Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач Альтшуллер Генрих

2. Стойка по п. 1, отличающаяся тем, что противовес выполнен в виде прилива, например из бетона или чугуна».

Восхищает глубокая мудрость второго пункта; противовес сделан не из драгоценного черного дерева или, скажем, платины, а экономно – из бетона и чугуна…

Задача 3.6. В трубе движется жидкость. Для очистки жидкости на первых циклах нужен керамический фильтр. Выполнен он в виде плоского круглого диска. После очистки жидкости фильтр бесполезно увеличивает гидравлическое сопротивление системы. Ваше предложение?

Эту задачу решала группа из 18 инженеров. Каждый работал отдельно, причем испытуемые были предупреждены, что необходимо записывать все варианты, возникающие по ходу решения. Всего (во всех записях) оказалось шесть вариантов, наибольшее их число в одной работе – три. Во всех записях был контрольный ответ: после окончания фильтрации надо поворачивать диск плоскостью вдоль течения. Типичная задача первого уровня, хотя итог решения юридически считается вполне патентоспособным изобретением.

Второй уровень. Задачи с техническими противоречиями, легко преодолеваемыми с помощью способов, известных применительно к родственным системам. Например, задача, относящаяся к токарным станкам, решена приемом, уже используемым в станках фрезерных или сверлильных. Меняется (да и то частично) только один элемент системы. Ответы на задачи второго уровня – мелкие изобретения. Для получения ответа обычно приходится рассмотреть несколько десятков вариантов решения.

Задача 3.7. В трубе, по которой движется газ, установлена поворотная заслонка. Иногда температура газа неконтролируемо меняется (повышается на 20–30 °С). С повышением температуры уменьшается плотность газа, падает количество газа, проходящего через трубу в единицу времени. Нужно обеспечить постоянный расход газа (для каждого угла поворота заслонки).

Задача была предложена той же группе испытуемых. Максимальное время на решение – 42 мин, всего выдвинуто разных вариантов – 26, наибольшее количество вариантов в одной записи – 12. На контрольный ответ вышли только шесть инженеров (а.с. 344199): «Дроссельная заслонка с поворотным диском, закрепленным на оси, отличающаяся тем, что, с целью компенсации изменения расхода газа в зависимости от температуры, в диске выполнено сквозное отверстие, и на диске установлен биметаллический чувствительный элемент, перекрывающий отверстие». Анализ вариантов показал, что сначала почти все (15 человек из 18) пытались идти наиболее очевидным путем: предлагали измерять температуру и регулировать положение заслонки в зависимости от изменения температуры. Это решение явно противоречило условиям задачи (изменение температуры неконтролируемо) и конструктивно оказывалось довольно сложным. Возникла вторая серия идей: использовать для саморегулирования тепловое расширение. Но тепловое расширение характеризуется малым изменением размеров при сравнительно больших перепадах температуры. Выгоднее использовать биметаллические пластины, способные значительно менять свою форму (изгиб) даже при небольших колебаниях температуры.

Третий уровень. Противоречие и способ его преодоления находятся в пределах одной науки, т. е. механическая задача решается механически, химическая задача – химически. Полностью меняется один из элементов системы, частично меняются другие элементы. Количество вариантов, рассматриваемых в процессе решения, измеряется сотнями. В итоге – добротное среднее изобретение.

Задача 3.8. Существует специальный вид фотографирования с использованием взрывного затвора: с помощью сильного электрического заряда уничтожают шторку, перекрывающую путь световому потоку. Решено было использовать этот принцип при киносъемке. Но киносъемка требует непрерывности, надо снимать один кадр за другим. Возникает проблема: каким образом быстро менять шторку, уничтоженную взрывом?

В одном из экспериментов эту задачу решала группа в 14 человек. Время, затраченное на решение, от 2 до 3 часов, в записях много одинаковых вариантов (в одной записи – 22 варианта – и нет правильного ответа). Большинство предложений связано с различными способами замены одной «взорванной» шторки другой. Многие идеи выходят за рамки ограничений, поставленных условиями задачи (вместо сохранения взрывного затвора предлагают различные механические затворы). Контрольный ответ – а.с. 163487: «Способ перекрытия светового пучка с использованием взрывного затвора, например при скоростной киносъемке, отличающийся тем, что, с целью многократного использования одного и того же прерывателя светового пучка, взрыв и искровой разряд производят в жидкости, помещенной между двумя защитными стеклами так, чтобы ее свободная поверхность в спокойном состоянии касалась светового канала оптической системы». В записях двух инженеров есть приближение к контрольному ответу: предложено заранее сломать и измельчить шторку, т. е. сделать шторку из порошка.

Четвертый уровень. Синтезируется новая техническая система. Поскольку эта система не содержит технических противоречий, иногда создается впечатление, что изобретение сделано без преодоления ТП. На самом же деле ТП было, однако относилось оно к прототипу – старой технической системе. В задачах четвертого уровня противоречия устраняются средствами, подчас далеко выходящими за пределы науки, к которой относится задача (например, механическая задача решается химически). Число вариантов, среди которых «прячется» правильный ответ, измеряется тысячами и даже десятками тысяч. В итоге – крупное изобретение. Нередко найденный принцип является «ключом» к решению других задач второго – четвертого уровней.

Задача 3.9. На заводе, выпускающем сельскохозяйственные машины, был небольшой полигон для испытания машин на трогание с места и развороты. Завод получил заказ на поставку продукции в 20 стран. Выяснилось, что нужно проводить испытания на 100 видах почв. Чем больше полигонов – тем надежнее, испытания. Но с увеличением числа полигонов резко возрастает стоимость испытаний и, следовательно, стоимость продукции.

Десять лет – с 1973 по 1982 г. – эта задача предлагалась многим группам на учебных семинарах по ТРИЗ. Но не было ни одного случая, чтобы задачу правильно решили до обучения.

Пятый уровень – изобретательская ситуация представляет собой клубок сложных проблем (например, очистка океанов и морей от нефтяных и прочих загрязнений). Число вариантов, которое необходимо перебрать для решения, практически не ограничено. В итоге – крупнейшее изобретение. Это изобретение создает принципиально новую систему, она постепенно обрастает изобретениями менее крупными. Возникает новая отрасль техники. Примерами могут служить самолет (изобретение самолета положило начало авиации), радио (радиотехника), киноаппарат (кинотехника), лазер (квантовая оптика).

Задача 3.10. Нужно предложить подземоход, способный передвигаться в земной коре со скоростью 10 км/ч при запасе хода в 300–400 км.

Здесь хорошо видна характерная особенность задач пятого уровня: к моменту постановки подобных задач средства их решения лежат за пределами современной науки. Неизвестны те физические эффекты, явления, принципы, на основе которых может быть создан подземоход (а вместе с ним новая отрасль техники – глубинный транспорт).

Условия задачи пятого уровня обычно не содержат прямых указаний на противоречие. Поскольку системы-прототипа нет, то нет и присущих этой системе противоречий. Они возникают в процессе синтеза принципиально новой системы. Предположим, решено обеспечить продвижение подземохода путем расплавления горных пород. Сразу образуется узел сложнейших противоречий: расплавляя окружающие породы, мы облегчаем движение машины, но резко увеличиваем расход энергии, создаем гигантский теплоприток внутрь подземного корабля, затрудняем использование известных навигационных средств, следовательно, лишаем машину управления.

* * *

Не хотелось бы, чтобы у читателя создалось упрощенное представление: задачи первого уровня до смешного легки, чем выше уровень – тем лучше, а потому даешь изобретения четвертого-пятого уровней!.. Все значительно сложнее. Да, задачи первого уровня действительно не имеют отношения к изобретательскому творчеству, это конструкторские задачи. Иначе обстоит дело с задачами второго-третьего уровней: их решения необходимы не только сами по себе, но и для реализации изобретений более высоких уровней.

В первой главе рассказано, как был создан газотеплозащитный скафандр. Это изобретение четвертого уровня: синтезирована новая техническая система. Теперь представьте горноспасателя с внушительным резервуаром сжиженного воздуха за спиной. Воздух должен непрерывно испаряться; значит, в резервуаре должны быть постоянно открытые входные отверстия. Но через эти отверстия – при малейшем наклоне резервуара – выльется сжиженный воздух. Клапаны? Рискованное усложнение конструкции. Сделать резервуар по принципу школьной чернильницы-непроливашки? Но тогда придется запасать сжиженного воздуха в 2–2,5 раза меньше. Задача второго уровня, но от ее решения зависела реализация основного изобретения…

* * *

Технические системы, как и биологические (и любые другие), не вечны: они возникают, переживают периоды становления, расцвета, упадка и, наконец, сменяются другими системами. Типичная история жизни технической системы показана на рис. 4а, где на оси абсцисс отложено время, а на оси ординат – один из главных показателей системы (скорость самолета, грузоподъемность танкера, число выпущенных телевизоров и т. д.). Возникнув, новая техническая система далеко не сразу находит массовое применение: идет период обрастания системы вспомогательными изобретениями, делающими новый принцип практически осуществимым. Быстрый рост начинается только с точки 1. Далее система энергично развивается, ассимилируя множество частных усовершенствований, но сохраняя неизменным общий принцип. С какого-то момента (точка 2) темпы развития замедляются. Обычно это происходит после возникновения и обострения противоречий между данной системой и другими системами или внешней средой. Некоторое время система продолжает развиваться, но темпы развития падают, система приближается к точке 3, за которой исчерпывают себя физические принципы, положенные в основу системы. В дальнейшем система остается без изменений (велосипед за последние полвека) или быстро регрессирует (газовое освещение после появления электрического). На смену системе А приходит система Б. При этом абсцисса точки 1 системы Б обычно близка в абсциссе точки 3 системы А. Теоретически систему Б нужно было бы развивать значительно раньше – так, чтобы точка 1 совпадала с точкой 2, но на практике это происходит лишь в очень редких случаях. Старая система А оттягивает силы и средства, при этом действует мощная инерция финансовых интересов и узкопрофессиональных представлений. Разумеется, новая система в конечном счете неодолима, но она блокируется старой, что преодолевается лишь после того, как старая система одряхлеет и вступит в резкий конфликт с внешней средой.

Рис.4 Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач

Изменение количества изобретений на разных этапах развития системы иллюстрирует рис. 4б. Первый пик связан с переходом к массовому применению системы, второй – с попытками множеством мельчайших изобретений продлить жизнь одряхлевшей системы. На рис. 4в показаны уровни изобретений на разных этапах жизни системы: рождение системы связано с одним или несколькими изобретениями четвертого-пятого уровней, затем уровень снижается, но в районе точки 4 наблюдается некоторый пик – изобретения, позволяющие перейти к массовому применению системы, нередко достигают третьего-четвертого уровней. После этого уровень изобретений вновь падает – и на этот раз необратимо.

В книге «Алгоритм изобретения» [Г. Альтшуллер. Алгоритм изобретения. – М.: Московский рабочий, 2-е изд., 1973] приведены данные по 14 классам изобретений за 1965 и 1969 гг. Анализ дал такие цифры: изобретений первого уровня – 32 %, второго – 45, третьего – 19, четвертого – менее 4, пятого – 0,3 %. Таким образом, свыше 3/4 зарегистрированных изобретений фактически представляли собой результаты решения мелких и мельчайших задач. В 1982 г. я повторил анализ по трем классам (А 62 – спасательная служба, В 63 – суда, Е 21 – бурение). Результаты таковы: первый уровень – 39 %, второй – 55 %, третий – 6 %, крупных и крупнейших изобретений нет… Конечно, выборка за один год по трем классам явно мала для обобщений, но первое представление о «спектре качества» она дает. Опасное измельчение изобретений просматривается достаточно ясно.

Существует точка зрения, согласно которой преобладание «мелочи» – явление нормальное и положительное: «Как в математике бесконечно малые приращения способны образовывать конечные и вполне ощутимые суммы, так незначительные, казалось бы, но организованные и целенаправленные усовершенствования, зафиксированные юридической формулой, создают техническую базу того, что принято называть научно-технической революцией»[15].

Не правда ли, изящное сравнение? Но, увы, аналогия с математикой ошибочна. Чтобы получить конечную величину, надо сложить бесконечно большое число бесконечно малых величин…

Некрупные изобретения всегда нужны на начальном этапе становления технической системы (до точки 1): они наращивают «плоть» новой идеи, позволяют перейти от схемы к реальной вещи. В общем, нужны небольшие изобретения и на этапе зрелости системы (между точками 1 и 2), но основная масса мелких изобретений относится к старым техническим системам «от точки 2 до точки 3 и далее». Массовая инъекция таких изобретений призвана искусственно продлить рост и жизнь устаревших по своим принципам систем.

Технические системы могли бы быстрее сменять одна другую. Для этого необходимо, чтобы при достижении системой А точки 2 происходил переход к системе Б, заранее развитой до состояния 1. В отдельных случаях так и бывает. Например, реактивные самолеты (система Б) почти без потерь времени сменили самолеты с поршневыми двигателями (система А). Однако в подавляющем большинстве случаев жизнь систем стремятся продолжить и после прохождения точки 2. Это выгодно тем, кто вкладывал средства в эти системы и рассчитывает на получение прибыли. Себестоимость перевозки нефти на танкере водоизмещением в 540 тыс. тонн на 50 % ниже, чем на танкере в 80 тыс. тонн. Инженерные силы направлены не на поиск новых принципов транспортирования нефти, а на разработку усовершенствований, позволяющих строить и эксплуатировать супертанкеры громадных размеров. Поток небольших усовершенствований на них неуклонно увеличивается, но эти изобретения не способны обеспечить безопасность движения супертанкеров и предотвратить загрязнение Мирового океана.

На рис. 4 г показано изменение средней эффективности одного изобретения, т. е. размер даваемой им экономии. Великие изобретения пятого уровня и первые крупные и средние изобретения, превращающие новый принцип в отрасль техники, поначалу не дают прибыли, они убыточны. Прибыль появляется потом, когда новая машина находит массовое применение. Тогда любая мелочь дает большую экономию. Пример: сотрудники Института электросварки им. Е.О. Патона заменили пайку бокового вывода к цоколю лампы автоматизированной сваркой. Экономится лишь капля припоя. Замена пайки сваркой давно стала типовым приемом. Как максимум это – изобретение второго уровня, а скорее всего, – «неизобретательское изобретение». Но в целом по стране экономия составляет около миллиона рублей в год, хотя лампа осталась старой, т. е. ненадежной и крайне неэкономичной системой.

Заканчивая третью главу, я вдруг подумал, что ничего не сказано о красоте. Есть графики, таблицы, сухие формулы изобретений – и ничего о красоте изобретательских задач!.. А они поразительно красивы. Они могут относиться к любой области жизни, к любой отрасли техники, но они всегда загадочны, всегда исполнены очарования тайны. И еще: они романтичны. Их решение – драма идей, приключение, которое неизвестно чем кончится. Они удивительны, эти задачи; стоит ввести дополнительное ограничение, чуть-чуть повернуть условия – и задача обновится…

Мы только вступаем в ТРИЗ. Впереди – законы, правила. А пока посмотрим еще одну задачу, лукавую и изящную. Простенькая задача, не выше второго уровня. Но разве это мешает ей быть красивой?

Задача 3.11. Робин Гуд вскинул боевой лук, и стрела, со свистом рассекая воздух, устремилась к лазутчику, посланному шерифом…

– Опять промазал! – воскликнул режиссер. – Метра на два выше. Подумать только: взяли дублером заслуженного мастера, чемпиона, а он мажет…

– Давайте скомбинируем, – предложил кинооператор. – Отдельно снимем выстрел, отдельно – летящую стрелу. Потом дублер подойдет метра на три, станет вне кадра, и я сниму попадание. Смонтируем три куска.

– Ни в коем случае! – возмутился режиссер. – Зрители прекрасно знают этот трюк. Надо снимать непрерывно: вот Робин Гуд отпускает тетиву, стрела летит и поражает предателя прямо в сердце. И всем видно, что Робин Гуд стрелял издалека. Мне нужна правда жизни.

– Тогда снимайте без меня! – сердито сказал артист, игравший лазутчика. Он вытащил дощечку, спрятанную в верхнем кармане куртки. – Сам Робин Гуд не попал бы в такую цель. Ужас! Мне надо играть, а я думаю о том, что произойдет при малейшем отклонении стрелы…

Подошел дублер, одетый в костюм Робин Гуда, виновато развел руками:

– Даже на олимпиаде так не переживал. В последний момент невольно беру вверх, боюсь стрелять в человека…

– Завтра уже не будет такой погоды, – вздохнул оператор. – Снять бы эпизод сегодня…

Красота – красотой, но все-таки подчеркнем главное. Комбинированные съемки исключены. Зритель должен видеть, как стрела летит и попадает в цель. В куртке артиста, игравшего роль лазутчика, спрятана дощечка (по размерам она не больше почтовой открытки), в эту дощечку должна вонзиться стрела. «Мишень» не только мала, она еще и подвижна, пытается убежать…

4. Формула победы

Как возникают новые виды животных? В результате действия различных мутагенных факторов появляются новые признаки. В огромном большинстве случаев они бесполезны или даже вредны. И лишь изредка появляется признак, полезный для организма. Естественный отбор бракует особи с неудачными новыми признаками и способствует сохранению и распространению особей с признаками полезными.

Таков и традиционный механизм работы при решении изобретательских задач. Изобретатели, не зная законов развития технических систем, генерируют – мысленно и в металле – множество различных вариантов решения. Жизнеспособными оказываются только те «мутации», которые действуют в направлении, совпадающем с объективно существующими законами развития.

У природы нет сознания, разума: результаты мутаций не изучаются, борьба за повышение «процента удачных мутаций» не ведется. В технике есть возможность накопить опыт «мутаций», исследовать его, выявить «правила удачного мутирования», отражающие объективные законы развития. Это позволит вести «мутации» сознательно: первый же выдвинутый вариант должен быть наилучшим.

Воображение – вольно или невольно – создает определенный образ задачи. Прочитал человек условия, и сразу же вспыхивает мысленный экран с высвеченной на нем картинкой (рис. 5).

Рис.5 Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач

Мышление несистемно. Не успели люди в процессе эволюции выработать системное видение мира. Если в задаче сказано «дерево», человек видит именно дерево.

Начинается перебор вариантов. Дерево становится чуть больше, чуть меньше… Часто на этом все кончается: ответ не найден, задача признана неразрешимой.

Это – обычное мышление. Талантливое воображение одновременно зажигает три экрана (рис. 6): видны надсистема (группа деревьев), система (дерево), подсистема (лист).

Рис.6 Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач

Конечно, это минимальная схема. Иногда включаются и другие экраны: наднадсистема (лес) и подподсистема (клетка листа). А главное – все это видно в развитии, потому что работают боковые экраны, показывающие прошлое и будущее на каждом уровне. Девять (минимум девять!) экранов системно и динамично отражают системный и динамичный мир (рис. 7).

Задача 4.1. В Народной Республике Бангладеш, как утверждает статистика, 13 миллионов финиковых пальм. За сезон каждая пальма может дать 240 литров сладкого сока, идущего на изготовление пальмового сахара. Но для сбора сока надо сделать надрез на стволе под самой кроной. А это 20 метров высоты!.. Как быть?

Задачу предложили фирме, выпускающей сельскохозяйственные машины и механизмы. Специалисты попробовали «альпинистский способ» – человек поднимается, вырубая ступеньки на стволе. Способ оказался непригодным: много ступенек – дерево погибает, мало ступенек – трудно подниматься. Начали проектировать нечто вроде пожарной машины с раздвижной лестницей. Каково же было удивление проектировщиков, когда они узнали, что бангладешские крестьяне обладают секретом, позволяющим легко подниматься на пальму без всяких машин…

Задача 4.1 не решается, если включен только экран 1. Но стоит совместно рассмотреть экраны 1 и 4, как решение становится очевидным. На экране 4 – маленькая – пальма. Сока она еще не дает, но на ней легко можно сделать зарубку – будущую ступеньку. От одной-двух зарубок дерево не погибнет. На следующий год – еще несколько зарубок. И к тому времени, когда дерево вырастет и будет способно давать сок, на стволе окажется готовая лестница.

Другое решение просматривается при включении экрана 2. К одному дереву надо приставлять лестницу. Но если рядом растут два дерева, их стволы – почти готовая лестница, не хватает только веревочных перекладин…

Еще раз подчеркну: это не самый сложный случай – девять экранов. Гениальное мышление заставляет работать много больше экранов: вверх и вниз по иерархии систем, левее экрана 4 (в глубь прошлого) и правее экрана 7 (в глубь будущего). Сложно устроены и сами экраны. Во-первых, они двойные: на каждом экране одновременно изображение и антиизображение (объект и антиобъект). Во-вторых, меняются размеры изображений – то резко увеличиваются, то столь же резко уменьшаются…

Мир устроен непросто, и чтобы его правильно видеть и правильно понимать, нужны непростые мысленные экраны. Даже у гениев полная многоэкранная схема мышления проявляется в редкие звездные мгновения. Да и то многое остается незадействованным… Цель ТРИЗ: опираясь на изучение объективных закономерностей развития технических систем, дать правила организации мышления по многоэкранной схеме.

* * *

Сравним два изобретения:

А.с. 210662: «Индукционный электромагнитный насос, содержащий корпус, индуктор и канал, отличающийся тем, что, с целью упрощения запуска насоса, индуктор выполнен скользящим вдоль оси канала насоса».

А.с. 244266: «Колонка для замораживания горных пород, включающая замораживающую и питающую трубы, а также турбулизатор, отличающаяся тем, что, с целью обеспечения возможности управления процессом образования ледопородного цилиндра по высоте зоны замораживания, турбулизатор установлен на питающей трубе с возможностью перемещения вдоль оси».

Изобретения относятся к разным областям техники, однако суть технических решений одинакова. Имеются некая труба и некое устройство, жестко соединенное с этой трубой. Чтобы повысить управляемость системы, предложено заменить жесткое соединение нежестким, сделать устройство подвижным, перемещающимся вдоль трубы.

Если обратиться к патентному фонду, нетрудно найти множество подобных технических решений. По а.с. 232160 в электромагнитном гидроциклоне пусковой патрубок выполнен перемещающимся относительно надетого на этот патрубок корпуса циклона. По а.с. 499939 вал мешалки способен перемещаться относительно ванны с жидкой средой.

Не менее часто встречаются изобретения, в которых части системы перемещаются относительно друг друга благодаря введению шарнирных связей. Например, а.с. 152842 предусматривает шарнирное соединение горелки и корпуса термобура. Идентичное решение использовано в а.с. 179859 для придания подвижности головке сварочной горелки.

Возникает вопрос: не является ли переход от жесткой схемы к гибкой закономерностью, распространяющейся на все технические системы?

Историко-технические исследования и анализ патентного фонда дают положительный ответ на этот вопрос. «Молодые» технические системы чаще всего имеют жесткие связи между частями, не позволяющие системе приспосабливаться к меняющимся внешним условиям. Поэтому для каждой системы неизбежен этап «динамизации» – переход от жесткой, неменяющейся структуры к структуре гибкой, поддающейся управляемому изменению. Общеизвестными примерами действия этого закона могут служить применение убирающегося шасси на самолете, самолеты с изменяющейся геометрией крыла (Ту-144 с откидывающимся «носом») и т. д. «Зрелые» и «пожилые» системы тоже динамизируются, что компенсирует увеличение их размеров. Вот а.с. 893124: «Морское судно, имеющее подводные погружные торпедообразные корпуса, соединенные с надводным корпусом вертикальными обтекаемыми стойками, отличающееся тем, что, с целью уменьшения осадки судна при швартовке у берега, крепление вертикальных стоек к надводному корпусу выполнено подвижным по высоте».

Вводят шарниры и упругие элементы, применяют пневмо– и гидроконструкции, используют вибрацию, фазовые переходы… Выбор способа динамизации зависит от конкретных обстоятельств, но сама динамизацияуниверсальный закон, определяющий направление развития всех технических систем, даже таких, которые по самой своей природе, казалось бы, должны оставаться жесткими. Опора для шпалерных насаждений – просто столбик, к которому крепится проволока. Но по а.с. 324990 опора выполнена из двух шарнирно соединенных частей; это позволяет осенью пригибать ветви. В а.с. 243241 описан молоток, ударный элемент которого для получения постоянной силы удара соединен с рукояткой при помощи пружины.

Зная закон увеличения степени динамичности, можно прогнозировать развитие технических систем. Рассмотрим, например, а.с. 193349 на устройство для ввода сыпучих материалов в горизонтальный трубопровод (рис. 8). Под люком бункера на четырех болтах установлена площадка. Ее высоту подбирают так, чтобы угол откоса материала не позволял ему высыпаться за пределы площадки. Благодаря этому в поток воздуха поступает столько порошка, сколько поток может унести, и предотвращается образование пробок. Типичная жесткая система! Очевидно, можно перейти к динамичной системе, имеющей заведомое преимущество – возможность регулирования подачи сыпучего материала. Для этого необходимо выполнить площадку подвижной, чтобы мог меняться угол ее наклона к оси трубы. Динамичность можно обеспечить и вибрацией площадки, установив ее на шарнирных или пружинных опорах (а.с. 272064).

Рис.7 Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач

Задача 4.2. В а.с. 235856 описан дозатор для ферромагнитных материалов, отличающийся тем, что вместо механических задвижек использованы кольцевые электромагниты (рис. 9). При выключенном верхнем электромагните материал из бункера поступает в калиброванную трубу – до уровня нижнего (включенного) магнита. Затем включают верхний магнит и выключают нижний. Отмеренная доза материала проходит вниз по трубе. Надо предложить новую и более эффективную конструкцию подобного дозатора.

Задача очень трудна для «непосвященных», потому что не ясно, чем, собственно, плоха исходная конструкция дозатора. Для тех, кто знает закон увеличения степени динамичности, решение задачи очевидно: надо перейти к системе гибкой, подвижной. Это можно сделать, выполнив один магнит подвижным относительно другого. В результате будет обеспечена возможность регулирования отмеряемой дозы материала (а.с. 312810).

Задача 4.3. Спортивный катамаран представляет собой два поплавка, соединенные площадкой, на которой стоит спортсмен. Чем больше расстояние между поплавками, тем устойчивее катамаран. Однако перевернувшийся катамаран – именно из-за высокой устойчивости – невозможно без посторонней помощи возвратить в первоначальное положение. Как быть?

Задача решается легко. Катамаран – жесткая система. Именно поэтому катамаран не приспособлен к применению в других внешних условиях, в которых он оказывается после опрокидывания. Решение очевидно: либо поплавки должны сдвигаться друг к другу, либо – что проще – мачта должна перемещаться из нижнего (опрокинутого) положения в верхнее с тем, чтобы в дальнейшем можно было плыть на обратной стороне площадки (обе стороны одинаковы). Для этого мачта должна быть шарнирно соединена с брусом на передней кромке площадки (англ. пат. 1372642).

Таким образом, знание закона увеличения степени динамичности позволяет прогнозировать развитие технических систем и решать некоторые изобретательские задачи. И наоборот: незнание закона делает легкую (с позиций ТРИЗ) задачу почти неприступной.

Задача 4.4. Возьмем за прототип дозатор, изображенный на рис. 8. Предположим, он уже динамизирован: высота площадки регулируется, корпус дозатора снабжен виброприводом. А что дальше? Помимо динамизации…

* * *

И еще одна задача.

Задача 4.5. Для сохранения рыбы после копчения ее надо заморозить. Кроме того, изолировать от воздуха. Испытали упаковку в виде пластикового мешка; пришли к выводу, что она помогает мало. Хранение в металлической упаковке исключено. Как быть?

Между прочим, эта задача Вам знакома…

* * *

Закон увеличения степени динамичности отражает лишь одну сторону эволюции технических систем. Естественно предположить существование и других законов.

В сущности, речь идет о том, чтобы признать, что техника материальна, а ее развитие диалектично. Материальность технических систем очевидна, и столь же очевиден факт их развития, подчиняющегося, как и всякое развитие, всеобщим законам диалектики. Отсюда со всей непреложностью вытекает решающий для методологии изобретательства вывод: существуют объективные законы развития технических систем, эти законы можно познать и использовать для сознательного решения изобретательских задач без слепого перебора вариантов[16].

* * *

Если ход «техноэволюции» определяется не одним законом, а комплексом законов, научная методика решения задач тоже должна быть комплексной, многоходовой: «Проверим, соблюдается ли первый закон… Так, здесь все в порядке. А второй?.. Тоже не нарушен, хорошо! Но вот третий закон – тут явное отклонение… Систему надо изменить!»

Существование в «техноэволюции» комплекса законов особенно сердит оппонентов ТРИЗ. Логика тут такая: много законов – много шагов при решении задачи, а это трудно… Вот, например, что говорит Р. Повилейко: «Многие, наверное, слышали о различных методиках технического творчества. Книг по этой проблеме много. Толстых, с большим количеством схем, формул, условных обозначений. Берешь в руки такую книгу и вспоминаешь древнегреческий философский диалог. Сороконожку спросили: «Почему у нее 29-я нога движется после 28-й?» Она задумалась и остановилась. В некоторых методиках столько шагов, что, освоив даже 2–3 из них, перестаешь думать о цели, теряешь ее»[17].

В первой книге по теории изобретательства [Альтшуллер Г. С. Как научиться изобретать. – Тамбов: Тамбовское книжное издательство, 1961] я писал: «Смысл притчи о сороконожке прост: не надо мудрствовать лукаво, лучший метод – это вообще обходиться без методов.

Что ж, с этим трудно спорить, если речь идет о сороконожке. Пожалуй, сороконожке действительно следует ходить без особой методики. Но человек может и должен осмысливать все виды своей деятельности».

* * *

Работа по созданию теории решения изобретательских задач началась в нашей стране в 1946 г. Первая публикация относится к 1956 г. [Альтшуллер Г. С., Шапиро Р.Б. Психология изобретательского творчества // Вопросы психологии, 1956, № 6. – С. 37–49], первая книга по ТРИЗ появилась в 1961 г. Творческий процесс настолько привыкли считать не поддающимся управлению, что полтора десятилетия (1956–1970) потребовалось на переход от разрозненных семинаров к регулярному обучению ТРИЗ в общественных школах и институтах технического творчества. Были написаны первые учебные пособия, подготовлены первые преподаватели.

Сначала скептики отвергали саму идею решения творческих задач «по правилам». Когда с помощью ТРИЗ были получены первые авторские свидетельства, возражения изменились: «А где доказательства, что этому можно учить всех инженеров?» Начали работать школы ТРИЗ. Скептики не сдавались: «Да, обучать можно, но почему именно ТРИЗ, а не мозговому штурму или другим подобным методам?» Шло время, стало очевидным: ТРИЗ быстро развивается, крепнет, а мозговой штурм, синектика, морфологический метод остаются практически неизменными. Возражения зазвучали иначе: «Конечно, все это неплохо… Но ТРИЗ не дает сильных, неожиданных решений, теория годится только для простых усовершенствований». И снова шли годы, накапливались сведения о трудных задачах, которые удалось осилить с помощью ТРИЗ. Скептики ненадолго умолкли, а потом сказали: «Прикиньте-ка расходы и докажите, что обучение окупается!»

В декабре 1968 г. впервые были организованы занятия с будущими преподавателями ТРИЗ. Стоили эти занятия около 6 тыс. руб. В апреле 1969 г. один из слушателей, Михаил Иванович Шарапов, рассказал в газете «Магнитогорский металл» об изобретении, сделанном по ТРИЗ. Позже была подсчитана экономия: 42 тыс. руб. в год только на одном металлургическом комбинате. Одно это изобретение перекрыло расходы на обучение во всех школах ТРИЗ в течение многих последующих лет. Между тем у заслуженного изобретателя М.И. Шарапова ныне свыше 60 авторских свидетельств. Другим слушателем тех же курсов – Ю.В. Чинновым, тоже ставшим заслуженным изобретателем, за 10 лет получено более 100 авторских свидетельств. Вот что пишет один из выпускников днепропетровской школы ТРИЗ: «Начинал учебу инженером, год назад окончившим вуз и смотревшим с глубочайшим уважением на людей, у которых было хотя бы одно изобретение, так как у самого не было ни одного. Оканчивал учебу, имея три положительных решения о выдаче авторских свидетельств и уверенность в своих творческих силах. И еще одно, самое важное, на мой взгляд, приобретение – острое, неодолимое желание изобретать, постоянно находиться в творческом поиске. Сейчас, через шесть лет, у меня уже около 40 изобретений». В кандидатской диссертации А. Анищенко «Исследование и разработка способов управления течением листового материала при газостатической формовке» (1980 г.) последовательно применен почти весь аппарат ТРИЗ. Найдено 13 новых технических решений, 10 из них защищены авторскими свидетельствами. Внедрение этих технических решений только на одном заводе дает экономический эффект в 680,4 тыс. руб. в год.

Ну а если подвести общий итог? Полных данных нет, но если суммировать сведения по главным школам, получится примерно такая картина. За 10 лет (1972–1981) через школы ТРИЗ прошло около 7000 слушателей. Подано почти 11 000 заявок. Получено более 4000 авторских свидетельств (значительная часть заявок еще на рассмотрении), экономия от внедрения составляет миллионы рублей. Общие же расходы на обучение не превышают 100 тыс. руб. Поистине – нет ничего практичнее работоспособной теории!

* * *

Итак, в основе ТРИЗ – представление о закономерном развитии технических систем. Материалом для выявления конкретных закономерностей является патентный фонд, содержащий описания миллионов изобретений. Ни в одном другом виде человеческой деятельности нет такого огромного и систематизированного свода записей «задача – ответ».

Анализ патентных материалов позволил выявить ряд важнейших законов развития технических систем. Первая группа этих законов («статика») относится к критериям жизнеспособности новых технических систем.

Необходимыми условиями принципиальной жизнеспособности технической (как и биологической!) системы являются:

1) наличие и хотя бы минимальная работоспособность ее основных частей;

2) сквозной проход энергии через систему к ее рабочему органу;

3) согласование собственных частот колебаний (или периодичности действия) всех частей системы[18].

Задача 4.6. По конвейеру движутся одна за другой металлические детали, похожие на кнопки: круглая пластинка размером с гривенник, а в центре – стерженек высотой 5 мм. У одних «кнопок» стерженьки тупые, у других – острые. Нужно автоматизировать разделение «кнопок» по этому признаку. Способ должен быть простым и надежным.

Типичная задача на синтез измерительной системы. Измерение, как и изменение, всегда связано с преобразованием энергии. Но в задачах на изменение необходимость преобразования энергии видна намного отчетливее, чем при решении задач на измерение. Поэтому при решении задачи 4.6 методом перебора вариантов даже не вспоминают о законе обеспечения сквозного прохода энергии. В эксперименте задача была предложена четырем заочникам, живущим в разных городах и только приступающим к изучению ТРИЗ. Результат: выдвинуто 11 идей, правильного решения нет. Предложения характеризуются неопределенностью: «Может быть, острые и тупые «кнопки» отличаются по весу? Тогда надо проверить возможность сортировки по весу…» Четыре заочника второго года обучения дали правильные ответы, причем двое из них отметили тривиальность задачи. В самом деле, если применять закон о сквозном проходе энергии, ясно, что энергия должна проходить сквозь основание «кнопки» и стерженек, а затем поступать на измерительный прибор. При этом между острием стерженька и входом измерительного прибора желательно иметь свободное пространство (воздушный промежуток), чтобы не затруднять движения «кнопок». Цепь «кнопка – острие стерженька – воздух – вход прибора» может быть легко реализована, если энергия электрическая, и значительно труднее – при использовании других видов энергии. Следовательно, надо связать процесс с потоком электрической энергии: в каких случаях ток зависит от степени заостренности стерженька, контактирующего с воздухом? Такая постановка вопроса, в сущности, содержит и ответ на задачу: надо использовать коронный разряд, сила тока в котором прямо зависит (при прочих равных условиях) от радиуса кривизны (т. е. от степени заостренности) электрода.

* * *

Вторая группа законов развития технических систем («кинематика») характеризует направление развития независимо от конкретных технических и физических механизмов этого развития.

Все технические системы развиваются: 1) в направлении увеличения степени идеальности; 2) увеличения степени динамичности; 3) неравномерно – через возникновение и преодоление технических противоречий, причем чем сложнее система, тем неравномернее и противоречивее развитие ее частей; 4) до определенного предела, за которым система включается в надсистему в качестве одной из ее частей; при этом развитие на уровне системы резко замедляется или совсем прекращается, заменяясь развитием на уровне надсистемы.

Существование технической системы – не самоцель. Система нужна только для выполнения какой-то функции (или нескольких функций). Система идеальна, если ее нет, а функция осуществляется. Конструктор подходит к задаче так: «Нужно осуществить то-то и то-то, следовательно, понадобятся такие-то механизмы и устройства». Правильный изобретательский подход выглядит совершенно иначе: «Нужно осуществить то-то и то-то, не вводя в систему новые механизмы и устройства».

Закон увеличения степени идеальности системы универсален. Зная этот закон, можно преобразовать любую задачу и сформулировать идеальный вариант решения. Конечно, далеко не всегда этот идеальный вариант оказывается полностью осуществимым. Иногда приходится несколько отступить от идеала. Важно, однако, другое: представление об идеальном варианте, вырабатываемое по четким правилам, и сознательные мыслительные операции «по законам» дают то, для чего раньше требовались мучительно долгий перебор вариантов, счастливая случайность, догадки и озарения.

Примером может служить решение задачи 1.1 о транспортировке жидкого шлака. Сформулируем идеальный вариант ответа: «Крышка идеальна, если ее нет, а функция крышки выполняется». Иными словами, идеальная крышка должна быть сделана «из ничего» – из уже имеющихся и потому бесплатных материалов: жидкого шлака и воздуха. Парадоксальный ход: горячий шлак и холодный воздух сами предотвращают свое вредное взаимодействие!.. Простейшее сочетание шлака и воздуха – пена. Застывшая шлаковая пена вместо крышки – таков ответ на задачу 1.1. Вспенить шлак нетрудно: достаточно при заполнении ковша шлаком подать немного воды. Образуется «крышка» из шлаковой пены с высокими теплоизолирующими свойствами. При наклоне ковша жидкий шлак расплавляет «крышку», потерь шлака нет…

Задача впервые решена М.И. Шараповым (а.с. 400621), сознательно использовавшим законы увеличения степени идеальности системы. Изобретение – в силу исключительной простоты – без затруднений внедрили сначала на Магнитогорском металлургическом комбинате, а затем и на многих других предприятиях.

При решении задач перебором вариантов сознательное стремление к идеальному ответу встречается крайне редко. Но повышение степени идеальности систем – закон. К ответу, повышающему степень идеальности, приходят на ощупь после того, как отбросили множество «пустых» вариантов.

* * *

А теперь вернемся к вопросу о красоте задач. Уточним: красивы не столько сами задачи, сколько сочетания «задача – логика решения – ответ». Красоты тем больше, чем неприступнее задача, изящнее логика ее решения, идеальнее ответ.

Вспомните задачу 4.5 – о копченой рыбе. Уверен, что эта задача не вызвала у Вас восторга: скорее всего, она не по Вашей специальности, да и вообще проблема сохранения копченой рыбы – где-то в стороне от романтики. К тому же вряд ли Вы знаете, с какой стороны подступиться к этой задаче… Между тем задача 4.5 – просто-напросто двойник задачи 1.1. Или, если хотите, зеркальное ее отображение… В задаче 1.1 надо помешать горячему веществу (жидкий шлак) «общаться» с веществом холодным (воздух). В задаче 4.5 требуется помешать холодному веществу (замороженная копченая рыба) «общаться» с теплым воздухом. В первом случае ввели прослойку застывшей пены; почему бы не использовать этот прием вторично?.. Застывшую пену в первом случае сделали из имеющихся под рукой веществ – жидкого шлака и газа (пара). Почему бы не поступить так и во второй раз?.. Ответ: после замораживания рыбу обволакивают застывшей пеной, приготовленной из коптильной жидкости и инертного газа, например азота (а.с. 1127562).

* * *

Мы познакомились с двумя исключительно важными понятиями:

1. При решении задачи следует ориентироваться на идеальный ответ. Такой ответ не всегда достижим в полной мере, но необходимо добиваться максимального приближения к нему. Составленную по определенным правилам формулировку идеального ответа называют идеальным конечным результатом (ИКР).

2. Для приближения к ИКР необходимо максимально использовать имеющиеся ресурсы – вещественные и энергетические. Данные по условиям задачи вещества и поля, а также «даровые» вещества и поля принято называть вещественно-полевыми ресурсами (ВПР).

Максимальное использование ВПР для максимального продвижения к ИКР – такова в самом общем виде формула победы над задачей.

* * *

Уточним некоторые понятия, относящиеся к противоречиям.

Существуют противоречия административные (АП): нужно что-то сделать, а как сделать – неизвестно. Такие противоречия констатируют лишь сам факт возникновения изобретательской задачи, точнее – изобретательской ситуации. Они автоматически даются вместе с ситуацией, но ни в какой мере не способствуют продвижению к ответу. Технические противоречия (ТП) отражают конфликт между частями или свойствами системы (или «межранговый» конфликт системы с надсистемой, системы с подсистемой). Изобретательской ситуации присуща группа ТП, поэтому выбор одного противоречия из этой группы равносилен переходу от ситуации к задаче. Существуют типовые ТП, например, в самых различных отраслях техники часто встречаются ТП типа «вес – прочность», «точность – производительность» и т. д. Типовые технические противоречия преодолеваются типовыми же приемами. Путем анализа многих тысяч изобретений (преимущественно третьего-четвертого уровней) удалось составить списки приемов. Более того, были составлены таблицы применения этих приемов в зависимости от типа противоречий. ТП обладают определенной «подсказывательной» (эвристической) ценностью: зная ТП, можно по таблице выйти на нужную группу приемов. Однако при решении сложных задач такой путь не всегда оказывается эффективным, поскольку многое остается неопределенным: неизвестно, какой именно прием из группы надо использовать, к какой части конфликтующей пары относится этот прием, как именно его применить в конкретных обстоятельствах данной задачи. Положение осложняется еще и тем, что решения многих сложных задач связаны с использованием определенных сочетаний нескольких приемов (или сочетаний приемов и физэффектов). Поэтому задачи необходимо анализировать глубже, выявляя физическую суть ТП.

Современная ТРИЗ предусматривает анализ причин ТП и переход от технического к физическому противоречию (ФП).

Техническое противоречие (ТП) представляет собой конфликт двух частей системы; для перехода к ФП необходимо выделить одну часть, а в этой части – одну зону, к физическому состоянию которой предъявляются взаимо-противоречивые требования. Формулируется ФП так: «Данная зона должна обладать свойством А (например, быть подвижной), чтобы выполнять такую-то функцию, и свойством не-А (например, быть неподвижной), чтобы удовлетворять требованиям задачи».

«Физичность» ФП, четкая локализация и предельная обостренность самого конфликта (быть А и не быть А) придают ФП высокую «подсказывательную» ценность. Если ФП сформулировано правильно, задачу – даже сложную – можно считать в значительной мере решенной. Дальнейшее продвижение не вызывает принципиальных трудностей (хотя и требует обширного и сконцентрированного информационного аппарата, например указателя физических эффектов и явлений).

Задача 4.7. Имеется установка для испытания длительного действия кислот на поверхность образцов сплавов. Установка представляет собой герметично закрываемую металлическую камеру. На дно камеры устанавливают образцы (кубики). Камеру заполняют агрессивной жидкостью, создают необходимые температуру и давление. Агрессивная жидкость действует не только на кубики, но и на стенки камеры, вызывая их коррозию и быстрое разрушение. Приходится изготавливать камеру из благородных металлов, что чрезвычайно дорого. Как быть?

Перед нами изобретательская ситуация с четко видимым административным противоречием: нужно как-то снизить стоимость системы, а как именно – неизвестно. В системе три части: камера (т. е. корпус камеры, стенки), жидкость и кубик (достаточно рассмотреть один). Соответственно имеются три их комбинации: 1) камера – жидкость, 2) камера – кубик, 3) жидкость – кубик. Конфликтующими являются только первая и третья пары. Нетрудно заметить: для возникновения конфликта нужно взаимодействие частей пары; между камерой и образцом нет конфликта, поскольку нет взаимодействия. Две конфликтующие пары – это разные изобретательские задачи со своими техническими противоречиями. Какую из них выбрать?

По задаче 4.7 за 1973–1982 гг. накопилась обширная статистика (см. таблицу).

Рис.8 Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач

Слушатели, незнакомые с ТРИЗ, в 75 % случаев выбирают в качестве конфликтующей пары «камеру – жидкость», т. е. ситуация переводится в задачу по борьбе с коррозией. Это крайне невыгодная стратегия: локальная задача по улучшению способа испытаний образцов заменяется несоизмеримо более общей и трудной задачей по защите металла от коррозии. В результате – 80 % заведомо неверных решений и почти 20 % весьма сомнительных и ненадежных (например, различные защитные покрытия камеры). Слушатели, знающие основы ТРИЗ, в 83 % случаев выбирают пару «кубик – жидкость», что почти всегда приводит к правильному ответу. (Следует отметить, что неверные ответы возникают – при решении этой задачи по ТРИЗ – только из-за грубого нарушения правил: человек знает правила, но ему кажется, что в данном случае они «ведут не туда»; из-за психологической инерции решение по ТРИЗ подменяется перебором вариантов.)

Задача 4.7 проста, ее можно решить перебором вариантов (хотя реально ее впервые решили по ТРИЗ, а до этого применяли дорогостоящую облицовку, считая это неизбежным). Перебрав достаточно много вариантов, можно перейти от идеи защиты стенок к идее вообще обойтись без них. Это равносильно переходу к паре «кубик – жидкость». Правила выбора пары, основанные на законах развития технических систем, делают то же самое, но без «пустых» проб. Общее правило, вытекающее из закона повышения степени идеальности, гласит: в пару должны входить изделие и та часть инструмента, с помощью которой непосредственно ведется обработка изделия. Смысл правила: инструмент тем идеальнее, чем его меньше (при сохранении эффективности), поэтому надо рассматривать только изделие и рабочую часть инструмента, как будто всего остального вообще нет. Тем самым мы от задачи переходим к ее модели. В данном случае модель выглядит так: кубик и вокруг него агрессивная жидкость. Реально этого не может быть – жидкость прольется. Модель задачи – это мысленная, условная схема задачи, отражающая структуру конфликтного участка системы.

Переход от задачи к модели задачи облегчает выявление физического противоречия. При этом следует использовать правило: менять предпочтительно не изделие, а входящую в модель часть рабочего органа системы (изменение изделия может вызвать острые противоречия в нескольких этажах иерархии систем). Инструмент в задаче – жидкость. Эта жидкость должна окружать кубик, чтобы шли испытания, и не должна окружать кубик, чтобы не растекаться. Такая формулировка отсекает все варианты, кроме двух: 1) жидкость заменена вязким веществом типа пластилина и 2) жидкость удерживается самим кубиком (для чего он должен быть сделан полым). Предпочтительнее последний вариант: он не связан с изменением свойств жидкости.

* * *

Нам иногда говорят: вы учите решать задачи по законам, следовательно, учите шаблонному мышлению… Все наоборот! Обычное мышление из-за психологической инерции идет шаблонными путями. Знание законов развития технических систем позволяет сознательно уходить от шаблонов, законы подталкивают к нетривиальным, «диким» мыслительным операциям, свойственным очень талантливым изобретателям.

Задача 4.8. В книге М. Борисова «Кратеры Бабакина» есть эпизод, связанный с проектированием станции «Луна-16». Нужно было снабдить станцию компактной и сильной электролампой для освещения лунной поверхности «под ногами» станции. Лампе предстояло выдержать большие механические перегрузки. Естественно, отобранные образцы придирчиво испытывали. И вот оказалось, что лампы не выдерживают перегрузок. Слабым местом было соединение цоколя лампы со стеклянным баллоном. Сотрудники Бабакина сбились с ног, пытаясь найти более прочные лампы… Как Вы думаете: что предложил в этой ситуации главный конструктор Георгий Николаевич Бабакин?

Эту задачу Вы должны решить без всяких затруднений. Идеальный баллон – когда баллона нет, а функция его выполняется. В чем функция баллона? Держать вакуум внутри лампы. Но зачем везти вакуум на Луну, если там сколько угодно своего – притом отборнейшего – вакуума?! Бабакин предложил поставить на «Луну-16» лампу без стеклянного баллона. Такая лампа непригодна на Земле, но ведь на Земле она и не нужна…

5. Новеллы о законах

Задача 5.1. Группа ученых под руководством П.Л. Капицы изучала поведение плазменного разряда в гелии. Установка (точнее, интересующая нас часть установки) представляла собой «бочку», положенную на бок. Внутри «бочки» находился газообразный гелий под давлением 3 атм. Под действием мощного электромагнитного излучения в гелии возникал плазменный шнуровой разряд, стягивающийся в сферический сгусток плазмы («шаровую молнию»). Для удержания этого сгустка в центральной части «бочки» использовали соленоид, кольцом охватывающий «бочку». В ходе опытов постепенно наращивали мощность электромагнитного излучения. Плазма становилась все горячее и горячее. Но с повышением температуры уменьшалась плотность плазменного шара. Молния поднималась вверх. Мощности соленоидного кольца явно не хватало. Сотрудники Капицы предложили строить новую установку – с более сильной соленоидной системой. Но Петр Леонидович Капица нашел другое решение. Как Вы думаете, какое?

Рассмотрим несколько изобретений.

А.с. 319460. Для обработки (овализации) зерен абразива предложено смешать зерна с ферромагнитными частицами и вращать смесь магнитным полем.

А.с. 333993. Для очистки проволоки от окалины предложено пропускать проволоку через абразивный ферромагнитный порошок, поджимаемый магнитным полем.

А.с. 387570. Для распыления полимерных расплавов предложено вводить в расплав ферромагнитные частицы и пропускать расплав через зону действия знакопеременного магнитного поля.

А.с. 523742. Для изгибания немагнитных труб предложено наполнять их ферромагнитным порошком и действовать магнитным полем.

А.с. 883524. Щит опалубки в виде гибкого «матраца», заполнен ферромагнитным материалом, твердеющим в магнитном поле.

А.с. 1068693. Мишень для стрельбы из лука из кольцевого электромагнита заполнена сыпучим ферромагнитным материалом.

Нетрудно подметить общий прием, использованный в этих изобретениях. Имеется некоторое вещество, само по себе не поддающееся управлению (изменению, обработке). Чтобы управлять веществом, вводят ферромагнитные частицы и действуют магнитным полем.

Задача 5.2. Для временного перекрытия трубопроводов путем образования пробки закачивают быстротвердеющий полимерный состав. Недостаток способа состоит в том, что жидкость до отвердевания растекается. Пробка получается неоправданно длинная, это усложняет ее извлечение после ремонта трубопровода. Как быть?

Возможно, эта задача раньше показалась бы нелегкой. Теперь ответ очевиден: надо ввести в полимерный состав ферромагнитные частицы и удерживать состав магнитным полем. Такое решение зафиксировано в а.с. 708108. Запишем это решение так, как записывают химические реакции. По условиям задачи дано вещество (полимерный состав), обозначим его буквой В. Пунктирной стрелкой покажем, что вещество плохо поддается управлению и надо научиться им управлять:

Рис.9 Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач

Запишем теперь ответ. Вводится магнитное поле Пм, действующее на ферромагнитный порошок Вф, который, в свою очередь, управляет В:

Рис.10 Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач

Соединим «дано» и «получено» двойной стрелкой, она заменит слова «для решения задачи надо перейти к»:

Рис.11 Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач

Было вещество В, которое плохо поддавалось непосредственному воздействию. Пришлось пойти в обход: взяли хорошо взаимодействующую пару «магнитное поле – ферропорошок» и объединили с имеющимся веществом в единую систему. Видно и противоречие, спрятанное в условиях задачи: поле не должно действовать на В (нет подходящих полей) и должно действовать на В (чтобы управлять им).

Запись «реакции» отражает суть всех изобретений, приведенных в начале раздела. В патентном фонде имеются тысячи изобретений, соответствующих этой «реакции». «Треугольник» из Пм, Вф и В получил название феполь (от слов «феррочастицы» и «поле»). Существуют, однако, другие поля и другие вещества, хорошо работающие в паре с ними.

А.с. 236279. Для сжатия порошка, заключенного в металлический корпус, используют охлаждение корпуса.

А.с. 359198. Для съема гребных винтов используют тяговые стержни, удлиняющиеся при нагревании.

А.с. 412428. Для точной регулировки клапана в вакуумном вентиле изменяют размеры штока клапана, пропуская внутри него охлаждающую жидкость.

А.с. 735256. Для микродозирования жидких лекарств нагревают воздух в полости пипетки.

Формула этих изобретений может быть записана так:

Рис.12 Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач

Дано плохо управляемое вещество – изделие B1. Чтобы обеспечить хорошую управляемость, надо перейти к системе, в которой тепловое поле Пт действует на вещество – инструмент В2, связанное с B1. Структуры из Пт, В2 и В1 получили название теполей.

В общем случае возможны структуры, включающие любое поле:

Рис.13 Найти идею. Введение в ТРИЗ – теорию решения изобретательских задач

Такую структуру принято называть веполь (от слов «вещество» и «поле»). Нетрудно заметить, что веполь является схемой минимальной ТС: он включает изделие, инструмент и энергию (поле), необходимую для воздействия инструмента на изделие. Любую сложную техническую систему можно свести к сумме веполей. Тут уместна аналогия с геометрией: любую сложную фигуру можно разбить на треугольники. Зная свойства треугольников, можно производить вычисления, связанные со сложными фигурами. Отсюда особое значение тригонометрии. Аналогичную роль играет и вепольный анализ. Записывая условия задачи в вепольной форме, мы отбрасываем все несущественное, выделяя причины возникновения задачи, т. е. «болезни» технической системы, например, недостроенность веполя. Поэтому вепольный подход не только удобная символика для записи изобретательских «реакций», но и инструмент проникновения в глубинную суть задачи и отыскания наиболее эффективных путей преобразования технических систем.

Задача 5.3. Дана смесь одинаковых по размерам и имеющих одну и ту же плотность кусочков коры и древесины (разрубили на щепки кривой ствол, с которого нельзя было снять кору). Как отделить кору от древесины?

Страницы: «« 12

Читать бесплатно другие книги:

Автор этой книги отбросил скучные детали и статистику и предлагает читателю занимательные уроки псих...
Демократы не могут противостоять диктатуре и защищать политическую свободу, если они не способны дей...
Новый роман от автора бестселлера «Заградотряд времени»! Наш современник в кровавом аду Великой Отеч...
«…Очень трудно убить человека, – но гораздо труднее пройти через смерть: так указала биология природ...
Книга об основах бухгалтерского учета и финансов. Основное внимание в книге уделено не техническим а...
Каково назначение продавцов и отделов продаж в современной компании? Они обязаны служить делу повыше...