«Большой блеф» Тухачевского. Как перевооружалась Красная армия Широкорад Александр

В конце концов «Мираб» была кардинально модернизирована, и получилась почти новая мина «УМ» («Утяжеленная Мираб»). В ней удалось решить проблему снижения скорости падения мины путем увеличения площади парашюта. В новой мине корпус полностью был заполнен тротилом, что позволило увеличить вес ВВ с 64 до 260 кг. Парашют площадью 7,5 кв. м был взят от мины МАВ-1. Он размещался в контейнере, который подвешивался под фюзеляжем самолета позади мины в сторону хвоста самолета. Скорость движения и приводнения составляла около 25 м/с, что обеспечивало работоспособность мины после постановки с самолета. После приводнения и установки на грунт парашют отделялся от мины специальным замком.

Летно-экспериментальные испытания мины «УМ» дали положительные результаты, и она была рекомендована к принятию на вооружение. Разработку и испытания мины «УМ» вела группа под руководством А.Б. Гейро параллельно с работами по минам АМГ-1 и АМГ-2. Непосредственно конструкцию мины «УМ» разработали Л.П. Матвеев и В.В. Ильин.

Перед началом Великой Отечественной войны на запорожском заводе «Коммунар» велась подготовка производства корпусов мин «УМ», в которой принимал участие инженер ЦКБ-36 В.В. Ильин. С началом войны завод был эвакуирован, и изготовление мин «УМ» прекратилось.

В 1934 г. в Остехбюро началось проектирование большой индукционной мины БИД с зарядом ВВ — 300 кг тротила. Мина предназначалась для борьбы с подводными лодками и должна была иметь радиус реагирования НВ в 10 м. Предполагалось, что аппаратура НВ мины БИД будет унифицирована с миной «Мираб».

Работы над миной БИД велись до расформирования Остехбюро. Назначенная при этом комиссия по пересмотру минно-тральной и торпедной тематики Остехбюро в составе начальника 17-го Главного управления Наркомата оборонной промышленности П.Н. Лебедева, начальника отдела НИМТИ РККФ (позже начальника МТУ ВМФ) К.И. Сокольского, научного руководителя Электромагнитной лаборатории НИМТИ РККФ А.К. Верещагина, начальника авиационного отдела НИМТИ РККФ В.И. Алферова и ряда других ответственных представителей флота и промышленности признали целесообразным прекращение дальнейшей разработки мины БИД.

Единственной миной, которая была создана в Остехбюро и выпускалась серийно, стала М-26 (мина обр. 1926 г.). Фактически это была модернизация якорной мины обр. 1912 г. Вес ВВ в ней увеличили со 100 кг до 250 кг. Для увеличения веса ВВ нужно было увеличить водоизмещение корпуса мины. Для этого корпусу придали сфероцилиндрическую форму. Соответственно изменился и якорь мины — он стал корытообразной формы. На заданное углубление мина устанавливалась автоматически путем всплытия с грунта. Ударно-механический взрыватель остался прежним — от мины обр. 1912 г.

Главным конструктором мины БМЗ-15 был начальник минного отдела Остехбюро А.А. Пятницкий. Работы по созданию мины успешно завершились в 1926 г. Первая опытная партия была изготовлена на заводе им. Марти (бывший Адмиралтейский). После проведения ее испытаний мина решением Реввоенсовета СССР от 6 января 1927 г. была принята на вооружение флота под названием «мина образца 1926 года» (М-26).

К 22 июня 1941 г. флот располагал 26 823 минами обр. 1926 г.

В 1926 г. в Остехбюро начались работы по созданию противолодочной мины, которая первоначально называлась ПРОЛОДМИНА — противолодочная мина. Изюминкой мины был ее взрыватель. Для борьбы с подводными лодками был сконструирован принципиально новый антенный взрыватель. Принцип его действия состоял в том, что при установке корпуса мины на заданное углубление по вертикали растягивались две антенны — верхняя (между антенным буйком и корпусом мины) и нижняя (между корпусом мины и минрепом). Электрические потенциалы антенн в соленой морской воде равны. Поэтому гальванометр, включенный между антеннами, не давал отклонения. При прикосновении корпуса подводной лодки к одной из антенн электрический баланс нарушался и возникающий за счет создающейся разности потенциалов антенн ток приводил к отклонению стрелки гальванометра.

Прототипом ПРОЛОДМИНЫ была антенная мина Виккерса-Армстронга, созданная в 1916–1917 гг. одноименной фирмой по американскому патенту. Мина имела медные антенны: верхнюю длиной 25 м и нижнюю 30 м. Шесть гальваноударных колпаков располагались в верхней части корпуса и еще два — в нижней. В годы Первой мировой войны эта мина использовалась в Великом северном заграждении, выставленном между Великобританией и Норвегией, в котором насчитывалось около 80 тыс. мин.

Мина ПРОЛОДМИНА была спроектирована на базе корпуса мины М-26. Главным конструктором корпусно-механической части противолодочной мины был А.А. Пятницкий.

Якорь у новой мины имел воздушный ящик, обеспечивавший ей в сборе положительную плавучесть. Это обуславливалось необходимостью постановки мин на большие углубления и, следовательно, необходимостью сматывания длинного штерта[12] с грузом, соответствовавшего заданному углублению корпуса мины. В процессе сматывания длинного штерта при постановке на большие углубления нужно было обеспечить его надежное равномерное сматывание без рывков и захлестов. Это достигалось преданием агрегату корпус мины — якорь начальной положительной плавучести. При сбрасывании мины с корабля штерт под действием груза начинал сматываться. При этом агрегат оставался на поверхности за счет положительной плавучести. По окончании сматывания минрепа возникал рывок, за счет которого происходил разворот системы рычагов, обеспечивающий отделение корпуса мины от якоря. За счет отрицательной плавучести якорь начинал погружаться, а минреп — сматываться с вьюшки, размещенной в якоре. При первом повороте вьюшки в воздушном ящике открывалась горловина, и он заполнялся водой, из-за чего возрастала отрицательная плавучесть якоря. Корпус же мины за счет положительной плавучести оставался на поверхности. В момент касания грузом грунта ослабевало натяжение штерта, вьюшка стопорилась, корпус мины погружался на заданное углубление за счет погружения якоря.

Антенный взрыватель разрабатывался по схеме мины Виккерса-Армстронга, но антенна была стальная. Разработка взрывателя велась под руководством начальника лаборатории Остехбюро Е.А. Тер-Маркарьянца.

Помимо антенны взрывателя у ПРОЛОДМИНЫ на верхнем полушарии корпуса находились пять гальваноударных колпаков.

Мина разрабатывалась в двух модификациях: с антенной глубоководной — АГ и антенной стандартной — АС для относительно небольших глубин. Однако в 1931 г. с началом испытаний А.А. Пятницкий предложил на небольших глубинах ставить мину АГ только с нижней антенной. Роль верхней антенны должен был играть бандаж из медного троса, намотанный на корпус мины. Электроизоляция бандажа от корпуса мины обеспечивалась резиной. В такой комплектации мина на малых глубинах становилась опасной не только для подводных лодок, но и для надводных кораблей, относительно которых она была гальваноударная благодаря наличию гальваноударных колпаков. В связи с этим предложением было решено разрабатывать вместо мины АС большую корабельную мину КБ, обеспечив максимальную унификацию ее корпусно-механической части с миной АГ.

Мина АГ прошла войсковые испытания и в 1932 г. была принята на вооружение флота. Однако вскоре после начала ее эксплуатации выявились существенные недостатки. Так, антенны не могли быть выполнены идеально однородными и в них имелись микронеоднородности, из-за чего возникала разность электрических потенциалов у различных элементов антенн. Из-за этого появлялись микротоки, получившие название «паразитных», которые создавали суммарный ток, достаточный для срабатывания высокочувствительного гальванометра — гальванометрического реле и, следовательно, вызывали подрыв заряда ВВ мины.

Уже в 1934 г. в Остехбюро начались работы по устранению этого дефекта мины АГ. Первым делом заменили материал антенны со стали на медь, как более однородную. Но результаты не изменились. Хоть величина «паразитных» токов уменьшилась, но все равно гальванометрическое реле продолжало срабатывать. Попробовали покрывать антенны сырой резиной. Но покрытие не было достаточно прочным, нарушалась его однородность, и вновь возникали «паразитные» токи. Вулканизация же антенн была недопустима. При этом хоть и получалось прочное покрытие, при котором «паразитные» токи не возникали, но оно было настолько прочным, что при соприкосновении корпуса подводной лодки с антенной оно не нарушалось, и мина не срабатывала. Предпринимались и другие попытки решения этой задачи, но все безрезультатно.

Тем временем НКВД арестовал ряд сотрудников Остехбюро. Тот же Тер-Маркарьянц был обвинен в организации в Остехбюро «контрреволюционной шпионско-вредительской террористической организации», в «проведении вредительства в области оснащения РККА минно-торпедным оружием, в результате которого флот не получил на вооружение мины и торпеды новых образцов…» Тер-Маркарьянцу инкриминировалось то, что «будучи начальником 4 лаборатории [Остехбюро], вредительски осуществлял изготовление минных и торпедных устройств. Речная мина “Ремин” и большая донная “Бид” при испытаниях оказались негодными. Помимо этого им были умышленно сорваны и недоработаны конструкции по антенным минам, которые с вредительской целью устроили так, что происходил самопроизвольный взрыв. Аналогичные явления происходили с речной донной миной “Ремин”».

После ареста А.А. Пятницкого и Е.А. Тер-Маркарьянца мину АГ дорабатывали уже в ЦКБ-36. Главным конструктором был назначен П.М. Воронец, а ответственным исполнителем по антенному взрывателю — Б.С. Казанцев. Были проведены работы по повышению безопасности по обращению с миной. Теперь свинцовые гальваноударные колпаки закрывались чугунными колпаками, которые до постановки мины удерживались предохранительными чеками и стальной стропкой с сахарным предохранителем. Перед срабатыванием мины предохранительные чеки вынимались, а после установки мины на заданное углубление сахар таял, освобождая стягивающую чугунные колпаки стропку, давая им возможность сброситься под действием пружин. Принятая новая схема постановки мин с чугунными колпаками и их автоматический сброс в воде не только повысили безопасность обращения с миной в процессе постановки с корабля, но и дали возможность осуществлять постановку мин в битый лед.

Кроме того, для обеспечения еще двух ступеней безопасности обращения с минами в процессе их постановки с корабля в мину был введен предохранительный прибор ПП-1 гидростатистического принципа действия, размыкавший контакты запальной цепи при отсутствии гидростатического давления, а также шунтирование склянок гальваноударного взрывателя при помощи минного сахара, что гарантировало взрыв цепи запала даже при аварийном повреждении склянок на борту корабля. В мину ввели еще одну ступень предохранения за счет ее комплектования, впервые в отечественной практике, ртутным разъединителем, обеспечивавшим замыкание цепи запала мины по истечении 6–7 минут после принятия корпусом мины вертикального положения в воде после постановки. Таким образом, обеспечивалась повышенная безопасность обращения с миной в процессе ее приготовления к постановке на борту корабля и при ее эксплуатации в арсенале.

В такой комплектации мина АГ успешно прошла заводские испытания в 1938 г. на Черноморском флоте в районе Севастополя и Балаклавы. А в 1940 г. мина АГ была принята на вооружение флота. Но к началу Великой Отечественный войны головной по производству мин АГ завод № 347 в Таганроге успел изготовить лишь небольшую партию мин.

Почти одновременно с миной АГ была принята на вооружение мина КБ (корабельная большая). После ареста Пятницкого ее доработку и испытания передали главному конструктору П.М. Воронцу. В принятом на вооружение варианте мина КБ была только гальваноударной. Идея Пятницкого создать мину для поражения как надводных кораблей, так и подводных лодок на средних глубинах (мина АС) так и осталась неосуществленной.

Судя по всему, ни Тер-Маркарьянец, ни Пятницкий не были вредителями, а вот вопрос о техническом авантюризме и очковтирательстве остается открытым. Бесспорно, что работы в Остехбюро велись в целом безграмотно, и СССР в этой области далеко отстал от Германии, Англии, США и других стран. Позже это отставание удалось ликвидировать, получив новейшие мины по ленд-лизу и захватив мины и их конструкторов в Германии[13].

Глава 5

Советские радиофугасы — мифы и реалии

А теперь перейдем к радиоуправляемым минам. К их проектированию Бекаури привлек профессора Петроградского политехнического института Владимира Федоровича Миткевича. Забегая вперед, скажу, что Миткевич репрессирован не был. Он стал академиком, в 1943 г. получил Сталинскую премию, в 1945 г. награжден орденом Трудового Красного Знамени, а в 1947 г. — орденом Ленина и скончался в Москве 1 июня 1951 г.

В Остехбюро подводными и подземными минами занималась одна и та же лаборатория.

Первые испытания сухопутного варианта радиофугаса прошли в июле 1925 г. Пять фугасов были установлены в отдаленном углу Ленинградского гребного порта. В Балтийском море в 25 км от берега находился тральщик «Микула», с борта которого должны были поступать радиокоманды на подрыв фугасов. На испытание прибыл председатель Реввоенсовета СССР М.В. Фрунзе, который сам определил время и последовательность взрывов фугасов. Все они были взорваны в заданном порядке и в точно указанное время. Следующее испытание прошло с положительными результатами в ноябре 1925 г. на Комендантском аэродроме. Комиссия, принимавшая изделие под кодовым названием БЕМИ (БЕкаури-МИткевич), рекомендовала после испытаний увеличить дальность действия радиомины в несколько раз. (После ликвидации Остехбюро название радиомины сохранилось, только теперь расшифровывалось по-другому — «БЕспроволочная МИна».)

Правительственное задание было выполнено, и новые испытания прошли уже в марте 1927 г. в районе Малой Вишеры в 170 км от Ленинграда, откуда поступала команда по радио на подрыв фугасов.

В мае 1927 г. Бекаури, Миткевич и ряд других сотрудников отправились в Москву для демонстрации радиомины правительству. Несколько радиомин были зарыты в окрестностях Москвы. Нарком обороны К.Е. Ворошилов отправил в Ленинград нарочного с запечатанным пакетом, в котором было указано время взрыва нескольких мин. Все они взорвались точно в указанное время по сигналам, переданным из Ленинграда радиостанцией Остехбюро. На испытаниях присутствовали Калинин, Ворошилов, Микоян, Орджоникидзе и другие руководящие товарищи. Все они остались очень довольны результатами испытаний.

В 1929 г. мина БЕМИ была принята на вооружение, а весной 1930 г. началось ее серийное производство. К тому времени подобного оружия не было ни в одной стране мира. В 1932 г. в Красной армии появились целые подразделения, вооруженные разными типами радиофугасов. Сокращенно их называли ТОС — техника особой секретности.

В связи с обострением ситуации на Дальнем Восток 23 января 1934 г. 50 радиофугасов БЕМИ в составе отдельной роты были отправлены в Особую Краснознаменную Дальневосточную армию.

Работы над радиофугасами продолжились и после ликвидации Остехбюро. К началу Великой Отечественной войны в подразделения ТОС поступили новые образцы радиофугаса Ф-10.

Все архивные данные о деятельности ТОС в 1941–1945 гг. до сих пор засекречены. Поэтому приходится опираться на воспоминания частных лиц, а также на германские и финские источники.

Согласно финским и германским документам, конструктивно мина Ф-10 представляет собой некий блок управления (Apparat F10), способный принимать и обрабатывать получаемые радиосигналы и выдавать электроимпульс, способный взорвать до трех электродетонаторов, а с использованием специального промежуточного блока-разветвителя (Apparat BIS) — до 36 электродетонаторов. Масса заряда взрывчатки зависела от размеров и характера уничтожаемого объекта и могла составлять от нескольких десятков килограмм до нескольких тонн (по опыту применения).

Блок управления может располагаться вместе с зарядом (зарядами) или на удалении до 50 м, причем на каждый из трех зарядов идет отдельная электровзрывная линия.

Aппарат Ф-10 вместе с дешифратором сигналов (аппарат А) и батареей питания упакованы в ящик размером 40 38 28 см. и весом 35 кг, который в свою очередь помещается в резиновый мешок. Этот ящик устанавливается внутри объекта там, где это удобно, обычно на глубине до 2,5 м.

На расстоянии от 0 до 40 метров от ящика размещается проводная антенна длиной не менее 30 метров. «Ее размещение и направление диктуется условиями прохождения радиоволн, но в общем случае она может быть закопана в землю на глубину до 120 см, или помещена в воду на глубину до 50 см или вмурована в кирпичную стену на глубину до 6 см. Антенна соединяется с аппаратом F-10 фидером (волноводом) длиной до 40 м.

Из аппарата F-10 выходят три двухжильных кабеля электровзрывной цепи. Они могут иметь длину до 50 м. Желательно, чтобы длина всех трех электровзрывной цепи была примерно одинакова, чтобы избежать большой разницы в электросопротивлениях ветвей. К концам кабелей присоединяются электродетонаторы, вставленные в заряды ВВ.

Если подключается аппарат БИС (BIS), то может использоваться только один кабель из трех. Его устройство неизвестно, но можно предположить, что он имеет собственный достаточно мощный источник электропитания и реле, управляемое аппаратом Ф-10.

Для питания радиосхемы мины (аппараты Ф-10 и A) требуется рабочее напряжение 12 вольт и анодное напряжение (накал анодов радиоамп) не менее 95 вольт. Это значительно ограничивает время боевой работы мины.

В режиме постоянного рабочего накала радиоламп время боевой работы составляет всего 4 суток. Поэтому в состав мины введен часовой механизм, который обеспечивает только периодичное подключение накала. Если устанавливается режим 2,5 (две с половиной минуты накал включен, две с половиной накал выключен) то срок боевой работы мины возрастает до 20 дней.

Если устанавливается режим 5 (5 минут накал включен, 5 минут выключен), то срок боевой работы мины возрастает до 40 дней. Это верхний предел срока боевой работы мины.

Однако если мина работает в режиме постоянного накала, то радиосигнал на взрыв должен подаваться продолжительностью в 1 минуту, в режиме 2,5–6 минут, а в режиме 5 — 10 минут. Кроме того, в тех целях экономии электропитания и сам приемник включается через каждые 5–6 минут всего на 12–15 секунд. Этим режимом управляет второй часовой механизм, который подзаводится от этой же батареи электропитания каждые 3–4 минуты.

Кроме того, мина может иметь устройство самоликвидации с помощью взрывателя замедленного действия ЭХВ (до 120 суток), часового десятисуточного замыкателя, часового тридцатипятисуточного замыкателя, часового взрывателя ЧМВ-16 (до 16 суток), часового взрывателя ЧМВ-60 (до 60 суток). Тут я замечу, что ряд отечественных историков доводят срок готовности мины Ф-10 до четырех месяцев.

Звуки работы часовых механизмов являются значительным демаскирующим признаком мины. Так, невооруженным ухом можно различить тиканье часов мины, размещенной в земле, с расстояния 5—10 см от земли; размещенной в кирпичной кладке — с 20–30 см. Щелчки подзавода часов, соответственно, с 15–30 см и 60–90 см. Если использовать немецкий аппарат прослушивания фирмы Elektro-Akustik, то тиканье часов улавливается с расстояния от 2,5 до 6 метров, а щелчки подзавода — с расстояния 6–8 метров.

Кроме ящика с исполнительными устройствами (аппараты Ф-10 и A) и питанием, и аппарата БИС в комплект мины входят два аппарата, подключаемые к управляющей взрывом радиостанции. Это аппараты “Woswol” и “Salma”. С помощью аппарата “Woswol” радиопередатчик согласовывается точно на волну устройства Ф-10. Аппарат “Salma” служит для усиления сигналов, генерируемых блоком У, который находится с ним в общем ящике. Эти два аппарата не могут использоваться для взрывания нескольких мин, поскольку они точно настроены на конкретный экземпляр мины и перенастраиваться не могут»[14].

Тактико-технические характеристики мины Ф-10

Тип мины объектная фугасная радиоуправляемая

Корпус металл

Масса ящика с исполнительными устройствами 35 кг

Масса зарядов ВВ определяется задачами уничтожения объекта

Длина ящика с исполнительными устройствами 40 см

Ширина ящика с исполнительными устройствами 38 см

Высота ящика с исполнительными устройствами 28 см

Дальность радиоуправления взрывом до 600 км

Длины радиоволн 25—120 м

Взрыватели неизвлекаемости ЭХВ, ЧДЗ-10, ЧДЗ-35, ЧМВ-16, ЧМВ-60

Температурный диапазон применения –10°; +40°

Время боевой работы 4—40 суток

Самоликвидация/самонейтрализация да/нет

Извлекаемость да/нет

Обезвреживаемость да/нет

По финским данным, качестве радиопередатчика управления взрывом могли использоваться советские военные радиостанции дивизионного, корпусного или армейского звена. По немецким данным, это радиостанции Waggon (дальность связи до 500 км), RAF (дальность связи до 300 км), RUS (дальность связи до 150 км), Z-A (дальность связи до 120 км).

По советским данным, на 22 июня 1941 года Красная армия располагала радиостанциями оперативного звена РАТ выходной мощностью 1 квт. и дальностью связи до 600 км, РАО-КВ — выходной мощностью 400–500 ватт и дальностью связи до 300 км, РСБ-Ф — выходной мощностью 40–50 ватт и дальностью связи до 30 км. Все три радиостанции работали в диапазоне 25—120 м, то есть короткие и средние волны. Кроме того, могли использоваться и широковещательные радиостанции.

По немецким данным, полученным из советской инструкции, для управления взрывом могли использоваться частоты 1094.1—1000, 1000—922.8, 922.8—887.7, 857.5—800, 750–706.7, 667–631.3, 631.3—600, 568–545, 545–521.8, 521.8—500, 480–462.1, 428.6—413.8, 444.4—428.6, 500–480, 706–667, 800–750, 268, 245, 172 и 130 килогерц.

Надежность мин Ф-10, очевидно, была недостаточной, поскольку на один объект рекомендовалось устанавливать два-три аппарата Ф-10.

Весьма эффективным способом обнаружения радиомин оказалось откапывание канавы метровой глубины вокруг подозрительного объекта, поскольку мина имела тридцатиметровую антенну, которая закапывалась на глубину 50–80 см вокруг объекта. И финны, и позднее немцы, для этого широко использовали военнопленных.

Радиофугасы стали единственным радиоуправляемым оружием, которое эффективно использовалось в Великой Отечественной войне. Приведу неполную хронику применения фугасов:

17 июля 1941 г. с расстояния в 150 км были взорваны 3 радиофугаса типа Ф-10 весом по 250 кг каждый в здании поселка Струги Красные Псковской области, где располагался штаб германского 56-го механизированного корпуса. Официально считается, что это был первый в истории случай боевого применения радиофугасов.

4 августа 1941 г. с помощью фугаса Ф-10 северо-восточнее города Орша был взорван мост на шоссе Минск — Москва.

Финский специалист Юкка Лайнен писал относительно срабатывания мины Ф-10:

«…взрыватель действует на принципе трех последовательно включенных камертонов, которых заставляют вибрировать с помощью тройного сигнала звуковой частоты (использовали паузовые мелодии Харьковской и Минской гражданских радиостанций)…»

Немцы довольно быстро выработали весьма надежные методы нейтрализации радиомины. Уже 30 сентября 1941 г. на фронт отправляется инструкция Wa Pruef 7 vom 30.9.41 с описанием методов борьбы с советскими радиоминами. В частности, там говорится:

«1. Выведение из строя.

Колебания звуковой частоты (между от 150 до 700 Гц в течение 5 секунд) могут выводить два рабочих комплекта камертонов из строя. Тем не менее, предпосылками для этого являются:

1. то, что частота приема известна,

2. то, что аккумуляторные батареи устройств еще имеют высокое напряжение, то есть что устройства еще недолго были в режиме (минимум 12 вольт рабочего напряжения, 95 вольт анодного напряжения).

3. Блокирование. Возбуждение может предотвращаться посылками немодулированных сигналов на близкой вызывающему радиопередатчик частоте. Произведенный обоими радиопередатчиками искаженный звук затем управляет частью низкой частоты устройства, вследствие чего возбуждение предотвращается.

Испытания на местности проводились при помощи 100-ваттного радиопередатчика на частоте 705 килогерц (устройство XXXIV) со следующим результатом:

Возбуждение взрывного устройства могло предотвращаться при помощи этих радиопередатчиков на расстояние около 3–5 км, если интервал частоты не был больше чем 3 килогерца. При применении более сильного радиопередатчика блокирование было бы возможно в соответствии с этим также при более большом интервале частоты и на более больших расстояниях. Для этих испытаний использовалась модуляция радиопередатчика, реконструированного из трофейного имущества. В модуляции содержатся 3 звуковые частоты, которые изменяются при применении другого ключа».

Финский исследователь Юкка Лайне утверждает, что несколько радиомин было обнаружено финскими войсками при взятии Выборга. Они были выявлены в нескольких мостах, крупных зданиях, водонапорной башне и в портовых сооружениях. Одна радиомина была обнаружена просто брошенной. Борьба с радиоминами в Выборге началась 27 августа 1941 г. и закончилась 1 сентября 1941 г. (по взрывам, но не по контрмерам). В это время произошло 17 взрывов в двенадцати объектах города.

Первый взрыв произошел в южной опоре моста у поселка Каменногорск (фин. Антреа, пролив Куукауппи). На мосту погибли три финских офицера и два чиновника. Они не разминировали, а просто находились там. Самый старший по чину из погибших был майор Тапио Тарьяннэ, главный военный адвокат финского Генерального штаба. Следующим был взорван 31 августа мост через Саименский канал.

Этим же сигналом должен был быть взорван железнодорожный мост, но там радиомину нашли 30 августа и сняли.

Любопытно событие в Линнансилта, что у Выборгского замка. Там в поисках радиомин находился финский саперный взвод. Ничего не нашли и попросили у взводного разрешения подняться на башню замка, чтобы осмотреть город. Когда все саперы были наверху в башне, взорвались обе опоры моста, камни летели выше башни. Солдаты сбежали с башни, полагая, что она следующий объект. Но разрушения ограничились мостом.

Тем не менее первые радиомины удалось раскопать 28 августа у северной опоры моста на Каменногорск, и в гавани Выборга нашли неустановленную радиомину с целым взрывателем.

Всего в Выборге было установлено 25 радиомин Ф-10. Они содержали от 120 до 4500 кг тротила. Из них 17 взорвались, а 8 удалось нейтрализовать и обезвредить, когда стало ясно, что мины приводятся в действие радиосигналом. Руководил работами капитан Лаури Ситела (Lauri Sutela). В восьмидесятых годах он был Командующим Сил обороны Финляндии.

Найденные устройства были отправлены в Хельсинки, проанализированы специалистами и уже к 2 сентября 1941 г. были изданы соответствующие инструкции по правилам обращения и нейтрализации советских радиомин. Так, было выявлено, что в качестве радиосигналов используются довоенные паузовые музыкальные мелодии Харьковской и Минской широковещательных радиостанций (мелодии, которыми заполняется эфир между двумя радиопередачами). Финские специалисты подобрали мелодию, которая звучала в том же диапазоне звуковых частот. Ею оказалась мелодия карельского народного танца «Saekkijarven polkka». В течение двух месяцев (предельное время с полуторным запасом годности батарей радиомин) в Выборге на радиочастотах советских радиомин непрерывно звучала эта мелодия, передаваемая с армейских радиопередатчиков, которая искажала возможные радиосигналы советских радиопередатчиков.

19 сентября 1941 г. части вермахта вошли в Киев. И вдруг… Я раскрываю толстый (817 страниц) 2-й том «Истории Киева» (Киев, 1964). Там на странице 436 говорится: «Свое пребывание в Киеве гитлеровцы отметили варварским разрушением предприятий, жилых домов, театров, клубов, библиотек, спортивных сооружений и др. Они взорвали и сожгли все дома на центральной магистрали города — Крещатике и прилегающих к нему улицах. От площади Калинина до Бессарабки на месте многоэтажных сооружений остались бесформенные груды железа и кирпича. Разрушение Киева гитлеровцы с провокационной целью приписали действиям большевиков-подпольщиков.

3 ноября 1941 г. фашистские разбойники взорвали исторический памятник мирового значения — Успенский собор Киево-Печерской лавры, построенный еще в XI веке».

А вот другая цитата из статьи Сергея Петрова «Адская осень Киева»:

«19 сентября 1941 года немцы вошли в Киев и по заранее намеченному плану стали занимать пустые здания Крещатика. Пустые — потому что здесь было больше учреждений и магазинов, чем квартир.

Так, комендатура облюбовала себе дом на углу Крещатика и Прорезной, где на первом этаже был магазин “Детский мир”. Немецкий штаб занял гостиницу “Континенталь”, Дом врача превратился в Дом немецких офицеров.

И вот, 24 сентября в четвертом часу пополудни раздался первый взрыв — под немецком комендатурой, превративший ее в груду кирпича. Потом грянул второй, третий… Поднялась паника. Взрывы раздавались через неравные промежутки времени в самых разных местах Крещатика и продолжались всю ночь.

Стояла сухая пора, и потому начался чудовищный пожар, охвативший почти весь центр Киева. Его сравнивали со знаменитым пожаром Москвы во время нашествия Наполеона в 1812 г.

Жители охваченных пламенем улиц бежали кто куда, обгоревшие и раненые. Над чудовищным костром образовались мощные воздушные потоки, в которых, как в трубе, высоко взлетали горящие щепки, бумаги и головни.

Пожар продолжался две недели, и зарево от него было видно ночью за сотни километров и служило ориентиром для самолетов. Взрывы на Крещатике прекратились лишь 28 сентября, но развалины дымились даже в декабре…

Странное дело: ни в то время, ни после советские власти не признавали взрывы на Крещатике как акции НКВД. Наоборот — приписывали эти взрывы… немцам. И уже после освобождения Киева на развалинах его центра стояли плакаты с надписью “Восстановим гордость Украины Крещатик, зверски разрушенный фашистскими захватчиками”»[15].

Ну а 3 ноября начались взрывы в Киево-Печерской лавре. «Известно, что после вступления в Киев немцы сразу же направились в Лавру и долго ликующе звонили в колокола. Затем установили в ней орудия, в том числе зенитные, для защиты переправы через Днепр, а в многочисленных кельях солдаты расположились на постой…

Прошло полтора месяца. Уже был взорван и сгорел Крещатик, расстреляли последних узников в Бабьем Яру. Внезапно в Лавре раздался сильный взрыв — рухнула часть крепостной стены — прямо на орудия.

Не успели немцы опомниться, как раздался второй взрыв — в арсенале, у главных лаврских ворот. Последние годы там был склад боеприпасов, и они рвались в огне. Здание сильно загорелось — от него во все стороны разлетались фонтаны искр и головней. Во всем монастыре начался пожар.

От третьего взрыва заходила ходуном земля — это был взрыв в Успенском соборе. Но храм чудом устоял. Он был возведен в XI веке из особых плоских кирпичей красной глины, таких прочных, что их нельзя было разбить и молотком. Прослойки связующего раствора тоже были прочными и толще самих кирпичей. Это была кладка на века.

Спустя некоторое время в соборе раздался новый взрыв. От его чудовищной силы осколки кирпичей разлетелись на километры и обсыпали весь Печерск. Собор рухнул, превратившись в гору камня.

Один ветеран вспоминал: “Первые три взрыва показались нам тогда игрушками, а вот в четвертый раз уж дало, так дало!” Можно только представить, сколько надо было взрывчатки завезти грузовиками под собор…

Территория Лавры оказалась усеяна кусками мозаик собора, фресок, алтарной резьбы. В Успенке хранилось много старинных рукописей и книг, и теперь ветер разносил их горящие листы и разодранные фолианты с медными застежками — огненным дождем они сыпались на землю.

И загорелось все — Трапезная церковь, Архиерейский дом в стиле барокко, древняя типография, все музеи, библиотеки, архивы, даже колокольня»[16].

Немцы связали взрывы в Лавре с визитом туда президента Словакии Йозефа Тисо. Однако он успел посетить Лавру и уехать незадолго до взрывов.

Часть советских объектных радиоуправляемых мин, установленных в Киеве, была обезврежена германскими саперами. В частности, из здания Оперного театра была извлечена 1 тонна взрывчатых веществ, из музея В. Ленина — 3 тонны.

22 октября 1941 г. в Одессе был взорван радиофугасом дом № 40 на Марзлиевской улице (позже ул. Энгельса), где разместилась германская комендатура.

24 октября 1941 г. германские войска овладели Харьковом.

13 ноября 1941 г. в 4 ч. 20 мин. в Харькове было взорвано несколько фугасов Ф-10. На воздух взлетело несколько зданий, под обломками которых оказались погребенными десятки офицеров и важных чинов немецкой администрации. Были взорваны здания, которые до этого тщательно проверялись саперами с целью выявления возможно заложенных фугасов, после чего так охранялись, что, казалось, мышь не могла проскочить.

Так началась уникальная по своему замыслу и техническому решению операция нашего Генштаба под кодовым названием «Западня». Можно без преувеличения сказать, что автором и главным исполнителем этой операции был полковник Илья Григорьевич Старинов.

По советской версии, 24 сентября 1941 г. полковник Старинов, который в это время в качестве представителя Инженерного управления РККА контролировал оборудование оборонительных рубежей под Вязьмой, был вызван в Москву к начальнику Инженерного управления РККА генерал-майору Л.З. Котляру.

27 сентября Старинов прибыл в Москву и получил от генерала Котляра приказ сформировать инженерную оперативную группу Юго-Западного фронта с задачей создать «харьковский узел заграждений». В подчинение Старинова выделялось 15 офицеров инженерных войск, 5 специалистов из ОУЦ (оперативный учебный центр) и спецрота РГК под командованием военинженера 2-го ранга В.П. Ястребова.

29 сентября 1941 г. Старинов с пятнадцатью офицерами выехали на нескольких автомашинах из Москвы в направлении на Орел, куда прибыли во второй половине дня. Там к ним присоединились пятеро специалистов ОУЦа. Из Орла автоколонна направилась в направлении на Курск и далее на Харьков.

1 октября к середине дня Старинов с офицерами были уже в Харькове. К этому времени часть роты спецминирования, которая выехала из Москвы поездом, уже находилась в Харькове. Командир роты спецминирования В.П. Ястребов выехал с автоколонной роты из Москвы на сутки позже, 30 сентября. Из имеющихся документов следует, что его задержало получение 30 штук радиоаппаратов Ф-10 и питания к ним.

Фронт смог выделить группе около 100 т взрывчатки (а требовалось 300 т) и 30 тысяч противотанковых и противопехотных мин.

Рота спецминирования получила в Москве 30 радиоуправляемых объектных мин Ф-10, около 1000 инерционных замыкателей, 2000 электрохимических замыкателей ЭХЗ и электрохимических взрывателей ЭХВ, а также 1200 различных взрывателей и замыкателей замедленного действия (химические взрыватели замедленного действия ВЗДХ, 10-суточных часовые замыкатели, 35-суточные часовые замыкатели, 30-суточные маятниковые замыкатели).

Сейчас краеведы и историки спорят, какие объекты в Харькове были взорваны радиофугасами Ф-10, а какие иными средствами. Рассказ об их изысканиях выходит за рамки книги. Отмечу лишь, что считается доказанным гибель от Ф-10 коменданта Харькова генерал-лейтенант фон Брауна (кстати, близкого родственника известного ученого Вернера фон Брауна, изобретателя ракет ФАУ-2) в помещении бывшего штаба военного округа на улице Руднева.

Замечу, что в 1941 г. советское командование располагало примерно 500 радиофугасами Ф-10. Кроме перечисленных мест ими была заминирована Керчь. Однако постановка немцами радиопомех и окапывание зданий привели к обезвреживанию всех мин. Взрывы в Керчи так и не прогремели.

В 1941–1945 гг. советская промышленность изготовила около 5000 радиофугасов Ф-10. В ходе Великой Отечественной войны был создан более дешевый радиофугас Б-9, отличавшийся от Ф-10 структурой сигнала. Серийное производство этих радиофугасов велось на заводе «Радиоприбор».

Работы по созданию новых типов радиофугасов в НИИ-20 продолжались. Были созданы радиофугасы тактического действия ФТД и стратегического назначения Ф-40. Обе разработки были успешно завершены и приняты на вооружение. До конца войны их было изготовлено 4700 комплектов. Они применялись под Сталинградом, в Киеве, Харькове, Крыму, на Орловско-Курской дуге, в Пскове. По мнению советских военных, боевое применение подтвердило высокую эффективность радиофугасов.

В разработке радиофугасов принимали участие многие сотрудники Остехбюро — НИИ-20. А.И. Гурин, Н.Л. Попов, А.В. Судогодский, А.Н. Стрельников были награждены орденами СССР.

В наших СМИ из статьи в статью кочует неизвестно откуда взявшийся фрагмент:

«Лишь осенью 1942 года немецким саперам удалось обнаружить одну радиомину. Ее вывезли в Германию и потратили около года, чтобы скопировать. Однако наладить серийное производство радиофугасов немцам не удалось.

При взятии Берлина нашим частям сдался в плен комендант города Ведлиг. Во время его допроса наши разведчики попыталась выяснить, установлены ли в городе радиоуправляемые мины. Генерал честно признался: “Кроме обычных противотанковых и противопехотных мин мы в городе ничего не устанавливали. Времени не было, да и соответствующей техники не имели. Что же касается радиофугасов, то тут русские инженеры далеко опередили наших”».

Я вполне допускаю, что генерал Ведлиг дал исчерпывающий ответ на вопрос об установке радиофугасов в Берлине. Но то, что немцы, создавая телеуправляемые и самонаводящиеся торпеды, а также все типы управляемых ракет, включая зенитные, противотанковые, крылатые противокорабельные, ФАУ-2, не смогли передрать примитивные устройства наших радиофугасов?

Радиофугасы — это оружие террористов, а армии следует применять его лишь в отдельных случаях. Расходы СССР на проектирование, изготовление и установку мин несоизмеримо велики по сравнению с потерями противника.

Да и сами взрывы Ф-10, на мой взгляд, компрометируют Красную армию. Я уверен, что взрывы в Киеве и Лавре еще долгие годы будут неотразимым аргументом в русофобской пропаганде «оранжевых». Это вам не мифическая «резня» в Батурине в XVII в. и не «героическое сражение» под Крутами в феврале 1918 г.

А в завершение скажу, что мина, созданная Бекаури, — это вовсе не Ф-10. Где-то я описался и назвал Ф-10 БЕМИ, за что вызвал гнев и возмущение у знатоков. Они правы — заслуги Бекаури и тут ничтожны.

Глава 6

Сверхмалые подводные лодки

Читая хвалебные статьи, посвященные деятельности Бекаури, у читателя, не знакомого с историей судостроения, создается впечатление, что наш герой, спроектировав сверхмалую подводную лодку, совершил прорыв в науке и технике.

Увы, Морское ведомство России в конце XIX — начале ХХ в. понесло огромные убытки в миллионы золотых рублей от различных отечественных и зарубежных авантюристов, всучивавших нашим недалеким адмиралам проекты или даже готовые лодки.

В глубь истории я заглядывать не буду, а начну с 1878 г., когда поляк Стефан Држевецкий предложил Морведу сверхмалую подводную лодку. Двигалась она за счет мускульной силы подводников. Особого энтузиазма у наших адмиралов она не вызвала.

Замечу, что запаса воздуха, имевшегося внутри этой маленькой лодки, водоизмещение которой не превышало двух тонн, хватало не более чем на 20 минут непрерывного пребывания под водой одного человека.

К августу 1878 г. лодка Држевецкого была построена на частном заводе Бланшарда в Одессе. Затем Држевецкий три месяца испытывал ее на Одесском рейде. Тем временем и война с турками, и последовавшее за ней противостояние с Англией закончились, и ни в Држевецком, ни в его лодке Морское ведомство больше не нуждалось.

Тогда Степан Джевецкий (он теперь природный русак) решил устроить небольшое представление на пруду в Гатчинском парке, там, где в 80-х и первой половине 90-х гг. XVIII в. Павел I, маясь от скуки, организовал целую флотилию из парусно-гребных судов и командовал ею, исполняя должность генерал-адмирала. (К боевым кораблям матушка Екатерина сына на пистолетный выстрел не подпускала.)

В июле 1881 г. опытный образец лодки Джевецкого доставили в гатчинский пруд. Погрузившись, Джевецкий ожидал, пока на середину пруда не выплывет лодка, в которой сидели крупный мужчина с окладистой бородой и миниатюрная красавица. Вода в пруду была прозрачной, и пассажиры лодки хорошо видели, как под ними два раза прошло какое-то подводное чудовище. А затем прямо рядом с бортом лодки всплыла субмарина Джевецкого.

Не будем забывать, что подводные лодки тогда казались куда большим чудом, чем сейчас «Шатлы» или марсоходы. Затем оба судна пристали к берегу. Открылся люк, и из него выскочил гонористый пан Степан с роскошным букетом орхидей. Пан подбежал к даме, грациозно упал на колено и протянул ей букет. Красавица была в полном восторге, доволен был и ее спутник. Читатель уже, видимо, догадался, что это были император Александр III и его жена Мария Федоровна, которые постоянно проживали в Гатчинском дворце, спасаясь от злодеев-бомбистов.

Царь решил не конфликтовать с упрямым братцем Алексеем, управлявшим флотом, а посоветовал Джевецкому обратиться в Военное ведомство, где большую роль играл дядя царя великий князь Михаил Николаевич. Тот постоянно проживал на Лазурном Берегу и лишь изредка наведывался на брега Невы. В итоге Военное ведомство с подачи царя дало Джевецкому заказ на 50 подводных лодок. В 1881–1882 гг. в обстановке большой секретности 50 лодок было построено на Невском заводе[17] в Петербурге.

Для Военного ведомства Джевецкий предложил новую модификацию своей лодки. Водоизмещение лодки составляло 11,5 т, а длина 6 м. Движение лодки осуществлялось за счет мускульной силы четырех человек экипажа. Люди сидели парами, спиной друг к другу, один — лицом к носу лодки, другой — к корме. Нажимая ногами на педали велосипедного типа, они вращали шестеренчатые передачи, соединенные при помощи привода с универсальным шарниром, передающим вращение на гребной вал, на обоих концах которого (в носу и в корме) имелось по гребному винту. Оба гребных винта были сделаны поворотными.

В итоге было построено 50 (!) сверхмалых подводных лодок. 34 из них отправили по железной дороге в Севастополь, а 16 — в Кронштадтскую крепость. 22 года лодки Джевецкого лежали на гранитных берегах крепости, а в 1905 г. их сдали на металлолом.

Читатель попрекнет меня: мол, автор отошел от темы. Каюсь, меня просто распирает написать книгу о десятках наших «умных» подводников, так славно обворовавших казну. Согрешу и расскажу еще чуть-чуть о сверхсекретной лодке лейтенанта, а позже капитана 2-го ранга Колбасьева. К какому ведомству она относилась — трудно сказать, поскольку на вооружение так и не поступила. С одной стороны, заказчиком и куратором работ был Морской технический комитет (МТК), а с другой — подводная лодка транспортировалась к месту боевого применения на… верблюдах. Нет, я не шучу!

Дело в том, что лодка Колбасьева, получившая название «Петр Кошка», была разборной. Она состояла из соединявшихся на болтах 9 секций. Водоизмещение ее составляло 20 т, длина 15,2 м, ширина 1,27 м, высота корпуса с рубкой 3,05 м. В трех носовых и кормовых секциях размещались механизмы управления горизонтальными рулями, балластные цистерны и аккумуляторные системы Бари весом 4 т. Глубина погружения составляла около 20 м. Своей способностью к погружению лодка превосходила подводные суда более поздней постройки и могла держаться под перископом даже без движения, а «в случае, если бы… опускалась на опасную для нее глубину, особой системы механизм заставлял ее всплыть на поверхность».

Вооружение подводной лодки «Петр Кошка» состояло из двух совковых 381-мм торпедных аппаратов, расположенных в выемках верхней части корпуса в носу и на корме. В боекомплект входили две торпеды обр. 1900 г. По замыслу конструктора, если при сближении с противником первый выстрел окажется неудачным, то, пройдя под атакуемым кораблем, лодка выпустит торпеду из кормового аппарата. В трех центральных секциях размещались два члена экипажа и энергоустановка, состоявшая из шести электродвигателей общей мощностью 24 л.с. Расположение шести валов под углом 20° к диаметральной плоскости способствовало поворотливости.

Подводная лодка «Петр Кошка» должна была действовать в Персидском заливе или в районе Суэцкого канала против британских кораблей. Основное средство доставки — верблюды. К примеру, на кораблях Каспийской флотилии подводные лодки в разобранном состоянии могли быть доставлены в контролируемый русскими персидский порт Энзели, а оттуда — уже в путь на верблюдах.

Рассматривался и резервный вариант доставки на пароходе Добровольного флота. Сборка лодки должна была производиться на палубе парохода непосредственно перед боевым применением. Затем краном производился спуск на воду, и краном же ее поднимали обратно на борт после проведения операции.

По высочайшему повелению 11 ноября 1902 г. за строительство лодки Колбасьеву выплатили 50 тыс. рублей.

Строительство лодки было начато в 1901 г. в Кронштадтском отделении Балтийского завода. Испытания этой сверхсекретной лодки было решено провести в Опытовом бассейне, которым заведовал профессор А.Н. Крылов.

В Опытовом бассейне для соблюдения секретности лодка была окружена деревянным забором и прикрыта брезентом. Освящал лодку сам Иоанн Кронштадтский.

В 1903 г. подводная лодка «Петр Кошка» была испытана на Кронштадтском рейде. На испытаниях в Кронштадте скорость надводного хода достигла 8,6 узла, а подводного — 6 узлов. Испытания выявили малую дальность плавания под водой — всего 15 миль, и плохую управляемость в подводном положении.

Ни в Персидский залив, ни в Порт-Артур лодка не попала, а ее по железной дороге отвезли в Севастополь. Тем временем Колбасьев, уже получивший чин капитана 2-го ранга, представил проект подводной лодки водоизмещением 175 т и длиной 47 м.

20 июня 1904 г. Колбасьев дал из Севастополя в Петербург телеграмму председателю МТК Ф.В. Дубасову: «Вчера после ряда испытаний спустили лодку на воду».

Прошло 4 года. В сентябре 1908 г. председателем МТК стал А.Н. Крылов. Позже он писал: «По должности я стал знакомиться с секретными делами. Смотрю: “Дело Колбасьева”». Среди других писем и бумаг лежало письмо к адмиралу Дубасову: «Дорогой Федор Васильевич, издержался я на лодку; оказалось, что она мне обошлась 50 000 руб., будьте добры, похлопочите мне такое возмещение моих расходов» (а красная цена лодки тысячи три). Затем в конце расписка: «Талон к ассигновке 50 000 руб. получил. Е. Колбасьев».

«Пришлось мне в 1907 г. быть в Севастополе, — вспоминает далее А.Н. Крылов. — Лодка Колбасьева стояла на якоре и швартовых у его устричного завода и служила пристанью для шлюпок; никуда она никогда не ходила и на верблюдах в Персидский залив ее не возили»[18].

Не доверять академику Крылову у меня нет оснований. Однако нельзя не сказать, что любители сенсаций несколько раз публиковали сведения, что подводная лодка «Петр Кошка» была доставлена в Порт-Артур перед самым началом японской блокады. Еще более ретивые исследователи идут дальше и приписывают гибель японских броненосцев «Хацусе» и «Ясима» действиям порт-артурских подводных лодок, в том числе и «Петра Кошки».

Кстати, рекомендую читателю ознакомиться с воспоминаниями Александра Николаевича Крылова, там даже есть глава об «умных» подводниках.

Так и хочется рассказать о финансовых гениях американских фирм Лэка и Голанда, сумевших в 1904–1905 гг. всучить России 13 негодных для боевого использования малых подводных лодок. Правда, янки наказали и японцев, продав им 5 таких же лодок.

Бекаури, правильно оценив конъюнктуру в руководстве советских ВМС, предложил несколько проектов сверхмалых подводных лодок. Вот, мол, подойдет британский Гранд-флит к Кронштадту или Севастополю на пушечный выстрел, а наши сверхмалые подводные лодки тут как тут. Мало того — сверхмалую подводную лодку можно доставить для диверсий и в отдаленные точки. Нет, не на верблюдах, а на… самолетах.

Идеи Бекаури заворожили наших военморов. И вот в 1934 г. в составе 1-го отдела Остехбюро была создана конструкторская группа, проектировавшая подводные лодки. Главным конструктором 1-го отдела был инженер Ф.В. Щукин, но общее руководство осуществлял Бекаури.

В этом отделе в 1934–1936 гг. параллельно проектировались: атомное подводное специальное судно (АПСС) или телемеханическая подводная лодка; автономная подводная лодка (АПЛ); радиотелеуправляемая подводная лодка; малая подводная лодка водоизмещением 60 т.

АПСС представляла собой сверхмалую (надводное водоизмещение 7,2 т, подводное 8,5 т) подводную лодку, вооруженную одним носовым неподвижным торпедным аппаратом. Управление производилось двумя способами: обычным (единственным членом ее экипажа) и дистанционным. В последнем случае прорабатывалась возможность управления АПСС с так называемых «водителей» — с надводных кораблей или самолетов. «Волновое управление» должно было осуществляться с помощью установленной на этих «водителях» специальной аппаратуры «Кварц» (разработка № 134), созданной специалистами того же Остехбюро. В «телемеханическом» варианте АПСС вместо торпеды несла установленный на ее месте заряд взрывчатки весом 500 кг.

Прочный корпус был сигарообразной формы, с двумя накладными килями, разделен на 5 отсеков. В съемном носовом отсеке размещался заряд ВВ, снабженный неконтактным взрывателем. Второй отсек содержал носовую полубатарею аккумуляторов (33 элемента) и часть вспомогательной аппаратуры телеуправления. Третий отсек — центральный — пост ручного управления. Здесь находились кресло водителя, штурвал, контрольные приборы и перископ, выдвигавшийся над корпусом на 65 сантиметров. Сверху место водителя закрывала прочная рубка с четырьмя иллюминаторами и входным люком. В отсеке также размещалась основная часть аппаратуры телеуправления, балластная, уравнительная и торпедозаместительная цистерны, механизмы управления торпедным аппаратом. В четвертом отсеке находилась кормовая полубатарея аккумуляторов (24 элемента) и часть аппаратуры телеуправления с рулевыми машинами, работающими на сжатом воздухе. В пятом отсеке размещался электромотор постоянного тока мощностью 8,1 кВт и гребной вал с винтом.

В корме имелось хвостовое оперение с рулями. В прочных килях были установлены 4 баллона на 62 литра сжатого воздуха, используемого для продувки цистерн и работы элементов автоматики. Между килями располагался открытый торпедный аппарат под 457-мм торпеду.

Сверху на прочном корпусе были установлены мачты антенного устройства, а на верхней поверхности второго и пятого отсеков — иллюминаторы с фарами, направленными вверх, служившими для опознавания и наблюдения снаряда в темное время. На кормовом отсеке крепился прибор, периодически выбрасывающий в воду флуоресцирующий состав зеленого цвета, облегчавший слежение за снарядом в светлое время. Перед рубкой был установлен аварийный буй с электролампой и телефоном. Транспортно-подвесные узлы располагались сверху над вторым и четвертым отсеками, расстояние между узлами составляло 4,9 метра.

Основным режимом управления АПСС являлось управление по радио при визуальном слежении за ним с самолета-водителя или корабля. Оно осуществлялось путем передачи шифрованных радиосигналов в УКВ-диапазоне при надводном положении АПСС или в длинноволновом диапазоне при погружении на глубину 3 метра. АПСС имел специальные приемники УКВ и ДВ с дешифратором, который преобразовывал радиокоманды в посылки постоянного тока, управлявшие элементами автоматики снаряда. Вспомогательным режимом было механическое управление, которое использовалось с помощью механического автоматического курсопрокладчика. Этот режим использовался на глубине 10 метров, движение в таком режиме могло продолжаться до пяти часов. Предусматривалось и ручное управление, в котором все принципы управления сохранялись те же, что при радиоуправлении.

В качестве носителя и пункта воздушного управления АПСС планировался гидросамолет АНТ-22, созданный бюро А.Н. Туполева. АНТ-22 мог транспортировать одну сверхмалую подводную лодку типа АПСС на внешней подвеске, а в переоборудованных поплавках — даже две. Дальность полета позволяла ему доставлять этот груз в точку, удаленную от базы на 500–600 км.

Идея доставки сверхмалой подводной лодки самолетом и управления ее с самолета была полнейшим техническим бредом. Тем не менее А.Н. Туполев простроил опытный образец «морского крейсера» МК-1 (АНТ-22). «Крейсер» представлял собой цельнометаллический двухлодочный гидросамолет-катамаран.

Согласно ТТЗ, самолет определялся как морской крейсер, назначением которого являлись разведка отдаленных районов открытого моря, сопровождение флота, бомбардировка баз и укрепленных районов противника. То есть МК-1 предназначался для решения всего комплекса задач, ранее ставящихся для различных проектируемых и строящихся дальних морских разведчиков, бомбардировщиков и торпедоносцев. Выбор двухлодочной схемы изначально был обусловлен дополнительными предполагаемыми задачами — транспортировкой крупногабаритных грузов, в том числе малых подводных лодок или полупогружаемых торпедных катеров. Силовая установка — 6 тандемно установленных двигателей М-34 мощность по 825 л.с.

Заводские испытания МК-1 начались 8 августа 1934 г. и продолжились до 8 мая 1935 г. Машину испытывали летчики Т.В. Рябенко и Д.Н. Ильинский. Общая оценка самолета такова: «Управляемость самолета при различных комбинациях работы моторов следует признать хорошей». Максимальная скорость у поверхности воды составила 233 км/ч, на высоте 3000 м — 207 км/ч. Практический потолок 3500 м самолет набирал за 57 мин., время виража составило 82–89 секунд.

После установки на самолете штатного комплекта оборудования и вооружения он с 27 июля по 15 августа 1935 г. прошел полный цикл государственных испытаний. При наружной подвеске данные несколько снизились: максимальная скорость у поверхности воды составила 205 км/ч, крейсерская — 180 км/ч, практический потолок 2250 м.

Признавалось, что по своим мореходным качествам МК-1 обладает хорошими обводами и гидродинамикой, способен взлетать и садиться в открытом море при волне до 1,5 метров и ветре до 12 м/с. Однако показатели скорости, потолка и дальности полета (1330 км) не отвечают требованиям времени. Предлагалось продолжить улучшения самолета, для чего установить более мощные двигатели М-34 РН или М-34ФРН.

Увы, в середине 1935 г. работы над МК-1 были прекращены, так как во второй половине 1930-х гг. его летные качества выглядели анахронизмом, и МК-1 мог стать легкой добычей не только истребителя, но и современной «летающей лодки». Кроме того, для обслуживания такого гиганта требовалось большое количество технических средств и наземного персонала. Подготовка к полету и само его обеспечение оказались слишком сложными и длительными.

В 1935 г., сразу после завершения проектирования АПСС, их строительство поручили Ленинградскому судостроительно-механическому заводу № 196 («Судомех»). Были построены две сверхмалые подводные лодки проекта АПСС, первая в 1935 г. в клепаном, а вторая в 1936 г. — в сварном исполнении. Обе сверхмалые подводные лодки проходили заводские испытания, но на вооружение их не приняли. В официальных отчетах о реализации данного проекта говорится, что «проблема дистанционного управления этой лодкой далека от положительного решения». До испытаний с участием водителей дело вообще не дошло, и перед началом Второй мировой войны сверхмалые подводные лодки АПСС разобрали.

Вторая подводная лодка Остехбюро получила шифр «АПЛ» (аэро-подводная лодка). Первоначально ее тоже проектировали как снаряд, управляемый по радио с самолета, но в дальнейшем проект дорабатывался как сверхмалая подводная лодка с экипажем.

Этим проектом занималась другая группа инженеров 1-го отдела во главе с Ф.В. Щукиным. К августу 1935 г. на заводе № 196 («Судомех») был изготовлен опытный образец. АПЛ представляла собой однокорпусную сверхмалую подводную лодку водоизмещением 18 т, вооруженную двумя 457-мм бортовыми торпедными аппаратами открытого типа. Экипаж лодки — 4 человека. Силовая установка состояла из дизель-мотора мощностью 24 л. с. (при форсировании до 36 л. с.) и гребного электромотора, работавшего от аккумуляторной батареи.

Заводские испытания АПЛ проводились в августе 1935 г. в Ораниенбауме. В ходе испытаний было совершено несколько довольно успешных выходов в Финский залив. В ноябре вышел приказ наркома обороны, предписывавший Управлению военно-морских сил РККА обеспечить постройку десяти сверхмалых подводных лодок типа «усовершенствованной АПЛ», со сдачей первых шести в 1936 г.

В ноябре 1935 г. сверхмалую подводную лодку по железной дороге доставили на Севастопольскую базу Остехбюро в Балаклаву, где должны были пройти ее приемо-сдаточные испытания. По их результатам планировалось внести необходимые изменения в проект промышленной серии сверхмалых подводных лодок, получивших условное обозначение «Пигмей».

Однако постройка серийных АПЛ шла черепашьими темпами. Остехбюро по частям выдавало заводу № 196 проектную документацию на «Пигмеев», но завод отказывался начать работу. Во-первых, он хотел получить полный проект, во-вторых, требовал, чтобы проект был утвержден начальником Морских Сил, тогда как Управление кораблестроения УВМС РККА не считало возможным утверждать проект до завершения испытаний опытовой АПЛ. И лишь 27 июня 1936 г. проект «Пигмея» (усовершенствованной АПЛ) одобрил заместитель начальника УМВС РККА флагман 1-го ранга И.М. Лудри. Через полтора месяца после этого из командировки в Италию вернулся В.И. Бекаури, которому удалось сдвинуть дело с места. На заводе № 196 под руководством инженера А.Н. Щеглова началось строительство головной сверхмалой подводной лодки серии «Пигмей».

«На базе в Балаклаве бригада рабочих “Судомеха” под руководством инженеров К.А. Щукина (однофамильца главного конструктора проекта) и Шебалина долго доводила, но так и не довела АПЛ до кондиций, нужных для приемки флотом. Зато ресурсы дизеля, электромотора, аккумуляторов и другого оборудования они изрядно уменьшили. В этом быстро убедился экипаж во главе с помощником командира подводной лодки “А-3” старшим лейтенантом Б.А. Успенским, назначенным на АПЛ 19 августа 1936 г. из состава 1-й Бригады подводных лодок Черноморского флота. На командира Бригады, флагмана 2-го ранга Г.В. Васильева, руководство возложило ответственность “за обеспечение проведения приемочных испытаний АПЛ ОТБ”.

По требованию сдатчика АПЛ Ф.В. Щукина, следовало в полной мере соблюдать режим, соответствующий грифу “ОС” (“Особая Секретность”). В результате особый отдел штаба флота настоял на том, чтобы испытания проводились в пределах Карантинной бухты и в основном ночью.

Приемка шла неудачно. Она началась в октябре 1936 года, но до конца года так и не завершилась. Дело кончилось тем, что старший лейтенант Б.А. Успенский (по его собственным словам, “попавший в командиры АПЛ по стихийным обстоятельствам”) в декабре обратился прямо к Начальнику Морских Сил с предложением прекратить испытания. Мучений АПЛ всем доставила с избытком. “Условия обитаемости на лодке исключительно тяжелые”, — было сказано в одном из актов приемной комиссии, а к ним надо добавить постоянные неполадки техники. Травили воздух манометры высокого давления, сильные вибрации свидетельствовали о рассогласовании электромотора с линией вала, а магнитный компас, из-за близкой прокладки электрического кабеля, давал ошибку до 36 градусов.

Опытный, изготовленный в единственном экземпляре, дизель сильно грелся, грохот его был слышен на несколько миль, к тому же он сильно дымил, а электромотор после нескольких испытаний под водой просто сгорел. Испытания торпедных аппаратов чуть не закончились катастрофой: если на первой торпеде при выстреле не взвелся курок и она вскоре утонула, то вторая задела при выстреле за корпус и с погнутым оперением перешла на циркуляцию, чуть не задев на очередном витке саму АПЛ.

Несмотря на неудачные испытания прототипа, поздней осенью 1936 г. на заводе № 196 начали строить еще несколько сверхмалых подводных лодок улучшенного типа АПЛ (“Пигмей”), но ни одну их них не завершили. По словам заводского инженера Кузнецова, один недостроенный “Пигмей” (головной в серии) Бекаури демонстрировал прямо в цехе какому-то высокому начальству весной 1937 г. Но уже в конце года заказ на строительство “Пигмеев” был аннулирован. Инженер Щеглов, отвечая на вопросы комиссии некоего Нарыкова 11 октября 1937 г. сказал: “В настоящее время имеется два типа малых ПЛ: подлодка АПЛ и подлодка «Пигмей», то есть АПЛ улучшенная. Последнее решение — оснастить «Пигмеи» трубчатыми торпедными аппаратами безпузырной стрельбы, c удлинением лодки на 400 мм”»[19].

Таблица 1

Тактико технические данные АПЛ «Пигмей»

В конце 1937 г. сотрудники НКВД арестовали главного конструктора АПЛ инженера Ф.В. Щукина. В обвинительном заключении по делу Щукина, написанном сотрудником особого отдела НКВД при Остехбюро А.П. Грунским, говорилось, что обвиняемый «проводил вредительскую деятельность умышленно неправильным проектированием предназначенных для вооружения РККФ новых типов подводных лодок, в результате чего запроектированные сверхмалые подводные лодки оказались непригодными для вооружения РККФ». Обвинительное заключение начальство утвердило 20 февраля 1938 г., а спустя три дня Щукина расстреляли.

К началу Великой Отечественной войны АПЛ (или «Пигмей»?) официально числилась за Наркоматом ВМФ как опытовая подводная лодка. В строй она официально не вводилась, в состав какого-либо из флотов не зачислялась и хранилась на берегу. По одним данным, АПЛ (или «Пигмей»?) так и оставили на бывшей Севастопольской базе Остехбюро в Балаклаве, по другим — перевезли в Феодосию, где установили на территории испытательной базы морского оружия НК ВМФ. Летом 1942 г. лодка оказалась в руках немцев, однако ее дальнейшая судьба точно не известна.

В конце 1980-х гг. чехословацкий историк Рене Гренер передал коллекционеру из Конакова Борису Лемачко несколько фотографий советской сверхмалой подводной лодки. Я думаю, что это, вероятнее всего, «Пигмей». Феодосийский историк О. Ольховатский предположил, что снимки сделаны в поселке Орджоникидзе под Феодосией на территории завода «Гидроприбор».

В августе 1942 г. эту подводную лодку осмотрели итальянские офицеры из 10-й флотилии МАС. И вот из статьи в статью кочует неизвестно откуда взявшееся высказывание итальянцев: «Это была новейшая единица, находившаяся на заключительной стадии оборудования, ее размеры не отличались от итальянского типа СВ, но корпус был стройнее и длиннее. Лодка имела довольно большую, но узкую рубку трапециевидной формы. На середине высоты корпуса находились продолговатые углубления, позволявшие располагать в них торпеды».

А один наш великий историк считает, что, «возможно», немецкие конструкторы — создатели сверхмалой подводной лодки «Зеехунд» — использовали в своей работе проект Остехбюро. А почему бы не проект лодки Колбасьева?

Глава 7

Катера «волнового управления»

И вот Бекаури предложил прекрасное средство для борьбы с Гранд флитом. Предположим, противник подходит на дистанцию огня орудий главного калибра к Кронштадту или Севастополю. Но вот с разных направлений дредноуты атакуют десятки торпедных катеров, которые подходят почти в упор и топят «просвещенных мореплавателей». Пусть большинство катеров потоплено артиллерийским огнем. Но потерь среди красных военморов нет. Катера управляются по радио с эсминцев и самолетов. Такая идиллия не могла не привести в умиление наших военморов, и Бекаури получил новые деньги, новые заводы и десятки катеров для опытов.

Уже в 1924 г. к работе по телеуправлению катеров подключилась группа талантливого изобретателя А.Ф. Шорина, создателя советского звукового кино. Хотя основной принцип — управление с помощью радиоволн — у обоих конструкторов был одинаков, разрабатываемые ими системы отличались одна от другой. Бекаури, стремясь облегчить работу оператора, включил в свой комплекс счетно-решающий прибор, который автоматически вырабатывал курс выхода телеуправляемого катера в атаку. В комплексе Шорина курс рассчитывал по карте оператор. Кроме того, Бекаури размещал станцию управления на корабле, а Шорин — на самолете, с которого, как он считал, можно раньше обнаружить корабли противника и вывести в атаку на них радиоуправляемые катера.

В 1927 г. в Гребном порту в Ленинграде председателю ВСНХ В.В. Куйбышеву продемонстрировали управление по радио при помощи системы Шорина небольшим катером «Оса». Куйбышев и в последующие годы посещал лабораторию Шорина, интересовался результатами деятельности ее коллектива.

Получив заказ от Морских Сил, Шорин проделал большую работу по созданию аппаратуры для радиотелеуправления торпедным катером. Для обеспечения испытаний флот передал его лаборатории трофейный английский торпедный катер типа «Торникрофт» и штабной катер «Орлик».

В книге «Катера пересекают океан» очевидец Б.В. Никитин писал: «На них перенесли приборы со стендов лаборатории.

Вскоре после моего назначения в НТК заместитель А.Ф. Шорина П.П. Литвинский показал мне комплекс радиотелеуправления, объяснил принцип его действия и продемонстрировал работу.

Страницы: «« 12345678 ... »»

Читать бесплатно другие книги:

Автор книги – фотохудожник Екатерина Рождественская, дочь известного поэта-шестидесятника Роберта Ро...
Кажется, что на заре XXI века популярная музыка достигла совершенно новой фазы развития. Для того чт...
Многие из тех, кто совершал паломничество по монастырям Святой Горы, отмечали необыкновенный вкус аф...
Кто он, Лючано Борготта по прозвищу Тарталья, человек с трудной судьбой? Юный изготовитель марионето...
В психологических статьях часто пишут, что любовь к себе – ключ к тому, чтобы и все остальное налади...
Северная Корея начала ХХI века. В стране, где правит культ личности Ким Чен Ира, процветают нищета, ...