Верхом на бомбе. Судьба планеты Земля и ее обитателей Никонов Александр
Что за страшная сила сделала все это? Оползень? Но в этом месте некуда и нечему сползать. Торнадо? Торнадо может переломать с десяток лиственниц, но даже у торнадо не хватит сил, чтобы выламывать из скальной породы куски. Землетрясение? Для этого Чертова поляна слишком мала – точечных землетрясений не бывает. Получается, вот здесь трясло так, что аж скалы ломало, а в десяти метрах – нетронутый лес…
Так и остался Ларин в недоумении относительно этой загадки. До тех пор, пока не попал в Айдахо (США), где он увидел то же самое. Правда, лиственниц там не было, но вывороченными остроугольными глыбами базальта было усеяно все пространство так называемой Долины лунных кратеров. Глыбы там разные – есть размерами с легковой автомобиль, есть с табуретку. Поэтому передвигаться по этой сильно пересеченной местности можно только на четвереньках, да и то с большой осторожностью, поскольку многие глыбы качаются и запросто могут придавить. Причем, судя по всему, эти многотонные куски базальта неоднократно перебрасывало с места на место. Позже Ларин признавался, что более мертвого места в своей жизни не видел, не зря оно получило свое название – Долина лунных кратеров. Там нет ни птиц, ни даже насекомых.
Пораженный увиденным, Ларин немедленно встал на четвереньки и полез по этому хаотическому нагромождению. А когда, обессиленный, выполз обратно, на его кроссовки было больно смотреть. Зато, пожертвовав подземным богам новые кроссовки, он получил кое-что получше «адидасов» – догадку…
Глава 1. Излияния и возлияния
Что такое вулканизм, все прекрасно знают. При слове «вулкан» сразу представляется конусовидная гора со срезанной верхушкой – жерлом, из которого периодически идет дым, вылетают вулканические бомбы и извергается лава. Описание таких вулканов оставил нам еще Плиний Старший, а теперь их можно регулярно видеть на канале ВВС. Такие вулканы-прыщи извергаются периодически и с большим шумом, увеча и калеча все и вся.
Есть вулканы и другого типа, как на Гавайских островах: это просто трещины в земле, из которых каждый день, но понемногу выступает лава. Неприятно, но не смертельно.
А бывает нечто такое, о чем широкая публика не знает, чего никто из живущих на Земле, слава богу, не видел, но следы этого явления, потрясающие своей масштабностью, может пронаблюдать каждый. Больше того, на этих «следах» живут миллионы людей. Это явление – излияние траппов. И вряд ли можно представить себе что-то худшее для человечества, исключая разве что падение огромного астероида, да и то…
Представьте себе, вдруг разверзается земля и из ее глубин начинает поступать расплавленная лава, заливая и выжигая все вокруг на миллион квадратных километров. Потом лава застывает, превращаясь в базальтовую плиту толщиной в сотни и даже тысячи метров, а площадью. Восточная Сибирь представляет собой не что иное, как равнину, залитую траппами. Среднесибирское плоскогорье тоже образовали траппы. Есть такие равнины в Индии, Южной Америке, Южной Африке, в Антарктиде, в США. Иногда излияния траппов происходят несколько раз в одном и том же месте, покрывая огромные площади слоями расплавленного камня.
Во всем этом поражает, прежде всего, циклопичность. Как пишут геологические книжки, «излияния платобазальтов (или траппов) относятся к числу тех грандиозных процессов, которые в значительной мере определили внешний облик нашей планеты». Как правило, излияния траппов происходили довольно давно – 150–300 миллионов лет назад, но есть и совсем «вчерашние», которым не более трех десятков миллионов лет. И вполне можно сказать, что процесс этот еще не закончен и вполне может где-нибудь произойти. Где именно, скажем позже, а сейчас отметим, что случается эта параша без всякого «объявления войны», то бишь без предупредительных «выстрелов» предшествующей сейсмической активности – никаких тебе землетрясений и прочего прыщеватого вулканизма. Просто, раз – и разлилось до горизонта. Неприятно.
Все это настолько непривычно и не ложится ни в какую концепцию, что многие геологи относят траппы к неизвестному типу магматической активности. Причем, что самое любопытное, геологическая литература не может (и даже не пытается!) ответить на вопрос о том, откуда же берется столько энергии, чтобы выплавить такие количества базальта. Непонятно также, почему подобные вещи случаются не там, где периодически трясет и пыхтят вулканы, а там, где давным-давно все вроде бы уже успокоилось, где не бывает землетрясений – под древними материковыми платформами.
Тектоника плит полагает, что траппы выплавляются из силикатной мантии планеты, потому что больше им взяться просто неоткуда. Правда, по содержанию некоторых химических элементов они ближе к материалу континентальной земной коры, а не мантии. Но здесь, как во всех подобных случаях, когда плохая практика не стыкуется с хорошей теорией, Тектоника плит выдумывает очередную заплатку, чтобы подтянуть задачку под ответ. (Не буду останавливаться на этой заплатке подробнее, скажу лишь, что специально для объяснения этих расхождений тектонистами была придумана «подтеория» Селективной диффузии, которая, в свою очередь, наставила больше вопросов, чем дала ответов, и наплодила больше противоречий, чем сняла.)
Поэтому в самый раз посмотреть, как справляется с проблемой страшных траппов металлогидридная теория. Во-первых, обращает на себя внимание тот факт, что самые массовые излияния траппов в истории планеты начались именно тогда, когда начали зарождаться океаны. То есть тогда, когда пошел ускоренный процесс расширения планеты, ее кора потрескалась, и начали образовываться молодые базальты океанского дна. Иными словами, поверхность планеты расширялась за счет нарастания океанского дна, а старая кора, растрескавшаяся на континенты, испытывала разгибание. Это должно быть понятно: Земля увеличивается, ее радиус растет, стало быть, кривизна земной поверхности уменьшается (кривизна – это величина обратная радиусу: 1/R). Уменьшение кривизны это и есть разгибание. А что происходит при разгибании континентальной плиты? Если вы посмотрите на рисунок, то увидите, что уменьшение кривизны плиты сопровождается растяжением на ее нижней поверхности и сжатием в верхних слоях.
Рис. 18. Разгибание континентальной плиты. При разгибании литосферы на ее нижней поверхности, которая соприкасается с металло-сферой, происходит растрескивание. А верхние слои, напротив, испытывают сжатие
Что творится дальше? Под жесткой силикатной плитой континента находится верхний слой металлосферы, который содержит повышенное количество водорода. Он состоит из тех самых водородных «пузырей», о которых мы говорили в предыдущей части книги. Напомню, что скорость диффузии водорода через окислы в миллионы раз меньше, чем скорость пролета водорода через металл. Литосфера – это и есть окислы. То есть на пути водорода возникает препятствие в виде континентальной плиты. Эта преграда и задерживает водород, накапливая его в виде многочисленных «пузырей». Скопления «пузырей», которых где-то больше, а где-то меньше, образуют под литосферой неравномерный слой наводороженного и потому пластичного металла – астеносферу. А как только при разгибании континентальной плиты на ее нижней поверхности образуются трещины, в них тут же начинают продавливаться небольшие язычки текучего металла. Точнее, целой группы металлов, поскольку металлосфера состоит из силицидов – сплавов разных металлов, в которых преобладают кремний и магний. А литосфера Земли, в которую продавливаются клинья силицидов, состоит из уже окисленных металлов – силикатов. В ней есть окислы железа, а также марганца, свинца, меди, цинка, кобальта, никеля и прочей мелочевки, которой Земле при ее формировании досталось – на одну понюшку. Есть в силикатной коре также окислы углерода, серы, фосфора… Зачем я их перечисляю, утомляя читателя? А затем, что у всех этих элементов энергия связи с кислородом не очень высока. И если придет более активный элемент, например, тот же кремний или магний, то кислород с радостью бросит постылое железо и уйдет к легкому и веселому магнию. Причем реакция эта экзотермическая, то есть идет с большим выделением тепла.
Расчеты показывают, что при окислении всего 4 граммов силицидов выделяется столько калорий, что их хватит на выплавление 100 граммов базальта. Вот откуда тепло для траппов! Стоит только металлическим языкам дотянуться до мест, где они могут начать окисляться, как вокруг тут же образуется очаг расплава, и горячая магма растекается по трещинам и слоистостям, которые образовались в верхних слоях коры (см. рис. 19), и иногда может даже вытечь наружу, заливая поверхность земли до самого горизонта убийственным расплавом.
Рис. 19. Интерметаллические клинья, образующие в литосфере «факелы» магматической активности
Более того, эта схема так же хорошо и просто объясняет некоторые другие специфические вещи типа соотношения в траппах изотопов стронция, о которых мы говорить не будем в силу их полной нежевабельности. Мы лучше о другом поговорим! О том, что бывает, если летучие продукты реакций, идущих в глубине коры вокруг металлических клиньев, вырываются на поверхность в виде газов. Среди этих продуктов, например, силан (соединение кремния с водородом). Если силановая струя просочилась наружу, при первичном контакте с атмосферой (а первый контакт силанов с воздухом происходит уже на глубине нескольких метров) смесь начинает взрываться. Круша базальтовые скалы и ломая толстенные лиственницы, как спички.
Тектоника плит феномены, подобные Чертовой долине в Забайкалье или Долине лунных кратеров в Айдахо, объяснить не может. А мы с вами теперь можем. Мы сделали их! И за это нужно непременно выпить!
Разливайте, разливайте, есть повод…
Глава 2. Смертный бой не ради славы…
В этой главке я специально решил собрать разные фактики и столкнуть нос к носу две враждебные теории. Эта глава – самая настоящая «стрелка», куда для разборок пришли Тектоника плит, которая до сих пор находится в большом авторитете, и пока еще мелкая, но подающая большие надежды теория металлогидридной Земли. Кого из них унесут из этой книги вперед ногами, решать вам. Голосуйте SMS-ками за победителя.
Бой пойдет в три раунда. Спешите видеть – сплошное насилие!
Раунд первый
…Есть на нашей планете такие штуки, как грабены и горсты.
Грабены образуются в местах растяжения (раздвига) земной коры, тогда как горсты вырастают там, где земная кора испытывает сжатие. Таким образом, грабены – это провалы в местах растяжения, а горсты – это выдавленные блоки в зонах сжатия (рис. 20). В геологии с этим никогда не было никаких теоретических проблем. Если бы не одно «но»: во многих местах геологи стали фиксировать четкие горсты с крутыми стенками, расположенные внутри крупных протяженных грабенов. То есть в заведомой зоне растяжения растут выдавленные блоки, характерные для зон сжатия.
Рис. 20. Грабены и горсты
Откуда взялись такие странные образования? Тектоника плит здесь уходит в глухую оборону. А металлогидридная теория легко справляется с этим парадоксом следующим образом. По зонам растяжения литосферы интерметаллические силициды (из металлосферы) поднимаются вверх в виде языков и гребней. Здесь они превращаются в силикаты, их объем меняется. Ведь что такое превращение силицидов в силикаты? Это просто окисление. То есть добавление кислорода. Силикаты отличаются от силицидов тем, что содержат дополнительно 45 % кислорода; при этом физическая плотность силицидов и силикатов практически одинакова. Значит, при образовании силикатов из силицидов объем увеличивается на 45 %. Отсюда внезапные выпирания земной коры над очагами реакции.
…Ни один из известных геологии рудообразующих процессов не объясняет, откуда в срединных частях океанов взялись огромные, просто неисчислимые запасы металлов. Эти запасы в тысячи раз превышают объемы всех известных месторождений на континентах.
Вообще-то первые находки глубоководных рудных конкреций были сделаны еще в конце XIX века. Но тогда геологи даже не представляли себе, с чем они столкнутся всего через полвека, когда в океанах будут найдены просто циклопические запасы металлов! Показательна находка в Красном море, где в 1960-х годах открыли впадины, целиком заполненные горячими рудными илами. В самой большой из них придонный слой «жидкой руды» имеет мощность 200 метров. И если его выкачать и высушить, получится сухой рудный концентрат, который содержит 45 % железа, 25 % марганца, 10 % цинка, 6 % свинца, 3 % меди, а также 300 г серебра и 5 граммов золота на тонну концентрата.
Традиционная теория ломает голову над объяснением этого феномена, а из металлогидридной теории он прямо вытекает – весь этот металл является просто «лишним» материалом, который вынесло на поверхность в процессе расширения планеты и строительства нового океанского дна (в процессе преобразования силицидов в силикаты).
…Тектоника плит, которая, как мы знаем, основана на том, что ядро у Земли железное, а мантия силикатная, затрудняется объяснить, почему вдруг наша планета иногда активно газит чистым водородом. Известно, например, такое явление, как «Large flame» (большое пламя). Явление это происходит на Гавайских островах и заключается вот в чем: во время активизации вулкана, когда из кратера начинает изливаться лава, над жерлом вспыхивает огромный огненный факел высотой почти в половину Останкинской башни. Это горит водород. Пламя может держаться несколько суток.
Никаких залежей водорода в парадигме «железной Земли» нет и быть не может. Поэтому все подобные факты ортодоксальная Тектоника плит просто не рассматривает. Она отворачивается от них, как дама от дохлой крысы. Но, надо признать, эти факты не особо и спешат попасть в руки официальной науке. Во-первых, потому что водород никто специально не ищет, ибо зачем искать то, чего быть не может?.. А во-вторых, водород – крайне легкий газ без цвета, вкуса и запаха, и потому его выходы на поверхность довольно трудно обнаружить. Чаще всего это получается, когда не увидеть выход газа просто невозможно: в самом деле, трудно не заметить столб пламени высотой в 200 метров!.. А порой водородная дегазация обнаруживается чисто случайно. Так было, например, на Кавказе. Однажды сейсмологам повезло – они прибыли к эпицентру землетрясения, когда еще не успела осесть пыль. У одного из ученых была с собой бутылка с водой, он быстро отвинтил пробку, вылил воду, и бутылка заполнилась пыльным воздухом. Газовая проба таким образом была взята. Последующий анализ показал, что концентрация водорода в пробе на порядки отличается от фоновой. А приди сейсмологи на место происшествия чуть позже, весь водород уже улетучился бы.
Или вот какой замечательный случай. В середине прошлого века в Якутии бурили кимберлитовую трубку «Удачная». И когда бур дошел до глубины 375 метров, раздался страшный, леденящий душу потусторонний вой, и из глубины Земли через пробуренную дырку вдруг вылетело. страшное зубастое существо с двумя перепончатыми крыльями. Шучу, шучу!.. С глубины 375 метров в небо ударил фонтан газа. Ничего странного в этом не было бы – газ из русской земли давно добывают и успешно продают в земли нерусские, – но анализ показал, что метана там – кот наплакал, а в основном в небо бьет чистый водород.
Проскочившая искра зажгла водород и спалила буровую начисто. Каждую секунду скважина извергала 600 литров водорода и не собиралась выдыхаться. Факел пылал две недели, и потушить его удалось только взрывом. Скважину затампонировали. Официальная наука не обратила на этот выдающийся факт никакого внимания. Потому что факт никоим образом не укладывался в генеральную линию.
…Помимо прочих, есть в традиционной (не металлогидридной) геологии два странных момента, которые, в силу их полнейшей необъяснимости, даже получили собственные названия.
Первый из них называется геобарическим парадоксом. И состоит он вот в чем.
Самые древние породы Земли, которые мы знаем, имеют архейский возраст, им более трех миллиардов лет. Они достаточно широко представлены на древних континентальных платформах. По составу минералов было установлено, что они образовались при давлении 8-10 тысяч атмосфер в диапазоне температур от 650 до 800 градусов Цельсия.
Если верна Тектоника плит и Земля от рождения имеет тот же диаметр, что и сегодня, значит, эти породы сформировались на глубине 30–35 км – именно там давление достигает нужных величин. И тогда возникает резонный вопрос: а куда же подевались те самые 30–35 км пород, которые должны лежать сверху на этих самых докембрийских платформах? Их нигде нет! И это одна из самых больших загадок для традиционной геологии.
Второй темный момент называется геотермическим парадоксом. Если докембрийские породы сформировались на глубине 30–35 км при температуре 650–800 °C, значит, перепад температур в то время составлял 22 градуса на один километр глубины. Сейчас эта цифра гораздо больше. А должна быть меньше, потому что генерация тепла с той поры в недрах планеты уменьшилась из-за расходования «нагревателя» – радиоактивных элементов, которые поистратились в результате распада. Парадокс: «дров» стало меньше, а тепла больше!
Обе эти загадки не являются таковыми в рамках металлогидридной теории. Поскольку сила тяжести в архейскую эру была в 3,5 раза выше нынешней, потребная глубина формирования пород сразу значительно уменьшается. Не нужно уже искать, куда подевались лишние десятки километров. Да и с термическим перепадом ситуация становится совершенно ясной: если 650–800 °C мы имели на меньших глубинах, значит температурный перепад был тогда выше сегодняшнего. Как и следует по логике вещей!
…Ну и еще пару коротких оплеух для пущего веселья. У традиционной геологии довольно натянутые отношения с физикой в том смысле, что модельные эксперименты не очень здорово объясняют наличие у Земли магнитного поля. Хотя, видит бог, ребята сильно стараются! Заливают в шаровую модель, имитирующую Землю, жидкий натрий, имитирующий жидкое ядро планеты, крутят, вертят, и все вроде бы получается, как в натуре – и электропроводность в жидкости, и конвекция, и даже магнитное поле включается, но при этом оно совсем не такое, как у Земли! У Земли два магнитных полюса, а тут всяко больше вылезает. Может, чего в физике подправить?..
Да к тому же магнитные полюса Земли периодически меняются местами. Один из основоположников геомагнетизма, японский ученый Цунеджи Рикитаке, долго бившийся с проблемами магнитного поля Земли, однажды сказал, что мог бы легко объяснить переполюсовку, если бы ядро внутри Земли проворачивалось относительно мантии то в одном, то в другом направлении. Но именно так оно и должно себя вести по металлогидридной теории (чем это вызвано, разбирать не будем, чтобы не писать лишнего тома).
Еще один теоретический вывод из гидридной модели: в спектре структур магнитного поля Земли должны быть региональные аномалии размером менее 3000 км. А вот если верна Тектоника плит, такие аномалии должны отсутствовать. И что же вы думаете? Измерения показали, что в вертикальной составляющей магнитного поля Земли таки есть выраженные аномалии с размерами порядка 1500–2500 км!
Бурные аплодисменты…
Раунд второй
…По металлогидридной теории получается, что те громадные клинья насыщенных водородом металлов, которые поднимаются к поверхности планеты по зонам рифтогенеза, должны быть относительно холодными, потому что при подъеме они разуплотняются. А разуплотнение (в условиях высокого всестороннего давления) – процесс энергоемкий и может «сожрать» весь запас тепла, которое накоплено в глубинах планеты. Это с одной стороны. С другой, зоны рифтогенеза всем известны своим термальным теплом, которое производится экзотермическими реакциями между легкими металлами (типа магния) и водой. Эта поверхностная температурная активность совершенно маскирует глубинную холодность металлических языков. А можно ли как-то замерить их температуру, чтобы убедиться: да, холодные!
Это можно попробовать сделать в Байкальской зоне рифтогенеза, потому что там слой вечной мерзлоты толщиной от 400 метров до километра. Зачем нам мерзлота? А затем, что жидкая вода не может проникать сквозь мерзлоту и, значит, не может вступать в земной коре в реакцию с подступающими интерметаллидами и маскировать своим теплом их холод. А раз так, в Байкальской зоне рифтогенеза фоновый тепловой поток должен быть ниже, чем в других местах.
Это очень неожиданный и рискованный прогноз! И если замер его подтвердит, это нанесет еще один серьезный удар по Тектонике плит, поскольку, с ее точки зрения, в Байкальской зоне как раз наоборот должны наблюдаться повышенные температуры.
Прогноз об аномально низкой тепловой активности Байкальской зоны был опубликован Лариным в 1992 году и оставался экзотической геологической шуткой до тех пор, пока в 2002 году в Иркутском институте Земной коры не была защищена диссертация некоего В. А. Голубева, который провел исследования теплового потока в районе
Байкала и выяснил следующее. Фоновое значение теплового потока в Забайкалье составляет 60–65 мВт/м2. А в зоне рифтогенеза – 46 мВт/м2. То есть в полтора раза меньше, как и предсказывала металлогидридная теория! Меньше, а не больше, как должно было быть по Тектонике плит.
…Геологами давно отмечен следующий интересный факт. Многочисленные замеры показывают, что на глубине примерно 1 километр скальные массивы горных пород испытывают очень сильное горизонтальное сжатие. Порой оно достигает 1000 атмосфер. Подчеркиваю, речь идет именно о горизонтальном сжатии пород, которое порой может даже превышать вертикальное давление, обусловленное гравитацией. Откуда же оно берется? Ведь если Земля растет, значит, ее поверхность увеличивается, то есть растягивается. А если она растягивается, откуда же горизонтальное сжатие?
Вспомните, что мы говорили о разгибании земной коры. Жесткие литосферные плиты при расширении Земли не столько растягиваются, сколько теряют кривизну (рост земной поверхности идет за счет наращивания океанского дна, а не за счет растяжения континентальных плит, поскольку плиты суть жесткая, сухая корка).
Рис. 21. Распределение напряжений в разгибаемой плите. Стрелками показано горизонтальное давление
Чтобы вы не листали книгу в поисках рисунка с разгибанием слоистой плиты, приведу его еще раз, но чуть видоизмененным. На увеличенном квадратике видно, какие напряжения действуют в разгибаемой балке.
Как видите, максимальное напряжение сжатия должно быть на самой поверхности планеты. Но поверхность планеты достаточно пористая и, как говорят геологи, трещиноватая. Здесь энергия сжатия расходуется на закрывание дефектов. Именно поэтому максимальное горизонтальное давление наблюдается не на самой поверхности, а на глубине до километра – там, где трещины и поры уже закрыты вертикальным давлением горных массивов.
Отсюда вытекает еще одно рискованное предположение. Если расширение планеты имеет место быть, значит, на глубинах свыше километра горизонтальное давление должно постепенно начать снижаться, дойти до нуля, а затем смениться горизонтальным растяжением. Этот эффект еще не открыт, но будет открыт, поскольку все рискованные предположения металлогидридной теории сбываются, в отличие от теории Тектоники плит. Впрочем, Тектоника однажды тоже сделала рискованное предсказание…
Вспомните про зоны субдукции, рекламируемые Тектоникой. Ну, это те зоны на планете, где якобы происходит поддвиг новой, молодой движущейся океанской коры под старую континентальную кору. В зонах субдукции океанские плиты якобы подныривают под плиты материковые и уходят дальше в Землю на переплавку. Чтобы потом, обернувшись по конвекционной ячейке, снова подняться наверх в районе рифтовой трещины, растечься в разные стороны, затвердеть и плыть дальше – очередная порция глубинного вещества подталкивает.
Это долгий, миллионнолетний процесс, рассказывает нам Тектоника плит. За время медленного конвейерного проползания от рифта к зоне субдукции океанское дно накапливает массу осадков. И когда океанская плита наконец подныривает под континентальную и начинает тереться об нее, то континентальная плита, словно нож бульдозера, должна сгребать с океанской плиты осадочные породы, которые будут собираться на дне океана в огромные горы «мусора». Так вот, эти горы мусора отправились искать и не нашли.
Рискованное предсказание Тектоники плит не сбылось.
Когда-то Эйнштейн заявил, что если его теория искривления пространства верна, луч от далекой звезды, проходящий около Солнца, должен искривиться. Эксперимент был проделан, и искривление луча обнаружено. Теория подтвердилась!.. А теперь представьте, что никакого искривления не нашли. Это могло означать только одно: теория Эйнштейна не работает. То есть она неверна.
Одного подтвержденного эксперимента хватило, чтобы вознести теорию относительности на пьедестал почета. И одного провала было бы достаточно для ее ниспровержения. Что же произошло после позорного провала предсказания, сделанного Тектоникой плит? Ровным счетом ничего. «Им плюнь в глаза, все равно скажут, что божья роса», – так в подобных случаях говорила моя бабушка…
Не знаю, как обошлись тектонисты с этим проколом. Наверное, поставили очередную заплатку на свой насквозь дырявый и свистящий изо всех щелей надувной теоретический матрац.
…Иногда мне кажется, что Тектоника плит – это религия, которая догматически отрицает практически очевидное ради мертвенных сакральных схем. Если верующий просит своего бога что-нибудь сделать, а тот не делает (как обычно и бывает), верующий всегда найдет для своего бога оправдание. Так поступает и Тектоника плит. Как только ее предсказания не сбываются, она срочно начинает искать оправдания.
Когда в середине прошлого века изобрели процесс ударного сжатия металлов и получили кривую сжимаемости железа при больших давлениях, оказалось, что, если бы ядро Земли было железным, оно было бы гораздо плотнее ныне существующего. Уже одно только это могло опрокинуть, убить Тектонику плит. Но не убило. Потому что настоящую веру не убьешь!
Наука не спешит отказываться от плохих теорий, если их нечем заменить. А до последнего времени, то есть до изобретения металлогидридной теории Земли, заменить Тектонику плит было действительно нечем. Но и сейчас теория раздувающейся Земли тоже не слишком быстро завоевывает умы, поскольку в смене научных парадигм роль играют не только чисто научные, но и психологические причины. Должна пройти смена поколений ученых. Так было с теорией относительности, которую долго не хотели признавать «старики» (даже в конце ХХ века были серьезные люди, старательно опровергавшие Эйнштейна – такие как, например, дедушка Логунов, экс-ректор МГУ)… Так было с квантовой механикой, которую всей душой невзлюбил Эйнштейн. Так было с теорией Большого взрыва, которую старик Хойл так и не признал до самой смерти.
Так будет и с металлогидридной теорией. Тектоника плит, хоть и подыхает на нашем ринге, но – гляди-ка! – все еще не сдается.
Раунд третий
…Если взять официальную карту дна мирового океана и посмотреть, скажем, на Срединно-Атлантический хребет, можно увидеть, что он напоминает скелет рыбы. Позвоночник – это сам длинный хребет, а от него в стороны расходятся тонкие косточки поперечных трещин с постепенным утонением к концам «косточек». Эти трещины зияют, то есть являются достаточно широкими. Они и должны быть зияющими, если планета раздувается, ведь тогда увеличивается общая длина Атлантического хребта. Хребет, естественно, поперечно трескается во многих местах, и потом эти трещинки растут вместе с планетой, и ширина их увеличивается.
А если планета не расширяется и справедлива Тектоника плит, то трещины зиять не должны. Они должны быть плотными сдвигами! Потому что общая длина тех мест на планете, откуда выделяется жидкая порода, гораздо меньше общей длины океанических впадин, куда потом в затвердевшем виде океаническая плита якобы плотно вдвигается с большим трением и ужасным сопротивлением. Это понятно: раз мест входа меньше, чем мест выхода, а пропихнуть нужно то же количество, значит, вход осуществляется с большим сопротивлением. Которое должно просто закрыть, зажать все трещины в движущейся породе. Но ведь ничего подобного не происходит, трещины не просто зияют, а вопиют!
Далее… Если Земля не раздувается и справедлива Тектоника плит, значит, поперечные трещины Срединно-Атлантического хребта должны быть именно такими, как их рисуют на официальных, прошедших «тектоническую цензуру» картах океанского дна – с самым широким местом у вершины горной гряды и утонением по склону. Как рыбьи ребра. Плюс к тому должны существовать только парные ребра. простите, трещины. То есть трещины, сбегающие вниз от оси Срединно-Атлантического рифта по обоим его склонам. Односторонних трещин быть не может в принципе!
Записали…
Но если планета увеличивается в размерах и теория тектоники плит врет, тогда трещины должны иметь диаметрально противоположный характер! В этом случае могут быть односторонние трещины, тянущиеся только по одному склону (см. рис 22, в)!
Рис. 22. Типы поперечных трещин, образующихся при расширении Земли
Плюс к тому трещины должны быть не утончающиеся к краям, а утолщающиеся! То есть не тем тоньше, чем дальше по склону, а тем толще – не как пика, а как веер (см. рис. 22). Объяснение простое: треснуло когда-то давным-давно, и по мере расширения планеты трещина все растет и растет. И чем дальше она оказывается от рифта, то есть чем она старее, тем большее «зияние» в ней накоплено. Учитывая скорость роста планеты, можно рассчитать, что за 10 миллионов лет трещина удлинится (убежит от оси хребта) на 100 км, и при этом ее ширина на конце разрастется до 2 км. А через 50 миллионов лет трещина удлинится до 500 км, а ее ширина на конце вырастет до 10 км.
Записали…
Небольшое напоминание для читателей: Срединно-Атлантический хребет отличается от континентальных горных цепей тем, что он «параллельно-двойной». И рифтовая долина – это провал, «ущелье» между двумя параллельно тянущимися грядами Срединно-Атлантического хребта. То есть, собственно говоря, рифтовая долина и есть та самая трещина, истекающая лавой, по которой когда-то лопнула земная кора и от которой теперь идет нарастание молодой коры океанического дна. Чтобы вы лучше представляли себе картину, можно привести пару цифр: ширина горной цепи Срединно-Атлантического хребта от конца восточного склона до конца западного достигает примерно 1000 км, а рифтовая долина – всего 40 км. Самая настоящая трещина, иначе такое образование и назвать-то трудно…
Все эти еретические размышления о трещинах наш давний знакомец Ларин привел на докладе в Геологическом институте Академии наук. Его вежливо послушали и покривили в ухмылке рты. Дико как-то выглядели эти трещины… Опять этот чудаковатый Ларин со своими чудаковатыми теориями, которые напрочь отвергают всю геологию и проповедуют какое-то мракобесие! Ну его…
Но надо ж было такому случиться, что в зале в тот момент сидел Глеб Борисович Удинцев – известный исследователь геоморфологии океана. Который через несколько дней должен был уйти со своей исследовательской группой в Атлантику. Он выслушал доклад Ларина с интересом, без экзальтации и возмущения: ведь Удинцев был географом, и геологические ереси его ни возмутить, ни разволновать сердечно не могли. Геологи спорят и ругаются – пускай спорят, а его географическое дело – посмотреть, кто окажется прав.
И тут я вновь не могу удержаться, чтобы не сказать пару слов об Удинцеве. Этот замечательный человек вполне мог не родиться на свет в далеком 1923 году, потому что его родители дважды были арестованы большевиками еще во время Гражданской, дважды приговаривались к расстрелу и лишь чудом избежали его. Отец будущего члена-корреспондента Академии наук, лауреата Госпремии СССР и доктора географических наук Глеба Удинцева был поповичем, а мать географа происходила из рода уральских золотоискателей. Поэтому неудивительно, что молодые супруги оказались среди отступающих с армией Колчака. Волна эвакуации донесла их до Иркутска, после чего Борис и Катя решили все-таки возвращаться в Москву. На этом долгом пути они и были несколько раз арестованы как белогвардейские прихвостни. На лбу у них про то, что они «прихвостни», конечно, написано не было, но интеллигентные рожи выдавали подонков с головой.
Чудо, дважды спасшее их от расстрела, привело молодых супругов в Москву, где в 1923 году у них и родился сын Глеб – будущее светило отечественной географической науки. Светило жило и росло в очень стрёмной атмосфере: в доме родителей часто собиралась интеллигенция, а это никогда до добра не доводит. И действительно, в их гостиной постоянно звучали стихи Волошина, Пушкина и Лермонтова, звенели романсы и не стихали разговоры о судьбах России. Короче, люди явно нарывались на пулю.
И опять почти нарвались…
Отца арестовали в марте 1931 года. Считай, жутко повезло: времена были еще мягкие, вегетарианские, до 1937 года еще целая эпоха, поэтому отделался интеллигент жалкими пятью годами ссылки в городе Тюмени. А сын его ссылке, думаю, не сильно-то и огорчился. Парня с детства тянуло в незнакомые края, лес он всегда любил, часто пропадал в лесном массиве Тимирязевской академии, где, валяясь под соснами, зачитывался приключениями Робинзона Крузо, романами Джека Лондона, Жюля Верна, дневниками Миклухо-Маклая, Амундсена. в общем, всей той литературой, которая формирует из человека будущего географа.
«Шум вековых сосен, – писал позже Удинцев, – завораживал мое воображение, в шорохах леса угадывались крадущиеся шаги неведомых зверей, и глаза искали следы их на лесных тропинках. Самой интересной целью жизни стали казаться морские путешествия и открытия в морях и океанах».
В 1936 году отсидевший отец вернулся в Москву, где ему снова повезло – волна арестов не накрыла семью. И это позволило сыну в 1940 году поступить на геофак МГУ. Судьба выкладывала свои петли так, чтобы в итоге сделать из Удинцева географа и через много-много лет привести его в ту аудиторию, где мы с ним впервые встретились – на докладе Ларина. Впрочем, до этого еще далеко, а пока студент второго курса Глеб Удинцев пишет заявление в военкомат и уходит добровольцем на войну.
Парень был головастый, студент, а из таких Родина предпочитала делать офицеров. И потому направила его в летное училище, откуда Удинцев попал на фронт – в бомбардировочную авиацию.
Один из налетов на Германию запомнился ему на всю жизнь. Потому что вполне мог стать последним – так во всяком случае полагал сам Удинцев, не знавший, что судьба уже приметила его – еще до рождения – и целенаправленно ведет в ту самую аудиторию…
Удинцев был человеком литературно одаренным (как и Хойл, как и Шкловский) и позже писал в своих военных очерках о том налете: «Мы прошли над Данцигским заливом благополучно, и вот уже впереди показался Хель – грозная крепость с мощной зенитной артиллерией. Облачка зенитных разрывов встали перед нами плотным заграждением, и надо было пробиваться через этот небесный частокол. Юра вел машину уверенно, бросая самолет из стороны в сторону. Вот батареи Хеля уже у меня на прицеле. но тут ударило волной зенитного разрыва. Забарабанили по плоскостям осколки, и швырнуло машину в крутой крен. Цель сорвалась с расчетного угла, и было ясно – в нее не попадут наши бомбы. Юра кричит мне: „Бросай! Чего ждешь?“ А я в ответ: „Бросать в море не буду! Повторяй заход на цель!“ – „Дурак, ты что, не видишь, как зенитки нас взяли! Сейчас собьют!“ – „Бросать в море не буду, повторяй заход!“ Чертыхнулся Юрка. разворачивает машину под градом осколков. ложится на боевой курс. Ошалев от боевого азарта, держу цель снова на перекрестии прицела. Вот и щелчок прицельного угла сброса; жму кнопку сброса и с восторгом кричу: „Сброс!“»
Короче, повеселился…
Этот восторженный сброс обошелся дорого: погибли стрелок и радист, самолет лишился одного двигателя и вообще представлял собой решето. А на Удинцеве – ни царапинки. Позже за эту бомбардировку ему дали орден Отечественной войны I степени.
В 1945 году война отпустила Удинцева из своих железных рук в науку – так же, как когда-то она отпустила Вегенера. Нет, вру. Не сразу отпустила!..
Несмотря на ордена, восстановиться после войны на геофаке Удинцеву сразу не удалось. Армия не хотела разжимать свои клешни. Только через год – благодаря хлопотам и протекции самого Папанина и одного профессора с геофака, увидевшего в парне божью искру, маршал авиации Голованов дал согласие на увольнение боевого офицера.
…Всю жизнь Удинцев занимался изучением морского дна. Этому были посвящены его дипломная работа, кандидатская и докторская диссертации. И так же как Шкловский успел к самому расцвету астрономии, так Удинцев вовремя подоспел к эпохе великих географических открытий на океанском дне, которое до середины ХХ века оставалось почти сплошным белым пятном на карте мира. (Карта дна Тихого океана впервые была составлена только в 1963 году.) Именно Удинцевым и его командой были впервые промерены глубины многих океанских желобов, в том числе знаменитой Марианской впадины. И одним из множества замечательных открытий Удинцева было то, ради которого я и начал этот рассказ.
…Прошло три месяца после скандального доклада Ларина, на котором он потешил все научное геологическое сообщество бредовыми рассуждениями о том, какие, по его мнению, трещины должны быть на Срединно-Атлантическом рифте. Совсем не такие, как надо! Чудачок.
И вот в том же самом зале, на ту же самую кафедру поднялся Удинцев и перед той же самой аудиторией рассказал, какие удивительные и неожиданные открытия он и его команда сделали, изучая дно Атлантики.
– Вы, быть может, не поверите, товарищи, но там есть односторонние трещины! И ширина трещин увеличивается с удалением от рифта, а не уменьшается!
Аудитория была поражена столь сенсационными открытиями:
– Чем же вы, Глеб Борисович, объясняете этот феномен?
Тут настал черед удивляться Удинцеву. Географ пожал плечами:
– А чего вы меня спрашиваете? Вот сидит Ларин, который три месяца назад дал такой прогноз. У него и спрашивайте.
В аудитории воцарилось тягостное недоброжелательное молчание. «На ремни порезать гада!» – читалось в этой гробовой тишине, что отчасти наверняка адресовалось и Удинцеву, который вот так вот, походя, предал Тектонику плит, даже не удосужившись придумать хоть какое-то объяснение! Ну да он географ, ладно, чего с него взять. А вот Ларин – сволочь преизрядная.
После минуты тяжкого молчания «главный знаток океанов», академик Пущеровский Юрий Михайлович, покраснел, как бурак, и, не в силах вынести поругание святыни, встал, сверкнул на Ларина глазами и молча вышел из аудитории. После чего полгода Ларину руки не подавал. Очень принципиальный человек! Про этого ученого я, пожалуй, ничего не буду вам рассказывать.
Не знаю, наверняка сторонники Тектоники плит уже поставили заплатку – нашли какое-нибудь объяснение, почему трещины на Атлантическом дне оказались совершенно не такими, какими должны были быть по их теории.
Но, согласитесь, одно дело сделать рискованное предсказание и «попасть точно в цвет», а другое – получить результат, прямо противоречащий твоей теории, и задним числом выдумать ему какое-то объяснение.
Теории относительности Эйнштейна (помните?) для признания хватило одного неожиданного и триумфально сбывшегося предсказания. Теории металлогидридной Земли Ларина не хватило для признания десятка блистательно сбывшихся прогнозов. Наверное, потому, что геологи есть геологи, и им трудно понять астрономические выкладки про ионизацию элементов в небуле и физику металлогидридных соединений. А на слово они не верят: ученые как-никак, неудобно.
Но насколько все-таки ловко Ларин через океанские толщи провидел то, что через три месяца найдет на дне экспедиция Удинцева. Как в воду глядел!
Кстати, о воде. Чуть позже тот же Ларин ляпнул, что в рифтовой зоне Срединно-Атлантического хребта, а точнее говоря, в районе черных курильщиков (так называются подводные гейзеры, извергающие перегретую воду под большим давлением) должны в изобилии плавать силициды. Если, конечно, верна его теория. (Надо ли говорить, что Тектоника плит это активно отрицала?)
Предсказание это было сделано давно, лет десять тому назад. И вот в 2002 году два сотрудника из петербургского Института океанологии, некие Погребицкий и Трухалев, публикуют статью со скучным названием «Проблема формирования Срединно-Атлантического хребта в связи с составом и возрастом пород его метаморфического комплекса». И в этой статье пишут буквально следующее:
«Конкретным подтверждением справедливости построений В. Н. Ларина можно считать и находки частиц (0,2–1 мм) разнообразных металлокремниевых силицидов (Mg-Al-Si, Si-Fe, Cu-Zn-Si и др.) в пробах воды из придонного слоя, отобранных в рифтовой долине в районе гидротермального поля ТАГ (26° с. ш.)».
…Беспристрастный судья давно бы присудил металлогидридной теории победу техническим нокаутом и развел дерущихся, но теория расширения планеты, я вижу, даже не собирается останавливаться, и все норовить еще несколько раз пнуть почти бездыханное тело Тектоники плит. Какая жестокость! Остановите это, остановите!
Ортодоксальная геология категорически отрицала, что в траппах может присутствовать самородный алюминий. И когда Ларин в очередной раз сделал очередное безумное предсказание на этот счет, его в очередной раз подняли на смех. Потому что самородного алюминия в траппах не бы-ва-ет! Просто потому, что его там теоретически не может быть, если справедлива ортодоксальная теория. А всем в науке известно, что она справедлива, поскольку официально коронована на царство. Сидящий на троне не может ошибаться! Посему именем святого великомученика Вегенера проклинаем Ларина!..
Но Ларин, как и Дарвин, отличается одним удивительным свойством – он всегда оказывается прав.
Свое очередное сенсационное для геологов и рискованное предсказание он сделал в семидесятых годах. Тогда самородный алюминий в траппах открыт еще не был. Кстати, его открыватели (Олейников, Округин, Лескова) изрядно натерпелись в свое время. Им не хотели верить, их жестоко «чморили», не хотели публиковать. Дело дошло даже до того, что авторы открытия возили с собой кувалду и куски базальта, чтобы всякий сомневающийся сам мог расколоть кусок и лично убедиться: никакого мошенничества нет. А есть, напротив, малюсенькие кусочки чистого алюминия внутри цельной породы.
Но откуда? Его же там быть не может!!!
А он, тварь такая, есть.
До чего же обидно…
Но самое обидное началось, когда металлогидридная теория начала получать подтверждения оттуда, откуда никогда не получали подтверждения науки о внутреннем строении Земли, – с Марса. Согласно металлогидридной теории, которая, как вы помните, основывается на факте магнитной сепарации элементов в протосолнечной туманности, на Марсе должно быть много серы. Людям, которые ничего о магнитной сепарации не знают, это совершенно не очевидно. И потому ларинские предсказания о сере на Марсе тоже можно отнести к рискованным предсказаниям, которые сбылись: в самом начале XXI века по миру пронеслась сенсация – на Марсе обнаружено «аномально» высокое содержание серы.
Давайте теперь с устатку присядем на труп Тектоники плит и, по-крестьянски хитро щурясь, как всегда иронично произнесем:
– Вишь ты, лишняя сера… А ить кто бы мог подумать!
Глава 3. Жизнь после смерти
В одной из своих бессмертных книг я уже вкратце описывал, как устроены внутренние планеты Солнечной системы. Повторяться не буду.
А вот расширять знания читателей – буду! Потому что лишних знаний не бывает, а не воспользоваться новой космогонической теорией (каковой, по сути, является теория металлогидридная), чтобы рассказать о ближайших соседях нашей планеты, – просто грех. Это все равно, что быть у ручья и не напиться. Имея такой инструмент, который равно отлично описывает не только Землю, но и другие планеты Солнечной системы, глупо не взять его в руки для добрых дел!
Все молодые планеты похожи друг на друга, каждая мертвая планета мертва по-своему.
Жизнь планеты, ее эволюция связана с дегазацией водорода из металлогидридного ядра. Запас водорода в недрах планеты – это запас ее жизненных сил. Кончаются силы – планета умирает. Выдыхается, как бутылка шампанского. Хотите посмотреть на мертвую планету – гляньте на Марс. Или на Луну. Мы с вами пока еще обитаем на живой планете. Но уже умирающей.
В чем проявляется жизнь планеты? В тектонической деятельности. Землетрясения, горообразование, гейзеры, вулканы, магнитное поле, появление воды – все это признаки жизни. Спокойствие, тишина, отсутствие магнитного поля, потеря атмосферы и гидросферы – признаки смерти. Среди наших ближайших соседей мы можем пронаблюдать все это. Медики констатируют смерть человека по смерти мозга, а смерть планеты можно зафиксировать по отключению магнитного поля. (Если оно до этого было, конечно! Само по себе отсутствие магнитного поля не всегда является признаком мертвенности небесного тела. Дело в том, что работа магнитного поля зависит не только от запасов водорода в недрах планеты, но и от скорости ее вращения. Скажем, у вполне еще живой Венеры магнитного поля нет именно в силу медленности вращения: динамо-машина внутри планеты просто не смогла запуститься.)
Давайте подробнее присмотримся к нашим ближайшим соседям по солнечной коммуналке. Пойдем по мере удаления от Солнца: Меркурий – Венера – Луна – Марс – пояс астероидов.
Меркурий – крохотулька. Его масса составляет всего 5 % от массы Земли. И, в общем, описание этого клопа можно было бы пропустить, но сие было бы несправедливо. В конце концов, не так уж много у Земли металлических родственников – не считать же таковыми огромные газовые пузыри на окраине.
Меркурий во время «раздачи пирогов» – когда магнитная сепарация распределяла пайки химических элементов – получил самую маленькую порцию кислорода. Соответственно, практически нечем было окислять металлический шарик этой планеты. Поэтому у планетки очень тонкий слой силикатно-окисной оболочки. Настолько тонкий, что практически не создает термоизоляции. Нет термоизоляции – нет накопления температуры внутри планеты. И, значит, температура не достигает уровня распада гидридов. Гидриды практически не распадаются, водород практически не выделяется. Эволюция планеты замедленная.
Воды на Меркурии тоже нет: откуда возьмется вода в отсутствие кислорода? Даже тот мизер кислорода, что достался Меркурию, из-за слабой водородной продувки почти не выносится к поверхности, оставаясь распределенным по всему объему планеты.
Атмосферы наш малышок также лишен, поскольку близость Солнца приводит к интенсивному обдуву планеты солнечным ветром. Сдувает!..
Из этого описания совершенно ясно, что делать нам на Меркурии нечего и в его колонизации нет никакой необходимости.
Венера – почти копия Земли. Она лишь чуть-чуть меньше нашей планеты. Масса Венеры составляет 80 % массы Земли. Но у Венеры есть одна беда – низкая скорость вращения. Если Земля делает один оборот вокруг своей оси за 24 часа, то Венера – за 5837 часов. То есть день на Венере длится больше ее года, который составляет 5393 часов. Но это еще не все особенности нашей соседки.
Про отсутствие магнитного поля мы уже говорили, теперь нужно сказать пару слов о других «болезнях» планеты. Все венерические болезни обусловлены тем, что Венера находится ближе к Солнцу, чем Земля. По этой причине ей досталось меньше кислорода, чем нам, хотя и чуть больше, чем Меркурию. На литосферу кислорода Венере хватило. А вот на гидросферу не осталось. И сразу посыпались проблемы, связанные с недостатком «обмена веществ»: дело в том, что углекислый газ выпадает из атмосферы именно в воду, оседая в виде карбонатов. Чем больше воды на планете, чем меньше углекислого газа в ее атмосфере. На Венере углекислого газа страсть сколько! Поэтому парниковый эффект прогрел атмосферу настолько, что погоды на этой планете стоят изумительно жаркие: до +500 °C в тени.
Расширяется ли Венера? Расширение планеты, как мы уже выучили, связано с разуплотнением гидридов во время их распада. А уплотняются гидриды тем больше, чем больше давление внутри планеты. А давление зависит от массы планеты. Чем больше планета, тем больше она расширится. Поэтому Венера, которая имеет схожую с земной массу, тоже претерпевает расширение.
Тогда почему Венера гладкая, ведь расширение сопровождается горообразованием, появлением впадин?.. Между тем Венера – пример лысенькой планеты, рельеф которой в целом уступает земному. В основном, поверхность Венеры представляет собой монотонную холмистую равнину, которая занимает 65 % площади; 27 % поверхности занимают низменности и всего 8 % – горы.
Низменности, надо полагать, это «заготовки» для океанов, которые так и не заполнились водой в силу отсутствия последней. А горы. Самая крупная гора Венеры – вулкан в горном массиве Максвелл. Эта фудзиямища возвышается над поверхностью планеты на 14 километров. Напомню, что на Земле самая высокая гора – Эверест, всего 9 километров.
Также на Венере есть высокогорные плато, напоминающие столы, и есть впадины, напоминающие разломы. Назовем эти образования горстами и грабенами и забудем про них. Ответим лучше на вопрос, почему в среднем Венера более гладкая, чем Земля. Видимо, это происходит из-за температуры. Все-таки 500 градусов есть 500 градусов. При таких нагревах литосфера более пластична и потому меньше склонна к растрескиванию, образованию рельефа и больше склонна к растягиванию.
У Венеры есть и еще одна странность, на которую впервые обратил внимание немецкий ученый Александр Гумбольдт. Другой бы не обратил, а этот Гумбольдт был чертовски внимательный парень. Везде успевал, как Эратосфен. Он и географ, и биолог, и физик, и геолог, и климатолог. А неугомонный какой был, просто жуть! С детства у него шило в заднице торчало. Родившись в конце осьмнадцатого века в Нижней Померании, к концу жизни Александр успел объездить почти весь мир, стать почетным членом Петербургской академии наук, написать кучу книг, встретиться с Наполеоном. Кстати, Наполеон, которому Гумбольдта представили как ботаника, явно недооценил ученого и его науку. Пожав руку исследователю, Бонапарт произнес: «Мне сказали, вы занимаетесь ботаникой. Моя жена занимается ею тоже.»
Так вот, этот самый неугомонный Гумбольдт однажды обратил внимание на то, что древние люди писали меньше стихов о Луне, чем о Венере, да и описывали последнюю как-то странно – как будто в древности она выглядела по-другому. Если верить древним, когда-то Венера светила «как Солнце» и была «с хвостом». Такой эффект могла создать водородная корона, сдуваемая солнечным ветром. А когда на Венере завершился очередной этап водородной дегазации (мы помним, что расширения планеты проходят циклами, повторяя циклы распада гидридов), видимая глазом корона исчезла. И теперь ее нет. (А вот невидимая корона у Венеры присутствует. В конце 1970-х годов американский зонд «Pioneer Venus Orbiter» открыл у Венеры плазменный «хвост» из высокотемпературных ионов. У Венеры нет защищающего магнитного поля, вот ей и «треплет прическу».)
Луна – наша самая близкая родственница. Она сложена из того же набора материалов, что и Земля (если не лень, см. рис. 4). Просто один в один! Но Луна маленькая, даже меньше, чем Меркурий. Масса Луны составляет чуть больше 1 % массы Земли. И этим все сказано. Во-первых, Луна быстро исчерпала все запасы своего «тектонического топлива» – водорода. А во-вторых, ее ничтожная гравитация была просто не в силах удержать атмосферу даже тогда, когда у Луны было свое магнитное поле.
Эволюция Луны – пародия на земную, смешные потуги карлика поднять такую же штангу, какую поднимает большой человек. На Луне тоже когда-то начался процесс дегазации водорода. Наличный кислород, как положено, вынесло из объема к поверхности, образовалась окисленная кора.
Толщина окисной лунной коры примерно 30–60 км. А под корой то же самое, что у Земли – металлосфера, то есть толстый слой сплавов различных металлов, в коих преобладают кремний и магний. Сейсмографы, установленные на поверхности Луны для изучения ее внутренностей, показали, что ниже лунной коры звуковая волна резко меняет скорость до 7,6 км/с. Именно такая скорость распространения характерна для кремнемагниевых сплавов с добавлением железа при давлениях от 5 тысяч атмосфер. А если бы, как предполагает ортодоксальная геология, внутренности Луны были каменными, скорость превышала бы 8 км/с.
Американские астронавты поделились своими переживаниями: когда они обращались вокруг Луны, порой возникало ощущение, что их корабль вдруг начинает падать на поверхность планеты. Для ученых это не было новостью, они давно заметили, что искусственные спутники Луны, пролетая над некоторыми районами, получают дополнительное ускорение. Эти гравитационные аномалии назвали масконами (массовыми концентраторами). Обнаружение масконов было неприятной новостью для ортодоксов, уверенных в «каменности» Луны. «Каменная» должна быть более равномерной!.. Было даже выдвинуто предположение, что в Луну попал железный метеорит, который теперь лежит под ее поверхностью и «тяготит» кружащиеся спутники.
Но если посмотреть на Луну через подзорную трубу металлогидридной теории, историю с масконами вполне можно прояснить. Поскольку кислород для образования коры выносится на поверхность планеты водородом, а водород выходит не равномерно по всему объему планеты, а собираясь в толстые струи, то в местах выхода струи на поверхность происходило более интенсивное окисление. И образовывалась более толстая кора. Эти утолщения и есть масконы.
Луна тоже «лысое» тело, ярко выраженных горных цепей там нет. Почему? Потому что при такой низкой силе тяжести давление подповерхностных пород не может быть более 3–5 тысяч атмосфер. А этого недостаточно для уплотнения наводороженных участков и образования зон заглатывания. Стало быть, нет и складчатости. Та же история, кстати, и на Марсе, который мы позже тоже препарируем.
Сегодня Луна представляет собой мертвое небесное тело. Значит ли это, что внутри Луна холодна и в ней не может быть никакой активности? Нет, не значит. Но сегодняшняя активность Луны не зря получила название «трупного магматизма». Это явление действительно напоминает разложение трупа… Содержание в Луне радиоактивных элементов такое же, как в Земле, поскольку они образовались в одной зоне (на одном расстоянии от Солнца). Свой запас радиогенов Луна еще не исчерпала, они по-прежнему разогревают ее изнутри. Но если раньше это тепло тратилось на геологическую эволюцию, то после того как запас распирающих гидридов в ядре иссяк, радиогенное тепло начало просто тупо плавить породы. Порой этот процесс сопровождался выплескиванием расплавленных пород на поверхность Луны с заливанием обширных территорий. Когда-то водородная эволюция сформировала внутри Луны геологические структуры – минералы, рудные жилы, а трупный магматизм все это снова переплавил в первобытный хаос. Энтропия внутри Луны торжествует.
Идем (по Луне) дальше… Правоверно-ортодоксальная точка зрения гласит, что в Луне должно быть столько же радиоактивных элементов (тория, урана) сколько его содержится в хондритах – каменных метеоритах. В этом случае, как показывают подсчеты правоверных, тепловой поток с поверхности Луны должен быть около 10 мВт/м2.
Однако замеры, которые провели американские астронавты на Луне, дали совсем другую цифру, втрое выше – 30 мВт/м2. Это был большой удар по правоверным. Но они утерлись…
А вот еретическая точка зрения говорит, что радиоактивных элементов в Луне должно быть гораздо больше, чем в хондритах: тория в два раза, а урана так вообще в десять, потому что именно таково их содержание в Земле. Значит, теплопоток должен быть выше. Он и выше!.. Причем еретические подсчеты показывают, что тепловой поток, замеренный американцами, недостаточен, он должен быть примерно 60 мВт/м2. Больше, чем намерили американцы. Почему такое несоответствие? А просто тепловая отдача с поверхности Луны обязана быть неравномерной. Толстые области лунной коры играют роль термоса, через них тепла уходит меньше. Но есть места, где кора тонка или просто пробита астероидами, там поток может быть и выше нужных нам «шестидесяти».
Кстати, а может ли астероид или крупный метеорит на самом деле пробить 30-километровую каменную кору Луны и добраться до чистых металлов? Вопрос любопытный. Известно, что кумулятивный эффект от метеоритного удара может достигать четверти или даже трети от диаметра взрывной воронки. На Луне есть метеоритный кратер Тихо. Его диаметр 86 км. Значит, удар мог проникнуть на треть от этой цифры, то есть на глубину около 30 км. То есть теоретически взломать кору хорошим ударом доброго астероида можно.
…Несколько лет тому назад я поехал на Кипр. И специально по такому случаю прикупил перед поездкой подзорную трубу – чтобы с помощью этого нехитрого приспособления посмотреть через колючую проволоку на город-призрак Фумагусту. Посмотрел. Труба свое предназначение выполнила. И чтобы прибор зря не простаивал, я решил подгрузить ему еще одну задачу. Попросту говоря, вышел вечером на набережную, сел за столик в кафе, установил на столик рядом с пивной кружкой штатив и стал рассматривать в трубу Луну. Стопами Галилея, так сказать.
При ближайшем рассмотрении я нашел, что Луна очень похожа на арбуз. У Луны есть жопка, от которой расходятся во все стороны полоски. Чем не арбуз? Очень даже арбуз!.. Но если уйти от разведения бахчевых культур и вернуться в лоно астрономии, то нужно задуматься, что это за полоски такие подозрительные на небесном теле? И для чего Луне жопка?
А это, господа, никакая не жопка, а тот самый кратер Тихо. А полоски, которые тянутся по Луне на тысячи километров, – выбросы вещества, выбитого метеоритом из Луны. Эти светлые ярко-желтые полоски сильно выделяются на фоне темно-желтой лунной поверхности. Если справедлива еретическая металлогидридная теория, которая сидит и курит на трупе теории ортодоксальной, значит, эти полоски – силициды. То есть сплавы разных металлов с кремнием. Именно потому они и светлые: отражающие способности металлов выше, чем оксидов. Сюда же кинем еще один любопытный фактец: в шестидесятые годы ХХ века астрономы зондировали поверхность Луны радиолучами и обнаружили, что эти полоски отражают радиоволны гораздо лучше, чем обычная лунная поверхность. Отражают так, как отражал бы металл.
И, наконец, последнее. Возможно, вы неоднократно читали сенсационные сообщения о загадочных вспышках и огнях на Луне. Обычно они публикуются в разных уфологических изданиях, которые относят эти вспышки к деятельности инопланетян: у них на Луне, как известно, база. Именно отсюда они ездят к нам в гости, чтобы похищать экзальтированных дам, которые потом рожают черт-те что. Однако порой сообщения об этих вспышках проскальзывают и в более серьезной литературе. Что бы это могли быть за вспышки?
Ловите версию. Когда метеорит выбивает на поверхность Луны силициды, они перемешиваются с лунным грунтом, состоящим из окислов и силикатов. Получается самая настоящая термитная смесь: кремний, магний, кальций и алюминий, которые содержатся в силицидах, могут отнимать кислород у окислов марганца, никеля и железа, которых полно в лунном грунте. При этом процессе высвобождается много тепла. Так что от сообщений о вспышках на Луне не стоит отмахиваться сразу. Они вполне могут там быть. Но они совершенно не свидетельствуют ни в пользу инопланетян, ни в пользу тектонической активности на Луне. Потому как тектонически Луна – давно покойница.
И что мы можем написать на могильном камне усопшей, кроме имени «Луна»? Ну, с датой рождения понятно: возраст всех планет одинаков и равен 4,5 миллиарда лет. А дата смерти Луны? Если считать моментом смерти отключение магнитного поля и начало трупного окоченения. ой, пардон, наоборот – трупного разогрева, то есть запуска процесса внутреннего «тления» планеты, когда отдельные породы начали переплавляться в хаотическую кашу, то этот срок можно установить по излиянию базальтов, лишенных остаточной намагниченности. В Океане Бурь такие базальты есть, они излились 3,2 миллиарда лет тому назад. Это и есть время смерти Луны. Значит, период активной «творческой» жизни Луны составил всего 1,3 миллиарда лет.
Покойся с миром!..
Марс… На нем вполне могла бы жить какая-нибудь Аэлита, будь он побольше размером. Но так как масса Марса всего 10 % земной, мучился он недолго. Впрочем, не будем торопить события.
Мы знаем, что количество кислорода в планете меняется в сторону увеличения по мере удаления от Солнца. Значит, на Марсе пайка кислорода больше, чем на Земле.
Недостаток кислорода на Венере привел к тому, что океаны там так и не сформировались. На Земле сформировались вполне удачно. Значит, на Марсе воды должно быть просто до хренища! И где же она? Почему ученые сегодня спорят и гадают, удастся ли им найти на Марсе воду или не удастся им найти на Марсе воду?.. Отчего весь Марс представляет собой сплошную красную пустыню?
Для того чтобы понять, как Марс дошел до жизни такой, нам нужно проследить весь жизненный путь этой несчастной планеты от самого первого водородного вздоха.
Начало было типичным для всех металлических планет. Водородная дегазация ядра положила начало выносу на поверхность кислорода. На поверхности. ой, мы это уже скоро наизусть выучим!.. кислород начал создавать оксидную пленку. Дело знакомое – металлический шарик начал покрываться ржавчиной. Обилие кислорода и небольшие размеры планеты привели к тому, что толщина литосферы Марса вдвое превысила земную литосферу: на Земле слой ржавчины 150 км, а на Марсе – 300 км. Просто на Земле дальнейшему наращиванию окисной корки помешало большое давление на глубинах ниже 150 км – при таком давлении силициды уже не окисляются. А на маленьком Марсе с небольшой силой тяжести аналогичные давления достигались на больших глубинах. Вот и все.
…Пожрав все самое вкусное, кислород начал пожирать более трудный для переваривания водород, делая из него воду. И воды на Марсе было просто полно! Собственно говоря, там практически не было суши, это была планета-океан. Голубая планета!.. Лишь кое-где из-под воды, возможно, торчали горные пики.
Стоп! А в каком виде была эта вода? Не льдом ли? Ведь сейчас на Марсе средняя температура минус 40 °C. Днем на экваторе она может прогреться до +20 °C, но с наступлением сумерек очень быстро обваливается до -50 °C. И это на экваторе! А в средней полосе и ближе к полюсам ночью подмораживает до -100 °C. Значит, лед?
Но астрономами на Марсе обнаружены так называемые меандровые долины, а попросту говоря, высохшие русла бывших рек. А это говорит не только в пользу наличия там в прошлом жидкой воды и, соответственно, тепла, но и приличной атмосферы. Почему?.. Сейчас объясню. Сейчас на Марсе просто слезы, а не атмосфера, она очень разреженная, и давление крайне низкое – всего 7 мм ртутного столба или 0,006 атмосферы. При таком давлении температура кипения воды примерно 3 °C. Стало быть, даже при теплом климате ни о какой жидкой воде на сегодняшнем Марсе и речи быть не может – она просто испарится в момент! И, раз тут когда-то текли реки, значит, была нормальная атмосфера, а не сегодняшнее убожество.
А было чем дышать в этой атмосфере? Давайте раскинем… Углерода на Марсе в несколько раз больше, чем на Земле. Значит, в атмосфере было полно углекислоты. Что вызывает углекислый газ, мы знаем на примере Венеры – парниковый эффект. Но до 500 градусов на Марсе атмосфера не прогрелась, потому что океаны начали активно поглощать из атмосферы избыток углерода, осаждая его в виде карбонатов.
Попервоначалу атмосфера Марса была такой же безобразной, как и на Земле – она состояла из метана, аммиака, вонючего сероводорода и угарного газа. Но потом начал появляться чистый химический кислород. Мы помним, откуда появляется кислород, – шумы, грозы, землетря… в смысле, марсотрясения. Возможно, и даже наверняка обогащению атмосферы Марса кислородом способствовали бактерии – если это случилось на Земле, что же мешало зародиться жизни на Марсе?
Кстати, о том, что в атмосфере Марса начал появляться свободный кислород, говорит возникновение на нем так называемых красноцветов (которые мы вскользь упомянули, говоря о насыщении кислородом земной атмосферы). Именно красноцветы придают сегодняшнему Марсу его знаменитый красный цвет.
Время активной жизни красной планеты можно оценить в 2–2,5 миллиарда лет. И последнюю треть своей жизни Марс представлял собой прекрасное зрелище! Теплые курортные океаны, редкие островки, ни одного отдыхающего, ни одной пустой бутылки и полиэтиленового пакета. Только мелкие примитивные одноклеточные в воде и целиком стерильная суша.
А потом гидриды в ядре Марса закончились, водород весь улетучился в космическое пространство, отключилось магнитное поле. И началась жизнь после смерти. Она была нелегкой. Она была неприятной. Но вместе с тем совершенно феерической!.. Правда, до начала большого фейерверка (о котором чуть ниже) должно было пройти определенное время, необходимое для того, чтобы в отсутствие магнитного поля солнечный ветер смел с Марса его прежнюю густую шевелюру атмосферы, а за ней планету частично покинула и вода, улетев в холодное и неблагодарное космическое пространство. Возможно, ее испарению помимо падающего атмосферного давления способствовал и трупный магматический разогрев.
Концентрация радиоактивных элементов в Марсе меньше, чем на Земле, тепла вырабатывается меньше, но зато силикатная шуба – вдвое толще. Изолятор! А главное, гидриды в Марсе кончились, значит, на их распад и расширение планеты тепло уже не тратится, а тратится только на тупой разогрев. И хотя печечка на Марсе послабже нашенской будет, зато и потерь, как видите, гораздо меньше. А поскольку кислорода в Марсе было всегда навалом, его породы оказались сильно обводнены, то есть содержали различные минералы, обогащенные Н2О. Ну а с трупным разогревом планеты эта вода стала вовсю свистать вверх могучими гейзерами. Механизм их образования таков.
Давление воды в разогретых породах очень высокое. А в атмосфере очень низкое. И когда перегретая вода прорывалась наружу, этот перепад давлений приводил к тому самому феерическому эффекту (или лучше сказать «эффектному фейерверку»?), который я вам обещал двумя минутами раньше.
Вы когда-нибудь пользовались огнетушителем? Открываете баллон со сжиженным углекислым газом под высоким давлением, и газ, вылетая, тут же превращается в обильный белый снег. Так было и на Марсе. Подсчеты показывают, что в марсианской атмосфере из одного кубического сантиметра нагретой воды получается 120 литров пара. Иными словами, объем увеличивается в 120 тысяч раз! А это значит, что, выброшенный из гейзера пар, взлетев на несколько километров вверх, осыпался в виде мелкого снега, и низкие к тому времени марсианские температуры забивали источник ледяной пробкой. До тех пор пока накопившееся глубинное тепло опять не протачивало эту пробку и не взрывалось еще одним белым фонтаном. Так создавались знаменитые марсианские «вулканы». Самый большой из них под названием Олимп имеет высоту 27 км и, вопреки мнению астрономов, является не вулканом в земном понимании этого слова, а гигантской ледяной горой, сформированной вышеописанным способом. Конечно, там не чистый лед, а вперемешку с кусками породы, щебенкой, грязью… К тому же разогретая в недрах Марса вода была подсолена содержащимися в коре Марса хлоридами, сульфатами, карбонатами, так что на вкус она горьковато-соленая и с ярко выраженным слабительным эффектом. Можете считать это прогнозом металлогидридной теории, который еще не сбылся.
А вот еще пара прогнозов… Поскольку калия, натрия и алюминия на Марсе меньше, чем на Земле (у них небольшой потенциал ионизации), на Марсе не должно быть привычного землянам изобилия гранитов. И, напротив, должно быть много карбоната магния.
Кроме того, так как на Марсе меньше радиоактивных элементов, то, по идее, теплоотдача его поверхности должна быть ниже земной. Но при замерах, когда таковые состоятся, она окажется выше! Причина парадокса в том, что земное тепло на 9/10 расходуется на раздувание планеты, а марсианское целиком выходит наружу. Слетайте и проверьте!
Наконец, на Марсе не должно быть сейсмической активности и должны быть аномалии в гравитационном поле, как на Луне.
Последний прогноз, к сожалению, будущим покорителям Марса проверить уже не удастся. Потому что он уже оправдался: анализ движения марсианских зондов вокруг планеты показал, что гравитационные аномалии на Марсе превосходят гравитационные аномалии Земли в 17 раз.
Пояс астероидов, который лежит за Марсом – это космическая свалка Солнечной системы. Там крутятся сотни тысяч разнокалиберных кусков неправильной формы, которые, бывает, сбиваются с пути истинного и прилетают на Землю, причиняя порой крупные неприятности в виде гибели почти всего живого на нашей планете, что случалось в давние времена неоднократно. Но чаще падают не астероиды, а мелкие метеориты, доставляя радость ученым, которым, разумеется, интересно поизучать, из чего сделано то, что находится так далеко от Земли.
Минералого-петрографический анализ метеоритного вещества показывает, что его породы сформировались при температурах и давлениях, безусловно превосходящих космический холод и вакуум, царящий в поясе астероидов. То есть родиной этих минералов была достаточно крупная планета. То, что осколки, крутящиеся между Марсом и Юпитером, были когда-то планетой, люди предположили давно и даже дали этой гипотетической планете название – Фаэтон. А советский писатель-фантаст Казанцев написал целый роман «Фаэты» о жителях этой планеты, которые бездумно погубили Фаэтон – начали полномасштабную водородную войну, отчего их планета, к большому сожалению, развалилась. Причем по какой-то загадочной причине жители этой планеты были антропоморфны, то есть во всем похожи на людей, за исключением одной детали – у них не было переносицы. Так работала фантазия советских писателей.
А наше дело отставить фантазии в сторону и углубиться в теорию – что она может подсказать нам по поводу печальной судьбы Фаэтона. Да все может подсказать! Начнем с рецепта этого «пирога», поскольку судьба планеты записана в наборе химических элементов, из которых она сделана.
В поясе астероидов кислорода должно быть несколько больше, чем на Марсе, и в 100 раз больше, чем на Земле. Да и углерода там немало. Такое распределение диктуют потенциалы ионизации этих элементов. И это значит, что вещество Фаэтона изначально находилось не в виде гидридов, а в виде силикатов и окислов. И на 25 % планета состояла из карбонатов. А карбонаты при достижении определенной температуры начинают разлагаться – так же, как гидриды, только при этом выделяется не водород, а углекислый газ. Давление повышает температуру распада карбонатов, и, так как в недрах планет давления всегда царят огромные, какое-то время планета держалась. Но потом радиогенное тепло все-таки прогрело ее до уровня распада карбонатов, газ начал активно выделяться, по телу планеты пошли первые трещины. Трещины резко снизили давление внутри планеты в районе разломов, и карбонаты там стали разлагаться еще активнее, все больше расширяя трещины, которые, в свою очередь, все больше провоцировали распад. В общем, Фаэтон разорвало углекислым газом, как бутылку перебродившего шампанского.
Если не полениться и посмотреть на рис. 2 в этой книге, можно увидеть, что некоторые элементы, например, ниобий, тантал, церий, фосфор, торий и другие выпадают из генеральной линии Фаэтона. Почему? Дело в том, что график строился по анализу метеоритного вещества, и именно этих веществ в метеоритах оказалось меньше, чем нужно, хотя по нашей теории они должны там быть – согласно своим потенциалам ионизации! В чем дело? Может, дыры в теории? Нет. Просто перечисленные элементы имеют склонность концентрироваться в карбонатах. Они и на Земле в карбонатах любят концентрироваться, и в Фаэтоне любили – химия наука точная и работает на всех планетах без прописки и регистрации. А когда карбонаты взорвали Фаэтон, сконцентрированные в них элементы выкинуло в космос в виде пыли или даже отдельных молекул. Именно поэтому их так мало в метеоритном веществе. Все сходится.
Все, черт возьми, сходится. Даже скучно…
Глава 4. Из высших соображений
Когда я учился в институте, сдавал экзамен по теории печей. И препод по фамилии Мастрюков попросил меня доказать с помощью разных формул необходимость печных рекуператоров.
С помощью формул? Хм… Я доверительно положил длань на руку доцента и сказал, проникновенно глядя ему в глаза:
– К чему формулы? Мы же не формалисты!.. Могу доказать вам это без всяких формул – из самых общих соображений.
– Давайте из общих, – согласился Мастрюков.
И я буквально на пальцах объяснил, в чем суть печного рекуператора с точки зрения общефизических законов сохранения энергии, а также в чем его польза для народного хозяйства, для дела построения коммунизма и лично для Леонида Ильича Брежнева.
…Порой для понимания процесса действительно не нужны никакие формулы, достаточно самых общих соображений…
К чему я веду? А к тому, что я мог бы не тратить здесь тысячи типографских знаков на доказательство металлогидридной теории. Потому что человеку, который знает принципиальные основы устройства мироздания, справедливость этой теории может быть доказана из самых общих соображений. Без физических формул и химических значков. Без графиков и таблиц. Без примеров чудесных пророчеств. Просто на пальцах…
Не верите? Что ж, начинаю раскидывать пальцы веером…
Все наверняка слышали про энтропию и про злую науку термодинамику, предсказавшую тепловую смерть Вселенной. Второй закон термодинамики гласит, что в замкнутых системах энтропия не может падать, она может либо расти, либо оставаться неизменной.
Что такое энтропия? И что такое замкнутая система?
Если система не обменивается веществом и энергией с окружающей средой, она называется замкнутой. (Соответственно, система, которая обменивается с внешней средой чем-либо, называется открытой системой.)
А энтропия – второе имя хаоса, беспорядка. Если мы разложим костяшки домино в правильном, игровом порядке – «двоечка» к «двоечке», «пустышка к пустышке», то у нас получится упорядоченное расположение. А если мы теперь костяшки перемешаем, получится расположение хаотическое, беспорядочное.
Превратить порядок в хаос всегда проще, чем наоборот. Достаточно несколькими движениями рук перемешать костяшки домино, чтобы порядок был разрушен. Но столь же простыми движениями восстановить прежнее расположение у нас не получится, тут повозиться придется. Чтобы что-нибудь построить и упорядочить, всегда нужно повозиться, приложить усилия, энергию, деньги. А чтобы разрушить, ничего делать не надо, оно само. Даже горы когда-нибудь разрушатся до основания. Этот процесс называется эрозией и занимает всего ничего – какой-нибудь миллион-другой лет.
Почему так несправедливо?
Так уж устроен мир, друзья! Надо корячиться. Именно об этом и говорит закон неубывания энтропии. Этот закон – любимое дитя общефизических законов сохранения и статистической физики. В нашем, социальном мире этот закон имеет всем известное следствие: за все надо платить. Любое созидание в одном месте оплачивается разрушением в другом.
Вы созидаете разницу температур между домом и улицей, бросая в печку дрова и разрушая их.
Вы осуществляете перемещение в пространстве, оплачивая это разрушением бензина в моторе вашего автомобиля.