Простые вопросы. Книга, похожая на энциклопедию Антонец Владимир
Воссоздать условия невесомости я не могу, но если возьму тонкую пипетку и попробую сформировать небольшую нетяжелую каплю, то ее поверхность в основном будет окружена воздухом, как и в условиях невесомости, так как место контакта капли и пипетки имеет малую площадь. Капля, как и в невесомости, получится почти круглой. Запас ее энергии минимален. Чтобы изменить форму капли, надо придумать способ дополнительного уменьшения ее энергии. Для этого ее можно разместить на твердой поверхности. Если поверхность жирная, капля так и останется круглой. Значит, взаимодействие воды с жирной поверхностью приведет не к уменьшению, а к увеличению энергии капли. Поэтому капля не сможет растечься и останется шариком. Значит, жирная поверхность, например утиное перо, не намокнет.
Если же разместить каплю воды на чистом стекле, она растечется. Это значит, что взаимодействие молекул воды и стекла уменьшает энергию капли по сравнению с тем случаем, когда они взаимодействуют только с молекулами газов воздуха и между собой. Вот, собственно, и все объяснение: дело в молекулярных взаимодействиях. Это объяснение касается не только воды, но и любых других веществ в жидком состоянии.
Можно ли еще как-то повлиять на смачивание? Можно. Поскольку взаимодействие между молекулами зависит от температуры, то при нагреве могут произойти такие изменения, что поверхность станет смачиваемой. Например, если мы пытаемся спаять две медные проволочки оловянным припоем, его надо нагреть до высокой температуры. Нагретое олово начинает смачивать медную поверхность. Если его остудить, проволочки окажутся крепко спаянными.
Иногда со смачиванием приходится бороться. Например, покрывать ботинки кремом, чтобы они не промокали; пропитывать ткани, чтобы изготовить водоотталкивающую одежду. В производстве, например, важно, чтобы расплавленный металл не прилипал к стенкам форм для литья.
Замечательно, что вода смачивает нашу посуду и у нас есть возможность мыть ее дочиста. Смачивает она и нашу кожу, поэтому мы можем быть чисто вымытыми, а это так приятно!
Почему днем все хорошо видно?
Вопрос о том, почему днем все хорошо видно, может показаться странным: на то и день, чтобы было светло и все было хорошо видно. А между тем не все так просто. Хорошо видеть предметы можно двояко: либо когда они сами светятся, либо когда от них отражается свет, излучаемый другими источниками.
Древние греки называли первый случай коротким огнем, а второй — длинным. И их очень занимало то, как человеку удается видеть. Они даже обсуждали вопрос, не исходят ли из глаз некие невидимые щупальца, которыми обследуются предметы.
Сейчас мы знаем, что нам удается видеть благодаря рецепторам в сетчатке глаза, которые приспособлены для восприятия солнечного электромагнитного излучения в определенном диапазоне длин волн — 0,37–0,58 микрометра. Этот диапазон длин волн называется оптическим. Солнечная подсветка позволяет в отраженном свете увидеть все предметы. Казалось бы, больше и думать-то не о чем.
Но выясняется, что есть другие живые существа, которые видят плохо даже в том диапазоне, в котором видим мы. Это ночные животные. Их больше устраивает инфракрасный диапазон. Это несколько более длинные электромагнитные волны, чем у оптического диапазона. Но для этих животных картина мира такая же ясная, как и для нас. Они хорошо ориентируются, могут охотиться, обходить препятствия и т. д. Что важно, в этом случае излучение исходит от самих наблюдаемых объектов. Дело в том, что любое тело, имеющее температуру, отличную от абсолютного нуля, испускает электромагнитное излучение. И чем выше температура тела, тем более смещается к волнам с короткой длиной значение длины волны, на которой мощность излучения максимальна. Например, пока кусок железа нагрет не слишком сильно, мы чувствуем исходящее тепло, но не видим излучения. А если нагреть посильнее, то мы сначала увидим красное свечение, а потом и белое.
Но если есть животные с инфракрасным зрением, то существуют с такими рецепторами, которые реагируют на инфракрасное тепловое излучение, — почему бы не сделать прибор, предназначенный принимать инфракрасный свет и разглядывать, как излучают тепло разные предметы? И такая аппаратура уже изобретена. На этом принципе основаны военные приборы ночного видения: там все как в телевизоре. Инфракрасный датчик принимает тепловое излучение и преобразует его в электрический сигнал. Затем электрический сигнал преобразуется и поступает на телевизионный экран, формирующий оптическое изображение, которое человек и рассматривает. Вы сможете увидеть любые теплые объекты.
Существуют и такие мирные приборы — тепловизоры. Они применяются в медицинской диагностике, чтобы увидеть, какие части тела сильнее нагреты, какие слабее. А при разных нарушениях обмена карта нагрева получается разная. Это и позволяет ставить диагнозы.
Мы также можем смотреть через такой прибор на дом и видеть, где есть щели, откуда уходит тепло и хорошо ли оно удерживается крышей и окнами.
Но вернемся к тому, с чего начали. Получается, что днем нам все хорошо видно потому, что как раз в это время солнце освещает весь мир лучами, на восприятие которых рассчитаны рецепторы сетчатки наших глаз. Не могу не отметить, что смотреть на мир своими глазами гораздо приятнее, чем через тепловизор.
Почему зимой холодно?
Обычно кажется, что если от огня подальше, то и холоднее. А Земля, обогреваемая Солнцем, обращается вокруг него по практически круговой орбите — или совсем чуть-чуть вытянутой. И тем не менее бывает то холодно, то тепло. Почему?
Правильный и строгий ответ я нашел во втором томе «Физической энциклопедии» в статье «Земля»: «Вращение вокруг оси вызывает смену дня и ночи, наклон оси и обращение вокруг Солнца — смену времен года»[1].
Действительно, со школьных времен мы знаем, что Земля вращается вокруг Солнца по плоской, практически круговой орбите радиусом приблизительно 150 млн километров. Она вращается также вокруг своей оси, проходящей через Северный и Южный полюса и наклоненной по отношению к плоскости орбиты под углом чуть менее 67 градусов. Если ось вращения Земли наклонена по отношению к орбите, то получается, что угол наклона падения лучей на поверхность Земли при движении по орбите меняется. Он становится то ближе к вертикальному, то дальше. Если лучи падают косо, получается, что одно и то же излучение распределяется по большой площади. А если более прямо, этого не происходит. Поэтому просто величина солнечной радиации, попадающей на поверхность, летом больше, а зимой меньше.
Наверное, вы обращали внимание, что летом на крыше очень жарко. Это потому, что крыша имеет угол, добавляющийся к широтному углу, и поэтому в российских широтах часто крыша почти перпендикулярна направлению солнечных лучей. Именно поэтому там безумно жарко.
Таким образом, получается, что холод и тепло настигают нас только потому, что меняется угол падения солнечных лучей. Если хотите использовать такие лучи для подогрева воды на даче, вы должны ваш бачок поставить под углом, чтобы туда попадало побольше солнца. Мало того, если вы сделаете горку, на которой посадите, например, клубнику, она будет лучше вызревать. Вы и сами знаете, что на солнечном склоне ягоды всегда вкуснее.
На Земле есть две параллели, где Солнце раз в году бывает точно над головой. Они называются Северным и Южным тропиками — это примерно широта 23-го градуса, а поскольку наклон оси вращения по отношению к плоскости орбиты составляет 67 градусов, в сумме получается 90 градусов. Именно поэтому на этих широтах бывает такой момент, когда Солнце находится прямо над головой и предметы не отбрасывают тени. Это очень жаркие места.
Понижение температуры — объективная причина холода. Но иногда нам бывает холодно и летом, — когда человек говорит, что ему холодно, а на самом деле ощущает происходящий теплообмен. Если отдается много тепла — неважно, по каким причинам: например, человек мокрый и на него дует ветер, — то мы ощущаем холод.
В итоге получается, что вращение Земли вокруг Солнца при наклонной оси приводит к изменению температуры, но мы воспринимаем холод и тепло по степени теплообмена. Так что зимой холодно потому, что действительно устанавливается низкая температура, которую мы ощущаем благодаря росту теплообмена.
Почему и как люди стареют?
Как ни удивительно, с научной точки зрения проблема старения весьма молода. Пока старых людей на Земле было мало, эта проблема не казалась актуальной. Так, в Европе конца XIX века средняя продолжительность жизни составляла 39 лет, а Россия в 1917 году отметила этот показатель на возрасте 32 года. В нынешнее же время средняя продолжительность жизни в развитых странах превышает 70 лет и постоянно увеличивается число людей, возраст которых преодолел психологически значимую отметку 100 лет. Рекордсменами в этой области считаются Япония и Швейцария.
Геронтологи прогнозируют дальнейший рост средней продолжительности жизни. Сейчас люди в возрасте старше 60 лет составляют около 10 % населения планеты. Через 50 лет их будет уже 20 %, а доля детей до 14 лет снизится с 30 до 20 %. Поэтому человечеству необходимо научиться жить в таком возрасте, подобно тому как в течение всего прошлого столетия учились сохранять жизнь и здоровье детей.
Исследования обнаружили множество изменений в организме, происходящих при старении. Так, изменения касаются и клеток, и клеточных элементов — органелл, и тканей, и функционирования генетического аппарата, и состояния сенсорных систем. Изменения затрагивают также психику и мышление. Достоверно доказано, что старение всегда связано с повышением предрасположенности к смертельным заболеваниям. При этом разобраться, что выступает причиной, а что следствием, не так легко.
По данным, которые мне удалось найти, существует две основные теории старения. Одна говорит о генетической обусловленности этого процесса, объясняя его необходимость тем, что организм, давший потомство, должен освободить место новому, чтобы эволюция генов, обеспечивающая сохранение вида, могла продолжаться, отслеживая постоянные изменения условий существования. В пользу этой теории говорит то, что с увеличением возраста меняется активность 10–15 % генов. Часть из них теряет активность, что приводит к нарушению различных важных функций, например: производства эластина, обеспечивающего упругость кожи; производства переносчиков кислорода — эритроцитов и т. д. Часть же генов, наоборот, активируется.
Некоторые ученые сделали из этого вывод, что если суметь задержать половое созревание особи, то удастся и увеличить продолжительность ее жизни. Эксперименты на животных подтверждают такую гипотезу. В ее пользу говорят также и сравнительные эволюционные данные. Так, возраст полового созревания и максимальная продолжительность жизни составляют для гиббона 6 и 30 лет, а для шимпанзе — 9 и 48 лет. Статистика подтверждает также, что чем раньше женщина рожает первенца, тем меньше средняя продолжительность ее жизни.
Вторая теория говорит о старости как о следствии накопления случайных ошибок в структуре воспроизводимых организмом молекул, что приводит к повреждению клеток, тканей и т. д. Одним из основных, но не единственным фактором повреждения считаются так называемые свободные радикалы, обладающие высокой химической активностью. Они вступают в реакцию с важными биологическими молекулами, тем самым повреждая их.
Современная наука говорит о том, что у человечества достаточно велики шансы на обоих фронтах. Но если на генном уровне мы с вами с собой лично ничего поделать не можем, то за счет правильного образа жизни в состоянии задержать процессы нашего старения и долго сохранять хорошую форму.
Почему кошки умываются?
Кошки были известны еще в древнем мире. Так, при раскопках Иерихона археологами найдены останки кошек, живших в VI–V тысячелетиях до н. э. Считается, что они тогда еще не были полностью домашними. В Египте они жили с IV века до н. э. и очень высоко ценились. Мумии кошек находят в пирамидах — а кого попало в пирамиды не клали.
В Европе кошки известны с I века н. э. Они попали туда через Грецию и Италию и ценились очень высоко. Например, в Британии в XI–XII веках зафиксированы сделки, когда в перечень имущества при продаже фермы включалась кошка. Бывали в Европе и гонения на кошек как на представителей нечистой силы.
На территории Руси кошка появилась в начале XI века и быстро заняла важное место в жизни человека; с ней связано много обычаев, поверий и примет. В XIV веке на Руси за похищение кошки полагалось отдать три гривны, в то время как за жеребца всего одну. За собаку, впрочем, тоже требовалось три гривны.
Люди всегда обращали внимание, что кошка любит умываться. Она делает это по естественной причине: кошка — чистоплотное животное и вылизывание своей шкурки, включающее массаж тела, — неотъемлемая часть кошачьего поведения. Иногда кошки даже собираются на нейтральной территории и вылизывают друг друга, скажем голову или шею, то есть места, недоступные для «санитарной обработки» самой кошке. Получается такая социальная акция.
Но есть еще несколько причин, по которым кошки умываются. Например, они чувствительны к перемене погоды и беспокоятся накануне, поэтому возникла соответствующая примета. По приметам японцев кошка умывается к дождю. А по русским — это еще и к снегу.
В наши дни животные в городах достигли численности, сопоставимой с человеческой. Поэтому, хотим или нет, мы фактически налаживаем социальные отношения с кошками, собаками и между собой по поводу кошек и собак. У людей с домашними питомцами в целом хорошие отношения. Чаще всего их любят и о них заботятся. Есть даже индустрия по производству для них аксессуаров, еды, посуды, одежды. И можно над этим смеяться, но кошки и собаки, живущие в городе с людьми, нуждаются в особой пище и гигиенических процедурах.
Однако жизнь с людьми также может служить одной из причин, по которой кошка умывается. Как указывает Маргарет Рейстер из ветеринарной службы США, кошки умываются… от стресса. Стресс может быть вызван разными причинами, например приходом гостей. Отсюда и соответствующая примета, одинаковая, кстати, и в России, и в Японии. Он может быть вызван недовольством и выговором хозяина, испугом, неудачными действиями, каким-то источником напряжения.
Поэтому хозяин кошки должен поглядывать, часто ли она умывается, и не только умиляться, но и обязательно разбираться в причине.
Почему лед скользкий?
Предметы скользят друг относительно друга тогда, когда трение между их поверхностями мало. Наука, изучающая трение, называется трибологией. Она различает два вида трения: сухое, когда в промежутке между касающимися поверхностями движущихся друг относительно друга тел нет ни жидкости, ни газа; и жидкостное, когда поверхности предметов на значительных участках разделены жидкостью или газом, играющими роль смазки.
Смазка сильно уменьшает трение. Во-первых, она устраняет шероховатости трущихся поверхностей. Во-вторых, меняет взаимодействие между молекулами скользящих тел, потому что ее молекулы сами начинают участвовать в сложных физико-химических взаимодействиях. Разнообразие веществ и условий взаимодействия оказывается большим, поэтому для разных целей и в разных условиях приходится пользоваться огромным количеством разнообразных смазок.
Теперь понятно, что лед скользит потому, что между ним и скользящей поверхностью — полозом конька или саней, лыжей или подошвой нашей обуви — есть смазка. Но вот откуда она там взялась?
Над этим вопросом наука с переменным успехом бьется уже более 150 лет. Все гипотезы сходились на том, что такой смазкой служит вода. Например, братья Джеймс и Уильям (лорд Кельвин) Томсоны в 1849 году выдвинули гипотезу, что лед плавится от давления на него. Однако количественно она не подтвердилась. В 1939 году Филип Бауден и Теренс Хьюз предположили, что тепло, необходимое для плавления льда, дает сила трения при скольжении. Но эта теория не объясняла, почему же даже стоять бывает скользко.
К 50-м годам XX века все сдались. Лишь в конце 90-х с помощью рентгеновских лучей, атомно-силовой микроскопии, ядерно-магнитного резонанса и исследования рассеивания льдом протонов было, наконец, доказано, что на поверхности льда, то есть на границе между льдом и воздухом, вплоть до температуры 100 имеется слой подвижных молекул воды. При температуре 35 толщина ее слоя равна примерно 0,01 микрона, а при температуре 5 — 0,1 микрона.
В общем, все соглашаются с таким простым объяснением. Молекулы воды, как известно, могут переходить из твердой кристаллической фазы, льда, прямо в газообразную фазу — водяные пары в воздухе. Действительно, это так, иначе бы белье на морозе не сохло! Вследствие этого перехода на границе твердого льда и окружающей атмосферы образуется переходная зона, в которой молекулы еще не совсем свободны, как в газе, но уже и не встроены в жесткую кристаллическую решетку льда.
На исследования льда только в США первые десять лет XX века израсходовано более 20 млн долларов. Однако полного теоретического объяснения свойств переходной зоны пока нет. Тем не менее управлять этими свойствами уже пытаются. Например, именно на этом в значительной степени построен керлинг, где игроки трут специальными щетками лед, чтобы повлиять на движение пущенного камня. А российский физик Виктор Петренко обнаружил, что при действии электрического поля предметы могут быстро примораживаться ко льду. На этом эффекте он создал лыжи с управляемым скольжением. На очереди автомобильные шины, а может быть, и безопасная зимняя обувь.
Почему люди воюют?
Около 15 000 войн разного масштаба произошло на Земле за 5–6 тысяч лет человеческой цивилизации. Время абсолютного мира составило около 300 лет — менее 2 %. Так утверждают американские исследователи войн и военных конфликтов Лео и Марион Бресслер.
Я не могу судить о том, как они получили такие оценки, но известно, что только Россия после Куликовской битвы более половины времени провела в войнах.
До XX века войны всегда имели ясное обоснование. Воевали за Елену Прекрасную, гроб Господень, за трон, свободу, земли, скот. Воевали за пленных. Так, южноамериканским индейцам не хватало людей для жертвоприношений их кровавым богам. Вавилонскому царству не хватало квалифицированных работников, и его воины пленили израильтян. Всегда оказывалось, что война кому-то чем-то выгодна. Как говорит русская пословица, кому война, а кому мать родна. Поэтому часто объясняли войну выгодой.
Двадцатый век все переменил. Если раньше волей предводителей войну можно было и начать, и прекратить, то в прошлом столетии вооруженные столкновения вышли из-под контроля. В войну втягивались и те, кто никакой выгоды иметь не мог. Пардоксально, но для многих простых людей участие в войне было единственным шансом выжить. Например, можно ли представить советского или немецкого военнообязанного времен Второй мировой, который отказался бы идти в армию? Многие ветераны говорят, что главный итог их войны в том, что они выжили.
Глубинные причины, толкающие людей к войне, к сожалению, остаются неясными. Биологи открыли, что войны ведут и ближайшие эволюционные родственники людей. Шимпанзе убивают себе подобных из другой стаи безо всякой очевидной выгоды — не получают ни пищи, ни территории, ни самок.
Бедствия, вызываемые войнами, заставили людей сконцентрироваться не на причинах баталий, а на способах их предотвращения и минимизации наносимого ими ущерба. В 1962 году вышла книга американской писательницы Барбары Такман «Августовские пушки». До Карибского кризиса, то есть до возможного начала Третьей мировой войны, оставался примерно месяц. Книга попалась на глаза 45-летнему президенту США Джону Кеннеди. Он был потрясен тем, как из-за недостатка информации люди, управлявшие странами, принимали важнейшие решения не на основе фактов, а на основе соображений и домыслов. Эскалация войны шла помимо их воли.
Исторические факты подтверждают, что и Кеннеди, и Хрущев испытывали колоссальное давление со стороны своего окружения. Многие историки склоняются к тому, что именно эта книга повлияла на решение Кеннеди в самый разгар кризиса позвонить напрямую Хрущеву. С тех пор прямые линии связи и регулярные встречи даже потенциальных противников стали нормой, сохраняющей мир.
Другая американская писательница — Лоис Буджолд, указывая на то, что политики и военные не могут предотвратить войны, предложила применить не политический и военный, а техногенный подход. Он состоит в том, что войну рассматривают как предотвратимую катастрофу и вырабатывают процедуры, препятствующие ее возникновению. С Буджолд не так легко спорить, потому что даже военные, прочитавшие ее книги, поражаются точности и глубине стратегического видения.
Вероятно, на свете нет ничего более ценного, чем мирная жизнь. К сожалению, как показывают факты, большую часть времени человечество проводит в войнах и не знает истинных причин их возникновения. Обнадеживает, что люди все больше думают о том, как должны строиться отношения между народами, чтобы не возникало войн.
Почему мир разноцветный?
Это для людей мир разноцветный. Еще цветное зрение есть у насекомых, раков, осьминогов, кальмаров, рыб, амфибий, дневных и водяных рептилий и у птиц. Многие же животные, например кошки и собаки, цветным зрением не обладают. Чтобы разобраться в этом, потребовалось около 250 лет работы множества ученых, в том числе нескольких гениев.
Мы видим либо те предметы, которые светятся сами, либо те, которые отражают свет других источников. Самым главным из них считается Солнце. С 1665 по 1667 год выпускник Тринити-колледжа Кембриджского университета, молодой бакалавр Исаак Ньютон жил в родной деревне Вулсторп, пережидая эпидемию чумы. В это время он сформулировал множество идей, развитие которых впоследствии привело к созданию классической физики. Тогда же Ньютон выполнил опыты по разложению белого солнечного света с помощью стеклянной призмы. Он показал, что луч белого света может быть расщеплен на разноцветные лучи, следующие друг за другом в том же порядке, что и цвета радуги. Казалось бы, объяснение получено — все дело в сложном составе белого цвета, который по-разному отражается от предметов, окрашивая их в разные цвета. Однако Ньютон провел опыты и по смешиванию цветных лучей и показал, что желтый цвет из радуги совершенно неотличим от смеси зеленого и красного лучей. Получалось, что такое простое объяснение цвета неверно. Больше к вопросу о цвете он не возвращался.
Во второй раз все стало казаться понятным в 1802 году, когда Томас Юнг показал, что все цвета могут быть получены путем сложения трех основных — зеленого, красного и фиолетового. Через 50 лет в 1855 году Герман Гельмгольц дал глубокую физиологическую интерпретацию теории Юнга, предположив, что в состав сетчатки входят три типа рецепторов, чувствительных к основным цветам, а цвет объекта определяется тем, какова пропорция возбуждения этих рецепторов. Кстати, идею о том, что в глазу есть «светочувствительные аппараты» трех типов, еще в 1756 году выдвигал Михаил Ломоносов. Теория Юнга — Гельмгольца блестяще подтверждалась на практике. Однако прямое доказательство существования ровно трех типов колбочек с различными пигментами, обеспечивающими повышенную чувствительность к длинам волн видимого диапазона 0,43, 0,53, 0,56 микрона, соответствующим фиолетовому, зеленому и желто-зеленому, а не красному цветам, было получено более чем через 100 лет — лишь в 1959 году.
Итак, с физиологической точки зрения все тоже стало ясным. Однако еще Иоганн Гете обращал внимание на психологическую составляющую восприятия цвета. Научное объяснение цветоощущения как психологического феномена было предложено Эвальдом Герингом. Он считал, что в мозгу происходят три параллельных процесса оценки соотношения «желтого и синего», «красного и зеленого» и «черного и белого». За доказательство этого факта американцы Давид Хьюбл и Торстен Вайзел (Визел) в 1981 году получили Нобелевскую премию.
Таким образом, мир разноцветный потому, что солнечный свет имеет сложный состав, и потому, что в сетчатке имеется три типа рецепторов — колбочек с различной чувствительностью к свету с разной длиной волны, и потому еще, что сложная обработка в мозгу сигналов этих рецепторов приводит к формированию психического феномена под названием цвет.
Почему море соленое?
По этому поводу у разных народов существуют на удивление однотипные сказки про утонувшую соляную мельничку, которая работает на дне моря до сих пор. Наука же довольно хорошо знает общие причины солености морей и океанов.
Как известно, в природе существует круговорот воды. Часть этого круговорота — ручьи и реки. Так как вода — хороший растворитель, текущие ручьи и реки вымывают минеральные соли, залегающие в земле. Вымываются они в таких малых количествах, что вода кажется нам на вкус пресной. Однако же это малое количество приносится в море. Под действием солнца вода испаряется, а соль остается в море. Потом испарившаяся пресная вода уносится в виде облаков и вновь выпадает дождями на суше. Так поддерживается жизнь рек и ручьев. И они снова выносят немного растворенных солей в море. Постепенно за множество таких циклов вода в океане становится все более соленой. Почти 80 % растворенных в океане солей — хлористый натрий, то есть обыкновенная поваренная соль. Однако морская вода кажется горькой на вкус: это из-за солей магния.
Многолетние наблюдения над океаном показывают, что его соленость практически не изменяется. Это означает, что приносимые реками соли на что-то расходуются. Во-первых, их используют морские животные для построения своих раковин и скелетов, которые потом откладываются на морском дне. Во-вторых, из-за перенасыщенности раствора соли выпадают в осадок. Таким образом, происходит медленный перенос минеральных веществ с одних участков земной коры на другие. По подсчетам американского ученого Франка Кларка, каждый год реки приносят в моря около 2 млрд тонн растворенных солей. Между прочим, такова же масса годового выброса парниковых газов земной промышленностью. Значит, она уже может оказывать влияние на планетарные процессы.
Подсчеты показывают также, что, если из океанов выпарить всю воду, образуется слой соли толщиной 60 м.
Соленость океанов и морей неоднородна и по глубине, и по площади. Она может повышаться в местах интенсивного испарения под действием ветров с пустынь и понижаться в местах обильного выпадения дождей в тропиках. Различия в солености приводят к неоднородному распределению плотности воды, что служит одной из движущих сил в океанских течениях: соленая вода опускается, так как она более плотная, а более пресная вода двигается, чтобы заменить ее. На это движение влияет и неоднородность распределения температуры воды в океане. Эта циркуляция, называемая термохалинной (therme — тепло, hals — соль), жизненно важна для экологии Земли. Она оказывает влияние на глобальный климат с периодами изменений от нескольких сотен до тысяч лет.
Неоднородность солености наблюдается и в разных морях. Это связано с тем, что процесс обмена солями, в частности по термохалинному механизму, очень медленный, а реки, текущие по разным участкам земли, вымывают разные соли, да и испарение воды с поверхности морей происходит по-разному.
Любопытно, что лед, полученный из морской воды, оказывается пресным, как и испаренная морская вода. При этом соль вымораживается и образует на поверхности льда узоры. Иногда в толще такого льда образуются пузырьки, заполненные крепким раствором соли.
Почему люди зевают?
Если обратиться к медицинской энциклопедии 30–40-летней давности, можно прочитать, что-то похожее на то, что «зевание представляет собой безусловный рефлекторный акт, широко распространенный среди млекопитающих, рептилий и рыб. Оно имеет приспособительное значение, направленное на улучшение снабжения организма кислородом». Современные исследования показывают, что это не так.
Нехватка кислорода никак не влияет на то, зевает человек либо животное или нет. Был проделан опыт, когда в комнату с управляемым составом воздуха помещали людей и меняли пропорцию углекислого газа и кислорода. Оказалось, что частота и интенсивность зевков никак не зависели от концентрации кислорода. Энциклопедия оказалась неправа.
Наблюдения показывают, что люди зевают, когда им не хватает впечатлений или когда они в состоянии стресса. Могут зевать студенты перед экзаменом, спортсмены перед выходом на старт, артисты и музыканты перед выходом на сцену. Зевок служит для снятия стресса как средство мобилизации.
Современная диагностическая техника позволила установить, что человек начинает зевать еще в утробе, с четвертого месяца. А там о дыхании еще и речь не идет. Но, по-видимому, стрессы и необходимость мобилизовываться бывают и у плода.
Казалось бы, теперь ясно, отчего люди зевают, однако у зевка обнаружились и другие свойства и функции. В частности, зевота, так же как и смех, заразительна. Если человек читает про зевоту, слышит о ней или, хуже того, видит, как другие зевают, то сам начинает зевать. Вероятно, и вам сейчас приходится нелегко. Заразительность зевания изучена достоверно. Таким образом, стало понятно, что зевок — это еще и некоторый мимический коммуникационный сигнал членов сообщества животных или людей о том, что ситуация стрессовая и необходимо мобилизоваться.
Гипотеза показалась интересной, и тогда был проделан такой опыт. Людей посадили в помещение и стали показывать фильм, в котором герои зевают. Естественно, это действовало на всех участников опыта. Стали следить за каждым из них и подсчитывать частоту зевков. Затем изучили психологические характеристики каждого. Выяснилось, что люди, которые менее заражались зевками, были более равнодушными к окружающим. Таким образом, получается, они продемонстрировали неспособность реагировать на сигналы, подаваемые членами социума.
Чтобы разглядеть мимические сигналы, требуется достаточно острое зрение. По одной из теорий именно благодаря остроте зрения многие животные, в частности обезьяны, широко используют мимику при коммуникациях, необходимых для ведения коллективной социальной жизни. Эти важные способности достались и человеку.
Как видим, иногда научный подход позволяет иначе взглянуть на привычные явления.
Почему мы устаем при ходьбе?
Отчасти мы устаем потому, что наши мышцы во время ходьбы выполняют физическую работу и тратят энергию. От этого в них накапливаются различные продукты обмена, в частности молочная кислота. Эта мышечная усталость очень зависит от нашей походки. Нам легко идти тогда, когда мы двигаем не только ногами, но и руками. С одной стороны, это важно для поддержания равновесия и дыхания, а с другой стороны, так сохранились древние стереотипы, ведь мы, Homo sapiens, стали двуногими прямоходящими из четвероногих.
Четвероногим животным, например лошадям, приходится довольно жестко синхронизировать движение конечностей. Возможных способов синхронизации всего три, отчего и основных аллюров у лошади тоже три: рысь, когда синхронно движутся две ноги, расположенные по диагонали; иноходь, когда синхронно выносятся и опускаются то правые, то левые ноги; и галоп, когда попеременно переносятся то передние, то задние ноги. Эта синхронизация, то есть фактически аллюры, прослеживается и в человеческих танцах. Удивительно, но теория такой синхронизации имеет много общего с теорией относительности, поскольку и там и там основные представления базируются на неевклидовой геометрии искривленных пространств, в которых параллельные прямые могут пересекаться.
Другая причина усталости заключается в том, что при прямохождении человек постоянно напрягает медленные статические мышцы спины и шеи, чтобы поддерживать тело и голову. От этого довольно легко устать. Вспомните, как нелегко выдержать долгую музейную экскурсию. Но и это еще не все. При ходьбе тяжесть тела переносится с одной ноги на другую, начиная с пятки. Это называется передним толчком. Он происходит за довольно короткое время, вследствие чего возникают большие ускорения, так как мы довольно тяжелые существа. Вместе с коллегами я измерял с помощью специально разработанного нами датчика — акселерометра — характеристики этого толчка, дошедшего до макушки. Мы были потрясены тем, какой оказалась эта величина — в два раза больше ускорения силы тяжести.
Получается, наше тело, позвоночник и хрящевые межпозвонковые диски все время испытывают ударную нагрузку. Она действует и на нервные отростки спинного мозга. От этого человек непроизвольно дополнительно напрягает мышцы спины и шеи, чтобы не только поддерживать тело и голову, но и защищать позвоночник и нервные корешки. Вот эти-то напряжения все вместе и ведут к усталости.
Удары при переднем толчке сильно ослабевают при ходьбе по мягкой поверхности, использовании мягкой обуви или хотя бы мягких стелек.
Теперь ясно, как не уставать при ходьбе. Во-первых, надо заниматься физкультурой, способствующей выработке правильной походки. Во-вторых, если приходится много ходить, надо подбирать удобную и мягкую обувь. Как видите, это вполне доступные вещи, о которых, вероятно, вы знали и раньше. Просто не нужно забывать.
Почему небо голубое?
Это классический детский вопрос, ответ на который известен точно, но его получение было сложным и заняло много времени. Существовала теория, что цвет неба совпадает с цветом воздуха или какого-либо газа, входящего в его состав. Исаак Ньютон первым понял, что если бы это было так, то белые Солнце, Луна и вершины снежных гор тоже виделись бы голубыми, как сквозь цветное стекло. Он доказал, что воздух не имеет цвета. Открыв разложение белого света на цветные составляющие, он успешно объяснил происхождение радуги разложением света на капельках воды. Его попытка похожим образом объяснить голубой цвет неба оказалась ошибочной.
В 1869 году англичанин Джон Тиндаль провел эксперимент и продемонстрировал, что если искусственно созданный туман осветить лучом белого света, то сбоку он будет смотреться голубым. Так стало ясно, что все дело в рассеянии света. Вообще-то достаточно было посмотреть и на голубой дымок от горящего конца сигары, сигареты или папиросы.
Действительно, с древних времен людям было известно, что луч света распространяется прямолинейно. Однако он всегда виден, если посмотреть на него сбоку. Но обычно луч так и кажется белым. Объяснение было найдено в 1871 году замечательным физиком лордом Рэлеем (Джон Стретт). Он рассчитал, что если свет рассеивается на крупных частицах, например на пылинках, размер которых существенно больше длины волны любой из составляющих белого света, то он так и остается белым. Например, так и будет, если размер пылинки сопоставим с одним микрометром. А вот если размер окажется гораздо меньше, то голубой и фиолетовый начнут рассеиваться гораздо сильнее красного. Значит, рассеянный свет, окрашивающий небо, будет голубым. Теория прекрасно объясняла, почему солнце на восходе и закате красное: все из-за того, что лучу приходится проходить более толстые слои воздуха, синий цвет рассеивается еще сильнее, а красный попадает в глаз напрямую. Вот только смущало, что небо голубое как раз в тех местах, где пыли нет. На чем же тогда рассеивается свет? Рэлей предположил, что на молекулах воздуха. В 1906 году опыты американского астрофизика Чарльза Эббота по рассеянию света позволили оценить концентрацию молекул в воздухе, и она прекрасно совпала с уже известной из совсем других опытов. Однако радость продолжалась недолго. В 1907 году русский профессор физики Леонид Мандельштам, которому было всего 28 лет, обратил внимание, что теория Рэлея работает, если число молекул в единице объема воздуха достаточно мало, а в реальной атмосфере это не так. Голубой цвет неба снова стал необъяснимым, пока Мандельштам не понял: все дело в том, что воздух никогда не бывает однородным. Всегда вследствие случайных тепловых движений молекул в очень малых объемах воздуха образуются случайные изменения плотности. Вот поэтому-то и происходит рассеяние, придающее небу голубой цвет.
Все хорошо, и можно бы успокоиться. Но эти случайные флуктуации по расчету должны приводить к очень малому, трудно измеримому мерцанию неба. Опыт, который позволил бы доказать, что так и должно быть, Мандельштам вместе со своим коллегой Григорием Ландсбергом смог подготовить лишь через 18 лет. Это оказался очень тонкий, добросовестный опыт, в результате которого было открыто совершенно новое явление, получившее название комбинационного рассеяния. Оно на многие годы определило развитие оптики и в конце концов повлияло на открытие лазеров. Но это уже другой разговор. Важно то, что сильный научный результат не только отвечает на поставленные вопросы, но и обязательно рождает новые, еще более трудные и интересные.
Почему негры черные?
Хотя мы и будем обсуждать реальный природный факт, тема эта с точки зрения политкорректности довольно опасная. В цивилизованном мире в нынешнее время некорректно называть чернокожих неграми. Это все равно что называть евреев жидами. В Америке негров называют афроамериканцами или, как и в Европе, чернокожими, черными людьми — blackman или blacklady, без какого-либо дискриминационного оттенка.
Ответ о том, почему у африканцев черная кожа, в действительности очень простой. Он состоит в том, что в их коже в значительном количестве присутствует пигмент меланин. Он возник как защита живого существа от избыточного объема солнечной радиации, которого в Африке значительно больше, чем в северных странах. Во-первых, меланин благодаря черному цвету предохраняет организм от перегрева. Во-вторых, он поглощает вредное ультрафиолетовое излучение, приводящее к возникновению в организме так называемых свободных радикалов, которые настолько активны химически, что могут нанести вред. В-третьих, меланин вступает в реакцию с образовавшимися свободными радикалами и тем самым их обезвреживает. Кстати, черными бывают не только африканцы, но и жители Азии. Скажем, индийцы также смугло-черные и иногда более темные, чем африканцы. Причина та же — меланин.
У людей с белой кожей меланин также образуется от загара, но, если солнце перестает действовать, он быстро разрушается, и кожа снова светлеет.
Но при этом возникают два удивительных вопроса. Первый: если воздействие солнечной радиации приводит к тому, что меняется биохимия и становится больше меланина, происходит ли еще что-нибудь в организме, стимулируемое солнечным светом? Фотобиология говорит, что происходит. Мы знаем, что под действием солнечного ультрафиолета формируется витамин D, без которого человеку грозит рахит. Но еще множество гормонов синтезируется под воздействием солнечного света. Например, мы легко просыпаемся летом потому, что солнечное излучение приводит к синтезу гормона, способствующего пробуждению.
Второй удивительный вопрос заключается в том, что человечество разделилось на расы сравнительно недавно. Это разделение, по разным оценкам, произошло от 5 до 10 тысяч лет назад. Например, на экспозиции палеонтологического музея МГУ, посвященной великому оледенению, я видел материалы о том, что во Владимирской области при раскопках стоянки на реке Сунгирь был найден скелет негроидного подростка. Находили скелеты людей негроидной расы и под Воронежем, и в других районах Европы. Были они темнокожими или светлокожими, сказать трудно.
Но поражает, что разделение на белую и черную расы произошло так быстро. Согласно современным генетическим представлениям, все должно быть гораздо медленнее. Пока что наука плохо понимает, как вообще могут происходить такие быстрые изменения. Конечно, это менее удивительно, чем скорое выведение новых пород собак, но тоже сильно впечатляет.
Таким образом, простой вопрос, почему у людей черная кожа, заставляет задуматься о том, как человек возник и развивался и как он меняется сейчас. Для этого требуются усилия многих наук: и фотобиологии, и антропологии, и археологии, и генетики, и др.
Кстати, известно про афроамериканцев, что они стали несколько светлее, чем их предки, вывезенные из Африки. Не прошло и двухсот лет.
Почему нитки запутываются?
Каждый знает, что нитки часто запутываются, причем совершенно безнадежно! Запутываются лески, цепи, шнурки, шланги, все что угодно. Почему это происходит?
Точный ответ на этот вопрос нашли буквально 40 лет назад. Началось все с попыток рассчитать движение полимерных молекул. И здесь оказались очень успешными идеи академика Ильи Лившица. Оказывается, благодаря гибкости отдельные части полимерных нитей совершают практически независимые движения. Эти движения имеют много общего с хаотичным перемещением свободных частиц в газе, хотя есть и разница. И вот при определенных обстоятельствах, а именно в хорошем растворителе, полимерная нитка превращается в клубок.
Этими идеями воспользуемся и мы, чтобы посмотреть, как поведет себя наша нитка. Возьмем ее так, словно собираемся вдеть в иголку. Мы увидим, что благодаря упругости, потому что торчит только короткий кончик, угол на одном конце и угол на другом конце кусочка нитки жестко связаны друг с другом. Собственно, поэтому ее и удается вдеть в ушко иголки. Возьмем и немножко удлиним кусок нитки, удерживаемой между пальцами. Видите, что получилось? Провисание. Углы стали освобождаться от взаимной зависимости. Наконец, существует такая длина, при которой эти углы никак не связаны. Она очень важная физическая характеристика нити. Эта длина называется персистентной, то есть такой, при которой один угол перестает зависеть от другого. А это значит, что фрагменты единой нитки могут принимать случайное положение, в том числе возможно самопересечение нити. На плоскости это не приводит ни к чему: я ее потяну — она распутается. Но если движение происходит в трехмерном пространстве, то при блуждании в конце концов образуется узелок. Закономерно! Просто достаточно подождать некоторое время, и это обязательно произойдет. Таким образом, если нитка лежит в трехмерном пространстве, если у нее конечная гибкость и она начинает случайно изгибаться от разных воздействий, обязательно произойдет самопересечение, кончик войдет в петлю, а когда вы за этот кончик потянете, все запутается.
Поражает то, что такого типа ниток много (шнурки от ботинок и лески не в счет) — множество важных высокомолекулярных полимерных веществ, которые тоже представляют собой нитки. И с ними все эти процессы также происходят. К счастью, такие полимеры, как ДНК, в которой зашифрована наследственная информация о строительстве живого организма, свободны от запутывания. Двойная спираль ДНК, к счастью, жесткая, и поэтому с ней такого произойти не может.
Таким образом, нитки запутываются согласно закону природы. Если нитка гибкая, достаточно длинная, если она в трехмерном пространстве, то случайные движения ее фрагментов со 100 %-ной гарантией приведут к тому, что возникнут самопересечения и все запутается.
Почему птицы совершают перелеты?
Птицы настолько сильно поражают тем, что умеют летать, что на протяжении всей своей истории человек наблюдает за ними и изучает их. Первое из зафиксированных подробных описаний жизни птиц было составлено великим основоположником многих наук Аристотелем в труде «История животных». Аристотель полагал, что где-то существуют особые теплые местности, куда птицы перелетают, чтобы избежать холодных зим.
Свыше полутора тысяч лет не появлялось более подробных описаний, пока в 1247 году не вышла книга, написанная императором Священной Римской империи Фридрихом II, в которой и были заложены основы современных представлений о миграциях птиц. Фридрих II четко различал места линьки и предотлетных скоплений, связывал сроки отлета у разных видов с погодными условиями, впервые отметил разницу между перелетами и кочевками, описал различные формы мигрирующих стай и порядок расположения летящих птиц.
В середине XVIII века выдающийся шведский ученый Карл Линней создал авифенологический метод изучения перелетов птиц, когда наблюдатели в разных частях страны строго фиксировали моменты их появления весной и отлеты осенью. Этот метод применяется и поныне, а сеть наблюдателей, работающих под руководством ученых, очень широка. Например, в интернете я нашел орнитологические отчеты школьников с Дальнего Востока.
В 1890 году датский учитель гимназии Мортенсен впервые окольцевал скворцов легкими пластинами из цинка. С 1899 года он уже использовал кольца из легкого металла, надевая их на ноги аистам, уткам, различным морским птицам. И до этого многие ученые пытались метить птиц, но такого эффективного метода предложить не смогли. 1899-й официально признан годом начала кольцевания птиц, а Мортенсен — изобретателем этого метода. Кольцевание позволило выяснить многие особенности птичьих перелетов и их причины.
Абсолютными рекордсменами по дальности миграций оказались полярные крачки, которые гнездятся и выводят птенцов в Арктике, улетая на зимовку к берегам Антарктиды. Перелет, который они совершают дважды в год, составляет от 15 000 до 22 000 км и длится примерно три месяца.
Один из видов куликов — бурокрылые ржанки — пролетают без остановки 4000 км по маршруту Лабрадор — Южная Америка. Примерно так же летают и ласточки.
Выясняется, что массовые миграции у птиц, так же как и у многих видов наземных животных и рыб, выработались в процессе эволюции как «приспособление» к переживанию регулярно возникающих, в том числе и сезонных, ухудшений условий внешней среды. При этом перелетные птицы вовсе не стремятся к резкой смене обстановки, а, наоборот, выбирают для зимовок места, экологические условия которых во многом сходны с местами их гнездования, хотя и расположены в другом полушарии. Те же полярные крачки ровно половину жизни тратят на перелеты, ради того чтобы и зимой, в привычных для них условиях полярного дня, ловить мелкую рыбешку в холодных водах северных морей.
Много легенд ходит об удивительных способностях птиц ориентироваться в пространстве. Это им удается благодаря отлично, но неизвестно как работающим внутренним часам и умению определять положение солнца или звезд, в зависимости от того, в какое время суток определенный вид птиц совершает перелет. Умение птиц ориентироваться по силовым линиям магнитного поля Земли не находит научного подтверждения.
Сезонные и дневные миграции разного масштаба совершают все живущие на Земле, например, мы каждый день ходим на работу.
Почему редки драгоценные камни?
Высокая стоимость и редкость драгоценных камней связаны между собой, но обусловлены разными причинами. Редкость всегда объясняется условиями происхождения. Ценность определяется людьми.
Российское законодательство считает драгоценными камнями алмазы, изумруды, рубины, топазы, аметисты, бриллианты, сапфиры и александриты, а также природный жемчуг и янтарь. По химическому составу они совсем не уникальны. Большинство природных драгоценных камней всего лишь твердые соли, окислы и иные соединения различных металлов, молекулы которых организованы в упорядоченную структуру (кристаллическую решетку). Так, рубин, сапфир и изумруд — это оксид алюминия. Топаз — силикат алюминия. Гранат — сложный силикат, имеющий в составе алюминий, кальций, магний, железо, марганец и хром. Алмаз же — это чистый углерод, так же как и графит.
В природе кристаллы образовывались в течение миллионов лет, в глубине земной коры под давлением в сотни тысяч атмосфер и при температурах до 2000 . Это придало им уникальные свойства и красоту, привлекающие людей. Мест, где складывались такие условия, крайне мало, чем и объясняется редкость драгоценных камней.
Однако в начале XX века монополия природы была нарушена. В 1902 году французский инженер Вернейль синтезировал первый драгоценный камень, идентичный природному, — кристалл рубина весом 6 г. В нынешнее время в лабораториях синтезируют не только рубины, но и алмазы, сапфиры, изумруды и кварц. Синтезируются и камни, которые в природе не встречаются. Когда речь идет о лабораторных условиях, говорить о редкости не приходится.
Чем же объясняется драгоценность? Конечно, спросом. Редкая вещь не всегда ценна. В древние времена камни, так же как и золото, часто посвящались богам. Например, в Торе прямо сказано, что золото предназначено для украшения храма. Во многих религиозных традициях рай предстает в необыкновенном сверкании и свечении, земным эквивалентом которого служат самоцветные камни. Это придает им сверхъестественную значимость. Обладание драгоценным камнем переносило часть этой значимости на человека. За это можно было отдать много денег.
В наше время ценность камней отчасти дань древней традиции, отчасти выросший из нее престиж, отчасти красота, а отчасти обыкновенная техническая польза. Например, главными потребителями рубинов долгое время были часовщики. Впрочем, их устраивали и более дешевые искусственные рубины. Когда же речь идет о красоте, то для ювелиров и любителей драгоценностей природные самоцветы по-прежнему вне конкуренции.
Многие считают, что драгоценные камни наделены способностью влиять на жизнь людей и их здоровье. Научного подтверждения такая точка зрения не имеет. Однако люди все равно любят природные драгоценные камни за их уникальность и красоту.
Почему сахар сладкий?
Ответ на этот вопрос очень похож на ответ о том, почему мир разноцветный. Ощущение вкуса, в том числе и сладкого, — психический феномен. Как же он формируется?
Органами вкуса, выполняющими важную для всех живых существ функцию химического анализа, обладают многие животные. У разных существ они расположены в разных местах. Например, у рыб они на всем теле, хотя в основном сосредоточены на усиках ротовой полости. У человека, как и у всех млекопитающих, наибольшая часть вкусовых рецепторов расположена в ротовой полости, хотя они есть и на мягком нёбе, и в гортани, и в верхней части пищевода. Рецепторы реагируют на четыре основных вкуса — сладкий, горький, кислый и соленый. (Не напоминает три рецептора основных цветов?) Открыты также рецепторы вкуса жира, которые есть у крыс, и рецепторы вкуса крови, которые есть и у человека. От сочетания силы возбуждения рецепторов зависит итоговое вкусовое ощущение.
Элементарный вкусовой рецептор называется вкусовой почкой и представляет собой объединение нескольких десятков рецепторных клеток. Чтобы клетки могли реагировать на вещество, оно должно поступить к почке в растворенном виде, поэтому сухая пища не может иметь вкуса.
Вкусовые почки соединены во вкусовые луковицы. У взрослых людей в каждой луковице примерно 100 почек, а у молодых людей и у детей — примерно 200–250. От нескольких сотен до тысяч луковиц располагается на специальных сосочках языка. Луковица живет примерно 10 дней, потом заменяется новой.
Рецепторы распределены на языке неравномерно. На кончике языка сосредоточены рецепторы, реагирующие на сладкое, у корня — на горькое, на задних боковых поверхностях — на кислое. На соленое реагируют кончик и передние боковые част языка. Жесткой связи между вкусом и химическим составом вещества нет. Например, сладкой ощущается не только сахароза, но и спирты, сахарин, соли свинца и поваренная соль в малых концентрациях. Однозначно лишь формирование ощущения кислого вкуса, обусловленного реакцией рецепторов на свободные ионы водорода.
Работа рецепторов напрямую зависит от температуры. Слишком горячая еда лишена вкуса. Наиболее вкусной кажется пища температурой 15–35. Ощущение вкуса формируется вместе с ощущением запаха, поэтому при насморке пища воспринимается как безвкусная.
В последние годы, подражая природе, ученые начали разрабатывать искусственные рецепторы, в том числе и вкусовые, например электронный язык — дегустатор для контроля изготовления вина. Он ориентирован на восприятие веществ, отвечающих за формирование ощущений сладкого и кислого.
Таким образом, сахар сладкий потому, что под раздражающим действием раствора сахарозы возникает возбуждение в соответствующих вкусовых рецепторах. От них по волокнам вкусового нерва импульсы проводятся во вкусовую зону коры больших полушарий мозга, в результате их обработки и формируется окончательное вкусовое ощущение. Физиологические и психические механизмы формирования вкусового ощущения имеют много общего с механизмами формирования других ощущений.
Почему сердце бьется?
Долгое время в соответствии с мнением великого медика Галена считалось, что центром кровообращения служит печень, а сердце проталкивает по сосудам кровь, непрерывно поступающую к нему из кроветворных органов.
В 1628 году во Франкфурте была издана книга Уильяма Гарвея, замечательного и разностороннего английского ученого, основоположника современной физиологии и эмбриологии, в которой он доказал, что организм имеет замкнутый цикл кровообращения. Лишь почти через 300 лет датский физиолог Август Крог разобрался, что основная функция кровообращения — доставка тканям кислорода с помощью эритроцитов. Постепенно становилось понятно, что кровь переносит и другие вещества, в частности гормоны, а также лейкоциты и тромбоциты, необходимые для защиты организма. Без кровотока невозможно также регулирование теплообмена.
Гарвей объяснял, что по малому и большому кругам кровообращения кровь движется благодаря насосной функции, выполняемой пульсирующим сердцем. У здорового взрослого человека сердечная мышца в покое сокращается приблизительно 75 раз в минуту. При этом в кровеносные сосуды каждым из двух желудочков выталкивается около 80 мл крови. За сутки сердце совершает примерно 100 000 сокращений, перекачивая чуть менее 10 м3 крови. Это где-то половина производительности обыкновенного садового насоса. По разным оценкам сердце человека совершает работу в 10–15 тысяч килограммометров в сутки, на что расходуется около 100 ккал энергии, то есть 3–5 % рациона.
Каждое сокращение сердечной мышцы обеспечивается за счет активности специальных электрических клеток, сконцентрированных на площади в несколько квадратных миллиметров в верхней части правого предсердия, в так называемом сино-аурикулярном узле. Всего этих клеток в узле 3–5 тысяч. Каждая из них в автоматическом режиме генерирует последовательность электрических импульсов с определенным периодом. За счет сложного взаимодействия работа клеток синхронизируется, и узел вырабатывает единый ритм. Получившийся единый электрический импульс по специальным нервным проводящим путям быстро и синхронно достигает всех волокон миокарда, возбуждая их одновременное сокращение. Синхронность возбуждения важна потому, что если бы часть волокон не была напряжена, как это бывает, например, при инфаркте миокарда, то расслабленный участок выпятился бы, давление в желудочке не поднялось бы до необходимого уровня, клапаны не смогли бы открыться, кровь не попала бы в сосуды.
Клетки сино-аурикулярного узла чувствительны к действию медиаторов, выделяемых нервными окончаниями, а также к действию иных веществ, поступающих через кровь. Это дает организму возможность управлять сердечным ритмом на самых разных промежутках времени — от мгновенного повышения частоты пульса при опасности или волнении до его регулирования в соответствии с фазой суточной активности. Сердечный ритм обычно меняется и в такт дыханию — учащается на вдохе и становится медленнее на выдохе.
Сердце — главнейшая часть системы кровообращения человека и животных. Природа сделала его удивительно совершенным, и пока человек не может повторить ее достижения. Поэтому лучше сердце беречь и вести здоровый образ жизни.
Почему слоны большие?
Должен начать с того, что поставленный вопрос — такой простой, на первый взгляд, — с научной точки зрения довольно некорректен, то есть прямой ответ на него не приблизит нас к сути дела. Так нередко бывает. Но многие научные открытия делались именно в трудных попытках ответить на подобные вопросы. Попробуем и мы.
И все-таки слоны действительно большие. Согласно научным данным, средний размер земных млекопитающих составляет чуть более 30 см. По этим меркам и человек — большое существо. Какие выгоды дает большой размер?
Во-первых, иначе строится обмен веществ и система питания. Помните, в детских книжках рассказывается, как много по отношению к своему весу должны есть маленькие птички и как мал промежуток времени, в течение которого они могут не есть? Крупное животное свободно от этой зависимости. Так повышается его мобильность.
Во-вторых, крупное существо меньше подвергается нападению хищников.
В-третьих, растет продолжительность жизни при одновременном уменьшении плодовитости. От этого усиливается забота о потомстве, а также взаимодействие и взаимопомощь между животными. Развивается социальная организация их жизни.
В-четвертых, вместе с размером тела растет мозг.
Перечисленных преимуществ оказывается достаточно для благополучного выживания. Казалось бы, надо увеличивать и увеличивать размер.
Однако механического увеличения размеров животного быть не может. При большом росте сильно усложняются и упрочиваются скелет и суставы, развивается мышечная система, совершенствуется управление движениями. Из-за ограничений, диктуемых законами физики и химии, эти усовершенствования не могут быть беспредельными. При этом все эти конструкции приходится специализировать по отношению к тому образу жизни, который ведет животное. Формируются и ограничения в поведении и образе жизни, а это уже обратная сторона полученных преимуществ. Так в результате отбора согласуются размеры и формы животного вида со способами его выживания в окружающей среде.
Самое мелкое существо на Земле — микоплазма — имеет массу 10–13 г, а самое крупное — голубой кит — весит около 100 т (108 г). Разница составляет 21 порядок. Это поистине космическая величина. Она, собственно, и предопределяет богатство форм жизни.
Так наука отвечает на вопрос о связи между размерами животного, устройством, работой его организма и способами выживания в окружающей среде. Примерно так и называется одна из классических книг крупнейшего американского физиолога норвежского происхождения Кнута Шмидта-Нильсена «Размеры животных: почему они так важны?».
Житейский же вопрос о том, почему слоны большие, мы задаем потому, что слоны больше нас. Но и мы, оказывается, довольно крупные млекопитающие. И наш размер, так же как и размер слонов, соответствует найденной нами нише выживания.
Зачем собакам нужен хозяин?
Убеждение, что собакам нужен хозяин, основано на часто (но не всегда!) наблюдаемой привязанности и преданности собак, а также на том, что сам человек воспринимает себя как хозяина. Но хозяин — это чисто человеческая, социально-психологическая категория, и она не может быть автоматически перенесена на собак, поскольку социально-психологическая жизнь собак сильно отличается от человеческой. Точный ответ на этот вопрос дают науки, называемые зоопсихологией и этологией.
Основоположником зоопсихологии стал знаменитый русский дрессировщик Владимир Дуров. Он создал совершенно новый метод дрессировки, основанный на развитии способностей склонностей животного к различным действиям. Для этого Дуров изучал психологию разных животных и способы их поощрения. Потом из этих действий конструировал сценки, которые зрители интерпретировали в своих привычных понятиях и обычно смеялись или умилялись. Со временем Дуров начал читать лекции по зоопсихологии.
Этологию же, науку о поведении животных, создал австрийский ученый Конрад Лоренц, лауреат Нобелевской премии 1973 года. Основы этологии Лоренц заложил в работах, выполненных незадолго до Второй мировой войны. Он продолжал работать над ними и во время службы в армии, и даже в советском плену. Там ему приходилось писать гвоздем, смоченным в растворе марганцовки, на бумаге от цементных мешков. Но самое поразительное, что эти записи ему (в такое-то время!) позволили вывезти из Советского Союза.
Вот как Лоренц объясняет все многообразие собачьих характеров, основанных на двух разных источниках преданности. В истории было два периода одомашнивания собак. Древние домашние собаки восходят к шакальим. Их приручение привело к тому, что зависимость щенка от матери, характерная для детства, стала распространяться на всю собачью жизнь. Собака из шакальих воспринимает своего хозяина как родителя.
Второй, более поздний период одомашнивания связан с продвижением человека на север. В это время его уже сопровождают зависимые от него домашние собаки. За счет скрещивания в их жилы попадает кровь волчьих. Это многое меняет.
В детстве их преданность имеет ту же природу, что и у шакальих, — зависимость от родителя. Когда наступает взросление, эта зависимость проходит, и вот уже время вписаться в стаю. Волки, в отличие от шакалов, не едят падаль, они охотники и вне стаи выжить не могут. Поэтому волк должен либо стать вожаком, либо подчиниться и стать беззаветно преданным вожаку и безоговорочно поддерживать членов стаи, соблюдая, однако, иерархию. Собака с преобладанием волчьей крови воспринимает хозяина либо как вожака (если он сумеет занять такую позицию в переходном возрасте собаки), либо как члена стаи с иерархией выше или ниже собачьей.
Когда мы решаем завести собаку, должны задуматься, какую роль нам предстоит играть. Сможем ли быть заботливым, терпеливым родителем? Сможем ли стать вожаком? Справимся ли с этой ролью? Какое место в иерархии достанется нашим близким?
Таким образом, точный ответ на вопрос, зачем собаке нужен хозяин, таков: ей нужен либо заботливый родитель, либо вожак. В этом случае и человек сможет чувствовать себя хозяином собаки. Если же ему достанется лишь статус члена стаи, то почувствовать себя хозяином вряд ли получится.
Почему спички горят?
Вообще-то, горят не только спички. Мы знаем, что горят и толстые поленья, и тоненькие нитки. Но нитка легко гаснет. Правда, и толстое полено легко гаснет, но причины этому совсем разные.
Дело в том, что горение — это химическая реакция соединения вещества (в данном случае — органического) с кислородом. И чтобы реакция началась, нужно, чтобы горючее вещество было подогрето до определенной температуры. Например, бумага загорается при температуре примерно 260. Если мы поджигаем ниточку, она легко гаснет, потому что дуновение ветра уносит тепло и соседний участок не успевает нагреться до температуры воспламенения. Из-за этого реакция горения прекращается. И толстое полено не горит потому, что собственного тепла не хватает для его прогрева, так как отношение площади его поверхности к объему недостаточно велико. И лишь в определенном диапазоне размеров и свойств горючего вещества пламя может непрерывно поддерживаться и распространяться вокруг горючего стержня.
Спички были изобретены во Франции в 1805 году. Главной проблемой оказалось подобрать удобную химическую реакцию, при которой выделяется достаточно тепла для воспламенения деревянной палочки. Поначалу головку спички, сделанную из бертолетовой соли и сахара с камедью, предлагалось макать в пузырек с концентрированным раствором серной кислоты. Это было неудобно и опасно. Потом в 1827 году английский аптекарь Джон Уолкер придумал серные спички, которые зажигались о наждачную бумагу, а в 1866 году появились безопасные «шведские» спички, использующие красный фосфор.
О пропорциях деревянной палочки никто особенно не задумывался. А между тем процесс горения не так прост. Если мы повернем спичку так, чтобы пламя было внизу, оно будет продвигаться быстрее, чем на спичке пламенем вверх. Это связано с тем, что кислород по-разному поступает в зону горения.
Теоретическое исследование процессов горения сделал академик Яков Зельдович во время работы над атомной бомбой. Он был выдающимся и многосторонним ученым, хотя и не имел официального высшего образования. За работы по атомной тематике он получил три звезды Героя Социалистического Труда.
Примерно в то же время английские биофизики Алан Ходжкин и Эндрю Хаксли, отслужившие всю войну в армии, работали над изучением распространения нервного импульса в гигантском аксоне кальмара. Они получили очень похожие уравнения. Это открытие в 1963 году было удостоено Нобелевской премии.
С физической точки зрения процессы горения и распространения нервного импульса оказались очень близкими: нервный электрический импульс распространяется по нервному волокну, как огонек по спичке или бикфордову шнуру. Но главное чудо оказалось в том, что работа ансамблей нервных клеток в мозгу также подчиняется похожим, хотя и несколько более сложным уравнениям. Оказалось, что процессы, определяющие переработку информации в мозгу, имеют много общего с процессами горения.
Мы задумались о такой простой вещи, как горение спички. Чтобы спичка горела, необходимо соблюдать определенные пропорции между ее диаметром, концентрацией кислорода в окружающей среде, теплотворностью горючего материала и общей теплопроводностью воздуха и материала спички. Но оказалось, что эти сведения важны и для понимания процессов переработки информации в нервной системе и мозге. Так уж удивительно устроен мир, и такая вот неожиданная вещь — наука.
Почему спутники не падают на Землю?
Ответ на этот вопрос дают еще в школе. При этом одновременно обычно еще и объясняют, как возникает невесомость. Все это настолько не соответствует интуиции, основанной на опыте земной жизни, что плохо укладывается в голове. И поэтому, когда школьные знания выветриваются (есть даже такой педагогический термин — «остаточные знания»), люди опять недоумевают, почему же спутники не падают на Землю и внутри космического корабля во время полета возникает невесомость.
Между прочим, если мы сможем ответить на эти вопросы, то одновременно проясним для себя, почему Луна не падает на Землю, а Земля, в свою очередь, не падает на Солнце, хотя сила притяжения Солнца, действующая на Землю, огромна — примерно 3,6 млрд млрд тонн. Кстати, человека массой 75 кг Солнце притягивает с силой около 50 г.
Движение тел с очень высокой точностью подчиняется законам Ньютона. Согласно этим законам два взаимодействующих тела, на которые не влияют никакие внешние силы, могут находиться в покое друг относительно друга, только если силы их взаимодействия уравновешиваются. Нам удается неподвижно стоять на земной поверхности, потому что сила земного притяжения в точности компенсируется силой давления поверхности Земли на поверхность нашего тела. При этом Земля и наше тело деформируются, благодаря чему мы и ощущаем тяжесть. Если, например, мы станем поднимать какой-то груз, то ощутим его тяжесть через напряжение мышц и деформацию тела, посредством которого груз опирается на землю.
Если же такой компенсации сил нет, начинается движение тел друг относительно друга. Это движение всегда имеет переменную скорость, причем может меняться как величина скорости, так и ее направление. Теперь представим, что мы разогнали какое-то тело, направив его движение параллельно поверхности Земли. Если стартовая скорость была меньше 7,9 км/с, то есть меньше так называемой первой космической скорости, то под действием земного притяжения скорость тела начнет изменяться и по величине, и по направлению, и оно обязательно падет на Землю. Если скорость разгона была больше 11,2 км/с, то есть второй космической скорости, тело улетит и никогда не вернется на Землю.
Если же скорость была больше первой, но меньше второй космической скорости, то при движении тела будет меняться только направление скорости, а величина останется постоянной. Как вы понимаете, это возможно, если только тело движется по замкнутому кругу, диаметр которого тем больше, чем ближе скорость ко второй космической. Это и означает, что тело стало искусственным спутником Земли. При определенных условиях движение будет происходить не по круговой, а по вытянутой эллиптической траектории.
Если тело в районе Земли разогнать в направлении, перпендикулярном к отрезку, соединяющему Землю с Солнцем, до скорости 42 км/с, оно навсегда покинет пределы Солнечной системы. У Земли скорость движения по орбите всего 29 км/с, поэтому она, к счастью, не может ни улететь от Солнца, ни упасть на него и навсегда останется его спутником.
Почему стекло легко бьется?
Стекло изобретено людьми несколько тысяч лет назад. В сознании большинства стекло стало символом хрупкости. Хрупкие предметы отличаются тем, что они, обычно весьма твердые, при сравнительно малом деформировании разлетаются на осколки.
Мы все знаем, что одно и то же неорганическое химическое вещество может находиться в трех состояниях: газообразном, жидком и кристаллическом. Каждое из этих состояний характеризуется специфическими признаками. В частности, кристаллы очень упорядочены и имеют такую строгую периодичность расположения атомов, что по положению одного можно с очень высокой точностью определить положение других атомов кристаллической решетки, даже если они находятся на большом расстоянии друг от друга. Это называется наличием дальнего порядка. В жидкости по положению одного атома можно предсказать положение лишь близких к нему атомов. Это называется близким порядком.
Стекло же по степени упорядоченности атомов занимает промежуточное положение. Обычно стекло образуется в результате охлаждения довольно вязких расплавов различных веществ, хотя существуют и иные способы его получения.
Основной компонент привычного нам стекла — окись кремния, то есть обычный песок. Такое стекло называется силикатным. Стекла могут быть получены на основе самых разных веществ. Например, застывшая вулканическая лава и застывшая смола (янтарь) — это тоже стекла. Всевозможные добавки сильно влияют на свойства стекол.
Отчего же обычное стекло такое хрупкое? Причин здесь две. Первая — это ближний порядок. При сильной деформации, особенно при ударах, могут разрываться связи между атомами, то есть образуются микротрещины. При снятии деформации связи могут восстановиться, а вместе с ними — целостность материала. В кристалле это происходит легче, так как если атом нашел себе пару, то из-за высокой периодичности даже его дальние соседи найдут пары. Микротрещина срастется. В стекле же из-за отсутствия дальнего порядка этого не произойдет.
Вторая причина — исходное наличие дефектов, зародышей разрушения. Поверхность даже только что изготовленного стекла всегда покрыта множеством микротрещин. При ударе на них концентрируется напряжение, от этого трещины развиваются и увеличиваются в размере вплоть до полного разрушения связей между фрагментами объекта. Например, с помощью стеклореза на поверхности оконного стекла создаются именно такие зародыши, отчего отрезанный кусок легко отламывается.
В наши дни научились делать стекла потрясающей прочности, в частности пуленепробиваемые. Для этого различными физико-химическими способами регулируют состав и порядок расположения атомов, а также борются с зародышевыми микротрещинами. Так как чаще всего они находятся на поверхности стекла, то путем закаливания или химической обработки их удается уничтожить, и стекло становится прочным.
Однако в обыденной жизни стекло бьется довольно часто. Хотя это бывает и счастливой приметой, все же будьте осторожны.
Почему толкаются в автобусе?
Ответ, который напрашивается сам собой: потому что тесно. Это правда, но не вся. Почему эти толчки, хотя и неприятны, но не задевают нас? Да и сами мы не особенно переживаем, если в тесноте заденем кого-то.
Вопросы такого типа сравнительно недавно из житейских перешли в разряд научных. Наука, называемая синергетикой, начала изучать коллективное поведение больших ансамблей таких частиц, состояние которых меняется не только от внешних воздействий, но и в силу их собственной внутренней активности. Эти частицы так и называются — активными. К ним, в частности, относятся нервные клетки. В некоторых случаях так можно рассматривать и человека, и коллектив.
Вот, например, в журнале «Автоматика и телемеханика» опубликована научная работа «Заполнение пассажирами пространства в общественном транспорте»[2]. В ней моделируется «двигательное поведение пассажиров в городском общественном транспорте — в салоне автобуса или троллейбуса, в вагоне трамвая, метро или электрички… во время посадки, поездки и высадки». Результатом такого моделирования «могли бы стать предсказания степени заполнения салона или вагона, оценка уровня комфортности, рекомендации относительно конфигурации салона».
Работа сложная. Попробуем разобраться в нашем примере сами. Мы увидим, что все дело в представлении человека о величине его индивидуального пространства, в которое не должны проникать посторонние.
Вот в пустой автобус входит первый пассажир. Если у него нет клаустрофобии (боязни тесноты) или иных причин, он сядет у окошка. Если второй пассажир незнаком с первым, то он также сядет у окошка, но у другого. Если же он сядет рядом с первым пассажиром, то есть нарушит его индивидуальное пространство, это, скорее всего, будет расценено как вызов. Если же рядом с первым пассажиром сядет его знакомый, то это будет выглядеть вполне естественно. И наоборот, если его знакомый не сядет рядом, это уже будет рассматриваться как вызов.
Когда свободные места станут заканчиваться, уже никто не будет обращать внимания на то, кто куда сел. Потом начнется заполнение площадок и прохода. Сначала люди будут держаться поодаль, а по мере заполнения сближаться, касаться и даже толкаться, если надо продвинуться по салону, уже не говоря, если в него надо вбиться через дверь. И никто особо не будет обижаться, потому что по мере роста концентрации людей в салоне изменяется оценка ими величины их индивидуального пространства, в которое не должны вторгаться посторонние. Именно факт такого вторжения или его отсутствия вызывает ответную реакцию.
В разных культурах представления об индивидуальном пространстве разные. Например, даже незнакомые друг с другом итальянцы часто разговаривают, держа дистанцию всего 30 см, что совершенно немыслимо для России или Америки.
Представление об индивидуальном пространстве есть и у водителей автомобилей. Оно сильно влияет на то, как формируются потоки автомобилей на дорогах и как образуются пробки. Об этом как-нибудь в другой раз.
Почему у одних деревьев листья, а у других иголки?
Разница между хвойными и лиственными растениями настолько бросается в глаза, что представляется нам главным различием. Между тем главное различие — в способе размножения.
По научной классификации хвойные относят к голосеменным растениям. Иногда их определяют как шишконосные, поскольку их семена часто хранятся в шишках. Перед тем как упасть на землю, зрелые шишки могут довольно долго оставаться на растении. Некоторые огнестойкие сосны хранят семена в закрытых шишках 60–80 лет. В случае если огонь уничтожает родительское дерево, шишки раскрываются. В преобладающем большинстве родов хвойные — вечнозеленые. Листья обычно остаются на растении от 2 до 40 лет, однако существует пять родов, сбрасывающих листья осенью и зимующих голыми. К ним относятся, в частности, лиственница и тис.