Физика и жизнь. Законы природы: от кухни до космоса Черски Элен
Моим родителям, Яну и Сьюзен
Будучи студенткой университета (я тогда жила у Наны), я очень много времени проводила за чтением учебника по физике. Нана, простодушная северянка, испытала чувство, близкое к потрясению, когда я ей сказала, что изучаю структуру атома.
«Вот это да! – воскликнула она. – Это что? И что ты сможешь делать, когда прочтешь эту книгу?»
Гм, очень хороший вопрос…
Введение
По сути, мы живем на границе, отделяющей поверхность Земли от остальной Вселенной. В ясную ночь любой из нас может наслаждаться видом множества ярких, неизменных и хорошо знакомых каждому звезд, которые служат для нас ориентирами, определяющими уникальное место Земли в космосе. Эти звезды видели представители всех человеческих цивилизаций, когда-либо существовавших на нашей планете, но никто не мог к ним прикоснуться. Наш же дом здесь, на Земле, – полная противоположность вечному и неизменному звездному небу: он беспорядочный, хаотический, изменчивый, беспрерывно рождающий какие-то новшества и изобилующий вещами, которые можно не только потрогать, но и изменить или использовать в своих целях. Эта книга понравится всем, кто интересуется устройством Вселенной и механизмами ее существования. Физический мир на удивление многообразен, поскольку одни и те же принципы и одни и те же атомы, всячески сочетаясь между собой, порождают несметное число исходных комбинаций. Тем не менее такое разнообразие не игра случая. В нашем мире масса закономерностей и повторяющихся структур.
Если налить немного молока в чашку с чаем и быстро перемешать ложечкой, то перед глазами предстанет нечто наподобие маленького водоворота, спираль из двух жидкостей, увлекающих друг друга в кружение и едва соприкасающихся между собой. В чашке с чаем такая спираль продержится буквально доли секунды, после чего жидкости полностью смешаются. Но даже этого времени достаточно, чтобы заметить характерную картину, которая служит кратким напоминанием о том, что жидкости при смешивании сперва образуют красивую спиралевидную воронку, а не мгновенно превращаются в однородную массу. Аналогичную картину можно наблюдать и в других местах, причем по той же причине. При взгляде на Землю из космоса нередко можно увидеть очень похожие завихрения в облаках – в местах встречи потоков теплого и холодного воздуха, кружащихся вокруг друг друга, вместо того чтобы просто перемешаться между собой. В Британии такие завихрения регулярно перемещаются через Атлантический океан, с запада на восток, чем и объясняется изменчивость британской погоды. Эти воздушные «водовороты» образуются на границе между холодным полярным воздухом, направляющимся с севера, и теплым тропическим воздухом с юга. Холодные и теплые воздушные массы гоняются друг за другом по кругу (что отчетливо видно на спутниковых снимках) и известны как области низкого давления, или циклоны. По мере вращения этих спиралей мы становимся свидетелями быстрых переходов между ветреной, дождливой и солнечной погодой.
На первый взгляд у вращательного движения урагана мало общего с тем, что происходит в чашке чая при помешивании ложечкой, однако сходство наблюдаемых в обоих случаях картин не просто совпадение. Оно указывает на общий, более фундаментальный принцип, под которым скрывается некая систематическая для всех подобных явлений, открытая, исследованная и проверенная в ходе строгих научных экспериментов, проводившихся не одним поколением ученых, основа. Этот процесс открытия и есть наука: непрерывное уточнение и проверка новой трактовки тех или иных явлений окружающего мира, наряду с изысканиями, вскрывающими новые факты, требующие осмысления.
Иногда ту или иную картину или закономерность достаточно легко обнаружить в новых местах, а иногда такая связь не столь заметна, и когда в конце концов ее удается выявить, ученый испытывает истинное удовлетворение. Например, мало кто из нас догадывается о том, что у скорпионов и велосипедистов много общего. А между тем и скорпионы, и велосипедисты применяют для выживания один и тот же научный прием – хотя и с диаметрально противоположными целями.
Безлунные ночи в североамериканской пустыне холодные и тихие. Разглядеть что-либо на земле практически невозможно, поскольку она освещается лишь тусклым светом звезд. Поэтому, чтобы отыскать одно особое сокровище, нужно вооружиться специальным фонарем (он должен излучать ультрафиолетовый, или, как его иногда называют, «черный свет», невидимый невооруженным глазом) и отправиться в темноту ночи. Сказать наверняка, в какое именно место направлен луч такого фонаря, нельзя, потому что он невидим. Но в какой-то момент вы замечаете на земле свечение – точнее говоря, бегущий во тьме яркий зловещий зелено-голубой огонек. Это и есть скорпион.
Именно так охотятся на скорпионов любители этих жутких черных представителей класса паукообразных. В их наружном скелете есть пигменты, поглощающие невидимый для человеческого глаза ультрафиолетовый свет и испускающие за счет этого свет, который мы можем видеть. Это действительно хитрый научный прием, хотя, если скорпионы у вас ничего, кроме чувства страха и отвращения, не вызывают, вы вряд ли оцените его по достоинству. Такой трюк со светом называется флуоресценцией. Считается, что зелено-голубое свечение скорпионов помогает им адаптироваться к окружающей среде и находить в темноте надежные укрытия от врагов. Ультрафиолетовый свет всегда присутствует в окружающем нас мире, но в темноте, когда солнце уже скрылось за горизонтом, видимый свет практически исчезает и остается только ультрафиолетовый. Поэтому, если скорпион выберется из укрытия, он начнет светиться и будет легко обнаружен врагами, поскольку вокруг него не будет ничего, что тоже светилось бы зеленым или голубым светом. Даже если скорпион лишь слегка высунется из своего убежища, он увидит собственное свечение, которое даст ему знать, что нужно спрятаться получше. Весьма элегантная и эффективная система сигнализации, не так ли? По крайней мере она была таковой до появления в пустыне людей с фонарями, излучающими ультрафиолетовый свет.
К счастью для арахнофобов[1], чтобы наблюдать явление флуоресценции, вовсе не обязательно отправляться ночью в пустыню, где обитают скорпионы. Это явление зачастую можно наблюдать даже утром в пасмурную погоду в городе. Обратите внимание на велосипедистов, а точнее, на их заметные издалека куртки, которые кажутся чересчур яркими по сравнению с окружающей средой. Создается впечатление, что эти куртки светятся – и это действительно так. В пасмурные дни плотная облачность препятствует проникновению видимого света, однако значительная часть ультрафиолета все же проходит сквозь облака. Специальные пигменты, содержащиеся в куртках велосипедистов, поглощают его и вырабатывают видимый свет. Это полный аналог «технологии», применяемой скорпионами, но с диаметрально противоположной целью. Велосипедисты хотят светиться, поскольку так они станут заметнее на дороге, что минимизирует риск оказаться жертвой ДТП. Такое использование флуоресценции сродни бесплатному завтраку: мы особо не задумываемся о существовании и действии ультрафиолетового света, поэтому ничего не теряем, когда он превращается в нечто, что можно обернуть себе во благо.
Замечательно, что такое вообще возможно, но лично меня радует то, что некое физическое явление оказывается не просто любопытным фактом, а инструментом, помогающим в повседневной жизни. В данном случае оно помогает выжить скорпионам и велосипедистам. Оно же вызывает свечение тоника (газированной воды, добавляемой в крепкие алкогольные напитки), так как хинин, содержащийся в тонике, флуоресцирует под воздействием ультрафиолетового света. На том же принципе основано действие отбеливателей, добавляемых в стиральные порошки, и ручек-маркеров. Увидев в очередной раз фрагмент текста, подчеркнутый маркером, вспомните, что маркерные чернила выступают в качестве детектора ультрафиолетового света: хотя он невидим для человеческого глаза, свечение маркерных чернил говорит о том, что он на них воздействует.
Я изучала физику потому, что она объясняет многие интересующие меня явления. Это дало мне возможность понять механизмы, приводящие в действие окружающий мир, а главное – позволило самой выяснить принцип работы некоторых из них. Несмотря на то что сейчас я могу с полным правом называть себя профессиональным физиком, множество задач мне удалось решить самостоятельно, не прибегая к помощи научных лабораторий, сложных компьютерных программ или дорогостоящего экспериментального оборудования. Открытия, которые принесли мне наибольшее удовлетворение, я сделала абсолютно случайно, когда просто пыталась разобраться в заинтересовавших меня моментах и даже не помышляла о занятии наукой. Уже тогда я пришла к выводу, что знание базовых законов физики превращает окружающий мир в нечто наподобие коробки с игрушками.
Как по мне, рассуждения о науке, которую можно найти на кухне, в саду или на городской улице, всегда отдают снобизмом. Многим кажется, что это просто способ занять детей каким-либо полезным делом, не несущий никакой практической пользы для взрослых. Взрослый человек может, к примеру, купить книгу об устройстве Вселенной; и эта тема считается для него более подходящей. Но при таком подходе мы упускаем из виду нечто очень важное: универсализм и повсеместное действие законов физики. Она повсюду. Обычный тостер может немало поведать о некоторых самых фундаментальных законах физики, к тому же преимущество тостера заключается в том, что он наверняка уже стоит у вас на кухне и вы можете ежедневно наблюдать его в действии. Прелесть физических законов – именно в их универсальности: они актуальны и на кухне, и в самых отдаленных уголках Вселенной. Из наблюдений за работой тостера вы (даже если вас не интересует температура Вселенной) по крайней мере будете знать, почему он выдает вам горячие гренки. Но как только вы усвоите физический закон, на котором основан принцип действия тостера, вы станете распознавать его во многих других местах, причем некоторые из этих «других мест» окажутся одними из самых впечатляющих достижений человеческого общества. Изучение физических законов, применяемых в повседневной жизни, – прямой путь к постижению фундаментальных знаний об окружающем нас мире, которые необходимы каждому гражданину для полноценного участия в жизни общества.
Как отличить сырое яйцо от вареного, не разбивая его? Есть простой способ это узнать. Положите яйцо на гладкую твердую поверхность и придайте ему вращение вокруг собственной оси (примерно так, как запускаете волчок). Через несколько секунд слегка коснитесь яйца пальцем; прикосновение должно быть достаточным лишь для того, чтобы остановить его вращение. Яйцо побудет в неподвижности секунду-другую, после чего может медленно продолжить вращение. Сырое и вареное яйцо внешне выглядят одинаково, но состояние их внутреннего содержимого совершенно разное. В этом и заключается секрет метода, позволяющего их отличить. Касаясь пальцем вареного яйца, вы останавливаете объект с цельной практически твердой «начинкой». В случае сырого яйца вы останавливаете только его оболочку, а жидкое содержимое продолжает вращение и через пару секунд увлекает за собой оболочку, возобновляя ее вращение. Любой из вас может легко проверить эффективность данного метода. Это один из важных физических принципов, гласящий, что объекты стремятся к сохранению движения при отсутствии воздействия сторонних сил. Суммарная величина вращения яичного белка сырого яйца остается неизменной, поскольку не существует каких-либо причин для ее изменения. Это называется сохранением углового момента (количества движения). В вареных яйцах такой механизм просто не срабатывает.
Космический телескоп «Хаббл», вращающийся вокруг Земли с 1990 года, сделал множество впечатляющих снимков космоса. С его помощью мы получили изображения Марса, колец Урана, старейших звезд Млечного Пути, спиральной галактики Сомбреро в созвездии Девы и гигантской Крабовидной туманности. Но когда вы свободно парите в космическом пространстве и видите далекие звезды в виде крошечных светящихся точек, как вы определите свое точное местоположение? Как узнать, где «верх», а где «низ», где «впереди», а где «сзади»? На телескопе «Хаббл» установлено шесть гироскопов, каждый из которых представляет собой нечто вроде колеса, вращающегося со скоростью 19 200 оборотов в секунду. Сохранение углового момента означает, что эти колеса будут вращаться с указанной скоростью ввиду отсутствия внешней силы, способной ее замедлить. А ось вращения каждого колеса неизменно указывает в одном и том же направлении, поскольку каких-либо причин для его изменения нет. Эти гироскопы задают «Хабблу» некое исходное направление (направление отсчета), что позволяет оптической системе телескопа зафиксироваться на требуемом удаленном объекте на сколь угодно долгое время. Физический принцип, используемый для правильного ориентирования в пространстве одного из самых совершенных устройств, созданных нашей цивилизацией, можно продемонстрировать у себя на кухне с помощью обычного яйца.
Именно поэтому я люблю физику. Все, что вы узнаете, обязательно найдет полезное применение в той или иной области человеческой деятельности. Изучение физики – весьма увлекательное приключение, потому что заранее невозможно определить, куда оно нас приведет. Насколько нам известно, физические законы, которые мы наблюдаем на Земле, действуют во всей Вселенной. Со многими из них может познакомиться каждый из нас и самостоятельно проверить их действие. То, что можно узнать с помощью обычного яйца, выливается в повсеместно применяемый принцип. Вооружившись знанием этих принципов, вы начинаете совершенно иначе смотреть на окружающий мир.
В прошлом информация ценилась гораздо больше, чем сейчас. Люди добывали ее по крупицам и потому очень ею дорожили. Сегодня мы живем на берегу океана знаний, где регулярно случаются цунами, угрожающие нашему благоразумию. Зачем же вам, человеку в здравом уме и твердой памяти, искать дополнительные знания и, следовательно, дополнительные сложности? Космический телескоп «Хаббл» замечателен во всех отношениях, но какая от него польза лично вам? Разве время от времени он будет смотреть вниз, чтобы, к примеру, помочь вам найти ключи от квартиры, когда вы опаздываете на важное совещание?
Люди испытывают интерес к окружающему миру, и им нравится удовлетворять свое любопытство. Этот процесс становится еще увлекательнее, когда вы сами открываете для себя что-то новое или совершаете такие открытия совместно с другими. К тому же физические принципы, которые вы постигаете в ходе тех или иных экспериментов, наблюдаются в погодных явлениях, применяются в медицинских технологиях, мобильных телефонах, самоочищающейся одежде и термоядерных реакторах. Современная жизнь полна сложных решений. Целесообразно ли покупать дорогостоящую компактную люминесцентную лампу? Не навредит ли здоровью оставленный на ночь включенным мобильный телефон рядом с кроватью? Следует ли доверять прогнозу погоды? Так ли важно наличие в моих очках поляризованных линз? Знание базовых принципов как таковых зачастую не позволит вам получить правильные ответы, но зато предоставит контекст, необходимый для постановки правильных вопросов. И если мы привыкли работать над собой, то не почувствуем себя беспомощными, не найдя ответа с первой попытки. Мы будем понимать, что ситуация наверняка прояснится, стоит еще немного пошевелить мозгами. Критическое мышление крайне важно для понимания окружающего мира – тем более что рекламодатели и политики изо всех сил пытаются убедить нас в том, что они лучше нас знают, что именно нам нужно. Мы должны уметь анализировать факты и реальные свидетельства и самостоятельно решать, соглашаться ли с тем, что нам пытаются навязать, поскольку на кону нечто большее, чем наша повседневная жизнь. Мы несем ответственность за нашу цивилизацию. Мы голосуем, выбираем, что покупать и как жить, и все вместе составляем часть истории человечества. Никому не дано понять буквально каждую деталь нашего сложного мира, но базовые принципы – это те бесценные инструменты, которыми должен владеть каждый из нас.
Именно поэтому я считаю, что эксперименты с «физическими игрушками», которыми изобилует окружающий мир, представляют собой нечто большее, чем «просто развлечение», хотя я и горячая поклонница развлечений как таковых. Наука – это не просто собирание фактов, а логический процесс их выстраивания. Важный научный принцип состоит в том, что любой из нас может изучить имеющиеся данные и сделать обоснованный вывод. Поначалу эти выводы могут разниться, но по мере сбора исследователями дополнительных данных (которые помогают сделать правильный выбор между разными вариантами описания мира) постепенно сходятся к некоему общему заключению. Именно этим наука отличается от других видов деятельности: любая научная гипотеза должна позволять делать конкретные, поддающиеся проверке предсказания. Это означает, что если у вас сложилось определенное представление о механизме какого-то явления, то вы должны задуматься над тем, какие последствия могут из этого вытекать. В частности, вы должны выявить все последствия, поддающиеся проверке, и особенно те, которые могут оказаться ложными. Если ваша гипотеза успешно проходит все возможные тесты, мы осторожно соглашаемся с тем, что это, вероятно, хорошая модель устройства мира. Наука всегда пытается доказать, что ошибается, поскольку такой подход – кратчайший путь к выяснению истины.
Вам необязательно быть квалифицированным ученым, чтобы экспериментировать с окружающим миром. Знание некоторых базовых физических принципов позволит вам самостоятельно открывать в нем много нового для себя. Этот процесс далеко не всегда должен носить организованный характер: нередко фрагменты головоломки сами укладываются в требуемые места.
Одно из моих самых замечательных путешествий в мир открытий началось с разочарования: я приготовила джем из голубики, а он оказался розовым. Ярко-розовым, как фуксия. Это случилось несколько лет назад, когда я проживала в Род-Айленде и готовилась к возвращению в Великобританию. Большинство дел уже было завершено, но оставался последний проект, который я была намерена во что бы то ни стало реализовать до отъезда. Мне всегда нравилась голубика; ее ягоды казались мне немного экзотичными, нежными на вкус и необычайно голубыми. В большинстве мест, где мне приходилось жить, голубика была большой редкостью, но в Род-Айленде она росла в изобилии. Мне захотелось приготовить из нее джем, обязательно синего цвета, и увезти с собой в Великобританию. Поэтому я потратила утро одного из моих последних дней в Род-Айленде на сбор и сортировку ягод для будущего джема.
Самое важное и волнующее в джеме из голубики – его синий цвет. Во всяком случае, лично для меня. Но природа распорядилась иначе. Содержимое кастрюли с джемом было восхитительно, но его цвет испортил все впечатление: ни малейшего намека на синеву. Я наполнила джемом банки и увезла в Великобританию.
Спустя шесть месяцев один мой друг попросил меня помочь с решением исторической загадки. Он готовил телевизионную программу о ведьмах и колдунах и пересказал мне народные поверья о «мудрых женщинах», которые заваривали в воде лепестки вербены и наносили этот отвар на кожу человека, чтобы определить, околдован ли он злыми ведьмами. Моего приятеля интересовал вопрос, не проводили ли эти «мудрые женщины» каких-либо систематических измерений, даже не имея таких намерений. Я выполнила кое-какие исследования и пришла к выводу, что, возможно, они действительно делали нечто в этом роде.
Красные цветки вербены наряду с краснокочанной капустой, корольком и многими другими растениями красного цвета, содержат химические вещества, называемые антоцианами. Это растительные пигменты, которые придают растениям яркие цвета. Существует несколько разновидностей антоцианов, чем обусловлено некоторое различие в цвете, но их молекулярная структура одинакова. Однако это еще не все. Цвет также зависит от кислотности жидкости, в которой оказывается такая молекула, то есть от того, что называют «водородным показателем», или «показателем pH», этой жидкости. Если сделать среду, в которую попадает такая молекула, чуть более кислотной или более щелочной, молекулы несколько видоизменятся, меняя при этом и свой цвет. Они служат индикаторами, своего рода лакмусовой бумажкой.
Вы можете проводить у себя на кухне увлекательнейшие эксперименты, исследуя данное явление. Отварите соответствующее растение, например краснокочанную капусту, чтобы экстрагировать из него пигмент; отвар (он приобретет фиолетовый цвет) сохраните. Смешайте его часть с уксусом, и полученный раствор станет красным. Добавление раствора стирального порошка (обладающего сильной щелочной реакцией) сделает отвар желтым или зеленым. Из того, что найдется у вас на кухне, можно создать настоящую радугу цветов – проверено собственноручно! Я обожаю такие эксперименты, потому что антоцианы всегда под рукой и доступны каждому. И никакого набора «Юный химик» не требуется!
Вполне возможно, что вышеупомянутые «мудрые женщины» использовали цветки вербены для проверки на pH кожи, а не на колдовство. pH вашей кожи может меняться естественным образом, а нанесение отвара вербены на кожу разных людей могло давать разные цвета. Я могла бы изменить цвет отвара краснокочанной капусты с фиолетового на голубой, если бы нанесла его на свою кожу после длительной утренней пробежки, однако отвар не изменил бы цвет, если бы я утром не выполняла физических упражнений. Возможно, эти «мудрые женщины» заметили, что разные люди заставляют пигменты вербены изменяться по-разному, и придумали для этого явления собственное объяснение. Разумеется, мы никогда не узнаем, как было на самом деле, но моя гипотеза кажется мне вполне разумной.
Впрочем, наш экскурс в историю несколько затянулся. Между тем он заставил меня вспомнить о джеме из голубики. Ягоды голубики синие, поскольку содержат антоцианы. В моем джеме всего четыре ингредиента: ягоды голубики, сахар, вода и лимонный сок. Лимонный сок помогает натуральному пектину из голубики привести джем в требуемое состояние. И достигается это потому, что лимонный сок – это… кислота. Мой джем стал розовым, так как сваренные ягоды голубики в данном случае выступали в роли лакмусовой бумажки. Джем должен был получиться розовым, ибо лишь в этом случае он был бы надлежащей консистенции. Чувство морального удовлетворения, испытанное мной в результате этого открытия, несколько компенсировало чувство глубокого разочарования, постигшего меня из-за того, что джем оказался не синим, а розовым. Однако тот факт, что из одного фрукта можно получить целую радугу цветов, стоил жертвы в виде розового джема из голубики.
В этой книге рассказывается о связи между мелочами, с которыми мы ежедневно сталкиваемся и зачастую не замечаем, с «большим миром», в котором мы живем. Она представляет собой увлекательное путешествие в физический мир и показывает, как экспериментирование с такими вещами, как попкорн, кофейные пятна и магниты на наших холодильниках, может пролить свет на экспедиции Скотта в Антарктиду, медицинские тесты и удовлетворение наших будущих потребностей в энергии. Наука – это не о «них», а о «нас», и у нас множество возможностей заниматься ею по-своему. Каждая глава начинается с упоминания о какой-либо мелочи, с которой мы неоднократно сталкивались в повседневной жизни, но ни разу о ней не задумывались. К концу каждой главы вы получите объяснения, касающиеся тех или иных областей науки и технологических достижений нашего времени. Каждое такое открытие будет само по себе важным и увлекательным, но самое большое вознаграждение вас ожидает в самом конце, когда из отдельных фрагментов сложится единая картина.
Знание того, как устроен мир, имеет еще одно важное преимущество, но ученые говорят о нем не очень часто. Понимание механизмов, которые приводят наш мир в движение, заставляет человека взглянуть на него иначе. Наш мир – мозаика из разных физических принципов. И как только вы усвоите основы физики, то начинаете понимать связь этих принципов друг с другом. Я надеюсь, что в процессе чтения книги зачатки научных знаний, которые вы получите по мере изучения ее глав, изменят ваше восприятие окружающего мира. Последняя глава книги представляет собой исследование того, как совместное действие физических принципов формирует три системы, поддерживающие нашу жизнь: человеческое тело, нашу планету и цивилизацию. Но у вас есть право не согласиться с моей точкой зрения. Суть науки – в самостоятельном экспериментировании с этими принципами, учете всех известных вам фактов и свидетельств и последующем формулировании собственных выводов.
Чашка чая – только начало.
Глава 1. Попкорн и ракеты
Законы поведения газов
Взрывы на кухне, конечно же, плохая идея. Но в исключительных случаях малюсенький взрывчик способен привести нас в восторг. Сердцевина высушенной кукурузы содержит массу полезных питательных компонентов – углеводов, белков, железа и калия, – но все они чрезвычайно плотно упакованы и скрываются под очень прочной оболочкой. Поэтому, чтобы сделать их пригодными для употребления в пищу, требуется соответствующая переработка. Подходящим вариантом в данном случае мог бы послужить взрыв, и, к счастью для нас, кукурузные зерна содержат в себе все необходимое для собственного разрушения. Прошлым вечером я занималась чем-то наподобие баллистического приготовления еды – делала попкорн. Каждый раз испытываешь чувство невероятного облегчения, когда узнаешь, что под жесткой и непривлекательной наружностью скрывается мягкое и приятное содержимое, – но почему разрушение такой оболочки приводит к образованию пенистой структуры, а не мелких частиц?
Когда масло в кастрюле нагрелось, я насыпала в нее столовую ложку кукурузных зерен, накрыла кастрюлю крышкой и оставила на огне, а сама стала заваривать чай. На улице шел сильный дождь, сопровождавшийся порывами ветра, и дождевые капли громко барабанили по оконному стеклу. Зерна прогревались в масле, которое тихо шипело. Мне казалось, что ничего особенного не происходит, но внутри кастрюли представление уже началось. В каждом ядре кукурузы есть зародыш, который дает начало новому растению, и эндосперм, служащий для него питанием. Эндосперм состоит из крахмала, упакованного в гранулы, и содержит примерно 14 % воды. Когда кукурузные зерна попадают в горячее масло, вода начинает испаряться, образуя пар. Горячие молекулы перемещаются быстрее, и по мере прогревания каждого ядра появляется все больше молекул воды, пребывающих в состоянии пара. Эволюционное предназначение оболочки кукурузного зерна – защита содержимого сердцевины от внешних неблагоприятных воздействий (например, механических повреждений), но, находясь в кипящем масле, она представляет собой нечто наподобие котла с плотно завинченной крышкой, внутри которого разворачивается процесс, все интенсивнее воздействующий на крышку изнутри. Молекулам воды, превратившейся в пар, некуда деваться, давление внутри оболочки нарастает. Молекулы газа (роль которого в данном случае исполняет пар) постоянно сталкиваются друг с другом, ударяются о стенки оболочки и ввиду увеличения их количества и скорости перемещения все сильнее воздействуют на внутреннюю стенку оболочки.
Работа пароварок основана на этом же принципе, поскольку горячий пар существенно ускоряет приготовление пищи. В этом смысле процесс ничем не отличается от происходящего внутри оболочки кукурузного зерна. Я уже говорила, что, пока кукурузные зерна прогревались в горячем масле, я заваривала чай. Тем временем гранулы крахмала постепенно превращались в желатинообразную массу, находящуюся под давлением, которое продолжало расти. Наружные оболочки кукурузных зерен могут выдерживать такое давление лишь до определенной степени. Когда внутренняя температура возрастает до 180 , а давление почти в десять раз превышает нормальное давление окружающей атмосферы, представление, разворачивающееся внутри кастрюли с кипящим маслом, достигает кульминации.
Я слегка встряхнула кастрюлю и услышала, как внутри нее раздался первый, пока еще глухой хлопок. Через пару секунд звуки, исходившие из кастрюли, напоминали короткие очереди, выпускаемые из маленького автомата; крышка кастрюли начала слегка подпрыгивать, словно по ней стреляли изнутри. Каждый отдельный хлопок-выстрел сопровождался весьма впечатляющим выбросом пара из-под крышки кастрюли. Я буквально на мгновение отошла от плиты за чаем, но этих нескольких секунд хватило, чтобы давление изнутри приподняло крышку кастрюли и в воздух поднялось пенообразное облако.
В момент катастрофы правила меняются. До этого фиксированный объем водяного пара удерживается внутри оболочки, и давление, оказываемое им на ее внутренние стенки, увеличивается по мере повышения температуры. Но когда твердая оболочка наконец уступает давлению, ее содержимое попадает под воздействие атмосферного давления в остальной части кастрюли, то есть ограничение на объем снимается. Крахмалистая желатинообразная масса по-прежнему полна горячих ударяющихся молекул, но они уже не испытывают противодействия снаружи. В результате происходит ее взрывообразное расширение, которое продолжается до тех пор, пока внутреннее давление не сравняется с наружным. Компактная белая желатинообразная масса превращается во вспушенную пену, увеличивающуюся в объеме; кукурузные зерна выворачиваются наизнанку. По мере охлаждения масса затвердевает. Трансформация завершена.
Поворошив ложкой содержимое кастрюли, мне удалось выявить несколько жертв эксперимента. Подгорелые нелопнувшие зерна усеивали дно кастрюли. Если наружная оболочка зерна повреждена, то в процессе нагревания водяной пар свободно из нее выходит и давление внутри оболочки не нарастает. Причина, по которой кукурузные зерна при нагревании лопаются, в отличие от зерен других злаков, заключается в том, что оболочки последних имеют пористую структуру. Если зерно чересчур сухое (возможно, потому что урожай собран в неподходящее время), влаги внутри оболочки оказывается недостаточно для создания давления, позволяющего ее разорвать. А без разрушительного воздействия взрыва несъедобное зерно останется несъедобным.
Я выплеснула в окно остатки чая и идеально приготовленного мной попкорна. За окном по-прежнему хлестал дождь и завывал ветер. Как видите, разрушение – это не всегда плохо.
В простоте есть своя прелесть. Однако еще больше удовольствия мне доставляет красота, возникающая из сложности. Законы, которые описывают поведение газов, напоминают мне оптические иллюзии, когда вам кажется, что вы видите что-то одно, но, зажмурившись на секунду, а потом открыв глаза, созерцаете нечто совершенно иное.
Наш мир состоит из атомов. Каждая из этих крошечных частиц материи представляет собой оболочку из отрицательно заряженных электронов, неизменных спутников тяжелого положительно заряженного ядра атома. Химия, по сути, – история об этих спутниках, обслуживающих несколько атомов, но всегда подчиняющихся строгим правилам квантового мира и удерживающих плененные ими ядра в более крупных структурах, называемых молекулами. В воздухе, которым я дышу, когда пишу эти строки, присутствуют пары атомов кислорода (каждая такая пара – одна молекула кислорода), которые движутся со скоростью 1400 км/ч, соударяясь с парами атомов азота, которые движутся со скоростью 320 км/ч, а затем, возможно, отскакивая от молекулы воды, летящей со скоростью свыше 1600 км/ч. Все это выглядит ужасно сложно и беспорядочно – разные атомы, разные молекулы, разные скорости, – причем в каждом кубическом сантиметре воздуха содержится примерно 30 000 000 000 000 000 000 (3 1019) отдельных молекул, каждая из которых сталкивается приблизительно миллиард раз в секунду с другими молекулами. Вам может показаться, что самый разумный подход в данном случае – послать все это куда подальше и заняться чем-нибудь более понятным, например хирургией мозга, экономической теорией или взломом суперкомпьютеров. Одним словом, чем-то попроще. В конце концов, ученые, которые в свое время открыли законы поведения газов, вполне обходились без знания всех этих нюансов. У невежества есть свои преимущества. Теория об атомах вообще не была частью науки вплоть до начала XIX века, а неопровержимые доказательства существования атомов появились прмерно в 1905 году. В далеком 1662-м в распоряжении Роберта Бойля и его помощника Роберта Гука была лишь стеклянная посуда, ртуть, пузырь с закачанным в него воздухом – и умеренная порция невежества. Они выяснили, что при возрастании давления, оказываемого на пузырь с воздухом, его объем уменьшается. В этом и заключается суть закона Бойля, который гласит, что давление газа обратно пропорционально его объему. Спустя столетие Жак Шарль обнаружил, что объем газа (при одном и том же давлении) прямо пропорционален его температуре. Если температуру газа повысить вдвое, его объем также увеличится в два раза. Невероятно! Как же свести все сложности, касающиеся атомов, к чему-то более простому и упорядоченному?
Последний вдох, одно уверенное движение могучим хвостом – и огромное млекопитающее скрывается в морской пучине. Весь запас воздуха, необходимый этому кашалоту, чтобы провести следующие сорок пять минут под водой, умещается в его теле. Охота начинается! Добыча – гигантский кальмар, монстр, вооруженный щупальцами, устрашающими присосками и наводящим ужас клювообразным выступом. Чтобы отыскать его, кашалоту приходится нырять на достаточно большую глубину, куда никогда не проникает солнечный свет. Типичная глубина погружений кашалота – 500–1000 метров, а рекордная – примерно 2 километра. Кашалот «прощупывает» водную толщу своим высокочувствительным сонаром, ожидая получить слабый эхосигнал, указывающий на то, что добыча где-то рядом. А гигантский кальмар спокойно плывет на глубине и ничего не подозревает, ведь он глухой.
Самое ценное, что берет с собой кашалот, отправляясь за добычей, – это кислород, требуемый для поддержания химических реакций, которые снабжают питанием мышечные ткани животного и сохраняют ему жизнь. Но газообразный кислород, поставляемый из атмосферы, на глубине становится источником проблем. Фактически, как только кашалот начинает погружение, воздух в его легких превращается в проблему. В ходе погружения кита вес каждого очередного метра воды оказывает дополнительное давление на его тело. Молекулы азота и кислорода сталкиваются друг с другом и внутренними стенками легких, и каждое такое столкновение означает микротолчок. Когда кашалот находится на поверхности воды, такие микротолчки, оказываемые на его тело снаружи и изнутри, уравновешивают друг друга. Но когда гигант опускается на некоторую глубину, на него дополнительно давит водная толща, находящаяся над ним, и толчок снаружи превосходит толчок изнутри. В результате стенки легких вдавливаются внутрь до установления равновесия, при котором давление снаружи и изнутри снова сбалансируется. Это достигается за счет того, что при сжатии легких кашалота для каждой из молекул остается меньше пространства и столкновения между ними учащаются. То есть молекулы все чаще соударяются с внутренними стенками легких животного, что приводит к повышению давления, направленного изнутри наружу. Так продолжается до установления равновесия между внутренним и наружным давлением. Десяти метров водной толщи достаточно для того, чтобы оказывать дополнительное давление, эквивалентное атмосферному. Поэтому даже на глубине, куда проникает солнечный свет и еще видна поверхность воды, объем легких кита сокращается в два раза по сравнению с их исходным объемом. Это означает, что внутренние стенки легких испытывают в два раза большее количество соударений с молекулами, вследствие чего внутреннее давление уравновешивает возросшее наружное давление. Но гигантский кальмар может скрываться на глубине до километра, а на таких глубинах объем легких должен сократиться до одного процента по сравнению с исходным объемом, то есть объемом на поверхности воды.
Но вот кашалот улавливает эхосигнал сонара. Имея лишь некоторый запас кислорода в сжавшихся легких и сонар, позволяющий ориентироваться в пространстве, кит должен приготовиться к битве в кромешной тьме. Гигантский кальмар неплохо вооружен, и даже если он в конечном счете сдастся, раны кашалота тоже будут ужасны. Откуда же ему брать силы для сражения, если в легких не останется кислорода?
Проблема уменьшившихся легких состоит в том, что, когда их объем составляет лишь одну сотую от того, который был на поверхности, давление газа внутри легких в сто раз превышает атмосферное давление. На альвеолах, нежной и чувствительной части легких, где кислород поступает в кровь, а углекислый газ удаляется из нее, это повышенное давление приводило бы к растворению в крови кашалота дополнительного количества кислорода и азота. Результатом стала бы ситуация, которую водолазы называют «кессонной болезнью»: когда кит всплыл бы на поверхность, в его крови образовались бы пузырьки избыточного азота, что могло бы повлечь за собой тяжелейшие последствия для организма. Эволюционное решение – полностью перекрыть альвеолы с момента, когда кашалот покидает поверхность воды. Альтернативы нет. Но животное может задействовать свои энергетические резервы, поскольку его кровь и мышцы способны запасать огромное количество кислорода. В крови кашалота вдвое больше гемоглобина и в десять раз больше миоглобина (белка, который используется для хранения энергии в мышцах), чем в крови человека. Пока кит находится на поверхности, он «перезаряжает» эти огромные энергетические резервуары. Кашалоты никогда не пользуются легкими при глубоких погружениях. Это для них слишком опасно. Они не делают как можно более глубокий вдох, перед тем как отправиться на глубину. Они существуют и борются за счет запасов, накопленных в мышцах во время пребывания на поверхности.
Никто никогда не видел сражения между кашалотом и гигантским кальмаром. Но в желудках мертвых кашалотов нередко находят остатки клювов кальмаров – единственной части, которую не переваривает желудок кашалота. Таким образом, каждый кит ведет собственный «внутренний» счет одержанных побед. Когда кит-победитель возвращается к солнечному свету, его легкие постепенно расширяются и восстанавливают контакт с системой кровоснабжения. По мере снижения давления их объем снова увеличивается до тех пор, пока не достигнет исходной величины.
Как ни странно, сочетание сложного молекулярного поведения и статистики (которая обычно не ассоциируется с простотой) на практике порождает относительно простой результат. Речь действительно идет об огромном множестве молекул, огромном множестве столкновений и огромном множестве разных скоростей, но важны здесь только два фактора: диапазон скоростей движения молекул и среднее количество столкновений молекул со стенками емкости, в которую они заключены. Величина давления зависит от числа столкновений и силы каждого из них (определяемой скоростью и массой молекулы). Соотношение между внутренним давлением (вызванным всеми этими столкновениями) и наружным определяет объем. Что же касается температуры, то она оказывает несколько иной эффект.
«Кто мне ответит: о чем мы обычно должны беспокоиться на данном этапе?» Наш учитель, Адам, носит белую рубаху, туго облегающую его круглое брюшко, – идеальный образ булочника, который готовит выпечку для какой-нибудь солдатской столовой. Обилие в его речи словечек и оборотов, характерных для диалекта «кокни», не портит общего впечатления, а, наоборот, придает Адаму дополнительный шарм. Он тычет пальцем в комок теста, лежащий перед ним на столе. Тесто прилипает к пальцу и тянется за ним, как живое; впрочем, оно и впрямь живое. «Чтобы испечь хороший хлеб, – объявляет Адам, – нужен воздух». Я учусь в школе пекарского мастерства, где нам рассказывают, как приготовить фокаччу, традиционный хлеб итальянской кухни. Я уверена, что не надевала фартук с тех пор, как мне исполнилось десять. И хотя мне неоднократно приходилось печь хлеб, я никогда не видела теста, похожего на то, которое лежит перед Адамом. Одним словом, мне есть чему поучиться.
Следуя инструкциям Адама, мы приступаем к самостоятельному приготовлению теста с нуля. Каждый из нас смешивает свежие дрожжи с водой, затем добавляет муку и соль и месит тесто с терапевтической решительностью, способствуя выработке клейковины (глютена) – белка, который придает хлебу эластичность. Все время, покамы формируем соответствующую физическую структуру, живые дрожжи, присутствующие в ней, заняты важной работой: ферментированием сахаров и выработкой углекислого газа. В этом тесте, как и в любом другом, которое мне приходилось когда-либо готовить, воздуха нет, зато в нем множество пузырьков углекислого газа. Тесто – тягучий и вязкий биореактор; в нем заключены продукты жизнедеятельности, поэтому оно поднимается. Когда завершается первая стадия, тесто принимает восхитительную ванну из оливкового масла и продолжает подходить, а мы тем временем чистим от его остатков ладони и стол. Каждая отдельно взятая реакция ферментации порождает две молекулы углекислого газа, которые выделяются дрожжами. Углекислый газ, или CO2 – два атома кислорода, присоединенные к атому углерода, – это маленькие инертные молекулы (то есть не вступающие в химические реакции с другими молекулами), обладающие при комнатной температуре достаточной энергией, чтобы свободно парить в пространстве, подобно любому другому газу. Когда эта молекула в сочетании с другими молекулами углекислого газа образует пузырек, она может часами перемещаться туда-сюда, соударяясь с другими такими же молекулами. Каждый раз при соударении происходит обмен энергией, точно так же как при соударениях бильярдных шаров. Иногда одна молекула почти останавливается, а другая приобретает удвоенную энергию и отскакивает с высокой скоростью, а иногда энергия распределяется между молекулами в иной пропорции. Каждый раз, когда какая-либо молекула сталкивается со стенкой пузырька, насыщенной глютеном, она отскакивает от нее. На этой стадии пузырьки увеличиваются, поскольку в них накапливается все большее количество молекул и их соударения с внутренними стенками пузырьков учащаются. Пузырек «надувается» до тех пор, пока наружное (атмосферное) давление не уравновесит давление молекул CO2 изнутри пузырька. Порой при соударении со стенками пузырька молекулы CO2 движутся быстро, порой – медленно. Пекарям, как и физикам, все равно, с какими именно скоростями те или иные молекулы CO2 соударяются со стенками пузырька, поскольку это вопрос статистики. При комнатной температуре и атмосферном давлении 29 % молекул CO2 движутся со скоростями в диапазоне от 350 до 500 метров в секунду, но для нас это не так уж и важно.
Адам хлопает в ладоши, чтобы привлечь наше внимание, и жестом волшебника являет нашему взору поднимающееся тесто. А затем проделывает незнакомую мне манипуляцию: раскатывает тесто, покрытое оливковым маслом, и складывает его в виде конвертика. Цель – задержать внутри конвертика воздух. Я едва сдерживаюсь, чтобы не воскликнуть: «Нас разыгрывают!» – поскольку всегда считала, что весь «воздух» в хлебе – это CO2, выделившийся из дрожжей. Однажды в Японии я видела мастера оригами, с энтузиазмом рассказывающего своим ученикам о правильном способе наклеивания скотча при изготовлении бумажной лошадки. Свидетелем такого же нарушения здравого смысла я стала во время урока пекарского мастерства, проводимого Адамом. Но если вам нужен воздух, то почему бы не использовать воздух? Я последовала совету мастера и послушно свернула свое тесто в виде конвертика. Через пару часов, после того как оно подошло еще сильнее и я еще раз свернула его конвертиком, а затем использовала большее количество оливкового масла, чем мне казалось разумным, моя нарождающаяся фокачча вместе с ее пузырьками была готова к отправке в печь. «Воздух» обоих типов должен был исполнить свою функцию.
Внутри печи в хлеб начала проникать энергия нагрева. Давление в печи все еще было такое, как и снаружи, но температура хлеба внезапно подскочила с 20 до 250 . В абсолютных единицах это соответствует скачку с 293 до 523 градусов по шкале Кельвина. Таким образом, абсолютная температура практически удвоилась[2]. В случае газа это означает ускорение движения молекул. Нашим интуитивным представлениям несколько противоречит тот факт, что отдельно взятая молекула не имеет собственной температуры. Газ, то есть совокупность молекул, может иметь температуру, но отдельно взятая молекула в нем – нет. Температура газа – это всего лишь способ выражения средней величины энергии движения молекул газа, но каждая отдельно взятая молекула постоянно ускоряет и замедляет движение, обмениваясь энергией с другими молекулами в результате соударений. Любая отдельная молекула просто обменивается энергией, которой она обладает в данный момент. Чем быстрее движутся молекулы, тем сильнее их соударения с внутренними стенками пузырьков и тем больше давление, оказываемое на пузырьки изнутри. Когда хлеб попал в печь, молекулы газа внезапно приобрели гораздо большую тепловую энергию и, соответственно, ускорили движение: его средняя скорость повысилась с 480 до 660 метров в секунду. В результате давление, оказываемое на стенки пузырьков изнутри, существенно выросло, и это повышение никак не уравновешивается давлением снаружи. Каждый из пузырьков расширяется пропорционально увеличению температуры. Раздувающиеся пузырьки оказывают давление на тесто, заставляя его подниматься. Кстати, пузырьки воздуха (который в основном представляет собой смесь азота и кислорода) расширяются точно так же, как и пузырьки CO2. А это и есть последний фрагмент головоломки, которого нам недоставало. Оказывается, не так уж важно, о каких молекулах идет речь. Когда удваивается температура, удваивается и объем (если давление не меняется). Или, если удваивается температура, а объем остается прежним, удваивается давление. С каким бы сочетанием разных атомов нам ни приходилось сталкиваться, это не имеет никакого значения, поскольку данная статистика остается неизменной при любой комбинации. Глядя на готовый хлеб, никто не сможет сказать, в каких пузырьках содержался CO2, а в каких – воздух.
Затем матрица из углеводов и белков, окружающая пузырьки, испеклась и затвердела. Размеры пузырьков зафиксировались. И перед ароматом, исходящим от мягкой белой фокаччи, было невозможно устоять.
Особенности поведения газов описываются так называемым законом идеального газа, причем такая идеализация оправдывается тем, что она не противоречит действительности. Более того, она полностью соответствует истинному положению вещей. Этот закон гласит, что для фиксированной массы газа давление обратно пропорционально его объему (если вы удваиваете давление, объем уменьшается в два раза), температура прямо пропорциональна давлению (если вы удваиваете температуру, давление повышается в два раза), а объем прямо пропорционален температуре – при фиксированном давлении. Неважно, о каком именно газе идет речь; для нас имеет значение только количество его молекул, то есть масса рассматриваемого газа. Закону идеального газа подчиняется и двигатель внутреннего сгорания, и шары, наполненные теплым воздухом, и даже попкорн. Он применим не только к газу, который нагревается, но и к газу, который охлаждается.
Достижение Южного полюса стало важнейшей вехой в истории человечества. Великие полярные исследователи – Амундсен, Скотт, Шеклтон и другие – безусловно, легендарные личности, а книги об их успехах и поражениях – одни из самых пронзительных повествований всех времен. И словно тех огромных трудностей, которые пришлось преодолевать этим отважным людям – невообразимого холода, нехватки пищи, жестоких океанических бурь, одежды, которая явно не соответствовала суровым климатическим условиям, – было недостаточно, против них, в буквальном смысле слова, обернулся могущественный закон идеального газа.
Центр Антарктики – высокое, безжизненное сухое плато, покрытое толстым слоем льда, хотя там никогда не падает снег. Поверхность льда отражает почти весь тусклый солнечный свет обратно в окружающее пространство, а температура опускается ниже –80 . Природа пребывает в состоянии полного оцепенения. На атомарном уровне наблюдается такое же оцепенение: атмосфера неподвижна, поскольку молекулы воздуха обладают слишком малыми энергиями (из-за очень низкой температуры окружающей среды) и перемещаются довольно медленно. Воздушне массы сверху опускаются на плато, и лед принимает на себя их тепло. Холодный воздух становится еще холоднее. Давление не меняется, поэтому этот воздух уменьшается в объеме и уплотняется. Молекулы сближаются друг с другом, движутся медленнее, не имея возможности достаточно сильно выталкиваться наружу, чтобы противодействовать окружающему их воздуху, который заталкивает их внутрь. Так как уровень плато снижается в направлении от центра континента к океану, этот холодный уплотненный воздух также непрерывно соскальзывает в направлении от центра вдоль поверхности, подобно замедленному воздушному водопаду. Потоки воздуха направляются через обширные долины, набирая скорость по мере соскальзывания в сторону океана – всегда только в сторону океана. Это так называемые нисходящие ветры Антарктики. И если вы намерены совершить путешествие к Южному полюсу, имейте в виду: на протяжении всего пути ветер будет дуть вам в лицо. Трудно придумать более неприятный сюрприз, который бы природа могла преподнести полярным исследователям.
«Нисходящий» (еще его называют катабатический) – это просто название подобных ветров, которые встречаются во многих местах планеты; и они необязательно холодные. Когда они снижаются, малоподвижные молекулы такого воздуха постепенно прогреваются – правда, незначительно. Впрочем, последствия этого прогревания могут быть поистине драматическими.
В 2007 году я проживала в Сан-Диего и работала в Институте океанографии Скриппса. Как уроженка севера я с опаской относилась к постоянной жаре и солнцу, но, учитывая, что у меня была возможность каждое утро плавать в 50-метровом бассейне, мне особо не на что было жаловаться. К тому же в Сан-Диего восхитительные закаты. Этот город расположен на берегу Тихого океана, и с его высотных зданий открываются безбрежные виды в сторону запада. Вечернее небо над океаном во время захода солнца было ошеломляющим.
Однако мне не пришлось долго наслаждаться этими чудесными видами. Задули так называемые ветры Санта-Ана, а солнечная, теплая и приятная погода сменилась зловеще жаркой и сухой. Ветры Санта-Ана начинают дуть каждую осень, когда сухой и жаркий воздух из пустынных районов Большого Бассейна в глубине материка движется в сторону океана, к побережью Южной и Нижней Калифорнии. Эти ветры, как и в Антарктике, также относятся к категории катабатических. Но к тому времени, как они достигают побережья океана, они становятся гораздо жарче, чем на высоком плато. В один памятный для меня день я ехала в автомобиле на север, по трассе I-5, в сторону одной из больших долин, которые служат своеобразными «трубами», гонящими горячий воздух в сторону океана. Долину накрывала низкая облачность. За рулем автомобиля сидел мой приятель. «Ты чувствуешь запах дыма?» – спросила я. «Тебе показалось», – ответил приятель. Но на следующее утро я проснулась в странном мире. К северу от Сан-Диего виднелось зарево огромных пожаров. Они перекинулись на долины, в воздухе носился пепел. Костер, который кто-то развел в лесу и, по-видимому, не затушил как следует, под воздействием горячего сухого ветра поджег траву и деревья. Ветры несли огонь пожаров в сторону побережья. То, что вечером показалось мне облаком, накрывшим долину, в действительности было дымом. Людей, пришедших на работу, отправили обратно домой. Те, кто не успел вернуться домой, слушали сообщения, передаваемые по местному радио, и гадали, не сгорели ли их жилища. Все чего-то ждали. Горизонт застилали облака дыма и пепла, но солнечные закаты были по-прежнему восхитительны. Через три дня дым начал подниматься. Многим негде было жить – их дома сгорели. Буквально все вокруг было покрыто слоем пепла. Медики рекомендовали людям в течение недели не находиться на открытом воздухе без крайней необходимости.
На высоких плато горячий воздух пустынь охлаждается, становясь более плотным, и соскальзывает вниз по склонам плато, подобно ветрам, с которыми столкнулся Скотт в Антарктике. Но пожары начались потому, что этот воздух был не только сухим, но и жарким. Почему же он нагревается, опускаясь? Откуда для этого берется энергия? Вследствие действия закона идеального газа. В данном случае мы имели дело с фиксированной массой воздуха, который перемещался настолько быстро, что у него просто не было времени на обмен энергией с окружающей средой. Когда поток этого плотного воздуха сползал вниз, атмосфера у подножия склона оказывала на него давление, поскольку внизу оно было выше. Давление на что-либо представляет собой способ придания ему энергии. Вы можете представить, как отдельно взятые молекулы воздуха ударяют о стенки воздушного шара, который движется в их сторону. Они отскакивают с большей энергией, чем до соударения, поскольку отскакивают от движущейся поверхности. Таким образом, объем воздуха в ветрах Санта-Ана сокращался, потому что он сжимался под воздействием окружающей атмосферы. Это сжатие придавало движущимся молекулам воздуха дополнительную энергию, в результате чего температура ветра повышалась. Данное явление называется адиабатическим нагревом. Каждый год, когда начинают дуть ветры Санта-Ана, у жителей Калифорнии появляется дополнительный повод для беспокойства из-за риска возникновения лесных пожаров. После нескольких дней такой жары сухой воздух лишает почву остатков влаги, и для того чтобы разгорелся лесной пожар, достаточно одной искры. При этом источник повышенной температуры – не только жаркое калифорнийское солнце, но и дополнительная энергия, приобретаемая молекулами газа, когда они прижимаются более плотными воздушными массами ближе к океану. Температуру будет изменять все, что способно изменить среднюю скорость молекул воздуха.
Обратный процесс происходит при выдавливании из баллончика взбитых сливок. Воздух, содержащийся в баллончике, быстро расширяется и давит на окружающую среду, в результате чего отдает свою энергию и охлаждается. По этой причине сопло емкости со взбитыми сливками на ощупь холодное: газ, который через него проходит, отдает свою энергию, достигая свободной атмосферы. Поскольку позади него остается меньше энергии, баллончик кажется холодным.
Давление воздуха – лишь показатель того, с какой силой все эти крошечные молекулы ударяют о некоторую поверхность. Обычно мы этого почти не замечаем, так как удары сыпятся с одинаковой силой со всех сторон: если держать двумя пальцами на весу листок бумаги, он останется неподвижным, потому что молекулы воздуха бомбардируют его в равной степени с обеих сторон. Каждый из нас постоянно подвергается воздействию окружающего воздуха, но мы его практически не ощущаем. Именно поэтому людям потребовалось немало времени, чтобы выяснить истинную степень такого воздействия, и полученный ответ их слегка шокировал. Масштаб открытия было несложно оценить, поскольку его демонстрация оказалась чрезвычайно запоминающейся. В истории науки не так уж часто какой-либо важный научный эксперимент напоминает увлекательное театральное представление. Однако в описываемом мною случае присутствовали все необходимые составляющие театрального зрелища: лошади, тревожное ожидание развязки, эффектная концовка и даже высокая царственная особа.
Трудность задачи заключалась в том, что для определения силы давления воздуха на тот или иной предмет следовало полностью исключить воздействие воздуха на другую сторону этого предмета, то есть создать по эту другую сторону вакуум. В четвертом столетии до нашей эры Аристотель заявил, что «природа не терпит пустоты», и эта точка зрения преобладала почти тысячелетие. Создать вакуум казалось невозможным. Но где-то около 1650 года немецкий физик Отто фон Герике изобрел первый в мире вакуумный насос. Вместо того чтобы написать научную статью на эту тему и заняться изучением других физических явлений, ученый решил устроить настоящее представление, призванное продемонстрировать его изобретение[3]. Возможно, этому способствовало и то, что Отто фон Герике был не только физиком, но и известным политиком и дипломатом; к тому же он был в хороших отношениях с правителями того времени.
Фердинанд III – император Священной Римской империи и король части Венгерского и Чешского королевств – прибыл 8 мая 1654 года, окруженный своей многочисленной свитой, к зданию Рейхстага в Баварии. Отто фон Герике предъявил почтенной публике полую медную сферу 50 сантиметров в диаметре. Сфера состояла из двух отдельных полусфер, соприкасающихся между собой идеально отшлифованными, ровными поверхностями. Снаружи к каждой из полусфер было приварено по кольцу для крепления двух канатов, за которые можно было тянуть с двух сторон, чтобы разделить полусферы. Отто фон Герике смазал места соприкосновения двух полусфер и плотно сжал их друг с другом, а для откачки воздуха изнутри образовавшейся сферы воспользовался своим вакуумным насосом. Казалось, ничто не должно удерживать вместе две половины сферы, однако после удаления из нее воздуха они вели себя так, словно были намертво склеены друг с другом. Отто понимал, что вакуумный насос позволяет ему оценить силу воздействия атмосферы на те или иные объекты. Миллиарды крошечных молекул воздуха бомбардируют наружную поверхность сферы, заставляя ее половины прочно держаться друг друга, а внутри сферы нет ничего, что бы противодействовало силам, давящим на нее снаружи[4]. Две полусферы можно было разъединить, только отрывая друг от друга с силой, превышающей ту, которая удерживает их вместе.
Затем в действие вступили лошади. Каждую полусферу тянули изо всех сил в противоположные стороны по 8 лошадей (всего 16 лошадей). Император и свита с изумлением наблюдали за тем, как лошади безуспешно пытались преодолеть силу невидимого воздуха, сжимавшего две полусферы. Единственным, что удерживало их вместе, была сила молекул воздуха, бомбардирующих сферу величиной с внушительный пляжный мяч. Но даже усилий стольких лошадей оказалось недостаточно, чтобы разъединить полусферы. Когда сражение закончилось в пользу молекул воздуха, Отто фон Герике с торжествующим видом открыл клапан, чтобы впустить воздух внутрь сферы, – и две полусферы рассоединились сами собой. Вопрос о победителе в этом соревновании также отпал сам собой. Давление воздуха оказалось гораздо сильнее, чем кто-либо мог предположить. Если взять весь воздух, откачанный из сферы примерно такого же размера, как в эксперименте Отто фон Герике, и составить из него воображаемый вертикальный столб, то он мог бы (теоретически) выдержать (за счет направленного вверх давления воздуха) нагрузку порядка 2000 килограммов, что примерно соответствует весу крупного взрослого носорога. Это означает, что если вы нарисуете на полу окружность диаметром 50 сантиметров, то давление воздуха на ограниченную ею площадку также равняется весу 2000-килограммового носорога. Крошечные невидимые молекулы воздуха действительно бомбардируют нас с большой силой. Отто провел множество таких представлений для разных аудиторий, а его знаменитая сфера получила известность как магдебургские полушария (Магдебург – родной город ученого).
Эксперименты Отто фон Герике отчасти стали знамениты еще и потому, что о них многие писали. Идеи ученого вошли составной частью научной мысли в книгу Гаспара Шотта, опубликованную в 1657 году. Сведения о вакуумном насосе Отто фон Герике вдохновили Роберта Бойля и Роберта Хука на проведение экспериментов по изучению давления газов.
Вы можете самостоятельно провести подобный эксперимент – без участия лошадей и императора. Найдите кусок толстого, ровного картона, достаточно большой, чтобы полностью закрыть отверстие стакана. Эксперимент лучше проводить над раковиной, на всякий случай. Наполните стакан водой – до ободка и положите сверху кусок картона. Прижмите его параллельно поверхности воды к ободку так, чтобы между ней и картоном не оставалось воздуха. Затем переверните стакан вверх дном – и уберите руку. Картон, на который оказывает давление вся вода в стакане, тем не менее не отпадает. Этому препятствуют молекулы воздуха, которые бомбардируют картон снизу, подталкивая вверх. Давления молекул воздуха вполне достаточно для удержания воды в стакане.
Давление молекул воздуха годится не только для удерживания тех или иных объектов. Его также можно использовать для перемещения объектов, причем пальма первенства в этом деле принадлежит не человеку. Обратите внимание на слона – одного из самых выдающихся специалистов на планете в деле воздействия на свое окружение с помощью воздуха.
Африканский саванный слон – величественный гигант, по обыкновению мирно разгуливающий по пыльной и жаркой африканской саванне. В жизни семьи слонов главную роль играют самки. Самая старшая из них, мать семейства, возглавляет группу слонов, которая бродит по саванне в поисках пищи и воды. Эта группа полагается на мать семейства, поскольку она запоминает окружающий ландшафт и самостоятельно принимает решения. Однако выживание этих животных и их способность противостоять врагам зависит не только от массы тела. У каждого слона оно может быть тяжелым и неуклюжим, но правильно распоряжаться им животному помогает весьма изысканный и чувствительный орган – хобот. Когда семейство слонов перемещается по саванне, они постоянно исследуют окружающий мир посредством этого странного придатка, используя его для сигнализации, обнюхивания, добывания пищи и фырканья.
Хобот слона – инструмент, замечательный во многих отношениях. Он представляет собой сеть взаимосвязанных мышц, способных сгибаться, подниматься и с невероятной ловкостью подбирать с поверхности земли те или иные объекты. Даже если бы возможности хобота исчерпывались только этим, его уже следовало бы считать чрезвычайно полезным органом, однако у хобота есть еще одна важная особенность: две ноздри, которые тянутся по всей его длине. Они представляют собой гибкие трубки, соединяющие кончик вдыхательного канала с легкими слона. Именно здесь начинается самое удивительное.
Когда слониха и ее семейство приближаются к водному источнику, окружающий их «неподвижный» воздух воздействует на них, как и во всех других местах: молекулы воздуха бомбардируют морщинистую серую кожу слонов, поверхность земли и водную поверхность. Мать семейства слегка опережает остальных слонов, раскачивая хоботом, когда она заходит в воду, создавая рябь на ее поверхности. Слониха погружает хобот в воду, закрывает рот, а мощные мышцы на ее груди вздымаются и расширяют грудную клетку. Во время расширения легких молекулы воздуха в них торопятся занять вновь образовавшееся пространство. Но это означает, что на самом кончике вдыхательного канала, где холодная вода соприкасается с воздухом в ноздрях слонихи, остается меньшее количество молекул воздуха, бомбардирующих водную поверхность. То есть они движутся с той же скоростью, но число соударений уменьшается. В результате давление внутри легких слонихи снижается. В итоге в соревновании «кто кого перетолкает» (между молекулами воздуха, бомбардирующими водную поверхность, и молекулами воздуха внутри слонихи) побеждает атмосферный воздух. Давление изнутри уже не в состоянии уравновесить давление снаружи; и вода – единственное, что остается между соревнующимися сторонами. Таким образом, атмосферный воздух проталкивает воду вверх по хоботу слонихи, поскольку воздух внутри животного не может протолкнуть воду обратно. Как только вода займет какое-то дополнительное пространство, плотность молекул воздуха внутри слонихи окажется такой же, какой была изначально, и вода перестанет продвигаться дальше.
Слоны не могут пить воду хоботом: если бы они попытались сделать это, то поперхнулись бы и закашлялись (как и вы, если бы попробовали пить воду носом). Поэтому, как только слониха наберет в хобот примерно 8 литров воды, ее грудная клетка перестает расширяться. Скручивая хобот вверх и вниз, слониха направляет его кончик в рот, а затем с помощью грудных мышц сдавливает грудную клетку, сокращая размер легких. В результате молекулы воздуха внутри слонихи сближаются и поверхность воды, остановившейся на полпути в ее хоботе, бомбардируется ими гораздо сильнее. Сражение между воздухом внутри и снаружи склоняется в пользу первого, и вода выдавливается из хобота в рот слонихи. Она управляет объемом своих легких, контролируя таким образом давление, которое воздух внутри нее оказывает на воздух снаружи. Когда слониха закрывает рот, единственным местом, где может перемещаться что-либо, остается ее хобот и все, что находится у его кончика, будет втягиваться или выталкиваться. Сочетание хобота и легких слона – универсальный инструмент управления воздухом, так что силой, которая втягивает или выталкивает воду, является давление воздуха, а не усилия слона как такового.
Мы делаем, по сути, то же самое, втягивая какую-либо жидкость через соломинку[5]. Когда мы расширяем свои легкие, плотность молекул воздуха в них снижается (количество молекул воздуха не меняется, а объем легких увеличивается). Внутри соломинки остается меньше молекул воздуха, оказывающих давление на поверхность воды. В результате атмосферное давление, воздействующее на оставшуюся жидкость, проталкивает ее вверх по соломинке. Мы называем это всасыванием, однако мы не втягиваем жидкость. Атмосферное давление, толкающее ее вверх, выполняет за нас всю работу. Даже такое тяжелое вещество, как вода, можно перемещать, когда бомбардировка молекулами воздуха с одной стороны сильнее, чем с другой.
Однако всасывание воздуха через хобот или соломинку имеет свои пределы. Чем больше разность давлений между двумя концами, тем сильнее выталкивание. Но максимальная разность, которой вы можете достичь при всасывании, равна разности между атмосферным давлением и нулем. Даже если бы вместо легких вы использовали идеальный вакуумный насос, то не смогли бы всасывать воду через соломинку длиною более 10,2 м, поскольку наша атмосфера не может проталкивать воду на большую высоту. Поэтому, чтобы на все сто процентов использовать «толкательную» способность молекул газа, нужно заставить их работать при более высоких давлениях, чем атмосферное. Атмосфера оказывает довольно высокое давление, но если какой-либо другой газ нагреть до высокой температуры и приложить к нему большее давление, его «толкательная» способность повысится. Возьмите достаточное количество крошечных молекул газа и заставьте их бомбардировать некий объект с достаточными частотой и скоростью – и вы придадите мощный импульс развитию цивилизации.
Паровоз – это железный дракон, шипящее, дышащее жаром могучее чудовище. Менее столетия тому назад эти драконы расплодились повсеместно, транспортируя промышленную продукцию в пределах одной страны и между разными странами и удовлетворяя потребности общества в перевозках большого количества пассажиров на дальние расстояния. Эти транспортные средства создавали сильный шум и загрязняли окружающую среду, но для своего времени были чудом инженерной мысли. Когда они устарели с моральной и технической точки зрения, общество не торопилось списывать их со счетов. Любители старины сохранили у себя немало экземпляров паровых локомотивов, которые не лишены своеобразной строгой красоты и изящества. Я выросла на севере Англии, поэтому в детские годы была буквально погружена в историю промышленной революции: фабрики, каналы, металлургические заводы, но главное – пар. Но сейчас я живу в Лондоне, и многие из детских воспоминаний уже стерлись из моей памяти. Однако прогулка вместе с сестрой по железной дороге Bluebell («Голубой колокольчик»), где курсируют поезда, приводимые в движение старинными паровозами, заставила вспомнить многое.
Тот промозглый зимний день был абсолютно идеальным для поездки на таком поезде, тем более что по ее окончании нам обещали горячий чай с булочками. На станции отправления мы ждали совсем недолго, а по прибытии в пункт назначения, Шеффилд-Парк, оказались в самом центре неторопливой, но весьма разнообразной деятельности. Вокруг паровозов непрерывно сновали, сменяя друг друга, какие-то люди, которые казались крошечными на фоне этих железных монстров. Тех, кто их обслуживал, было легко распознать: темно-синие комбинезоны, такого же цвета фуражки, добродушно-деловое настроение, наличие бороды (правда, не у всех). Время от времени они наклонялись над тем или иным узлом паровоза, исследовали его, что-то подкручивали, поправляли и настраивали. Как заметила моя сестра, многих из них почему-то звали Дейв. Прелесть парового двигателя в том, что принцип его действия фантастически прост, но исходную энергию пара нужно укрощать, регулировать и направлять. Паровой двигатель и обслуживающие его люди – настоящая команда.
Стоя на земле и глядя на огромный черный паровой двигатель, трудно было представить, что он по своей сути – не что иное, как печь на колесах, нагревающая гигантский котел. Один из Дейвов пригласил нас в кабину машиниста паровоза. Мы взобрались по крутой лесенке непосредственно позади двигателя и оказались внутри пещеры, изобилующей медными рычажками, манометрами и трубками. Здесь были также две белые эмалированные кружки и бутерброд, засунутый за одну из трубок. Однако самым замечательным оказалось то, что мы смогли заглянуть в самую пасть огнедышащего монстра – паровозную топку, которая является сердцем парового двигателя и работает на угле. Он накаляется до ярко-желтого цвета и хорошо виден, если заглянуть в топку. Кочегар вручил мне совковую лопату и предложил «подбросить уголька». Я послушно взяла лопату, зачерпнула ею порцию угля из тендера, расположенного позади меня, и отправила в жерло топки. Паровой двигатель – весьма прожорливая тварь. Чтобы преодолеть путь длиной 18 километров, необходимо сжечь примерно 500 килограммов угля. Эти полтонны «черного золота» превращаются в газ: двуокись углерода и воду. В результате сжигания угля высвобождается огромное количество энергии, поэтому газы нагреваются до очень высокой температуры. Это лишь начало преобразования энергии, приводящей в движение поезд.
Основной узел парового двигателя – длинный цилиндр, который тянется от кабины машиниста до паровозной трубы. Я никогда всерьез не задумывалась о его внутреннем содержимом, но в нем наверняка полно всевозможных трубок. По ним горячий газ передается от паровозной топки к собственно двигателю. Это и есть паровой котел. Большую часть пространства вокруг труб занимает вода: получается нечто наподобие гигантской ванны, наполненной кипящей, булькающей жидкостью. В результате нагревания труб до высокой температуры образуется пар: молекулы горячей воды, движущиеся с очень высокими скоростями в верхней части парового двигателя. В этом и состоит принцип работы парового двигателя: топка и паровой котел, создающие клубы горячего водяного пара. Дракон извергает из пасти не огонь, а миллиарды миллиардов молекул, обладающих высокой энергией. Эти молекулы, заключенные внутри парового котла, движутся с гигантскими скоростями. Температура такого газа составляет примерно 180 , а давление в верхней части котла приблизительно в десять раз больше атмосферного. Молекулы газа с высокой скоростью ударяют о стенки двигателя, но выход своей энергии они могут дать, лишь совершая полезную работу.
Мы выбрались из кабины машиниста и подошли к передней части паровоза. Возвышающийся над нами двигатель, полтонны угля, гигантский паровой котел и бригада обслуживающего персонала – вот что мы там увидели. Ремонтники колдовали над двумя цилиндрами с поршнями, каждый примерно 50 сантиметров в диаметре и длиной около 70 сантиметров. Именно здесь происходит самое главное – преобразование энергии пара в механическую энергию. Горячий пар, находящийся под высоким давлением, подается поочередно то в один, то в другой цилиндр. Атмосферное давление с одной стороны поршня, разумеется, неспособно уравновесить десять атмосфер, выдыхаемых драконом. Молекулы горячего пара, бомбардирующие поршень с другой стороны, толкают его вдоль цилиндра, пока в конце не будут выпущены в атмосферу с характерным звуком «чуф-ф-ф». Именно такие звуки вы слышите, когда к вам приближается паровоз: «чуф-чуф, чуф-чуф, чуф-чуф». Их издает выпускаемая в атмосферу порция водяного пара, после того как выполнит свою часть работы. Поршень приводит в движение колеса, а колеса цепляются за рельсы и тащат вагоны. Нам известно, что паровые двигатели потребляют огромное количество угля, но почти никто не вспоминает о количестве используемой ими воды. Пятьсот килограммов угля, которые нужно сжечь в топке паровоза, чтобы преодолеть 18километров пути, служат для превращения 4500 литров воды в пар. Этот пар толкает поршень и выбрасывается в атмосферу, по одному «чуфу» за раз[6].
Наконец пришло время расстаться с паровозом и возвратиться в один из вагонов, в котором нам предстояло отправиться домой. Обратная дорога вызвала у нас другие чувства. Клубы пара, проносившиеся мимо окон вагона, вносили свой вклад в путешествие. Паровоз, кативший наш вагон по рельсам, уже казался нам не шумным и назойливым, а довольно тихим и мирным – особенно если принять во внимание происходящее внутри него. Было бы замечательно, если бы кто-нибудь создал действующую стеклянную копию паровоза, чтобы все желающие могли наблюдать его в работе.
Революция пара начала XIX века сводилась к использованию давления молекул газа, которое бы приводило в действие механизмы, необходимые человеку. Все, что для этого нужно, – поверхность, одну сторону которой молекулы газа бомбардируют сильнее, чем другую. Сила давления пара может поднять крышку кастрюли с супом или использоваться для транспортировки продуктов питания, топлива и людей на дальние расстояния. В любом случае базовые принципы остаются теми же. Сейчас паровые двигатели уже не применяются, но базовые принципы, положенные в их основу, по-прежнему имеют сферы приложения. С технической точки зрения, паровой двигатель представляет собой «двигатель внешнего сгорания», поскольку топка отделена от парового котла. В автомобильном двигателе сгорание топлива происходит в цилиндре: бензин сгорает рядом с поршнем, а само сгорание порождает горячий газ, толкающий поршень вдоль цилиндра. Такой двигатель называется двигателем внутреннего сгорания. Каждый раз, усаживаясь в автомобиль или автобус, помните, что вы перемещаетесь за счет давления, создаваемого молекулами газа.
Проводить эксперименты с давлением и объемом довольно легко, особенно если у вас есть бутылка с широким горлышком и сваренное вкрутую очищенное от скорлупы яйцо. Горлышко бутылки должно быть капельку шире яйца, чтобы яйцо, уложенное на него, не проваливалось внутрь. Возьмите кусок бумаги, подожгите его, опустите внутрь бутылки, дайте ему погореть несколько секунд, а затем положите яйцо на горлышко бутылки. Вскоре вы увидите, как яйцо слегка сожмется и провалится внутрь бутылки. Итак, как же его теперь достать? Есть несколько способов это сделать. Один из них – перевернуть бутылку вверх дном так, чтобы яйцо «уселось» в горлышко изнутри бутылки, а затем поднести бутылку под водопроводный кран с горячей водой. Через какое-то время яйцо выскочит из бутылки.
Секрет этого «фокуса» – в наличии фиксированной массы газа (в бутылке) и возможности регулировать разность давлений внутри бутылки и снаружи, где действует атмосферное давление. Если яйцо перекрывает горлышко бутылки снаружи, объем газа внутри бутылки будет фиксированным. При повышении температуры внутри бутылки давление в ней тоже повышается и горячий воздух начинает проникать наружу, просачиваясь вдоль боков яйца (если вы уложили его сверху на горлышко). Когда яйцо снова охладится, давление внутри бутылки снизится (так как объем воздуха остается фиксированным) и яйцо провалится внутрь, поскольку давление снаружи теперь выше, чем внутри бутылки. Вы можете заставить яйцо проваливаться в бутылку и вываливаться из нее, просто нагревая и охлаждая воздух в бутылке с фиксированным объемом.
Высокие давления в паровом двигателе управляемы и стабильны, что идеально подходит для толкания поршней и вращения колес. Но это еще не все. Зачем транжирить энергию на промежуточных стадиях между газом и колесами? Почему не предоставить возможность горячим газам, находящимся под высоким давлением, приводить в движение ваше транспортное средство непосредственно? Именно по такому принципу всегда работали ружья, пушки и фейерверки, хотя ранние их образцы были весьма ненадежны. Но к началу XX столетия появились новые технологии и родились новые честолюбивые замыслы. Были разработаны первые ракеты – самый совершенный двигатель прямого действия среди когда-либо придуманных человеком.
Технологии, необходимые для создания ракетных двигателей, достигли более или менее приемлемой степени надежности только после Первой мировой войны, но лишь к 1930-м годам вы могли запустить ракету, которая, скорее всего, полетит в нужном направлении и не упадет кому-нибудь на голову. В большинстве случаев. Подобно многим другим новым технологиям, изобретатели ракетных двигателей научились запускать ракеты еще до того, как кто-либо смог предложить идеи относительно их практического применения. А из питательного бульона естественной человеческой изобретательности возникло нечто совершенно новое, очень современно звучащее и заведомо бесперспективное: ракетная почта.
В Европе идея ракетной почты и ее практическая реализация стали возможны исключительно благодаря стараниям одного человека – Герхарда Цукера. В то время ракетами занимались несколько изобретателей, но Цукер выделялся среди них редкостным упорством и неиссякаемым оптимизмом, которые помогли ему пережить бесконечную череду неудач и разочарований. Этот молодой немецкий изобретатель был буквально одержим ракетами, а поскольку военные не заинтересовались его изобретением, он постарался найти ему применение в гражданском секторе. Ему казалось, что человечество отчаянно нуждается в доставке почты ракетами: действительно, на то время более быстрый способ трудно было представить, к тому же он должен был понравиться людям своей новизной и необычностью. Поначалу в Германии терпимо относились к неудачам ранних экспериментов Цукера, но потом терпение немцев лопнуло и ученому пришлось перебраться в Великобританию. Здесь он нашел единомышленников и поддержку среди филателистов, которым идея ракетной почты понравилась не только своей оригинальностью, но и перспективой появления множества новых почтовых марок, посвященных данному способу доставки почты. Одним словом, будущее казалось Цукеру обнадеживающим. После испытания, проведенного в Гэмпшире, в июле 1934 года Цукер отправился в Шотландию, чтобы проверить возможность пересылки почты с помощью ракеты между двумя островами, Скарп и Харрис.
Ракета, сконструированная Цукером, не отличалась особой сложностью: ее корпус представлял собой большой металлический цилиндр длиной около метра, внутри которого находилась узкая медная трубка с соплом на конце, заполненным плотно упакованным порошкообразным взрывчатым веществом. В пространстве между внутренней трубкой и наружным цилиндром размещались письма. Передняя часть ракеты имела конусообразную форму и была снабжена пружиной, вероятно, призванной обеспечить мягкое приземление ракеты. На схематическом изображении ракеты тонкий слой между трубкой, из которой должны были вырываться раскаленные газы, и отделением, где находились легко воспламеняющиеся письма, был обозначен как «асбестовый защитный слой, предотвращающий возгорание почтовых отправлений». Ракета укладывалась на специальную наклонную опору (стартовый стол). В момент запуска электрическая батарея должна была обеспечить поджигание взрывчатого вещества в ракете, сгорание которого приводило бы к образованию большого количества раскаленного газа, находящегося под высоким давлением. Молекулы этого раскаленного газа, движущиеся с высокими скоростями, бомбардировали бы изнутри передний конец ракеты, увлекая ее вперед, при этом на задний конец ракеты эквивалентное давление не оказывалось бы: раскаленный газ просто вырывался бы через сопло в атмосферу. Такой дисбаланс давлений мог обеспечивать очень быстрое движение ракеты вперед. Горение взрывчатого вещества продолжалось бы не более нескольких секунд, которых вполне бы хватило для перелета ракеты с одного острова на другой. Где и как именно приземлится ракета, было делом второстепенной важности. Тем не менее это стало одной из причин проведения испытания в относительно безлюдной местности Шотландии.
Цукер собрал 1200 писем, которые предстояло переслать в ходе испытательного полета. На каждом из них красовалась специальная марка, которая гласила: Western Isles Rocket Post («Ракетная почта западных островов»). Цукер упаковал в ракету столько писем, сколько поместилось, установил ее на стартовый стол, обвел взглядом возбужденную толпу местных жителей и одну из первых телевизионных камер BBC. Торжественный момент наступил.
После нажатия кнопки «Пуск» батарея обеспечила поджигание взрывчатого вещества. Быстрое сгорание создало внутри медной трубки ожидаемую смесь раскаленных газов, молекулы которых начали с огромными скоростями бомбардировать переднюю часть ракеты, сдвигая ее со стартового стола и отправляя в полет. Но буквально через пару секунд послышался громкий звук удара и ракета исчезла в облаке дыма. Когда дым рассеялся, зрители увидели сотни писем, разбросанных по земле и трепещущих под порывами ветра. Асбестовая защитная оболочка справилась со своей задачей, а ракета – нет. Поведением раскаленного газа, находящегося под большим давлением, очень трудно управлять, и его молекулы разорвали корпус ракеты. Цукер объяснил неудачу эксперимента недостаточной прочностью кассеты со взрывчатым веществом, после чего занялся сбором второй порции писем и подготовкой ко второму испытанию.
Через несколько дней 793 уцелевших после первого испытания письма и 142 новых были помещены во вторую ракету, которую решили запустить с другого острова, Харрис, в направлении острова Скарп. Но удача отвернулась от Цукера. Вторая ракета также взорвалась на стартовом столе, причем на этот раз взрыв оказался еще мощнее. Уцелевшие письма были снова собраны и отправлены получателям обычной почтой; они, с их обожженными краями стали чем-то вроде сувениров. От проведения дальнейших испытаний Цукер после этого отказался. В течение следующих нескольких лет он безуспешно искал причины своих неудач и улучшал конструкцию ракеты. Он упорно убеждал себя и других, что в следующий раз у него наверняка получится. Увы, не получилось[7]. По крайней мере, с почтовой ракетой. Цукер пытался совершить прорыв в непознанное, но, как теперь стало понятно, возможно, выбрал не самые подходящие время, место или идею. Если бы были выполнены все три условия, мы бы назвали Цукера гением. Но «малая ракетная техника», к которой относится почтовая ракета Цукера, была слишком хлопотным, дорогостоящим и ненадежным способом быстрой доставки почты. Она не выдержала конкуренции с моторизованным транспортом и телеграфом. Тем не менее Цукер был прав: использование раскаленного, находящегося под большим давлением газа в качестве движущей силы обладает огромным потенциалом в деле доставки объектов из пункта A в пункт B. Однако раскрытием такого потенциала занялись другие люди, которые воспользовались этим принципом, нашли для него подходящее применение и решили практические проблемы, что привело их в конечном счете к успеху. Конструирование ракет стало уделом военных: немецкие ракеты «Фау-1» и «Фау-2», использовавшиеся в годы Второй мировой войны, указали направление, в котором должны вестись разработки ракетной техники. В послевоенное время начали интенсивно развиваться гражданские программы освоения космического пространства.
В наши дни всем хорошо знакомы фотографии гигантских ракет, доставляющих на Международную космическую станцию людей и огромные грузы или выводящих на околоземную орбиту спутники. Современные ракеты поражают воображение своими масштабами, а современные системы управления делают их вполне безопасными и надежными, и это огромное достижение человеческой мысли. Однако базовый механизм, положенный в основу каждой ракеты – «Союз», Saturn V, Arianne или Falcon 9, – остается тем же, что и в почтовой ракете Герхарда Цукера. Если вам удастся достаточно быстро выработать соответствующее количество раскаленного газа под высоким давлением, то вы сможете использовать огромную кумулятивную силу, исходящую от миллиардов отдельных молекул, бомбардирующих определенную поверхность. Давление, создаваемое на первой стадии полета ракеты «Союз», приблизительно в шестьдесят раз превышает атмосферное давление, в результате чего сила тяги в шестьдесят раз больше обычной силы давления воздуха. Но в том и другом случае природа силы та же: бомбардировка молекулами газа той или иной поверхности. Огромные количества таких молекул, соударяющихся с достаточными частотой и скоростью, могут даже обеспечить полет человека на Луну. Никогда не следует недооценивать возможности частиц, столь ничтожных по своим размерам, что их нельзя увидеть невооруженным глазом!
Молекулы газа всегда с нами. Земная атмосфера окружает нас, воздействует на нас, оказывает на нас давление и обеспечивает нам жизнь. Замечательное свойство земной атмосферы – это то, что она нестатична и пребывает в постоянном движении и изменении. Окружающий нас воздух невидим, но если бы мы могли его видеть, то увидели бы, как его огромные массы поднимаются в результате нагрева и опускаются вследствие охлаждения, как он расширяется и сжимается, находясь в непрерывном движении. Процессы, происходящие в атмосфере, как и в любой другой совокупности молекул газа, подчиняются газовым законам, которые мы рассматриваем в этой главе. Хотя окружающий нас воздух на первый взгляд не имеет ничего общего с тем, что содержится в легких кашалота или паровом двигателе, он оказывает на нас физическое воздействие. Но поскольку он также находится в окружении воздуха, это означает, что он воздействует сам на себя, приспосабливаясь к изменяющимся условиям. Мы не можем видеть подробностей процессов, происходящих в окружающем нас воздухе, но у нас есть название их последствий: погода.
Идеальное место для наблюдения за ураганом – обширная открытая равнина. Еще вчера воздух мог быть спокойным, а бескрайний голубой простор над головами – казаться вечным. Невидимые молекулы воздуха концентрируются ближе к поверхности земли. Чем дальше от нее, тем разреженнее воздух. Воздушные массы постоянно сталкиваются между собой, перемешиваются и перестраиваются, пребывая в непрерывном движении. Они перемещаются из областей высокого давления в области низкого, реагируя на нагрев и охлаждение, и все время устремляются то в ту то в другую сторону. Но эти изменения происходят довольно медленно и спокойно. Ничто даже не намекает на перенос молекулами воздуха огромного количества энергии.
День, когда происходит ураган, начинается так же, как и предыдущий, только небо обычно еще яснее, чем накануне, поэтому земля прогревается гораздо быстрее. Молекулы воздуха принимают на себя часть этой энергии и ускоряются. Ближе к полудню надвигается плотная облачность, захватывая по мере своего приближения все большую часть небосвода, и вскоре застилает весь горизонт. Наблюдается интенсивный обмен энергией. Разность давлений толкает это газообразное архитектурное сооружение по равнине. Вследствие его неустойчивости нарастает напряжение. Хотя молекулы воздуха с большой силой соударяются друг с другом, им не хватает времени перестроиться в более сбалансированную структуру. Наряду с этим происходит интенсивное перемещение огромного количества энергии, поэтому ситуация непрерывно меняется. Воздух, нагревшийся у поверхности земли, поднимается, достигает облаков, продирается сквозь них и выстраивает поверх них все новые и новые сооружения.
Когда такая грозовая туча нависает над вашей головой, ярко-голубое небо сменяется зловещим сумраком, охватывающим всю равнину. Стоя на земле, мы оказываемся в центре схватки, происходящей над нашими головами. Мы не можем видеть молекул воздуха, но можем наблюдать клубящиеся и вздымающиеся над нами облака. Но созерцаемое нами – лишь слабый намек на драму, разворачивающуюся внутри облаков, где сгустки воздуха яростно сталкиваются между собой, поскольку дисбалансы давлений настолько велики, что перегруппировка молекул воздуха представляет собой очень быстрый и энергичный процесс. Когда молекулы воздуха обмениваются энергией, водяные капли охлаждаются и увеличиваются в размерах и на землю падают первые крупные капли дождя. Когда интенсивное движение молекул воздуха начинается даже у поверхности земли, поднимается сильный ветер.
Огромные грозовые облака напоминают нам о том, какой внушительный запас энергии присутствует высоко в голубом небе. Мы видим лишь последствия столкновений и перемещений молекул воздуха, происходящих у нас над головами, хотя даже эти последствия выглядят весьма впечатляюще. Тем не менее это только слабое отражение реальной драмы, разворачивающейся на молекулярном уровне. Молекулы воздуха могут поглощать энергию излучения Солнца, отдавать свою энергию океану, накапливать энергию от конденсации при формировании облаков или отдавать энергию, испуская ее в окружающее пространство; они постоянно приспосабливаются к изменениям обстановки, подчиняясь закону идеальных газов. Наша вращающаяся планета, с ее неровной и многоцветной поверхностью, усложняет эти перестройки; дополнительные сложности вносят облака, присутствие разнообразных крошечных частиц и наличие тех или иных конкретных газов. Прогноз погоды – лишь попытка сделать те или иные выводы на основании наблюдений за битвами у нас над головами и идентифицировать те процессы, которые окажут наибольшее влияние на нас, землян. Но в основе этих процессов лежат те же законы, которые использует слон, конструктор ракет и создатель парового двигателя, – законы газов в действии. Те же законы газов, которые заставляют лопаться попкорн, определяют погоду на нашей планете.
Глава 2. Все возвращается на круги своя
Сила притяжения
Любознательность присуща всем членам моей семьи. Они с удовольствием исследуют все новое, обожают экспериментировать и делают это без излишней суеты. Поэтому никто из них не удивился, когда во время семейного ужина я отлучилась на кухню, чтобы отыскать там бутылку лимонада и горсть изюма. Был чудесный летний день. Мы – то есть моя сестра, тетя, Нана и мои родители – решили поужинать на свежем воздухе и накрыли стол в саду моей мамы. На кухне я нашла двухлитровую бутылку дешевого газированного лимонада, содрала с нее этикетку и поставила бутылку на середину стола. Присутствующие наблюдали за моими действиями со спокойным любопытством. Я отвинтила крышечку бутылки и всыпала внутрь горсть изюма. Из горлышка бутылки взвилось маленькое облачко газа, а затем, когда шипение пузырьков прекратилось, мы увидели внутри бутылки множество танцующих изюминок. Я думала, что это зрелище развлечет присутствующих каких-то пару минут, но Нана и мой отец оказались им буквально заворожены. Бутылка с лимонадом превратилась в некое подобие лава-лампы[8]. Изюминки, сталкиваясь друг с другом, вращаясь вокруг собственной оси и пританцовывая, поднимались со дна бутылки к ее горлышку, а затем снова опускались на дно.
На стол уселся воробей, намеревавшийся склевать несколько крошек, и с подозрением уставился на бутылку. С другой стороны стола на бутылку не менее подозрительно уставился мой отец. «Этот фокус можно проделать только с изюмом?» – спросил он.
Ответ – «да», и по весьма веской причине. До того как вы снимете крышечку с бутылки с газировкой, давление внутри бутылки будет значительно превышать давление окружающего воздуха. В момент, когда вы отвинтите крышечку, оно резко снизится. В воде растворено значительное количество газа. Он удерживается в ней за счет высокого давления, но при его резком снижении газ может устремиться наружу. Проблема в том, что ему нужен путь для выхода из бутылки. Инициировать появление нового пузырька газа не так-то легко, поэтому молекулам газа гораздо проще присоединиться к какому-либо из уже существующих пузырьков. И тут на помощь приходят изюминки. Дело в том, что они покрыты V-образными складками, которые не на 100 % заполнены лимонадом. На самом дне каждой такой складки есть протопузырек – крошечный карман газа. Вот почему нужны изюминки или что-то другое, достаточно маленькое, морщинистое и чуть-чуть более плотное, чем вода. Газ выделяется из лимонада и попадает в протопузырьки, причем на каждой изюминке нарастает нечто наподобие «спасательного жилета» из пузырьков, который движется вместе с изюминкой. Сами по себе изюминки обладают большей плотностью, чем вода, поэтому под силой тяжести опускаются на дно бутылки. Но после того как на изюминке нарастет несколько пузырьков, ее плотность в целом снижается и изюминка начинает всплывать к горлышку бутылки. Там пузырьки, которые выбрались на поверхность воды, лопаются, и вы можете наблюдать, как изюминки переворачиваются, когда пузырьки, собравшиеся на их нижней стороне, поднимаются на поверхность и тоже лопаются. Полностью лишившись «спасательного жилета», изюминка начинает опускаться на дно бутылки, поскольку ее плотность снова становится больше плотности воды. Это движение туда-обратно продолжается до тех пор, пока из лимонада не выйдет весь избыточный углекислый газ.
Примерно через полчаса причудливый танец изюминок в бутылке с лимонадом практически прекратился, и лишь отдельные экземпляры изюминок продолжали неспешный путь вниз и вверх, а лимонад приобрел обескураживающий желтоватый цвет. Захватывающее зрелище круговорота изюминок в лимонаде превратилось в нечто, напоминающее бутылку мочи, доставленной в лабораторию для анализа, причем на дне бутылки скопились объекты, похожие на дохлых мух.
Впрочем, вы сами можете провести такой эксперимент. К тому же это прекрасный способ оживить скучную вечеринку. Только необходимо заранее запастись порцией изюма, сушеных ягод смородины или чего-нибудь в этом роде. Главное, чтобы пузырьки газа и ягоды становились одним целым и перемещались как одно целое. Когда изюминки обволакиваются воздушными карманами, они почти не изменяют своего веса, но зато занимают гораздо больше места. Отношение массы материала к объему заполненного им пространства называется плотностью, поэтому конструкция «изюминка плюс газовый пузырек» обладает меньшей плотностью, чем изюминка сама по себе. Сила притяжения может притягивать лишь материал как таковой, отчего менее плотные предметы испытывают меньшую силу притяжения к Земле. Именно потому некоторые объекты могут плавать: способность плавать – лишь один из уровней в гравитационной иерархии. Сила притяжения тянет плотные жидкости вниз, и любой объект, помещенный в некоторую жидкость, неминуемо всплывает на ее поверхность, если оказывается менее плотным, чем сама жидкость. Мы называем объекты, менее плотные, чем жидкость, в которую они помещены, плавучими.
Пространства, заполненные воздухом, позволяют управлять относительной плотностью и, следовательно, плавучестью. Как известно, одной из особенностей конструкции, которая должна была обеспечить непотопляемость «Титаника», было наличие больших водонепроницаемых помещений, расположенных в нижней части корабля. Они должны были действовать как пузырьки воздуха, прилипшие к изюминке, и представляли собой своеобразные «воздушные карманы», призванные повысить плавучесть судна и удерживать его на плаву. Когда «Титаник» натолкнулся на айсберг, эти водонепроницаемые отсеки оказались не такими уж водонепроницаемыми и в конце концов заполнились водой[9]. Эффект был таким же, как и в случае нескольких последних пузырьков, лопнувших на поверхности воды. Подобно изюминке, лишившейся «спасательного жилета», «Титаник» ушел на дно[10].
Мы согласны с тем, что предметы могут тонуть или плавать, но редко задумываемся о причине такого явления, как гравитация (сила гравитационного притяжения, сила тяжести). Театр нашей жизни (выражаясь языком Шекспира) разворачивается на сцене, где преобладает эта вездесущая сила, которая всегда напоминает нам, где находится «верх», а где – «низ». Она чрезвычайно полезна, так как приводит окружающие нас предметы в порядок, удерживая их на полу (для начала). Кроме того, это самая очевидная из сил, с которыми нам приходится как-то справляться. Силы, вообще говоря, странная штука: они невидимы и нам неведомо, что они замышляют. Но сила гравитационного притяжения (далее для краткости именуемая просто силой притяжения) всегда с нами, всегда действует в одном направлении и ее величина всегда одинакова (по крайней мере на поверхности Земли). При желании поэкспериментировать с теми или иными силами лучше всего начать с силы притяжения. А что будем исследовать первым? Разумеется, падение!
Трамплин и вышка для прыжков в воду позволят вам насладиться максимальным ощущением свободы и раскрепощенности. В момент прыжка вы полностью освобождаетесь от ощущения силы тяжести. Дело не в ее исчезновении, просто вы полностью отрешаетесь от нее, поскольку лишаетесь точки опоры. Вы можете совершать в воздухе всевозможные пируэты, подобно теоретически свободному телу, как если бы вы свободно парили в пространстве. При этом у вас появляется чувство необычайной свободы. Увы, оно непродолжительно: проблема возникает буквально через пару секунд, когда вы врезаетесь в водную поверхность. Есть два способа пережить этот неприятный момент: 1) проделать руками или ногами узкий туннель в воде и сгруппироваться таким образом, чтобы остальная часть вашего тела элегантно скользнула в этот туннель, минимизируя силу удара о воду; 2) свободно раскинуть в стороны руки и ноги и плюхнуться в воду животом или спиной, подняв вокруг себя столб брызг. Однако такой способ приводнения чреват весьма неприятными последствиями.
В молодости я не только прыгала в воду с трамплина, но и была тренером. Однако прыжки в воду с вышки ненавидела. Трамплин находится на высоте одного или трех метров над поверхностью воды в бассейне. Это немного напоминает прыжки на батуте. Вышка же – негибкий помост, расположенный на высоте 5, 7,5 или 10 метров над поверхностью воды. В бассейне, где я тренировалась, была только 5-метровая вышка, но я всеми силами избегала прыжков даже с такой не самой внушительной высоты.
С 5-метровой вышки вода в бассейне кажется очень далекой. Со дна бассейна всегда поднимается тонкая струйка воздушных пузырьков, поэтому водная поверхность хорошо видна даже в случае, когда в бассейне никто не плавает и поверхность воды совершенно гладкая. Самый простой прыжок, который спортсмены используют для разогрева, – это прыжок из «передней стойки» (лицом к воде). Стоя на краю доски, вы наклоняете верхнюю часть туловища вперед, в виде буквы L, руки сомкнуты над головой, ноги прямые. В таком положении голова находится несколько ближе к воде, поэтому высота не кажется столь пугающей. Впрочем, страшно все равно. Затем вы слегка приподнимаетесь на носках – и отрываетесь от доски. Внезапно возникает ощущение свободы. Есть лишь вы и планета массой 6 миллионов миллиардов миллиардов килограммов, с которой вы связаны только штуковиной под названием сила притяжения, а законы Вселенной означают, что вы притягиваетесь друг к другу.
Гравитация, как и любая другая сила, ускоряет вас. Это следствие знаменитого второго закона Ньютона[11], который гласит, что любая результирующая сила, действующая на вас, изменяет вашу скорость. Отталкиваясь в статичном положении от доски на вышке для прыжков в воду, вы медленно начинаете двигаться. Интересная особенность ускорения заключается в том, что оно измеряется в единицах изменения скорости за секунду. Чтобы преодолеть первый метр, вам потребуется относительно продолжительное время (0,45 секунды). Но второй метр вы преодолеваете уже значительно быстрее, в результате чего для ускорения на этом отрезке пути (на втором метре) у вас останется меньше времени. После первого метра пути ваша скорость составит 4,4 метра в секунду, а после двух метров – всего 6,3 метра в секунду.
Таким образом, большую часть времени в ходе прыжка с вышки вы тратите в не самом лучшем месте – высоко над водой. За первую половину времени, которое вы проводите в воздухе, прыгая с 5-метровой вышки, вы преодолеваете лишь 1,25 метра. Затем события резко ускоряются. На все 5 метров вам требуется 1 секунда, и в конце этого пути ваша скорость составляет 9,8 метра в секунду. Вы выпрямляете тело, достигаете водной поверхности и стараетесь войти в воду так, чтобы фонтан брызг в результате вашего падения оказался как можно меньше.
Многие из тех, с кем я начинала заниматься прыжками в воду, охотно прыгали с самой высокой вышки. Я не отношусь к их числу. Мой личный опыт показывает, что чем больше времени вы находитесь в полете, тем выше вероятность допустить какую-то ошибку. Однако эта интуитивная логика противоречит законам физики, поскольку вы движетесь настолько быстро, что прохождение нескольких дополнительных метров на самом деле лишь незначительно наращивает вашу скорость. Для преодоления 5 метров требуется 1 секунда, а 10 метров – всего 1,4 секунды. При этом вы движетесь лишь на 40 % быстрее, хотя преодолеваете вдвое большую дистанцию. Я понимала это, но занималась прыжками в воду лишь около четырех лет и ни разу не прыгала с высоты, превышающей 5 метров. Нет, я боюсь не высоты, а последствий падения с нее. Чем дольше сила притяжения ускоряет мое падение, тем меньшее удовольствие доставляет мне фаза замедления, то есть вхождения в воду. Даже падение мобильного телефона на пол напоминает нам о том, что действие силы притяжения может повлечь за собой неприятные последствия. Как бы там ни было, чем больше высота, тем больше скорость в момент соприкосновения с поверхностью. Правда, из этого правила есть исключение.
На Земле существует предел воздействия на вас гравитации. Это объясняется тем, что вы ускоряетесь лишь результирующей силой, воздействующей на вас. Ускоряясь, вам приходится толкать на своем пути больше воздуха за один и тот же промежуток времени, причем этот воздух оказывает вам противодействие, толкая вас в обратном направлении. В какой-то момент эти две силы уравновешивают друг друга, и вы продолжаете полет с некоторой конечной скоростью – быстрее двигаться вы не сможете. В случае листьев, воздушных шаров и парашютов сила противодействия воздуха довольно большая по сравнению с силой притяжения Земли, поэтому баланс сил действия и противодействия наступает при относительно низкой скорости. Но для человека конечная скорость вблизи земной поверхности составляет примерно 190 км/ч. Как ни печально это звучит для тех, у кого есть шансы упасть с большой высоты, сопротивление воздуха совсем незначительно, пока они не достигнут очень высоких скоростей. Оно не настолько велико, чтобы гарантировать мне полную безопасность при прыжке с 10-метровой вышки. Даже сейчас я не решилась бы на такой прыжок.
Мои научные исследования касаются физики поверхности океана. Я – физик-экспериментатор, поэтому часть моей работы – морские экспедиции, в ходе которых я исследую процессы, протекающие на зыбкой и прекрасной границе между воздухом и океаном. По многу недель мне приходится работать на исследовательском судне, которое представляет собой нечто вроде плавучей, функциональной и мобильной научной деревни. Проблема длительного пребывания на корабле – необходимость жить с гравитацией, которая ведет себя не совсем так, как на суше. Понятие «внизу» становится весьма неопределенной концепцией. Предметы могут падать с такой же скоростью и в таком же направлении, как если бы вы уронили их на суше, но не всегда. Обнаружив на столе какой-нибудь незакрепленный объект, вы поневоле начинаете смотреть на него с подозрением, поскольку нет никакой гарантии, что он останется неподвижным. Жизнь на море проходит в окружении всевозможных амортизаторов, запертых на замок выдвижных ящиков, веревок, канатов и ковриков, которые обеспечивают прочное сцепление с подошвой обуви, что помогает вам более-менее сносно существовать в условиях постоянного действия некой капризной силы, которая, подобно научному полтергейсту, тянет окружающие вас предметы в непредсказуемых направлениях. Тема моих научных исследований – пузырьки, порождаемые разбивающимися волнами во время штормов. Поэтому мне приходится месяцами жить в море, причем порой в весьма некомфортных погодных условиях. Вообще говоря, мне нравится эта «морская романтика», к ней быстро привыкаешь. Однако я извлекла из морских экспедиций один важный урок: мы воспринимаем силу притяжения как нечто само собой разумеющееся и, как правило, не задумываемся о ее существовании. Во время одной из научных экспедиций в Антарктику корабельный казначей взял себе за правило по три раза в неделю проводить с нами что-то наподобие физзарядки. Он собирал нас в одном и холодных трюмов корабля, где мы, подчиняясь его командам, становились в круг и в течение часа дружно подпрыгивали, наклонялись, приседали и выполняли другие физические упражнения. Это была, наверное, самая эффективная групповая физзарядка, которую мне когда-либо приходилось делать, поскольку мы никогда не знали, какой силе нам предстоит сопротивляться в каждый очередной момент. Первые три упражнения «присесть-встать» могли казаться нам до смешного легкими, так как соскальзывание корабля с гребня волны вниз существенно снижало силу земного притяжения. Но только вы начинали чувствовать себя по-настоящему хорошо, как вас тотчас же настигало возмездие: корабль достигал подошвы волны. В этот момент притяжение становилось на 50 % сильнее и внезапно возникало ощущение, будто вашим мышцам приходится преодолевать сопротивление резинового эспандера, один конец которого прикреплен к полу, а другой – к вашим плечам. Еще четыре упражнения «присесть-встать» – и гравитация вновь пропадает… Прыжки на месте давались еще тяжелее, потому что вы никогда не могли угадать, на какой высоте окажется пол в следующее мгновение. А после физзарядки, стоя под душем, вам приходилось ловить струю воды, которая направлялась то в одну то в другую сторону душевой кабинки по мере того, как корабль кренился то на один то на другой борт или наоборот, то на нос, то на корму в результате килевой качки.
Разумеется, с гравитацией все было в порядке. Все предметы на корабле притягивались к центру Земли с одной и той же силой. Но когда вы ощущаете силу земного притяжения, вы сопротивляетесь ускорению. Если среда, в которую вас поместили, сама приобретает ускорение (представьте, что вы находитесь в гигантской консервной банке и ее время от времени подбрасывают вверх, после чего она каждый раз падает вниз), то ваше тело не сможет уловить разницы между гравитационным и любым другим ускорением, действующим на вас. В конечном счете вы оказываетесь под действием «результирующего ускорения», не отдавая себе отчета в том, в чем его источник. Именно поэтому необычные ощущения, возникающие у вас в лифте, появляются лишь в начале и конце движения, когда лифт ускоряется, прежде чем достигнет своей «крейсерской скорости», и замедляется («отрицательное ускорение»), прежде чем полностью остановится. Ваше тело не улавливает разницы между ускорением лифта и ускорением, вызванным гравитацией[12], поэтому вы испытываете повышенную или пониженную «результирующую силу тяжести». В течение какой-то доли секунды вы можете почувствовать, каково жить на планете с другим гравитационным полем.
К счастью, большую часть времени мы не испытываем на себе подобных сложностей. Сила тяжести постоянна и действует в направлении центра Земли. «Вниз» – это направление, в котором падают предметы. Это известно даже растениям.
Моя мама – заядлый садовод и огородник, поэтому в детстве у меня было достаточно возможностей сеять семена, пропалывать сорняки, кривиться от вида слизняков и ворошить навозные кучи. Помню, меня всегда восхищали сеянцы, потому что они знали, где «верх», а где «низ». В глубине почвы, куда не проникает свет, после раскрытия оболочки семени новые корешки тянулись вниз, а нарождающийся стебелек – вверх. Вытащив из почвы любой саженец, вы легко могли убедиться в том, что растения никогда не ошибаются в выборе направления своего развития: корень неизменно прорастает в глубь почвы, а стебель устремляется вверх. Как они ориентируются в пространстве? Став постарше, я нашла ответ на этот вопрос – и он был на удивление прост. Оказывается, внутри семени есть специализированные клетки, называемые статоцитами, нечто вроде микроскопических «снежных шариков»[13], встроенных в растение. Внутри каждой такой клетки есть особые крахмальные ядра, более плотные, чем остальной материал клетки, ориентированные в направлении нижней части клетки. Белковые сети наделены способностью к ориентации в пространстве, так что семя, а впоследствии и растение знают, где «верх», а где «низ». Когда в очередной раз будете сеять семена, вспомните о наличии в них некоего подобия «снежного шарика» и бросайте их в почву в каком угодно положении. Можете не сомневаться, растение справится с задачей, которую вы перед ним поставили.
Гравитация – чрезвычайно полезный инструмент. Отвесы и ватерпасы – дешевые и точные измерительные инструменты. Гравитация никогда вас не подведет и всегда укажет направление «вниз». Но если все вещи притягиваются друг к другу, то что можно сказать по поводу горы, которую я вижу в отдалении? Притягивает ли она меня? Что такого особенного в центре нашей планеты?
Мне нравится проводить время на морском побережье по многим причинам (волны, морская пена, солнечные закаты, морской бриз и т. п.), но больше всего меня привлекает освобождающее и ни с чем не сравнимое ощущение безбрежности моря. Когда я жила в Калифорнии, я снимала крошечный домик на самом берегу океана – так близко, что ночью был слышен шум прибоя. В саду у домика росло апельсиновое деревце, а с крыльца можно было наблюдать за течением окружающей жизни. В конце рабочего дня я любила приходить на берег океана, садиться на какой-нибудь крупный валун, отшлифованный морским прибоем, и любоваться солнцем, заходящим в Тихий океан. В детстве в Англии мне тоже нравилось прогуливаться по морскому берегу, наблюдая за рыбами, птицами или крупными волнами. Но когда я смотрела на океан в Сан-Диего, в моем воображении возникал образ планеты. Тихий океан безбрежен, занимая треть окружности, опоясывающей Землю по экватору. Наблюдая солнечный закат, я представляла гигантский шар, на котором живу. По правую руку от меня располагались (где-то очень далеко на севере) Аляска и Арктика, а по левую (гораздо дальше на юге) – Анды, тянущиеся почти до Антарктики. У меня едва не закружилась голова, когда я попыталась вообразить эти бескрайние дали. В какой-то момент мне даже показалось, что я непосредственно ощущаю в себе все эти места. Каждое из них изо всех сил притягивало меня к себе, а я, в свою очередь, притягивала их. Каждая частица массы притягивает к себе каждую другую частицу массы. Сила притяжения – чрезвычайно слабая сила. Даже маленький ребенок способен сопротивляться силе притяжения целой планеты. Тем не менее каждое из этих ничтожных по своей силе бесчисленных притяжений действует на нас. В совокупности они складываются в единую и вполне ощутимую для нас силу – гравитацию.
В 1687 году великий ученый Исаак Ньютон сформулировал в своей знаменитой книге Philosophiae Naturalis Principia Mathematica («Математические начала натуральной философии»[14]), более известно «Начала», Закон всемирного тяготения. Используя правило, согласно которому сила притяжения между двумя предметами обратно пропорциональна квадрату расстояния между ними, он показал, что результатом сложения всех сил притяжения на нашей планете (между прочим, очень многие из них взаимно компенсируются) является единая сила, направленная вниз, к центру Земли, и пропорциональная ее массе и массе притягиваемого ею предмета. Гора, которая находится от вас на вдвое большем расстоянии, будет притягивать вас к себе в четыре раза слабее. Из чего следует, что удаленные объекты оказывают на вас меньшее воздействие. Но как бы далеко от вас они ни располагались, их притяжение все равно нельзя сбрасывать со счетов. Сидя на берегу океана и глядя на закат солнца, я испытывала притяжение со стороны Аляски с севера и со стороны Анд с юга. Но поскольку эти силы были направлены в противоположные стороны, они компенсировали друг друга. Поэтому единственной силой, действовавшей на меня, была сила гравитации, направленная к центру Земли.
Таким образом, несмотря на то что нас притягивают к себе (прямо сейчас!) Гималайские горы, знаменитый оперный театр Сиднея, ядро Земли и огромное множество морских ракушек, нам вовсе не обязательно об этом знать. Все эти сложности отпадают сами по себе, оставляя нас один на один с простым инструментом. Чтобы предсказать силу, с которой притягивает меня Земля, мне нужно знать лишь две вещи: 1) как далеко от меня расположен ее центр; 2) какова ее масса. Прелесть теории Ньютона – в ее простоте и элегантности, а также доказуемости на практике.
Тем не менее это не отменяет того факта, что сила притяжения – весьма странное явление. Несмотря на то что объяснение гравитации, предложенное Исааком Ньютоном, по праву считается блестящим, у него есть один маленький недостаток: оно не раскрывает механизма гравитации. Никто не спорит с тем, что Земля притягивает яблоко[15], но каков механизм этого притяжения? Может, здесь вступают в действие какие-то невидимые нити? Может, за них тянут какие-то сказочные эльфы или феи? Внятных объяснений на сей счет не существовало до тех пор, пока Альберт Эйнштейн не разработал общую теорию относительности. На протяжении 230 лет между открытием Ньютона и появлением общей теории относительности применялась ньютоновская модель гравитации (впрочем, она широко используется и поныне), поскольку, как уже говорилось выше, она подтверждается на практике.
Хотя силы невидимы, практически на каждой кухне есть устройство, позволяющее их измерять. Без него у вас не получится воплотить в жизнь ни один рецепт из кулинарной книги (особенно если речь идет о выпечке). Потребность в таком измерительном приборе обусловлена тем, что количество имеет значение: вам приходится измерять количества ингредиентов, необходимых для приготовления тех или иных блюд, причем как можно точнее. Неупоминаемый критически важный компонент таких измерений – наличие объекта, сопоставимого по размеру с нашей планетой. Какое счастье для всех гурманов, что, сидя на табурете у себя на кухне, мы опираемся ногами на объект, название которому – Земля!
У меня на кухне хранится блокнот, в который я с девятилетнего возраста записываю рецепты. Кстати, я обожаю готовить по многим рецептам из детства. Одно из таких блюд – морковный кекс. Страница, на которой он записан, за многие годы изрядно истрепалась и вся в жирных пятнах. Рецепт начинается со слов: «Возьмите 200 граммов обычной муки». Итак, хозяйка поступает очень разумно, относясь к своим действиям как к чему-то само собой разумеющемуся: она насыпает немного муки в миску и измеряет силу, с которой мука притягивается к Земле. Разумеется, процесс выполняется с помощью обычных весов. Вы помещаете весы в зазор между Землей и миской с мукой и оцениваете силу сжатия пружины (если речь идет о пружинных весах). Сила притяжения между любым объектом и нашей планетой прямо пропорциональна массе этого объекта и массе Земли. Поскольку масса Земли неизменна, сила притяжения зависит исключительно от массы миски с мукой. Весы измеряют вес, который есть не что иное, как сила притяжения между миской с мукой и планетой. Но вес – это просто масса муки, умноженная на силу притяжения, постоянную на наших кухнях. Таким образом, если вы измеряете вес и знаете силу притяжения, то можете определить массу муки в миске. Затем вам нужно отмерить 100 граммов сливочного масла, поэтому вы кладете кусок масла в миску, после чего докладываете или отнимаете оттуда ровно столько масла, чтобы его количество, оставшееся в миске, сжимало пружину весов в два раза слабее, чем в случае с мукой. Весы – чрезвычайно полезный и простой прибор для измерения количества тех или иных материалов. Ими может пользоваться любой из нас. Тяжелые объекты тяжелы только потому, что содержат большее количество «материи», в результате чего Земля притягивает их сильнее. В открытом космосе нет тяжелых предметов, поскольку локальная гравитация слишком слаба и не обеспечивает их более или менее ощутимого притяжения – если, конечно, вы не приблизитесь вплотную к какой-либо планете или звезде.
На самом деле кухонные весы измеряют силу притяжения – великую силу, не только обеспечивающую существование человеческой цивилизации, но и удерживающую всю Солнечную систему. Тем не менее эта сила чрезвычайно слаба и немощна. Масса Земли составляет 6 1024 килограмма (6 тысяч миллиардов миллиардов тонн, если вы предпочитаете более крупные единицы измерения), но она может притягивать миску с мукой с силой весьма тонкого эластичного бинта. Впрочем, это тоже хорошо, поскольку в противном случае жизнь на Земле была бы невозможна. Однако это позволяет взглянуть на мир несколько иначе. Каждый раз, поднимая какой-либо объект, вы преодолеваете силу притяжения целой планеты. Солнечная система огромна, потому что гравитация слаба. Но у гравитации есть одно важное преимущество по сравнению со всеми другими фундаментальными силами – ее вездесущность. Она может быть слабой и становиться еще слабее по мере отдаления от Земли, но в космосе простирается на огромные пространства, притягивая другие планеты, звезды и галактики. При всей ничтожности сил тяготения именно это слабое силовое поле придает нашей Вселенной определенную структуру.
Тем не менее, чтобы поднять даже такой легкий объект, как готовый морковный кекс, понадобится некоторое усилие. Когда морковный кекс покоится на столе, поверхность стола оказывает на него давление снизу, толкая его вверх. Силы этого давления достаточно, чтобы уравновесить силу притяжения между кексом и планетой. Чтобы поднять кекс, вам нужно приложить несколько большую (буквально на самую малость) силу, достаточную для того, чтобы суммарная сила обеспечила его поднятие вверх. Нашей жизнью управляет не то, какие именно отдельные силы действуют на нас и окружающие предметы, а то, каков их результирующий баланс. Это существенно упрощает задачу. Действие тех или иных мощных сил можно вообще игнорировать, если они уравновешиваются действием других мощных сил. Проще всего представить эту ситуацию на примере твердых объектов, поскольку они сохраняют форму при воздействии тех или иных сил. А знаменитый разводной Тауэрский мост в центре Лондона с двумя грациозными башнями, несомненно, очень прочный объект.
Гравитация может стать серьезной помехой, потому что иногда вам приходится удерживать те или иные объекты «на весу», то есть в воздухе. Для этого нужно преодолеть силу притяжения, направленную вниз. В противном случае предметы, которые вы пытаетесь удержать, падали бы на пол. Жидкости стекают вниз – по-другому не бывает. С твердыми предметами все несколько иначе. Такая концепция, как опора, позволяет эффективно нейтрализовать действие силы тяжести, применяя принцип детских качелей: доска, центр которой помещен на опору. В случае Тауэрского моста одна половина таких «качелей» скрыта от глаз зрителей. Мост покоится на двух рукотворных островах-опорах, каждый из которых расположен на трети расстояния через Темзу. Башни моста напоминают двух стражников, охраняющих въезд в Лондон со стороны моря. По мосту проходит дорога, соединяющая северную и южную части столицы.
На пешеходной дорожке через мост всегда полно туристов, увешанных фотокамерами и оживленно обсуждающих открывающийся замечательный вид. По проезжей части движется нескончаемый поток такси, автобусов и мотоциклов. Кое-где теснятся сувенирные лавки, кафе, маленькие магазинчики. Наша экскурсионная группа во главе с гидом пробирается сквозь этот хаос, устремляясь к конечной цели путешествия – «чреву» моста, чтобы увидеть механизм, обеспечивающий разведение его двух половин. Проникнув туда, мы оказываемся в царстве медных манометров, гигантских рычажных механизмов, клапанов и прочих механических устройств, символизирующих собой изобретательность и надежность инженерной мысли викторианской эпохи. Неповторимый внешний вид Тауэрского моста и его башен в стиле сказочных замков славится во всем мире, однако в данном случае нас интересует его внутренняя «начинка».
Лондон вот уже два тысячелетия является крупным портом. Особая прелесть города, раскинувшегося на берегах реки, в том, что в вашем распоряжении есть два берега, а не один, как в случае городов, расположенных на берегу океана. Однако Темза – не только путь для всего, что способно плавать, но и серьезное препятствие для всего, что перемещается на «своих двоих» или ездит на колесах. Через Темзу переброшено немало мостов, однако к 70-м годам XIX века город остро нуждался в еще дном. При его строительстве предстояло решить важную проблему: мост должен был не только удовлетворять потребность людей в свободном перемещении с одного берега Темзы на другой, но и не создавать препятствий для прохождения по Темзе достаточно высоких морских судов. Конструкторы Тауэрского моста предложили гениальное решения проблемы.
Мы спускаемся по крутой винтовой лестнице внутрь моста и проходим через несколько огромных каменных гротов, скрывающихся в основании башни. В первом расположены оригинальные гидравлические насосы, а в следующем, более крупном, мы наталкиваемся на деревянного монстра: бочку высотой с двухэтажный дом, которая служит временным накопителем энергии – чем-то вроде неэлектрической батареи. Но больше всего меня интересует третий, самый большой грот. Это камера, в которой размещается противовес.
Путь между двумя башнями фактически разделяется на две половины – крылья моста. Примерно тысячу раз в году под мостом проходят суда, и всякий раз при этом движение по мосту прекращается. Каждое крыло моста одним своим концом поднимается вверх, а по другую сторону оси, где оно закреплено в темной камере под башней, его скрытый конец – противовес – опускается вниз. Я всматриваюсь в этот противовес и пытаюсь прикинуть, сколько может весить такая махина. Словно угадав мои мысли, наш гид, Глен, заявляет: «Между прочим, внутри этой штуковины примерно 460 тонн свинцовых болванок и чугунных чушек. Они никак не закреплены и свободно перекатываются туда-сюда внутри противовеса, что хорошо слышно во время разведения крыльев моста. Когда на мосту проводят ремонтные работы, в противовес обычно добавляют или, наоборот, убирают какое-то количество болванок, чтобы крылья оставались идеально сбалансированными». (Похоже, мы стояли перед самой большой погремушкой в мире!)
Вот этот баланс и есть ключ к разгадке секрета таких «качелей». Чтобы развести крылья моста в сторону, не нужно прикладывать огромных усилий для их поднятия. Все, что требуется от механизма разведения моста, – слегка наклонить крылья. Концы крыла, расположенные по обе стороны оси, вокруг которой происходит поворот, идеально сбалансированы между собой. Это означает, что для приведения крыла в движение достаточно совсем незначительного усилия, необходимого только для того, чтобы преодолеть трение в подшипниках. Гравитация перестает, по сути, быть проблемой, поскольку сила тяжести по одну сторону оси точно сбалансирована с силой тяжести по ее другую сторону. Мы не можем избавиться от гравитации, но можем использовать ее против самой себя. К тому же мы можем создать очень большие «качели», что и сделали инженеры викторианской эпохи.
После экскурсии я немного прогулялась вдоль реки, а затем повернула в сторону моста. Мой взгляд на него полностью изменился, и мне нравилось, что теперь я воспринимаю его совершенно по-другому. У инженеров викторианской эпохи не было электроэнергии, компьютеров, которые могли бы управлять теми или иными процессами, новых материалов с уникальными свойствами (например, пластмасс или железобетона). Но они хорошо знали простые физические принципы. Простота конструкции Тауэрского моста – вот что мне особенно импонирует. Возможно, именно благодаря ей он продолжает исправно служить людям и после 120 лет эксплуатации (притом что за это время в его конструкцию было внесено минимальное число доработок и усовершенствований). Готическое возрождение, неоготика (этим техническим термином обозначают стиль fairy-castle – сказочный замок), – лишь оболочка, под которой скрываются гигантские «качели». Если инженеры когда-нибудь соорудят нечто подобное, то, я надеюсь, они догадаются сделать часть конструкции прозрачной, чтобы каждый мог оценить гениальную простоту их конструкторских решений.
Этот прием, позволяющий снизить остроту проблем гравитации, можно наблюдать повсеместно. Представьте, например, ось, расположенную на высоте 4 метра над поверхностью земли, с двумя 6-метровыми половинами «качели», балансирующими друг друга по обе ее стороны. Это не мост. Это тираннозавр, знаменитое плотоядное животное мелового периода. Две короткие толстые ноги удерживают его в вертикальном положении, а ось находится в области бедер. Причина, почему он раз за разом не падал плашмя на землю, мордой вниз, заключается в том, что крупная тяжелая голова хищника с острыми клыками уравновешивалась длинным мускулистым хвостом. Однако в жизни этой ходячей «качели» была одна проблема. Даже самый решительный и целеустремленный тираннозавр иногда испытывал потребность изменить направление движения. По оценкам ученых, тираннозаврам требовалось от одной до двух секунд, чтобы повернуться на 45°, что делало их чуть более неповоротливыми, чем умный и проворный тираннозавр из «Парка юрского периода». Что же могло в такой степени ограничивать огромного и мощного динозавра? Ответить на этот вопрос нам поможет физика.
Вращение фигуристки вокруг собственной оси вызывает у зрителей массу положительных эмоций: эстетическое удовольствие, изумление и восхищение безграничными возможностями человеческого тела. Но почему фигуристка, разведя руки в стороны, вращается медленнее, а прижав руки к телу, быстрее? Пример вращения фигуристки на льду полезно разобрать, потому что трение коньков о лед ничтожно и когда фигуристка вращается вокруг собственной оси, она обладает неким фиксированным «количеством» вращения. Кажется, нет ничего, что могло бы замедлить ее вращение. Поэтому действительно интересно, что, когда фигуристка изменяет свою форму, она изменяет и скорость вращения. Оказывается, по мере удаления тех или иных частей вращающегося тела от оси вращения при каждом очередном обороте им приходится совершать больший путь, в результате чего они, по сути, принимают на себя большую долю наличного «вращения»[16]. Если вы раскинете руки в стороны, они окажутся дальше от оси вращения и скорость вращения замедлится в качестве компенсации. В сущности, именно с этой проблемой столкнулся тираннозавр. С помощью ног он был способен вырабатывать лишь определенную величину поворачивающей силы (так называемый вращающий момент), а поскольку его огромная голова и хвост выступали далеко в стороны, подобно очень толстым, тяжелым чешуйчатым версиям рук фигуристки, его повороты были замедленными. Любое небольшое, но проворное млекопитающее (например, какой-либо из наших очень далеких предков) оказалось бы в большей безопасности, если бы знало об этой особенности тираннозавров.
Те же соображения объясняют, почему мы раскидываем руки в стороны, когда думаем, что падаем. Если я стою прямо, а затем внезапно начинаю клониться вправо, я поворачиваюсь вокруг своих лодыжек. Если перед тем, как начать падать, я раскину руки в стороны или вверх, та же опрокидывающая сила не успеет сместить меня настолько, насколько сместила бы в противном случае, и у меня останется больше времени, чтобы внести в свою позу поправки и удержать равновесие. Вот почему гимнасты, выполняющие упражнения на бревне, почти всегда держат руки вытянутыми в стороны: это увеличивает их момент инерции и у них остается больше времени, чтобы скорректировать свою позу и не упасть на пол. Разводя руки в стороны, поднимая их вверх и опуская вниз, вы можете совершать вращения вокруг собственной оси; кроме того, это помогает сохранять равновесие.
В 1876 году итальянская цирковая артистка Мария Спелтерина стала первой в мире женщиной, прошедшей над Ниагарским водопадом по натянутому канату. Сохранилась фотография, на которой она запечатлена на полпути через Ниагарский водопад, невозмутимо балансируя на канате (для усиления драматического эффекта ее ноги были «обуты» в корзинки для переноски персиков). Но самым заметным вспомогательным средством на фотографии был длинный горизонтальный шест в руках Марии – лучший инструмент для сохранения равновесия. Размаха рук для этого недостаточно, а длинный горизонтальный шест справляется с задачей гораздо эффективнее, позволяя Марии точно контролировать перемещения по натянутому канату[17]. Если бы она начала терять равновесие, это бы происходило очень медленно, поскольку большое расстояние между концами шеста означает, что тот же самый вращающий момент сказывается гораздо слабее. Конечно, Мария могла упасть с каната в результате сильного наклона в одну сторону, но длинный шест существенно затруднял возможность переворота слева направо. То же самое относится к тираннозавру. Тот же физический принцип, который служил Марии лучшей защитой от падения с 50-метровой высоты и верной смерти в бурных водах Ниагарского водопада, за 70 миллионов лет до того не позволял тираннозавру быстро изменять направление движения.
Гравитация, то есть притягивание одних твердых тел другими, – хорошо знакомая нам концепция главным образом потому, что мы сами представляем собой «твердые объекты», испытывающие на себе силу притяжения. Однако наш мир населяют не только твердые объекты, но и жидкости. Вода и воздух перемещаются туда-сюда под влиянием действующих на них сил. Мне очень жаль, что перемещение жидкостей мы обычно не можем видеть столь же отчетливо, как опадание листьев или разведение мостов. Жидкости ощущают на себе воздействие тех же сил, но у них нет какой-то определенной формы – именно в этом и состоит прелесть мира динамики жидкостей: устремляющихся вдаль, образующих водовороты, извивающихся, удивляющих нас и вездесущих.
Лично мне пузырьки симпатичны тем, что они повсюду. Я рисую их в своем воображении как невоспетых героев физического мира, образующихся и лопающихся в котлах и тортах, биореакторах и ваннах, выполняющих всевозможные виды полезной работы, но проживающих уж очень короткую жизнь. Они – столь привычная часть нашего быта, что мы почти не обращаем на них внимания. Несколько лет назад я спрашивала у разных групп детей от пяти до восьми лет, где им встречаются пузырьки, и они наперебой рассказывали о газированных напитках, ваннах и аквариумах. Но в последней группе, с которой мне довелось общаться в тот день (это было уже под конец дня, и дети выглядели уставшими), мой вопрос о пузырьках был встречен раздраженным молчанием и отсутствующими взглядами. После долгой паузы и переминаний с ноги на ногу один шестилетний малыш поднял руку. «Итак, – сказала я с воодушевлением, – где ты мог видеть пузырьки?» Мальчик посмотрел на меня с нерешительностью, а затем громко объявил: «Сыр… и сопли». Мне не в чем было его упрекнуть, хотя ничего подобного ранее не приходило мне в голову. Вполне возможно, что с пузырящимися соплями ему приходилось иметь дело чаще, чем мне. Впрочем, я могу назвать по меньшей мере одного представителя животного мира, для которого пузырящиеся сопли – ключ ко всему его образу жизни. Я имею в виду фиолетовую морскую улитку, Janthina janthina.
Эти улитки, обитающие в море, обычно передвигаются по морскому дну или скалам. Если сковырнуть такую улитку со скалы и опустить в воду, то она утонет. Древнегреческий ученый Архимед (вы, конечно, помните его знаменитое «Эврика!») первым открыл принцип, определяющий условия, при которых некий предмет плавает или тонет. Скорее всего, Архимеда интересовал вопрос плавучести морских судов, но тот же принцип применим к улиткам, китам и всему остальному, что погружено или полупогружено в какую-либо жидкость. Архимед выяснил, что между погруженным объектом (улиткой) и водой, которая была бы на месте улитки, если бы она не была погружена в воду, происходит своего рода соревнование. И улитка, и вода вокруг нее притягиваются вниз, к центру Земли. Поскольку вода это жидкость, предметы в ней могут перемещаться легко. Сила притяжения объекта прямо пропорциональна его массе: удвойте массу улитки и вы удвоите ее силу притяжения. Но вода вокруг нее тоже притягивается вниз, к центру Земли, и если вода притягивается сильнее, улитка будет всплывать вверх, освобождая для нее место. Принцип Архимеда, сформулированный для нашего злополучного моллюска, гласит, что на улитку действует направленная вверх сила выталкивания, равная направленному вниз гравитационному притяжению того объема воды, которая могла бы занимать место, занимаемое улиткой. Действие этой так называемой выталкивающей силы (архимедова сила) испытывает на себе каждый погруженный в воду предмет. С практической точки зрения это означает следующее: если улитка обладает большей массой, чем вода, заполняющая пространство в форме улитки, то она выиграет гравитационное сражение и пойдет ко дну. Но если масса улитки меньше (и, следовательно, меньше плотность), чем воды, победу одержит вода и улитка всплывет на поверхность. У большинства морских улиток большая плотность, чем у морской воды в целом, и поэтому они тонут.
Значительную часть своей истории морские улитки тонули в воде. Но в какой-то момент в прошлом у «обычной» морской улитки день, что называется, не задался, и в ее защитную оболочку попал воздушный пузырек. Важная особенность плавучести заключается в том, что реальное значение для нее имеет лишь средняя плотность рассматриваемого объекта. Чтобы обеспечить его плавучесть, необязательно изменять его массу. Достаточно изменить величину занимаемого им пространства – а воздушные пузырьки занимают его немало. Однажды, очень давно, в защитную оболочку улитки попал более крупный воздушный пузырек, баланс нарушился и первая морская улитка начала постепенно подниматься со дна навстречу солнечному свету. Путь на поверхность моря был открыт – но лишь для улитки, которая запаслась довольно большим воздушным пузырьком. В действие вступили законы эволюции.
В наши дни Janthina janthina, наследница первых улиток, которые давным-давно ушли в небытие, – типичный обитатель теплых морей. Улитки, приобретшие ярко-фиолетовый цвет, выделяют такую же слизь, как и та, следы которой вы можете наблюдать ранним утром на камнях у себя в саду, и используют свое мускульное подножие для ее сворачивания и захватывания воздуха из атмосферы. Они строят для себя что-то наподобие плота из воздушных пузырьков, зачастую большего, чем они сами, чтобы их суммарная плотность всегда была меньше плотности морской воды, в которой они обитают. Они всегда плавают «вверх ногами» (плот из воздушных пузырьков вверху, раковина внизу), охотясь на проплывающих мимо медуз. Если на берегу моря вам встретится раковина фиолетовой улитки, вспомните все, что узнали о них из моей книги.
Плавучесть может быть весьма полезным свойством, способным кое-что поведать о содержимом плавучего объекта. Например, если вы возьмете две банки одинакового объема с газированными напитками – один диетический (с низким содержанием сахара), а другой обычный, сладкий на вкус, – то увидите, что банка с диетическим напитком плавает в воде, а со сладким – тонет. Объем банок один и тот же, разница в их содержимом. Все дело в большой плотности сахара. В стандартной (330 мл) банке со сладким газированным напитком содержится 35–50 граммов сахара, и именно эта дополнительная масса делает такую банку более плотной, чем вода, из-за чего банка в ней тонет. Масса подсластителя в банке с диетическим напитком ничтожна: по сути, в такой банке лишь вода и воздух, поэтому она плавает. Более полезный пример в этом отношении – сырое яйцо. Плотность свежего сырого яйца превышает плотность воды, поэтому оно тонет в холодной воде и лежит плашмя на дне сосуда. Но если свежее сырое яйцо полежит несколько дней в холодильнике, оно постепенно подсохнет, а, по мере того как вода будет просачиваться сквозь скорлупу яйца наружу, молекулы воздуха будут проникать в воздушный «карман» на скругленной стороне яйца, заполняя образовавшуюся пустоту. Яйцо, пробывшее в холодильнике примерно неделю, утонет в воде, но будет стоять вертикально, опираясь на свою заостренную сторону (дополнительный воздух, появившийся в яйце, будет располагаться ближе к поверхности воды). Но если такое яйцо целиком плавает на поверхности воды, значит, оно слишком долго лежало в холодильнике – так что лучше съешьте на завтрак что-нибудь другое!
Разумеется, если у вас есть возможность регулировать количество воздуха, который вы носите с собой, а также занимаемый им объем, то вы можете выбирать, плавать вам на поверхности воды или тонуть. Когда я начала изучать свойства воздушных пузырьков, я натолкнулась на статью, написанную в 1962 году. В ней безапелляционно заявлялось следующее: «Пузырьки создаются не только волнами, разбивающимися о скалы, но и гниющими материалами, отрыжкой рыб и метаном, выделяющимся с морского дна». Отрыжкой рыб? Для меня было очевидно, что эту статью писал один из так называемых кабинетных ученых, проводивший большую часть времени в каком-нибудь лондонском клубе, для кого бутылка портвейна гораздо ближе, чем реальный мир. Это показалось мне очень смешным, и я высказала свое мнение по этому поводу. Три года спустя, исследуя подводный мир у острова Кюрасао, я наткнулась на огромного тарпона (примерно полтора метра длиной), проплывшего мимо меня, выбрасывая через жабры большие количества отрыжки. На самом деле у многих костистых рыб есть воздушный карман, известный как плавательный пузырь, который помогает им управлять своей плавучестью. Умение настраивать свою плотность в соответствии с плотностью окружающей среды позволяет пребывать в состоянии равновесия и покоя. Плавательные пузыри тарпона необычны (тарпон – редкий пример рыбы, которая способна дышать непосредственно воздухом, а также извлекать кислород с помощью жабр), но я вынуждена признать, что тарпон действительно может отрыгивать через жабры. Тем не менее я настаиваю на том, что отрыжка рыб не может вносить существенный вклад в количество воздушных пузырьков в океане[18].
Последствия гравитации зависят от того, что к чему притягивается. Тауэрский мост – твердый объект, поэтому гравитация может изменить его положение, но не форму. Улитка также твердый объект; она перемещается в океанской воде, которая может ее обтекать, внося соответствующую поправку. Но газы обладают свойством текучести (благодаря этой способности и жидкости, и газы называются текучими средами). Твердые объекты, на которые воздействует сила притяжения, могут перемещаться в газах: шарик, наполненный гелием, и дирижабль поднимаются вверх по той же причине, по какой всплывает улитка с прилипшими к ней воздушными пузырьками. Они ведут «битву гравитации» с окружающими их текучими средами – и проигрывают.
Таким образом, присутствие постоянной гравитационной силы может порождать неустойчивость, что вообще-то означает наличие несбалансированных сил, и объекты будут менять свое положение до тех пор, пока не достигнут баланса. Если какой-либо твердый объект становится нестабильным, он переворачивается или падает, а любая окружающая его жидкость или газ просто обтекают его со всех сторон, создавая пространство для перемещения. Но что происходит, когда нестабильная вещь не отдельно взятый твердый объект наподобие шарика с гелием, а сама текучая среда?
Чиркните спичкой, зажгите фитилек свечи – и вспыхнет сноп яркого, раскаленного газа. Пламя свечи веками озаряет своим мягким теплым светом человека, склонившегося над рукописью, группу заговорщиков, школьников, корпящих над домашними заданиями, и влюбленных. Воск – мягкое, непритязательное топливо, и потому его преобразования еще более удивительны. Но это столь знакомое каждому из нас желтое пламя представляет собой компактную мощную печь, выделяемого тепла которой вполне достаточно для разрушения молекул и создания крошечных алмазов – причем все это формируется и «вылепливается» гравитацией.
Когда вы зажигаете фитилек свечи, тепло, исходящее от спички, плавит воск как в фитиле, так и вблизи него, в результате чего происходит первая трансформация в жидкость. Твердые парафины – это углеводороды, молекулы, представляющие собой длинные цепочки с углеродным «позвоночником», состоящим из большого числа атомов (от двадцати до тридцати). Нагрев не только придает им энергию для того, чтобы наползать друг на друга, образовывая нечто, похожее на клубок змей (а именно так выглядел бы жидкий парафин, если бы вы могли видеть его молекулы), но и некоторые из молекул приобретают энергию, позволяющую полностью оторваться от фитиля. Формируется столб раскаленного газообразного горючего такой высокой температуры, что он выталкивается в окружающий воздух, занимая огромное пространство по сравнению с относительно небольшим числом находящихся в нем молекул. Количество молекул остается неизменным, следовательно, результирующая сила гравитации, воздействующая на них, также не меняется. Но теперь эти молекулы занимают гораздо больше места, поэтому сила гравитации, воздействующая на каждый кубический сантиметр, снижается.
Подобно скользкой, покрытой пузырьками улитке в океане, этот раскаленный газ должен подниматься, поскольку находится в окружении холодного плотного воздуха, пытающегося проскользнуть под ним. Горячий воздух вздымается невидимым столбом, смешиваясь по пути с кислородом. Еще до того, как вы уберете горящую спичку от свечи, это топливо начинает распадаться и сгорать в кислороде, еще больше повышая температуру газа. Это те самые синие языки пламени, температура в которых достигает ошеломляющих 1400 . Фонтан зажженного вами огня усиливается по мере того, как раскаленный воздух еще быстрее выталкивается вверх. Пламя свечи подпитывается снизу, потому что фитиль – это просто длинная тонкая губка, вбирающая другие молекулы воска, расплавленного горящим фитилем.
Но топливо не сгорает идеально. В противном случае пламя оставалось бы синим и свечи были бы бесполезны в качестве источников света. Когда молекулы в виде длинных цепочек захватываются и «перемалываются» в процессе горения, часть их «обломков» не сгорает из-за нехватки кислорода в окружающей газообразной смеси. Крошечные частицы углерода (которые можно было бы назвать миниатюрными угольками) поднимаются и нагреваются, воспроизводя успокаивающее желтое свечение, когда их температура достигает 1000 . Свечение свечи – лишь побочный продукт столь сильного нагрева, результат нагрева миниатюрных угольков в огне. Эти крошечные частицы углерода нагреваются так сильно, что испускают в окружающую среду избыточную энергию в виде свечения. Выявлено, что процессы, происходящие в горящей свече, приводят к образованию не только нагара в форме графита (материала, который мы представляем себе как черный углерод), а и крошечных количеств более экзотических структур, которые могут возникать в результате объединения атомов углерода: бакибола (или фуллерена), углеродных нанотрубок и алмазных микрочастиц. Подсчитано, что в среднем пламя свечи порождает каждую секунду 1,5 миллиона наноалмазов.
Свеча – идеальный пример того, что происходит, когда текучей среде необходимо перестроиться, чтобы сбалансировать силу притяжения. Раскаленное сгорающее топливо поднимается очень быстро, когда холодный воздух подбирается снизу, в результате чего образуется непрерывный конвекционный поток. Если задуть свечу, столб раскаленного газообразного горючего еще в течение двух-трех секунд будет продолжать подниматься над свечой, а если вы поднесете сверху к фитилю вниз горящую спичку, то увидите, что пламя перекинется на фитиль, когда столб этих раскаленных газов зажжется вновь[19].
Конвекционные токи наподобие описанного выше способствуют переносу энергии и ее более равномерному распределению в случаях, когда та или иная текучая среда подогревается снизу. Именно наличием конвекционных токов объясняется столь высокая эффективность нагревателей для садков с рыбой, систем обогрева полов и кастрюль на кухонной плите. Без гравитации эти и подобные им устройства были бы совершенно бесполезны. Когда мы говорим, что «тепло поднимается», это не совсем так. Правильнее было бы сказать, что «более холодная текучая среда, выигрывая гравитационное сражение, опускается». Но вряд ли вы дождетесь слов благодарности за такое уточнение.
Плавучесть важна не только для воздушных шаров, улиток и романтических ужинов со свечами. Океаны – огромные двигатели нашей планеты – приводятся в действие гравитацией, как и все остальное на Земле. Океанские глубины не пребывают в неподвижности. Воды, которые не видели солнечного света много веков, обтекают нашу планету на своем долгом и медленном пути обратно к нему вдоль и поперек. Но прежде чем заглядывать в глубь океана, взглянем вверх. Когда в следующий раз увидите в ясный деь высоко в небе крошечный движущийся объект – пассажирский самолет, летящий на крейсерской скорости, – попытайтесь прикинуть высоту, на которой он летит: примерно 10 километров. Затем представьте, что стоите на дне Марианского желоба – самой глубокой морской впадины. Расстояние от вас до поверхности океана будет примерно таким же, как от океанской поверхности до самолета[20]. Даже средняя глубина океанов составляет 4 километра, то есть чуть меньше половины расстояния от их поверхности до самолета. Океан покрывает 70 % поверхности Земли. Так что воды на нашей планете более чем достаточно.
На этих огромных глубинах скрывается хорошо знакомая нам картина. Тот же механизм, который заставляет изюминки «танцевать» в бутылке с лимонадом, приводит в действие безбрежные океаны на Земле, обеспечивая неспешное перемещение вод по планете. Несмотря на разницу в масштабах и практических последствиях этих двух явлений, их базовый физический принцип точь-в-точь один и тот же. Землю нередко называют «голубой планетой», и эта «голубизна» пребывает в непрерывном движении.
Но чем обусловлено это движение? У океанов были миллионы лет, чтобы прийти в состояние равновесия и покоя. Что же мешает им застыть в неподвижности? Две вещи – нагрев и соленость воды. То и другое влияет на плотность морской воды, а любая текучая среда, имеющая области с разной плотностью, приходит в движение, когда разворачивается битва гравитации. Хотя общеизвестно, что морская вода соленая, я всякий раз не перестаю удивляться, думая о том, какое огромное количество соли в ней растворено. Чтобы сделать воду в обычной ванне, установленной в наших квартирах, такой же соленой, как морская вода, в ней нужно растворить до 10 килограммов соли, то есть небольшое ведро. Ведро соли на одну ванну! Концентрация соли в морской воде неодинакова во всех частях Мирового океана и колеблется приблизительно от 3,1 до 3,8 %. Хотя эта разница кажется не такой уж существенной, она играет немаловажную роль. Подобно тому как добавление сахара в газированный напиток делает его плотнее, колоссальное количество соли в морской воде делает ее более плотной, чем пресная вода. У холодной воды большая плотность, чем у теплой. Между тем температура морской воды колеблется примерно от 0 вблизи полюсов до 30 вблизи экватора. Таким образом, холодная насыщенная солью вода опускается на дно, а более теплая и менее насыщенная солью устремляется вверх. Этот простой механизм движения морской воды обусловливает ее непрерывное перемещение в масштабах планеты. Возможно, проходит не одна тысяча лет, пока какая-то определенная капля воды не вернется в ту же точку Мирового океана, в которой когда-то уже успела побывать.
В Северной Атлантике[21] вода охлаждается по мере того, как ветер выдувает оттуда тепло. Там, где на водной поверхности образуется лед, он представляет собой практически пресную воду: соль остается внизу. В совокупности эти процессы делают морскую воду холоднее, солонее и плотнее, поэтому она начинает опускаться на дно, расталкивая по пути менее плотную воду. Здесь сказывается действие все той же гравитации. Когда эта вода медленно скользит вдоль морского дна, она движется подобно реке, по «руслу», образованному подводными долинами, а путь ей преграждают горные хребты. Из Северной Атлантики она течет по дну океана со скоростью нескольких сантиметров в секунду на юг и примерно через тысячу лет достигает своего первого препятствия, Антарктики. Не имея возможности пробираться дальше на юг, вода поворачивает на восток, где на ее пути встает Южный океан[22]. Этот океан, опоясывающий огромным водным кольцом «нижнюю оконечность» нашей планеты, связывает воедино всю морскую воду на Земле, поскольку на своем пути вокруг Антарктики (или, как ее еще называют, «белого континента») сливается с нижними краями Атлантического, Индийского и Тихого океанов. Огромный, медленный поток воды из Северной Атлантики обтекает Антарктику, пока снова не повернет на север, продолжая свое путешествие и вливаясь в воды Индийского или Тихого океанов. Постепенное смешивание с окружающими водами снижает плотность прибывшей из Северной Атлантики воды, и – примерно через 1600 лет, на протяжении которых до нее не добирался солнечный свет – она мало-помалу устремляется к поверхности. Здесь дождевая вода, речные стоки и расплавленный лед дополнительно снижают в ней концентрацию соли, в то время как океанские течения, подгоняемые ветрами, несут эту воду дальше, пока она наконец не завершит свое великое путешествие в водах Северной Атлантики – возможно, чтобы повторить этот цикл. Данный процесс называется термохалинной циркуляцией (thermohaline circulation: thermo – нагрев, haline – соль), или «океанской конвейерной лентой», и хотя нарисованная мной картина несколько упрощена, эти течения действительно опоясывают всю планету и приводятся в движение гравитацией. Поверхностные течения, вызываемые преобладающими направлениями ветра, на протяжении многих столетий служили неплохим подспорьем мореплавателям и торговцам. Но океанская конвейерная система в целом обеспечивает человеческой цивилизации доставку груза не меньшей важности – тепла.
На экваторе поглощается больше солнечного тепла, чем в любой другой части планеты, так как у экватора Солнце стоит над горизонтом выше, чем в любом другом месте Земли, и охват Земли по экватору – самый протяженный, вследствие чего здесь самая большая площадь для поглощения. Для нагрева океанских вод даже на сотую долю градуса требуется колоссальное количество энергии, поэтому теплые океаны похожи на гигантский аккумулятор солнечной энергии. Движение океанских вод перераспределяет эту энергию в масштабе всей планеты, а термохалинная циркуляция определяет на ней картину погоды. Значительная часть нашей тонкой и переменчивой атмосферы располагается над постоянным резервуаром тепла, непрерывно поставляющего энергию разным частям планеты и сглаживающего крайности.
Вся слава достается атмосфере, но именно океаны поддерживают трон. Глядя в следующий раз на глобус или снимок Земли, сделанный со спутника, не воспринимайте океаны как пустые голубые пятна, разделяющие столь интересные для нас континенты. Вспомните о мощном воздействии на них гравитации и попытайтесь воспринимать эти голубые пятна как грандиозный механизм, обеспечивающий жизнь на планете.
Глава 3. Маленький – значит замечательный
Поверхностное натяжение и вязкость
Кофе – фантастически ценный глобальный товар, а сеанс черной магии, позволяющий извлечь все лучшее из маленького и невзрачного на вид кофейного зерна, – постоянный источник споров (и некоторой доли снобизма) для кофеманов. Но мой конкретный интерес к этому напитку не зависит от способа обжарки кофейных зерен или степени давления пара в вашей кофеварке. Меня восхищает картина пролитого кофе[23]. Это одна из тех повседневных странностей, которые уже не удивляют моих знакомых. Лужица кофе на твердой поверхности совершенно непримечательна – обычная маленькая лужица слегка выпуклой формы. Но если вы дадите ей высохнуть, то найдете на ее месте лишь темно-коричневый контур, слегка напоминающий линию, нарисованную мелом вокруг тела жертвы в детективной драме. Поначалу вся область внутри контура была заполнена пролитым кофе, но в процессе высыхания он переместился на ее границу. Внимательное разглядывание лужицы кофе, с целью понять, как все происходит на самом деле, похоже на наблюдение за процессом высыхания краски, но даже при попытке отследить весь процесс от начала до конца вы вряд ли увидите очень много. Физика перемещения кофе при высыхании лужицы действует в очень малых масштабах, поэтому увидеть что-либо собственными глазами невозможно. Но зато мы можем оценить последствия этого процесса.
Если бы вы могли многократно увеличить масштаб изображения лужицы кофе, то заметили бы множество молекул воды, пребывающих в непрерывном движении и постоянно сталкивающихся друг с другом, а также гоаздо более крупные по размеру сферические коричневые частицы кофе, спокойно дрейфующие посреди всей этой толчеи. Молекулы воды очень сильно притягивают друг друга, и если какая-то из них слегка приподнимается над поверхностью, она тотчас же возвращается обратно, чтобы воссоединиться с ордой молекул внизу. Это означает, что водная поверхность ведет себя подобно эластичному листу, притягиваемому водой под ним, в результате чего поверхность всегда остается гладкой. Эта очевидная эластичность поверхности называется поверхностным натяжением (подробнее мы поговорим о нем чуть позже). По краям лужицы кофе водная поверхность плавно загибается вниз, к месту своего соединения со столом, удерживая лужицу от дальнейшего растекания. Но в помещении, наверное, достаточно тепло для того, чтобы время от времени та или иная молекула воды полностью отрывалась от водной поверхности и в виде водяного пара плавала над лужицей. Это испарение, происходит оно постепенно и относится только к молекулам воды. Кофе не может испаряться, поэтому никуда не девается из лужицы.
Интереснее становится по мере того, как все большее число молекул покидают поверхность воды, поскольку ее край «приклеен» к столу (ниже мы поймем, почему), причем настолько прочно, что остается неподвижным. Но испарение по краям интенсивнее, чем в середине лужицы, потому что именно там высокая доля молекул воды соприкасается с воздухом. Конечно, вы не можете видеть, что содержимое лужицы пребывает в непрерывном движении (тем более что параллельно пытаетесь убедить приятеля, с которым распиваете кофе, что наблюдение за ее высыханием действительно увлекательное занятие). Жидкий кофе должен растекаться из середины лужицы к ее краям, возмещая потерю воды. Молекулы воды переносят частицы кофе, как пассажиров, и избавляются от них, когда настает их черед испаряться. Поэтому частицы кофе постепенно перемещаются к краям лужицы, а когда вода полностью высыхает, на месте происшествия остается лишь кольцо из покинутых частиц кофе.
Это явление кажется мне особенно увлекательным потому, что происходит буквально у вас под носом, но самые интересные подробности, к сожалению, невозможно увидеть невооруженным глазом. Микромир, в котором они разворачиваются, совершенно не похож на привычный нам мир; он живет по собственным законам и подчиняется собственным правилам. Тем не менее привычные для нас силы, такие как гравитация, действуют и в нем. Но роль других сил – возникающих вследствие «танцев» молекул вокруг друг друга – возрастает. Если вы углубитесь в микромир, вам многое покажется странным. Оказывается, правила, действующие в столь малых масштабах, способны объяснить практически все, что происходит в «большом» мире – макромире: почему на молоке уже нет сливок, почему запотевают стекла и как пьют воду деревья. Но мы также учимся использовать эти правила для применения в макромире. Их знание может помочь спасти миллионы жизней путем совершенствования планировки больничных палат и разработки новых медицинских тестов.
Прежде чем заняться предметами, настолько малыми, что их невозможно разглядеть невооруженным глазом, вы должны знать об их существовании. И здесь человек сталкивается с тупиковой ситуацией: если вы не знаете о существовании чего-либо, то как вы можете искать то, о чем даже не подозреваете? Но все изменилось в 1665 году, после публикации книги Роберта Гука «Микрография», ставшей первым в мире научным бестселлером.
Роберт Гук был куратором экспериментов при Лондонском королевском обществе, человеком разносторонних знаний, энциклопедистом, любившим возиться со всевозможными научными игрушками своего времени. В «Микрографии» рассказывалось о богатых возможностях микроскопа, что должно было произвести впечатление на читателей и продемонстрировать им потенциал этого новейшего научного инструмента. К тому же время было самое подходящее – эпоха великих экспериментов и грандиозных достижений в научном понимании окружающего мира. К тому времени линзы уже давно были известны человечеству, но не находили серьезного применения в науке. Но с опубликованием «Микрографии» их час пробил.
Особенно замечательно то, что, несмотря на флер респектабельности и авторитетности, подобающих изданию Королевского общества, эта книга, несомненно, – плод творчества ученого, который рассматривал науку как увлекательную игру. В ней масса подробных описаний и превосходных иллюстраций, она богато издана и умело представлена публике. Но ее главное достоинство в том, что ее автор делал, по сути, то же, что и каждый ребенок, которому впервые в жизни подарили микроскоп: пытался с его помощью рассмотреть буквально все, что попадается под руку. Микроскоп позволяет получить чрезвычайно подробные изображения бритвенных лезвий и жгучих волосков крапивы, крупиц песка и сгоревших овощей, человеческого волоса, искровых разрядов, рыбной чешуи, червей и шелка. Детали, выявленные в этом крошечном мире, были шокирующими. Кто знал, что глаз мухи так прекрасен? Несмотря на тщательность выполненных наблюдений, Гук не претендовал на проведение глубоких научных исследований. В разделе, посвященном «песку в моче» (кристаллы, обычно наблюдаемые на внутренних поверхностях мочеприемников), он рассуждает о способах излечения этого недуга, оставляя право на фактическое решение столь непростой задачи более компетентным в этом вопросе людям:
Таким образом, проблема песка в моче, возможно, потребует более подробного исследования врачами или химиками, которые как специалисты более сведущи в этой области. Я же перейду к дальнейшему изложению фактов…
И он переходит к подробному рассказу о том, что увидел, рассматривая под микроскопом плесень, перья птиц, морские водоросли, зубы улитки, жало пчелы и т. п. В процессе он придумывает термин «клетка», описывающий элементы, из которых состоит древесная кора, что знаменует собой возникновение биологии как самостоятельной научной дисциплины.
Гук не просто указал нам путь в микромир: он распахнул в него дверь и пригласил всех желающих в гости. «Микрография» стала источником вдохновения для ряда знаменитых ученых последующих столетий, которые широко пользовались микроскопом в своих исследованиях, а также разожгла научный аппетит светского Лондона. Этот внезапно пробудившийся интерес объяснялся тем, что объекты исследования находились буквально под рукой у каждого, кто мог себе позволить приобрести микроскоп. Надоедливая черная мушка, вьющаяся над гниющим мясом, при ближайшем рассмотрении под микроскопом оказывалась крохотным монстром с волосатыми ножками, выпученными глазками, щетиной и блестящими доспехами. Это стало поистине шокирующим открытием. К тому времени уже были сделаны многие великие географические открытия, знаменитые путешественники составили описания ранее неведомых земель и народов, в атмосфере витало нетерпеливое ожидание новых открытий, которые предстояло совершить в еще более отдаленных местах. Мало кто в то время понимал, что внимательное изучение того, что находится рядом, может поведать об окружающем мире ничуть не меньше, чем путешествия в самые отдаленные уголки планеты. Ведь после того как вы испытаете первый шок от вида волосатых ножек блохи, вы можете приступить к изучению того, как эти ножки работают. Представший перед нами мир был механическим, постижимым, а микроскоп объяснял людям смысл вещей, которые они давно замечали, но не могли понять.
Но даже это было лишь началом путешествия в микромир. Прошло еще два столетия, прежде чем существование атомов было доказано научным путем. Каждый атом настолько мал, что вам понадобилось бы 100 000 атомов, чтобы составить цепочку такой длины, как у клетки древесной коры. Как сказал много лет спустя знаменитый физик Ричард Фейнман в одноименной лекции, «там, внизу, – много места». Люди обитают примерно в середине шкалы размеров, не замечая микроскопических структур, из которых, как из кирпичиков, построен окружающий мир. Но через 350 лет после выхода книги Роберта Гука «Микрография» представления людей о мире радикально изменились. Сегодня мы уже не просто всматриваемся в него подобно ребенку, с лбопытством разглядывающему музейные экспонаты, помещенные под стекло, к которым запрещено прикасаться. Сейчас мы учимся работать с отдельными атомами и молекулами, которые находятся у самого дна шкалы размеров (именно это и имел в виду Ричард Фейнман), а изучаемые «музейные экспонаты» уже не отделены от нас стеклом – мы получили возможность не только их трогать, но и работать с ними. Теперь в моду входит «нано».
На микроуровне все устроено и функционирует по-другому – не так, как на привычном для нас макроуровне, – что делает микромир столь волнующим и чрезвычайно полезным для нас То, что представляется невозможным для человека, вполне может оказаться жизненно важным умением для блохи. И в том и в другом случае действуют одни и те же физические законы: блоха существует в той же физической вселенной, что и человек. Но на микроуровне более высокий приоритет имеют иные силы[24]. В привычном для нас мире есть два доминирующих влияния. Первое – гравитация, которая притягивает нас в направлении к центру Земли. Второе – инерция: поскольку мы довольно массивные существа, требуется немалая сила, чтобы сдвинуть нас с места или затормозить, когда мы движемся. Но по мере уменьшения размера объектов сила земного притяжения и инерция тоже уменьшаются, становясь соизмеримыми с другими, более слабыми силами, которых мы не замечаем по причине их очень малой величины. В частности, речь идет о силе поверхностного натяжения, перемещающей частицы кофе в ходе высыхания кофейной лужицы. А еще есть вязкость (или внутреннее трение текучей среды). Именно по причине ее наличия в микромире нам уже не удается получить красивый слой сливок поверх молока.
Они прилетали к нам только ради бутылок с молоком, закрытых золотистыми и серебристыми крышечками из алюминиевой фольги. Если вы вставали достаточно рано и осторожно выходили на крыльцо дома, то у вас появлялся шанс застукать их на месте преступления. Проворные маленькие птички, усевшись сверху на горлышко бутылки, проклевывали дырочки в тонких алюминиевых крышках и поспешно хватали клювами комочки сливок, не забывая при этом поглядывать по сторонам. Как только они замечали, что их обнаружили, они поспешно улетали (возможно, чтобы попытать счастья на крыльце соседнего дома). В течение примерно пятидесяти лет лазоревки (а это были именно они) в Великобритании промышляли похищением сливок, снискав славу настоящих мастеров этого дела. Передавая друг другу опыт, они выяснили, что под тонкой фольгой, которой в то время закрывались бутылки с молоком, скрывается настоящее сокровище – вкусные и питательные сливки. Вскоре это знание стало достоянием всей популяции лазоревок, обитающих в Великобритании. Похоже, им удалось сохранить свое знание в тайне от других видов птиц – во всяком случае этим мелким воровством занимались только они. Конец их промыслу пришел совершенно неожиданно, и вовсе не потому, что бутылки с алюминиевыми крышечками сменили пластиковые бутылки. Случилось нечто более фундаментальное. Пока коров доили фермеры, поверх молока образовывались сливки. В наши дни ситуация изменилась.
Бутылка, которую брали приступом лазоревки, содержала целый комплекс питательных веществ. Большую часть молока (почти 90 %) составляет вода, но в нем содержатся также сахара (лактоза, которую многие люди не переносят), белковые молекулы, сгруппированные в виде микроскопических круглых клеток, и более крупные шарики жира. Все эти составляющие перемешаны, но если дать молоку отстояться, возникает определенная структура. Шарики жира в молоке крошечные – от 1 до 10 микрон в диаметре, а это означает, что в миллиметровом слое такого жира по вертикали помещается от 100 до 1000 шариков. Они обладают меньшей плотностью, чем окружающая их вода, то есть в одном и том же объеме пространства содержится меньшее количество «материала». Пока шарики перемешаны со всеми остальными компонентами молока, нет особой разницы, в каком направлении они движутся. Гравитация тянет воду, окружающую эти шарики жира, вниз чуть сильнее, чем сами шарики, и жир постепенно (очень медленно) поднимается. Это означает, что его плавучесть невелика.
Возникает вопрос: как быстро поднимется жир? Важную роль в этом процессе играет вязкость. Я уже говорила, что вязкость определяется как внутреннее трение текучей среды. Иными словами, это показатель силы трения, возникающей между разными слоями текучей среды. Представьте, что вы помешиваете ложечкой чай в чашке. В ходе круговых движений ложечки жидкость вокруг нее также приходит в движение, перемещаясь рядом с другими, соседними слоями жидкости. Вода – не очень-то вязкая жидкость, и разные слои скользят друг мимо друга, практически не встречая сопротивления. А теперь вообразите, что помешиваете ложечкой густой сироп в чашке. Каждая молекула сахара крепко цепляется за другие его молекулы, находящиеся поблизости. Чтобы перемещать эти молекулы мимо друг друга, вы должны разрушать силы сцепления между ними. Помешивать ложечкой густой сироп гораздо труднее, чем обычный чай, и мы говорим, что он вязкий.
Шарики жира в молоке выталкиваются вверх по причине их плавучести. Но чтобы действительно двигаться вверх, им необходимо расталкивать в стороны окружающую их жидкость. В процессе выталкивания шариков жира окружающие их слои жидкости должны скользить друг мимо друга. Именно поэтому так важна вязкость жидкости. Чем она более вязкая, тем большее сопротивление приходится преодолевать шарикам жира в ходе подъема.
Этот процесс происходит прямо под лапками лазоревки. Каждый шарик жира выталкивается наверх по причине своей плавучести, но испытывает на себе действие силы лобового сопротивления, поскольку окружающая его жидкость должна «расступиться», чтобы уступить ему дорогу. К тому же одни и те же силы, воздействующие на одну и ту же разновидность шариков жира, приходят к разным компромиссам для разных размеров шарика. Сила лобового сопротивления оказывает большее воздействие на шарик меньшего размера, потому что площадь поверхности шарика велика по сравнению с его массой. У такого шарика весьма небольшая плавучесть, которая помогала бы ему расталкивать в стороны достаточное количество окружающего его «материала» в процессе всплытия. Поэтому, несмотря на то что маленький шарик жира находится в той же самой жидкости, он поднимается медленнее, чем шарик крупного размера. В микромире вязкость гораздо важнее, чем гравитация. Частицы движутся медленно. Размер имеет огромное значение.
В молоке более крупные шарики жира поднимаются быстрее, сталкиваются с некоторыми шариками поменьше, замедляют их и склеиваются с ними, образуя кластеры. На эти кластеры сила лобового сопротивления воздействует слабее, поскольку их размеры больше, чем отдельных шариков, а потому они поднимаются быстрее. Лазоревке, усевшейся на бутылку с молоком, остается лишь набраться терпения – и завтрак прибудет прямо к ее ногам.
А затем наступил черед гомогенизации[25]. Производители молока выяснили, что, пропустив его под очень высоким давлением сквозь очень тонкие трубки, можно раздробить шарики жира и уменьшить их диаметр примерно в пять раз. В результате масса каждого шарика снижается в 125 раз. Теперь слабая подъемная сила, воздействующая на каждый шарик и обеспечиваемая его плавучестью, полностью подавляется силами внутреннего трения текучей среды, то есть вязкостью. Гомогенизированные шарики жира поднимаются настолько медленно, что этот процесс можно вообще не принимать в расчет[26]. Простая операция по уменьшению размера шариков жира переносит сражение на другую территорию, где вязкость побеждает вчистую. Сливки уже не появляются на поверхности молока. Лазоревкам пришлось искать другие источники пропитания.
Таким образом, силы остаются теми же, но их иерархия иная[27]. Вязкостью обладают и жидкости, и газы: хотя молекулы газа не сцепляются друг с другом, как это происходит в жидкостях, они интенсивно сталкиваются, приводя к тому же эффекту внутреннего трения текучей среды, то есть вязкости. Именно поэтому насекомое и железное ядро не падают в воздухе с одинаковой скоростью (если, конечно, вы не поместите их в вакуум). Вязкость воздуха играет огромную роль для насекомого и практически никакой роли для железного ядра. В вакууме гравитация – единственная сила, которая важна в обоих случаях. А крошечное насекомое, пытающееся лететь в воздухе, использует те же приемы, что и мы для плавания в воде. Вязкость доминирует в окружении насекомых точно так же, как в отношении нас, когда мы плаваем в бассейне. Мельчайшие насекомые не столько летают, сколько плавают в воздухе.
Гомогенизированное молоко демонстрирует определенный принцип, но его применение выходит далеко за пределы нашего дома. Когда вы чихнете, попытайтесь оценить размер капелек, разлетающихся из вашего рта по комнате. То же явление, которое не позволяет взойти сливкам, способствует распространению эпидемических заболеваний.
С давних времен туберкулез считался бичом человечества. Самое первое свидетельство о нем найдено в древних египетских мумиях (примерно 2400 год до н. э.). Гиппократу он был известен как «фтизис» (phthisis) (приблизительно 240 год до н. э.), а европейцы в Средние века знали его под названием «проклятие королей». Когда в результате промышленной революции многие начали перебираться из деревень в города, в 40-е годы XIX века «чахотка», болезнь городской бедноты, стала причиной четверти всех смертей в Англии и Уэльсе. Возбудитель болезни, крошечная бактерия под названием Mycobacterium tuberculosis, была обнаружена лишь в 1882 году. Чарльз Диккенс красочно описал чахоточный кашель, но не мог написать об одном из самых важных аспектов этого тяжелого недуга, поскольку не мог его увидеть. Туберкулез – болезнь, передающаяся воздушно-капельным путем. Каждый приступ кашля больного туберкулезом приводит к извержению из его легких тысяч мельчайших капелек, переносчиков смертельно опасного заболевания. Некоторые из них будут содержать микроскопические палочки туберкулезных бактерий, длина каждой из которых составляет лишь три тысячных миллиметра. Сами по себе капельки жидкости начинают свой полет с достаточно больших размеров – возможно, порядка десятых долей миллиметра. Эти капельки притягиваются вниз гравитацией и, упав на пол, не распространяют инфекцию дальше. Но падение не происходит быстро, поскольку вязкость присуща не только жидкостям. Воздух тоже ею обладает, и когда капельки движутся в воздухе, им приходится его расталкивать на своем пути. Устремляясь вниз, капельки наталкиваются на молекулы воздуха, которые замедляют скорость их падения. Точно так же как сливки медленно поднимаются к горлышку бутылки, преодолевая вязкость молока, эти капельки мокроты медленно опускаются, преодолевая вязкость воздуха, и падают на пол.
Впрочем, на пол падают не все капельки мокроты. Поскольку они состоят в основном из воды, в течение нескольких первых секунд пребывания в воздушной среде она испаряется. То, что вначале было каплей, достаточно крупной, чтобы гравитация могла пронести ее сквозь вязкий воздух, теперь становится микроскопической крапинкой – тенью бывшей себя. Если поначалу это была капелька мокроты, внутри которой плавала туберкулезная бактерия, то теперь она представляет собой туберкулезную бактерию, аккуратно упакованную в некий остаточный органический материал. Гравитационное притяжение этой новообразовавшейся микроскопической частицы не идет ни в какое сравнение с силой сопротивления воздуха. Куда движется воздух, туда и бактерия. Подобно искусственно измельченным капелькам жира в нынешнем гомогенизированном молоке, туберкулезная бактерия просто пассажир. И если она попадает в дыхательные пути человека с ослабленной иммунной системой, то может стать очагом зарождения новой колонии бактерий, медленно разрастающейся до тех пор, пока они не будут готовы к попаданию в воздух в составе мокроты, откашливаемой человеком, заразившимся туберкулезом.
Туберкулез поддается лечению при наличии надлежащих лекарств. Именно поэтому он редкий гость в западных странах. Но на данный момент туберкулез по-прежнему остается вторым по масштабам убийцей человечества после ВИЧ/СПИД, и это огромная проблема для развивающихся стран. В 2013 году туберкулезом заболели 9 миллионов человек, из них умерло 1,5 миллиона. Бактерии туберкулеза приспосабливаются к антибиотикам, приобретая устойчивость ко все новым и новым видам лекарств, из чего следует, что искоренить его с помощью только медицины невозможно. Появляется все большее число штаммов туберкулеза, устойчивых ко многим разновидностям лекарств. Вспышки заболевания время от времени возникают в больницах и учебных заведениях. Поэтому в последнее время внимание ученых переключилось на микроскопические капельки мокроты. Вместо того чтобы лечить туберкулез после того, как человек уже заболел, не подумать ли нам над устройством наших жилищ, чтобы предотвратить распространение болезнетворных бактерий туберкулеза и их попадание в дыхательные пути человека?
Профессор Кэт Ноукис работает на кафедре гражданского строительства в Лидском университете и пытается решить именно эту проблему. Кэт – сторонник поиска максимально простых решений любых проблем. Вместе с коллегами она пришла к выводу, что механизм перемещения микроскопических частиц, плавающих в воздухе, вовсе не зависит от их конкретного содержимого и от длительности пребывания в воздухе, а целиком определяется совокупностью воздействующих на них сил, а действие этих сил, в свою очередь, зависит от размера частиц. Оказалось, что даже более крупные капельки могут путешествовать в воздухе гораздо дальше, чем кто-либо предполагал, по причине турбулентности воздушной среды[28]. Самые крошечные частицы могут плавать в воздухе по нескольку суток, хотя ультрафиолет и синий свет повреждают их. Зная размер интересующих вас частиц, вы можете прикинуть, куда они способны добраться в ходе «путешествия». Следовательно, проектируя систему вентиляции в больнице, можно планировать удаление частиц определенных размеров или создание препятствий для их перемещения, контролируя таким образом распространение болезнетворных бактерий. Кэт объясняет, что каждый вид заболеваний, передаваемых воздушно-капельным путем, может требовать особого плана борьбы с ним в зависимости от количества болезнетворных бактерий, необходимого, чтобы человек заболел (в случае кори очень малого), и места возникновения в организме очага заболевания (бактерия туберкулеза по-разному воздействует на легкие и дыхательное горло). Сейчас эти исследования пребывают лишь в начальной стадии, но продвигаются очень быстро.
Долгие годы человечество было беззащитно перед туберкулезными бактериями, но сейчас мы имеем четкое представление о механизмах их распространения, что дает нам шанс обуздать эту опасную болезнь. Там, где наши предки видели лишь грязное помещение, полное таинственных миазмов, мы – силой своего воображения, вооруженного научным знанием, – видим движение воздуха вокруг каждого пациента и разнообразные перемещения (и их возможные последствия) тех или иных болезнетворных бактерий. Результаты этих исследований будут учитываться при проектировании будущих больниц. Надлежащее проектирование на макроуровне позволит нам спасти многие жизни, воздействуя на те или иные частицы на микроуровне.
Вязкость имеет значение при движении объектов малого размера через определенную жидкость: шарики жира поднимаются в молоке или крошечные болезнетворные бактерии опускаются в воздухе. Поверхностное натяжение, партнер вязкости в микромире, сказывается в месте соприкосновения двух разных текучих сред. В повседневной жизни мы наблюдаем это явление при соприкосновении воздуха с водной поверхностью. Типичный пример смешивания воздуха с водой – воздушный пузырек[29]. Итак, начнем с пенистой ванны.
Звук наполняющейся водой ванны вызывает у нас приятные ощущения. Он объявляет о заслуженном вознаграждении после тяжелого трудового дня, возможности восстановиться после напряженного теннисного матча или просто немного себя побаловать. Но как только вы наливаете пену для ванн, звук меняется. По мере образования пены глубокий рокот затихает и смягчается, и определить границу, где поверхность ванны соприкасается с воздухом, становится сложно. Воздушные карманы захватываются внутрь водяных клеток, и все, что для этого понадобилось, – немного жидкости из флакона с пеной для ванны.
Честь разгадать тайну поверхностного натяжения принадлежит группе европейских ученых, сделавших это в конце XIX века. Люди викторианской эпохи обожали пузырьки. С 1800 по 1900 годы производство мыла резко увеличилось, поскольку творцам промышленной революции без него было не обойтись. Мыльная пена давала людям викторианской эпохи обильную пищу для морализаторства, будучи идеальным символом моральной чистоты и безгрешности. К тому же она была замечательным примером классической физики в действии – буквально за несколько лет до появления специальной теории относительности и квантовой механики, которые всадили острую иглу в непомерно раздувшееся к тому времени представление о такой аккуратной, уютной и добропорядочной Вселенной. Но даже серьезные джентльмены в лоснящихся цилиндрах и с солидными бородами не смогли проникнуть в тайны науки о пузырьках. Пузырьки были настолько универсальны, что никто не решался к ним подступиться, за исключением Агнес Поккельс, которую зачастую описывают как «простую немецкую домохозяйку», хотя в действительности она была довольно проницательной и критически мыслящей личностью, использовавшей весьма ограниченный набор материалов и изрядную долю находчивости, чтобы самостоятельно исследовать поверхностное натяжение.
Рожденная в 1862 году в Венеции, Агнес принадлежала к поколению, которое было твердо убеждено, что место женщины – у домашнего очага. Именно там она и пребывала, когда ее брата отправили учиться в университет. Но Агнес осваивала премудрости физики с помощью учебных материалов, которые ей присылал брат, проводила собственные физические эксперименты в домашних условиях и внимательно следила за происходящим в научном мире. Когда она узнала, что знаменитый британский физик лорд Рэлей начал проявлять интерес к поверхностному натяжению – явлению, с которым она немало экспериментировала, – Агнес написала ему письмо, в котором описала свои результаты. Оно настолько впечатлило ученого, что он отправил его для публикации в журнале Nature, чтобы с ним могли ознакомиться величайшие научные мыслители того времени.
То, что сделала Агнес, было очень простым и в то же время остроумным. Она подвесила на нитке маленький металлический диск (размером с кнопку) так, чтобы он улегся на поверхность воды, а затем измерила величину силы, которая необходима, чтобы оторвать его от поверхности воды. Загадка заключалась в том, что вода стремилась удержать диск, и чтобы оторвать его, требовалось больше силы, чем для его поднятия с поверхности стола. Это дополнительное усилие называется поверхностным натяжением, стало быть, Агнес измеряла силу поверхностного натяжения. Потом она смогла изучить поверхность воды, хотя тонкий слой молекул, обусловливающий действие этой силы, был настолько мал, что у Агнес не было возможности исследовать его непосредственно. Как именно ей это удалось, мы узнаем ниже, но сначала вернемся к ванне.
Ванна, наполненная чистой водой, представляет собой огромное скопление хаотически движущихся и сталкивающихся друг с другом молекул. Но одна из характерных особенностей воды заключается в сильном притяжении всех этих молекул друг к другу. Каждая такая молекула состоит из большого атома кислорода и двух поменьше атомов водорода (что соответствует хорошо знакомой нам химической формуле воды – H2O). Атом кислорода находится посередине; с двух сторон к нему прикреплено по одному атому водорода: получается нечто наподобие слегка сплюснутой буквы V. Несмотря на то что атом кислорода очень прочно соединяется со своими двумя атомами водорода, он не прочь пофлиртовать с любыми другими атомами водорода, находящимися поблизости. Поэтому он постоянно притягивает к себе атомы водорода, принадлежащие другим молекулам воды. Именно этим обусловливаются многие ее свойства. Данное явление называется водородным связыванием и отличается высокой прочностью. В ванне молекулы воды постоянно притягиваются к другим молекулам воды, в результате чего вода имеет вид однородной и связной субстанции.
Молекулы на поверхности воды в некотором смысле «полубеспризорные». Они притягиваются молекулами, расположенными под ними, но над ними нет ничего такого, что тянуло бы их вверх. Таким образом, они испытывают на себе действие сил, которые тянут их вниз и в стороны, но не вверх, в результате чего поверхность воды ведет себя подобно эластичной пленке, туго натянутой поверх всех молекул воды, расположенных под верхним слоем, и стягивающейся внутрь в попытке максимально сократить свой размер. Это и есть поверхностное натяжение.
Когда вы поворачиваете кран, воздух затягивается вниз, в ванну, что приводит к образованию воздушных пузырьков. Но всплывя на поверхность, они не могут продолжать существование. Круглый купол пузырька растягивает эту поверхность, а поверхностное натяжение недостаточно сильно для того, чтобы стянуть ее обратно. Поэтому пузырьки лопаются.
Агнес провела следующий эксперимент: взяла пуговицу и добилась, чтобы действующая на нее сила была недостаточной для того, чтобы пуговица оторвалась от поверхности воды (пуговица плавала на ее поверхности). Затем капнула на поверхность воды веществом наподобие моющего средства вблизи того места, где находилась пуговица. Примерно через секунду пуговица оторвалась от поверхности. Моющее средство распространилась по воде, снизив поверхностное натяжение. Таким образом, чтобы снизить поверхностное натяжение, нужно создать тонкий верхний слой, чтобы молекулы воды не были тем единственным, что составляет ее поверхность.
Добавляя пену для ванны, можете попрощаться с чистой, гладкой, минимальной поверхностью. Небольшое количество ароматизированной жидкости проникает в воду и тотчас принимается за дело. У каждой молекулы этой жидкости один конец обожает, а другой ненавидит воду. Если концу, который ненавидит воду, удастся найти хотя бы немного воздуха, он цепляется за него, но водолюбивый конец тоже не сдается. В итоге в любом месте, где вода соприкасается с воздухом, тонкий слой пены для ванн образуется прямо на этой поверхности. Толщина слоя равна размеру одной молекулы, а размер всех молекул одинаков, в результате чего все их водолюбивые концы погружены в воду, а концы, ненавидящие ее, пребывают в воздухе. При наличии тонкого покрытия большая поверхность не составляет проблемы. Пена для ванн не создает такого сильного натяжения, как вода, поэтому эффект эластичной пленки существенно ослабляется. Наступает момент, когда все самое интересное происходит на поверхности, – для чего, собственно говоря, и нужна пена. Снижая поверхностное натяжение, пена для ванн продлевает жизнь воздушных пузырьков, поскольку их большая поверхность оказывается гораздо устойчивее.
Вероятно, стоит отметить, что мы, как правило, ассоциируем белую пену с избавлением вещей от всевозможных загрязнений, однако в современных моющих средствах лучшее вещество для сцепления с водной поверхностью и образования пены не эквивалент лучшего вещества для удаления загрязнений и жировых пятен с одежды и посуды. Вы можете изготовить очень хорошее моющее средство, которое дает минимум пены (или вообще не образует ее). Более того, пена нам зачастую только мешает. Но производители моющих средств настолько убедили людей в том, что именно превосходная белая пена – подлинная гарантия безупречной стирки, что сами загнали себя в угол. Сейчас зачастую в моющие средства специально добавляют пенообразователи, чтобы обеспечить появление воздушных пузырьков и избежать недовольства потребителей.
Подобно вязкости, поверхностное натяжение относится к числу явлений, наблюдаемых в повседневной жизни (то есть в макромире), хотя в большинстве случаев играет менее важную роль, чем гравитация и инерция. Но при переходе на уровень микромира его роль и место в иерархии сил существенно возрастают. Оно объясняет, почему запотевают очки и почему мы можем вытереть руки полотенцем. Но подлинная прелесть микромира заключается в том, что внутри одного гигантского объекта может происходить множество мельчайших процессов, причем их результаты суммируются. Например, оказывается, поверхностное натяжение, которое в тех или иных ситуациях доминирует лишь на микроуровне, обусловливает существование самых массивных живых существ на планете. Но чтобы обсудить эту тему, нам нужно рассмотреть еще один его аспект. Что происходит, когда поверхность, разделяющая газ и жидкость, ударяется о твердый предмет?
Мой первый опыт плавания на открытой воде оказался из разряда «не для слабонервных». К счастью, я ничего не знала об этом заранее, поэтому ни о чем не беспокоилась. Когда я работала в Институте океанографии Скриппса в Сан-Диего, крупным ежегодным событием для моей команды пловцов был заплыв с берега Ла-Джолла до пирса института и обратно – 4,5 километра через достаточно глубокий морской каньон. Вообще говоря, раньше мне приходилось плавать только в бассейнах, но поскольку я всегда готова испытать себя на прочность, а в плавательных бассейнах я «намотала» не одну сотню километров, я согласилась участвовать в заплыве, надеясь, что буду выглядеть ничуть не хуже остальных. Наш массовый вход в воду напоминал момент открытия супермаркета бытовой электроники в день распродажи по сниженным ценам. Но после этого стало немного легче. Первая часть заплыва проходила через заросли бурых водорослей; я казалась себе птицей, порхающей между густыми кронами деревьев. Солнечные лучи с трудом могли пробиться сквозь эти заросли. Затем водоросли исчезли. Зная примерно глубину океана в этих местах, я могла лишь догадываться, какие морские твари проплывают где-то очень глубоко подо мной – так глубоко, что туда едва проникает солнечный свет. После того как мы миновали зону бурых водорослей, водная поверхность покрылась зыбью, и мне пришлось сосредоточиться на том, куда мы плывем. Плыть становилось все труднее, а пирс института едва угадывался на горизонте. Вода подо мной была настолько непроницаемой, что было нереально в ней что-либо разглядеть. В конце концов я поняла, почему с таким трудом воспринимаю окружающую обстановку: мои плавательные очки запотели. Ох-ох-ох…
Внутри плавательных очков пот испарялся с теплой кожи вокруг глаз. Чем усерднее я двигала руками и ногами, тем сильнее он испарялся. Воздух, заключенный между очками и охватываемой ими частью лица, представлял собой нечто вроде мини-сауны, теплой и насыщенной влагой. Но океан вокруг был прекрасным и холодным, поэтому мои плавательные очки охлаждались снаружи. Когда молекулы воды, содержащиеся в воздухе, ударялись о холодный пластик, они отдавали свое тепло и конденсировались, снова становясь жидкостью. Но проблема заключалась не в этом, а в том, что все эти молекулы воды находили друг друга внутри очков, соударялись и гораздо больше притягивались друг к другу, чем к пластику. Поверхностное натяжение втягивало их внутрь, заставляя собираться в крошечные капельки – так, чтобы площадь их поверхности была как можно меньшей. Каждая такая капелька имела крошечные размеры – возможно, 10–50 микрон в диаметре. Так что сила земного притяжения была незначительной по сравнению с силами поверхностного натяжения, сцепляющими капельки с пластиком. Не было никакого смысла ждать, пока они упадут сами собой.