Системное мышление 2019 Левенчук Анатолий

© Анатолий Левенчук, 2018

ISBN 978-5-4490-4439-6

Создано в интеллектуальной издательской системе Ridero

Системное мышление помогает бороться со сложностью в самых разных проектах: оно даёт возможность думать по очереди обо всём важном, на время отбрасывая неважное, но при этом не терять целостности ситуации, взаимовлияний этих по отдельности продуманных важных моментов. Для студентов-магистрантов самых разных специализаций системное мышление даёт возможность удержать в голове их проекты во всей их цветущей сложности, связать теорию и жизнь. Для опытных инженеров, менеджеров, технологических предпринимателей, людей творческих профессий системное мышление позволяет разложить их знание жизни по полочкам, это мышление-шпаргалка, которая не позволит забыть в проектной суете что-то важное и не даст потеряться в ещё более сложных проектах.

Это учебник для уровня не ниже магистрантов, хотя и без ограничения на специализацию. От идеи использовать этот учебник в обучении бакалавров и школьников пришлось пока отказаться, ибо пользование учебником подразумевает некоторый опыт участия в сложных коллективных проектах, опыт столкновения со сложностью в жизни лицом к лицу, а у бакалавров и школьников такого реального жизненного опыта обычно ещё нет, их опыт относится к упрощённой сложности индивидуальных и/или учебных проектов, а слово «сложность» для них относится главным образом к теории, которая слабо привязывается ими к жизненным ситуациям. А ещё учебник предполагает от читающих его знание английского языка: хотя его содержание изложено на русском, ссылки даются не только на русскоязычные, но и на англоязычные материалы.

Причины и следствия в жизни часто довольно удалены друг от друга в пространстве и времени, и требуется какая-то дисциплина мышления и использование самых разных теорий (междисциплинарность), чтобы справиться с этим. Учебник системного мышления как раз и даёт эту дисциплину мышления, чтобы по выражению Нассима Талеба «не быть лохом», т.е. не делать глупых распространённых и известных уже человечеству ошибок при попадании в реально сложные ситуации. Это «неделание ошибок», структурирование сложности должно быть беглым. Учебник прокладывает для мышления определённые «рельсы», которые позволяют после некоторой тренировки быстро и автоматически оценивать ситуацию в реальных коллективных проектах. Системное мышление позволяет лишний раз не «изобретать велосипед» по борьбе со сложностью, вместо трудного и медленного «мыслительного бездорожья» происходит лёгкое и быстрое «мышление по рельсам», задействование лучших придуманных цивилизацией приёмов мышления.

Основной задачей учебника было компактно собрать в одном тексте «мыслительный минимум» по системному мышлению, обычно рассыпанный по самым разным источникам знания. Специфика этого учебника в том, что его содержание базируется не столько на традиционной академической литературе по общей теории систем или традиционных учебниках для менеджеров, а на международных стандартах и публичных документах системной инженерии и инженерии предприятий, разработанных или обновлённых за последние пять-шесть лет. Это прежде всего ISO 15288, ISO 42010, ISO 15926, IEC 81346, OMG Essence, OpenGroup ArchiMate.

Учебник написан на основе пятилетнего опыта преподавания системного мышления как в многочисленных магистерских программах ВУЗов, так и в системах повышения квалификации инженеров и менеджеров. Изложение системного подхода в нём универсально для менеджеров, инженеров, технологических предпринимателей, и даже за пределами этих специализаций. В учебнике отсутствуют материалы по системной инженерии и инженерии предприятий.

Интересующимся этими материалами мы рекомендуем обращаться ко второй версии предыдущего учебника автора «Системноинженерное мышление», вышедшей 2 апреля 2015г. http://techinvestlab.ru/systems_engineering_thinking/.

Тем, кто знакомился с системным мышлением по учебнику «Системноинженерное мышление», будет интересно посмотреть на новый вариант универсального изложения, текст был фактически переписан заново.

Учебник предназначен для использования в коротких и интенсивных курсах (обычно это семестровый курс в ВУЗах или двух-трёхдневный тренинг с решениями задач в системе дополнительного образования), но вряд ли он пригоден для самообразования.

Предлагаемая последовательность обучения такова:

1. Внимательное чтение материала книги, понимание содержания. Это даст состояние «я прочёл учебник по езде на велосипеде, наверное, могу ездить».

2. Решение тренажёрных заданий, мы рассчитываем на использование flip teaching – «перевёрнутого обучения», когда преподаватель/консультант не читает лекции и не объясняет новый материал, зато помогает выполнять «домашние задания». Это даст начальную беглость мышления в части использования отдельных понятий при решении уже поставленных и сформулированных задач, но не при столкновении с реальными проектами, в которых задачи для системного мышления сначала нужно поставить и явно сформулировать.

3. Опыт отождествления материала книги и реальной жизни, т.е. тренинг постановки и решения собственных задач на «живых» (рабочих, а не учебных) проектах участников учебной группы.

В этой последовательности обучения мы опираемся на концепцию смешанного обучения (blended learning), в которой чередуются самостоятельная работа обучающихся с видеолекциями и учебниками, решение задач на компьютерных тренажёрах, а также очная работа с преподавателем/консультантом над возникающими вопросами и обсуждение рабочих проектов.

Обычно живое обсуждение проектов с преподавателем/консультантом приводит к желанию повторно прочесть нашу книгу, в том числе заглядывая в дополнительную литературу, на которую дано много ссылок. Однако и повторного прочтения, и даже решения задач на компьютерных тренажёрах обычно оказывается мало для полноценного освоения материала и умения применить его на практике.

Прорыв в понимании получается тогда, когда для освоения системного мышления каждый участник группы в обязательном порядке пишет эссе1 по приложению материала книги к своему рабочему проекту по созданию какой-то системы. Это заставляет по-настоящему продумать все разделы книги в их взаимосвязи между собой и с жизнью.

Если организуется двухсеместровый курс (первый семестр – «системное мышление», второй семестр – «практики системной инженерии», или «практики системного менеджмента», или «практики технологического предпринимательства», или даже «практики современной хореографии»), то в ходе второго семестра это эссе дополняется результатами применения практик, изучаемых во втором семестре.

Идеальный вариант, это когда текст эссе далее используется в отчётных материалах по рабочему проекту. Так решается проблема совмещения «фундаментального образования» (освоение материала нашей книги) и «практического образования» (выполнение конкретных рабочих проектов – производственных или учебных) – ибо плохо будет и с попытками выполнять проекты без теории, и с попытками освоить теорию без выполнения проектов. Выполнение задач и упражнений – залог успеха проектной работы, но никакие задачи и упражнения её не заменят.

С методическими замечаниями по использованию материала учебника и структуре курса на его основе можно ознакомиться в докладе А. Левенчука «Преподавание системного мышления»2.

Учебник даёт определения для требований, архитектуры, проверки и приёмки, конфигурации, других традиционных понятий системной инженерии, непосредственно следующих из системного подхода. Но книга не рассказывает о том, как разработать качественные требования и архитектуру, как тщательно провести проверку и приёмку системы, то есть книга не содержит описания практик современной моделеориентированной системной инженерии (хотя и содержит отсылки к соответствующей литературе). Изучение практик обычно требует дополнительных долгосрочных усилий, но этому изучению должно предшествовать знакомство с системным мышлением.

То же можно сказать про менеджмент и технологическое предпринимательство: учебник вводит множество связанных с ними понятий (от «плана работ» до «стратегии»), но ничего не говорит о том, как их разработать – эти практики разъясняются в других материалах, других курсах. Но для того, чтобы разобраться с этими практиками, а также с тем, как они сочетаются между собой, требуется знакомство с системным мышлением. Читатели предыдущих версий учебника неоднократно замечали, что после знакомства с системным мышлением учебники других инженерных, менеджерских, предпринимательских и даже творческих (например, хореография, спорт) дисциплин становятся понятней, и становится ясней взаимоувязанность разных дисциплин в сложном проекте.

После освоения материала книги по системному мышлению продолжать образование можно в двух противоположных направлениях:

• «дьявол в деталях»: углубиться в изучение отдельных инженерных, менеджерских, творческих дисциплин, изучать отдельные практики деятельности. Это традиционное обучение предметной инженерии, менеджменту, другим специальностям в их связи с реальной жизнью. Системное мышление позволит удерживать целостность изучаемого набора практик, а также переносить накопленный опыт из проекта в проект. Это образование практического инженера, менеджера, технологического предпринимателя, деятеля искусств.

• «ангел в абстракциях» («знание Принципов освобождает от знания фактов»): обобщить предлагаемое системное мышление с целью достижения бОльшей мультидисциплинарности и распространения его на самые разные виды систем – для экспансии системного мышления на новые практики, новые классы систем. По этому направлению можно изучать системную методологию и эпистемологию – разбираться с современными практиками моделирования, концепцией сложностности, логическими основаниями рационального мышления в их связи с системным мышлением. Это образование исследователя, методолога.

Материалы по формализмам в этой книге были существенно отредактированы Виктором Агроскиным. Активное участие в подготовке книги приняли преподаватели, аспиранты и студенты межвузовской магистратуры технологического предпринимательства eNano и партнёры и курсанты Школы системного менеджмента. Без их активного участия вряд ли эта книга была бы написана.

Материалы книги неоднократно обсуждались на заседаниях Русских отделений INCOSE и SEMAT, автор выражает благодарность членам этих международных организаций за многочисленные замечания и предложения. Много ценных замечаний было представлено читателями блога автора http://ailev.ru, учтены замечания десятков бета-тестеров.

Ваши замечания и предложения по поводу следующих версий книги присылайте Анатолию Левенчуку [email protected].

Новости по книге будут появляться в блоге

http://ailev.ru

1. О мышлении

Разные мышления

Человечество вырвалось из царства природы. Масса всех людей сегодня составляет 300 миллионов тонн, это вдвое больше массы всех позвоночных, которые существовали на Земле до появления человеческой цивилизации. Техносфера (вещество, переработанное людьми под свои нужды) может быть оценена в 30 триллионов тонн, это больше 50кг на каждый квадратный метр поверхности земли3.

И всё это за счёт того, что человечество освоило мышление.

Есть два основных цивилизационных пути, условно называемых «восточным» и «западным».

Условная «восточность» состоит в признании непостижимой сложности мира, невыразимости и непередаваемости человеческого опыта в постижении этого мира.

Условная «западность» состоит в опоре на рациональность. Рациональность – происходит от латинского ratio, означающего «причину», «объяснение», но также и «отношение», т.е. ассоциируется с делением на части, анализом. Конечно, рациональное (рассудочное, неинтуитивное, не «восточного» типа) мышление в равной мере помогает и синтезу, объединению в целое аналитически разъятого на части. Но в западной культуре исторически придаётся большое значение основанной на логике «аналитике», т.е. формализации и моделированию. Можно наблюдать результаты этого «западного» пути развития цивилизации, давшей современные науку и инженерию, менеджмент, рынок ценных бумаг как инфраструктуру предпринимательства4.

Увы, рациональному и логическому мышлению, равно как и многим другим видам применимого ко многим ситуациям мышления, в школе и ВУЗе сейчас прямо не учат, равно как прямо не учат и ограничениям в его практической применимости.

Сегодня среди педагогов преобладает мнение, что какому-то «хорошему» мышлению можно научиться на основе углублённого знакомства с предметами так называемого STEM5:

• наука (science, т.е. естественные науки: классические физика, химия, биология и т.д., редко computer science, но и её сюда иногда включают). Тут в части общеупотребимого для самых разных ситуаций мышления важна физическая компетентность, понимаемая как знакомство с математическим выражением закономерностей физического мира. Остальное (химия, биология и т.д.) в «науке» обычно даётся «для эрудиции» и оказывается важным уже только при специализации мышления в рамках какой-то из отдельных наук, а не для мышления в целом.

• Технология (technology), которая чаще всего понимается как умение работать на «станочках» – типовые уроки труда, когда готовятся не инженеры, а только «техники». Успешное образование в области технологии может означать то, что «руки из правильного места растут», т.е. к традиционно понимаемому мышлению не относится.

• Инженерия (engineering) – ей учатся инженеры-механики, электрики и прочие инженеры, часто и software engineers (с не слишком большим упором на знание computer science и data modeling). Тут тоже работают не столько с общим для всех мышлением, сколько с узким предметным мышлением инженера, ограниченным его специальностью.

• Математика (mathematics, позволяет получить алгебраическую компетентность, включая линейную алгебру, геометрическую компетентность (наглядная геометрия, потом с выходом в работу с современными системами автоматизации проектирования, 3D САПР), статистическая (в том числе байесовская статистика) компетентность, математическая логика. И ещё тут учитываем компьютерную математику, а не только математическую работу карандашом по бумажке6. Это ближе всего к обучению мышлению, но тем не менее это больше не про то, как думать о мире, а как рассуждать с уже формализованными моделями мира. По большому счёту, математика включается только после того, как мышление подготовило материал для применения математики, поставило формальную задачу.

К сожалению, предположения педагогов о косвенном обучении мышлению через обучение предметам STEM не оправдываются, мышлению нужно учить прямо, а не косвенно. Например, если нужно учить логике, то нужно учить прямо ней, а не через информатику и геометрию, а то в школьных курсах логика осталась только в рамках изучения логических выражений при обучении программированию и в курсе геометрии, где только и остались доказательства теорем.

Наша книга по системному мышлению как раз призвана заполнить этот пробел, хотя и частично – системному мышлению она учит прямо, но не касается при этом других общих для многих ситуаций видов мышления.

Требования к мышлению

Мы не делаем предположений о том, как устроено мышление, из каких частей оно состоит и как они связаны, но мы требуем от мышления (в том числе и системного мышления) полезных свойств: мышление должно быть абстрактно, адекватно, осознанно и рационально.

Абстрактность – это главное требование, нам в мышлении нужно абстрагироваться от неважного и сосредоточиться на важном. Мышление моделирует мир, а не отражает его в полноте всех ненужных деталей. Мышление должно отделять зёрна от плевел и оперировать зёрнами. Мышление должно уметь отвязываться от индивидов и мыслить типами, прототипами, абстрактными понятиями: мы не знаем, что у мышления внутри, но требуем какого-то обобщения с опусканием ненужных для предмета мышления деталей. Нам нужна абстрактность в сложных ситуациях, мы хотим уметь планировать и проектировать впрок, мы хотим работать с целыми классами и типами ситуаций. Без абстрагирования мы не сможем переносить опыт одних ситуаций на другие, мы не сможем эффективно учиться, мы не сможем создавать языки, обслуживающие коллективное мышление – языки позволяют обмениваться самым важным по поводу обдумываемых ситуаций, они очищают общение от неважных подробностей.

Адекватность – это возможность проверить, связано ли наше абстрактное мышление и порождаемые им описания ситуаций с реальным миром, или оно оказалось отвязанным от вещного мира и у нас нет способов проверить его результаты, соотнести его результаты с реальным миром. Адекватны ли наши мыслительные представления о ситуациях реальному (т.е. существующему независимо от нас, материальному) миру? Или мышление нас обманывает и предлагает какие-то неадекватные представления? Нам нужно практичное, применимое для действия мышление, мы хотим быть адекватными и не отрываться от реальности.

Осознанность – это возможность понять, как мы мыслим, как мы рассуждаем. Если мы просто «имеем интуицию», это нас не удовлетворит. Мы не сможем научить других мыслить, научить их повторять наши рассуждения. Мы не сможем заметить ошибку в нашем мышлении, не сможем его улучшить или изменить, не сможем выучить другой способ мыслить, ибо мы его не будем замечать, не будем его осознавать. Мы не сможем удерживать внимание в мышлении, ибо нельзя удерживать внимание на том, чего не осознаёшь. Мы не сможем предъявить неосознаваемое нами мышление для проверки со стороны логики и рациональности, не сможем сознательно принять решение о том, что в той или иной ситуации нам достаточно от мышления интуитивной догадки, а не строгого рационального рассуждения. Мы хотим знать, о чём мы размышляем, как мы это делаем, мы хотим иметь возможность выбирать – мыслить нам о чём-то или не мыслить, мы не хотим быть бессознательными мыслящими автоматами. Мы хотим быть осознанными в мышлении, мы должны учитывать не только мышление, но и наличие самого мыслителя.

Рациональность – это возможность провести рассуждение по правилам, логичное рассуждение. Это возможность отстроиться от своей биологической и социальной природы, не делать связанных с этим ошибок. Рациональность – это возможность проверить результаты быстрого образного интуитивного мышления на отсутствие ошибок, нарушений правил, возможность задействовать опыт человечества в мышлении. Это возможность явно (хотя бы в диалоге с самим собой, то есть осознанно) обсудить эти выработанные цивилизацией правила хорошего мышления, обсудить логические основания мышления, обсудить допустимость или недопустимость использования каких-то отдельных приёмов мышления. Мы не хотим ошибок мышления, поэтому мы должны быть рациональными, мы должны уметь распознавать ошибки мышления у себя и других, мы должны уметь выразить результаты мышления так, чтобы уменьшить число ошибок при восприятии наших результатов другими людьми. Мы хотим быть рациональными, нам нужно уметь делить задачи на части (рацио – это ведь «деление»), мы не хотим чистой образности-интуитивности или чистой эмоциональности-спонтанности, хотя мы не отрицаем их необходимости, но нам прежде всего нужна цивилизованность в мышлении, использование лучших достижений цивилизации в том, как мыслить.

Все остальные требования к мышлению – это или частные варианты, или сочетания представленных. Так, «сильное мышление» обычно сводится к хорошему абстрагированию и адекватности, «мудрость» – это просто другие слова для адекватности, «творческое мышление» – это задействование правильного абстрагирования, «рефлексия» – это осознанность, но только не на текущую ситуацию, а уже прошедшую.

Мы вовсе не имеем в виду, что человек, умеющий абстрактно, адекватно, осознанно и рационально мыслить, сможет решить любую задачу. Нет, для этого ему нужно обладать ещё и предметными (domain) мышлениями – по практикам менеджмента, инженерии, технического предпринимательства, других видов человеческой деятельности. Каждая деятельность имеет какое-то своё специфическое предметное мышление, позволяющее мыслить быстро и без типичных для новичков в этих деятельностях ошибок.

Место системного мышления среди других мышлений

Но сразу освоить эти предметные мышления, да ещё потом и сочетать мышления для разных деятельностей не удаётся, ибо разные наборы мыслительных компетенций, часто называемые различными «мышлениями» (вычислительное мышление, системное мышление, инженерное мышление, танцевальное мышление и т.д.) могут быть выстроены в некоторое подобие пирамиды, поставленной на свою верхушку: немногое количество базовых видов мышления у острия пирамиды поддерживают большое количество находящихся над ними предметных видов мышлений.

Аналогично рациональное мышление лежит в основе системного мышления. Без его освоения системно мыслить не станешь, а системное мышление лежит в основе инженерного, менеджерского и многих других предметных мышлений. Менеджер без системного мышления – это плохой менеджер. Быстро меняющиеся практические инженерные, менеджерские, предпринимательские и т. д. мышления основаны на крепких навыках более фундаментальных мыслительных компетенций: системном мышлении, вычислительном мышлении, а те в свою очередь базируются на умении провести логическое рассуждение, умении прочесть три страницы текста, не отвлекаясь.

Освоение высокоуровневых мыслительных компетенций обычно требует определённого уровня владения более низкоуровневым мышлением. Едва ползающему человеку прыжки и танцы не будут доступны, нужно сначала накачать мышцы и освоить контроль тела, то есть заниматься фитнесом (fitness) как обеспечением готовности к действию. И только после получения готовности тела к действию можно учить какие-то паттерны сложных спортивных и танцевальных движений. Интеллектуальный фитнес имеет такую же природу. Арифметика изучается перед интегралами, без знания таблицы умножения высшей математики не освоишь – арифметика тут фитнес для высшей математики. Сначала фитнес более базовых мыслительных навыков, готовность к мышлению, а затем само целевое мышление – и так на нескольких уровнях.

Есть легенда, что талант к мышлению (какого бы вида оно ни было) врождённый. Да, генетическая предрасположенность к какому-то виду мышления бывает, как у спортсменов к какому-то виду спорта. Но мышлению нужно учиться: сами приёмы мышления не заложены в мозге, они должны быть усвоены и натренированы. Это означает, что натренированный «не талант» легко обойдёт в том или ином виде мышления нетренированного «самородка», который так и останется «вечно подающим надежды», он просто не будет знать, как мыслить правильно. Выученный волками потенциально гениальный Маугли не будет уметь даже разговаривать, не то что правильно мыслить.

Можно сказать, что существует некоторая «цивилизационная мыслительная платформа» как набор лучших на сегодняшний момент в нашей цивилизации (state-of-the-art) принятых по поводу мышления решений. Эти решения о выборе тех или иных приёмов мышления как раз и направлены на то, чтобы думать абстрактно, адекватно, осознанно, рационально, а не «дикарски», с игнорированием всего накопленного цивилизацией мыслительного опыта.

Насколько окультуренное цивилизацией мышление сдерживает или наоборот, стимулирует творчество по сравнению с живым «дикарским» мышлением? Цивилизация показывает, что образованные и мыслительно тренированные люди обычно выигрывают в массе своей у неучей, а гениальные самоучки-дикари чрезвычайно редки. При этом на поверку «самоучки-дикари» оказываются часто более чем начитаны и образованы, разве что их образование не было связано с каким-то официальным учебным заведением, а паттерны своего «гениального самородного мышления» они тоже брали из литературы и подхватывали у своих вполне образованных учителей, а не изобретали по ходу дела.

Цивилизационную мыслительную платформу, куда входит и системное мышление, в порядке интеллектуального фитнеса нужно «накачать» и «разработать» так же, как мышцы и суставы для готовности тела к движению – мозг ведь тоже тренируем, он пластичен и в буквальном смысле слова изменяется в ходе тренировки. И именно поэтому тренировки мышления не быстры. Как и с обычными мышцами, быстрых результатов за одну-две тренировки мышления не получишь, нужны месяцы и годы, ибо при этом задействуются медленные биологические процессы в мозге.

Интеллектуальный продолжительный фитнес нужен, чтобы дальше иметь возможность не просто цивилизованно мыслить, но и мыслить бегло. Натренированные паттерны мышления дают возможность как по проложенным в мозгу рельсам быстро проводить типовые абстрактные, рациональные, адекватные, осознанные рассуждения, не затрачивая на это мыслительных усилий, практически интуитивно. И только если эти «рельсы мышления» оказываются вдруг где-то не проложены, только при столкновении с чем-то действительно новым, можно переходить на затратное «просто мышление», задействовать какие-то иные механизмы мышления.

Эти ускоряющие мышление взятые из культуры паттерны, которые заодно позволяют не допускать грубых мыслительных ошибок, используются как в самых базовых видах мышления (логические рассуждения общего вида), так и в основанных на них более сложных (системное мышление, вычислительное мышление/computational thinking), так и в быстро меняющихся ещё более специализированных и сложных вариантах инженерного, менеджерского, предпринимательского или даже танцевального и спортивного мышления в их многочисленных видах и вариантах. И беглости мышления нужно добиваться во всех них, все эти виды мышления нужно тренировать.

Для «образованного человека» нужно освоить одно и то же компактное мышление «цивилизационной платформы», которое пригодится ему для самых разных деятельностей и проектов. Ведь человеку придётся в жизни играть много самых разных деятельностных ролей, начиная с ролей инженера, менеджера, технологического предпринимателя, но не ограничиваясь ими. Каждая из этих ролей потребует своего мышления, а базовые виды мышления «цивилизационной платформы» нужны будут для всех них.

И обязательно нужно учитывать, что речь идёт о лучших на сегодняшний момент (state-of-the-art) приёмах мышления. Базовые приёмы мышления относительно стабильны, но в 21 веке и базовые приёмы за время длинной человеческой жизни могут немного меняться, так что тут нужно быть начеку и вовремя переучиваться.

Вот некоторый далеко неисчерпывающий список видов мыслительных компетенций, составляющих эту «цивилизационную мыслительную платформу»:

Логические основания рационального мышления7. Именно логика порождает из себя как отдельные мыслительные дисциплины разные варианты мышления. Логика как дисциплина сама по себе неуловима: это про все отдельные логики вместе, и про логики по отдельности – аристотелева логика, логика Талмуда, темпоральная логика как самостоятельные логики. В этом смысле логика подобна геометрии – это и все геометрии вместе взятые, и отдельно риманова геометрия в её отличии от евклидовой. Очень часто говорится не о «логике», а о её предмете – правильных рассуждениях, как делать выводы (inference) или даже о рациональности в целом как таковой и способах избегать ошибок интуитивного мышления «восточного» типа.

• Умение понять чужую мысль, выраженную на естественном языке, и умение выразить собственную мысль: языковая компетентность, иногда называемая «функциональной грамотностью». Её можно получить полноценно только при работе с несколькими языками, без неё невозможно работать со сложными текстами (включая текст нашего учебника). Когда вы будете жаловаться на сложность текста учебника, обилие в нём англицизмов и других непонятных слов – это возможное проявление недостатка языковой компетентности. И когда вы будете описывать ваши системы в рабочих проектах, умение письменно выразить свою мысль окажется необходимым.

(Кибер) психотехническая компетентность8 имеет дело с осознанностью, пониманием закономерностей работы человеческой психики в условиях её расширения внешними инструментами, прежде всего «кибер»: информационными и коммуникационными системами. Тут и понимание своих прокрастинационных предпочтений и лености, контроль уровня сосредоточенности, знакомство с собственными заскоками и умение ладить с миром. Если человек не может волевым усилием заставить себя о чём-то подумать и вместо этого «тупит в соцсетях», не в силах оторваться – то о каком рациональном или системном мышлении можно вообще говорить?

Вычислительное мышление (computational thinking9), это подход к тому, как думать о моделировании с использованием компьютеров (computer, «вычислитель»). В рамках вычислительного мышления выделяют и умение поставить задачу, и умение разбить её на более мелкие части, и алгоритмическую компетентность, связанную с умением строить планы, и умение использовать математические модели, выраженные в алгоритмах для анализа данных. Computer science тоже тут, включая обсуждение понятия «вычислимости» или «оценки», различные парадигмы программирования, но также и моделирование, в том числе и инженерное моделирование, обработка данных научного эксперимента.

Мышление о человеческой деятельности: компетенции в праксиологии, социологии, правоведении, экономике10. Мы живём в мире людей, и нужно уметь думать про их деятельность. Речь идёт не об «инженерном», «нормативном» (как должны действовать люди) аспекте, а скорее об аксиологическом аспекте мышления – как рационально мыслить о целенаправленной человеческой деятельности.

«Безмодельное» мышление (model-free): компетенции в области сочетания коннекционистских (connectionism) распределённых представлений (distributed representations) и символьных (symbolic) представлений11. Это как раз та самая область, в которой сейчас происходит «революция искусственного интеллекта». К ней можно относиться просто как к ещё одной бурно развивающейся подобласти «вычислительного мышления» в целом, но есть много разных оснований вывести эти компетенции осознанного отношения к коннекционистским моделям в отдельный раздел.

Системное мышление: мыслительные приёмы, описанные в нашей книге.

Варианты системного мышления

Системное мышление (systems thinking) – это мышление с использованием основных положений и приёмов системного подхода (system approach). Уже разработано много разных вариантов системного подхода, существенно отличающихся друг от друга в степени проработанности, используемой ими терминологии и деталях, но совпадающих в своих основах. Но и сами основы системного подхода претерпели существенное развитие с момента предложения в 1937 году биологом Людвигом фон Берталанфи общей теории систем. Вообще, подход (approach) – это когда разработанные в рамках одной дисциплины, одной предметной области понятия, методы мышления, приёмы действия применяются затем к другим дисциплинам и предметным областям. Общая теория систем была разработана главным образом на биологическом материале, а уж затем было предложено применять её положения ко многим и многим предметным областям.

С момента появления общей теории систем в 30-х годах 20 века на базе системного подхода возникали и умирали целые дисциплины. Например, так родилась в 1948 году и затем в семидесятых была предана забвению кибернетика. Поэтому до сих пор можно встретить старинные варианты системного подхода, существенно переплетённые с кибернетикой и несущие в себе все её недостатки, прежде всего попытку свести понимание мира как работы поддерживающих гомеостаз (т.е. неизменность своего состояния) систем с обратными связями. Самый распространённый вариант кибернетического системного подхода отражён в способе моделирования «системная динамика» (system dynamics12) и сводится к нахождению и явному отражению в модели каких-то связей, которые могут замыкаться в циклы, приводя к появлению колебаний. Такое «кибернетическое моделирование» сверхупрощено и плохо отражает самые разные виды систем, совсем не похожие на «регулятор Уатта».

Системный подход уже получил широкое распространение в инженерии и менеджменте. В инженерии в пятидесятые-шестидесятые годы превалировало «математическое» понимание системного подхода, которое по факту сводилось просто к активному использованию математического моделирования при решении инженерных проблем. «Системность» заключалась в том, что модели при этом набирались из разных дисциплин для разного уровня структуры системы, и описание тех или иных систем проводилось с использованием многочисленных моделей, отражающих разные интересующие инженеров и учёных свойства систем в различных ситуациях. Такое моделирование противопоставлялось так называемому редукционизму (сведению к простому), для которого было характерно выделение одной главной точки зрения, одной дисциплины для какого-то уровня структуры объекта или предмета исследования, один метод моделирования – скажем, человек рассматривался на уровне молекул (т.е. биохимическом уровне), и из этого пытались выводиться все знания о человеческой природе: в том числе и его мышление, и социальное поведение объяснялось как сложное сочетание биохимических процессов. Системный подход преодолевал очевидную бессмысленность такого упрощенчества и поэтому стал очень популярен.

Слово «система» в конце семидесятых годов стало респектабельным, и его стали использовать в том числе и те люди, которые были совсем незнакомы с системным подходом в любой его версии. По факту, оно стало синонимом слова «объект» – что-то, что попало в сферу нашего внимания. Но никакого системного мышления, которое потом бы работало с «объектами-системами», увы, у пользующихся словом «система» не было.

В восьмидесятых в менеджменте тоже появилось множество учебников системного подхода, и математики там уже не было. Акцент делался на том, что в системе «всё со всем связано», и существенные связи могут выпасть из традиционных монодисциплинарных рассмотрений. Поэтому нужно привлекать самых разных людей, чтобы в их общении получить возможность выявления этих существенных связей. Менеджерское изложение системного подхода было ценным тем, что в нём обратили внимание на необходимость учёта людей при обсуждении систем (потом этих людей назовут стейкхолдерами, сделают их рассмотрение обязательным – и тем самым в восьмидесятых годах прошлого века появится второе поколение системного подхода). С другой стороны, если читать книжки с менеджерскими изложениями «системности», то на каждую их рекомендацию «учитывать целостность системы», «думать холистически», «смотреть на проблемы с разных сторон» нужно было бы дать ещё десяток: как именно это делать. То же самое относится и ко многим книгам по общей теории систем: прописанные там общие закономерности мало отличаются от философских обобщений, их трудно было непосредственно применять в деятельности.

Менеджерские книжки по системному подходу выглядят пожеланием «быть здоровым и богатым, а не бедным и больным». Никто не возражает «смотреть на систему с разных сторон»! Но с каких именно сторон? И как смотреть на что-то невидимое, например, на «процесс»?

Отдельных школ системной мысли с различающимися терминологиями, выделенными основными Принципами, какими-то наработанными инструментами моделирования существует десятки и сотни. Поэтому говорят о системном движении, у которого нет каких-то влиятельных координаторов или ярко выраженного центра, просто отдельные люди в разное время в разных странах чувствуют силу системного подхода и начинают им заниматься самостоятельно, не слишком сообразуясь с другими. А поскольку критериев для отнесения той или иной школы мысли к системному движению нет, то иногда и тектологию А. Богданова считают ранним вариантом системного подхода13.

Системная инженерия

Наиболее активно после биологии и менеджмента системный подход разрабатывался в системной инженерии (systems engineering). В последние годы увеличилось количество русскоязычных переводов инженерной литературы, и слово engineering не удосуживаются перевести как «инженерия», так и оставляют «инжинирингом». Перевод «системный инжиниринг» уже начинает побеждать – это легко отследить по результатам сравнения в интернет-поисковых системах. Можно считать, что «системная инженерия» и «системный инжиниринг» синонимы, но есть маленькая проблема: в России почему-то в тех местах, где занимаются инженерным менеджментом, а не инженерией, называют его тоже «системным инжинирингом» – хотя при этом никаких инженерных (т.е. по изменению конструкции и характеристик системы) решений не принимается, речь идёт только об организации работ по созданию системы. Так что будем считать «инженерию» и «инжиниринг» синонимами, но в случае «инжиниринга» проверять на всякий случай, не менеджмент ли имеется в виду вместо чисто инженерной работы.

Самое современное определение системной инженерии дано в Guide to the Systems Engineering Body of Knowledge (руководство по корпусу знаний системной инженерии14). Короткое определение: системная инженерия – это междисциплинарный подход и способы обеспечения воплощения успешной системы (Systems engineering is an interdisciplinary approach and means to enable the realization of successful systems15). В этом определении можно подчеркнуть:

Успешные системы – это то, чем занимается системная инженерия. Слово «успешные» тут крайне важно и означает, что система должна удовлетворить нужды заказчиков, пользователей и самых разных других затрагиваемых системой или затрагивающих систему людей. Успех определяется специальным образом: когда все их интересы учтены (не нужно путать с бытовыми значениями слова «успешный»).

• Слово «системы» используется в очень специальном значении: это «системы» из системного подхода. Для системной инженерии слово «система» примерно то же, что «физическое тело» для ньютоновской механики – если вы сказали про компьютер «физическое тело», то это автоматически влечёт за собой разговор про массу, потенциальную энергию, модуль упругости, температуру и т. д. Если вы сказали «система» про компьютер, то это автоматически влечёт за собой разговор про стейкхолдеров и их интересы, требования и архитектуру, жизненный цикл и т. д. Все эти понятия будут подробно рассмотрены в нашей книге.

• Междисциплинарный подход – системная инженерия претендует на то, что она работает со всеми остальными предметными инженерными специальностями (впрочем, не только инженерными). Междисциплинарность – это очень сильное заявление, оно означает, что системная инженерия может в одну упряжку впрячь коня и трепетную лань (например, инженеров-механиков, баллистиков, криогенщиков, психологов, медиков, астрономов, программистов и т. д. в проектах пилотируемой космонавтики).

• Слово «воплощение» (realization, «перевод в реальность») означает буквально это: создание материальной (физической, т.е. из вещества и полей) успешной системы.

По-английски «системная инженерия» – systems engineering, хотя более ранние написания были как system engineering. Правильная интерпретация (и правильный перевод) – именно «системная» (подразумевающая использование системного подхода) инженерия, а не инженерия систем (engineering of systems) – когда любой «объект» обзывается «системой», но не используется системный подход во всей его полноте. Под инженерией систем16 (например, control systems engineering, manufacturing systems engineering) понимаются обычные инженерные специальности, там легко выкинуть слово «система», которое лишь обозначает некий «научный лоск». Предметные (не системные) инженеры легко любой объект называют «системой», не задумываясь об осознанном использовании при этом системного мышления, не используя системный подход. В самом лучшем случае про систему предметные инженеры скажут, что «она состоит из взаимодействующих частей» – на этом обычно разговор про «систему» и «системность» заканчивается, он не длится больше двадцати секунд. Занимающиеся «инженерией систем» очень полезны и нужны, но они не системные инженеры.

А вот из системной инженерии квалификатор «системный» без изменения смысла понятия выкинуть нельзя. Неформально определяемая системная инженерия – это инженерия с системным мышлением в голове (а не любая инженерия, занимающаяся объектами, торжественно поименованными системами просто для добавления указания о сложности этих объектов и научности в их описании).

Более длинное определение системной инженерии включает ещё одну фразу: «Она фокусируется на целостном и одновременном/параллельном понимании нужд стейкхолдеров; исследовании возможностей; документировании требований; и синтезировании, проверке, приёмке и постепенном появлении инженерных решений, в то время как в расчёт принимается полная проблема, от исследования концепции системы до вывода системы из эксплуатации»17.

Эта вторая часть определения системной инженерии говорит о том, что делают (а не о чём думают) системные инженеры – то есть речь идёт о практиках, но системный подход проглядывает и тут: целокупность в определении системной инженерии затрагивается многократно – от «междисциплинарности» в первой половине определения до целостности всех действий по созданию системы во второй половине определения, до целостности/полноты проблемы, до охвата всего жизненного цикла системы «от рождения до смерти».

Целостность (полнота охвата всех частей целевой системы согласованным их целым), междисциплинарность (полнота охвата всех дисциплин) – это ключевое, что отличает системную инженерию от всех остальных инженерных дисциплин. Системного инженера отличают по тому, что он занимается всей системой в целом, а не отдельными частями системы или не отдельными инженерными или менеджерскими дисциплинами.

Системная инженерия поначалу применялась главным образом для борьбы со сложностью аэрокосмических проектов, и она была там крайне эффективна. Для того, чтобы маленький проект уложился в срок и бюджет, нужно было на системную инженерию потратить 5% проекта, что предотвращало возможный рост затрат проекта на 18%. Для средних на системную инженерию оптимально тратить было уже 20% усилий всего проекта, но если не тратить – возможный рост затрат проекта был бы 38%. Для крупных и очень крупных проектов оптимальные затраты на системную инженерию оказались 33% и 37% соответственно, и это для того, чтобы предотвратить возможный рост затрат проекта 63% и 92% соответственно18.

Как и можно ожидать, системная инженерия в простых небольших проектах почти не даёт эффекта, но оказывается ключевой в сложных и очень крупных проектах: без системного мышления в них допускаются ошибки, которые потом оказывается очень дорого переделывать. Без системного мышления сталкиваться со сложностью оказывается чуть ли не вдвое дороже за счёт дополнительной работы по переделкам допущенных ошибок.

Системные инженеры не прикладывали положения системного подхода к своей основной инженерной работе, а наоборот, к мыслительной базе системного мышления адаптировали все свои инженерные знания. Системные инженеры строили своё инженерное мышление на основе системного мышления.

В результате системным инженерам удалось выполнить сверхсложные проекты – например, они в 1969—1972 году отправили на орбиту вокруг Луны 24 космонавта, а по самой Луне пешком ходили 12 человек19. Да что там пешком, рекорд скорости по Луне на луномобиле составил 18.6 км/час, при этом люди уезжали от ракеты на Луне на расстояние больше 7 километров! Достижения современной космонавтики, думаю, тоже не нужно рекламировать, даже с учётом того, что инженерное развитие в этой области было существенно искажено военными проектами, а инженеры развращены государственным финансированием. Но сложность космических проектов не позволяла добиваться успехов «обычной инженерией». Так, советская школа инженерии не смогла повторить достижений лунной программы, не смогла повторить многих и многих достижений планетарных программ, которых достигли в NASA. Конечно, у отечественной космонавтики есть и отдельные достижения (например, удачные ракетные двигатели), но при росте сложности проекта в целом неудачи начинают резко перевешивать достижения – типа четырёх неудач лунного старта Н-120.

Метод работы западных аэрокосмических инженеров – системная инженерия, т.е. инженерия с использованием системного мышления. Системные инженеры (и отчасти программные инженеры) уточняли и развивали положения системного подхода, а самое важное из этих положений попало в международные инженерные стандарты.

В отличие от многих и многих вариантов системного подхода, «системноинженерный вариант» был проверен тысячами сверхсложных проектов, обсуждён десятками тысяч инженеров, унифицирован и доказал свою эффективность на деле. Он не имеет авторства (ибо в его создании участвовало множество людей), он не является «оригинальным исследованием», он не изобретает велосипеды. Он просто отражает всё самое важное, что было накоплено системным движением за десятки лет и оказалось практичным и относительно легко применяемым на практике.

Подробней про системную инженерию и её вариант системноинженерного мышления можно прочесть в учебнике «Системноинженерное мышление»21. Наша же книга посвящена версии системного мышления, универсальной для инженеров, менеджеров, предпринимателей, людей творческих профессий.

Вдобавок к инженерам «железных» и программных систем, системным подходом и его стандартами заинтересовались инженеры и архитекторы предприятий (enterprise engineers и enterprise architects), они начали адаптировать применение системного подхода к задачам менеджмента, а потом и к задачам предпринимательства.

Решающим в выборе именно этого варианта системного подхода является его ориентация на человеческую деятельность, на изменение окружающего мира, а не просто на «понимание», «исследования», «анализ». Любой анализ полезен только в контексте последующего синтеза, в контексте изменяющей мир к лучшему деятельности по созданию новых и модернизации уже имеющихся систем.

Системная инженерия прямо в своём определении ссылается на то, что она занимается созданием успешных систем (successful systems), определяемых как системы, учитывающие многочисленные интересы самых разных людей, затрагиваемых этими системами или затрагивающих эти системы.

Наш учебник представляет тот вариант системного мышления, который изначально ориентирован на создание успешных систем – будь это «железные» системы (самолёт, атомная электростанция), программные системы, биологические системы (клетки и организмы – ими занимается системная биология, генная инженерия), системы-предприятия (организационные системы), или даже такие нестандартные системы как танец или марафонский бег.

Наш вариант системного подхода

Вариант системного подхода, который мы излагаем в нашей книге, основан главным образом на материале инженерных стандартов и публичных документов, а также стандартов инженерии и архитектуры предприятий: именно оттуда мы брали основные схемы, основную терминологию, и только чуть-чуть адаптировали эти схемы так, чтобы была очевидна их связь друг с другом.

Опора на стандарты важна и потому, что сами стандарты и публичные документы регулярно, раз в несколько лет, пересматриваются. Это позволяет не отстать от жизни, как на десятки лет уже отстали тексты общей теории систем (ОТС), которые во множестве можно найти в книжных магазинах и в Сети даже сегодня. Когда-то устареет и наш вариант системного подхода, но при опоре на регулярно пересматриваемые стандарты и публичные документы это можно будет заметить. При этом стандарты и публичные документы проходят примерно одинаковый путь коллективных обсуждений и согласований, разве что публичные документы обычно не предполагают способов проверки им соответствия (это характерно именно для стандартов), а служат для других целей – информирования, обучения, предложения терминологии, распространения знаний.

Наш вариант системного подхода опирается на следующие версии стандартов и публичных документов (этот список далеко не исчерпывающий, приведены лишь главные источники22):

• Стандарт ISO/IEC/IEEE 15288:2015 Systems and software engineering – System life cycle processes задаёт само понятие системы и жизненного цикла, различает целевую и обеспечивающую системы, вводит понятие практик жизненного цикла.

• Обобщенный с исключительно архитектурного до полного описания определения системы стандарт ISO/IEC/IEEE 42010:2011 Systems and software engineering – Architecture description привносит множественность описаний и деятельностный подход. Это «поворот мозгов» от редукционистского подхода одностороннего описания к системному подходу, подразумевающему множественность связанных описаний, находящихся в различных информационных системах.

• Обобщенный от программной до системной инженерии стандарт OMG Essence 1.1:2015 – Kernel and Language for Software Engineering Methods задаёт метод описания жизненного цикла и его практик. Этот стандарт также вводит в управление жизненным циклом практику чеклистов/контрольных вопросов.

• Стандарт ISO 81346—1:2009 Industrial systems, installations and equipment and industrial products – Structuring principles and reference designations – Part 1: Basic rules используется для минимально необходимого описания структуры и системы обозначения сложных инженерных объектов, задавая принципы кодирования систем и их частей. Это фундамент для управления конфигурацией в ходе жизненного цикла. Кроме того, этот стандарт различает три главных вида описаний: компонентное, модульное и размещений, хотя и в немного другой терминологии – функциональное (functional), продуктное (product) и мест (location).

• Стандарт ISO 15926—2:2003 Industrial automation systems and integration – Integration of life-cycle data for process plants including oil and gas production facilities – Part 2: Data model служит для моделирования данных развёрнутых (полных) описаний инженерных объектов. Обеспечивает интеграцию данных различных информационных систем жизненного цикла инженерных объектов.

• Стандарт OpenGroup ArchiMate 3.0 (2016) Enterprise Architecture Modeling Language даёт возможность моделировать предприятия, включая их бизнес-архитектуру, деятельность команды, а также поддерживающий эту деятельность корпоративный софт и разнообразное «железо» и компьютерные сети, необходимые для работы этого софта, а также другое оборудование предприятия.

• Публичный документ NIST PWG Cyber-Physical Systems (CPS) Framework Release 1.0 (2016) уточняет способы описания для киберфизических систем, вводит классификацию аспектов для стейкхолдерских интересов.

• Публичный документ Guide to the Systems Engineering Body of Knowledge (SEBoK) даёт нам определение успешной системы и множество других определений системного подхода.

Мы гарантировали универсальность нашего варианта системного мышления тем, что на деле использовали его для построения не только курса системного менеджмента и стратегирования на его основе, но также для рассуждений о двигательном фитнесе (универсальной готовности к телесному движению23), для определения танцевального мышления24.

Наша онтология системного подхода

Можно также сказать, что из инженерных стандартов мы взяли онтологию системного подхода.

Онтология – это и наука, отвечающая на вопрос «что есть в мире?» (по-русски иногда говорят «учение о бытии», «учение о сущем»), и конкретный вариант ответа на этот вопрос25. В этом она похожа на науку логику, по законам которой строятся и булева логика, и темпоральная логика, или на науку геометрию, в рамках которой развиваются теории евклидовой или римановой геометрий на основе разных наборов аксиом. Понимая законы онтологии, мы можем понять и 4D экстенсиональную онтологию26, и онтологию виртуальности С. Дацюка27, и христианскую онтологию, хотя они предполагают мир устроенным и описываемым принципиально по-разному.

Пример онтологической проблемы – это вопрос: «что такое американские доллары?». Есть ли они в мире как отдельная сущность, явление, находится ли это явление только в наших головах – всё это онтологические вопросы. Можете поглядеть на список вариантов ответа: физический предмет, абстракция, процесс, вид товара «деньги», валюта, фиатные деньги, единица измерения, запись на счетах. Ответьте на тот же вопрос про биткойн. Чем ответы отличаются онтологически?

Испытываемые вами трудности ровно того же порядка, что и у инженеров, когда им нужно определить для информационной системы в компьютере «что такое номинальный диаметр трубопровода» и как он связан с реальным диаметром, или «что такое техническое присоединение к теплосети». Или у менеджеров, которые пытаются ответить на вопрос «что такое бизнес-процесс» и отличается ли он от «административного процесса», «организационного процесса», «проекта» или «функционального процесса». А когда инженеры и менеджеры доходят до объяснения компьютеру технико-экономической модели, тогда и вопросы про американский доллар и биткойн оказываются вполне относящимся к делу.

Конкретная онтология (а не наука в целом!) – это один из вариантов ответа на вопрос «что есть в мире?». В общем-то, философы и логики придумали множество таких вариантов. Есть ли они вообще в мире объекты, процессы, отношения, вещи, поля? Если есть – то каковы они? Есть ли экскаваторы, торсионные поля, Гарри Поттер, философский камень, вещи, Сатана и боги греческого пантеона, биржевая котировка, благовоспитанность, справедливость, и даже философия и сама онтология? Существуют ли X=4, E=mc2, гамильтониан и лагранжиан, метод конечных элементов, бит и байт, модуль упругости и его разные типы? Разные онтологии дают разные ответы на эти вопросы – а онтология как общая дисциплина изучает способы, которыми даются эти ответы.

Мы пока не будем останавливаться на разнице между онтиками (наборами фактов о каком-то предмете/предметной области, достаточном для описания этих предметов и связанных с ними ситуаций) и онтологиями (наборами фактов о мире в целом). Много людей называют онтики онтологиями, и пока вокруг нет маститых философов, это вполне приемлемо.

Онтология нашей книги как раз и основана на варианте ответа на вопрос «что есть в мире», который берётся из инженерных и менеджерских стандартов и публичных документов и предполагает в качестве главного ответа, что мир при этом состоит из систем. Системное мышление дальше исходит из этой предпосылки – освоившие его люди видят в мире самые разные взаимодействующие друг с другом системы, а в разных текстах и изображениях – описания систем. Вот основные понятия онтологии системного подхода, описываемого в нашем учебнике (конечно, мы не будем давать тут определений, они подробно будут описаны в последующих разделах):

Привязка к физическому миру – 4D экстенсионализм:

• 4D индивид, занимающий место в пространстве-времени

• Воплощение против описания индивидов

• Изменения (процессы, проекты, кейсы) как 4D индивид

• события как 3D индивид

• функциональный (ролевой) объект как индивид

• софт как 4D индивид (исходный код как описание софта-индивида)

• предпринятие как 4D индивид

• полная темпоральная часть индивида

• методологическое время против времени в 4D

• экстенсионализм: совпадение двух объектов в пространстве-времени – это один объект

• отношение состава (composition, «часть-целое») в 4D

• холоны (многоуровневая декомпозиция)

Деятельностная субъективность определения системы:

• деятельность (в отличие от действий – критерии культурной обусловленности, повторяемости, «ролевости»), театральная метафора

• стейкхолдер как действующее лицо (роль)

• стейкхолдерский интерес и аспекты

• успешная система

Холархия воплощения системы

• системы против систематики («система Линнея») и методологии («система Станиславского»)?

• холон (уровень системы)

• эмерджентность

• виды систем: целевая, подсистема, использующая, в системном окружении, обеспечивающая

• имя системы (по функции)

• чёрный и прозрачный ящики

• требования, потребности, ограничения, архитектура

• проверка и приёмка

Определение и описание системы

• определение (definition) системы

• рабочий продукт

• описание системы (description)

• потребности (стейкхолдеров)

• частное описание (view)

• метод описания (viewpoint)

• модель, мета-модель, мульти-модель, мегамодель

• прожекторный и синтетический подходы к описанию систем

Компоненты, модули, размещения

• разбиения: компонентные, модульные, размещения

• описания: компонентные, модулей, размещения

• компонента: порт, связи

• модуль: интерфейс, платформа

• размещение

• архитектурное решение, требование, описание

• архитектурный синтез (логической и физической архитектур)

Жизненный цикл 2.0

• жизненный цикл системы, проекта

• стадии жизненного цикла

• практика, метод/методология

• дисциплина

• технология

• вид жизненного цикла, водопад, спираль

• V-диаграмма

Системная схема проекта (модифицированный стандарт OMG Essence):

• альфа, подальфа

• основные альфы: стейкхолдеры, возможности, воплощение системы, определение системы, работы, команда, технологии

• зоны интересов: клиентская, инженерная, предпринятия

• состояния альфы как контрольные точки, контрольные вопросы

Эта онтология системного подхода удивительно компактна: сложнейший мир самых разных ситуаций представляется относительно небольшим числом понятий, а сам набор этих понятий выбран так, чтобы мир представлялся менее сложным, чтобы о мире было проще мыслить. Учебник в последующих разделах подробно описывает эту онтологию, связи между всеми её сущностями, особенности проведения рассуждений об этих сущностях и их связях. Именно на эту онтологию опирается инженерное, менеджерское и другое предметное мышление, когда говорят об его опоре на системный подход.

Семантика и описания

Любая онтология, определяющая, что есть в мире, должна быть как-то записана, выражена в каких-то знаках, какой-то терминологии, то есть, представлена как онтологическое описание. В обычной речи часто путают «онтологическое описание» мира и саму онтологию. Про описание (схему нарезки мира на объекты – карту) говорят как про онтологию (объекты, выделяемые в мире – территорию), опуская слово «описание». Разницу обычно можно понять из контекста, но в жизни очень часто путают вопросы «что означает знак X» и «что такое X». «Что такое насос?» – это спрашивают, что означает слово «насос», или спрашивают, что такое «быть насосом» в реальном мире? Пока нам достаточно научиться различать эти вопросы и помнить, что кроме обсуждения самих понятий, онтологии (ответ на вопрос «что такое X»), бывает обсуждение семантики – того, как мы связываем знаки/символы/термины с их значением/денотатом и смыслом. Так,

• строчка букв (или произносимые слова) «Королева Великобритании» – это знак;

• конкретная женщина, которая сейчас королева (и, кстати, имеет много других способов ее описать, кроме строчки букв «Королева Великобритании») – это значение/денотат;

• выражение «единственная женщина, которая сейчас королева Великобритании» – смысл строчки букв «Королева Великобритании».

На конкретную женщину можно указать очень разными способами – тогда знаки и смыслы будут разными, а значение одинаковым. А то, для чего используется конкретный знак/слова/термин в конкретном предложении, коммуникационная задача знака – предмет изучения и формализации прагматики, раздела семиотики о том, как связан знак и человеческое поведение (подробнее читайте материалы по теории речевых актов28).

Философы много веков составляли очень неформальные описания мира, их книги были метафоричны, многозначны и мутны. Andries van Renssen29 как-то заметил, что «философы прошлого недорабатывали по части строгости изложения своих философских трудов, задача получения строгого философского знания выпала на нашу долю». В 20 веке к онтологии проявили интерес разработчики программ искусственного интеллекта: их интересовало, как описывать мир настолько однозначно, чтобы даже компьютер мог интерпретировать эти описания. Они и сформулировали новое определение онтологии, чуть-чуть сдвинув акцент на важность онтологического описания: «онтология – это формальное описание/представление разделяемого набора понятий» («An ontology is a formal specification of a shared conceptualization», Tom Gruber30). Эта маленькая путаница привела к тому, что «настоящие онтологи» (которые обсуждают мир) не всегда считают людей, занимающихся компьютерными онтологиями «настоящими», ибо компьютерщики обсуждение вопроса «из чего состоит мир» часто заменяют вопросом «как описывается/специфицируется мир», т.е. обсуждают семантику вместо онтологии.

Терминология

Кроме формальных компьютерных описаний мира и всевозможных прошлых, настоящих, будущих и даже невозможных ситуаций в мире делается и множество описаний мира на естественных языках.

Терминология31 – это семантическая работа в первую очередь с естественным человеческим языком, это наука о словах, которыми обозначают понятия (а не о самих понятиях!). В каждом языке сформировались (или продолжают формироваться) наборы терминов для разных областей человеческой деятельности. И в этих областях термины приобретают значения, т.е. обозначают (они ведь «знаки», поэтому «обозначают») какие-то онтологические, т.е. находящиеся в реальном мире, а не мире знаков, объекты и их отношения.

Очень часто споры между людьми по самым важным вопросам жизни и смерти оказываются всего-навсего спорами о терминах: один и тот же онтологический объект называется по-разному и люди считают, что речь идёт о разных объектах (в философской литературе приводится пример Венеры – в одних странах её называют «утренняя звезда», а в других – «вечерняя звезда»), или наоборот – одинаковые слова означают совсем разные объекты («косил косой с косой косой косой на косе»). В таких спорах о терминах важно уметь формулировать свои представления о мире как ожидаемые наблюдения, использование самих терминов, если о них ещё не договорились, будет бесполезным.

Чтобы не пропасть в таких спорах и не бояться свободы использования разных вариантов терминов для одного и того же, важно научиться различать специальные группы людей – речевые сообщества (speech communities) и сообщества значений (semantic communities). Это различение подсказывает нам стандарт Semantics of Business Vocabulary and Rules (OMG SBVR)32.

Людей в речевом сообществе объединяют естественный язык (русский, японский, немецкий и т.д.) и специальное подмножество словаря этого языка – терминология конкретной предметной области. Специальная терминология чаще всего изучается по каким-то учебникам, осваивается в непосредственном общении, или берётся из словарика определений какого-то стандарта, предпочитаемого теми или иными профессионалами (например, инженеры могут настаивать на использовании терминологии из ГОСТ 34.320—96, ISO/IEC/IEEE 15288 и т.д.). Поскольку разных сообществ профессионалов много – инженеры (они тоже бывают самые разные: инженеры-строители, инженеры-программисты, биоинженеры и т.д.), менеджеры, юристы, кадровики, врачи, актёры, танцоры – речевых сообществ даже для одного естественного языка можно обнаружить множество. У всех есть свои предпочитаемые наборы терминов из разных стандартов или учебников, и достичь однозначного соглашения по терминологии даже в области общих интересов очень трудно.

Сообщество значений (semantic commuinty, семантическое сообщество) – это совокупность людей, которые одинаково понимают значение терминов, т.е. обозначаемые терминами окружающие предметы и явления. Например, все те, кто знает о существовании автомобилей и не путает автомобиль с трёхколесным велосипедом и газонокосилкой.

Когда люди общаются, они используют какую-то конкретную терминологию, выбирают слова для коммуникации. Но интересно-то обсуждать им именно предметы и явления реального мира, то есть значения терминов, их семантику. Семантика – это наука о связи разных обозначений, символов (слов из разных языков или кодов, то есть сочетаний цифр и букв) с общими для разных людей и ситуаций значениями из реального мира, поэтому мы и переводим semantic community как «сообщество значений».

Не нужно путать «значение» со «смыслом». Смысл текста, сообщения, иной информации определяется той ситуацией, в которой используется эта информация. Смысл – это про то, что надо делать, получив информацию, смыслом занимается прагматика. Если семантика – про внеситуационную связь символов с их значением, то прагматика – про ситуационную связь символов с их значениями. Упавшая на землю перчатка в некоторых ситуациях должна быть поднята и возвращена владельцу (владелице), но в других ситуациях такая же перчатка, упав на землю, имеет смысл вызова на дуэль.

Страницы: 12345678 »»

Читать бесплатно другие книги:

Матричные мысленные технологии работы с энергиями – это мощнейший и безопасный способ решения множес...
Хоть размерами Тровенланду не сравниться с Гетландом или Ванстером, ключом к процветанию этого корол...
Евгения знала: старинная загородная усадьба с необычным названием Мухина дача им с мужем не по карма...
Сага о великой любви Клэр Рэндол и Джейми Фрэзера завоевала серд­ца миллионов читателей во всем мире...
По версии известных журналов, Рууд Гуллит входит в число 50 лучших игроков за всю историю футбола. В...
Справочник в 52 томах подробных военных биографий советских военачальников, служивших в РККА и получ...