Машина, платформа, толпа. Наше цифровое будущее Бриньолфсон Эрик
Это серьезная причина для беспокойства, поскольку мир бизнеса построен на предсказаниях. Многие из них вполне конкретны, например, как поведут себя определенные акции; какими окажутся направление и величина изменений будущих кредитных ставок; сколько смартфонов удастся продать в определенной стране в следующем году. Во многих других случаях прогнозы неявно заложены в предполагаемый план действий. Так, смена дизайна сайта строится на неявном предположении, что посетителям больше понравится новый вариант, и то же самое касается смены оформления в офисах филиалов банка. Яркий запуск какого-либо продукта строится на важном предположении, что клиенты отдадут ему предпочтение, а маркетинговая кампания подразумевает прогнозирование того, как их можно сформировать.
Что такое хорошо?
Разумеется, не все прогнозы оказываются неверными. Тетлок установил, что некоторые люди – он называет их суперпрогнозистами – действительно регулярно делают предсказания, более точные, чем просто случайный выбор варианта. Они берут информацию из многих источников и, что может быть более важным, демонстрируют способность рассматривать ситуации с разных точек зрения. Менее точные прогнозисты обычно имеют одну точку зрения во всех своих анализах (и упрямые консерваторы, и фанатичные либералы чаще дают плохие политические прогнозы). Тетлок называет первую из упомянутых групп (более успешных, разносторонних аналитиков) «лисами», а вторую – «ежами». Эти термины он взял у древнегреческого поэта Архилоха: «Многое знает лиса, еж – одно, но важное»[160]. Он рекомендует везде, где только можно, опираться на лис, а не на ежей[161]. Лис легко узнать по многоаспектным и многоплановым рассуждениям и анализам. Их можно также выявить по достигнутым результатам. Люди, которые делали много точных прогнозов (причем проверяемых), с большой вероятностью являются лисами.
Если не принимать во внимание суперпрогнозистов, то лучше меньше опираться на всяческие предсказания. Наш мир становится все более сложным, часто бывает непредсказуемым, а события быстро сменяют друг друга. Это делает прогнозирование чем-то средним между чрезвычайно трудным и фактически невозможным, причем чем дальше, тем оно оказывается ближе ко второму.
В работе самых успешных компаний происходит фундаментальный сдвиг от долговременных прогнозов, многолетних планов и крупных ставок к краткосрочным циклам, экспериментам и тестированию. Эти организации следуют отличному совету компьютерного специалиста Алана Кэя: лучший способ предсказать будущее – изобрести его. Они делают это небольшими шагами, постоянно получая обратную связь и при необходимости внося изменения в свои действия, вместо того чтобы работать втайне, двигаясь к некому отдаленному событию с уверенно прогнозируемым результатом.
Не так уж сложно реализовать такой принцип для какого-нибудь онлайн-сервиса. Сайты обычно собирают много информации о действиях пользователей, что легко позволяет увидеть, произошли ли улучшения вследствие определенного изменения. Владельцы некоторых коммерческих сайтов очень подозрительно относятся к переменам и проверяют целесообразность любого шага. Туристический онлайн-сервис Priceline появился на первой волне интереса к интернету в конце 1990-х годов. Как и многие другие лидеры того времени, он рухнул в начале 2000-х, главным образом из-за того, что пользователи разочаровались в первоначальном подходе «назовите свою цену».
В середине последнего десятилетия руководство компании переосмыслило подход к бизнесу и перешло к модели с несколькими более традиционными туристическими сайтами. Однако главным фактором, позволившим Priceline добиться успеха, было постоянное экспериментирование на основе данных. Как выразился репортер VentureBeat Мэтт Маршалл, «часто к скачкообразному росту приводят маленькие идеи вроде улучшения накопленного опыта через крохотные победы – иными словами, небольшие изменения, скажем, в цветах, формулировках или расположении данных на веб-странице немного повышают активность пользователей. Компания обнаружила, что, если заменить “парковку” на “бесплатную парковку”, это даст улучшение на 2 процента, хотя текст располагается на темном фоне и едва заметен для среднего читателя»[162]. Такие выгоды обнаруживаются повсюду. Проведя строгое A/B-тестирование (обычный сетевой эксперимент, когда половина посетителей видит вариант A, а другая половина – вариант B), компания Adore Me, специализирующаяся на женском нижнем белье, обнаружила, что продажи некоторых предметов удваиваются, когда модель позирует, запустив руку в волосы, а не держа ее на бедре[163]. Вместо того чтобы тратить недели, дни и даже часы на экспертный анализ и споры о предлагаемых изменениях, обычно быстрее и точнее просто протестировать варианты в сети. Часто результаты оказываются удивительными.
Экспериментирование не ограничивается только интернетом. Продуктивным оно может быть и в реальном мире. Многие крупные компании являются тем, что профессор бизнес-школы Дэвид Гарвин называет «многоэлементными предприятиями» (МЭП)[164]. Такие организации имеют множество пунктов работы с клиентами, которые в целом выглядят и действуют одинаково. Банки, сети ресторанов, магазинов или центров оказания услуг являются МЭП. По одной оценке, 20 процентов компаний из списка Fortune 100 в той или иной степени многоэлементные предприятия.
Наличие у МЭП множества отдельных пунктов предоставляет отличные возможности для эксперимента. Специалист по инновациям Стефан Томке и исследователь Джим Манци описывают[165], как универмаг Kohl’s запустил эксперимент, где было задействовано 100 торговых точек, чтобы узнать, вредит ли продажам открытие магазинов на час позже по выходным. Такое сокращение времени работы уменьшило продажи незначительно, что стало хорошей новостью для компании. Менее приятными были результаты другого эксперимента, затронувшего 70 магазинов Kohl’s, в котором исследовалось внедрение продаж мебели. Мебель занимала много пространства и располагалась вдали от остальных продуктов, поэтому общие продажи магазинов и потоки покупателей уменьшились. Хотя многие топ-менеджеры с оптимизмом смотрели на новую идею, компания решила следовать полученным результатам и отказаться от продажи мебели. Иногда бывает нереально применить новый метод одновременно во всех точках МЭП, но частичное внедрение естественным образом создает пространство для эксперимента. При минимуме планирования можно узнать очень много нового, сравнивая места, действующие по новому методу, и те, где работа идет по-старому.
Прогнозы и эксперименты нельзя автоматизировать так же просто, как это делается с принятием решений. Однако в них применяются данные и хорошо работает строгий анализ. Это основные инструменты Системы 2, а также второй эры машин. Так что Системе 1 и ее компонентам, интуиции, суждениям и личному опыту нужно отстраниться от прогнозирования как минимум настолько же, насколько, как мы выяснили ранее, это оправдано в случае с принятием хороших решений. Иными словами, HiPPO должны стать вымирающим видом в организациях.
Резюме
• Двадцать лет стандартного партнерства разума и машин показали, что мы нередко слишком сильно полагаемся на человеческие суждения, интуицию и чутье.
• Почему человеческие суждения так часто оказываются ошибочными? Потому что работа нашей быстрой, не требующей усилий Системы 1 подвержена различного рода искажениям. И самое плохое, она не осознает, что совершает ошибку, и вынуждает рациональную Систему 2 придумывать убедительные оправдания тому, что на деле является импульсивным решением.
• Есть более чем убедительные подтверждения того, что использование только данных и работающих с ними алгоритмов обычно приводит к лучшим решениям и прогнозам, нежели использование суждений даже самых квалифицированных экспертов.
• Многие решения, оценки и прогнозы, за которые сегодня отвечают люди, следует передать компьютеру. В ряде случаев для проверки действий машины здравым смыслом следует оставить человека, в прочих же случаях его нужно полностью отстранить от принятия решений.
• Впрочем, есть ситуации, когда субъективные человеческие суждения по-прежнему могут быть полезны, если перевернуть стандартное партнерство с ног на голову. В этом случае суждения нужно перевести в числовую форму и включить в количественный анализ.
• Принятие решений не должно использоваться для того, чтобы тешить самолюбие высокопоставленных персон. Его основная задача – выдавать наилучшие варианты действий, основанные на правильных целях и четких критериях.
• Алгоритмы далеки от совершенства. Если они имеют дело с неточными или искаженными данными, они будут выдавать ошибочные или контрпродуктивные решения. Эти искажения могут быть малозаметными и непреднамеренными. Алгоритмы нужно оценивать не по отсутствию в них недостатков, а по тому, превосходят ли они существующие аналоги по ключевым критериям и можно ли их со временем улучшить.
• По мере развития технологий мы откажемся от стандартного партнерства с его чрезмерным доверием высокопоставленным лицам в пользу принятия решений, основанных исключительно на данных. Факты говорят, что компании, следующие по этому пути, обычно имеют значительные преимущества перед конкурентами старого типа.
• Лучше всего работают люди, способные смотреть на проблему с нескольких точек зрения, и компании, которые предпочитают краткосрочное планирование и эффективно экспериментируют.
Вопросы
1. Отслеживаете ли вы, и если да, то насколько систематически и строго, те решения, оценки и прогнозы, за которые в вашей организации отвечают люди и компьютеры? Знаете ли вы, кто из них лучше справляется с работой?
2. В какой области вашей организации решения обычно принимают люди с высокой зарплатой? Почему?
3. Есть ли у вас возможность в какой-нибудь части организации перевернуть стандартное партнерство, чтобы субъективные оценки людей использовались в анализе на основе данных, а не наоборот?
4. Как вы думаете, у кого в целом больше необъективности – у алгоритмов или у людей?
5. Кого вы считаете более убедительным – лис или ежей?
6. Ваша организация обычно выполняет небольшое количество долгосрочных важных проектов или большое количество краткосрочных?
Глава 3. Наши почти разумные машины
Я верю, что к концу столетия словоупотребление и общественное мнение среди образованных людей изменятся настолько, что разговоры о мыслящих машинах не вызовут протеста.
Алан Тьюринг[166], 1950 г.
Едва разработав цифровые компьютеры, мы стали пытаться заставить их думать так, как это делаем мы. С самого начала было очевидно, что они очень полезны для выполнения шаблонных математических вычислений, но это не казалось новостью. В конце концов, люди давно знакомы с устройствами, облегчающими счет, начиная с японских и вавилонских абаков и загадочного греческого антикитерского механизма[167], появившихся еще до нашей эры. А вот новой была возможность программировать компьютеры, то есть давать им абсолютно произвольные инструкции[168]. Как мы видели в предыдущей главе, компьютерные программы идеально подходят для алгоритмов – точных пошаговых инструкций для выполнения какой-либо задачи. Однако выдающиеся мыслители, представители самых разных дисциплин, вскоре стали пытаться заставить новые машины делать нечто большее, чем просто выполнять последовательность шагов в заранее установленном порядке. Эти первопроходцы хотели, чтобы запрограммированное «железо» стало умнее их самих – иначе говоря, чтобы машина научилась рассуждать на одном уровне с человеком и стала, таким образом, искусственным интеллектом.
Две разные дороги к искусственному интеллекту
Джон Маккарти, профессор математики в Дартмутском колледже, определял искусственный интеллект как «научные и технические методы создания разумных машин»[169], [170]. Он организовал первую конференцию по этой теме, которая состоялась в колледже в 1956 году. Всего несколько лет спустя вокруг искусственного интеллекта началась масштабная и длительная полемика. Чтобы понять ее суть, а также осознать важность этого обсуждения, давайте рассмотрим различие между тем, как ребенок изучает первый язык, и тем, как большинство взрослых изучает второй язык.
Дети в основном делают это на слух. Они воспринимают разговоры окружающих людей, усваивают некоторые слова и правила, образующие язык, и в какой-то момент начинают говорить сами. У них есть обратная связь: если они делают ошибки, их поправляют, и в итоге дети преуспевают в сложной работе – умении говорить.
Взрослые при изучении нового языка знают, насколько это трудно. Когда они задаются целью овладеть вторым языком, то немедленно сталкиваются с множеством правил: куда поставить местоимения в предложении; какой предлог использовать; как спрягать глаголы; есть ли род у существительных, и если да, каким он бывает; как различать субъект и объект (чтобы понимать, кто является действующим лицом во фразах типа «мать видит дочь») и так далее. Запоминать слова очень трудно, но большинство взрослых людей, изучающих язык, больше страдают от необходимости изучать массу сложных и иногда непоследовательных правил.
Детям не нужны уроки по правилам языка, чтобы научиться хорошо говорить. А вот большинство взрослых не может без них обойтись. Разумеется, эти подходы отчасти перекрываются – многие дети изучают родную речь в школе, а взрослые воспринимают некоторые вещи на слух, – но разница все равно существенна. Мозг ребенка специализируется на изучении языка, и работа происходит по статистическим принципам выделения языковых закономерностей[171]. Например, когда мама говорит о себе как о субъекте, она использует слово «я» и ставит его в начало предложения. Когда она является объектом, она использует слово «меня» и ставит его не в начало. Поскольку мозг взрослых отличается, им приходится изучать правила в явном виде.
На ранних стадиях работы над искусственным интеллектом занимавшееся им сообщество разделилось на два лагеря. Одни сосредоточились на так называемом символическом, или основанном на правилах, искусственном интеллекте, в то время как другие строили системы статистического распознавания образов. Первые пытались разработать искусственный интеллект на тех принципах, посредством которых взрослые люди учат иностранный язык; вторые стремились сделать искусственный интеллект похожим на ребенка, осваивающего речь.
Поначалу казалось, что более успешен символический подход. Например, на Дартмутском семинаре 1956 года Аллен Ньюэлл, Джон Клиффорд Шоу и будущий нобелевский лауреат Герберт Саймон продемонстрировали свою программу Logic Theorist, которая использовала правила формальной логики для автоматического доказательства математических теорем. Она смогла доказать 38 теорем из второй части Principia Mathematica – фундаментального труда Альфреда Уайтхеда и Бертрана Рассела по логике и философии математики. Одно из доказательств программы настолько превосходило по изяществу приведенный в книге аналог, что сам Рассел отреагировал на него «с восторгом»[172]. Саймон объявил, что они с коллегами «изобрели мыслящую машину»[173]. Тем не менее оказалось, что другие задачи намного хуже решаются с помощью подхода, основанного на правилах. Десятилетия исследований в области распознавания речи, классификации изображений, перевода с одного языка на другой и прочих дали весьма неубедительные результаты. Самые лучшие из систем, работающих в этих областях, справляются со своими задачами намного хуже человека, а худшие просто чудовищны. Например, если верить сборнику баек 1979 года, исследователи предлагали для перевода с английского языка на русский фразу «The spirit is willing, but the flesh is weak»[174], [175]. Программа выдала «Виски приемлемо, но мясо испортилось». Вполне вероятно, что это вымышленная история[176], но даже если и так, она вполне правдоподобна. Символические системы искусственного интеллекта, рассматриваемые как единая группа, генерировали весьма заурядные результаты, так что к концу 1980-х в этой области наступила «зима», поскольку иссякли корпоративные и государственные источники финансирования.
Что объясняет такой масштабный провал символических подходов к искусственному интеллекту? Есть два основных препятствия. Одно представляет серьезную проблему для этой области, а второе выглядит вообще непреодолимым. Прежде всего, в мире есть масса правил – как прекрасно знают взрослые, изучающие язык, – и в целом недостаточно знать и соблюдать большинство из них. Чтобы грамотно говорить, вам нужно освоить все правила. Даже если предложение грамматически правильно на 80 процентов, оно, скорее всего, будет звучать комично или даже покажется бессмысленным.
Внутри правил есть свои правила. Так, недостаточно знать, что в английском языке прилагательное обычно ставится перед существительным. В своей книге The Elements of Eloquence («Элементы красноречия»)[177] Марк Форсайт пишет: «Прилагательные в английском языке должны следовать строго в таком порядке: мнение – размер – возраст – форма – цвет – происхождение – материал – предназначение, а далее идет существительное. У вас может быть любимый маленький старый прямоугольный зеленый французский серебряный перочинный ножик. Но если вы хоть чуть-чуть перепутаете порядок слов, вас посчитают безумцем. Странная штука: любой человек, говорящий на английском языке, строго придерживается этого правила, но почти никто не может его сформулировать»[178].
Кроме того, миры, в которых мы живем – и мир физических объектов, и мир идей и понятий, – не стремятся придерживаться единого набора правил. У табуретов есть ножки, а пуф хоть и является частным случаем табурета, ножек может не иметь. В 2002 году американские мужчины не имели права заключать брак друг с другом, а в 2015 году получили такую возможность. Белки не летают, за исключением летяг, которые способны планировать – это своего рода полет. Два отрицания могут иметь положительный смысл («она никогда не грустит»), но два положительных утверждения никогда не составляют отрицания. Ага, конечно.
Попытки систематизировать все правила для таких сложных вещей, как язык, запрограммировать их в компьютерные системы и добиться, чтобы они делали что-нибудь полезное, были большей частью безуспешными. Специалист по информатике Эрнест Дэвис и нейробиолог Гэри Маркус пишут: «В 2014 году мало какие коммерческие системы в значительной степени применяли рассуждения на основании автоматизированного здравого смысла… Никто еще не приблизился к созданию механизма, способного удовлетворительно рассуждать, опираясь на здравый смысл»[179]. Огромное количество людей успешно пользуются здравым смыслом, чтобы преодолевать создаваемые миром барьеры, сложности и непоследовательность. В этом людям не мешают даже искажения и ошибки разума, речь о которых шла в предыдущей главе. Но мы все еще не смогли разработать символьные цифровые системы, способные понимать реальное устройство мира так же хорошо, как наша собственная биологическая Система 1. Компьютеры становятся все эффективнее в узких областях применения искусственного интеллекта, таких как го или распознавание образов, но мы далеки от того, что Шейн Легг, один из основателей DeepMind, назвал общим искусственным интеллектом, – системы, способной применять интеллект к множеству непредусмотренных типов проблем.
Дэвис и Маркус рассказывают, в чем состоит, возможно, самое серьезное препятствие на пути к созданию таких систем: «Рассуждая с помощью обычного здравого смысла, люди… опираются на процессы, большей частью не поддающиеся самоанализу»[180]. Другими словами, когнитивная работа, которую мы делаем, легко проходя через чащобу правил, – это постоянная демонстрация парадокса Полани, утверждающего, что мы можем знать больше, чем способны рассказать. Как говорилось в главе 1, именно этот парадокс до недавнего времени мешал созданию программ, способных играть в го на одном уровне с людьми. Имейте в виду, что этот парадокс вездесущ. Во многих важных случаях мы просто не знаем и не можем знать, какие правила используем, чтобы делать что-то верно.
Этот факт кажется непреодолимым препятствием для создания любого рода автоматизации или искусственного интеллекта. Если никто в мире не знает правил, по которым люди что-то делают, включая самих людей, как же можно создать систему, основанную на правилах или любую другую, способную делать то же, что и мы? Кажется, что парадокс Полани строго ограничивает список человеческих задач, поддающихся автоматизации. Наш коллега из Массачусетского технологического института Дэвид Аутор пишет: «Рамки замены такого рода [замены людей компьютерами] ограничены, поскольку множество задач люди понимают по умолчанию и выполняют без усилий, но ни программисты, ни кто-либо другой не может сформулировать для таких задач явные “правила” или процедуры»[181].
Другой лагерь исследователей искусственного интеллекта (тех, кто отказался от символического подхода) с конца 1950-х пытался преодолеть парадокс Полани, разрабатывая системы, изучающие задачи тем же способом, каким дети учат язык, – с помощью опытов, повторения и обратной связи. Эти специалисты создали область машинного обучения, суть которой в точности соответствует названию.
Одной из первых цифровых машин, способных обучаться таким образом, был перцептрон – финансируемый Военно-морскими силами США проект думающей и обучающейся машины. Руководил им Фрэнк Розенблатт, ученый из Корнелльской лаборатории аэронавтики. Назначением перцептрона, появившегося в 1957 году, была классификация объектов, которые он видит, – например, предполагалось, что он сможет отличать кошек от собак[182]. В каком-то смысле он представлялся чем-то вроде крохотной версии мозга[183].
Примерно 100 миллиардов нейронов человеческого мозга не упорядочены по какой-то аккуратной схеме. Они сильно переплетены между собой: типичный нейрон воспринимает входящие сигналы от 10 тысяч своих соседей, а затем посылает выходящий сигнал примерно такому же количеству получателей[184]. Каждый раз, когда на определенное количество входов поступает достаточно сильный электрический сигнал, нейрон направляет собственный сигнал на все свои выходы. Величины, которые мы обозначили словами «достаточное количество» и «достаточно сильный», меняются со временем в зависимости от обратной связи, и нейрон придает каждому из своих входов важность, называемую «весом». В результате этих странных, сложных, не прекращающихся ни на мгновение процессов возникают память, умения, Система 1 и Система 2, внезапные озарения, когнитивные искажения и все остальное, что имеет отношение к нашему разуму.
Перцептрон не мог выполнять такую сложную работу. Его создали только для классификации простых изображений. В нем было 400 фотоэлементов, соединенных случайным образом (чтобы смоделировать запутанность мозга) в один слой искусственных нейронов. Первая демонстрация этой «нейронной сети» вкупе с уверенными прогнозами Розенблатта привела к тому, что газета New York Times написала в 1958 году о перцептроне как о «зародыше электронного компьютера, который, по ожиданиям [ВМС США], будет способен ходить, разговаривать, видеть, писать, воспроизводить себя и сознавать свое существование»[185].
Однако обещанного быстрого прорыва не произошло, а в 1969 году Марвин Минский и Сеймур Пейперт опубликовали сокрушительную критическую работу под названием Perceptrons: An Introduction to Computational Geometry («Перцептроны: введение в вычислительную геометрию»)[186]. Они математически доказали, что проект Розенблатта не способен выполнять некоторые базовые задачи классификации. Для большинства исследователей искусственного интеллекта этого было достаточно, чтобы отвернуться не только от перцептронов, но и от более широкой концепции нейронных сетей и машинного обучения в целом. Зима опустилась на оба лагеря исследователей искусственного интеллекта.
Несколько групп ученых все-таки продолжали заниматься машинным обучением, будучи убеждены, что правильный способ заставить компьютеры думать по образцу человека – это построить на основе модели мозга нейронные сети, способные учиться на примерах. Исследователи поняли, в чем заключались ограничения перцептрона, и преодолели их, комбинируя сложную математику, все более мощное аппаратное обеспечение и прагматичный подход, который позволял им вдохновляться тем, как работает мозг, но не ограничиваться этим. Например, в нейронах мозга электрические сигналы текут только в одну сторону, а в успешных системах машинного обучения, построенных в 1980-е годы Полом Уэрбосом[187], Джеффом Хинтоном[188], Яном Лекуном[189] и другими, информация могла проходить по сети в обоих направлениях.
Это «обратное распространение»[190] обеспечило значительное улучшение работы, однако прогресс происходил безнадежно медленно. К 1990-м система машинного обучения, разработанная Лекуном для распознавания чисел, была способна прочитать до 20 процентов всех рукописных банковских чеков в США[191], но другого практического применения ей не нашлось.
Как показывает недавняя победа AlphaGo, сейчас ситуация совершенно другая. Поскольку AlphaGo использовала эффективный поиск по огромному количеству возможностей – классический элемент систем искусственного интеллекта, основанных на правилах, – она, по сути, была системой машинного обучения. Как пишут ее создатели, AlphaGo – «новый подход к компьютеру, играющему в го, который использует… глубокие нейронные сети… обучаемые новаторским сочетанием контролируемого обучения с помощью игр с экспертами-людьми и обучения с подкреплением через игры с собой»[192].
AlphaGo неединичный случай. В последние годы мы видим расцвет нейронных сетей. Сейчас они, бесспорно, доминирующая форма искусственного интеллекта и, вероятно, некоторое время останутся на лидирующих позициях. Эта область искусственного интеллекта наконец выполняет хотя бы некоторые из тех обещаний, что нам когда-то давали ученые.
Итак, почему у нас есть искусственный интеллект?
Что стало причиной этого взлета и почему он оказался таким быстрым и неожиданным? Как часто бывает в случае прогресса, здесь соединилось несколько факторов, и определенную роль сыграли упорство разработчиков и счастливая случайность. Многие специалисты считают, что единственным важным фактором был закон Мура. По мере увеличения размера нейронные сети становятся намного более мощными и производительными, и только недавно по-настоящему крупные сети стали достаточно дешевы, чтобы быть доступными для большого числа ученых.
Исследователи с небольшим бюджетом также получили доступ к изучению искусственного интеллекта с помощью облачных вычислений. По словам предпринимателя Эллиота Тёрнера, к осени 2016 года вычислительные мощности, необходимые для осуществления передового проекта машинного обучения, можно было получить у провайдера облачных сервисов, например Amazon Web Services, в среднем за 13 тысяч долларов[193]. Как ни странно, рост популярности видеоигр также стал значительным толчком для машинного обучения. Оказалось, что специализированные графические процессоры, которые установлены в современных игровых приставках, хорошо подходят к типам вычислений, нужным для нейронных сетей, так что эти устройства в больших количествах привлекаются для выполнения таких задач. Исследователь искусственного интеллекта Эндрю Ын[194] сказал нам: «Ведущие группы делают с помощью графических процессоров такие безумно сложные вещи, каких я не мог вообразить два-три года назад»[195].
Появление больших данных – то есть недавнее взрывообразное увеличение количества цифрового текста, изображений, звуков, видео, показаний датчиков и тому подобного – было почти таким же важным для машинного обучения, как и закон Мура. Подобно тому как ребенок для изучения языка должен слышать множество слов и предложений, системам машинного обучения нужно иметь множество примеров, чтобы улучшать распознавание речи, классификацию изображений и решать другие задачи[196]. Сейчас данные поступают, по сути, непрерывно, причем их становится все больше. Системы типа тех, что создали Хинтон, Лекун, Ын и другие, обладают весьма полезным свойством: чем больше примеров они видят, тем лучше работают. Хинтон сказал с определенной скромностью: «Если посмотреть назад, то [успех в машинном обучении] был просто вопросом количества данных и количества вычислений»[197].
Возможно, Хинтон принижает собственный вклад. Благодаря ему нейронные сети значительно продвинулись вперед, а одна из его разработок дала новое название всей этой сфере. Статья 2006 года «Алгоритм быстрого обучения для глубоких сетей доверия»[198], написанная Хинтоном в соавторстве с Саймоном Осиндеро и И-Вай Те, продемонстрировала, что довольно мощные и надлежащим образом настроенные нейронные сети могут учиться сами, без вмешательства человека. Например, если такой сети показать множество написанных от руки цифр, она придет к правильному заключению, что в этих данных есть десять различных образцов, соответствующих цифрам от 0 до 9, и в дальнейшем будет точно распределять любые рукописные цифры по десяти категориям.
Такой тип неконтролируемого обучения остается относительно редким. Самые успешные системы основаны на контролируемом обучении, в ходе которого, как правило, сначала они получают набор вопросов и правильных ответов, а уже потом им предлагают самостоятельно ответить на какие-либо новые вопросы. Так, системе машинного обучения можно дать большой набор звуковых файлов с человеческой речью и файлов с соответствующими текстами в письменном виде. Система использует эти пары, чтобы создать ассоциации в рамках своей нейронной сети, которые позволят ей трансформировать в текст новые примеры речи. Поскольку оба подхода к машинному обучению – и контролируемый, и неконтролируемый – используют алгоритмы, описанные Хинтоном и его коллегами в статье 2006 года, сейчас основанные на них программы и устройства обычно называют системами глубокого обучения.
Демонстрация и применение искусственного интеллекта
Если не считать весьма небольшого числа более ранних случаев (вроде системы Лекуна для распознавания рукописных номеров на чеках), можно сказать, что коммерческому применению глубокого обучения всего несколько лет. Однако такие технологии распространяются с удивительной скоростью. Разработчик программного обеспечения Джефф Дин[199], который возглавлял программы Google по использованию глубокого обучения, отмечает, что еще в 2012 году компания не применяла эту технологию для улучшения таких продуктов, как поиск Google, Gmail, YouTube или Google Maps[200]. Однако к третьему кварталу 2015 года глубокое обучение стало использоваться примерно в 1200 проектах компании и показало большую производительность по сравнению с другими методами.
Компания DeepMind особенно продвинулась в сочетании глубокого обучения с другой технологией, известной как обучение с подкреплением[201], сосредоточив внимание не только на информационных продуктах, предоставляемых клиентам, но и на важных процессах реального мира. Google ввела в строй несколько крупнейших в мире дата-центров, которые потребляют очень много энергии. В этих зданиях расположены 100 тысяч серверов, которые должны не только получать питание, но и охлаждаться. Проблема с охлаждением усугубляется тем фактом, что общая вычислительная нагрузка для центра, или общее количество запрашиваемых серверов, непредсказуемо изменяется во времени. Кроме того, на необходимость охлаждения влияет погода.
Как правило, всеми насосами, вентиляторами, охладительными башнями и прочим оборудованием, которое поддерживает нужную температуру в дата-центрах, управляют люди. Они следят за термометрами, датчиками давления и прочими сенсорами и принимают решения, как лучше охлаждать здание. Компания DeepMind захотела узнать, можно ли вместо этого использовать машинное обучение. Специалисты использовали данные прошлых лет о вычислительной нагрузке, показаниях датчиков, факторах окружающей среды (температуре и влажности), чтобы обучить систему нейронных сетей управлять всем имеющимся оборудованием для охлаждения. В каком-то смысле разработчики подошли к дата-центру как к гигантской видеоигре и дали указания своим алгоритмам постараться набрать максимальное количество очков; в рассматриваемом случае очки начислялись за оптимальную эффективность энергопотребления.
Когда реальный дата-центр перешел под управление этой системы, результаты появились немедленно и поражали воображение[202]. Общее количество энергии, используемой для охлаждения, снизилось на целых 40 процентов, а ситуация с непроизводительными потерями – энергией, которая не использовалась непосредственно для IT-оборудования и включала дополнительные нагрузки и потери, – улучшилась примерно на 15 процентов. Один из основателей DeepMind Мустафа Сулейман сказал нам, что это одно из самых крупных улучшений, которые когда-либо видела команда дата-центров Google. Сулейман также подчеркнул, что подход DeepMind очень хорошо поддается обобщению. Нейронные сети необязательно полностью перестраивать для каждого нового дата-центра. Их просто нужно обучить с использованием максимально подробных данных за несколько лет. Такое обучение – тонкая и сложная работа[203], но она определенно окупается.
Наиболее эффективные системы машинного обучения, используемые сегодня для самых разных приложений – от управления энергией в дата-центрах до распознавания речи, классификации образов и автоматического перевода – удивительно похожи. Это просто варианты глубокого обучения, а сама сфера применения существенно не изменяет технологию. Это означает, что такой подход к искусственному интеллекту способен с большой скоростью проникать в различные области промышленности и экономики. Новые нейронные сети можно почти мгновенно дублировать и масштабировать, обучать с помощью данных, а потом применять в деле.
Технологические гиганты, включая Microsoft, Amazon, Google и IBM, разработали собственные технологии машинного обучения и сделали их доступными для других компаний[204] посредством сочетания облака и программных интерфейсов приложений (API), которые, по сути, являются ясными, согласованными и открытыми правилами, определяющими то, как части программного обеспечения взаимодействуют друг с другом. API значительно облегчают комбинирование кода из различных источников в единое приложение, а облако обеспечивает его доступность по запросу в любой точке мира.
С такой инфраструктурой появляется возможность быстрого распространения машинного обучения по всему миру. Однако по причинам, описанным в главе 1, мы предполагаем, что это будет происходить неравномерно, поскольку в ведущих компаниях перестраиваются процессы и возникают новые модели ведения бизнеса. Это уже произошло кое-где, в том числе в некоторых неожиданных местах.
Когда японец Макото Коикэ в 2015 году приехал к родителям на огуречную ферму, он увидел возможность применить машинное обучение. Ранее он работал инженером по аппаратному и программному обеспечению в автомобильной промышленности, поэтому был сведущ в создании оборудования, сочетающего коды и механизмы. Он нашел приложение своим талантам, взявшись за сортировку огурцов, которой ранее занималась его мать. Используя свой многолетний опыт, она вручную сортировала всю продукцию фермы на девять категорий[205]. Работа не казалась сложной, поскольку ферма была небольшая (средний размер японской фермы, за исключением тех, где выращивают рис, составляет всего 1,5 гектара[206], то есть примерно полтора бейсбольных или два футбольных поля[207]), но мать сильно уставала. Во время пика созревания она работала до восьми часов в день.
Макото Коикэ был впечатлен[208] способностями AlphaGo к сравнению изображений и заинтересовался технологией машинного обучения TensorFlow, которую Google открыла для широкой общественности в ноябре 2016 года. Инженер решил использовать TensorFlow, чтобы узнать, можно ли автоматизировать работу по сортировке огурцов на семейной ферме. Хотя у него не было опыта в области машинного обучения, он освоил TensorFlow, а затем обучил систему, взяв 7 тысяч изображений огурцов различных категорий. Используя недорогие камеры, компьютеры и контроллеры, Макото построил полностью автоматический сортировщик, который в первый год работы добился 70-процентной точности. Улучшить результат почти наверняка можно будет с помощью изображений более высокого разрешения и нового поколения программного обеспечения для машинного обучения, использующего облако. Макото говорит об этих технологиях так: «Мне не терпится их опробовать»[209]. Работы, подобные описанной, заставляют нас согласиться с мнением Каза Сато из Google, заметившего: «Я не преувеличу, если скажу, что варианты применения машинного обучения и глубокого обучения ограничены только нашим воображением»[210].
Когда мы писали книгу, почти все коммерчески успешные системы в этой сфере использовали методы контролируемого обучения и лишь немногие применяли неконтролируемое обучение (как в случае с оптимизацией дата-центра компанией DataMind). Однако люди в основном учатся с помощью неконтролируемого обучения. Ребенок каждый день изучает физику, играя с кубиками, выливая воду из стакана, бросая мячик и опрокидывая стулья, а не изучая законы Ньютона и не запоминая уравнения типа F = ma. Ян Лекун метко обрисовал широту и почти полную невостребованность неконтролируемого обучения с помощью такой метафоры: «Если сравнивать машинное обучение с кексом, то неконтролируемое обучение будет собственно кексом, контролируемое – сахарной глазурью, а обучение с подкреплением – вишенкой наверху. Мы знаем, как делать сахарную глазурь и где взять вишенку, но мы пока не в силах испечь кекс»[211]. Он считает, что разработка улучшенных алгоритмов неконтролируемого обучения станет важна, если мы когда-нибудь создадим общий искусственный интеллект.
Мы не раз слышали, как создатели нынешнего поколения нейронных сетей пренебрежительно именуют предыдущий, основанный на правилах подход «конструированием признаков». Сейчас многие специалисты считают неверным подход, при котором сначала все соответствующие ситуации правила собираются, а затем вводятся в компьютер. Они полагают, что гораздо продуктивнее создавать системы, способные изучать правила самостоятельно. Статистический лагерь исследователей искусственного интеллекта сейчас занимает лидирующие позиции и уже выполнил по меньшей мере некоторые обещания из тех, что были даны более полувека назад.
И как же в таких условиях свести вместе разум и машину? Есть несколько разных способов. Один был описан в предыдущей главе; его сторонники, Пол Мил и Том Дэвенпорт, полагают, что люди, наделенные здравым смыслом, будут наблюдать за решениями и действиями искусственного интеллекта и вмешиваться, если заметят что-то неладное. Именно это делала компания DeepMind, когда оптимизировала обслуживание дата-центра с помощью нейронных сетей. Люди-контролеры никуда не делись, в любой момент они могли перехватить контроль у компьютера.
Автопроизводители, которые встраивают в машины технологии автоматического управления, пользуются таким же методом. Они подчеркивают, что человек и в буквальном, и в переносном смысле находится на месте водителя и отвечает за безопасное функционирование автомобиля даже в то время, когда тот едет сам. Многим участие человека в схеме управления кажется благоразумным, поскольку невнимательность может быть фатальной. Летом 2016 года машина марки Tesla Джошуа Брауна врезалась в борт грузового прицепа, водитель погиб[212]. Фура белого цвета совершала левый поворот с автострады на боковую дорогу. Браун ехал по противоположной стороне шоссе. Поскольку машина Tesla не затормозила перед катастрофой, похоже, ни Браун, ни видеокамера автомобиля не заметили белый прицеп на фоне яркого неба Флориды[213]. Возможно, Браун слишком полагался на систему автоматического вождения, так как видел ее эффективность во многих предыдущих случаях и привык не обращать особого внимания на дорогу.
Google считает, что, поскольку человеческая невнимательность – это вечная проблема, нужно полностью исключить людей из управления транспортным средством. Крис Урмсон, бывший руководитель проекта компании по машинам с автоматическим управлением, говорит: «Общепринятая точка зрения такова, что нам нужно взять существующие системы помощи водителю и каким-то образом постоянно улучшать их, тогда у нас со временем появятся самоуправляемые автомобили. Что ж, я отвечу так: это равнозначно утверждению, что если я буду усердно учиться прыгать, то когда-нибудь научусь летать. На самом деле действовать нужно несколько иначе»[214]. Вот почему компания работает над созданием на сто процентов автономных машин, которые не требуют участия человека, – это называется автономностью пятого уровня[215].
Их возможности впечатляют. На конференции TED[216] 2015 года Урмсон сообщил: «Наши автомобили проезжали через Маунтин-Вью, и вот с чем мы столкнулись. Одна женщина на электрическом кресле-коляске гонялась кругами за уткой. В правилах дорожного движения ничего не написано о том, что нужно делать в таком случае, однако наши машины смогли обнаружить препятствие, снизить скорость и проехать дальше»[217]. Автономных машин, способных безопасно ездить в любых условиях и ситуациях, пока еще нет. Тем не менее, по нашему мнению, они скоро появятся.
Способность машин преодолевать парадокс Полани начинает применяться в работе бэк-офисных подразделений «белых воротничков», которая в данный момент удивительно плохо поддается полной автоматизации. «Бэк-офис» – обобщающий термин для умственной работы, происходящей вне поля зрения клиента и включающей закупки, бухгалтерию и IT. Как мы говорили ранее, наиболее масштабные и распространенные операции бэк-офиса давно автоматизированы корпоративными системами, тем не менее в большинстве компаний все равно остается масса ручной работы. Один из способов автоматизировать хотя бы часть такой работы – спросить выполняющих ее людей, какими правилами они руководствуются, каковы исключения из них, когда нужно использовать другой набор правил или директив и прочее. Однако на сбор такой информации с помощью опросов ушло бы много времени, и это отвлекло бы сотрудников от работы и, вероятно, не оправдало бы себя. Лица, выполняющие менее рутинную работу, по всей вероятности, не способны точно и исчерпывающе изложить кому бы то ни было, как они действуют.
Японская страховая компания Fukoku Mutual Life использует другой подход[218]. В декабре 2016 года она объявила о попытке использовать созданную IBM технологию искусственного интеллекта Watson, чтобы хоть частично автоматизировать работу людей, имеющих дело с заявлениями о наступлении медицинского страхового случая. Система будет извлекать соответствующую информацию из документов, предоставленных больницами и другими медицинскими учреждениями, и использовать ее для заполнения надлежащих кодов для страховых выплат, а затем выдаст эту информацию людям. В перспективе же система будет «изучать историю оценивания прошлых выплат, чтобы перенять опыт и квалификацию оценщиков»[219]. Другими словами, технологии предстоит обучаться по ходу дела, и со временем она сможет освободить людей от большого объема работы.
Мы ожидаем, что в ближайшее время появится немало таких проектов, и прогнозируем быстрое распространение глубокого и других видов машинного обучения. Например, значительная часть работы с клиентами заключается в том, что сотрудник выслушивает заказчика, чтобы понять, чего тот желает, а затем предоставляет ему ответ или услугу. Современные технологии смогут взять на себя вторую часть описанной процедуры, как только овладеют правилами взаимодействия. Гораздо труднее будет автоматизировать не нахождение ответа, а первый этап – выслушать и понять. Распознавание речи и другие аспекты обработки естественного языка крайне сложны для искусственного интеллекта с самого его зарождения по причинам, описанным в этой главе. Доминировавший ранее символический подход с такими задачами не позволял справиться вовсе, однако ему на смену пришли новые подходы, основанные на глубоком обучении, которые развиваются очень быстро даже на удивление экспертов.
В октябре 2016 года группа из Microsoft Research объявила, что сконструированная ею нейронная сеть достигла «уровня распознавания разговорной речи, сравнимого с человеческим»[220]. Такая фраза была в названии их статьи. Их система работала точнее, чем профессиональные люди-транскрибаторы[221], причем справлялась как с аудиозаписями по установленным темам, так и с обычными разговорами между друзьями и членами семьи. Комментируя этот результат, профессор Джеффри Паллум написал: «Должен признаться, я никогда не думал, что доживу до такого дня. В 1980-х я считал, что полностью автоматическое распознавание связной речи (слушание и точная запись сказанного) слишком трудно для машин… Специалисты достигли этого, не опираясь на какой-либо синтаксический анализ[222]: они проделали чисто техническую работу с помощью статистического моделирования, основанного на гигантском объеме исходных данных… Я не только не думал, что когда-либо это увижу, – я уверенно поставил бы на обратное»[223].
Легендарный ученый Фредерик Йелинек, работавший в области информатики, точно подметил причину масштабного сдвига внутри сообщества разработчиков искусственного интеллекта от подхода, основанного на правилах, к статистическому подходу. В середине 1980-х он сказал: «Каждый раз, когда я увольняю лингвиста, качество распознавания речи улучшается»[224]. К середине 2010-х в самых успешных группах, работавших над задачами преобразования речи в текст, лингвистов не было, и результаты удивили мир. Мы уверены, что нас еще ждут новые сюрпризы.
Мы согласны с CEO[225] компании Salesforce и пионером индустрии высоких технологий Марком Бениоффом в том, что мы двигаемся к «миру с лидерством искусственного интеллекта»[226]. Как и мы, он видит бесчисленные возможности в перспективе заменить людей, принимающих решения, чем-то намного более эффективным. Марк Бениофф пишет: «Многие бизнесы по-прежнему принимают важные решения, опираясь на интуицию, а не на информацию… В ближайшие несколько лет это изменится, так как искусственный интеллект становится все более распространенным и потенциально делает каждую компанию и каждого работника умнее, быстрее и производительнее»[227]. Несколько лет назад такой прогноз показался бы ужасным преувеличением, сегодня же он выглядит беспроигрышной ставкой.
Резюме
• Основанный на правилах, или символический, подход к искусственному интеллекту сейчас пребывает в спячке. Кажется очень маловероятным, что он выживет за пределами узких областей, а возможно, и совсем исчезнет.
• Машинное обучение – искусство и наука создания программных систем, которые могут обнаруживать закономерности и формулировать выигрышные стратегии после просмотра множества примеров, – в итоге выполняет свои давние обещания и уже приносит определенную пользу.
• Системы машинного обучения действуют лучше, когда становятся больше, работают на более быстром и специализированном аппаратном обеспечении, получают доступ к большему количеству данных и содержат улучшенные алгоритмы. Поскольку все эти вещи сейчас активно совершенствуются, то и машинное обучение быстро прогрессирует.
• Нейронные сети достигают наилучших результатов при контролируемом обучении, когда есть размеченные примеры. Однако в неконтролируемом обучении – основном способе, которым люди познают мир, – прогресс нейронных сетей невелик.
• Контролируемое обучение идеально подходит для автоматизации многих задач, которые сейчас выполняют люди, особенно в сферах сопоставления образов, диагностики, классификации, прогнозирования и рекомендаций. Машинное зрение, распознавание речи и другие вещи, которые некогда считались невозможными, сейчас во многих областях осуществляются на уровне, сравнимом с человеческим.
• Пока мы находимся на ранних стадиях распространения машинного обучения. Оно будет проникать в экономику и общество, особенно после того, как стало доступно любому желающему в облаке.
• Системам машинного обучения (и всем прочим формам искусственного интеллекта) по-прежнему не хватает здравого смысла.
Вопросы
1. Выполняете ли вы какую-нибудь важную работу по сопоставлению образов, диагностике, классификации, прогнозированию и рекомендациям? Рассматриваете ли вы применение машинного обучения для каких-либо из перечисленных областей?
2. Принятие каких решений и выполнение каких операций (если таковые есть) вы могли бы доверить системам искусственного интеллекта? Какие из этих решений и задач в случае автоматизации потребуют присмотра человека?
3. Вы согласились бы завтра утром поехать на работу на машине с автоматической системой вождения? Как вы думаете, будет ли вам комфортно делать это через пять лет? Почему?
4. Заполните пропуск в предложении: «Если конкуренты реализуют успешную систему машинного обучения для __________, у нас будут серьезные проблемы».
5. Какой стратегией машинного обучения вы пользуетесь? Насколько далеки вы от внедрения машинного обучения в своей организации?
Глава 4. Привет, робот!
Гомер, «Илиада», VIII в. до н. э.
- Тою порою Фетида достигла Гефестова дома…
- Бога, покрытого потом, находит в трудах, пред мехами
- Быстро вращавшегось: двадцать треножников вдруг он работал,
- В утварь поставить к стене своего благолепного дома.
- Он под подножием их золотые колеса устроил,
- Сами б собою они приближалися к сонму бессмертных,
- Сами б собою и в дом возвращалися, взорам на диво[228].
Еда редко бывает одновременно питательной, вкусной и доступной по цене. Еще более необычно, если при всех этих достоинствах она также дает общее представление о перспективах автоматизации.
Первый ресторан Eatsa открылся в районе Саут-оф-Маркет в Сан-Франциско в 2015 году. Он предлагал различные вегетарианские блюда из киноа – южноамериканской зерновой культуры, отличающейся превосходными питательными свойствами[229]. В сети Eatsa вместе с киноа использовали кукурузу, бобы, баклажаны и соус гуакамоле; блюда имели такие названия, как «Юго-западный скрэмбл» и «Не беспокойся, карри».
Рабочие процессы без людей
До того как попробуют пищу, посетители Eatsa сталкиваются с кое-чем необычным: они заказывают, оплачивают и получают ее, не встречаясь ни с кем из работников. При входе в ресторан клиенты видят ряд планшетных компьютеров. С любого из них можно сделать заказ и оплатить его картой (в ресторанах Eatsa не принимаются наличные). Пока еда готовится, большой экран показывает имена клиентов, полученные с пластиковых карт. Когда имя приближается к верхней части списка, рядом с ним появляется число, соответствующее одной из примерно двадцати ячеек – небольших отверстий в стене, закрытых панелями. Эти панели – прозрачные жидкокристаллические дисплеи, на каждом из них отображается имя клиента посередине и маленький кружок в правом верхнем углу. Нужно два раза прикоснуться к кружку, чтобы панель открылась и можно было забрать еду, упакованную навынос (в ресторане мало мест для сидения).
В заведениях Eatsa есть небольшой штат администраторов, которые показывают новичкам, как обрабатывать заказы, и отвечают на вопросы, но большинству посетителей не приходится иметь с ними дело. Первые отзывы об Eatsa были превосходными. Один восторженный клиент сказал: «В этом ресторане вам не нужно взаимодействовать ни с одним человеком. Воспользуйтесь экраном, и через несколько минут вы получите вкусную питательную еду по умеренной цене. Присоединяйтесь»[230].
Популярность Eatsa иллюстрирует важный феномен второй эры машин: многие виды взаимодействия, которые ранее происходили между людьми в физическом мире, сейчас производятся через цифровые интерфейсы. Оказалось, что для множества бизнес-процессов вовсе не требуется, чтобы какое-то количество реальных атомов перемещалось с места на место, – достаточно двигать и трансформировать биты, фрагменты информации. Заказать еду в сети Eatsa, оплатить и узнать, где ее можно забрать, – примеры таких процессов. Не вполне правильно говорить, что они полностью автоматизированы, поскольку в них по-прежнему участвует человек – сам клиент. Точнее будет понятие «виртуализированные процессы».
Виртуализация – это реальность
В мире все шире распространяется виртуализация. Когда мы летим без регистрации багажа, нам редко случается говорить с работником авиакомпании, пока мы не подойдем к выходу, поскольку свои посадочные талоны мы загружаем в телефоны или распечатываем их в аэропорту в терминале самообслуживания. Прилетая в США из-за рубежа, мы используем пункты Global Entry, чтобы предоставить информацию таможенным и иммиграционным органам и выполнить формальные процедуры для возвращения в страну. Судя по всему, вскоре у нас будут полностью автоматические системы контроля на внутренних рейсах: в июле 2016 года Управление транспортной безопасности США объявило о планах установить и оценить их работу в пяти внутренних аэропортах[231].
Виртуализация ускоряется, так как сети и удобные цифровые устройства имеются почти везде. По мере распространения банкоматов многие люди перестают обращаться к банковским служащим, чтобы снять деньги со счета. Дистанционное обслуживание с помощью компьютеров позволило клиентам просматривать свои документы, переводить денежные средства, оплачивать счета и выполнять многие другие задачи не выходя из дома, а смартфоны позволяют делать это где угодно. Во многих банковских приложениях появилась удобная функция – депонирование чека с помощью камеры телефона. Непрерывное расширение возможностей и удобство виртуализированного банковского обслуживания, вероятно, основная причина того, что сейчас число сотрудников в американских банках все уменьшается; оно сократилось примерно на 20 процентов по сравнению с максимальным количеством (608 тысяч человек) в 2017 году[232].
Есть ли какие-нибудь транзакции и процессы, которые так и не станут виртуализированными? Многие люди и компании полагают, что да. Вирджиния Пострел, аналитик в сфере бизнеса и культурных сдвигов, известная своей проницательностью, полагает, что терминалы самообслуживания в аптеках, супермаркетах и других торговых точках никогда не приживутся «по техническим причинам. Никто не захочет стоять и слушать, как ему выговаривает компьютер, пока другие покупатели плавно двигаются в очереди к кассиру-человеку»[233].
Мы понимаем ее точку зрения. Большинство технологий самообслуживания приводят людей в замешательство, поэтому оказываются медленными в использовании. Кажется, что их часто заедает. Люди пользуются ими скорее из исследовательского интереса, чем из-за удобства. Но мы заметили, что со временем эти системы улучшаются, как и следовало ожидать. По мере того как их разработчики приобретают все больше опыта, они улучшают технологию и интерфейс, а также выясняют, как уменьшить количество ошибок и избежать недовольства потребителей.
Это может означать, что в перспективе машины и процессы самообслуживания будут выглядеть по-разному, однако мы прогнозируем, что со временем виртуализация станет масштабной, несмотря на ее нынешний невпечатляющий прогресс. Когда такое произойдет, результат, возможно, будет похож на Amazon Go – круглосуточный магазин площадью 180 квадратных метров, который гигант сетевой торговли открыл в Сиэтле в декабре 2016 года[234]. Здесь нет ни кассиров, ни терминалов самообслуживания. Вместо этого есть датчики и камеры в сочетании с технологиями машинного обучения и приложениями для смартфонов. Они отслеживают, что клиенты кладут в корзины для покупок, а затем выставляют счет за все, с чем они ушли из магазина. Журналист Ллойд Олтер заметил, что «Amazon Go – не бакалейная лавка, модернизированная с помощью сетевых технологий, а сетевая система, окруженная кирпичными стенами»[235]. При таком подходе тележка для покупок реальна, а кассовый узел – виртуален.
Еще один аргумент против широкого распространения виртуализации – идея о том, что некоторые виды взаимодействия требуют человеческого общения, потому что оно помогает клиенту, пациенту, потенциальному покупателю обрести спокойствие и правильный настрой. Мы считаем это замечание верным, но также видели, что как минимум некоторые группы людей желают, а возможно, даже жаждут виртуализировать именно те операции, где соприкосновение с человеком издавна считалось важным.
Традиционное представление, распространенное в области финансовых услуг, состоит в том, что необходима минимум одна личная встреча, чтобы убедить человека или семью передать значительную часть накопленных средств консультанту по инвестициям. Однако с момента своего основания в декабре 2011 года компания Wealthfront получила свыше трех миллиардов долларов у 35 тысяч семейств, и все эти средства были переведены виртуально, без предварительного общения с консультантом по инвестициям, хоть личного, хоть удаленного. Wealthfront занимается управлением частными капиталами; компания не только отказалась от человеческих суждений в принятии решений об инвестициях, но и смогла обойтись безо всех декораций и актеров, традиционно используемых при крупных сделках: хорошо обставленного офиса, глянцевых брошюрок, секретаря в приемной, профессионально выглядящего консультанта. Wealthfront заменила все это онлайн-формой.
Клиенты Wealthfront в среднем более молоды и сведущи в технологиях, чем клиенты других компаний, занимающихся инвестиционным консультированием[236]. Экономисты используют термин «самовыбор» для феноменов такого рода, когда люди относят себя к той или иной группе на основании предпочтений. Самовыбор, вероятно, мощная сила, положительно влияющая на виртуализацию. Некоторые из нас предпочитают передать свои деньги Wealthfront, использовать терминалы самообслуживания в супермаркетах и обедать в ресторанах Eatsa. Другие хотят, чтобы с ними встретился живой консультант по инвестициям, чтобы их покупки пробил кассир, а заказ принял официант.
Сейчас мы видим компании, которые явным образом обращаются к той или иной стороне такого самовыбора. Сеть ресторанов быстрого питания McDonald’s, как и Eatsa, увеличивает виртуализацию. К ноябрю 2016 года она установила цифровые терминалы для самостоятельного заказа и оплаты в пятистах точках в Нью-Йорке, Флориде и Южной Калифорнии и объявила о планах использовать такие сенсорные экраны во всех 14 тысячах своих ресторанов в США[237]. Discover Card, напротив, делает акцент на человеческом общении[238]. Серия рекламных роликов, впервые вышедшая в эфир в 2013 году, изображала телефонные разговоры между клиентами и сотрудниками, которых играли очень похожие актеры. Идея, разумеется, состояла в том, что компания предоставляет глубоко личные и потому более действенные услуги. В одном из роликов даже был намек, что компания больше заинтересована в межличностном общении, чем в получении прибыли[239]. Голос за кадром утверждал: «С Discover Card вы можете днем и ночью разговаривать с реальным человеком в США, и мы не собираемся тратить ваше время, пытаясь продать кучу товаров, которые вам на самом деле не нужны».
Eatsa, Wealthfront, McDonald’s, Discover и многие другие компании нацелены на сегменты рынка, которые определяются предпочтениями клиентов: одни люди за виртуализацию, другие против нее. Это совершенно естественно и нормально, но мы задаемся вопросом, сколь долго еще сегмент противников виртуализации останется значительным. Недавнее уменьшение количества банковских служащих в США подсказывает, что, как только для какого-то процесса становится доступна устойчивая виртуализация, ее преимуществами начинает пользоваться множество людей, особенно по прошествии времени, то есть по мере увеличения числа «рожденных в цифровую эпоху» в общей массе взрослых людей. Это особенно справедливо, если вариант, где надо взаимодействовать с человеком, требует больше времени или по какой-то другой причине менее эффективен или приятен. Если в аэропортах внезапно появится полностью автоматическая и совершенно надежная система безопасности, кто из нас предпочтет стоять в очереди и проходить досмотр у сотрудников Управления транспортной безопасности?
Мы довольно долго наблюдали за техническим прогрессом, видели достаточно экспериментов и циклов доработки, чтобы уверенно предполагать, что автоматизированные и цифровые процессы будут очень широко распространяться и со временем вытеснят людей из многих областей. Иными словами, мы считаем, что виртуализация – это долговременный тренд, а не каприз моды.
Автоматы наступают
Сеть Eatsa хочет большего, чем просто виртуализировать заказ еды; она также намеревается автоматизировать ее приготовление. Технологические процессы на кухнях Eatsa в значительной степени оптимизированы и стандартизированы, и главная причина того, почему компания прибегает к помощи людей-поваров, а не роботов, состоит в том, что обрабатываемые объекты (авокадо, помидоры, баклажаны и тому подобное) имеют неправильную форму и не совсем твердые. Это не представляет особой проблемы для людей, которые всегда жили в мире, полном мягких предметов. А вот роботы, созданные до настоящего времени, намного лучше управляются с твердыми и желательно одинаковыми.
Дело в том, что зрение и осязание роботов были примитивными, намного хуже человеческих, а надлежащее обращение с помидором в целом подразумевает, что его надо видеть и ощущать с высокой точностью. И еще одно: оказалось, что машину удивительно трудно запрограммировать на работу с легко сдавливаемыми объектами (здесь мы снова знаем больше, чем способны рассказать), так что мозг роботов намного отстает от нашего, как и сенсорная система.
Тем не менее машины нагоняют нас, и довольно быстро: уже появилось несколько роботов-поваров. В одном из ресторанов китайской провинции Хэйлунцзян антропоморфный робот пурпурного цвета использует технику стир-фрай (быстрое обжаривание с помешиванием) и готовит другие блюда в воке[240] на огне, хотя предварительную работу все еще делают люди[241]. На Ганноверской промышленной выставке-ярмарке в апреле 2015 года британская компания Moley Robotics представила высокоавтоматизированную кухню, центральной частью которой была пара многозвенных механических рук-манипуляторов, спускающихся с потолка. Эти руки могли воспроизводить движения поваров, готовящих фирменные блюда. На выставке машина сделала биск[242] из крабов, придуманный Тимом Андерсоном, победителем британского телевизионного кулинарного шоу MasterChef. Один сетевой обозреватель сказал о блюде: «Суп хорош. Если бы мне подали его в ресторане, я съел бы его и глазом не моргнув»[243]. Однако и здесь подготовка должна производиться человеком: манипуляторы не видят, что делают, поэтому у них ничего не выйдет, если какие-нибудь ингредиенты или утварь находятся не в точности там, где нужно.
Самым совершенным роботом-поваром, которого мы видели, был изготовитель гамбургеров, разработанный в рамках стартапа Momentum Machines, который финансирует венчурный инвестор Винод Хосла. Робот берет сырое мясо, булочки, приправы, соусы и специи и преобразует все это в готовые, упакованные в пакеты бургеры со скоростью до 400 штук в час. Такая машина сама выполняет значительную часть подготовки, а для сохранения свежести продуктов она не начинает резать, смешивать и готовить, пока не поступит заказ. Она также позволяет клиентам в значительной степени индивидуализировать свои бургеры, указывая не только свои предпочтения, но и состав мяса в котлете. Мы можем подтвердить, что еда получается вкусной.
Автоматические повара – первые примеры того, что Гилл Прэтт, CEO Исследовательского института Toyota (и наш бывший коллега по Массачусетскому технологическому институту), называет кембрийским взрывом в робототехнике. Кембрийский взрыв – условное название события, произошедшего 500 миллионов лет назад, когда в течение относительно короткого периода времени на Земле появилась большая часть крупных таксонов – типов. Почти все типы существ, живущих сейчас на планете, восходят к той эволюционной вспышке.
По мнению Прэтта, мы стоим на пороге таких же революционных новаций в робототехнике. В 2015 году он писал: «Сегодня технологические разработки на нескольких фронтах способны спровоцировать аналогичный взрыв в разнообразии и сферах применения роботов. Многие базовые аппаратные технологии, от которых они зависят, в частности вычисления, хранение данных и коммуникации, улучшаются с экспоненциальной скоростью»[244]. Одним из самых важных факторов, сделавших возможным кембрийский взрыв, было появление зрения, когда биологические виды впервые развили в себе способность видеть мир. Это открыло множество новых возможностей для наших предков. Прэтт обращает внимание, что вот-вот возникнет аналогичная ситуация для машин. Впервые в истории они учатся видеть и получают многочисленные выгоды от приобретения зрения.
В своих дискуссиях и исследованиях мы выявили недавнее масштабное развитие в пяти взаимозависимых и смежных областях: это данные, алгоритмы, сети, облачные технологии и экспоненциальное улучшение аппаратного обеспечения.
Данные. Компакт-диски с музыкой и фильмами, а также веб-страницы десятилетиями пополняют мировой запас цифровой информации, но за последние несколько лет скорость кодирования резко увеличилась. По оценкам IBM, 90 процентов всех цифровых данных в мире было создано за последние 24 месяца[245]. Сигналы от сенсоров в смартфонах и промышленном оборудовании, цифровые фотографии и видеоролики, непрерывно создаваемый контент в социальных сетях по всему миру и многие другие виды информации толкают нас к эпохе больших данных, не имеющей аналогов в истории.
Алгоритмы. Резкое увеличение объема данных важно, поскольку поддерживает и ускоряет разработки в сфере искусственного интеллекта и машинного обучения, описанные в предыдущей главе. Алгоритмы и подходы, которые сейчас доминируют в этой области, например глубокое обучение или обучение с подкреплением, обладают общим свойством показывать всё лучшие результаты по мере увеличения объема поступающих данных. Работа большинства алгоритмов обычно сводится к асимптотическому уровню, когда добавление новых данных улучшает результат совсем чуть-чуть или вовсе на него не влияет. Однако, похоже, для многих широко использующихся сейчас подходов к машинному обучению это не так. Эндрю Ын сказал нам, что в случае с современными алгоритмами «закон Мура и некоторое количество очень умной технической работы позволяют изменить ситуацию»[246].
Сети. Очень быстро улучшаются технологии и протоколы беспроводной связи – как на коротких, так и на длинных расстояниях. Например, AT&T и Verizon объявили об испытаниях в 2016 году беспроводной технологии 5G со скоростью загрузки до 10 гигабит в секунду[247]. Это в пятьдесят раз быстрее, чем средняя скорость сетей LTE (самых быстрых из тех, что широко развернуты в настоящее время), а сама технология LTE вдесятеро быстрее предыдущего поколения – технологии 3G. Такое повышение скорости означает более качественное и быстрое накопление данных, а также подразумевает, что роботы и летающие дроны смогут постоянно быть на связи, координировать свою работу и совместно реагировать на быстро меняющиеся обстоятельства.
Облачные технологии. Для организаций и отдельных людей сейчас доступен беспрецедентный объем вычислительных мощностей. Через интернет можно арендовать на долгий срок или на несколько минут приложения, серверы различного уровня конфигурирования и объемы дискового пространства. Такая инфраструктура для облачных вычислений, существующая меньше десяти лет, ускоряет кембрийский взрыв в робототехнике по трем причинам.
Во-первых, она сильно снижает входной барьер, поскольку те виды компьютерных ресурсов, которые раньше имелись только в крупных исследовательских университетах и международных лабораториях, занимающихся НИОКР, теперь стали доступны для стартапов и изобретателей-одиночек.
Во-вторых, облако позволяет разработчикам роботов и дронов исследовать важный вопрос о распределении локальных и централизованных вычислений: какие задачи по обработке информации следует выполнять в локальном мозге каждого робота, а какие должен делать глобальный мозг, расположенный в облаке? Кажется вероятным, что самая ресурсоемкая работа, например воспроизведение предыдущего опыта для получения новых выводов, до какого-то времени будет выполняться в облаке.
В-третьих (и это, возможно, важнее всего), облако означает, что каждый участник группы роботов или дронов будет способен быстро узнать, что делают все другие участники. Прэтт замечает: «Люди учатся десятки лет, чтобы добавить что-то содержательное в совокупность общечеловеческого знания. Тем временем роботы в смысле обучения не просто стоят на плечах друг у друга[248], а способны начать делать вклад в совокупность “общероботового” знания сразу после своего создания»[249]. Один из первых примеров «коллективного разума» такого рода – это парк автомобилей Tesla, способных обмениваться данными о придорожных объектах, мимо которых они проезжают. Получение такой информации помогает со временем понять, какие объекты постоянны (те, мимо которых в одном и том же месте проезжает много разных автомобилей), и сделать вывод о крайне малой вероятности того, что они выбегут на середину дороги.
Экспоненциальное улучшение аппаратного обеспечения. В 2015 году закон Мура, который гласит, что производительность микросхем удваивается каждые 18–24 месяца[250], отпраздновал полувековой юбилей, и в это время он все еще был актуален. Недавно высказывались предположения, что разработчики столкнутся с проблемами физических ограничений, поэтому в ближайшие годы темпы удвоения замедлятся. Возможно, это и так, но, даже если ученые и инженеры, работающие в области информационных технологий, не сумеют выяснить в ближайшие десятилетия, как еще тоньше протравливать кремний, мы уверены, что еще долго будем радоваться тому, как снижаются цены и одновременно повышается производительность цифрового оборудования: процессоров, памяти, средств связи, запоминающих устройств и тому подобного.
Как такое возможно? Крис Андерсон, CEO компании 3D Robotics, занимающейся изготовлением дронов, дал нам яркую иллюстрацию того, что происходит в этой индустрии и некоторых смежных областях. Показав нам металлический цилиндр примерно 2,5 сантиметра в диаметре и 7,5 сантиметра в длину, он сказал: «Это гиродатчик. Он механический, стоит 10 тысяч долларов, был сделан в 1990-е годы несколькими очень талантливыми женщинами на авиационном заводе – ручная работа и все такое. Он отслеживает движение всего по одной оси. На каждом нашем дроне 24 таких датчика. При цене в 10 тысяч долларов общая стоимость была бы равна 240 тысячам долларов, а места они занимали бы столько же, сколько холодильник. Вместо этого мы устанавливаем одну крохотную микросхему или несколько крохотных микросхем, которые стоят по три доллара и почти невидимы»[251].
Идея Андерсона состоит в том, что сочетание дешевого сырья, глобальных рынков, сильной конкуренции и экономики промышленных масштабов фактически служит гарантией стабильного быстрого снижения цен и улучшения рабочих характеристик техники. По его словам, дроны – это «дивиденды смартфонных войн. Компоненты смартфонов – сенсоры, GPS, камеры, ARM-процессоры, беспроводная связь, память, аккумуляторы – все эти штуки, на которые повлияли невероятная экономия из-за производственных масштабов и инновационные исследования в Apple, Google и других компаниях, теперь стали доступны за несколько долларов. Десять лет назад они были фактически унобтанием[252]. Когда-то такие технологии использовались только военными, теперь же вы можете купить их в любом из магазинов сети RadioShack»[253].
В совокупности пять перечисленных элементов и вызвали кембрийский взрыв, обусловив появление роботов, дронов, автономных легковых и грузовых автомобилей и многих других в значительной степени цифровых машин. Экспоненциально дешевеющее оборудование позволяет увеличить темп инноваций и экспериментов, которые создают гигантские потоки данных. Эта информация используется для тестирования и оттачивания алгоритмов и помогает системе обучаться. Алгоритмы задействуют облако и распределенные вычисления с помощью устойчивой сети. Новаторы проводят следующий раунд тестов и экспериментов, и цикл повторяется.
Как будут задействованы в экономике роботы, дроны и прочие цифровые машины, действующие в физическом мире? Какую роль они станут играть в ближайшие годы? Распространенная точка зрения такова: роботы лучше всего пригодны к бездумной, грязной и опасной работе. Мы добавили бы еще один пункт – дорогостоящей. Чем больше таких признаков есть у какой-то деятельности, тем выше вероятность, что ее нужно передать цифровым машинам.
Прекрасный пример – инспекция строительных площадок. Это обычно грязные, иногда опасные места, а проверка того, что работа ведется по плану, размеры верны, линии вертикальны и все в таком духе, может быть бездумной и скучной. Тем не менее нужно регулярно посылать контролера для таких проверок, поскольку маленькие ошибки со временем могут превратиться в дорогостоящие. Однако вполне вероятно, что эту работу вскоре удастся автоматизировать.
Осенью 2015 года японская компания Komatsu, существующая 95 лет и считающаяся вторым в мире по величине производителем строительного оборудования, объявила о партнерстве с американским стартапом Skycatch, выпускающим дроны. Маленькие аппараты станут летать над стройплощадкой, составляя ее карту в трех измерениях. Эта информация будет непрерывно отправляться в облако, автоматически соотноситься с планами местности и использоваться в инструкциях для автономного парка бульдозеров, самосвалов и других землеройных и подъемно-транспортных машин.
Вскоре дроны могут преобразить и сельское хозяйство. Крис Андерсон предложил нам представить себе ферму, где дроны ежедневно летают над полями, сканируя их в ближнем инфракрасном диапазоне. Такое сканирование дает огромное количество информации о состоянии растений, причем современные сенсоры обеспечивают достаточную точность для оценивания каждого квадратного метра (а при существующем экспоненциальном улучшении сенсоров вскоре, вероятно, можно будет осматривать отдельно каждое растение). Ежедневно летать на самолете над полями – скучно и дорого, но появление маленьких дешевых дронов устраняет оба эти препятствия. Информация, полученная в ходе ежедневных облетов, обеспечивает очень глубокое понимание изменений, происходящих со временем с растениями, а также позволяет намного точнее поставить задачи полива и внесения удобрений и пестицидов. Современное сельскохозяйственное оборудование способно подавать различные количества важных веществ в определенные места, а не раскидывать равномерно. Данные, собираемые дронами, делают возможными большую часть этих вещей, позволяя фермерам вступить в эпоху цифрового земледелия.
Вероятно, вскоре дроны будут использоваться для оценки повреждений, причиненных стихийными бедствиями, для защиты от браконьеров животных, находящихся под угрозой исчезновения, для охраны лесов от незаконной вырубки, а также для решения многих других задач. Они уже применяются в инспекции оборудования, которая прежде считалась опасным, дорогостоящим, бездумным и грязным делом. Британская компания Sky Futures специализируется на запуске дронов вокруг буровых вышек в Северном море, металл и цемент которых постепенно разрушаются под воздействием соленой воды и плохой погоды[254]. Дроны компании летают вокруг конструкций и сквозь них в любых условиях, так что буровикам не надо лазать по ним, чтобы разглядеть, что там происходит.
Сейчас мы снова и снова видим эту закономерность: машины берут на себя бездумную, грязную, опасную или дорогостоящую работу.
• В 2015 году Rio Tinto стала первой компанией, использующей парк грузовиков с дистанционным управлением[255], чтобы перевозить железную руду на своем руднике в регионе Пилбара в Западной Австралии. Транспортные средства без водителей работают 24 часа в сутки 365 дней в году, за ними следит центр управления, расположенный в тысяче миль от места работ[256]. Экономия за счет отсутствия нарушений, прогулов и пересменок делает парк машин-роботов на 12 процентов более эффективным, чем такой же парк с водителями-людьми.
• Автоматические системы применяются сейчас для доения примерно четверти коров в странах, экспортирующих молочные продукты, таких как Дания и Нидерланды[257]. Ожидается, что за десять лет доля автоматических систем возрастет до 50 процентов.
• В Японии 90 процентов работ по опрыскиванию растений сейчас производят беспилотные вертолеты[258].
Конечно, на протяжении десятилетий машины постепенно забирали себе работу на заводах, где инженеры могли достичь высокого уровня того, что наш коллега из Массачусетского технологического института Дэвид Аутор называет «контролем среды» или «радикальным упрощением среды, где допускается автономная работа машин, как в широко известном примере с заводским сборочным конвейером»[259]. Контроль среды необходим, когда части автоматической системы отличаются примитивными «мозгами» и не имеют возможности отслеживать происходящее вокруг. Однако по мере улучшения перечисленных в этой главе пяти ключевых элементов части автоматической системы могут покинуть строго контролируемую среду на заводе и выйти в широкий мир. Именно это и делают сейчас роботы, дроны, автономные транспортные средства и многие другие виды цифровых машин, и в ближайшем будущем это явление будет только шириться.
Как разумы и тела людей будут работать в тандеме с машинами? Есть два основных пути. Во-первых, поскольку машины осваивают все больше занятий в физическом мире, нам остается все меньше работы, и мы можем использовать свой мозг так, как уже описывалось и еще будет описываться в этой книге. Именно это и происходит в сельском хозяйстве, самой древней отрасли человеческого труда.
Работа на земле для выращивания урожая издавна считалась одним из самых трудоемких занятий. Сейчас оно, скорее всего, еще и одно из самых наукоемких. Брайан Скотт, фермер из Индианы, автор блога «Фермерская жизнь» (The Farmer’s Life), пишет: «Как вы думаете, когда мой дед работал на жатках и комбайнах… мог ли он вообразить, что… современные машины будут ездить самостоятельно с помощью сигналов GPS, создавая при этом бумажные карты разных вещей вроде урожайности или влажности зерна? Потрясающе!»[260] Аналогичным образом рабочим на большинстве современных фабрик не нужно быть физически крепкими и сильными, им достаточно уметь обращаться со словами и числами, разбираться в поиске неисправностей и работать в команде.
Во-вторых, люди могут работать с роботами и их родственниками буквально бок о бок. И снова здесь нет ничего нового; на заводах люди давно окружены машинами и часто трудятся рядом с ними. Наш острый ум, чуткое восприятие, ловкие руки и устойчивые ноги все еще превосходят то, что есть у машин, а все вместе они представляют очень ценную комбинацию. Энди больше всего нравится демонстрация этого, увиденная им на знаменитом мотоциклетном заводе Ducati в итальянской Болонье. Двигатели Ducati весьма сложны[261], и Энди было любопытно увидеть, насколько сильно в их сборке задействована автоматизация. Оказалось, что она практически не задействована.
Каждый двигатель собирается одним человеком, который идет вдоль медленно двигающегося конвейера. По мере того как лента проходит мимо частей двигателя, которые нужны на соответствующем этапе сборки, рабочий берет их, ставит на нужное место, закрепляет и при необходимости регулирует. Сборка двигателя Ducati требует подвижности, способности манипулировать объектами в ограниченном пространстве и сильно развитого чувства осязания. Руководство компании сочло, что никакая автоматизация не обеспечивает подобного, поэтому сборкой двигателя занимаются люди.
Аналогичные способности требуются на складах многих торговых предприятий, особенно таких, как Amazon, где продаются товары всех форм, размеров и консистенций. Компания Amazon пока еще[262] не нашла и не разработала «руки» с цифровым приводом или другие захваты, которые могли бы надежно брать товары с полки и класть их в коробку. Поэтому было придумано остроумное решение: подвозить полки к человеку, который берет нужные товары и упаковывает их для отправки. Стеллажи с полками по огромным распределительным центрам компании перевозят оранжевые роботы высотой по колено, первоначально созданные бостонской компанией Kiva Systems (Amazon купила ее в 2012 году[263]). Эти роботы влезают под стеллаж, поднимают его и подвозят к человеку. Когда он берет нужные предметы, робот со стеллажом уезжает, а его место занимает другой. Такая схема позволяет людям использовать зрение и ловкость там, где у них есть преимущество перед машинами, и избегать физического напряжения и потерь времени от перемещения между полками.
Насколько долго мы сможем сохранять свое преимущество перед роботами и дронами? На этот вопрос трудно ответить с уверенностью, особенно из-за того, что пять элементов продолжают прогрессировать по отдельности и совместно. Похоже, что органы восприятия, руки и ноги человека представляют собой комбинацию, которую машинам будет трудно превзойти как минимум еще несколько лет. Роботы достигли впечатляющего прогресса, но они все еще значительно медленнее нас, когда пробуют делать «человеческие» вещи. В конце концов, наш мозг и организм прошли миллионы лет эволюции, и получившиеся модели хорошо справляются с проблемами, которые ставит перед нами физический мир. Когда Гилл Прэтт был руководителем проектов в DARPA (Управлении перспективных исследовательских проектов Министерства обороны США), он курировал конкурс роботов 2015 года[264]. Роботы-участники двигались в таком неспешном темпе, что он сравнил себя со зрителем, наблюдающим турнир по гольфу. Тем не менее Прэтт заметил существенное улучшение по сравнению с первым конкурсом, проведенным в 2012 году. По словам Прэтта, смотреть на роботов тогда было все равно что наблюдать за ростом травы.
Облик грядущего
Как показывают примеры, приведенные в этой части книги, прогресс уже позволяет нам строить машины, выходящие за пределы вселенной битов и взаимодействующие с людьми и вещами в мире атомов. Благодаря тому же прогрессу мы совершили еще один шаг: теперь мы способны упорядочивать атомы, то есть создавать вещи ранее невозможными способами. Это хорошо видно на примере, пожалуй, самых распространенных рукотворных предметов – пластиковых деталей.
Мировое производство пластмасс в 2015 году составляло 250 миллионов тонн[265], и в каждом современном автомобиле имеется больше двух тысяч пластиковых деталей разных форм и размеров. Чтобы производить большую их часть, сначала требуется изготовить матрицу, или форму, – металлическую конструкцию, в которую горячий пластик впрыскивается, впрессовывается или вводится иным способом. Контуры и полости этой матрицы определяют итоговую форму детали.
Необходимость в ней имеет три важных следствия. Во-первых, крайне важно сделать ее правильно, поскольку она послужит шаблоном для тысяч или миллионов деталей. Матрицы должны быть прочными, долговечными и очень точно изготовленными, и такое сочетание делает их дорогими. Во-вторых, необходимость в матрице накладывает ограничения на вид деталей. Например, в одной форме легко изготовить простую пластиковую шестерню, однако невозможно получить набор сцепленных шестерен, готовых к вращению. Более сложные детали в целом требуют более продвинутых матриц. Некоторые из них невероятно сложные, так как они должны обеспечить попадание всего пластика в форму и полное и равномерное заполнение пространства. В-третьих, крайне важна термодинамика матрицы – способ, которым она нагревается и охлаждается при работе с каждой деталью. Ясно, что лучше не вынимать детали, когда они еще горячие и могут деформироваться, но такая же плохая идея – дать форме охладиться больше необходимого. К тому же разные ее части охлаждаются с различной скоростью. Поэтому проектировщики и инженеры должны учитывать целый ряд факторов, чтобы обеспечить и высокое качество деталей, и высокую производительность матриц.
Примерно тридцать лет назад одна группа технологов задалась вопросом: а зачем вообще иметь форму?[266] Их вдохновляли лазерные принтеры, которые используют в работе лазер, плавящий очень тонкий слой чернил на листе бумаги по желаемому шаблону текста или изображения.
Но зачем останавливаться на одном слое? Почему бы не повторять процесс снова и снова, создавая не двумерное изображение, а трехмерную конструкцию? Это требует времени, поскольку каждый слой очень тонок, тем не менее изготовление вещей таким способом открывает массу перспектив. Начнем с того, что сложность конструкции может быть произвольной, как отмечает специалист по трехмерной печати Луана Йорио[267]. Другими словами, сделать деталь высокой сложности не дороже, чем самую простую, поскольку обе представляют собой стопки очень тонких слоев. Например, узел из сцепленных шестерен создается так же легко, как и любой отдельный трехмерный компонент.
Новаторы использовали методы трехмерной печати и для изготовления металлических деталей, которые получаются из расплавленных лазером тонких слоев порошкового металла, осаждающихся один за другим на лежащую ниже конструкцию, состоящую из предыдущих слоев. Этот процесс обеспечивает еще одно весьма важное свойство: твердость становится произвольной. Обрабатывать очень твердые металлы вроде титана трудно и дорого, однако наплавлять их слой за слоем не сложнее, чем более мягкие типа алюминия. Требуется всего лишь отрегулировать мощность лазера.
Когда и сложность, и твердость становятся контролируемыми факторами, устраняются некоторые давние ограничения. Например, теперь несложно изготавливать формы для пластиковых деталей, которые можно охлаждать гораздо быстрее. Компания DTM Solutions из Остина добилась этого, создав с помощью трехмерной печати в формах из металлического сплава множество маленьких тонких каналов, проходящих сложным образом. Традиционными методами подобное сделать нельзя. Горячий пластик не течет сквозь эти тонкие каналы, а охлаждающие жидкости текут, потому происходит быстрое охлаждение после формовки каждой новой детали. В результате они изготавливаются на 20-35 процентов быстрее[268] и имеют лучшее качество[269].
В этом месте скептик может спросить, не поем ли мы хвалу инновациям, которые наводнят мир дешевыми пластиковыми деталями, забивающими свалки и засоряющими океаны. Мы смотрим на вещи иначе, хотя и согласны с тем, что избыточное потребление и недостаточная утилизация пластмасс – это плохо, все же преимущества 3D-печати крайне полезны.
Рассмотрим пример с трехмерной моделью опухоли[270]. До появления 3D-печати у хирургов просто не было реального способа составить точное представление о разрастании злокачественной ткани, к чему они давно стремились. Они не могли потратить деньги и время на создание традиционной формы: это экономически оправдано только в случае, когда вы собираетесь изготавливать много копий детали.
А если вам нужно сделать только одну модель или образец? Или деталь сломалась, и вам срочно требуется запасная? Или вы нуждаетесь в небольшом наборе деталей, каждая из которых совсем немного отличается от остальных? В этих случаях традиционные методы изготовления большей частью бесполезны. В то же время трехмерная печать для них подходит идеально. Самым важным преимуществом трехмерной печати является, видимо, то, что она удешевляет эксперименты и индивидуализацию. На путь от идеи или потребности до готовой полезной вещи больше не нужны длительные дорогостоящие этапы вроде изготовления формы и прочих традиционных технологий производства.
Карл Басс, бывший CEO компании Autodesk, занимающейся программным обеспечением для конструкторов и инженеров, считает трехмерную печать лишь частью картины. Он говорил нам: «Я думаю, что технология послойной печати – это подмножество по-настоящему трансформируемых производств, которые состоят в использовании недорогих микропроцессоров для точного контроля машинного оборудования»[271]. Суть мысли Басса заключается в том, что сенсоры и код используются сейчас не только для точного размещения очень тонких слоев материала друг поверх друга; они также применяются практически в любой промышленной технологии – от разрезания листов стекла и керамической плитки до сгибания и прокатки всех видов металла.
Машины, которые делают эту работу – преобразование атомов в те итоговые формы, что нам нужны, – сейчас совершенствуются благодаря закону Мура. Возможно, они не становятся одновременно лучше и дешевле с такой же скоростью, как процессоры и микросхемы, но их прогресс тоже впечатляет. По сравнению со своими эквивалентами двадцатилетней давности они дешевле, но при этом способны на большее, а качество их работы выше. Такой прогресс делает их доступными для разных новаторов – обладателей хобби, домашних изобретателей, студентов, инженеров и предпринимателей – и дает возможность заняться исследованиями любому желающему. Мы уверены, что инновации, которые удешевляют инструменты высокого качества, приведут к появлению еще больших инноваций в ближайшем будущем.
Резюме
• Многие бизнес-процессы постепенно виртуализируются: они переходят на цифровые каналы и уменьшают количество задействованных людей. Часто единственным человеком остается клиент.
• Некоторые люди по-прежнему предпочитают межличностное взаимодействие, однако, по нашему мнению, виртуализация является долговременной тенденцией, которая в целом будет расширяться по мере освоения машинами новых способностей.
• В робототехнике происходит своего рода кембрийский взрыв из-за того, что машины научились видеть, а также вследствие других форм цифрового прогресса. Самые разные автоматы – роботы, дроны, беспилотные автомобили и прочие – становятся дешевле, доступнее, функциональнее, разнообразнее, причем все это происходит одновременно.
• Движущими силами кембрийского взрыва в робототехнике мы считаем пять факторов: данные, алгоритмы, сети, облачные технологии и экспоненциальное улучшение аппаратного обеспечения.
• Роботы и их родственники будут все чаще применяться там, где работа бездумная, грязная, опасная и дорогостоящая.
• Люди все еще более сноровисты и маневренны, чем самые совершенные роботы, и, видимо, ситуация останется такой еще некоторое время. Наши умения в сочетании с тонкостью восприятия и способностью решать проблемы означают, что во многих случаях мы будем работать с роботами бок о бок.
• Трехмерная печать важна сама по себе, но одновременно она является и примером более широкой тенденции – вторжения цифровых инструментов в сферу традиционных производственных процессов. Это пример инновации, которая ведет к росту других инноваций.
Вопросы
1. Если ваши бизнес-процессы требуют широкого взаимодействия между людьми, почему это так? Потому ли, что ваши клиенты (сотрудники, поставщики, партнеры) ценят межчеловеческое общение, или потому, что у вас нет такой же эффективной цифровой альтернативы?
2. Какие аспекты работы в вашей отрасли с наибольшей вероятностью будут виртуализированы в следующие три – пять лет? Какие из ваших клиентов при наличии выбора предпочли бы более виртуализированное взаимодействие?
3. Какие аспекты работы вашей организации наиболее бездумные, грязные, опасные или дорогостоящие? Рассматривали ли вы в последнее время роботов или другие средства автоматизации, способные помочь вам справиться с этими задачами?
4. Как в вашей организации физический труд (если он есть) делится между людьми и машинами? А интеллектуальный труд или обработка информации? И что насчет работы, которая в основном является межличностной?
5. Как вы извлекаете выгоду из новых технологий изготовления вещей в своих исследованиях или при разработке новых образцов?
Глава 5. Когда без человека не обойтись
Есть три правила написания романов. К сожалению, их никто не знает.
Предположительно Сомерсет Моэм
«Какие способности останутся исключительно человеческими в этой гонке технологий?» – вот самый частый вопрос о разуме и машине, который мы слышим. Когда цифровой инструментарий оспаривает человеческое превосходство в рутинной обработке информации, распознавании образов, языке, интуиции, суждениях, прогнозах, физической ловкости и во многих других сферах, есть ли хоть какие-нибудь области, где мы точно навсегда останемся лучшими?
Мечтают ли андроиды о творческих взлетах?[272]
Самый распространенный ответ на вопрос, поставленный в предыдущем абзаце, – творчество. Множество, если не большинство, людей, с которыми мы общались, говорили, что в человеческой способности предлагать новые идеи есть что-то абсолютное и неописуемое. Нам кажется, что в этом много верного; по сути, нечто подобное мы говорили в книге «Вторая эра машин». Однако недавние разработки в области промышленного дизайна свидетельствуют, что машины становятся успешными в самостоятельном создании впечатляющих идей.
Можно с уверенностью сказать, что большинство людей никогда не думали о теплообменниках, – о них много думают те специалисты, которые проектируют холодильники, печи, двигатели и другое оборудование. Задача теплообменника – передавать тепло от одной среды (жидкости или газа) к другой, не позволяя средам контактировать. Батарея отопления в спальне – теплообменник; она передает окружающему воздуху тепло от проходящей внутри воды или пара. Аналогично действует и кондиционер.
Создать новый теплообменник нелегко. Он должен выполнять свою основную задачу и притом быть эффективным, безопасным, прочным и дешевым. Чтобы выполнить все эти требования, проектировщик должен знать необходимые рабочие характеристики, термодинамику и гидродинамику, свойства материалов, методы и стоимость производства и прочее. На практике, разумеется, многие проектировщики опираются на огромное количество полезных сведений, полученных при разработке предыдущих успешных теплообменников; они вносят изменения в уже существующий проект, чтобы выполнить требования для новой ситуации.
Но что если бы проектировщик теплообменника обладал всеми требуемыми знаниями, но не имел накопленного опыта? Иными словами, что если предположить, что проектировщик точно знает все требуемые параметры (размеры теплообменника, его стоимость, срок службы, передачу энергии и все остальное) и является первоклассным экспертом во всех необходимых научных и технических дисциплинах, но никогда не работал над теплообменниками и даже не подозревал, что такая вещь в принципе может оказаться полезной. Что придумал бы такой проектировщик?
Рисунок 1 показывает пример. Как вы, вероятно, уже догадались, он был спроектирован компьютером.
Рис. 1
Теплообменник, спроектированный программой для генеративного дизайна (схема предоставлена компанией Autodesk)
Теплообменник, изображенный на рис. 1, продукт генеративного дизайна – процесса, в котором программное обеспечение используется не для того, чтобы помочь дизайнеру-человеку создать чертеж, выполнить вычисления и изучить баланс плюсов и минусов, а для самостоятельной, стопроцентно автоматической работы, при которой выдается один или несколько готовых проектов, удовлетворяющих всем требованиям.
Эта деталь была изготовлена с помощью трехмерной печати. По сути, традиционными методами ее изготовить невозможно. Теперь же, когда 3D-принтеры стали реальностью, программы генеративного дизайна больше не связаны по рукам старыми методами производства и могут предлагать намного более широкий диапазон форм. Кстати, в отличие от большинства, если не всех, проектировщиков-людей, программное обеспечение не склоняется сознательно или неосознанно к существующим методам, поэтому ведет исследования свободнее.
Обладает ли программа генеративного дизайна творческими способностями? Это сложный вопрос, поскольку творчество служит ярким примером того, что пионер в области искусственного интеллекта Марвин Минский называл словом-чемоданом. Он писал: «Большинство слов, которые мы употребляем для описания разума, например “сознание”, “обучение” или “память”, похожи на чемоданы, поскольку в них вложена масса различных значений»[273]. Именно это мы наблюдаем в различных определениях творчества. Так, Оксфордский словарь английского языка утверждает, что творчество – это «использование воображения или оригинальных идей, особенно для создания художественных произведений».
Теплообменник, созданный программой генеративного дизайна, на деле не соответствует этому определению, поскольку не был продуктом чьего-то воображения и не представляет собой художественное произведение. Однако словарь Уэбстера дает несколько иное определение творчества: это «способность создавать новые вещи или придумывать новые идеи». При таком определении, по нашему мнению, программа генеративного дизайна бесспорно творческая.
Люди не играли никакой роли в проектировании детали, изображенной на рис. 1, но их участие было необходимо, для того чтобы сообщить программе генеративного дизайна, какая именно нужна деталь. Люди задали программе начальные условия, определив, что должна уметь делать деталь. Им нужно было понимать, где ее предполагается использовать, в каких внешних условиях, какую энергию она должна передавать и тому подобное. Короче говоря, эти люди располагали массой знаний и умений в соответствующих областях – возможно, почти таким же объемом, какой нужен настоящим проектировщикам теплообменников для разработки проекта.
А если хоть часть соответствующих знаний тоже можно было создавать автоматически? Если к сочетанию программы для генеративного дизайна и трехмерной печати можно было бы добавить дополнительные инструменты, чтобы творческие цифровые технологии продвинулись дальше? Чтобы выяснить это, в 2013 году в Лос-Анджелесе представители Autodesk объединились с группой автомобильных дизайнеров и водителей-каскадеров[274]. Они поставили цель разработать автоматизированную систему, которая могла бы с нуля проектировать гоночные шасси и самостоятельно определять, как они должны функционировать, – иными словами, задавать его характеристики.
Для этого команда сначала построила урезанную модель традиционного гоночного автомобиля – фактически только шасси, трансмиссию, двигатель, сиденье и колеса. Затем специалисты покрыли шасси датчиками, измеряющими нужные параметры: напряжение, деформацию, температуру, смещение и все прочие вещи, к которым должно быть приспособлено шасси. Как мы уже говорили в предыдущей главе, цифровые датчики сейчас одновременно малы, дешевы и производительны, поэтому команда смогла без больших затрат получить огромное количество точных данных от шасси, оснащенного измерительными приборами.
Автомобиль с датчиками отвезли в пустыню Мохаве, где шофер-испытатель водил его на предельных режимах, разгоняясь и тормозя максимально жестко (но без крушений), а датчики машины в это время собирали информацию. К концу заезда у команды имелось 20 миллионов замеров для конструкции автомобиля и сил, действующих на него. Все эти данные были загружены в Project Dreamcatcher – систему генеративного дизайна, разработанную Autodesk, – а потом использованы для трехмерного моделирования шасси. Рисунок 2 показывает то, что выдала программа. Нам кажется, что шасси для гоночного автомобиля тут можно опознать с большим трудом. Скорее это похоже на череп мамонта или кита, или, возможно, на микроскопический панцирь диатомовой водоросли, состоящий из диоксида кремния[275].
Рис. 2
Модель шасси гоночного автомобиля (схема предоставлена компанией Autodesk)
Это не простое совпадение. Кости, экзоскелеты и прочие природные конструкции победили в ходе древней безжалостной эволюционной конкуренции – битвы в буквальном смысле не на жизнь, а на смерть. Эволюция создала изумительные проекты, одновременно жизнеспособные, выносливые, энергетически эффективные, изощренные, сильные и стройные. Поэтому мы не должны удивляться тому, что программа генеративного дизайна, которая получила задание спроектировать оптимальную конструкцию, удовлетворяющую какому-либо набору функциональных требований, выдает нечто, выглядящее так, как будто оно создано природой.
Вы обратили внимание на еще одну необычную черту? Шасси асимметрично, его правая и левая стороны не являются зеркальным отражением друг друга. Это вполне разумно. Гоночный автомобиль чаще ездит по кругу в одном направлении[276], чем в другом, поэтому на обе стороны шасси действуют различные силы. Дизайнеры-люди знали об этом давно, но их творения редко бывали настолько асимметричными (если вообще бывали), как проект, созданный программой генеративного дизайна.
Примеры вроде гоночного шасси убеждают нас, что цифровое творчество – это больше, чем просто подражание и инкрементализм[277]. Компьютеры способны на нечто большее, чем просто расширение и комбинирование уже сделанного людьми. Мы оптимистично смотрим на то, что может происходить нечто противоположное. Когда компьютеры вооружаются накопленным человеком научным и техническим знанием и получают эксплуатационные требования для какой-либо ситуации (или достаточное количество данных, чтобы выяснить их самостоятельно), они предлагают новые решения, которые людям не пришли бы в голову.
Машины-проектировщики не имеют слепых пятен и предрассудков, которые, видимо, неизбежно накапливаются вместе с опытом у людей. Доступные сегодня вычислительные мощности позволяют машинам-проектировщикам быстро и недорого исследовать множество решений – больше, чем может придумать целое здание, полное людей. Цифровые творцы уже существуют.