и связана с приобретением н...
Пьеса для новогодней постановки, в которой действуют всем знакомые персонажи, итальянские маски Коме...
Когда-то давно две планеты Кандемирия и Хартеон поссорились, и теперь их жители вынуждены воевать др...
Предыдущие поэтические сборники:«Венок из белладонны» издан в 2012«На грани» издан в 2013Третья книг...
Что делать, когда тебя не слушается твое собственное тело? Когда ты внезапно осознаешь, что ты не та...