Советская микробиология: на страже здоровья народа. История советской микробиологической науки в биографиях некоторых её представителей Додонов Игорь
По проявлению и механизму действия иммунитет разделяют на специфический и неспецифический, а также на стерильный и нестерильный.
Специфический – это такой иммунитет, который проявляется только в отношении одного вида микроба (например, иммунитет к брюшному тифу, дифтерии и др.).
Неспецифический – это иммунитет, не имеющий специфической избирательной направленности в отношении только одного патогенного микроба. Обычно принято неспецифический иммунитет соотносить с врождённым (видовым) иммунитетом и считать, что он обусловлен врождёнными биологическими факторами. Однако опыт вакцинации позволяет, на наш взгляд, внести немаловажную поправку в это утверждение. Например, было замечено, что применение живой полиомиелитной вакцины в СССР привело к снижению сезонной заболеваемости гриппом и ОРВИ. Не менее показательна и ситуация с распространением вируса COVID -19 на постсоветском пространстве. Замечено, что процент «тяжёлых» заболевших этим вирусным заболеванием «у нас» ниже, чем в Западных странах (Европа и США). Отсюда, кстати, и смертность на порядок меньше (это, очевидно, главная причина; хотя, безусловно, играет немаловажную роль и оперативность реагирования властей, эффективность функционирования медицинской системы). И на вопрос «почему?» находится единственный ответ: советская система вакцинации, продолжающая ещё и сейчас функционировать (хотя её разрушают и «сверху», и «снизу»), даёт свои плоды, заключающиеся в том, что у значительной части «нашего» населения стимулирован тот самый неспецифический иммунитет, позволяющий организму противостоять новому, коварному заболеванию.
Т.е. приходится, очевидно, признать, что неспецифический иммунитет может быть не только врождённым, но в определённой степени и искусственным приобретённым.
Стерильный (или постинфекционный) – это такой иммунитет, который сохраняется в организме и после исчезновения вызывающих его микробов. Таким, например, является иммунитет при скарлатине, дифтерии, холере и ряде других заболеваний.
Нестерильным (или инфекционным) называют такой иммунитет, который сохраняется лишь в течение пребывания соответствующего инфекционного начала в организме (например, при туберкулёзе).
Врождённый (видовой) иммунитет обусловлен действием нескольких уровней защитных механизмов организма человека (или животного).
Первый уровень – барьерные механизмы. Они препятствуют проникновению микробов в организм. К ним относятся кожные и слизистые барьеры (т.е. внешние барьерные приспособления), а также лимфатические узлы, печень, почки, плацента (при беременности у женщин) (т.е. внутренние барьерные приспособления).
Второй уровень – гуморальные факторы иммунитета. Под ними принято понимать наличие в жидкостях организма (кровь, тканевые жидкости, экссудат и пр.) бактерицидных веществ, которые убивают и растворяют микробов.
Третий уровень – клеточные защитные приспособления организма. Т.е. защитная функция обеспечивается именно непосредственно клетками, контактирующими с патогеном.
Второй и третий уровни иммунитета начинают действовать, когда микробам всё-таки удаётся проникнуть в организм. Действие этих уровней иммунитета приводит к гибели микробов.
Кожные и слизистые барьеры. Кожа непроницаема для большинства бактерий. Факторы, способствующие проницаемости кожи, понижают её устойчивость к инфекции, а все воздействия, понижающие её проницаемость, действуют в обратном направлении. Постоянное слущивание поверхностных слоёв эпидермиса способствует механическому удалению бактерий с поверхности кожи.
Но кожа не является только механическим барьером для микробов, она обладает и бактерицидными свойствами: микробы, попавшие на кожу, быстро погибают. Однако бактерицидное действие кожи обнаруживается лишь в отношении тех видов микробов, которые приходят с ней в соприкосновение сравнительно редко или совсем не встречаются с ней. В отношении микробов, являющихся привычными обитателями кожи, это действие ничтожно. Бактерицидное действие присуще только живой коже, после смерти организма оно быстро исчезает.
Слизистые оболочки конъюктивы глаз, носоглотки, дыхательных, пищеварительных и мочеполовых путей, покрытые эпителием, предотвращают проникновение болезнетворных агентов в организм. С одной стороны, слизистые покровы непроницаемы для патогенных микробов и их токсинов, а с другой – они способны удалять инородные вещества (работа слизистых желез и мерцательных ресничек дыхательного эпителия, двигательные рефлексы защитного характера (чиханье и кашель), способствующие выбрасыванию инородных частиц со слизью и мокротой).
Отделяемое слизистых оболочек также обладает бактерицидными свойствами. В этом отношении большое значение имеет лизоцим – вещество, содержащееся в слезах, мокроте, слюне, которое растворяет ряд микробов. Желудочный сок убивает некоторые проникающие в желудок патогенные микроорганизмы благодаря содержанию в нём соляной кислоты. Таким же действием обладают секрет эпителия тонких кишок и желчь.
Если микробам удаётся проникнуть через кожные и слизистые барьеры во внутреннюю среду организма, то они наталкиваются на внутренние барьерные приспособления. Такие микробы задерживаются, прежде всего, в лимфатических узлах. Мощной преградой для проникновения чужеродных веществ (ядов, тяжёлых металлов), а также и ряда бактерий является печень. Подобные бактерии выделяются в кишечник вместе с желчью. Задержка микробов в печени обусловливается наличием в ней элементов ретикуло-эндотелия 3. Барьерную функцию выполняют и почки. В некоторых случаях бактерии и токсины выводятся из крови почками с мочой.
При беременности плацента препятствует проникновению ряда микробов в организм плода.
Гуморальные факторы иммунитета макроорганизма, как было указано, связаны с наличием в его жидкостях бактерицидных веществ, которые убивают и растворяют микробов, проникших через барьерные механизмы.
Одним из таких веществ является пропердин (от лат. «perdere» – разрушать) – белок сыворотки крови и тканевой жидкости млекопитающих, относящийся к глобулинам. Он может как самостоятельно уничтожать или блокировать патогены, так и активировать другие факторы иммунитета – систему комплемента и фагоцитоз. Поэтому говорят даже об особой системе пропердина, в которую входят, помимо этого белка, ещё комплемент (устаревшее название – алексин) и ион магния Mg 2+. Эту систему открыл в 1954 году американский биохимик Пиллимер. Она представляет собой т.н. альтернативный путь запуска системы комплемента.
Система комплемента – это целый комплекс белков сыворотки крови. Этих белков насчитывается девять. Обозначают их большой буквой «С» с порядковыми номерами от 1 до 9, т.е., например, С2, С5 и т.д. Основная функция белков системы комплемента – опсонирующая. Они покрывают патогенный микроорганизм и в сочетании с антителами начинают разрушение его оболочки. Затем в дело вступает лизоцим сыворотки крови, который продолжает лизис патогена, а также усиливается процесс фагоцитоза.
Запуск в действие (активация) системы комплемента может происходить двумя путями: классическим (посредством нормальных антител (см. ниже)) и альтернативным (посредством пропердина (см. выше)).
Уже знакомый нам лизоцим присутствует не только в слизистых оболочках, слезах, слюне, а содержится практически во всех жидкостях организма (в том числе и в крови). Это фермент мурамидаза, обладающий большой литической активностью в отношении патогенных бактерий.
В сыворотке крови присутствуют бета-лизины – белки, синтезируемые тромбоцитами. Они термостабильны и обладают бактерицидным действием.
Фибронектин – ещё один белок плазмы крови, а также тканевых жидкостей, обладающий защитными функциями. Он синтезируется макрофагами.
В тканях человеческого организма и лейкоцитах крови присутствуют так называемые дефензины (от английского «defense» – защита) – это эндогенные пептиды-антибиотики, состоящие из ряда аминокислот. Они активны в отношении бактерий, грибков и многих вирусов.
Антимикробную гуморальную активность определяет и ещё ряд белков: лактоферрин (обладает способностью связывать железо, необходимое для метаболизма бактериальной клетки), трансферин (сывороточный бета-глобулин, вырабатываемый фагоцитами и действующий подобно лактоферрину), лактопероксидаза (содержится в слюне и материнском молоке).
К гуморальным факторам неспецифического (врождённого) иммунитета можно отнести и интерфероны (хотя действуют они не только в жидкостях организма, но и в клетках, а следовательно, могут считаться и фактором клеточного уровня иммунитета).
Интерфероны – это тоже белки. Они вырабатываются в поражённой вирусом клетке и подавляют внутриклеточное размножение ДНК и РНК вирусов. Однако сверх того они защищают и другие клетки данной области, индуцируя и у них выработку антивирусных белков.
Однако на этом роль интерферонов не заканчивается. Установлено, что они, кроме самостоятельного действия на поражённые или поражаемые вирусом клетки, способны активировать и другие звенья иммунитета: они усиливают активность макрофагов и Т-лимфоцитов, контролируют воспалительную реакцию и даже могут защитить организм от опухолей. Очевидно, именно с функцией активизации других участков иммунной системы связано то обстоятельство, что, оказывается, индукцию синтеза интерферонов вызывают не только вирусы, но и бактерии, риккетсии, простейшие и даже попавшие в организм синтетические соединения.
Различают три вида интерферонов:
1) Альфа-интерфероны. Продуцируются лейкоцитами, оказывают противовирусное и противоопухолевое действие.
2) Бета-интерфероны. Продуцируются фибропластами и оказывают противоопухолевое действие.
3) Гамма-интерфероны. Продуцируются лимфоцитами и оказывают иммуномодулирующее действие.
Казалось бы, интерфероны – мощное средство защиты организма. Однако, к сожалению, – далеко не панацея от всех бед, т.е. патогенов, проникших в организм. Некоторые вирусы могут подавлять их образование внутри заражаемых ими клеток. Видимо, что-то подобное происходит и в случае с COVID-19, хотя здесь вопросов пока больше, чем ответов, потому что в значительном количестве случаев выздоровления от этого вируса специфических антител в крови выздоровевших не обнаруживается. А это может говорить об «интерферонном ответе» на данный патоген.
В общем, интерфероны – это быстрый ответ организма на получение клетками неспецифического сигнала чужеродности. Но очень часто «интерферонный ответ» – лишь первая «линия обороны» организма на гуморальном уровне, которая стимулирует другие звенья иммунитета, задерживает продвижение «врага» в организме, тем самым давая ему время на выработку антител и иммунных клеток.
Весь этот комплекс веществ, вся эта группа факторов гуморального иммунитета неспецифичны, они оказывают бактерицидное действие на многие виды патогенных микроорганизмов, проникающих в макроорганизм.
Однако гуморальный иммунитет включает и специфическую защиту – образование антител как реакцию на вторжение в организм определённого патогена. Поэтому подробный разговор об антителах будет несколько ниже, а именно тогда, когда речь пойдёт о механизмах приобретённого иммунитета.
Тем не менее необходимо отметить, что, как установлено, определённое количество антител нормально присутствует в сыворотке крови (т.н. нормальные или естественные антитела), т.е. не связано с иммунизацией (естественной или искусственной). Таким образом, эти антитела являются фактором врождённого иммунитета, т.е., очевидно, представляют собой следствие длительного эволюционного приспособления макроорганизма к борьбе с патогенными микробами. Выше мы отмечали, что именно нормальные антитела активируют систему комплемента по классическому пути.
Наконец, клеточный уровень врождённого иммунитета исторически связывали, прежде всего, с явлением фагоцитоза.
Фагоцитозом называют поглощение всевозможных посторонних тел, в том числе и микробов, клетками организма. Клетки, обладающие способностью фагоцитировать, называют фагоцитами.
Основателем учения о фагоцитозе является великий русский учёный Илья Ильич Мечников.
Современники И.И. Мечникова Эрлих, Кох, Леффлер считали, что единственным защитным механизмом макроорганизма против инфекционного начала являются специфические антитела. И.И. Мечников, будучи биологом и сторонником учения Дарвина, подошёл к изучению иммунитета с позиций сравнительной физиологии и патологии. Им были изучены на различных ступенях зоологической лестницы процессы внутриклеточного пищеварения и воспаления как защитной реакции организма против различных вредных агентов.
В результате И.И. Мечников доказал, во-первых, что воспаление, наблюдаемое при различных инфекционных заболеваниях, сопровождается фагоцитозом, а следовательно, воспаление является для организма не вредным, а полезным процессом, защитной реакцией; во-вторых, что фагоцитоз даже у высокоорганизованных существ отображает функцию пищеварения. В процессе эволюции это внутриклеточное пищеварение превратилось в специфический защитный механизм.
Мечников делил клетки, способные к фагоцитозу, на две группы: микрофаги и макрофаги. К первым им относились полинуклеары, ко вторым – большие моноциты крови и клетки ретикуло-эндотелиальной системы (эндотелиальные клетки капилляров, купферовские клетки, клетки соединительной ткани).
Собственно, сами названия отражали лишь разницу в размерах фагоцитов: «микрофаги» – «малые пожиратели» (размер – от 6 до 8 микрон), «макрофаги» – «большие пожиратели» (размер – до 20 микрон).
И те, и другие являются лейкоцитами, т.е. белыми кровяными клетками. Фагоцитоз и тех, и других проходит одинаковые стадии: 1) движение к фокусу инфекции и эмиграция (просачивание) через стенки капилляров в ткани организма; 2) захватывание микробов; 3) внутриклеточное переваривание фагоцитированного микроба.
Однако уже И.И. Мечниковым было замечено, что микрофаги – это клетки-полинуклеары, т.е. клетки, имеющие сегментированное ядро (употребляются также термины «многолепестковые ядра», «лопастные ядра», «полиморфные ядра»), а макрофаги – клетки, ядро которых несегментированно, монолитно, имеет округлую форму.
Наблюдая за явлением фагоцитоза, И.И. Мечников пришёл к выводу, что фагоцитарная активность клеточных элементов является причиной благоприятного течения инфекции. Тот факт, что инфекционный процесс в организме сопровождается очень часто увеличением числа лейкоцитов в нём, также, по мнению И.И. Мечникова и его учеников и последователей (Савченко, Высоковича, Тарасевича, Заболотного и др.), является доказательством их значения в естественном иммунитете.
Словом, Мечников открыл существование клеточного уровня иммунитета. Более того, он и его последователи были склонны считать этот уровень основным в иммунной защите организма, в отличие от Эрлиха и его школы, которые отдавали «пальму первенства» антителам, т.е. уровню гуморальному. Разница подходов между этими двумя школами ставила и вопрос о том, какой иммунитет более важен – врождённый (Мечников) или приобретённый (Эрлих).
Примечательно, что оба учёных в 1908 году получили за свои исследования в области микробиологии и иммунологии Нобелевскую премию. Другими словами, одновременное вручение премии двум оппонентам говорило о том, что научная общественность тогда ещё не определилась в отношении правоты одного из них. Во всяком случае, не определился Нобелевский комитет. И в дальнейшем «раскол» по вопросу «первенства» клеточного или гуморального, врождённого или приобретённого иммунитета не был в науке преодолён: если советская биология и медицина стояли на позициях Мечникова, то западная наука – на позициях Эрлиха. Конечно, подобное утверждение носит несколько упрощённый и обобщённый характер, но, в целом, оно верно.
Однако со времени Мечникова (умер в 1916 году) и Эрлиха (умер в 1915 году) процесс накопления знаний об иммунитете человека и животных не останавливался. Учёными было получено очень много данных об его устройстве и принципах функционирования. И эти данные, по сути, примирили две «противоборствующие» школы. Но обо всём по порядку.
Было, в частности, установлено, что лейкоциты (т.е. белые клетки крови) имеют не две разновидности (макрофаги и микрофаги), а три. Третья разновидность – лимфоциты (от латинского «лимфа» – влага, чистая вода и греческого «цитос» – вместилище, клетка).
Причём, макрофаги (другое их название – моноциты) составляют всего от 2 до 6% от общего количества лейкоцитов в организме, микрофаги (кстати, этот термин сейчас, в отличие от термина «макрофаг», который вполне современен, считают устаревшим; учёные предпочитают употреблять термин «гранулоциты») – от 60 до 70% (т.е. это самая большая группа лейкоцитов), лимфоциты –от 20 до 30%.
Но, несмотря на не самый большой «удельный вес» среди лейкоцитов, лимфоциты – важнейшие клетки иммунной системы, обеспечивающие как гуморальный иммунитет (в части его основного компонента, т.е. они вырабатывают антитела), так и клеточный иммунитет (контактное взаимодействие с патогенами). Также они регулируют деятельность клеток других типов, обеспечивающих иммунную защиту организма.
Кстати, надо иметь в виду, что хоть лимфоциты и являются клетками крови, но непосредственно в крови их всего около 2% от общего количества, остальные 98% находятся в различных тканях.
Огромная роль лимфоцитов в функционировании иммунитета человека и животных заставила учёных ткани иммунной системы назвать лимфоидными.
Лимфоидные ткани делятся на центральные и периферические.
Центральные – это тимус (вилочковая железа) и костный мозг (у птиц центральный орган – сумка (или бурса) Фабрициуса). В центральных органах происходит образование, созревание и, как говорят, «обучение» всех видов лейкоцитов. Под созреванием и «обучением» приходится понимать их дифференциацию по типам и функциям. Когда эта дифференциация происходит, клетки становятся иммунокомпетентными (это также современный научный термин), поступают в циркуляцию в кровь и лимфу и заселяют периферические органы иммунной системы.
Периферические органы – это селезёнка, лимфатические узлы, нёбные миндалины, аденоиды, аппендикс, пейеровы бляшки кишечника, групповые лимфатические фолликулы мочеполового и дыхательного трактов и др. К периферическим органам иммунной системы относят также кровь и лимфу. В этих органах непосредственно и осуществляются все реакции клеточного и гуморального иммунитета.
Лимфоциты образуются в костном мозгу из т.н. лимфоидной стволовой клетки. Они делятся на две основные большие субпопуляции: Т-лимфоциты и В-лимфоциты.
Т-лимфоциты отвечают, главным образом, за клеточный иммунный ответ, т.е. главная их задача – обеспечение клеточного уровня иммунитета.
Образовавшись из лимфоидной стволовой клетки, Т-лимфоциты поступают в тимус, где происходит их созревание и образуются все их разновидности, отличающиеся друг от друга выполняемыми функциями:
– Т-хелперы (помощники, от английского слова «help» – помощь) – распознают внедрившийся патоген (антиген), стимулируют выработку антител (как – об этом ниже), активируют макрофаги (т.е. так или иначе участвуют как в гуморальном, так и в клеточном иммунном ответе).
– Т-киллеры (т.е. убийцы) или цитотоксичные Т-лимфоциты (ЦТЛ) – распознают патоген и уничтожают его без участия антител и комплемента посредством выделяемых ими ферментов-токсинов (лимфотоксинов) (т.е. это – «чистой воды» клеточный иммунитет).
– Т-индукторы – распознают патоген (антиген) и увеличивают активность иммунокомпетентных клеток (хелперов, киллеров, макрофагов), т.е. являются участниками и гуморального, и клеточного иммунных ответов.
– Т-супрессоры – в отличие от индукторов, снижают активность иммунокомпетентных клеток, регулируя, таким образом, интенсивность и гуморального, и клеточного иммунных ответов.
– Т-эффекторы ГЗТ (гиперчувствительности замедленного типа) – участвуют в аллергических реакциях замедленного (клеточного) типа, в отличие от ЦТЛ не обладают прямой токсичностью, а разрушают патогены опосредованно (через другие клетки).
– Т-клетки памяти – долго сохраняют «память» о патогене (антигене), при его повторном попадании в организм способствуют более быстрому и сильному иммунному ответу.
В-лимфоциты. Главная их задача – выработка антител, т.е. они обеспечивают главную составную часть гуморального иммунного ответа.
В отличие от Т-лимфоцитов, В-лимфоциты в тимус не мигрируют. Их созревание завершается в костном мозге.
Под влиянием антигенов они превращаются в плазматические клетки, которые и образуют антитела против этих антигенов.
Среди В-лимфоцитов существует разновидность – В-клетки памяти, которые, подобно Т-клеткам памяти, «запоминают» патоген, активизируя гуморальный иммунный ответ при его новом попадании в организм.
Но есть среди лимфоцитов, по крайней мере, ещё две (гораздо меньших по размеру) субпопуляции – это т.н. нулевые лимфоциты и т.н. NK-клетки (или натуральные киллеры).
Нулевые лимфоциты не проходят дифференциацию в органах иммунной системы. Можно сказать, что это незрелые формы лимфоцитов. Их расценивают как резервную популяцию недифференцированных лимфоцитов и считают, что они при необходимости способны превратиться в В- или Т-лимфоциты. В то же время нулевые лимфоциты обладают цитотоксичностью, т.е., и не будучи дифференцированными, способны «убивать» клетки-мишени. На их долю приходится 10 – 20% лимфоцитов крови. Если же вспомнить, что в крови циркулирует всего 2% лимфоцитов, то можно представить «скромные размеры» этой лимфоцитарной субпопуляции.
NK-клетки – это разновидность лимфоцитов, которая довольно сильно «смущает» учёных. Вот, например, какое высказывание можно прочесть в связи с существованием этих клеток: «Представления о Т-лимфоцитах и В-лимфоцитах устарели…Такое деление не учитывает множество клеток, не являющихся потомками ни Т-, ни В-ростка. Классическим примером для аргументации неточности этой классификации являются естественные киллеры (NK-клетки)…» (Википедия; статья «Костный мозг», стр. 2).
И, действительно, хоть NK-клетки и происходят от лимфоидных стволовых клеток костного мозга, но, как сказано в цитате выше, ни Т-, ни В-ростки их «предками» не являются. Своеобразие происхождения ведёт и к своеобразию строения. Если все лимфоциты – это мононуклеары (т.е. обладают несегментированным ядром) и агранулоциты (т.е. их цитоплазме не присуща зернистость – наличие в ней большого количества специфических гранул), то NK-клетки – мононуклеары, но при этом они являются гранулоцитами, т.е. зернистость их цитоплазме присуща. «Большие гранулярные лимфоциты» – такое определение им часто дают.
Своеобразие проявляется и в выполнении ими своих функций. Казалось бы, их функции схожи с Т-киллерами: они не способны на фагоцитоз, но убивают патогены посредством токсичных для последних ферментов. Однако разница в выполнении этой задачи, способе выполнения всё же имеется. Начнём с того, что NK-клетки, в отличие от Т-лимфоцитов, не проходят «подготовку», т.е. дифференциацию функций, в тимусе. В кровь они выходят напрямую из костного мозга, а затем мигрируют в ткани. Таким образом, весьма сложным комплексом с «индивидуальным набором» функций, который представляют из себя Т-лимфоциты, NK-клетки не являются. И хотя исследования последних лет показали, что определённые субпопуляции есть и у натуральных киллеров, но, тем не менее, о такой «дифференциации задач», как у Т-лимфоцитов, речи и близко не идёт (во всяком случае, пока) [1; 2 – 4].
Подобно Т-лимфоцитам, NK-клетки имеют значительное количество рецепторов, но рецепторы эти характеризуются гораздо меньшим разнообразием, другими словами – они не столь антиген-специфичны. А посему и «врага», т.е. патоген, NK-клетки находят не так, как это делают Т-киллеры: если последние сами распознают антиген, то первые привлекаются в очаг патологии и активируются в большей степени веществами (цитокинами и хемокинами), секретируемыми другими клетками врождённого иммунитета, в первую очередь гранулоцитами, или вирус-инфицированными клетками других тканей в очаге инфекции (т.е. речь идёт об интерферонах).
Нет среди NK-клеток и клеток памяти (в отличие от Т- и В-лимфоцитов). Хотя нельзя не отметить, что в последние годы в мышиных моделях у натуральных киллеров обнаружены некоторые признаки иммунологической памяти, а именно наличие популяции патрулирующих NK-клеток в лимфоидных и нелимфоидных органах и более быстрый их ответ (чем обычный ответ NK-клеток) на повторное появление антигена, что как раз и говорит о существовании функции памяти. Но данный вопрос требует дальнейшего уточнения.
В целом же, можно уверенно констатировать, что NK-клетки оказывают неспецифическое цитотоксичное действие на широкий спектр патогенов (опухолевые клетки, клетки, повреждённые вирусами, бактериями, простейшими). Другими словами, они представляют собой один из факторов клеточного врождённого иммунитета.
Количество NK-клеток (от общего количества лимфоцитов) невелико. Скажем, в крови их содержание составляет всего от 5 до 10% (напомним, что в крови содержится всего 2% лимфоцитов). В лимфоидных органах (лимфатических узлах, селезёнке, миндалинах) их и того меньше. Зато довольно много в печени и эндометрии матки.
Гранулоциты. Своё название эти лейкоциты получили вследствие наличия в их цитоплазме значительного количества специфических гранул.
Размеры гранулоцитов – 6 – 8 микрон в диаметре.
Сразу скажем о том, почему название «микрофаги» фактически попало в разряд устаревших. Дело в том, что, с одной стороны, не все родственные по своему происхождению и строению лейкоциты-гранулоциты, к которым относятся и микрофаги, обладают функцией фагоцитоза. С другой стороны, лейкоциты-гранулоциты, выполняющие функцию фагоцитоза, относятся не к одному подвиду (подгруппе, субпопуляции) гранулоцитов. При такой ситуации употребление наименования «микрофаги», действительно, может только вносить путаницу. И если уж его и использовать, то только в историческом смысле, т.е. как термин, который когда-то употреблялся в биологической и медицинской науке.
Вырабатываются гранулоциты миелоидной стволовой костного мозга, т.е. той, от которой после ряда трансформаций происходят и тромбоциты, и эритроциты, и моноциты-макрофаги. Т.е. гранулоциты хоть и лейкоциты, но «отдалённые родственники» лимфоцитов и гораздо ближе «по степени родства» к другим лейкоцитам – макрофагам.
Ядро гранулоцитов поделено на отдельные сегменты. Поэтому их ещё иногда называют полинуклеарными (т.е. многоядерными) лейкоцитами, хотя ядро у них всё-таки одно.
Гранулоциты попадают в кровь из костного мозга, т.е. через тимус они не проходят. При этом в костном мозге остаётся значительный резерв гранулоцитов, который периодически, по мере необходимости, выбрасывается в кровь. Причина подобного «резервирования» и «переброски подкреплений» в том, что гранулоциты-микрофаги в результате борьбы с патогеном погибают, и, следовательно, их запас в крови необходимо постоянно пополнять.
Гранулоциты отвечают за защиту организма от бактерий (в наибольшей степени), вирусов, грибков и паразитов. Кроме того, они способны фагоцитировать и мёртвые клетки организма, тем самым очищая его. Итогом борьбы и гибели гранулоцитов-микрофагов является образование гноя.
Таким образом, гранулоциты обеспечивают клеточный иммунный ответ.
Гранулоциты делятся на несколько разновидностей:
– Нейтрофилы (65 – 70% от общего количества гранулоцитов). В их гранулах содержится большое количество антибиотических белков (лизоцим, липопероксидаза и ряд других). Именно эти белки-антибиотики и обеспечивают фагоцитоз поглощённого нейтрофилом патогена.
– Эозинфилы. Также способны фагоцитировать и уничтожать различные микробы. Но их главная функция – борьба с проникшими в организм паразитами (гельминтами). Эозинфилы «узнают» гельминтов, «стыкуются» с ними и выделяют в зону контакта белки-перфорины, которые, встраиваясь в клеточные оболочки гельминта, делают их пористыми. Внутрь клеток гельминта устремляется вода, и он погибает от осмотического шока.
– Базофилы. Делятся на собственно базофилы, циркулирующие в крови, и тучные клетки, находящиеся в различных тканях. Главная их задача – выработка веществ, стимулирующих т.н. анафилаксию, т.е. повышенную чувствительность организма к повторному внедрению в организм патогена. Функцией фагоцитоза они не обладают вообще.
Таким образом, И.И. Мечников мог называть микрофагами два вида гранулоцитов – нейтрофилы и эозинфилы.
В некоторых современных работах можно прочесть, что И.И. Мечников открыл «явление фагоцитоза – захвата и уничтожения» микробов и других чужеродных организму биологических частиц «специальными клетками – макрофагами и нейтрофилами» [47; 3]. Если к утверждению об открытии великим русским учёным клеток-макрофагов нет никаких «претензий», то утверждение об открытии им нейтрофилов выглядит весьма сомнительно. Дело в том, что оно явно «модернизирует» исторический факт: И.И. Мечников ни о каких нейтрофилах понятия не имел (ни названия такого не употреблял, ни о подразделении гранулоцитов на разные группы не знал – это было выяснено значительно позже). Сверх того, ведь, как мы говорили, фагоцитоз присущ не только нейтрофилам (это их основная функция), но и эозинфилам (это не основная их функция, но её они тоже выполняют). Следовательно, Илья Ильич мог наблюдать фагоцитоз, осуществляемый не только нейтрофилами, но и эозинфилами, и под введённый им термин «микрофаги» могли попадать и те, и другие. Поэтому нам представляется более правильно не впадать в «осовременивание» истории научных открытий, а быть историчными и попросту точными (это как общий принцип) и говорить в данном конкретном случае об открытии И.И. Мечниковым фагоцитоза, осуществляемого макрофагами и микрофагами.
Макрофаги (моноциты). Сохранившие официально своё название со времён Мечникова фагоциты.
Сразу отметим следующий нюанс. Понятия «моноцит» и «макрофаг» – не полные синонимы. Да, всякий макрофаг – моноцит. Но не всякий моноцит – макрофаг. Строго говоря, моноциты – это клетки-предшественники макрофагов, их непосредственные «прародители». Но об этом немного ниже.
Моноциты – агранулоциты и мононуклеары. Т.е. их цитоплазма не содержит гранул-зёрен, и ядро у них – несегментированное. Этими особенностями своего строения моноциты близки к большинству лимфоцитов, являющихся именно агранулоцитами (за исключением NK-клеток), и всем без исключения лимфоцитам, являющимся мононуклеарами.
Ядерно-цитоплазматическое соотношение у моноцитов – 1:1. Отсюда, очевидно, и произошло их название (от греческого «моно» – один и от греческого «цитос» – клетка).
Цитоплазма моноцитов богата лизосомами, которые содержат литические ферменты.
Если по особенностям строения (агранулоциты, мононуклеары) моноциты кажутся «близкими родственниками» лимфоцитов, то их происхождение выдаёт гораздо более «близкое родство» с гранулоцитами. Моноциты образуются в костном мозге из стволовых клеток миелоидного ряда (как и гранулоциты), только из их моноцитарно-макрофагального ростка. В сравнении со своими «родственниками»-гранулоцитами они действительно великаны – 18 – 20 микрон в диаметре, т.е., примерно, в три раза больше гранулоцитов.
Из костного мозга моноциты сразу попадают в кровь, где продолжается их созревание, но и там оно не заканчивается. Причём, в отличие от гранулоцитов, резервов моноцитов в костном мозге не существует. Правда, часть моноцитов в нём всё-таки остаётся и здесь «дозревает», превращаясь уже собственно в макрофаги. Но эта группа – вовсе не резерв. Для этих макрофагов костный мозг – место их «постоянной боевой службы», т.е. они выполняют функцию защиты данного органа.
Часть моноцитов остаётся в крови. Они либо циркулируют по ней, либо «стоят», примыкая к сосудистой стенке. Причём, последних примерно в 3,5 раза больше, чем первых.
Но большинство моноцитов мигрирует в различные ткани организма. Именно здесь они окончательно «дозревают» – трансформируются в тканевые макрофаги. В тканях макрофагов-моноцитов в 25 раз больше, чем в крови. Т.е. макрофаги костного мозга, о которых говорилось чуть выше, – это также тканевые макрофаги.
Больше всего тканевых макрофагов содержится в печени (около 56%), в лёгких их около 15%, селезёнке – около 15%, перитонеальной полости – около 8%. «Остаток» приходится на остальные ткани.
Главная функция, которую выполняют макрофаги – фагоцитоз. Они способны поглощать бактерии, простейших, вирусы, крупные инородные частицы и умершие клетки, очищая от последних организм. В отличие от гранулоцитов-микрофагов, макрофаги, фагоцитируя патоген, не погибают (их гибель возможна только при наличии у фагоцитированного материала каких-либо токсичных для макрофага свойств).
Фагоцитоз – типичнейшее проявление клеточного иммунитета (клеточного иммунного ответа). Таким образом, макрофаги (моноциты) – типичные клетки, обеспечивающие этот вид иммунитета.
Однако выполняют они и ещё одну функцию: презентуют на своей поверхности части поглощённых и переваренных ими патогенов. Эта презентация антигена активизирует иммунный ответ со стороны Т-лимфоцитов (ещё одних представителей именно клеточного иммунитета) и В-лимфоцитов, которые начинают выработку специфических антител. А вот это уже гуморальный уровень иммунитета, более того – иммунитет не врождённый, а приобретённый.
Т.е. одна и та же клетка обеспечивает и клеточный, и отчасти гуморальный иммунный ответ. И, кроме того, является частью как врождённого, так и приобретённого иммунитета. Перед нами яркая иллюстрация того, что разделение иммунитета на клеточный и гуморальный уровни во многом условно. Во всяком случае, эти уровни тесно взаимосвязаны. А также и пример того, что связаны между собой теснейшим образом также и врождённый, и приобретённый виды иммунитета (то, о чём мы говорили несколько выше, повествуя о «противостоянии» школ Эрлиха и Мечникова, и о чём ещё поговорим более подробно).
Сейчас же отметим ещё одно обстоятельство. В своё время открыватель явления фагоцитоза И.И. Мечников, наблюдая, как действуют макрофаги, пришёл к выводу, что они появляются непосредственно в органах, в них превращаются определённые клетки соединительной ткани (например, купферовские клетки печени, клетки эндотелия капилляров некоторых органов, гистоциты рыхлой соединительной ткани), а также моноциты крови. И.И. Мечников предложил назвать систему этих клеток ретикуло-эндотелиальной системой (РЭС). Позже в честь замечательного русского учёного ей дали также название системы макрофагов Мечникова.
Долгое время учение о РЭС не оспаривалось. Но наука идёт вперёд. И, как мы уже описали выше, сейчас известно, что макрофаги не рождаются в различных органах из клеток соединительной ткани. Место их рождения – клеточный мозг, откуда они мигрируют в кровь, а уже из последней проникают в ткани различных органов, где и происходит процесс их «дозревания» из моноцитов в собственно макрофаги. И.И. Мечников совершенно верно увязал моноциты крови с макрофагами, но ошибся относительно источника их появления в тканях других органов. Т.е. сейчас представление о РЭС как системе клеток различных органов, перерождающихся в макрофаги, – устарело. В наше время говорят лишь о системе мононуклеарных фагоцитов, т.е. системе макрофагов, по сути. Однако из этого нового официального наименования почему-то исчезло имя Мечникова, что мы считаем абсолютно недопустимым. Первооткрыватель фагоцитоза, выяснивший его происхождение и значение в защите организма, установивший наличие самой системы макрофагов в тканях организма, вполне заслужил, чтобы эта система носила его имя – система макрофагов (или система мононуклеарных фагоцитов) Мечникова. Ошибка же учёного в определении места зарождения макрофагов-моноцитов – лишь иллюстрация сложности, тернистости пути научного познания, никоим образом не отменяющая подлинных заслуг учёного, его открытий, в том числе и конкретно открытия системы макрофагов.
Таким образом, к системе клеточного иммунитета необходимо относить деятельность следующих клеток (все они – лейкоциты): Т-лимфоцитов, нулевых лимфоцитов, NK-клеток (натуральных киллеров), гранулоцитов-микрофагов (нейтрофилов и эозинфилов), моноцитов-макрофагов. Если во времена И.И. Мечникова и долгое время позже клеточный иммунитет сводился к фагоцитозу, т.е. к фагоцитам, то сейчас известно, что перечень клеток, обеспечивающих данный уровень иммунного ответа организма, значительно шире. И действуют они не только посредством фагоцитоза, но уничтожают вторгшийся патоген и другими способами.
Итак, повторим, клеточная иммунная защита связана с деятельностью иммунокомпетентных клеток, которые вступают с патогеном в непосредственный контакт и тем или иным способом уничтожают его.
Приобретённый иммунитет. Необходимо сказать, что на данный момент термин «приобретённый иммунитет» считается устаревшим. Вместо него в науке используется термин «адаптивный иммунитет».
Со своей стороны скажем, что с подобной заменой терминов не согласны. И вот почему. В самом деле, что такое адаптивный иммунитет? «Адаптивный» значит «приспособительный». Т.е. это иммунитет, который организм приобрёл, приспосабливаясь к условиям борьбы с каким-то новым для организма патогеном. Или, другими словами, иммунитет, который служит цели защиты организма от какого-то неизвестного ранее организму возбудителя заболевания.
Легко заметить, что в первом определении ключевым словом является слово «приобрёл», т.е. речь идёт всё-таки о приобретённом иммунитете (и тогда неясно, зачем его переименовывать в адаптивный).
Во втором же определении ключевым является указание на функцию – служит цели защиты от неизвестного патогена. Но здесь, во-первых, возникает логическое противоречие, т.к. логический ряд выстраивается из разнородных понятий. Действительно, ряд «врождённый, адаптивный» подобен ряду «синий, красный, квадратный». Термин «врождённый» указывает на происхождение иммунитета, а термин «адаптивный» – на его функцию. Во-вторых, всякий иммунитет адаптивный, даже врождённый, ибо данный иммунитет – это эволюционно возникшая у организма постоянная защита, позволившая ему приспособиться (адаптироваться) к жизни в условиях, когда некоторые микроорганизмы стали стремиться на нём паразитировать, т.е. стали для него патогенами.
Исходя из вышеизложенных соображений, повторяем, что считаем правильным употребление термина «приобретённый иммунитет».
Итак, приобретённый иммунитет – это иммунитет, который развивается у организма в течение жизни.
В данном случае разговор не будет идти о пассивном приобретённом иммунитете новорождённого (т.н. плацентарном или материнском), который исчезает у младенца после полугода.
Нас интересует иммунитет, возникающий у организма после проникновения в него патогена в ходе инфекционного процесса (постинфекционный иммунитет) или в результате искусственного введения в него ослабленного или мёртвого патогена (поствакцинальный иммунитет). Реакция организма в обоих случаях одинакова: главный защитный механизм – выработка антител.
Но при этом, как отмечают учёные, в общем-то, в организме действуют те же регуляторные механизмы, что и при врождённом иммунитете, т.е. процессы выделения, фагоцитоз, реактивность организма в целом, защитные свойства кожи и слизистых оболочек. Образование антител, которое считается специфической формой защиты, также можно рассматривать с точки зрения физиологических функций организма.
Таким образом, невосприимчивость организма обусловлена сложным комплексом защитных реакций, которые развиваются в целостном организме и неотделимы от общих физиологических закономерностей и механизмов. Подобно другим функциям организма, приобретённый иммунитет развивается в результате взаимоотношений организма с внешней средой. И тогда совершенно ясно, что теснейшим образом связаны между собой иммунитеты врождённый и приобретённый. Каждый из них – часть единого целого. Они действуют сообща. Для советской биологической и медицинской наук, шедших по стопам И.И. Мечникова, развивавших его взгляды, это было совершенно очевидно. Для науки западной всё это явилось своеобразным откровением. Но об этом чуть ниже. А сейчас вернёмся непосредственно к механизмам приобретённого иммунитета.
Для того, чтобы в организме начал вырабатываться главный элемент приобретённого иммунитета – антитела, необходимо внедрение в организм патогена, защиты от которого не обеспечивают механизмы врождённого иммунитета. В этом смысле данный патоген можно назвать новым для организма (конечно, новым – условно, т.к. новым в полном смысле этого слова он будет только при первом внедрении в организм; в дальнейшем организм его уже будет знать).
Всякий патоген для макроорганизма является антигеном (даже набором антигенов), т.е. в дословном переводе «чужеродным».
Антигены бывают полноценными и неполноценными.
Полноценные антигены способны вызывать образование антител и вступать с ними в реакцию, в результате которой антиген в той или иной степени обезвреживается (т.е. становится неопасным для организма). Полноценными антигенами являются, главным образом, вещества белковой природы.
Неполноценные антигены, или гаптены, вступают в реакцию с антителами, но не способны вызвать в организме образование антител. Неполноценными антигенами являются липоиды (т.е. жиры), высокомолекулярные углеводы и ряд других веществ. Гаптены становятся полноценными антигенами, т.е. приобретают способность вызывать образование антител, при добавлении к ним некоторого количества белка.
Бактерийная клетка состоит из полноценных антигенов – белков и неполноценных антигенов. В настоящее время для большинства бактерий доказано существование двух основных антигенов: термолабильного (разрушающегося при температуре 80 градусов Цельсия), связанного со жгутиками, носящего название жгутикового, или Н-антигена, и термостабильного (не разрушающегося при температуре 80 – 100 градусов Цельсия), связанного с цитоплазмой бактерий, так называемого соматического, или О-антигена. С потерей подвижности бактерией Н-антиген утрачивается. При иммунизации подвижными бактериями получаются антитела и к тому, и к другому антигену, причём, прежде всего, антитела к жгутиковому, а затем к соматическому антигену.
У брюшнотифозной палочки, у бактерий, вызывающих пищевое отравление, помимо Н- и О-антигенов, установлен ещё один особый антиген – антиген вирулентности (Vi-антиген).
Вирусы, как и другие микроорганизмы, обладают антигенными свойствами. Однако установлено, что антитела при внедрении вирусного патогена в организм образуются далеко не всегда. Несмотря на это, организм справляется с вирусной инфекцией в значительном количестве подобных случаев. Другими словами, механизм противовирусного иммунитета имеет определённые особенности.
Антитела – вещества белковой природы, образующиеся в организме в результате внедрения в него антигена.
Выше мы говорили, что антитела в небольшом количестве содержатся в крови здоровых, неиммунизированных людей. Это т.н. нормальные (естественные) антитела. Но интенсивно антитела начинают образовываться в организме в результате инфекции или иммунизации.
Антитела характеризуются тем, что соединяются только с теми антигенами, против которых они выработаны. Это явление получило название специфичности.
Как нам представляется, о специфичности антител надо говорить не в «точечном» смысле, имея в виду каждый раз вполне конкретную инфекцию, а в смысле определённого «интервала», в котором антитела могут образовываться на целый ряд близких (родственных) инфекций.
И тем не менее специфичность – это свойство, которое отличает приобретённый иммунитет от врождённого, основным признаком которого является как раз неспецифичность, проявляющаяся на всех уровнях действия последнего.
Антитела вступают в определённую реакцию с антигеном, которая характеризуется различными внешними проявлениями. Другими словами, антитела могут оказывать на антигены различное действие:
1) Агглютинация. Склеивание антителами микробов с последующим выпадением последних в осадок. Такие антитела называются агглютининами.
Защитное действие агглютининов надо признать ограниченным, поскольку многие агглютинированные микробы не погибают, а лишь теряют свою подвижность. При этом они не только остаются живыми, но и могут продолжать размножаться. Однако собранные в кучки микробы легче фагоцитируются и подвергаются воздействию других типов антител. Т.е. агглютинины участвуют в защите организма совместно с другими факторами иммунитета.
2) Бактериолиз. Растворение патогенных бактерий под действием антител. Такие антитела называются бактериолизинами.
Под влиянием бактериолизинов микробы лишаются подвижности, их тело разбухает, теряя типичную форму, и постепенно они превращаются в круглые образования (шары) и затем в аморфную массу.
При этом бактериолизины действуют на антиген совместно с комплементами, т.е. веществами белкового характера (см. выше), способствующими бактериолитическому действию антител. Комплементы, подобно ферментам, ускоряют реакцию, но при этом, в отличие от последних, связываются и непосредственно участвуют в реакциях в определённых количествах.
3) Бактерицидное действие. Ряд антител убивает бактерий. Их называют бактерицидные антитела. Однако бактерицидное и бактериолитическое действие антител – один и тот же процесс. И по какой схеме пойдёт воздействие антитела на микроба, зависит не от свойств антитела, а от особенностей микроба.
При бактерицидном действии сыворотки, содержащей антитела, наступает только гибель микробов. При этом микробы претерпевают сравнительно небольшие морфологические изменения (в этом заключается отличие от случая, когда сыворотка оказывает бактериолитическое действие).
4) Преципитация. Антитела могут при соприкосновении с антигеном вызывать образование осадка – преципитата. Подобные антитела именуются преципитинами. За этой реакцией может стоять как простое ослабление микробов, так и их гибель.
5) Нейтрализация ядовитого действия. Осуществляющие подобную функцию антитела – это антитоксины. Они появляются в сыворотке крови в ответ на выделение патогенами экзотоксинов.
6) Повышение фагоцитарной функции. Наличие подобного действия иммунной сыворотки на фагоциты заметил ещё И.И. Мечников. Вызывают такую реакцию два вида антител – опсонины (от латинского «opsono» – приготовляю пищу) и бактериотропины (или просто – тропины). Опсонины – термолабильные антитела, т.е. легко разрушаются при малейшем нагревании сыворотки. В отличие от них, бактериотропины (тропины) – термостабильны. И те, и другие действуют только в присутствии комплемента.
7) Нейтрализация вирусов. Считается отдельной функцией антител. Выполняют её вируснейтрализующие антитела.
Какие бы функции ни выполняли антитела, по какому бы принципу они ни действовали, все они являются белками группы глобулинов, точнее – иммуноглобулинов (условное обозначение – Ig).
Известно пять классов иммуноглобулинов человека: G, M, A, D, E. (условные обозначения соответственно – IgG, IgM, IgA, IgD, IgE). Они все являются антителами к каким-либо антигенам.
Ранее предполагалось, что каждому из видов воздействия антител на антигены соответствует определённый тип антител. Однако впоследствии оказалось, что тип реакции «антиген – антитело» определяется во многом физическими свойствами антигена.
И тем не менее определённая «специализация» между типами иммуноглобулинов существует.
Молекулы иммуноглобулинов всех классов построены из полипептидных цепей двух видов: лёгких (L), с молекулярной массой около 22 000, одинаковых для всех классов иммуноглобулинов, и тяжёлых (Н), с молекулярной массой от 50 000 до 70 000, в зависимости от класса иммуноглобулина. Структурные и биологические особенности каждого класса (в том числе и особенности взаимодействия с антигенами), таким образом, обусловлены особенностями строения их тяжёлых цепей.
Каждое антитело способно распознавать не только уникальный элемент какого-либо патогена, отсутствующий в организме, т.е. антиген, но и, в пределах данного антигена, – определённый его участок – эпитоп. Именно с ним и вступают в реакцию активные центры антител – паратопы.
Подобная специфичность антител обусловлена вариабельностью отдельных участков как тяжёлых, так и лёгких цепей иммуноглобулинов (эти участки обозначаются –V). При этом в цепях есть и постоянные (константные) участки (обозначаются – С). В молекуле иммуноглобулина образуются два типа антигенсвязывающих фрагментов – т.н. Fab (их два) и Fc. Fab отвечает непосредственно за связывание эпитопов антигена, а Fc может связывать комплемент и взаимодействовать с клеточными рецепторами макрофагов, моноцитов, гранулоцитов, лимфоцитов.
Классы иммуноглобулинов IgG, IgD, IgE и в значительной степени IgA по своему строению (морфологии) – т.н. мономеры – имеют вид буквы «Y». Среди IgA есть подкласс димеров, имеющих форму соединённых между собой под углом 180 градусов двух букв «Y» (т.н. секреторные IgA).
Наконец, IgM – это большие иммуноглобулины – пентамеры, т.е. имеющие форму пяти соединённых между собой букв «Y» (похожи на снежинку).
Антитела, являющиеся иммуноглобулинами М (IgM). Как полагают учёные, IgM – наиболее эволюционно древние иммуноглобулины. Предположение вполне логичное и обоснованное, учитывая то обстоятельство, что именно иммуноглобулинами М являются в значительной степени нормальные (или естественные) антитела, присутствующие даже в неинфицированном организме и представляющие собой часть (один из элементов) неспецифического врождённого гуморального иммунитета.
Именно IgМ синтезируются на первой стадии иммунной реакции при первом проникновении микроорганизма-патогена в организм (или в том случае, если у организма на этот патоген «плохо работает память»). Процесс их синтеза достаточно длительный – иммунной системе надо время, чтобы распознать возбудителя, оптимальным путём отреагировать на него и защититься.
При разных инфекциях процесс образования IgМ занимает разное время. Скажем, при гриппе и ОРВИ – примерно неделю. За это время IgM синтезируются и побеждают вирус (если с иммунитетом у человека всё в порядке). Лечебные же мероприятия играют здесь исключительно вспомогательную роль. Отсюда-то шутка врачей про грипп и ОРВИ: «Если будешь лечить – пройдёт за неделю, не будешь – пройдёт за семь дней». При других инфекциях процесс выработки иммуноглобулинов М и их борьба с патогенами может занимать недели, месяцы (гепатиты, боррелиоз), а то и годы (скажем, в случае ВИЧ).
IgМ – большие иммуноглобулины-пентамеры (самые большие из иммуноглобулинов), настоящие «боевые» молекулы, имеющие различные агрессивные к вторгнувшимся патогенам рецепторы. Их молекулярная масса 900 000. Из иммуноглобулинов сыворотки IgМ составляют 5 – 10%.
Активность иммуноглобулинов класса М чрезвычайно велика, спектр действий – широк. Они обладают протеолитической активностью, т.е. могут растворять (расщеплять) молекулы патогенов (лизис). Могут убивать микроорганизмы-патогены, причём в одиночку, без участия других механизмов (бактерицидное действие). Высоки их агглютинирующий и опсонирующий эффекты. Также они активируют систему комплемента. Словом, IgM – «универсальные солдаты».
Антитела, являющиеся иммуноглобулинами G (IgG). Это основной класс антител, составляющий 70 – 80% от всех иммуноглобулинов сыворотки крови. В процессе первичного иммунного ответа (после первого введения антигена) они появляются позднее IgM-антител, но образуются раньше при вторичном иммунном ответе (т.е. после повторного введения антигена; правда, при условии, что организм этот антиген «запомнил»). Другими словами, IgG – это и есть антитела «памяти» организма на тот или иной патоген. Однако примечательно, что, как выяснилось, IgG есть и среди нормальных антител, т.е. они также входят в систему неспецифического врождённого иммунитета.
IgG гораздо меньше IgM. Они являются мономерами в виде буквы «Y» с молекулярной массой около 160 000. Тем не менее эти иммуноглобулины обладают довольно значительным набором функций (что и делает их основным классом иммуноглобулинов, обеспечивающих приобретение организмом иммунитета к неизвестным ранее ему патогенам). В их «ведении» находится, в основном, та самая специфичность антител, т.е. реакция на конкретный патоген. Несмотря на свой малый размер, в сравнении с IgM, IgG обладают высокой литической и бактерицидной способностью (причём могут убивать патогены также, как и IgM, без участия других иммунных механизмов). И пусть эти функции выражены у них слабее, чем у IgM, но, учитывая количество IgG, суммарный эффект получается весьма мощным. Сверх того, иммуноглобулины класса G активируют систему комплемента. Это единственный класс антител, который может проникать через плаценту и обеспечивать иммунологическую защиту плода.
Антитела, являющиеся иммуноглобулинами А (IgA). Составляют 10 – 15% от сывороточных иммуноглобулинов. Молекулярная масса – 170 000 и выше. Мономеры составляют около 80% от их количества, димеры – около 20%.
Способностью активировать комплемент IgA не обладают. Зато обладают протеолитической активностью.
Большая часть IgA играют роль «местной защиты», т.к. синтезируются плазматическими клетками, находящимися преимущественно в подслизистых тканях, на слизистой эпителиальной поверхности дыхательных путей, урогенитального и кишечного тракта, почти во всех экскреторных железах. В общую циркуляцию попадает меньшая часть IgA.
Антитела, являющиеся иммуноглобулинами Е (IgE). Молекулярная масса – 196 000. В сыворотке оказываются в крайне незначительных количествах. Также их очень мало в секреторных жидкостях. Доля от всех иммуноглобулинов – от 0,001 до 0,003%. Не обладают ни литической, ни бактерицидной активностью, не активируют систему комплемента. Особенность IgE состоит в том, что они способны фиксироваться на базофилах и тучных клетках (разновидности базофилов, находящейся в соединительных тканях), что объясняется наличием на указанных клетках большого количества рецепторов к Fc-фрагментам IgE. При соединении фиксированных на тучных клетках или базофилах иммуноглобулинов Е с антигеном возникает процесс дегрануляции этих клеток (напомним, что базофилы и тучные клетки (разновидность базофилов) являются гранулоцитами), в результате чего высвобождается гистамин. Это приводит к развитию гиперчувствительности немедленного типа (другими словами, к аллергической реакции). Поэтому ранее IgE назывались реагинами. Сейчас данное название признано устаревшим.
Выше уже говорилось, что базофилы и тучные клетки отвечают за гиперчувствительность организма. Так вот, оказывается, эту функцию они выполняют не сами по себе. Их «стимулируют» к этому иммуноглобулины класса Е. Т.е. мы вновь наблюдаем связь клеточного и гуморального иммунных ответов, а также врождённого и приобретённого иммунитетов.
Антитела, являющиеся иммуноглобулинами D (IgD). Молекулярная масса – около 180 000. Составляют всего 0,3% от общего количества иммуноглобулинов. Т.е. IgD так же, как и IgE, немного (хотя и больше последних примерно в 10 раз). Роль иммуноглобулинов D на настоящий момент не совсем ясна учёным. Однако известно, что они в качестве рецепторов присутствуют на поверхности В-лимфоцитов. Причём они появляются на мембране относительно зрелых клеток. Поэтому их наличие является свидетельством зрелости В-лимфоцитов.
Все без исключения классы иммуноглобулинов, т.е. все антитела, вырабатываются В-лимфоцитами.
Процесс этой выработки выглядит следующим образом 4.
Поверхность зрелых В-лимфоцитов покрыта густым слоем отростков, являющихся антиген-распознающими рецепторами. Эти рецепторы, «заякоренные» (существует такой почти официальный термин в иммунологии), представляют собой, как нам уже известно, иммуноглобулины класса D, т.е. антитела. Факт сам по себе очень интересный. Получается, что В-лимфоциты вырабатывают определённое количество антител, в общем-то, без непосредственного участия антигена. Повторяем, в данном случае о нормальных (естественных) антителах, участниках системы врождённого неспецифического гуморального иммунитета, мы речь не ведём. Но даже непосредственные участники системы приобретённого иммунитета, т.н. специфические антитела, появляются в какой-то части без антигенной стимуляции. Это – рецепторы В-лимфоцитов, являющиеся IgD.
Обычно утверждается, что эти рецепторы ориентированы на соответствующие антигены. Утверждение как верно, так и не верно. Весь вопрос в том, что понимать под словами «специфичность» и «соответствующий антиген».
В своё время Эрлих и его последователи полагали, что на клетках крови, отвечающих за выработку антител (тогда не только не знали о В-лимфоцитах, но и о лимфоцитах вообще; так что, разговор о клетках, вырабатывающих антитела, шёл гипотетически-теоретический, это была лишь гипотеза), есть некие рецепторы, каждый из которых отвечает за распознание строго конкретного антигена. Однако потенциальных возбудителей заболеваний в окружающей среде существует великое множество (и не перечесть!). Тогда какое же количество рецепторов должно содержаться на клетках, синтезирующих антитела? Да и откуда они могли там взяться, если организм с какой-то инфекцией не был ранее знаком (иммунитет-то приобретённый)? Это были вопросы, на которые ни Эрлих в своё время, ни его последователи значительно позже ответить не могли. И указанные слабые места прекрасно видел И.И. Мечников и его последователи, выдвигая на первое место в иммунном ответе организма фагоцитоз.
Подобные вопросы вполне можно было бы адресовать и современным учёным, говорящим о специфичности и ориентированности на соответствующие антигены антител-рецепторов В-лимфоцитов.
Но сейчас ответ на такие вопросы отчасти уже есть. Рецепторы В-лимфоцитов (и не только их) распознают не конкретный патоген (антиген), а инвариантные химические структуры, характерные для целого класса патогенов. Т.е., можно сказать, работают в «определённом диапазоне». Например, какие-то рецепторы распознают грамотрицательные бактерии, какие-то – грамположительные, какие-то – определённые типы вирусов, какие-то – грибковые инфекции, какие-то – белки одноклеточных паразитов и т.д. и т.п.
Словом, если читатель где-то встречает утверждение об «ориентированности рецепторов В-лимфоцитов на соответствующие (конкретные) антигены», он должен понимать, что речь идёт об «определённом диапазоне».
Правда, не совсем ясно появление даже «диапазона в работе» антител-рецепторов В-лимфоцитов. Как могла появиться их реактивность даже в пределах подобного «люфта»? Свидетельствует ли это о прошедшем когда-то очень давно контакте вида с инфекцией из соответствующего «диапазона»? На эти вопросы убедительного ответа пока нет.
Но всё же вернёмся непосредственно к процессу выработки антител В-лимфоцитами.
Итак, выработанные В-лимфоцитами антитела-рецепторы (IgD) находятся на «боевом дежурстве». Их активация, за которой следуют трансформации В-лимфоцитов, происходит при внедрении в организм антигена.
Первичный иммунный ответ на внедрение «нового» антигена (или антигена, который был «забыт» организмом, и, следовательно, «кажется» ему «новым») включает несколько этапов:
1-й этап – латентная (т.е. скрытая) фаза. Она длится несколько суток (как правило, не менее четырёх дней) с момента внедрения антигена. В этот период происходит фагоцитоз антигена. Т.е. макрофаги, находящиеся в тканях организма, как сказали бы ранее – клетки ретикуло-эндотелиальной системы, поглощают антигены и перерабатывают их. При этом они презентуют часть антигена на своей поверхности. Этот антиген распознаётся иммуноглобулиноподобными рецепторами Т-лимфоцитов-помощников, т.е. Т-хелперов. Сходные с антигеном молекулы отрываются от рецепторов Т-хелперов и присоединяются к макрофагам через свои Fc-участки. Таким образом, на макрофагах образуется «удвоенная обойма» антигенных молекул, которая, в свою очередь, распознаётся специфическими рецепторами В-лимфоцитов. После получения подобного «массированного» «удвоенного» сигнала антиген распознаётся В-лимфоцитами, которые начинают свою дифференциацию в плазматические клетки и В-клетки памяти. Таким образом, чтобы процесс иммунного ответа «запустился», в «обычном» случае требуется двойное распознавание антигена: Т-хелперами и В-лимфоцитами. Последним для распознавания требуется «удвоенная доза» антигена, «удвоение» которой как раз и обеспечивается Т-хелперами.
На 2-м этапе (лог-фазе) плазматические клетки, образовавшиеся из мигрировавших в лимфатические узлы, селезёнку, костный мозг и остающихся в крови В-лимфоцитов, начинают активную выработку специфических антител. Удвоение количества вырабатываемых антител происходит каждые 2 – 4 часа. Максимум выработки достигается на 10 – 12 сутки. Первоначально синтезируются антитела, относящиеся к иммуноглобулинам класса М, т.е. те самые «универсальные бойцы», которые способны дать организму максимальную защиту. При максимальной выработке антител происходит постепенное переключение их синтеза с группы М на группу G.
Далее, на 3-м этапе (кто-то говорит о 3-м и 4-м этапах) происходит снижение количества вырабатываемых антител. Организм входит в состояние гомеостаза, т.е. равновесия.
Ещё раз подчеркнём, что при первичном иммунном ответе основная масса вырабатываемых антител – это иммуноглобулины М. Переключение на выработку IgG происходит на завершающих этапах первичного иммунного ответа.
Подобный эффект вполне объясним: при приближающейся победе над инфекцией организму становится не только не выгодно, но просто опасно «содержать большую армию до зубов вооружённых бойцов» (IgM). Они, чего доброго, при недостатке питания могут начать «пожирать» «своих». Поэтому организм производит своеобразную «демобилизацию» наиболее «боевых отрядов», т.е. IgM, – он начинает вырабатывать IgG. Более того, IgM распадаются, образовывая IgG.
В сущности, как отмечалось выше, иммуноглобулины класса G – это и есть молекулы «памяти». Это они «запоминают» конкретный антиген. Это именно их при повторном внедрении данного антигена и начнут в ускоренном режиме синтезировать В-клетки памяти, т.е. вторая разновидность В-лимфоцитов (первая – плазматические клетки).
В подобной ускоренной выработке В-клетками памяти IgG и заключается вторичный иммунный ответ. Для него характерны укороченный латентный (скрытый) период (примерно вдвое короче, чем при первичном иммунном ответе), более быстрое наращивание количества антител и большее их максимальное значение. Причём, при вторичном иммунном ответе идёт сразу образование IgG-антител. Т.е. В-клетки памяти синтезируют сразу антитела, «заточенные» на борьбу с конкретным антигеном, те самые «помнящие» данный антиген молекулы IgG. Образующиеся при этом плазматические клетки также синтезируют IgG. Количество антигена может быть совсем незначительным, но иммунный ответ всё равно воспоследует. Таким образом организм защищается от инфицирования. Микробам попросту не даётся шанса развить в организме свою деятельность.
Особо обращаем внимание читателя: «иммунологическая память», как основное проявление приобретённого иммунитета, не означает постоянного наличия в крови или каких-то органах и тканях готовых антител против тех или иных заболеваний, с которыми организму уже приходилось сталкиваться. Её существование означает наличие В-клеток памяти, которые при повторном внедрении антигена сразу же «выбрасывают» специфические IgG-антитела и стимулируют плазматические клетки на выработку таких же IgG-антител. Продолжительность подобной «памяти» может быть различна. Но в любом случае речь идёт о годах иммунитета.
Однако существуют случаи, когда приобретённый иммунитет долгим не бывает. Вырабатываемые в ходе борьбы с патогеном антитела оказываются нестойкими и «живут» короткие (исчисляемые всего лишь месяцами, а, возможно, и неделями) сроки. И в самом факте этой нестойкости нет ничего удивительного – мы уже отмечали, что антитела (за исключением натуральных) просто так по организму «не болтаются», а вырабатываются в нужный момент В-клетками памяти и соответствующим образом индуцированными плазматическими клетками. Но в том-то и дело, что в ряде случаев В-клеток памяти попросту не образуется. Есть ряд антигенов (например, бактериальные липосахариды), которые могут стимулировать антителообразование и без макрофагов, и без Т-хелперов (их так и называют Т-независимыми антигенами). Распознавание антигена в этом случае обеспечивают сами В-лимфоциты. Они преобразуются в плазматические клетки и вырабатывают иммуноглобулины класса М. IgM справляются с инфекцией. Но образование В-клеток не происходит. Не образуются и иммуноглобулины класса G, т.е., по сути, те самые молекулы «памяти», «запоминающие» данный антиген. В таком случае вырабатываемый иммунитет на соответствующие антигены оказывается неустойчивым, и повторное внедрение этих антигенов в организм вторичного иммунного ответа (т.е. ускоренного и усиленного) не вызывает. Другими словами, организм будет опять «переболевать» эту болезнь5.
* * *
Итак, мы рассмотрели все уровни иммунитета: барьерный, гуморальный, клеточный.
Теперь скажем, что чёткое их разграничение – это всего лишь схема, модель, которая, в какой-то мере упрощая реальную картину, позволяет выделить главные особенности иммунной защиты организма на каждом из этапов этой защиты. Данная схема-модель подобна любым другим научным моделям, ничем им не уступает: всякая научная модель подаёт процесс упрощённо. Но делает это с единственной целью – выявить в процессе, явлении, событии главные его особенности, характерные его черты, закономерности.
Все элементы «иммунной триады» теснейшим образом связаны между собой. А о гуморальном и клеточном иммунитете многие исследователи вообще говорят, что их разделение во многом условно.
В самом деле, даже в барьерной защите участвуют химические вещества, вырабатываемые клетками организма. Даже клетки кожи (т.е. самого что ни на есть механического барьера) имеют, как выяснилось, рецепторы, реагирующие на антиген, т.е. элемент, присущий, казалось бы, только участникам гуморальной защиты. В барьерных же приспособлениях (эпителий дыхательных путей, печень и др.) присутствуют макрофаги – одни из главных участников клеточной защиты. В то же время лимфоузлы, всегда трактовавшиеся как элемент внутренней барьерной защиты, оказались периферийными органами лимфатической системы, и именно в них находится большое число лимфоцитов, отвечающих как за гуморальный, так и за клеточный иммунный ответ. Синтезируемые лимфоцитами антитела-иммуноглобулины IgЕ, как всякие антитела, являющиеся элементом гуморальной защиты, активируют деятельность гранулоцитов-базофилов, т.е. элементов клеточной защиты. С другой стороны, макрофаги (т.е. участники клеточного иммунного ответа) запускают процесс распознавания антигенов В-лимфоцитами, т.е. участвуют в запуске гуморального ответа. Вещества, содержащиеся в крови и тканевых жидкостях организма, обладающие бактерицидным действием (лизоцим, бета-лизины, дефензины, пропердин и др.), т.е. являющиеся элементами гуморального ответа, синтезируются различными клетками. Интерфероны начинают выполнять свою защитную функцию в инфицированных клетках и лишь затем, попадая в межклеточные жидкости, инициируют «интерферонный ответ» здоровых клеток. Т.е. здесь мы опять наблюдаем сочетание клеточной и гуморальной защиты. И подобные примеры можно продолжать.
Однако сейчас хотелось бы вернуться к вопросу о том, какой иммунитет более важен для организма: врождённый или приобретённый? Ибо, в конечном итоге, к этому вопросу сводятся противоречия между школой Эрлиха, настаивавшей на главной роли антител в иммунной защите организма, и школой Мечникова, отдававшей приоритет фагоцитозу.
Безусловно, ясно одно: оба вида иммунитета действуют сообща. И тот, и другой можно рассматривать с точки зрения физиологических функций организма.
Но вопрос о первенстве подобные факты не снимают, не устраняют они и противоречия между двумя трактовками иммунной защиты человеческого организма – «эрлиховской» и «мечниковской».
В конце 80-х – 90-х годах прошлого столетия (т.е. ХХ) работы американских иммунологов Чарльза Джэнуэя и Руслана Меджитова (выходца из распавшегося СССР, окончившего Ташкентский государственный университет и аспирантуру МГУ) совершили, буквально, «Великую иммунологическую революцию» (термин используется самими иммунологами, микробиологами, молекулярными биологами). Они предположили, а затем доказали, что на всех клетках человеческого организма, отвечающих за иммунную защиту (подчёркиваем – на всех, а не только на лимфоцитах) существуют рецепторы, распознающие какие-то структурные компоненты патогенов, причём не конкретные антигены, а инвариантные химические структуры, характерные для целого класса патогенов. Типов подобных рецепторов в человеческом организме оказалось немногим более десятка. И вот этот-то «условный» десяток «вычисляет» все патогены (антигены), проникающие в наш организм, и запускает механизм иммунной защиты, который является, в общем-то, комплексным – врождённо-приобретённым. Просто до приобретённого далеко не всегда доходит дело – патогены уничтожаются врождёнными неспецифическими средствами защиты.