Жизнь на грани. Ваша первая книга о квантовой биологии Аль-Халили Джим
Тем не менее коллагеновые волокна, содержащиеся в ваших костях, мышцах или в обеде, не являются неразрушимыми. Кипячение их в сильных кислотах или щелочах в конечном счете разрушит пептидные связи между бусинами аминокислот и превратит эти прочные волокна в растворимый желатин, желеподобное вещество, похожее на то, что используется для приготовления зефира и желе. Киноманы могут вспомнить Зефирного человека из фильма «Охотники за привидениями» — гигантское неповоротливое существо из мягкой белой массы, наводившее ужас на жителей Нью-Йорка. Но Зефирного человека с легкостью победили, превратив в расплавленный зефирный крем. В пептидных связях между аминокислотами коллагеновых волокон и заключается отличие Зефирного человека от тираннозавра. Крепкие коллагеновые волокна придают прочность организмам реальных животных.
Однако, если бы организм животного состоял только из такого прочного и долговечного материала, как коллаген, возникла бы серьезная проблема. Вспомните, что происходит, когда у вас появляется синяк или порез либо когда вы ломаете руку или ногу, — нарушается целостность тканей и поддерживающий их внеклеточный матрикс, внутренний волокнистый каркас, также повреждается или разрушается. Если дом частично разрушается во время шторма или землетрясения, перед ремонтом необходимо удалить сломанные конструкции. Подобным образом тело животного использует фермент коллагеназу, чтобы удалить поврежденные части внеклеточного матрикса и позволить ткани восстановиться — с помощью другого набора ферментов.
Особенно важно то, что внеклеточный матрикс должен постоянно перестраиваться по мере роста животного: внутренний каркас, поддерживающий ребенка, не сможет выдержать большой вес взрослого. Эта проблема особенно остро стоит перед амфибиями. Тем более интересно ее решение. Дело в том, что взрослые амфибии сильно отличаются от молодых особей. Самым простым примером метаморфоза амфибий является превращение сферического яйца в извивающегося головастика, который по мере взросления становится прыгающей лягушкой. Ископаемые останки предков лягушек — коротких бесхвостых амфибий с уникальными мощными задними конечностями — были найдены в окаменелостях юрского периода и относятся к середине мезозойской эры (около 200 миллионов лет назад), также известной как век рептилий. Они тоже могут быть обнаружены в окаменелостях, относящихся к меловому периоду. Таким образом, весьма вероятно, что подобные лягушки плавали по той же реке в штате Монтана, в которой встретил свой конец музейный экспонат MOR 1255. Однако, в отличие от динозавров, лягушки смогли пережить великое мел-палеогеновое вымирание и теперь населяют наши пруды, реки и болота, поставляя вот уже многим поколениям школьников и ученых образцы для изучения формирования и превращения организмов.
Превращение головастика в лягушку включает процессы отмирания и перестройки тканей, например хвоста, который постепенно реабсорбируется в тело и перерабатывается для формирования новых конечностей лягушки. Этот процесс требует быстрой резорбции внеклеточного матрикса, который поддерживает форму хвоста, и последующей перестройки его в формирующиеся конечности. Однако вспомните о том, что кости динозавра пролежали в горах Монтаны 68 миллионов лет — коллагеновые волокна не так легко разрушаются. Метаморфоз лягушки проходил бы очень медленно, если бы в основе его лежал химический распад коллагена под воздействием только неорганических веществ. Очевидно, тело животного не может растворить собственные сухожилия в горячей кислоте и нуждается в более мягких средствах расщепления коллагеновых волокон.
На этом этапе в процесс вступает фермент коллагеназа.
Так как же действуют коллагеназа и другие ферменты? Виталистические представления о том, что активность фермента обусловлена таинственной жизненной силой, бытовали до конца XIX века. В то время один из коллег Кюне, химик Эдуард Бухнер, доказал, что неживые экстракты из дрожжевых клеток могут стимулировать точно такие же химические превращения, как и живые клетки. Бухнер сделал революционное предположение о том, что жизненная сила — это не более чем форма химического катализа.
Катализаторы — это вещества, ускоряющие обычные химические реакции. Они уже были известны химикам XIX века. К слову, многие химические процессы, ставшие основой промышленной революции, зависели от катализаторов. Например, серная кислота была главным веществом, способствовавшим как промышленной, так и сельскохозяйственной революции. Она использовалась при производстве железа и стали, в текстильной промышленности и для получения фосфатных удобрений. Серную кислоту получают в результате химической реакции, которая запускается с помощью диоксида серы (SO2) и кислорода (реактивы, или исходные вещества). Оба вещества реагируют с водой с образованием продукта — серной кислоты (H2SO4). Однако эта реакция протекает очень медленно, поэтому в таком виде ее сложно применять в промышленности. Но в 1831 году Перегрин Филипс, производитель уксуса из Бристоля (Англия), нашел способ ускорить ее путем пропускания диоксида серы через горячую платину, которая действовала как катализатор. Катализаторы отличаются от исходных веществ, участвующих в реакции, поскольку они помогают ускорить реакцию, не вступая в нее и не изменяя своей структуры. Таким образом, заявление Бухнера состояло в том, что ферменты, в сущности, не отличаются от неорганических катализаторов, открытых Филипсом.
Десятки последующих биохимических исследований в значительной степени подтвердили идею Бухнера. Первым выделенным ферментом стал реннин, образующийся в желудках телят. Древние египтяне хранили молоко в емкостях, сделанных из оболочек желудков телят. Именно им приписывается открытие такого свойства этого странного вещества, как превращение молока в более удобный для хранения сыр. Опыт древних египтян применялся до конца XIX века. В то время желудки крупного рогатого скота высушивали и продавали в аптеках как сычуг. В 1874 году датский химик Кристиан Хансен проходил собеседование, устраиваясь на работу в аптеку, когда случайно услышал заказ на дюжину сычугов. Узнав, что это такое, он решил использовать свои познания в химии для открытия более привлекательного источника сычужного фермента. Он вернулся в свою лабораторию, где разработал метод превращения жидкости, полученной в процессе вымачивания желудков телят и отличающейся весьма неприятным запахом, в сухой порошок и успешно представил свой продукт на рынке под названием «Сычужный экстракт доктора Хансена».
Реннин, или сычужный фермент, представляет собой смесь нескольких различных ферментов. В сыроварении наиболее активно используется фермент химозин, представитель большого семейства ферментов протеаз, ускоряющих расщепление белков. Его роль в производстве сыра заключается в том, что он способствует свертыванию молока, которое затем разделяют на сычужную закваску и сыворотку. Однако в организме молодого теленка данный фермент створаживает молоко, поступающее в желудок, так что оно дольше остается в пищеварительном тракте, увеличивая время всасывания. Коллагеназа также является протеазой, но способ ее выделения оставался неизвестным на протяжении еще 50 лет, пока в 1950-х годах Джером Гросс, исследователь из Гарвардской медицинской школы Бостона, не задался вопросом, как же головастик растворяет свой хвост и превращается в лягушку.
Гросс исследовал функции коллагеновых волокон как пример самоорганизации молекул, в которой, как он считал, «заключается главный секрет жизни»[30]. В качестве образца для исследований он взял огромный хвост головастика лягушки-быка, достигающий в длину нескольких дюймов. Гросс правильно предположил, что процесс реабсорбции должен состоять из многочисленных этапов сборки и расщепления коллагеновых волокон животного. Чтобы определить активность коллагеназы, он разработал простой эксперимент, в ходе которого чашка Петри наполнялась слоем похожего на молоко коллагенового геля, состоящего из прочных, крепких коллагеновых волокон. Помещая фрагменты ткани хвоста головастика на поверхность геля, он отмечал, что в зоне вокруг фрагментов эти прочные волокна расщепляются и превращаются в растворимый желатин. В результате Гросс выделил разрушающее коллаген вещество — фермент коллагеназу.
Коллагеназа присутствует в тканях лягушки и других животных, включая динозавра, утонувшего в Хелл-Крик. Еще 68 миллионов лет назад фермент выполнял ту же функцию, что и сегодня, а именно разрушал коллагеновые волокна. Когда животное погибло и провалилось в болото, фермент утратил свою активность. Тем не менее коллагеновые волокна сохранили свою структуру, пока Мэри Швейцер не добавила немного свежей коллагеназы к костным фрагментам.
Коллагеназа — только один из миллионов ферментов, от которых зависят практически все виды жизнедеятельности животных, микроорганизмов и бактерий. Одни ферменты создают коллагеновые волокна внеклеточного матрикса; другие отвечают за сборку биомолекул — белков, ДНК, жиров и углеводов; наконец, целая группа различных ферментов расщепляет и перерабатывает эти молекулы. Ферменты отвечают за пищеварение, дыхание, фотосинтез и метаболизм. Они создают всех нас. Они поддерживают нашу жизнь. Они — механизмы жизни.
Но являются ли ферменты только биологическими катализаторами, участвуя в химических реакциях наподобие получения серной кислоты и других промышленных веществ? Несколько десятилетий назад большинство биологов согласились бы с мнением Бухнера о том, что химия жизни не отличается от тех процессов, которые можно наблюдать на химических заводах или даже в наборе юного химика. Но в последние 20 лет взгляд на этот вопрос радикально изменился. В ходе нескольких ключевых исследований было сформировано абсолютно новое мнение о работе ферментов. Оказалось, что этим катализаторам жизни покоряются такие глубины, какие не подвластны классической химии, — ферменты творят чудеса и на квантовом уровне.
Чтобы понять, почему для разгадки тайны жизни нам необходима квантовая механика, мы должны сначала узнать, как работают самые простые промышленные катализаторы.
Изменение ландшафта
Катализаторы действуют посредством множества механизмов. Разобраться в этих механизмах помогает теория переходного состояния[31], доступно описывающая то, как катализаторы ускоряют реакции. Чтобы понять теорию переходного состояния, нужно посмотреть на проблему с другой стороны и подумать, зачем для ускорения реакций нужны катализаторы. Ответ прост: почти все химические вещества, окружающие нас, достаточно стабильны и инертны. Они не распадаются мгновенно, не вступают с другими веществами в быструю реакцию. К слову, если бы вещества именно так и поступали, их бы не было вокруг нас.
Причина стабильности привычных соединений заключается в следующем: их связи редко разрушаются вследствие неизбежного турбулентного перемещения молекул, которое всегда происходит в любом веществе. Наглядно это можно представить так: молекулы веществ, участвующие в реакции, должны преодолеть препятствия рельефа, а именно забраться на вершину холма, который находится между ними и превращением в конечный продукт (рис. 3.1).
Рис. 3.1. Молекулы веществ, вступающих в реакцию (на рисунке — точки серого цвета), способны превратиться в молекулы продуктов реакции (на рисунке — точки черного цвета), но сперва они должны преодолеть энергетический «холм». При нормальной температуре молекулы не обладают достаточным количеством энергии для поднятия по склону этого «холма», однако чем выше температура, тем легче молекулы взбираются на его вершину
Энергию, необходимую для того, чтобы взобраться на склон этого «холма», молекулы получают в основном при нагревании. С повышением температуры атомы и молекулы начинают двигаться и совершать колебания быстрее. Подобная толкотня может разрушать химические связи между атомами в молекуле, а также способствовать созданию новых связей. Однако атомы более стабильных молекул (привычных для нашей среды) соединены достаточно крепкими связями, которые устойчивы к турбулентности окружающих молекул. Итак, химические соединения, окружающие нас, устойчивы благодаря тому, что их молекулы в основном стабильны[32], несмотря на их же активную толкотню.
И все же даже стабильные молекулы разрушаются, если для разрыва связи между атомами достаточно энергии. Один из источников энергии, разрушающей молекулы, — дополнительная теплота, ускоряющая их движение. При нагревании химического соединения его внутримолекулярные связи в конце концов разрушаются. Вот почему нам так часто приходится готовить еду на плите: при нагревании ускоряются химические реакции, благодаря которым сырые ингредиенты (вещества, участвующие в реакции) превращаются в съедобные продукты.
Чтобы понять, как теплота ускоряет химические реакции, обратимся к удобному наглядному примеру. Представьте, что молекулы исходного соединения — это песчинки в левом сосуде песочных часов, лежащих на боку (рис. 3.2, а).
Рис. 3.2. Смена энергетического ландшафта: а) молекулы могут перейти из сосуда с исходным веществом в сосуд с продуктом реакции, однако им необходима дополнительная энергия для достижения переходного состояния (чтобы попасть в горловину часов); б) если приподнять левый сосуд часов, молекулы исходного вещества (субстрата) приходят в состояние с большей энергией по сравнению с продуктом, что позволяет им легко проникать в правый сосуд; в) ферменты стабилизируют переходное состояние, снижая энергетический барьер (расширяя горловину наших часов), упрощая превращение молекул субстрата в молекулы продукта реакции. На рисунке R (reactants) — вещества, участвующие в реакции; P (products) — продукты реакции
Если оставить часы в состоянии покоя, никак на них не воздействуя, песчинки так и останутся лежать в левом сосуде до скончания веков, поскольку они не обладают достаточной энергией, чтобы преодолеть узкую горловину и попасть в правый сосуд, символизирующий конечный продукт реакции. Молекулы исходного вещества, участвующего в химической реакции, могут получить дополнительную энергию при нагревании. Они начинают двигаться и совершать колебания с более высокой скоростью, что позволяет некоторым из них превращаться в молекулы продукта реакции. Представим, будто кто-то хорошенько встряхнул наши песочные часы и некоторые молекулы-песчинки в результате попали из левого сосуда в правый, превратившись в молекулы продукта реакции (см. рис. 3.2, б).
Еще один способ превратить субстраты в продукты заключается в том, чтобы снизить энергетический барьер, который должны преодолеть молекулы исходного вещества. Именно этим и занимаются катализаторы. Они расширяют горловину песочных часов и позволяют песку из левого сосуда беспрепятственно и с минимальными усилиями проникать в правый сосуд (см. рис. 3.2, в). Таким образом, ход реакции значительно ускоряется благодаря способности катализатора менять форму энергетического ландшафта и таким образом позволять субстратам[33] гораздо быстрее превращаться в продукты.
Поговорим подробнее о том, как это работает на молекулярном уровне. Для начала рассмотрим медленную реакцию, в ходе которой молекула коллагена расщепляется в отсутствие фермента коллагеназы[34] (рис. 3.3).
Рис. 3.3. Белки — например, коллаген (а) — состоят из цепочек аминокислот, в состав которых входят атомы углерода (C), азота (N), кислорода (O) и водорода (H), связанные пептидными связями. Одна из этих связей обозначена на рисунке жирной линией. Взаимодействуя с водой (H2O), пептидная связь может подвергаться гидролизу и разрушаться (в), однако реакция сначала должна пройти через неустойчивое переходное состояние, при котором возникают по крайней мере две различные структуры, способные превращаться друг в друга (б)
Как мы уже говорили, молекула коллагена представляет собой цепь из аминокислот, которые крепятся друг к другу посредством пептидной связи (на рисунке обозначена жирной линией), возникающей между атомами углерода и азота. Пептидная связь — лишь один из нескольких видов связей, благодаря которым атомы соединяются в молекулы. Она состоит из пары электронов, которую делят между собой атомы азота и углерода. Эти общие для двух атомов отрицательно заряженные электроны притягивают положительно заряженные ядра атомов с обеих сторон связи и представляют собой своего рода электронный клей, соединяющий атомы в пептидной связи[35].
Пептидные связи весьма устойчивы. Чтобы разрушить их, разъединив общую электронную пару, требуется большое количество «энергии активации»: связь должна преодолеть очень высокий энергетический барьер (в нашей метафоре — холм), чтобы достичь горловины песочных часов, где начинается реакция. Обычно связь не разрушается сама по себе — ей в этом помогают находящиеся рядом молекулы воды, инициируя процесс гидролиза. Чтобы этот процесс начался, молекула воды должна весьма плотно приблизиться к пептидной связи и отдать один из своих электронов атому углерода, находящемуся в этой связи (на рис. 3.3 передача электрона обозначена пунктирной линией). Эта промежуточная стадия реакции называется переходным состоянием (отсюда теория переходного состояния). Она представляет собой неустойчивую вершину энергетического «холма», который связь должна преодолеть, чтобы разрушиться в горловине песочных часов. На рисунке видно, что электрон, полученный от молекулы воды, опустился вниз до атома кислорода, соседствующего с пептидной связью. Атом кислорода с дополнительным электроном получил отрицательный заряд. Соответственно молекула воды, отдавшая электрон, осталась в переходном состоянии с положительным зарядом.
В этом моменте ситуация усложняется. Давайте разбираться. Будем считать, что молекула воды (H2O) положительно заряжена не потому, что потеряла один электрон, а потому, что теперь в ней есть голое ядро атома водорода — его протон, обозначенный знаком «+» на рисунке. Этот протон с положительным зарядом больше не имеет строго закрепленного за ним места внутри молекулы воды и становится делокализованным в квантово-механическом смысле (об этом мы говорили выше). Несмотря на то что этот протон почти все время остается внутри своей молекулы воды (см. рис. 3.3, б, схема слева), иногда он оказывается немного дальше, ближе к атому азота (см. рис. 3.3, в, схема справа) на другом конце пептидной связи. В таком положении наш блуждающий протон способен притянуть к себе один из электронов, образующих пептидную связь, и, таким образом, разрушить ее.
Подобное происходит нечасто. Дело в том, что переходные состояния (как, например, то, которое мы изобразили на рис. 3.3, б) очень кратковременны. Они настолько неустойчивы, что разрушаются легчайшим «толчком». Например, отрицательно заряженный электрон, который отдает молекула воды, легко возвращается назад и исходные вещества принимают прежнюю форму (на рисунке это показано жирной стрелкой). Такой сценарий гораздо более вероятен, чем реакция, в результате которой разрушается пептидная связь. Обычно пептидные связи не разрушаются. Так, в нейтральных растворах (не в кислых и не в щелочных) пептидная связь белка разрушится лишь наполовину более чем за 500 лет (этот временной отрезок называют периодом полупротекания реакции).
Разумеется, все описанное выше происходит именно так в отсутствие ферментов. Теперь нам предстоит узнать, как фермент способствует ускорению процесса гидролиза. Согласно теории переходного состояния, катализаторы ускоряют химические процессы (в том числе разрушение пептидной связи), делая переходное состояние более устойчивым и тем самым повышая вероятность формирования исходных продуктов. Катализаторы действуют различными способами. Например, положительно заряженный атом металла, находящийся вблизи связи, способен нейтрализовать отрицательно заряженный атом кислорода в переходном состоянии, стабилизируя его (в этом случае атом кислорода не будет спешить расставаться с электроном, полученным от молекулы воды). Придавая переходным состояниям устойчивость, катализаторы ускоряют реакцию, выполняя функцию расширения горловины песочных часов, в которых, как мы с вами представляли, данная реакция протекает.
Теперь пришло время выяснить, способна ли теория переходного состояния в рамках предложенной аналогии с песочными часами объяснить то, как ферменты ускоряют все остальные реакции, необходимые для поддержания жизни.
Туда-сюда
Итак, фермент коллагеназа, который Мэри Швейцер использовала для разрушения коллагеновых волокон, выделенных из кости древнего тираннозавра, был обнаружен Джеромом Гроссом в организме лягушки. Как вы помните, этот фермент необходим для того, чтобы преобразовать внеклеточный матрикс головастика в тот период, когда все его ткани, клетки и биомолекулы перестраиваются и он превращается во взрослую лягушку. В организме динозавра данный фермент выполнял ту же функцию. Более того, он продолжает выполнять ее в человеке: коллагеназа расщепляет коллагеновые волокна, способствуя росту и преобразованию тканей развивающегося организма или в период восстановления после травмы. Чтобы увидеть ферментативный процесс в действии, обратимся к идее, высказанной Ричардом Фейнманом в революционной для науки лекции «Там, внизу, полно места!», с которой он выступил в Калифорнийском технологическом институте в 1959 году. Считается, что лекция Фейнмана стала интеллектуальным фундаментом сферы нанотехнологий — технического проектирования на уровне атомов и молекул. Кроме того, идеи Фейнмана вдохновили создателей фильма «Фантастическое путешествие», вышедшего на экраны в 1966 году. По сюжету картины подводная лодка с экипажем ученых и врачей уменьшается до размеров молекулы и внедряется в мозг пациента с целью обнаружить и ликвидировать тромб. Чтобы разобраться в ферментативном процессе, мы также отправимся с вами в путешествие на воображаемой наноподлодке. Цель нашего путешествия — хвост головастика.
Для начала нам необходимо найти головастика. В ближайшем пруду мы обнаружим кладку лягушачьей икры и аккуратно перенесем горсть желеобразных шариков, покрытых черными точками, в стеклянный резервуар. Через какое-то время мы заметим, что некоторые икринки подергиваются, а еще через несколько дней из них появятся крошечные головастики. Рассмотрев через увеличительное стекло их основные черты — относительно большую голову с тупой мордочкой и маленьким ртом, глазки по бокам и жабры, напоминающие перышки, расположенные перед длинным хвостовым плавником, — мы обеспечим головастиков достаточным количеством пищи (водорослями) и станем ежедневно наблюдать за ними. На протяжении нескольких недель мы не увидим никаких изменений в форме тела этих существ, зато останемся под сильным впечатлением от того, насколько быстро они увеличатся в объеме и вытянутся в длину. Приблизительно через восемь недель мы заметим, что жабры головастиков втянулись внутрь тела, а на их месте появились передние конечности. Пройдет еще недели две, и из того места, откуда растет крепкий хвостик головастика, появятся задние лапки. С этого момента мы станем чаще наблюдать за головастиками, поскольку темпы изменений, которые претерпевают растущие животные, значительно ускорятся. Жабры и жаберные карманы головастика полностью исчезают, а глаза сдвигаются выше. К списку колоссальных изменений внешнего вида головастика добавляется также резкое сокращение длины его хвоста. Как раз этого мы и ждали. Теперь пришло время погрузиться на борт нашей наноподлодки, отправиться в путешествие по стеклянному резервуару и приступить к исследованию одного из самых удивительных превращений, возможных в природе.
Как только наше судно погружается в резервуар, мы получаем уникальную возможность рассмотреть некоторые детали превращения головастика в лягушку, например удивительные изменения кожи. Кожный покров головастика становится плотнее, тверже, на нем появляются слизистые железы, секрет которых сохраняет влажность и упругость кожи лягушки, когда она покидает пруд и выбирается на сушу. Наноподлодка погружается в одну из этих желез, и мы попадаем в кожный покров земноводного. Благополучно преодолев несколько клеточных барьеров, мы попадаем в кровеносную систему исследуемого животного. Путешествуя по венам и артериям молодой лягушки, мы становимся свидетелями многочисленных изменений, происходящих в организме, внутри которого мы с вами находимся в гостях. Из зачатков дыхательных органов, первоначально напоминавших сумочки, формируются легкие, которые вскоре расширяются и наполняются воздухом. Длинный, изогнутый кишечник головастика, приспособленный для переваривания водорослей, выпрямляется и становится похожим на кишечник хищника. Его прозрачный хрящевой скелет, в том числе и спинная струна (примитивная форма позвоночника, проходящая по всей длине тела головастика), приобретает плотную, непрозрачную структуру, поскольку хрящ заменяется костью. Следуя к нашей цели, мы плывем вдоль формирующегося позвоночника вниз, к хвосту головастика, где начинается процесс его втягивания в растущий организм лягушки. Здесь мы хорошо можем рассмотреть толстые, бороздчатые мышечные волокна, очень плотные по всей длине.
Если мы еще уменьшимся в размерах, то сможем увидеть следующее: каждое из мышечных волокон состоит из длинных столбцов цилиндрических клеток. Именно эти клетки, периодически сокращаясь, обеспечивают перемещение головастика в пространстве. Цилиндрические клетки мышечных волокон окружены плотной сетью перекрученных нитей: это и есть внеклеточный матрикс, цель нашего путешествия. Матрикс сейчас претерпевает существенные изменения. Отдельные его нити распутываются и высвобождают застрявшие в них мышечные клетки, которые, вырываясь на свободу, вливаются в поток большого переселения клеток из исчезающего хвоста головастика в тело взрослой лягушки.
Давайте уменьшимся еще немного и внимательнее рассмотрим одну из распутывающихся нитей разрушающегося внеклеточного матрикса. Приблизившись, мы увидим, что нить матрикса, словно веревка, сплетена из тысяч отдельных белковых проводков, каждый из которых, в свою очередь, состоит из пучков коллагеновых волокон. Каждая молекула коллагена представляет собой сплетение из трех белковых цепей (о подобных цепях, на которые, как бусины, нанизаны аминокислоты, мы уже говорили, обсуждая кость динозавра). Три цепи молекулы коллагена закручены в плотную спираль, напоминающую спираль ДНК, только тройную, а не двойную. Наконец перед нами предстает истинная цель нашего путешествия — молекула фермента коллагеназы. Она напоминает моллюска, вцепившегося в одну из нитей коллагена и сползающего по ней, раскручивая цепочки тройной спирали и разъединяя пептидные связи, которые держат на одной цепочке аминокислотные бусинки. Таким образом, у нас на глазах за одно мгновение разрушается цепочка, которая в отсутствие коллагеназы сохранила бы свою целостность на протяжении миллионов лет. Рассмотрим поближе, как происходит распад цепочки коллагена.
Мы уменьшаемся и отправляемся в путешествие на молекулярном уровне, где объекты имеют размер несколько нанометров (несколько миллионных миллиметра). Представить себе такой крошечный масштаб невероятно трудно, поэтому для сравнения оцените размер буквы «о» на этой странице. Если бы мы с вами уменьшились до размера в несколько нанометров, то буква «о» приняла бы для нас такие же размеры, как территория Соединенных Штатов Америки при нашем нормальном росте. В таких условиях мы сможем рассмотреть, что внутреннее пространство клетки плотно заполнено молекулами воды, ионами металлов[36] и многочисленными и разнообразными биомолекулами, среди которых встречаются аминокислоты причудливой формы. Этот шумный, заполненный до краев молекулами пруд непрерывно пребывает в волнении и движении. Молекулы вращаются, совершают колебания, сталкиваются друг с другом, словно бильярдные шары, о которых мы с вами говорили выше.
Среди всей этой толчеи беспорядочно движущихся молекул мы видим моллюскообразные ферменты, ползущие по волокнам коллагена. Движение молекул коллагеназы не похоже на то, как ведут себя остальные молекулы. Мы приближаемся к одной из молекул фермента как раз в тот момент, когда она движется вдоль коллагеновой белковой цепи. На первый взгляд молекула коллагеназы кажется тяжелой и бесформенной. Создается впечатление, что она хаотично собрана из разрозненных частей. Однако коллагеназа, как и все ферменты, имеет четкую структуру, в которой каждый атом занимает строго отведенное ему место. Кроме того, в отличие от беспорядочного пихания окружающих молекул, фермент исполняет изящный и слаженный молекулярный танец, обвиваясь вокруг коллагеновой нити, раскручивая ее спираль, чтобы сделать аккуратный надрез как раз в том месте, где пептидная связь скрепляет аминокислоты. Затем коллагеназа сворачивается и направляется дальше, к следующей пептидной связи в цепочке, чтобы разрушить ее. Это вовсе не уменьшенные копии механизмов, сделанных рукой человека, которые встроены в клетку и приводятся в движение хаотичными толчками беспорядочно разлетающихся в разные стороны частиц, напоминающих бильярдные шары. Это своеобразные нанороботы, сотворенные природой, которые исполняют внутри клетки тщательно поставленный танец. Каждое движение этого танца оттачивалось на протяжении миллионов лет в процессе естественного отбора, чтобы теперь управлять элементарными частицами живой материи.
Обратим все свое внимание на процесс разрушения пептидной связи. Для этого мы опускаемся к похожему на прищепку ответвлению молекулы фермента, которое, словно моллюск челюстью, фиксирует на месте субстраты реакции — белок коллаген и одну молекулу воды. Это место является активным центром фермента, его мастерской, в которой осуществляется ускорение распада пептидных связей, или, вспоминая нашу аналогию, разгибание и расширение горловины энергетических песочных часов. Хореографическая постановка, разворачивающаяся в молекулярном центре управления, отличается от той беспорядочной толкотни, которую устраивают другие молекулы вокруг фермента. Более того, этот танец играет несоизмеримо более важную роль в жизнедеятельности лягушки, чем движение любой другой молекулы.
Активный центр фермента изображен на рис. 3.4.
Рис. 3.4. Разрыв пептидной связи (обозначена жирной линией) коллагена в активном центре фермента. Переходное состояние субстрата обозначено пунктирными линиями. Шарик внизу, чуть левее от центра рисунка, — положительно заряженный ион цинка; карбоксильная группа COO вверху принадлежит молекуле глутаминовой кислоты (аминокислота, находящаяся в активном центре фермента). Обратите внимание, что параметры масштаба расстояний между молекулами на рисунке не выдержаны
Сравнив данное изображение с рис. 3.3, вы заметите, что фермент продлевает переходное состояние пептидной связи, которого она должна достичь для полного разрушения. Между субстратами образуются слабые химические связи, обозначенные на рисунке пунктирными линиями. Эти связи представляют собой отдельные электроны, которые субстраты делят с ферментами. Благодаря этим связям субстраты приобретают определенную конфигурацию, в которой молекуле фермента, вернее, ее молекулярным «челюстям», удобнее всего разорвать пептидную связь.
Приближаясь к месту пептидной связи, «челюсти» фермента совершают нечто более утонченное по сравнению с простым перекусыванием связи: они предоставляют средство, благодаря которому осуществляется ускорение реакции — катализ. Мы замечаем крупный атом с положительным зарядом, висящий прямо под мишенью — местом пептидной связи, которая уже развернута в удобное положение. Эта частица — положительно заряженный атом цинка. Если мы принимаем активный центр фермента за его челюсти, то атом цинка — один из резцов. Положительно заряженный атом забирает электрон у атома кислорода одного из субстратов, придавая устойчивости переходному состоянию и, следовательно, деформируя энергетический рельеф. Горловина песочных часов расширяется.
Оставшуюся работу выполняет другой «резец» фермента — его собственная аминокислота, известная как глутамат (глутаминовая кислота). Молекула глутамата также принимает необходимое положение, располагая свой отрицательно заряженный атом кислорода непосредственно над местом пептидной связи. Первоначальная роль этой молекулы заключается в том, чтобы оторвать положительно заряженный протон от связанной молекулы воды. Затем она подбрасывает этот протон атому азота, расположенному на одном из концов пептидной связи. Атом азота получает положительный заряд, притягивающий электрон, который участвует в пептидной связи. Как вы помните, электроны служат своего рода клеем пептидных связей. Изъятие электрона из пептидной связи сходно с тем, как если бы мы разъединили склеенные поверхности и соскоблили клей — поверхности бы уже не соединились[37]. После перестановки нескольких электронов из молекулярных «челюстей» фермента наконец высвобождаются продукты реакции — разрушенные пептидные цепочки. Таким образом, реакция, которая без фермента протекала бы как минимум 68 миллионов лет, совершается за несколько наносекунд.
Так при чем же тут квантовая механика? Как она объясняет катализ при участии ферментов? Для этого нам с вами вновь следует обратиться к идеям ученых, стоявших у истоков квантовой механики. Мы уже обсудили важную роль особенных немногочисленных частиц из активного центра фермента, чьи действия напоминают гениально поставленный танец и сильно отличаются от хаотичной молекулярной толкотни, происходящей на клеточном уровне. Здесь же, в особом месте, биомолекулы со сложной структурой вступают в очень специфические виды взаимодействия с другими биомолекулами с не менее сложной структурой. Эти взаимодействия могут быть описаны и в терминах Йордана и его идеи диктаторского усиления, и в терминах Шредингера и его идеи «порядка из порядка». Кроме того, обе идеи подходят для описания того пути, который проходит головастик, превращаясь во взрослую лягушку. Сначала мы описываем организованные ткани и клетки, затем — волокна, которые скрепляют ткани и клетки, затем — завораживающую хореографию элементарных частиц внутри активного центра коллагеназы, которая разрушает структуру коллагеновых волокон и таким образом обусловливает перестройку всего организма лягушки. Неважно, какую теорию мы выбираем — теорию Йордана или теорию Шредингера. Важно то, что с их помощью мы описываем нечто совершенно непохожее на хаотичное движение молекул, которое заставляет поезда подниматься по склонам холма.
Так прав ли был Шредингер, утверждая, что подобный молекулярный порядок подразумевает совершенно иной свод законов, действительных только для живой материи? Чтобы ответить на этот вопрос, мы сначала должны подробнее разобраться в тех законах, которые действуют в микромире.
Так ли велика объяснительная сила теории переходного состояния
Правда ли, что в основе подобной хореографии молекул лежат квантово-механические явления? Мы говорили о том, что способность коллагеназы ускорять распад пептидных связей зависит от нескольких каталитических механизмов. Химики ежедневно используют эти механизмы для ускорения химических реакций, вовсе не прибегая к квантовой механике. Например, атом цинка в активном центре фермента играет такую же роль, какую раскаленная платина играла в получении серной кислоты в ходе реакции, которую провел в XIX веке Перегрин Филипс. Неорганические катализаторы полагаются скорее на хаотичное движение молекул, нежели на их блестяще поставленный танец, когда им требуется подвести каталитические группы ближе к субстратам и таким образом ускорить химическую реакцию. Возможно, ферментативный катализ представляет собой лишь совокупность простых и давно известных каталитических механизмов, которые заключены в активный центр фермента и высекают оттуда ту самую искру, из которой разгорается жизнь?
До недавнего времени все специалисты по ферментам в один голос ответили бы вам: да, так и есть. Общепринятая теория переходного состояния и ее описания различных процессов, продлевающих промежуточные состояния, считались лучшим объяснением принципа действия ферментов. Однако, когда ученые приняли во внимание все сопутствующие факторы, возникли сомнения. Так, например, различные возможные механизмы, ускоряющие реакцию, в ходе которой распадается пептидная связь (мы говорили о них выше в этой главе), хорошо изучены. Каждый из них в отдельности увеличивает коэффициент усиления в 100 раз. Если же совместить все эти факторы, реакция будет протекать в миллион раз быстрее. И все же такое ускорение ничтожно мало по сравнению с коэффициентом усиления реакции с участием фермента: кажется, между теорией и практикой пролегла пропасть.
Еще один интересный вопрос заключается вот в чем: как различные изменения в структуре ферментов влияют на их же активность. Например, коллагеназа, как все ферменты, состоит в основном из белковой основы, на которой держатся челюсти и зубы фермента, расположенные в его активном центре. Можно предположить, что замена аминокислот, формирующих челюсти и зубы активного центра, повлечет изменения в эффективности фермента. Так и есть. Более того, замена аминокислот, расположенных далеко от активного центра фермента, также весьма серьезно будет влиять на его эффективность. Теория переходного состояния пока не может объяснить, почему такие, казалось бы, незначительные изменения в структуре фермента влекут за собой такие серьезные последствия. Оказывается, этот вопрос проясняется благодаря объяснительной силе квантовой механики. Мы вернемся к этому обсуждению в последней главе нашей книги.
Стоит упомянуть и о том, что теория переходного состояния так и не предложила ни одного способа создать искусственный фермент, который действовал бы как настоящий. Вспомните знаменитое высказывание Ричарда Фейнмана: «Мы не способны понять то, чего не можем создать». Это можно сказать и о ферментах, поскольку, несмотря на то что нам известно о них практически все, никому еще не удалось получить искусственный фермент, который имел бы такой же коэффициент ускорения реакции, как любой природный фермент[38]. Согласно критерию Фейнмана, мы до сих пор не понимаем, как действуют ферменты.
Однако взгляните еще раз на рис. 3.4 и попробуйте ответить на вопрос, что делает фермент. Ответ достаточно очевиден: ферменты манипулируют отдельными атомами, протонами и электронами внутри молекул и в межмолекулярном пространстве. До сих пор мы говорили о том, что все эти частицы ведут себя словно крошечные сгустки электрического заряда, перекатывающиеся туда-сюда внутри шаростержневых молекул. Тем не менее, как мы узнали из содержания данной главы, электроны, протоны и даже целые атомы вовсе не похожи на обычные шары, поскольку они подчиняются законам квантовой механики, включая те странные законы, которые связаны с явлением когерентности. В макромире — мире бильярдных шаров — эти законы нейтрализуются процессом декогеренции. Все же бильярдные шары — не очень подходящая модель для описания элементарных частиц. Итак, чтобы понять, что на самом деле происходит внутри активного центра фермента, мы должны отвлечься от представлений, навязанных классической физикой, и погрузиться в удивительный мир квантовой механики. В этом мире объекты могут участвовать одновременно в двух или ста процессах, образовывать таинственные связи между собой и преодолевать непроницаемые барьеры. Подобных трюков не совершал еще ни один бильярдный шар.
Помыкание электронами
Как мы уже знаем, одно из основных действий фермента заключается в том, чтобы перемещать электроны внутри молекул субстратов. Так, например, коллагеназа перемещает электроны внутри молекулы пептида. Однако электроны могут менять местоположение не только внутри молекул. Их можно переносить из одной молекулы в другую.
Самый обычный тип реакции с переносом электронов в химии протекает в ходе окисления. Реакция окисления происходит, когда в атмосфере воздуха сгорают углеродные виды топлива, например уголь. Окисление заключается в переходе электронов от молекулы-донора к молекуле-акцептору. При горении куска угля высокоэнергетические электроны атомов углерода перемещаются и участвуют в формировании низкоэнергетических связей внутри атомов кислорода, способствуя образованию углекислого газа. Данная реакция сопровождается интенсивным выделением тепла от пламени. Мы используем тепловую энергию, выделяющуюся в результате горения, для обогрева домов, приготовления пищи, превращения воды в пар, который приводит в движение паровоз или раскручивает турбину для производства электричества. Тем не менее горение угля или двигатели внутреннего сгорания представляют собой весьма примитивные и неэффективные виды использования энергии электронов. Очень давно природа открыла намного более эффективный способ освоения этой энергии — через процесс дыхания.
Мы привыкли к представлениям о дыхании как о двухэтапном процессе: первый этап — вдох, то есть наполнение легких необходимым кислородом, и второй этап — выдох, то есть выделение углекислого газа как побочного продукта. Однако на самом деле дыхание представляет собой комбинацию из первого (подача кислорода) и последнего (выделение углекислого газа) этапов более сложного и упорядоченного молекулярного процесса, который протекает в каждой клетке нашего организма, а именно в сложных органеллах[39] под названием «митохондрии». Своим внешним видом митохондрии похожи скорее на бактериальные клетки, запрятанные внутрь наших животных клеток, поскольку они имеют собственные структурные единицы (мембраны) и даже собственную ДНК. Кстати, весьма вероятно, что митохондрии появились в результате захвата симбиотических бактерий предками современных животных и растительных клеток. Этот «захват» произошел сотни миллионов лет назад, и с тех пор захваченные клетками бактерии утратили способность существовать отдельно. Тем не менее вероятное происхождение митохондрий от независимых бактериальных клеток объясняет их способность совершать такой невероятно сложный процесс, как дыхание. К слову, если говорить о химической сложности процессов, дыхание занимает едва ли не второе место, уступая по сложности лишь фотосинтезу, о котором мы поговорим в следующей главе.
Чтобы понять, какую роль здесь играет квантовая механика, стоит упрощенно объяснить, что происходит в процессе дыхания. Однако даже в упрощенном виде дыхание представляет собой последовательность удивительных процессов, которые являют собой настоящее чудо, создаваемое биологическими наномеханизмами. Дыхание начинается со сгорания углеродного топлива — в данном случае питательных веществ, которые мы получаем с пищей. Так, углеводы распадаются в желудочно-кишечном тракте человека на моносахариды, в том числе глюкозу, которые попадают в кровь и доставляются ею к клеткам, нуждающимся в энергии. Кислород, необходимый для сжигания этого сахарного топлива, поставляется к тем же клеткам через кровь из легких. Как и при сгорании угля, электроны, находящиеся на внешних орбитах атомов углерода в молекуле, перемещаются в молекулу восстановленной формы никотинамидадениндинуклеотида (НАДН). Однако вместо мгновенного сцепления с атомами кислорода электроны переносятся от одного фермента к другому по внутриклеточной дыхательной цепи белков, словно палочка, которую бегуны передают друг другу во время эстафетной гонки. В каждом звене этой цепи переноса электрон попадает в более низкое энергетическое состояние, при этом разница в энергии используется для того, чтобы привести в действие ферменты, которые выкачивают протоны из митохондрий. Протон, вытесненный из митохондрии, затем используется для приведения в действие еще одного фермента — АТФазы, образующего молекулу аденозинтрифосфорной кислоты (АТФ). АТФ играет важную роль для всех живых клеток, а именно роль источника энергии, которая быстро переносится по клетке. АТФ обеспечивает энергией такие важные для организма процессы, как движение и сокращение мышц.
По своим функциям ферменты, приводимые в действие электронами и выкачивающие протоны, напоминают гидроаккумулирующую электростанцию, которая создает запас энергии, закачивая воду на горный склон. Аккумулируемая энергия в любой момент может быть высвобождена — стоит только пустить воду вниз по склону, и она запустит турбину, которая начнет производить электрическую энергию. Подобным образом ферменты дыхательной цепи выкачивают протоны из митохондрий. Когда протоны выходят из митохондрий наружу, они приводят в действие своего рода внутриклеточную турбину — фермент АТФазу. Фермент начинает свою работу и обусловливает очередной молекулярный танец, в результате которого из молекулы фермента и фосфатной группы образуется АТФ.
Продолжая нашу аналогию процесса порабощения энергии с эстафетной гонкой, представим, что вместо палочки бегуны передают друг другу бутылку с водой (бутылка символизирует энергию электронов). Кроме того, каждый спортсмен (представляющий фермент) сначала отпивает глоток воды из бутылки и только затем передает ее следующему бегуну. Так продолжается до тех пор, пока оставшаяся в бутылке вода не выливается в стоящее на финише ведро (кислород). Захват энергии электрона мелкими порциями делает весь процесс более эффективным по сравнению с вливанием электронов напрямую в кислород — потери тепловой энергии практически не происходит.
Итак, основные этапы дыхательного процесса вовсе не привычные для нас вдох и выдох, а упорядоченная передача электронов в эстафетной гонке с участием ферментов, которая проходит внутри наших клеток. Каждое звено цепи, на котором осуществляется передача электрона от одного фермента другому, составляет в длину несколько десятых ангстрема. В это расстояние укладывается много атомов, поэтому предполагалось, что электроны не могут перескочить через такую пропасть. Загадка дыхательного процесса заключается в том, как ферментам удается так быстро и успешно перебрасывать электроны через подобные молекулярные пропасти.
Впервые этим вопросом задался еще в начале 1940-х годов американский биохимик венгерского происхождения Альберт Сент-Дьерди, ставший в 1937 году лауреатом Нобелевской премии по медицине за открытие витамина C. В 1941 году Сент-Дьерди выступил с публичной лекцией «Навстречу новой биохимии». В ней ученый высказал предположение о том, что легкость, с которой электроны передаются от одной биомолекулы к другой, напоминает движение электронов в полупроводниках, например внутри кремниевых кристаллов, используемых в электронике. Однако всего через несколько лет было обнаружено, что белки плохо проводят электричество, поэтому электроны передаются от фермента к ферменту вовсе не тем способом, о котором говорил Сент-Дьерди.
Значительные успехи в химии были достигнуты в 1950-е годы. Выдающейся фигурой того времени является канадский химик Рудольф Маркус, основоположник теории, которая впоследствии была названа его именем (теория Маркуса). Теория Маркуса предлагает объяснение скорости, с которой электроны движутся и переходят из одних атомов и молекул в другие. За вклад в теорию переноса электронов Маркус был удостоен Нобелевской премии по химии в 1992 году.
Тем не менее полвека назад ответ на вопрос о том, каким образом ферменты, в особенности ферменты дыхательной цепи, способны совершать передачу электронов с высокой скоростью через громадные по молекулярным меркам расстояния, оставался загадкой. Существовало предположение о том, что белки последовательно сменяли друг друга в цепи, работая по принципу заводных механизмов, которые подводили далекие друг от друга молекулы на близкое расстояние, таким образом позволяя электронам совершать прыжок из одной в другую. В дополнение к этому предположению высказывалась важная идея о том, что действие подобного механизма будет значительно замедляться при низких температурах, когда возникнет недостаток тепловой энергии, необходимой для запуска этого заводного механизма. Однако в 1966 году произошел первый мощнейший прорыв в истории квантовой биологии, заключавшийся в результатах экспериментов, которые провели в Пенсильванском университете два американских химика — Дон Де-волт и Бриттон Чанс. Ученые доказали, что, вопреки ожиданиям, скорость переноса электронов ферментами дыхательной цепи не снижается при низких температурах[40].
Дон Де-волт родился в 1915 году в штате Мичиган, однако во время Великой депрессии его семья переехала на Запад. Он учился в Калифорнийском технологическом институте, а также в Калифорнийском университете в Беркли и получил докторскую степень по химии в 1940 году. Де-волт был ярым борцом за права человека. Во время Второй мировой войны он провел некоторое время в заключении за уклонение от военной службы. В 1958 году он отказался от должности профессора химии в Калифорнийском университете и переехал в штат Джорджия, где принимал активное участие в борьбе за расовое равноправие. Он обладал силой убеждения, был всей душой предан идее прав человека. Кроме того, он был сторонником мирных протестов, поэтому оказывался беспомощным в случае нападений, которые случались во время демонстраций с участием чернокожих активистов. Во время одного из маршей протеста ему сломали челюсть, когда на группу белых и чернокожих протестующих напала толпа. Однако это его не остановило.
В 1963 году Де-волт получил должность в Пенсильванском университете и стал работать вместе с Бриттоном Чансом, который был всего на два года старше, однако уже прославился на весь мир как один из самых выдающихся ученых в своей отрасли. Чанс получил две докторские степени — по физической химии и по биологии, поэтому его «отрасль» была достаточно широка, а научные интересы — многообразны. Большую часть времени он посвящал изучению структуры и функций ферментов, однако у него оставалось время и на занятия спортом: в 1952 году он стал золотым призером Олимпийских игр в парусном спорте.
Чанса интересовал вопрос о том, каким образом свет способствует передаче электронов от дыхательного фермента цитохрома к кислороду. Совместно с Мицуо Нишимура Чанс обнаружил, что перенос электронов из цитохрома к кислороду осуществляется внутри бактерии Chromatium vinosum даже в том случае, если ее клетки охлаждаются до температуры жидкого азота, то есть до –190 °C[41]. Однако было неясно, претерпевал ли процесс передачи электронов какие-либо изменения со снижением температуры. Ответ на этот вопрос мог бы пролить свет на работу всего молекулярного механизма, участвующего в передаче электронов. Чанс понял, что необходимо придать большую скорость начальному этапу реакции короткой, но сильной вспышкой света. Вот где пригодился опыт Дона Де-волта, который несколько лет проработал научным консультантом в небольшой компании, занимавшейся разработкой лазера, способного производить подобные световые импульсы.
Де-волт и Чанс провели совместный эксперимент, в ходе которого рубиновый лазер подавал короткую вспышку ярко-красного цвета в течение 30 наносекунд (30 миллиардных секунды) к бактериальным клеткам, заполненным дыхательными ферментами. Ученые обнаружили, что при снижении температуры скорость переноса электронов также снижалась, пока при температуре 100 К (–173 °C) реакция с переносом электронов не стала протекать в тысячу раз медленнее, чем при комнатной температуре. Это и ожидалось в случае, если процесс переноса электронов зависел только от количества тепловой энергии. Тем не менее, когда Де-волт и Чанс установили температуру реакции ниже 100 К, произошло нечто странное. Скорость процесса переноса электронов не снизилась, а стабилизировалась и продолжала оставаться неизменной, пока температура не упала до 35° выше абсолютного нуля (–238 °C). Это означало, что механизм переноса электронов не работает только на основе «классических» скачков электронов, описанных выше. За ответом вновь следует отправиться в квантовый мир, а именно рассмотреть такое явление, как квантовое туннелирование, которое мы упоминали в главе 1.
Квантовое туннелирование
Из главы 1 вы, должно быть, помните, что квантовое туннелирование — это процесс, в ходе которого частицы преодолевают непреодолимые барьеры с той же легкостью, с какой звук проходит сквозь стены. Квантовое туннелирование было открыто в 1926 году немецким физиком Фридрихом Хундом и вскоре после этого было успешно использовано Георгием Гамовым, Рональдом Гернеем и Эдвардом Кондоном для объяснения понятия радиоактивного распада, причем все трое применили при этом новую в то время математику квантовой механики. Квантовое туннелирование стало одним из главных понятий ядерной физики, а впоследствии нашло широкое применение в материаловедении и химии. Как мы уже говорили, этот эффект имеет огромное значение для земной жизни, поскольку именно благодаря ему пары положительно заряженных ядер водорода, находящиеся внутри Солнца, сливаются воедино, начиная тем самым процесс превращения водорода в гелий, при котором выделяется огромное количество солнечной энергии. И все же до недавнего времени никто не предполагал, что квантовое туннелирование как-то связано с процессами, протекающими в живой материи.
Квантовое туннелирование можно понимать как способ, с помощью которого частицы, находящиеся сначала по одну сторону барьера, попадают на другую его сторону, причем здравый смысл подсказывает, что этот способ невозможен. Под «барьером» мы подразумеваем физически непреодолимый (без необходимого количества энергии) участок пространства — что-то похожее на силовые поля из научной фантастики. Такой барьер может представлять собой узкий участок изоляционного материала, разделяющего проводники, или пустое пространство, например расстояние между двумя ферментами в дыхательной цепи. Он также может быть чем-то вроде энергетического «холма», который мы описывали выше, и ограничивать скорость протекания химических реакций (см. рис. 3.1). Представьте себе мячик, который толкнули вверх по склону невысокого холма. Для того чтобы мячик докатился до вершины, а затем скатился вниз по другому склону, необходимо толкнуть его достаточно сильно. Поднимаясь по склону, мяч будет замедлять движение и без необходимого количества энергии (полученной при достаточно сильном толчке) просто остановится и скатится туда, откуда его толкнули. Согласно классической механике Ньютона, единственный способ заставить мяч преодолеть барьер в виде вершины холма заключается в том, чтобы придать ему достаточное количество энергии для преодоления этой «энергетической» вершины. Но если бы на месте мяча оказался, скажем, электрон, а холм представлял бы собой барьер энергии отталкивания, существовала бы вероятность того, что электрон преодолел бы этот барьер в виде волны, прокладывая себе альтернативный и более эффективный путь. Это и есть квантовое туннелирование (рис. 3.5).
Рис. 3.5. Квантовое туннелирование сквозь энергетический ландшафт
Важной особенностью квантового мира является то, что чем легче частица, тем легче она преодолевает энергетический барьер. Следовательно, ничего удивительного нет в том, что, как только стало понятно, что этот процесс — обычное явление для внутриатомного мира, ученые быстро обнаружили, что наиболее распространено в квантовом мире именно туннелирование электронов, поскольку они представляют собой чрезвычайно легкие элементарные частицы. Эмиссия электронов из металлов под действием электрического поля была описана в конце 1920-х годов именно как туннельный эффект. Квантовое туннелирование объяснило и то, как именно происходит радиоактивный распад: ядра определенных атомов, например урана, вдруг выбрасывают частицу. Этот пример считается первым успешным применением квантовой механики для решения проблем ядерной физики. В современной химии также подробно описано квантовое туннелирование электронов, протонов (ядер водорода) и даже более тяжелых атомов.
Важной особенностью квантового туннелирования является его зависимость (как и многих других квантовых явлений) от волновой природы частиц вещества. Однако тело, состоящее из большого количества частиц, которым необходимо преодолеть барьер, должно поддерживать такие условия, в которых волновые аспекты всех его составляющих подходили бы друг другу (например, совпадали бы длины волн). Иными словами, тело должно представлять собой то, что мы назвали бы когерентной системой или попросту системой, работающей «в унисон». Декогеренция описывает процесс, в ходе которого множество квантовых волн стремительно выбиваются из общего ритма и нарушают общее когерентное поведение, лишая тело способности к квантовому туннелированию. Частица может участвовать в квантовом туннелировании, только если она сохраняет волновые свойства, необходимые для преодоления барьера. Вот почему крупным объектам, например футбольным мячам, не свойственно квантовое туннелирование: они состоят из триллионов атомов, поведение и волновые свойства которых невозможно скоординировать и превратить в когерентную систему.
По квантовым меркам живые клетки также являются крупными объектами, поэтому с первого взгляда возможность квантового туннелирования в теплой и влажной среде живых клеток, где атомы и молекулы движутся в основном беспорядочно, кажется невероятной. Однако, как мы уже выяснили, внутренне строение фермента отличается от неупорядоченной среды клетки: движение его частиц представляет собой скорее хорошо поставленный танец, нежели суетливую толкотню. Давайте разберемся, насколько важна эта хореография частиц для жизни.
Квантовое туннелирование электронов в биологии
Де-волт и Чанс провели свой знаменитый эксперимент в 1966 году. Прошло всего несколько лет, и неожиданный температурный профиль эксперимента оказался вполне объяснимым. Джон Хопфилд — еще один американский ученый, сфера интересов которого охватывает несколько научных дисциплин — от молекулярной биологии и физики до компьютерных технологий. Хопфилд знаменит прежде всего как изобретатель ассоциативной нейронной сети, однако его всегда интересовали также и физические процессы, имеющие большое значение для биологии. В 1974 году он опубликовал работу под названием «Перенос электронов между биомолекулами путем термоактивированного туннелирования»[42], в которой предложил теоретическую модель, объясняющую результаты эксперимента Де-волта и Чанса. Хопфилд указал на то, что при высокой температуре энергии колебаний молекул будет достаточно для того, чтобы электроны могли достичь вершины барьера без туннелирования. При снижении температуры энергии колебаний будет недостаточно для того, чтобы поддержать ферментативную реакцию. Однако Де-волт и Чанс обнаружили, что реакция не прекращается при низких температурах. Хопфилд предположил, что при низких температурах электрон приводится в положение, при котором он оказывается на середине склона энергетического холма, при этом расстояние до вершины, которое он должен преодолеть, становится короче, а шансы на успешное осуществление квантового туннелирования — выше. И он оказался прав: перенос электронов путем туннелирования происходит даже при очень низких температурах, как и показали Де-волт и Чанс.
В наши дни не многие ученые ставят под сомнение тот факт, что электроны путешествуют по дыхательным цепям путем квантового туннелирования. Это позволяет отнести важнейшие реакции покорения энергии в живых и (нефотосинтезирующих) микробных клетках строго к сфере квантовой биологии (о фотосинтезирующих клетках мы будем говорить в следующей главе). Однако электроны очень легкие, даже по меркам квантового мира, а их поведение явно имеет волновую природу. Таким образом, их движение нельзя описывать как хаотичное толкание и отскакивание друг от друга по аналогии с классическими маленькими частицами, несмотря на то что во многих стандартных работах по биохимии, опирающихся на планетарную модель атома, их движение описывается именно так. Намного более обоснованными и подходящими являются представления об электронах в атоме как о расфокусированном волновом облаке «электронности», которое окружает крошечное ядро, — «облаке вероятности», о котором мы говорили в главе 1. Таким образом, нет ничего удивительного в том, что электронные волны способны проходить сквозь энергетические барьеры, словно звуковые волны сквозь стены (см. главу 1), даже в биологических системах.
А как насчет более крупных частиц, таких как протоны или даже целые атомы? Возможно ли их участие в квантовом туннелировании в биологических системах? Скорее всего, вы думаете, что это невозможно. Даже один протон в две тысячи раз тяжелее электрона, а ведь известно, что механизм квантового туннелирования весьма избирателен в этом плане: маленькие частицы легко преодолевают барьеры, в то время как крупные частицы испытывают в этом значительные трудности до тех пор, пока расстояние до вершины барьера не становится слишком малым. Тем не менее недавние блистательные эксперименты показали, что даже относительно крупные частицы осуществляют квантовое туннелирование в ходе ферментативных реакций.
Перемещение протонов
Как вы помните, фермент коллагеназа (см. рис. 3.4) не только стимулирует перенос электронов, но и перемещает протоны с целью ускорить распад коллагеновой цепи. Как уже упоминалось, данная реакция является одним из самых распространенных типов манипулирования частицами, которое осуществляют ферменты. Перемещение атома водорода происходит в каждой третьей реакции с участием ферментов. Обратите внимание на то, что под словосочетанием «атом водорода» могут подразумеваться разные частицы: нейтральный атом водорода (H), состоящий из электрона, окружающего ядро атома (протон); положительно заряженный ион водорода (H+), представляющий собой голое ядро — протон без электрона; или отрицательно заряженный ион — атом водорода с дополнительным электроном (H-).
Как скажет вам любой уважающий себя химик или биохимик, перемещение атомов (хорошо, протонов) водорода внутри одной молекулы или между двумя разными не обязательно подразумевает некий квантовый эффект или по крайней мере явление, для объяснения которого мы должны обращаться к замысловатым процессам квантового мира, например к туннелированию. В самом деле, считается, что в большинстве реакций, протекающих при температурах, при которых возможна жизнь, протоны перемещаются от молекулы к молекуле в основном неквантовыми тепловыми скачками. Однако туннелирование протонов происходит в ходе нескольких реакций, для которых характерна относительная независимость от температуры — реакций, похожих на ту, которую провели Де-волт и Чанс, чтобы продемонстрировать туннелирование электронов.
Жизнь возможна при высоких температурах (по меркам квантового мира). Поэтому на протяжении почти всей истории биохимии ученые полагали, что перенос протонов в ферментативных реакциях обусловлен исключительно неквантовым механизмом скачка через энергетический барьер[43]. Уверенность биохимиков пошатнулась в 1989 году, когда Джудит Клинман и ее коллеги из Беркли впервые доказали участие протонов в квантовом туннелировании в ходе ферментативных реакций[44]. Клинман давно указывала на большое значение туннелирования протонов для молекулярного механизма жизни. Более того, она утверждала, что это один из самых важных и наиболее распространенных механизмов во всей биологии. Открытие было совершено ею в ходе изучения конкретного фермента, а именно алкогольдегидрогеназы (АДГ), чья функция заключается в переносе протона из молекулы спирта в другую небольшую молекулу НАД+ и образовании НАДН (никотинамидадениндинуклеотида, молекулы, о которой мы уже говорили как об основном энергетическом барьере клетки). Команде ученых под руководством Клинман удалось подтвердить возможность туннелирования протонов, используя искусную технику кинетического изотопного эффекта. Эта идея хорошо известна в химии и заслуживает нашего с вами внимания, поскольку она доказывает едва ли не главное предположение квантовой биологии. На протяжении книги мы еще много раз будем обращаться к кинетическому изотопному эффекту.
Кинетический изотопный эффект
Вы когда-нибудь пробовали заехать на вершину холма на велосипеде? Если пробовали, то вас наверняка обгоняли пешеходы. На ровной дороге вы, управляя велосипедом, без труда обогнали бы всех пешеходов и даже бегунов. Так почему же езда на велосипеде по склону холма становится менее продуктивной?
Теперь представьте себе, что вы слезли с велосипеда и идете пешком, ведя его за собой по ровной дороге или по склону холма. Сейчас все очевидно. Идя по склону, вы не только должны сами подниматься, но и толкать вверх велосипед. Вес велосипеда, который не имел особого значения при езде по горизонтальной поверхности, теперь работает против вас, когда вы пытаетесь подняться на вершину холма: вы тянете на себе велосипед, на протяжении многих метров преодолевая силу притяжения Земли. Вот почему производители гоночных велосипедов придают большое значение тому, насколько легкой будет модель велосипеда. Безусловно, вес объекта имеет большое значение в том случае, если его придется двигать человеку, однако наш пример с велосипедом скорее говорит о том, что важен не только вес объекта, который приходится толкать, но и тип движения.
А сейчас вообразите, что вам хочется узнать, какая между двумя городами, скажем А и Б, пролегает местность: ровная или холмистая. При этом у вас не было возможности поехать в эти города и проверить это лично. Если вам известно, что между этими городами есть почтовое сообщение, причем почтальоны используют легкие и тяжелые велосипеды, один из вариантов выяснить особенности рельефа таков: необходимо отправить наборы одинаковых посылок из одного города в другой, при этом половину посылок передать с почтальонами на легких велосипедах, а вторую — с почтальонами на тяжелых. Если выяснится, что доставка всех ваших посылок заняла примерно одинаковое время, вы можете сделать вывод о том, что между городами местность скорее ровная. Если же доставка посылок на тяжелых велосипедах заняла гораздо больше времени, вы поймете, что местность между А и Б скорее холмистая. Таким образом, наши почтальоны-велосипедисты занимаются зондированием неисследованных территорий.
Атомы любого химического элемента бывают, как и велосипеды, разного веса. Возьмем, к примеру, водород — самый простой элемент, который тем не менее представляет для нас с вами большой интерес. Каждый элемент определяется количеством протонов в ядре, которое совпадает с количеством электронов, окружающих ядро. Так, в ядре водорода находится один протон, в ядре гелия — два, лития — три и т. д. Однако ядра атомов содержат не только протоны, но и нейтроны, о которых мы упоминали в главе 1, когда говорили о слиянии ядер водорода внутри Солнца. Если в ядро попадают нейтроны, он становится тяжелее и его физические свойства меняются. Атомы одного элемента, отличающиеся количеством нейтронов в ядре, называются изотопами. Обычный изотоп водорода — самый легкий, поскольку состоит только из одного протона и электрона. Это самая распространенная форма водорода. Существует еще два более редких изотопа водорода: дейтерий (D), имеющий один лишний электрон, и тритий (T), у которого два лишних электрона.
Поскольку химические свойства элементов обусловливаются в основном количеством электронов в атомах, разные изотопы одного и того же элемента, отличающиеся количеством нейтронов в атомных ядрах, будут иметь очень сходные, однако не идентичные химические свойства. Кинетический изотопный эффект показывает, насколько чувствительна химическая реакция к замене атомов в молекуле реагирующего вещества на более тяжелые изотопы. Он определяется как отношение скоростей реакции, протекающей с тяжелыми и легкими изотопами. Например, если в реакции участвует вода, тогда атомы водорода в молекулах H2O могут заменяться своими более тяжелыми собратьями — дейтерием и тритием, образуя соответственно молекулы D2O или T2O. Точно как наши почтальоны на велосипедах, реакция может отреагировать на изменение веса атомов, а может и не отреагировать — все зависит от пути, который выберут вещества, вступающие в реакцию, чтобы в итоге стать ее продуктами.
Существует несколько механизмов, обеспечивающих сильные кинетические изотопные эффекты. Одним из этих механизмов является квантовое туннелирование — процесс, который, как и езда на велосипеде, зависит от массы частицы, пытающейся преодолеть барьер. Чем больше масса частицы, тем меньше проявляются ее волновые свойства, а следовательно, тем ниже вероятность того, что частица преодолеет энергетический барьер. Поэтому увеличение массы атома вдвое, например, в случае замены обычного изотопа водорода дейтерием резко снижает вероятность его участия в квантовом туннелировании.
Таким образом, наличие сильного кинетического изотопного эффекта может свидетельствовать о том, что механизм реакции — путь от реагирующих веществ до продуктов — подразумевает квантовое туннелирование. Однако это не единственно возможный вывод, поскольку эффект может быть обусловлен и классическими химическими явлениями, не связанными с законами квантовой механики. Но если в ходе реакции имеет место именно квантовое туннелирование, реакция должна определенным образом отреагировать на изменение температуры: ее темп перестает ускоряться и выравнивается при низкой температуре, как и показал опыт Де-волта и Чанса в случае туннелирования электронов. То же самое показали опыты Клинман и ее команды для фермента АДГ, причем в ходе экспериментов были получены строгие доказательства того, что квантовое туннелирование было в данном случае частью механизма реакции.
Команде ученых под руководством Клинман удалось получить важные доказательства того, что туннелирование протонов часто происходит в ходе ферментативных реакций при температурах, при которых также протекают жизненные процессы. Другие коллективы ученых, в том числе и группа под руководством Найджела Скраттона из Манчестерского университета, проводили подобные эксперименты с другими ферментами и наблюдали кинетические изотопные эффекты, указывающие на то, что реакция сопровождается квантовым туннелированием[45]. И все же вопрос о том, каким образом ферменты поддерживают квантовую когерентность и способствуют возникновению туннельного эффекта, остается противоречивым. Некоторое время считалось, что ферменты не статичны, что в ходе реакций они постоянно совершают колебания, движутся. Например, «челюсти» коллагеназы открываются и захлопываются каждый раз, когда они разрывают коллагеновую связь. Ученые полагали, что подобные движения, наблюдающиеся в ходе реакции, являются случайными либо призваны захватить субстраты и выровнять и упорядочить все атомы, вступающие в реакцию. Однако в наше время специалисты в области квантовой биологии утверждают, что подобные колебания — так называемые «приводные двигатели» и основная их функция — максимально близко подвести друг к другу атомы и молекулы, чтобы квантовое туннелирование частиц (электронов и протонов) стало возможным[46]. К этой теме — одной из самых захватывающих и быстроразвивающихся в квантовой биологии — мы вернемся в последней главе нашей книги.
Так что же составляет «квантовую часть» квантовой биологии
Каждую отдельную биомолекулу, которая существует или когда-либо существовала в любой живой клетке, создали и разрушили ферменты. Ферменты как никакая другая субстанция близки к понятию «движущих сил жизни». Открытие того, что некоторые (а возможно, и все) ферменты функционируют на основе дематериализации частиц в одном месте пространства и мгновенной их материализации в другой точке, позволяет нам по-новому взглянуть на загадку жизни. Несмотря на то что многие вопросы, связанные с функционированием ферментов, пока не до конца понятны (например, роль перемещения белков), нет сомнений в том, что квантовое туннелирование играет большую роль в механизме их работы.
Несмотря на это, мы не можем не принимать во внимание критических замечаний, высказываемых многими учеными. Они признают открытия Клинман, Скраттона и других исследователей, однако утверждают, что квантовые эффекты играют в биологии такую же роль, как и в работе паровозов: их можно наблюдать, однако они в целом никак не способствуют пониманию того, как функционирует вся система. Данный аргумент нередко звучит в спорах о том, научились ферменты извлекать выгоду из квантовых явлений вроде туннелирования в ходе эволюции или нет. Критики отстаивают мнение, что возникновение квантовых явлений в ходе биологических процессов неизбежно благодаря тому, что большинство биохимических реакций попросту протекают на атомном уровне. Квантовое туннелирование вовсе не волшебство; это явление происходит в нашей Вселенной с самого ее возникновения. Разумеется, то, что является результатом «изобретательности» жизни, не может быть фокусом. И все же мы склонны полагать, что возникновение туннельного эффекта на фоне активности фермента не является неизбежным, учитывая условия внутриклеточной среды — те самые высокие температуры, влажность и сумбурную толкотню молекул.
Как вы помните, пространство живой клетки характеризуется теснотой. Клетка буквально набита молекулами со сложной структурой, которые непрерывно находятся в состоянии волнения и турбулентности, а именно в состоянии хаотичного движения. Напомним, молекулы похожи на разлетающиеся в разные стороны и отталкивающиеся друг от друга бильярдные шары (об этом мы говорили в предыдущем разделе в связи с тем, что заставляет паровоз ехать вверх по склону холма). Как вы помните, именно это хаотичное движение частиц рассеивает и разрушает хрупкую квантовую когерентность, благодаря чему привычный для нас мир кажется нам «нормальным». Ученые не ожидали, что квантовая когерентность может сохраняться при молекулярной турбулентности, поэтому наблюдение таких квантовых эффектов, как туннелирование, в бурном море живой клетки стало удивительным открытием. Каких-то десять или чуть больше лет назад большинство ученых отказались от мысли о том, что туннелирование и другие неустойчивые квантовые явления могут наблюдаться в биологических процессах. Факт, что эти явления были обнаружены в биологических средах, говорит о том, что жизнь принимает особые меры, чтобы извлечь максимальную выгоду из квантового мира и поддерживать работу своих клеток. Но какие именно меры принимает жизнь? Каким образом жизни удается держать основного врага квантового поведения частиц — декогерентность — на расстоянии? Это одна из величайших тайн квантовой биологии, к разгадке которой ученые постепенно продвигаются. Об этом мы поговорим в последней главе нашей книги.
Но прежде, чем начать новую тему нашего разговора, давайте вернемся к тому месту, где мы оставили нашу наноподлодку, а именно в активный центр фермента коллагеназы внутри исчезающего хвоста головастика. Мы быстро покидаем активный центр, как только «челюсти» фермента раскрываются, высвобождая коллагеновую цепочку (и нас с вами). Мы прощаемся с молекулой фермента, похожей на моллюска, который отправляется к следующей пептидной связи в цепи, чтобы разрушить ее. Затем мы совершаем короткое путешествие по организму головастика и наблюдаем обычную работу некоторых других ферментов, которая так же важна для жизнедеятельности организма, как и работа коллагеназы. Следуя за клетками, покидающими исчезающий на глазах хвост головастика и направляющимися в развивающиеся задние конечности, мы наблюдаем возникновение новых коллагеновых волокон, которые прокладываются, словно новые железнодорожные пути, для ускорения формирования организма взрослой лягушки. Зачастую они возникают из тех самых клеток исчезающего хвоста. Новые волокна образуются благодаря ферментам, которые захватывают блоки аминокислот, освобожденные коллагеназой, и сплетают их в новые коллагеновые волокна. У нас нет времени на то, чтобы погрузиться в эти ферменты, однако стоит сказать, что в их активных центрах мы наблюдали бы тот же тщательно поставленный танец, что и в коллагеназе, только с обратной последовательностью движений. Биомолекулы, от которых зависит жизнь, — будь то жиры, ДНК, аминокислоты, белки, сахара — формируются и разрушаются различными ферментами. Кроме того, любое действие, которое совершает молодая лягушка, обусловлено деятельностью ферментов. Например, когда животное замечает муху, электрические импульсы передаются от глаз в мозг посредством особых ферментов-нейромедиаторов, содержащихся в нервных клетках. Когда лягушка выбрасывает свой длинный язык, его мышечные сокращения, благодаря которым лягушка ловит муху и тянет добычу в рот, контролируются другим ферментом — миозином, содержащимся в мышечных клетках. Когда муха попадает в желудок лягушки, в дело вступает целая группа ферментов, ускоряющих переваривание и всасывание питательных веществ. Другие ферменты отвечают за то, чтобы эти питательные вещества трансформировались в ткани организма. Ферменты дыхательной цепи, содержащиеся в митохондриях, помогают трансформировать питательные вещества в необходимую для организма энергию.
Любой этап жизнедеятельности лягушек и всех остальных живых организмов, любой процесс, поддерживающий их и нашу с вами жизнь, поддерживается и ускоряется ферментами — настоящими двигателями жизни. Их каталитические свойства обусловлены способностью некоторых элементарных частиц исполнять отточенные хореографические номера, а значит, и соприкасаться с квантовым миром и использовать в жизненных целях его странные законы.
Однако туннелирование частиц далеко не единственное явление квантового мира, из которого жизнь извлекает для себя выгоды. В следующей главе мы поговорим о том, что в важнейшей химической реакции биосферы участвует еще одно загадочное явление квантового мира.
4. Квантовые биения
Дерево состоит из углерода, но откуда же он взялся? Он берется из воздуха; точнее, из воздуха берется диоксид углерода. Человек смотрит на дерево и думает, что оно [субстанция дерева] появляется из почвы; растения вырастают из почвы. Но если вы задумаетесь, откуда появляется вещество, окажется… что деревья рождаются из воздуха… Диоксид углерода из воздуха попадает внутрь дерева, и дерево меняет его, вытесняя кислород… Мы знаем, что атомы кислорода и углерода [в молекуле диоксида углерода] очень тесно связаны между собой… Как же дереву удается разрывать эти связи?.. Падающий на дерево солнечный свет разбивает связи между кислородом и углеродом… оставляя в субстанции дерева углерод и воду!
Ричард Фейнман[47]
Массачусетский технологический институт, более известный как МТИ, является одним из мировых научных центров. Он был основан в 1861 году в Кембридже, штат Массачусетс. Из тысячи его нынешних профессоров девятеро являются лауреатами Нобелевской премии (данные за 2014 год). Среди его студентов были астронавты (в трети космических полетов НАСА участвовали выпускники МТИ), политики (в том числе Кофи Аннан, бывший Генеральный секретарь ООН, лауреат Нобелевской премии мира за 2001 год), предприниматели (например, Уильям Реддингтон Хьюлетт, соучредитель компании «Хьюлетт-Паккард») и, конечно, многие ученые, среди которых — создатель квантовой электродинамики, нобелевский лауреат Ричард Фейнман. Однако самым известным обитателем института является вовсе не человек, а растение — яблоня, растущая в Президентском саду в тени купола одного из корпусов МТИ. Она была отчеренкована от другого дерева, растущего в Королевском ботаническом саду в Англии, прямого потомка той самой яблони, под которой, предположительно, сидел Исаак Ньютон и наблюдал падение знаменитого яблока.
Сидя под деревом на ферме своей матери в Линкольншире, Ньютон задавался одновременно простым и сложным вопросом: почему яблоки падают? Нелепо будет предположить, что ответ Ньютона на этот вопрос, перевернувший физику и всю науку в целом, мог быть неправильным. Но у этой знаменитой сцены есть один аспект, ускользнувший от внимания Ньютона и остававшийся незамеченным до сих пор: что вообще яблоко делало на дереве? Если ускоренное падение яблока на землю так озадачило ученого, то насколько более непонятным было соединение воздуха и воды Линкольншира с образованием сферического предмета на ветвях дерева? Почему Ньютон заинтересовался сравнительно тривиальной причиной воздействия земного притяжения на яблоко и не заметил совершенно непостижимую загадку первичного образования плода?
Одной из причин, объясняющих недостаток любопытства Ньютона, было общепринятое в XVII веке мнение о том, что, несмотря на основанную на законах физики механистичность всех объектов, включая живые существа, их собственная внутренняя динамика (и та, что обеспечивает рост яблок) приводится в движение жизненной силой, или lan vital, исходящей из сверхъестественного источника, не поддающегося сухим математическим уравнениям. Но, как мы уже знаем, витализм не устоял перед последующими открытиями в области биологии, генетики, биохимии и молекулярной биологии. Ни один серьезный ученый сегодня не сомневается, что жизнь объяснима с научной стороны; но остается открытым вопрос, какая наука может предоставить тому доказательство. Несмотря на альтернативные заявления таких ученых, как Шредингер, большинство биологов все еще опираются на классические законы, в которых ньютоновские силы воздействуют на шаростержневые биомолекулы, чье поведение напоминает, скажем так, поведение шаров и стержней. Даже Ричард Фейнман, один из последователей Шредингера, описывал фотосинтез (в отрывке, представленном в начале главы) в строго классических терминах, например «солнечный свет падает и отрывает кислород от углерода», словно свет — это клюшка для гольфа, способная ударить по кислородному шару и оторвать его от молекулы углеводорода.
Молекулярная биология и квантовая механика развивались скорее параллельно, чем совместно. Биологи редко посещали лекции по физике, а физики уделяли мало внимания биологии. Однако в апреле 2007 года группа физиков и математиков МТИ, работавших в загадочной сфере под названием «квантовая теория информации», собралась на очередное заседание публицистического кружка (каждый член по очереди представлял новую статью, которую он нашел в научной литературе). Один из участников принес экземпляр New York Times со статьей, в которой было выдвинуто предположение о том, что растения являются квантовыми компьютерами (подробности об этих замечательных механизмах — в главе 8). Группа взорвалась хохотом. Один из членов команды, Сет Ллойд, так вспоминает о первом впечатлении от подобного «квантового жульничества»: «Нам казалось, что это настоящая истерия… В голове прозвучало как „О Боже, это самая безумная вещь, которую я слышал в жизни“»[48]. Причиной их недоверия стал тот факт, что многи наиболее выдающиеся и финансируемые исследовательские группы в мире могли потратить десятилетия, пытаясь выяснить, как построить квантовый компьютер, машину, которая может проводить определенные расчеты намного быстрее и эффективнее, чем самые мощные современные компьютеры (вместо использования цифровых битов информации, выраженных в виде 0 или 1, новый компьютер позволит информации быть и нулем, и единицей одновременно, таким образом, производить все возможные расчеты синхронно — высшая степень параллельной обработки данных). В статье из New York Times говорилось о том, что ничтожная былинка способна проводить своего рода квантовые фокусы, которые лежат в основе квантовых вычислений. Неудивительно, что исследователи из МТИ были настроены скептично. Они, возможно, не могут построить работающий квантовый компьютер, но если статья правдива, то они могут съесть такой компьютер с салатом на ланч!
Тем временем недалеко от аудитории, где члены кружка хохотали над статьей от всей своей квантовой души, фотон света со скоростью почти 300 тысяч километров в секунду стремился к дереву со знаменитой родословной.
Главная загадка квантовой механики
Мы вскоре вернемся к фотону и дереву и узнаем, как они связаны с квантовым миром, но сначала предлагаем вам рассмотреть удивительно простой эксперимент, который подчеркивает таинственность квантового мира. Пока мы прилагаем все усилия, чтобы как можно понятнее объяснить, что подразумевают такие выражения, как «квантовая суперпозиция», нет ничего нагляднее знаменитого опыта с двумя щелями, описанного ниже.
Опыт с двумя щелями наиболее просто и в полной мере показывает, что в квантовом мире все устроено по-другому. Частицы могут вести себя как волны, распространяясь в пространстве, а волны могут иногда приобретать свойства частиц. Мы уже говорили о корпускулярно-волновом дуализме: во введении он описан как особенность, благодаря которой становится понятно, как Солнце генерирует энергию; в главе 3 мы с вами разобрались в том, как волновые характеристики электронов и протонов позволяют им преодолевать энергетические барьеры в структуре ферментов. В этой главе вы узнаете, что корпускулярно-волновой дуализм также влияет на наиболее важные биохимические реакции в биосфере: превращение воздуха, воды и света в растения, микроорганизмы и — косвенно — во всех нас. Но сначала мы должны понять, как смелая идея о том, что частицы могут находиться в нескольких местах одновременно, подтверждается простейшими, изящными и в то же время наиболее масштабными экспериментами в истории: один из этих экспериментов, согласно Ричарду Фейнману, «лежит в сердце квантовой механики».
Однако должен предупредить, что описанное тут покажется вам невозможным и вы можете подумать, что должен быть более рациональный способ объяснить происходящее. Вы можете размышлять, в чем же секрет этого магического фокуса. Или вы можете прийти к выводу, что опыт представляет собой чистой воды теоретическую спекуляцию, выдуманную учеными, которым не хватило воображения, чтобы понять механизмы природы. Но ни одно из этих объяснений не является верным. Опыт с двумя щелями не имеет (здравого) объяснения, но является реальным и воспроизводился тысячи раз.
Мы опишем эксперимент в три этапа; первые два будут касаться описания условий, чтобы вы могли оценить непостижимые результаты третьей, основной, стадии.
Сначала пучок монохромного света (состоящий из волн одного цвета, то есть волн одинаковой длины) направляется на экран с двумя узкими щелями, которые позволяют некоторому количеству света пройти через обе щели на второй экран (рис. 4.1).
Рис. 4.1. Опыт с двумя щелями, стадия 1. Когда монохромный свет (имеющий определенную длину волны) направляется на две щели, каждая щель выступает в качестве нового источника света с другой стороны. Благодаря волновой природе свет распространяется (рассеивается) после прохождения через каждую щель, так что круговые волны перекрываются и взаимодействуют друг с другом, образуя темные и светлые полосы на заднем экране
Точно контролируя ширину щелей, расстояние между ними и расстояние между двумя экранами, мы можем создать последовательность светлых и темных полос на втором экране, известную как интерференционная картина.
Интерференционные картины представляют собой графики волн, их легко увидеть в любой волновой среде. Бросьте камень на гладь пруда, и вы увидите, как ряд концентрических циркулярных волн расходится от места всплеска. Бросьте два камня в один пруд, и каждый из них будет образовывать свои собственные концентрические волны. В том месте, где волны от двух камней перекрываются, вы увидите интерференционную картину (рис. 4.2).
Рис. 4.2. Конструктивная и деструктивная интерференция волн
Там, где пик одной волны встречается с минимальной точкой другой, они нейтрализуют друг друга, что приводит к отсутствию волны в этой точке. Это явление называют деструктивной интерференцией. И наоборот, там, где встречаются два пика или две минимальные точки, они усиливают друг друга, создавая двойную волну: это явление называют конструктивной интерференцией. Подобная картина угасания и усиления волн может наблюдаться в любой волновой среде. Английский физик Томас Янг продемонстрировал интерференцию пучков света в ранней версии опыта с двумя щелями, проведенного более 200 лет назад. Результат убедил его и многих других ученых в том, что свет на самом деле представляет собой волну.
Интерференция, которую мы наблюдаем в опыте с двумя щелями, в первую очередь зависит от пути, по которому волны света проходят через щель и затем распространяются — свойство волн, известное как дифракция. Таким образом, пучки, исходящие из щелей, до попадания на задний экран перекрывают и поглощают друг друга точно так же, как волны на воде. В определенных точках экрана волны света, исходящие из двух щелей, попадают в фазу, когда пики и низшие точки чередуются — либо потому, что они прошли одинаковое расстояние до экрана, либо потому, что разница в пройденном ими расстоянии кратна расстоянию между их пиками. В этом случае высшие и низшие точки волн сочетаются и образуют еще более высокие и низкие точки. Это явление называют конструктивной интерференцией. При наслаивании волн образуется свет высокой интенсивности и, следовательно, яркая полоса на экране. Но в других точках свет из двух щелей падает вне фазы и высшая точка одной волны встречает низшую точку другой. В этих точках волны нейтрализуют друг друга, что приводит к образованию темной полосы на экране, — деструктивная интерференция. Между этими двумя крайностями комбинация не попадает полностью ни «в фазу», ни «вне фазы» и некоторое количество света остается. Таким образом, мы видим на экране не точную последовательность светлых и темных полос, а плавное изменение интенсивности между максимальными и минимальными точками в интерференционной картине. Это закономерное волнообразное плавное изменение интенсивности является ключевым индикатором волновых феноменов. Есть пример и со звуковыми волнами: музыкант, настраивая инструмент, прислушивается к биениям[49], которые получаются, если одна нота очень близка по частоте другой, так что по пути к уху музыканта они иногда попадают в фазу или вне фазы. Вариация их сочетаний производит общий звук, громкость которого периодически возрастает и снижается. Плавное изменение интенсивности звука происходит по причине интерференции между двумя отдельными волнами. Отметим, что эти биения представляют собой явление, подчиняющееся законам классической физики, которое не требует квантового толкования.
Ключевым фактором в эксперименте с двумя щелями является то, что пучок света, попадающий на первый экран, должен быть монохромным (состоящим из волн одной длины). Белый свет, который исходит от обычной лампочки, наоборот, состоит из волн различной длины (всех цветов радуги), так что волны будут падать на экран беспорядочно. В таком случае, несмотря на то что пики и низшие точки волн будут взаимодействовать друг с другом, полученная картина будет настолько сложной и размытой, что отдельные полосы будут неразличимы. Подобным образом, несмотря на простоту получения интерференционной картины при бросании в пруд двух камней, огромный водопад, низвергающийся в пруд, образует столько волн, что увидеть какую-либо когерентную интерференционную картину невозможно.
Теперь, на втором этапе опыта с двумя щелями, мы будем использовать не свет, а пули, летящие на экран. Суть в том, что мы используем твердые частицы, а не распространяющиеся волны. Каждая пуля должна, конечно, пройти через одну или другую щель, но не обе одновременно. После того как необходимое количество пуль пройдет через щели, мы увидим на заднем экране две полосы дырок от пуль, соответствующие двум щелям (рис. 4.3).
Рис. 4.3. Опыт с двумя щелями, этап 2. В отличие от поведения световых волн поток летящих через щели пуль демонстрирует поведение частиц. Каждая пуля, попадающая на задний экран, должна пройти через одну или другую щель, но не обе (конечно, принимая во внимание, что середина экрана имеет достаточную толщину, чтобы задержать пули, не попавшие в щели). В отличие от многополосной интерференции картина на заднем экране показывает скопление пуль вокруг двух узких полос, соответствующих каждой щели
Конечно, мы не имеем дела с волнами. Каждая пуля представляет собой отдельную частицу и не взаимодействует с другой, так что интерференции не наблюдается.
А теперь третий этап: квантовый «фокус». Опыт повторяют с использованием атомов вместо пуль. Пучок атомов, исходящий из источника, летит на экран с двумя узкими щелями[50]. Для регистрации попадания атомов второй экран имеет фотолюминесцентное покрытие, на котором проявляется крошечная яркая точка в месте попадания атома.
Если бы на микроскопическом уровне действовал здравый смысл, то атомы повели бы себя как крошечные пули. Сначала мы проведем опыт, открыв только левую щель, и увидим полосу светлых точек на экране позади открытой щели. Определенное количество точек кладется на экран неровно: это может свидетельствовать о том, что некоторые атомы отталкиваются от краев, изменяют траекторию и не проходят строго через щель. Далее мы откроем правую щель и подождем, пока на заднем экране появятся яркие точки.
Если бы вас попросили предсказать распределение ярких точек и вы бы ничего не знали о квантовой механике, вы бы, естественно, догадались, что оно напоминало бы картину, полученную в опыте с пулями. А именно: позади каждой щели образуется полоса точек, то есть на экране возникают два различных светящихся участка, более ярких в центре и постепенно угасающих к краям, поскольку попадания атомов становятся более редкими. Также можно ожидать, что участок посередине между двумя яркими полосами будет темным, так как он соответствует части экрана, непроницаемой для атомов, в какую бы щель они ни попали.
Однако это не соответствует тому, что мы наблюдаем. Наоборот, мы видим очень четкую картину интерференции светлых и темных полос, точно такую же, как в опыте со светом. Верите или нет, но наиболее яркая часть экрана располагается в центре: на участке, на который не должно попадать много атомов (рис. 4.4).
Рис. 4.4. Опыт с двумя щелями, этап 3. При замене пуль на атомы, испускаемые из источника, расположенного перед щелями (разумеется, на каждом этапе подбираются соответствующие ширина и расстояние между щелями), мы вновь наблюдаем волнообразную интерференционную картину. Несмотря на то что каждый атом, попадающий на задний экран в определенной точке, ведет себя как частица, они объединяются в полосы, так же как мы видели в случае света. Почему атомы проходят через две щели одновременно, без чего мы не увидели бы множественных полос интерференции?
Фактически при правильном расстоянии между щелями и правильном расстоянии между двумя экранами мы можем убедиться, что яркий участок на заднем экране (куда атомы могли попасть при одной открытой щели) теперь, при двух открытых щелях, является темным (туда не попадает ни одного атома). Каким образом открытие второй щели, которая позволяет пройти большему количеству атомов, может помешать попаданию атомов на определенные части экрана?
Давайте посмотрим, сможем ли мы объяснить происходящее с помощью обычной логики, не прибегая пока к квантовой механике. Предположим следующее: несмотря на то что каждый атом представляет собой микроскопическую частицу (в конце концов, каждый атом ударяет в экран в одном месте), огромное количество атомов, сталкивающихся и взаимодействующих друг с другом особым согласованным образом, образуют картину с видимостью интерференции. Как бы там ни было, мы знаем, что волны воды на самом деле состоят из множества молекул воды, которые по отдельности не являются волнами. Именно скоординированное движение триллионов молекул воды, а не каждая молекула в отдельности проявляет волнообразные свойства. Возможно, атомная пушка испускает координированный поток атомов подобно волновой установке в бассейне.
Чтобы проверить теорию согласованных атомов, мы повторим эксперимент, но сейчас будем посылать атомы по одному. Мы включаем атомную пушку и ждем появления светящегося пятна на заднем экране, прежде чем включить ее второй раз, и т. д. Сначала может показаться, что здравый смысл все же преобладает: каждый атом, проходящий через щели, оставляет только одно локализованное пятно света в определенной части экрана. Кажется, атомы вылетают из пушки в виде частиц, подобно пулям, и попадают на экран как частицы. Безусловно, в пространстве между пушкой и экраном они также должны вести себя как частицы. Но — внимание — фокус: из шляпы появляется квантовый кролик. По мере того как пятна, каждое из которых регистрирует попадание одного атома-пули, постепенно покрывают экран, на нем вновь появляются светлые и темные полосы интерференции. Поскольку атомы теперь проходят через цель по одному, мы не можем говорить, что существует коллективное поведение множества атомов, сталкивающихся и взаимодействующих между собой. Это не похоже на волны воды. И снова мы сталкиваемся с противоречивым результатом: на заднем экране имеются места, на которые атомы могут попасть только при одной открытой щели и которые остаются полностью темными при открытии также второй щели, несмотря на то что ее открытие предоставляет дополнительный путь попадания атомов на экран. Кажется, что атом, проходя через одну щель, каким-то образом знает, открыта вторая щель или нет, и действует соответствующим образом!
Итак, каждый атом испускается из пушки как крошечная частица и падает на второй экран также как частица, что видно из крошечной вспышки света при его попадании. Но в пространстве между ними, при встрече с двумя щелями, происходит что-то волшебное, подобно распространению волны, которая расщепляется на два компонента, каждый из которых проходит через щель и взаимодействует с другим по другую сторону экрана. Как еще может один атом знать о состоянии (открытом или закрытом) обеих щелей одновременно?
Не забывая о подвохе, давайте посмотрим, можем ли мы поймать атомы, поджидая их позади щелей. Это можно осуществить, разместив датчик за левой щелью, скажем, чтобы он регистрировал «сигнал» (возможно, звуковой сигнал), когда атом будет проходить через эту щель по пути к экрану[51]. Также мы можем поместить второй датчик за правой щелью для регистрации атомов, которые проходят через эту щель. Теперь, если атом проходит через одну или другую щель, мы услышим звуковой сигнал от правого или левого датчика. Но если атом сможет каким-то образом преодолеть свою пулеобразную природу и пройти через обе щели, то оба детектора издадут звуковой сигнал одновременно.
Теперь мы видим, что при каждом включении атомной пушки, которое сопровождается появлением яркой точки на экране, сигнал издает левый или правый датчик, но не оба сразу. Несомненно, теперь мы наконец имеем доказательства, что взаимодействие атомов имеет место при прохождении атомов через одну или другую щель, но не обе одновременно. Однако будем терпеливыми и продолжим наблюдать за экраном. По мере того как отдельные вспышки света объединяются, мы видим, что рисунок, создаваемый ими, уже не похож на интерференционную картину. Вместо нее появляются две яркие полосы, указывающие на скопление множества атомов позади каждой щели, так же как в опыте с пулями. Теперь в ходе эксперимента атомы ведут себя как обычные частицы. Как будто каждый атом ведет себя как волна при встрече со щелями, если за ним не наблюдают, в противном случае он просто остается крошечной частицей.
Возможно, присутствие датчика вызывает проблему, влияя на странное поведение атомов, проходящих через щели. Давайте проверим это, удалив один датчик, скажем, справа. Мы все еще можем получить некоторую информацию из этой схемы, потому что при включении пушки и появлении сигнала и яркого пятна на экране мы будем знать, что атом должен был пройти через левую щель. Когда мы включаем пушку, не слышим сигнала, но видим яркую точку на экране, то мы знаем, что атомы должны были попасть на экран через правую щель. Теперь мы можем знать, прошли атомы через левую или правую щель, но их траектория «нарушается» только с одной стороны. Если датчик сам по себе вызывает проблемы, мы будем ожидать, что атомы, которые вызвали звуковой сигнал, ведут себя как пули, а атомы, которые не вызвали сигнала (и прошли через правую щель), ведут себя как волны. Вероятно, мы увидим смесь пулеобразной картины (от атомов, прошедших через левую щель) и картины интерференции (от атомов, прошедших через правую щель) на экране.
Но это не так. В данной ситуации мы снова не наблюдаем интерференционной картины. На экране позади каждой щели образуется рисунок, выполненный пулеобразными атомами, ведущими себя как частицы. Кажется, что самого присутствия датчика, регистрирующего расположение атома, достаточно для уничтожения его волнового поведения, даже если датчик располагается на некотором расстоянии от траектории атома, проходящего через другую щель!
Возможно, физического присутствия датчика рядом с левой щелью достаточно, чтобы повлиять на прохождение атомов через нее, так же как большой камень изменяет направление воды в стремительном потоке. Мы можем провести эксперимент, выключив левый датчик. Он все еще на своем месте, так что мы можем ожидать, что его влияние будет практически таким же. Но теперь, в присутствии выключенного датчика, на экране опять появляется интерференционная картина! Все атомы, участвующие в опыте, опять стали вести себя как волны. Почему атомы ведут себя как частицы в присутствии включенного датчика около левой щели, но как только датчик выключают, они ведут себя как волны? Как частица, проходящая через правую щель, знает о том, включен или выключен датчик, расположенный слева?
На данном этапе вам придется забыть о логике и здравом смысле. Теперь мы имеем дело с корпускулярно-волновым дуализмом крошечных объектов, таких как атомы, электроны или фотоны, которые ведут себя как волна, если мы не знаем, через какую щель они проходят, и как частица, если мы наблюдаем за ними. Это и есть процесс наблюдения или измерения квантовых объектов, о котором мы говорили в главе 1, рассматривая демонстрацию квантового запутывания отдельных фотонов в эксперименте Алена Аспе. Как вы помните, команда Аспе измеряла фотоны, пропуская их через поляризованную линзу, устранявшую их запутанное состояние — которое является признаком их волновой природы, — заставляя их выбирать одно классическое поляризационное направление. Подобным образом измерение атомов, участвующих в опыте с двумя щелями, заставляет их выбирать между прохождением через правую или левую щель.
Квантовая механика действительно предоставляет нам замечательное логичное обоснование данного феномена; но единственное объяснение увиденного — результата опыта — не о том, что происходит, когда мы не наблюдаем. Однако, поскольку мы можем только видеть и измерять, вероятно, нет смысла требовать от квантовых объектов большего. Как мы можем оценить правомерность или правоту сообщения о феномене, которое мы не сможем никогда, даже в теории, проверить? Как только мы пытаемся это сделать, мы изменяем результат.
Квантовая интерпретация опыта с двумя щелями заключается в том, что в любой данный момент времени каждый атом должен быть описан набором чисел, определяющим его вероятное расположение в пространстве. Это показатель, который мы описывали в главе 2 как волновую функцию. Тогда мы говорили о волновой функции на примере отслеживания волны преступления, распространяющейся по городу путем определения вероятности ограблений в различных районах. Подобным образом волновая функция, описывающая прохождение атома через две щели, прослеживает вероятность обнаружения его в любой точке аппарата в любое заданное время. Но, как мы уточняли ранее, если грабитель должен иметь одно расположение в пространстве и времени и волна «вероятности преступления» описывает только наш недостаток знаний о его действительном расположении, то, наоборот, волновая функция атома в опыте с двумя щелями реальна, то есть она описывает физическое положение атома, который в действительности не имеет конкретного положения, если мы его не измеряем. Атом, таким образом, находится во всех местах одновременно — с переменной вероятностью, конечно, так что мы вряд ли найдем атом в местах, где его волновая функция мала.
Таким образом, вместо отдельных атомов, участвующих в опыте с двумя щелями, мы должны рассматривать волновую функцию, проходящую от источника к заднему экрану. При прохождении через щели волновая функция расщепляется на две и каждая половина проходит через одну из щелей. Отметим: то, что мы описываем здесь, является способом, которым абстрактное математическое число изменяется во времени. Бесполезно спрашивать, что в действительности происходит, так как мы должны посмотреть, чтобы проверить. Но как только мы попытаемся это сделать, мы исказим результат.
Возникает вопрос: когда волновая функция вновь «превращается» в локализованный атом? Ответим: когда мы пытаемся определить его положение. При подобном измерении квантовая волновая функция распадается до единственной вероятности. Опять же это не похоже на ситуацию с грабителем, где неопределенность его местонахождения внезапно сводится к единственной точке, после чего его арестовывает полиция. В этом случае определение повлияло именно на нашу информацию о местонахождении грабителя. Он был всегда только в одном месте в одно время. Но для атома это не так; в отсутствие какого-либо измерения атом действительно находится везде.
Таким образом, квантовая волновая функция рассчитывает вероятность обнаружения атома в конкретном месте, где мы сможем выполнить измерение его положения в данное время. Там, где перед измерением волновая функция велика, полученная вероятность обнаружения атома будет высока. Но там, где она мала, возможно, из-за деструктивной волновой интерференции, соответственно вероятность обнаружения атома, если мы захотим посмотреть, низка.
Мы можем представить волновую функцию, описывающую один атом после его выхода из источника. Он ведет себя как волна, которая стремится к щелям, так что на уровне первого экрана ее амплитуда будет равна в каждой щели. Если мы помещаем датчик к одной из щелей, нам следует ожидать равных вероятностей: 50 % времени мы будем фиксировать атом на левой щели и 50 % времени — на правой щели. Но — и это важно — если мы не пытаемся обнаружить атом на уровне первого экрана, то волновая функция проникает через обе щели без разрушения. Таким образом, в квантовых терминах мы можем говорить о волновой функции, которая описывает один атом в его суперпозиции: его существовании в двух местах одновременно, соответственно его волновой функции, проходящей через правую и левую щели одновременно.
По другую сторону щелей каждая отдельная часть волновой функции, одна из левой и одна из правой щели, снова распространяется и формирует набор математических волн, которые перекрываются, в одних точках усиливая, а в других — нейтрализуя амплитуду друг друга. Комбинированный эффект состоит в том, что волновая функция имеет картину, характерную для других волновых феноменов, таких как свет. Но будем иметь в виду, что эта сложная волновая функция все еще характерна для одного атома.
На втором экране, где осуществляется окончательное измерение положения атома, волновая функция позволяет нам рассчитать вероятность обнаружения частицы в различных точках экрана. Яркие полосы на экране соответствуют тем позициям, где две части волновой функции, исходящей из двух щелей, усиливают друг друга, а темные полосы соответствуют тем позициям, где они нейтрализуют друг друга и образуют нулевую вероятность обнаружения атома в этих позициях.
Важно помнить, что этот процесс усиления и нейтрализации — квантовая интерференция — имеет место даже при участии одной частицы. Помните, что существуют участки на экране, которых атомы, испускаемые одновременно, могут достичь только при одной открытой щели и которые остаются недостижимыми при обеих открытых щелях. Это имеет смысл только тогда, когда каждый атом, выпущенный из атомной пушки, описывается волновой функцией, которая может проходить оба пути одновременно. Комбинированная волновая функция с участками конструктивной и деструктивной интерференции исключает возможность обнаружения атома в некоторых позициях на экране, доступных только при одной открытой щели.
Все квантовые частицы, будь то элементарные частицы или атомы или молекулы, состоящие из этих частиц, демонстрируют волнообразное поведение, так что они могут взаимодействовать друг с другом. В таком квантовом состоянии они могут проявлять любое странное квантовое поведение, такое как нахождение в двух местах одновременно, вращение в обоих направлениях одновременно, прохождение через непроницаемые барьеры или причудливые запутанные связи с отдаленными партнерами.
В таком случае почему вы или я, состоящие из квантовых частиц, не можем быть в двух местах одновременно? Это было бы очень полезно в наше суетливое время. Ответ на это очень прост: чем больше и массивнее тело, тем меньше волновых свойств оно имеет и тело с массой и размерами человека или еще что-то достаточно большое и видимое невооруженным глазом будет иметь такую малую квантовую длину волны, которая не имеет измеримого эффекта. Но, если посмотреть глубже, вы можете подумать, что каждый атом в вашем теле наблюдается, или измеряется, другими атомами вокруг него, так что любые минимальные квантовые свойства, которыми он может обладать, очень быстро разрушаются.
Что же тогда мы подразумеваем под «измерением»? Мы уже кратко ответили на этот вопрос в главе 1, но теперь должны остановиться на нем подробнее, так как это является ключевым моментом в вопросе, насколько велик квантовый компонент в квантовой биологии.
Квантовое измерение
Несмотря на свою объяснительную силу, квантовая механика не говорит нам ничего о том, как сделать шаг от уравнений и описания того, как электрон, скажем, движется вокруг атома, к тому, что мы видим при конкретном измерении этого электрона. По этой причине отцы-основатели квантовой механики предложили набор временных правил, которые стали приложением к математическому формализму. Они известны как квантовые постулаты и предоставляют своего рода руководство о том, как перевести данные математического моделирования уравнений в осязаемые объекты, которые мы можем наблюдать, такие как положение или энергия атома в любой заданный момент.
Что касается реального процесса, когда атом перестает находиться «здесь или там» и находится только «здесь», то никто не знает, что происходит. Большинство физиков с радостью приняли прагматичную точку зрения о том, что это «просто происходит». Проблема в том, что ситуация требует определения различий между квантовым миром, где происходят такие чудеса, и нашим ежедневным макромиром, где поведение объектов основано на органах чувств. Измерительный прибор, который обнаруживает электрон, должен быть частью этого макромира. Но как, где и когда этот измерительный процесс имеет место, основатели квантовой механики никогда не уточняли.
Вопрос хрупкости квантовой когерентности (удержание волновой функции от исчезновения), несомненно, является главной задачей группы МТИ, с которой мы познакомились в начале этой главы, и их коллег по всему миру в их стремлении создать квантовый компьютер. Вот почему они так скептически отнеслись к заявлению в New York Times о том, что растения представляют собой квантовые компьютеры. Физики применили все виды интеллектуальных и дорогостоящих уловок, чтобы защитить квантовый мир внутри своих компьютеров от разрушающей когерентность внешней среды. Таким образом, идея, что квантовая когерентность может поддерживаться в жарком влажном и молекулярно турбулентном климате внутри травинки, была, очевидно, воспринята как безумие.
Однако теперь мы знаем, что на молекулярном уровне многие важные биологические процессы могут на самом деле происходить очень быстро (порядка триллионов в секунду) и также могут быть ограничены короткими атомными расстояниями. Именно такие расстояния и скорости, на которых происходят квантовые процессы, например туннелирование, могут имеет эффект. Таким образом, несмотря на то, что полностью избежать декогерентности невозможно, ее можно отсрочить настолько, чтобы получить биологический эффект.
Путешествие к центру фотосинтеза
Взгляните на секунду на небо, и в ваш глаз попадет поток света длиной около 300 тысяч километров. В ту же секунду на земле растения и фотосинтезирующие микроорганизмы используют поток солнечного света для получения около 16 тысяч тонн нового органического вещества в виде деревьев, травы, водорослей, ландышей, гигантских секвой и яблок. В этом разделе мы должны разобраться, как действительно происходит этот первый шаг в трансформации неживого вещества в практически всю биомассу нашей планеты; и в качестве примера трансформации мы возьмем превращение воздуха Новой Англии в яблоко на дереве Ньютона.
Чтобы увидеть этот процесс в действии, мы снова позаимствуем наноподлодку, которую использовали для исследования действия ферментов в предыдущей главе. Когда вы взойдете на борт, держите курс наверх, в листву дерева, на один из его растущих листьев. Лист продолжает расти, пока его дальние края не скроются за горизонтом, а его на первый взгляд гладкая поверхность превращается в неровную платформу, вымощенную зелеными кирпичиками с вкраплениями небольших круглых светлых блоков, в каждом из которых расположена дырка-пора. Зеленые кирпичи называются клетками эпидермиса, а круглые блоки — устьицами: их функция — пропускать воздух и воду (субстраты фотосинтеза) с поверхности листа в его внутреннюю среду. Вы ведете аппарат над ближайшим устьицем и, когда длина судна уменьшается до микрометра (миллионной части метра), снижаетесь, чтобы пройти сквозь пору и оказаться внутри зеленой и яркой среды листа.
Оказавшись внутри, вы решаете отдохнуть в уютном и тихом интерьере листа, выстланном рядами зеленых клеток, похожих на камни, и накрытом толстыми цилиндрическими канатами. Канаты — это вены листа, которые либо несут воду от корней к листу (сосуды ксилемы), либо переносят только что синтезированные сахара от листа ко всему растению (сосуды флоэмы). Если вы продолжите уменьшаться в размере, то увидите, что клетка, похожая на камень, расширяется во всех направлениях, пока не увеличится до размеров футбольного поля. В таком масштабе — ваш рост равен примерно десять нанометров, или одна стотысячная миллиметра, — вы можете увидеть, что ее поверхность покрыта дерном из сети волокнистых ячеек, совсем как толстый джутовый ковер. Этот волокнистый материал представляет собой клеточную стенку, своего рода экзоскелет. Ваша наноподлодка оснащена инструментами, которые вы используете, чтобы проложить путь через этот волокнистый ковер и увидеть восковой нижний слой, клеточную мембрану, последний водонепроницаемый барьер между клеткой и внешней средой. При более близком рассмотрении выясняется, что она не полностью гладкая, а пронизана отверстиями, заполненными водой. Эти мембранные каналы называются поринами и представляют собой водопроводную систему клетки, пропускающую внутрь питательные вещества и выводящую продукты распада. Чтобы проникнуть в клетку, вам придется только подождать возле одного из поринов, пока он не расширится настолько, чтобы вы могли проникнуть в водную среду клетки.
Уже через канал порина вы сможете сразу увидеть, что внутренняя среда клетки очень отличается от внешней. Вы не найдете великолепных колонн и широких залов. Интерьер заполнен и в некотором роде беспорядочен. Он выглядит как очень шумный деловой центр! Водянистая жидкость, заполняющая клетку, цитоплазма, плотная и вязкая; местами она больше похожа на гель, чем на жидкость. В геле подвешены тысячи неправильных шаровидных объектов, которые находятся в состоянии непрерывного внутреннего движения. Это белковые ферменты, похожие на те, что мы видели в предыдущей главе, ответственные за проведение метаболических процессов в клетке, разрушают питательные вещества и синтезируют биомолекулы, такие как углеводы, ДНК, белки и жиры. Многие их этих ферментов привязаны к сети кабелей (цитоскелету клетки), которая, совсем как горнолыжный подъемник, переносит многочисленные грузы в различные места клетки. Транспортная сеть исходит из нескольких узлов, где кабели прикрепляются к большим зеленым капсулам. Эти капсулы представляют собой хлоропласты клетки, в которых происходит центральный процесс фотосинтеза.
Вы ведете подлодку через вязкую цитоплазму. Вы продвигаетесь медленно, но в конце концов подходите к ближайшему хлоропласту. Он лежит под вами, как огромный зеленый воздушный шар. Он, как внутренняя клетка, окружен прозрачной мембраной, через которую видны большие стопки зеленых монетоподобных предметов. Это тилакоиды, заполненные молекулами хлорофилла, пигмента, придающего растениям зеленый цвет. Тилакоиды — это механизмы фотосинтеза, которые при заправке фотонами света могут скреплять атомы углерода (полученные из углекислого газа воздуха) вместе с образованием сахаров, которые пойдут в наше яблоко. Чтобы лучше рассмотреть первый этап фотосинтеза, вы направляете свой аппарат в одну из пор мембраны хлоропласта, к верхней зеленой монете стопки тилакоидов. Достигнув своей цели, вы выключаете двигатель подлодки, позволяя ей дрейфовать над этой электростанцией фотосинтетических процессов.
Перед вами лежит только один из триллионов фотосинтетических механизмов, которые производят мировую биомассу. С вашей выгодной точки вы можете увидеть, что, как мы узнали при изучении ферментных механизмов в предыдущей главе, несмотря на множество происходящих вокруг вас турбулентных столкновений молекул, подобно бильярдным шарам, существует определенная упорядоченность. Поверхность мембраны тилакоида усыпана скалистыми зелеными островками, покрытыми древоподобными структурами с похожими на антенны пятиугольными пластинками на концах. Эти пластинки-антенны представляют собой светопоглощающие молекулы, хромофоры, самым известным примером которых является хлорофилл. Именно здесь происходит первый ключевой этап фотосинтеза: захват света. Вероятно, вторая по значимости молекула на нашей планете (после ДНК) хлорофилл заслуживает более подробного рассмотрения (рис. 4.5).
Рис. 4.5. Молекула хлорофилла
Это двухмерная структура, состоящая из пятиугольных элементов, включающих в основном атомы углерода (серые сферы) и азота (N), с атомом магния (M) в центре, с длинным хвостом из атомов углерода, кислорода (O) и водорода (белые атомы). Внешний электрон магния слабо связан с атомом и может выбиваться в окружающий углеродный каркас при поглощении фотона солнечного света. В результате вместо него остается пустое место и атом получает положительный заряд. Это пустое место, или электронную дырку, можно рассматривать с абстрактной точки зрения как «вещь в себе»: положительно заряженную дырку. Суть в том, что мы расцениваем оставшийся атом магния как нейтральный, пока посредством поглощения фотона создаем систему, состоящую из выбитого отрицательного электрона и оставшейся положительной дырки. Эта бинарная система называется экситоном (рис. 4.6).
Рис. 4.6. Экситон состоит из электрона, выбитого со своей орбиты, и атома с оставшейся дыркой
Ее можно считать крошечной батареей с положительным и отрицательным полюсами, способной хранить энергию для последующего использования.
Экситоны нестабильны. Электрон и его дыра ощущают воздействие электростатической силы, притягивающей их друг к другу. При их воссоединении солнечная энергия изначального фотона теряется в виде остаточного тепла. Таким образом, если растению необходимо использовать поглощенную солнечную энергию, оно должно очень быстро перенести экситон в производственную часть молекулы, известную как реакционный центр, где происходит процесс под названием «разделение зарядов». Фактически он включает полный отрыв энергетического электрона от атома и перенос его к соседней молекуле, подобно действию ферментов, которое мы наблюдали в прошлой главе. В результате этого процесса образуется более стабильная, чем экситон, химическая батарея (под названием НАДФН), которая используется во всех важных химических реакциях фотосинтеза.
Но реакционные центры обычно располагаются достаточно далеко с молекулярной точки зрения (на расстоянии нанометров) от возбужденных молекул хлорофилла, так что энергия должна переходить от одной молекулы-антенны к другой по хлорофилльному лесу, пока не достигнет реакционного центра. Это возможно благодаря плотно упакованной структуре хлорофилла. Молекулы по соседству с той, которая захватила фотон, также приходят в возбуждение, эффективно принимая энергию от первичного возбужденного электрона и затем перенося ее к собственному электрону атома магния.
Проблема заключается в том, каким путем должна происходить передача энергии. Если она выберет неправильное направление, в случайном порядке перескакивая от одной молекулы к другой в хлорофилльном лесу, энергия будет утрачена и не достигнет реакционного центра. Какой путь она должна выбрать? Путь к цели не должен занимать много времени, чтобы не утратить энергию экситона.
До недавних пор считалось, что перенос энергии от одной молекулы хлорофилла к другой носит случайный характер, в сущности принимая характер стратегии последней надежды, известной как метод случайного блуждания. Иногда это называют «пьяным блужданием», потому что оно напоминает маршрут пьяницы, вышедшего из бара, который блуждает в поисках пути, пока случайно не находит свой дом. Но случайное блуждание — не очень эффективный способ добраться куда-нибудь: если дом пьяного далеко, он может проснуться следующим утром в кустах в другой части города. Объект, участвующий в случайных блужданиях, имеет тенденцию удаляться от точки старта на расстояние, пропорциональное квадратному корню из времени. Если за одну минуту пьяный человек продвинется на один метр, то через четыре минуты он уйдет на два метра, а через девять минут — только на три метра. С таким вялым прогрессом неудивительно, что животные и микробы редко используют случайное блуждание, чтобы найти пищу или добычу, прибегая к этой стратегии только при отсутствии другого выхода. Поместите муравья в незнакомую местность, и, как только он уловит запах, он бросит случайное блуждание и будет следовать за своим носом.
Считалось, что, не имея ни носа, ни навыков навигации, энергия экситона продвигается по хлорофилльному лесу методом пьяницы. Но такая картина не имела особого смысла, так как известно, что первый этап фотосинтеза чрезвычайно эффективен. Фактически перенос энергии захваченного фотона от молекулы-антенны хлорофилла к реакционному центру знаменит свой эффективностью, большей, чем у любой естественной или искусственной реакции: почти 100 %. При оптимальных условиях почти каждая частица энергии, поглощенная молекулой хлорофилла, достигает реакционного центра. Если бы выбранный путь был блуждающим, то почти все они, по крайней мере большинство из них, должны были быть утеряны. Почему эта энергия фотосинтеза находит свой путь к конечной цели намного успешнее, чем пьяница, муравей или наша наиболее энергоэффективная технология? Это остается одной из величайших загадок биологии.
Квантовое биение
Старшим автором научной работы[52], блеснувшим в газетной статье, заставившей журнальный клуб МТИ смеяться от всей квантовой души, был американец Грэм Флеминг. Он родился в Барроу на севере Англии в 1949 году. В настоящее время он возглавляет группу Калифорнийского университета в Беркли, признанную одной из лидирующих исследовательских групп в своей области в мире. Группа использует мощную технологию под впечатляющим названием «электронная спектроскопия с двухмерным преобразованием Фурье» (2D-FTES). 2D-FTES может исследовать внутреннюю структуру и динамику мельчайших молекулярных систем, направляя на них высокофокусные кратковременные лазерные импульсы. Большую часть своей работы группа посвятила изучению не растений, а фотосинтетического комплекса под названием «белок Фенна-Мэтьюз-Ольсон» (FMO), который производится фотосинтезирующими микроорганизмами — зелеными серобактериями, живущими в глубинах богатых серой водоемов, таких как Черное море. Чтобы исследовать образец хлорофилла, ученые направили три импульса лазерного света на фотосинтетические комплексы. Эти импульсы хранят свою энергию в виде очень быстрых и точно рассчитанных вспышек и генерируют световой сигнал от образца, который регистрируется датчиками.
Грег Энджел, главный автор статьи, провел целую ночь, сопоставляя данные, полученные от сигналов длительностью от 50 до 600 фемтосекунд[53], чтобы получить итоговый результат. Он получил возрастающий и уменьшающийся сигнал, который колебался в течение как минимум 600 фемтосекунд (рис. 4.7).
Рис. 4.7. Квантовые биения, наблюдавшиеся Грэмом Флемингом и его коллегами в опыте 2007 года. С научной точки зрения важна не неправильная форма колебаний, а сам факт наличия колебаний
Колебания были похожи на картину интерференции светлых и темных полос в опыте с двумя щелями, или квантовый эквивалент пульсирующих звуковых биений, слышных во время настройки музыкального инструмента. Подобное квантовое биение показало, что экситон не следовал одному пути через лабиринт хлорофилла, а использовал несколько путей одновременно (рис. 4.8). Эти альтернативные пути несколько напоминают ноты почти настроенной гитары: они генерируют биения, когда их длина почти одинакова.
Рис. 4.8. Экситон, продвигающийся по комплексу FMO, выбирая несколько альтернативных путей одновременно
Но не стоит забывать, что такая квантовая когерентность очень хрупка и чрезвычайно трудно сохраняется. Возможно ли, что микроорганизм или растение способны прилагать героические усилия ярчайших и лучших исследователей квантовых компьютеров МТИ, чтобы отсрочить декогерентность? В своей статье Флеминг сделал действительно смелое заявление, и это было «квантовое жульничество», как это назвал Сет Ллойд, которое возмутило журнальный клуб МТИ. Группа Беркли предполагала, что комплекс FMO действует как квантовый компьютер, чтобы найти кратчайший путь к реакционному центру, бросая вызов проблеме оптимизации, подобно знаменитой задаче путешествующих моряков в математике, которую с маршрутами, имеющими несколько назначений, может решить только очень мощный компьютер[54].
Несмотря на скептицизм, журнальный клуб поставил Сету Ллойду задачу исследования заявления. Ко всеобщему удивлению МТИ, в ходе своего научного расследования Ллойд пришел к заключению, что заявление группы из Калифорнийского университета имеет основание. Биения, которые обнаружила группа Флеминга в комплексе FMO, были действительно записью квантовой когерентности, и Ллойд пришел к заключению, что молекулы хлорофилла руководствуются новейшей стратегией поиска, известной как квантовое блуждание.
Преимущества квантового блуждания над классическим случайным блужданием можно оценить, вернувшись к нашему медлительному пьянице и представив, что в баре, который он покинул, произошла утечка и из его дверей вытекает вода. В отличие от нашего нетрезвого героя, который должен выбрать один путь, волны воды, вытекающие из бара, могут двигаться во всех возможных направлениях. Наш пьяница вскоре обнаружит, что его обгоняют, так как водные потоки движутся по улице просто пропорционально времени, а не его квадратному корню. Итак, если за одну секунду они продвинутся на один метр, то через две секунды они протекут два метра, а через три секунды — три метра и т. д. Кроме того, как атом в суперпозиции из опыта с двумя щелями, вода путешествует во всех возможных направлениях одновременно, и какая-то часть волны определенно достигнет дома пьяного задолго до нетрезвого путешественника.
Статья Флеминга вызвала свою волну удивления и изумления, которая распространилась далеко за пределы журнального клуба МТИ. Но некоторые комментаторы вскоре обратили внимание, что опыты были проведены на изолированных комплексах FMO, охлажденных до 77 К (–196 °C): это намного холоднее, чем любая температура, пригодная для фотосинтеза или даже для жизни растений, но достаточно холодно, чтобы отложить эту досадную декогерентность. Насколько значимы были эти охлажденные бактерии для всего, что происходит в жарком и беспорядочном внутреннем мире растительных клеток?
Вскоре это станет ясно, однако квантовая когерентность не ограничивается охлажденными комплексами FMO. В 2009 году Йен Мерсер в Университетском колледже Дублина обнаружил квантовое биение в другой бактериальной системе фотосинтеза (или, для краткости, фотосистеме) под названием «светособирающий комплекс II» (LHC2), который очень похож на фотосистему растений, но при нормальных температурах, при которых растения и микробы обычно осуществляют фотосинтез[55]. Затем, в 2010 году, Грег Шоулз в Университете Онтарио продемонстрировал квантовое биение фотосистемы группы водорослей (которые, в отличие от высших растений, не имеют корней, стеблей и листьев) под названием «криптофиты». Эти водоросли чрезвычайно изобильны, до такой степени, что они связывают столько атмосферного углерода (из атмосферного углекислого газа), как и высшие растения[56]. Примерно в то же время Грег Энджел продемонстрировал квантовое биение в том же комплексе FMO, который изучали в лаборатории Грэма Флеминга, но теперь при намного более высоких, совместимых с жизнью, температурах[57]. В таком случае вы можете решить, что этот замечательный феномен ограничен только бактериями и водорослями, однако Тесса Калхоун и ее коллеги из лаборатории Флеминга в Беркли недавно обнаружили квантовое биение в другой системе LHC2, на этот раз в шпинате[58]. LHC2 присутствует во всех высших растениях и содержит 50 % всего хлорофилла на планете.
Прежде чем двигаться дальше, мы кратко опишем, как используется полученная из солнечного света энергия экситона, как описывал Фейнман, чтобы оторвать «этот кислород от углерода… оставляя углерод и воду, чтобы создать субстанцию дерева» — или яблоко.
После того как достаточное количество энергии достигает реакционного центра, пара молекул хлорофилла (под названием Р680) испускает электроны. Мы узнаем немного больше о том, что происходит в реакционном центре, в главе 10, и это потрясающее место, в котором может происходить другой новейший квантовый процесс. Источником этих электронов является вода (которая, как мы помним, выступает одним из ингредиентов в фейнмановском описании фотосинтеза). Как мы выяснили в предыдущей главе, захват электронов из любого вещества называется окислением и именно этот процесс имеет место во время горения. Когда дерево горит на воздухе, например, атомы кислорода отрывают электроны от атомов углерода. Электроны на внешней орбите углерода очень слабо удерживаются, поэтому углерод горит очень легко. Однако в воде они удерживаются очень крепко: системы фотосинтеза уникальны тем, что это единственное место в мире, где вода «сгорает» с выходом электронов[59].
Пока все идет хорошо: сейчас мы имеем источник свободных электронов благодаря энергии, доставленной экситонами в хлорофилл. Далее растение должно послать эти электроны туда, где они будут использованы в работе. Сначала они захватываются описанным переносчиком электронов, НАДФН. Мы уже встречали похожую молекулу, НАДН, в предыдущей главе, где она участвовала в переносе электронов, захваченных от питательных веществ, таких как сахара, к дыхательной цепи ферментов в энергетических клеточных органеллах, митохондриях. Если помните, захваченные электроны, доставленные к митохондриям переносчиком НАДН, затем идут по дыхательной цепи ферментов как своего рода электрический ток, который используется для переноса протонов через мембрану, а обратный поток этих протонов используется для получения клеточного энергоносителя, АТФ. Очень похожий процесс используется для получения АТФ в хлоропластах растений. НАДФН захватывает электрон и переносит его к цепи ферментов, которые подобным образом выносят протоны через мембрану хлоропласта. Обратный поток этих протонов используется для получения молекул АТФ, которые впоследствии могут обеспечивать энергией многие энергозатратные процессы в растительной клетке.
Но действительный процесс фиксации углерода, захват атомов углерода из углекислого газа воздуха и их использование для получения энергоемких органических молекул, таких как сахара, происходит вне тилакоида, но все еще внутри хлоропласта. Этот процесс проходит с участием большой молекулы фермента под названием RuBisCO, вероятно наиболее распространенного белка в мире, так как он предназначен для выполнения величайшей работы: создание практически всей мировой биомассы. Этот фермент связывает атом углерода, оторванный от углекислого газа, в молекулу простого пятиуглеродного сахара под названием рибулозо-1,5-бифосфат для получения шестиуглеродного сахара. Чтобы достичь такого мастерства, необходимо присутствие двух ингредиентов: электронов (доставляемых НАДФН) и источника энергии (АТФ). Оба ингредиента являются продуктами светозависимых процессов фотосинтеза.
Шестиуглеродный сахар, полученный с помощью RuBisCO, немедленно распадается на два трехуглеродных сахара, которые затем связываются между собой множеством различных способов для построения всех биомолекул, лежащих в основе яблони, включая яблоки. Неживые воздух и вода Новой Англии с помощью света и доли квантовой механики становятся живой тканью дерева Новой Англии.
Сравнивая фотосинтез у растений и дыхание (сжигание пищи), которое происходит в наших клетках, описанное в предыдущей главе, вы можете увидеть, что под кожей растения и животные не так различны. Ключевое отличие лежит там, где мы и они храним фундаментальные строительные блоки жизни. И тем и другим необходим углерод, но растения получают его из воздуха, в то время как мы берем его из органических источников, таких как растения. И тем и другим для построения молекул необходимы электроны: мы сжигаем органические молекулы для захвата их электронов, в то время как растения используют свет, чтобы сжигать воду и захватывать ее электроны. И тем и другим необходима энергия: мы получаем ее из высокоэнергетических электронов, которые получаем из нашей пищи, пропуская их по дыхательной цепи; растения захватывают энергию фотонов солнечного света. Каждый из этих процессов включает движение фундаментальных частиц, которые руководствуются квантовыми правилами. Кажется, что жизнь укрощает квантовые процессы, чтобы обеспечить и свое продолжение, и продолжение самих квантовых процессов.
Открытие квантовой когерентности в теплых, влажных, турбулентных системах, таких как растения и микробы, повергло квантовых физиков в глубокий шок. Значительная часть исследований теперь сфокусирована на выяснении, как живые системы защищают и используют свои хрупкие состояния квантовой когерентности. Мы вернемся к этой загадке в главе 10, где исследуем некоторые удивительные возможные ответы, которые могут даже помочь физикам, таким как квантовые теоретики МТИ, построить практические квантовые компьютеры, которые смогут работать на вашем рабочем столе, не нуждаясь в глубокой заморозке. Вероятно, исследование также вдохновит новое поколение искусственных фотосинтетических технологий. Современные солнечные батареи мало основаны на принципах фотосинтеза и уже конкурируют с солнечными панелями на рынке чистой энергии, но их эффективность ограничена потерями при переносе энергии (в лучшем случае 70 %-ная эффективность по сравнению с почти 100 %-ной эффективностью этапа захвата энергии фотона в процессе фотосинтеза). Перенос биологической квантовой когерентности на солнечные батареи может потенциально увеличить эффективность солнечной энергии и, таким образом, сделать мир более чистым.
Давайте кратко рассмотрим значимость того, что мы добавили к нашему пониманию особенностей жизни. Рассмотрим еще раз те квантовые биения, которые Грег Энджел впервые увидел в первых данных о комплексе FMO и которые показали, что частицы движутся в живых клетках как волны. Существует соблазн думать об этом как о лабораторных феноменах, не имеющих значимости вне биохимического эксперимента. Но последующие исследования показали, что они на самом деле существуют в природе, в листьях, водорослях и микробах и что они играют, вероятно, ключевую роль в построении нашей биосферы.
Тем не менее квантовый мир остается незнакомым нам и часто заявляет, что эта неизвестность является признаком фундаментального раскола между миром, который мы видим вокруг нас, и его квантовым основанием. Но в реальности существует только один свод законов, указывающий путь, по которому работает мир: квантовые законы[60]. Знакомые законы статистики и законы Ньютона являются в итоге квантовыми законами, пропущенными через линзу декогерентности, которая отсеивает таинственность (все, что нам кажется странным в квантовых феноменах). Копните немного глубже, и вы всегда увидите квантовую механику, скрывающуюся в основе знакомой нам реальности.
Более того, определенные макроскопические объекты чувствительны к квантовым феноменам и большинство из них — живые. В прошлой главе мы открыли, как квантовое тунеллирование внутрь ферментов обусловливает отличие целой клетки. В этой главе мы выяснили, как первичный захват фотона, лежащий в основе образования большей части биомассы на планете, зависит от хрупкой квантовой когерентности, которая может поддерживаться в течение биологически значимого времени в теплой, но высокоорганизованной внутренней среде листа или микроорганизма. И опять мы видим принцип Шредингера «порядок из порядка», ответственный за явления квантового захвата, и то, что Джордан назвал амплификацией квантовых феноменов в макроскопическом мире. Кажется, что жизнь связывает квантовый и классический миры, расположенные на квантовом краю.
Далее мы обратим внимание на другой важнейший для нашей биосферы процесс. Яблоня Ньютона никогда не смогла бы произвести яблоки, если бы ее цветы сначала не опылили птицы и насекомые, в частности пчелы. Но пчелы должны найти цветок яблони; и они находят, используя другую возможность, которая, по мнению многих, основана на квантовой механике, — чувство обоняния.
5. В поисках дома Немо
Этот нос, например, о котором еще ни один философ не говорил с уважением и благодарностью, является между тем даже самым деликатным инструментом из находящихся в нашем распоряжении: он может еще констатировать минимальные разности движения, которых не констатирует даже спектроскоп.
Фридрих Ницше. Сумерки идолов. 1889
Кажется, они передают нам некое сообщение от материальной действительности.
Гастон Башляр. Становление научного духа: заметки по психоанализу объективного познания. 1938
Среди щупалец опасной морской актинии, обитающей на коралловом рифе недалеко от филиппинского острова Верде, спрятались две маленькие рыбки. Это полосатые оранжево-белые рыбы-клоуны, или, точнее, амфиприоны, а еще точнее — Amphiprion ocellaris. Жизнь одной из них — самки — прошла гораздо интереснее, чем жизнь большинства позвоночных, поскольку эта рыбка не всегда была самкой. Как и все амфиприоны, рыбка сначала была самцом, который подчинялся единственной самке в стае рыбок, населявших эту актинию. В стае амфиприонов устанавливается жесткая социальная структура, и этот самец соперничал с другими самцами, пока наконец не стал доминирующим и не завоевал право спариваться с единственной самкой в стае. Однажды самку съела проплывающая мимо мурена, и после этого у доминирующего самца стали развиваться яичники, которые несколько лет не функционировали, а семенники, наоборот, перестали функционировать. Так самец-амфиприон превратился в королеву-самку, готовую к спариванию со следующим самцом в иерархии стаи.
Амфиприоны — типичные обитатели коралловых рифов Индийского и западной части Тихого океанов. Они питаются растениями, водорослями, планктоном, а также моллюсками и мелкими ракообразными. Из-за небольшого размера, яркого окраса и отсутствия шипов, острых плавников, усиков и зубцов сами амфиприоны становятся легкой добычей мурен, акул и других хищников, снующих по рифам в поисках пищи. Почуяв угрозу, они спасаются тем, что стремительно скрываются в щупальцах своей актинии. От ядовитого жала актинии рыбки защищены плотным слоем слизи, покрывающей их чешуйки. В свою очередь, актиния также пользуется защитой своих разноцветных жильцов, которые отпугивают нежеланных гостей, например рыб-бабочек, питающихся коралловыми полипами.
Эти особенности образа жизни рыб-клоунов стали широко известны после выхода на экраны анимационного фильма «В поисках Немо»[61]. По сюжету рыба-клоун по имени Марлин отправляется на поиски своего сына Немо, который поневоле оказался далеко от дома — Большого Барьерного рифа — и добрался до самого Сиднея. Но еще более сложным испытанием для амфиприонов оказываются поиски дороги домой.
Каждая актиния может быть домом для целой колонии амфиприонов, в которой обязательно есть доминирующая пара — самец и самка. Кроме того, в колонии несколько молодых самцов конкурируют между собой за право стать партнером самки в будущем. Протандрический гермафродитизм амфиприона (необычная способность доминирующего самца менять пол после гибели самки) является, скорее всего, формой адаптации к жизни на опасном рифе. Благодаря этой способности колония предохраняет себя от вымирания после гибели единственной самки с репродуктивной функцией. Более того, рыбам даже не нужно покидать родную актинию в поисках нового дома. Одна и та же колония амфиприонов обычно живет на актинии на протяжении многих лет, однако потомство все же иногда покидает безопасный дом и рано или поздно сталкивается с испытанием — поиском обратного пути.