Образование для образованных. 2021 Левенчук Анатолий

Мышление определим как ту функцию/поведение интеллекта, которое даёт эффективность в научении решению самых разных проблем. Эффективность – это с какой скоростью оператор/владелец интеллекта (человек, машина, коллектив людей и машин) чему-то может научиться, с учётом разнообразия возможных к научению решений проблем. Научиться – это от «проблемы» (не знаю, как решать эту проблему с доступными ресурсами) перейти к «задаче» (знаю практику, имею мастерство решить задачу с доступными ресурсами).

Смогли научиться операционному менеджменту или высшей математике за год (то есть перейти от «не знаю как решать эти проблемы» к «знаю, как решать эти задачи») – отлично! Смогли за два года – интеллект вдвое хуже. Не смогли научиться даже за десять лет (больной человек, или даже собака) – совсем плохо с интеллектом!

Это отличается от произвольных «народных» трактовок понятия «мышление», или даже трактовок каких-то отдельных научных сообществ. Поскольку слово бытовое, и каждый волен его трактовать как хочешь, приходят разные люди со своими размышлениями (двамышлениями, измышлениями, измышлизмами и т.д.) про мышление, и утверждают, что их определение – правильное. «Мышление – это оперирование образами», «мышление – это осознанный поиск правильных интуиций», «мышление – это поиск лучшего научного описания проблемы», и это только первая линия «народных» определений, вторая линия приходит как пересказ случайно выдернутой из литературы разных лет идеи из какой-нибудь околохудожественной философской школы. Скажем, берём Ницше и гуглим «Ницше мышление» – и там сразу «воля к власти как осуществление мышления», и дальше можно уже бесконечно развлекаться словесными построениями вообще вне связи с идеями Ницше или его последователей. Обязательно придёт в дискуссию кто-то, кто погуглил «Анохин мышление», и он будет рассказывать про афферентацию и мозг, и полное отсутствие связи с волей власти его волновать не будет (равно как любителей Ницше не будет волновать афферентация).

Мы говорим об интеллекте как вычислителе, который способен находить решение разнообразных проблем. Вычисления этого интеллекта – это и есть мышление. Больше разнообразие этих проблем – выше уровень интеллекта, мощнее мышление, используем модель Chollet.

ИНТЕЛЛЕКТ – ЭТО ВЫЧИСЛИТЕЛЬ ПРИ ПОЗНАНИИ,

МЫШЛЕНИЕ – ЭТО ВЫЧИСЛЕНИЯ ПРИ ПОЗНАНИИ

Человеческий мозг – это нейроморфный вычислитель/computer, обеспечивающий самые разные вычисления для личности как при её развитии/обучении/предобучении/познании, так и при участии в какой-то деятельности с использованием познанного (хотя в принципе для людей это трудноразличимо и часто совпадает: что там развитие-обучение-накопление опыта, а что простое использование своего достигнутого уровня развития. У людей поиск новых потенциально лучших решений/exploration и использование найденных возможно не самых лучших решений/exploitation не так легко разделимы, как в теории). Это важно: считать мозг по его главной функции универсальным компьютером/вычислителем109, а не каким-то магическим устройством (например, «антенной, получающей информацию из Космоса» или «орган, подключающий нас к мировому разуму»). Мы чтим SoTA в нейрофизиологии: мозг занят вычислениями, хотя мы и не можем точно сказать, какими именно, об этом только-только начинаем догадываться (благодаря исследованиям по машинному интеллекту и нейронным сетям).

Особо подчеркнём, что мы не проводим тут инженерных рассуждений, то есть не втаскиваем вопросы конструктивного наполнения функциональных ролей в вычислителе (аппаратном, или определяемом программно), то есть не обсуждаем архитектуру мозга как физического вычислителя (задача инженерии), то есть не занимаемся собственно вопросами нейрофизиологии. И не обсуждаем, что из вычислений для познания или просто какой-то рутинной деятельности выполняется живым мозгом, что коллективом из людей-с-мозгами, что мозгом-в-теле, что мозгом-в-теле-с-инструментами и даже дальше с окружающей средой. В когнитивистике это обсуждается как тезис extended cognition110, тезис extended mind111. И мы даже не будем особо обсуждать многоуровневость вычислителя, который занят мышлением-познанием и прикладным вычислением-выводом (inference, вывод/рассуждение как его принято называть в логике), который мышлением обычно не называют (вот когда обсуждают, можно ли научить медведя ездить на велосипеде, обсуждают его интеллект и мышление, а когда обсуждают езду уже обученного медведя на велосипеде, то уже не считают чем-то интеллектуальным, не считают эти вычисления в мозгу медведя мышлением. Примерно то же и у людей: мыслители придумывают новые способы решения задач. А вот кто просто решает эти задачи уже известным ему способом – те уже не мыслители, это вычисление-вывод, его даже рассуждением часто назвать нельзя, вычисление проходит «автоматом».

А ещё мы учитываем, что вычислители и их вычисления крайне многоуровневы:

• физика вычислителей (логика на транзисторных гейтах, квантовые цепи на разных технологиях, нейронные сети на настоящих живых клетках-нейронах и т.д.)

• физические вычислители/аппаратура (сами по себе многоуровневые, «компьютеры»)

• вычислители локалистских/монопроблемных/узких в рамках одной предметной области представлений, полученные настройкой вычислений аппаратуры (классические алгоритмы примерно в том виде, в каком их изучают в школе на уроках алгоритмики/информатики – назовём их условно «алгоритмы Кнута», по имени Дональда Кнута, всю жизнь занимающегося составлением справочника по таким «узким алгоритмам»112)

• универсальные вычислители (интеллект естественный и машинный, отличающийся как раз тем, что решает проблемы, которые раньше не встречались – алгоритм решения которых пока неизвестен. А потом полученное мышлением с использованием трансдисциплин знание может быть использовано для прикладных вычислений в ходе какой-то прикладной деятельности). И вот тут тоже много уровней, в том числе универсальные вычислители, реализованные конструктивно человеческим мозгом, компьютерами с разной физикой (электронными, квантовыми, оптическими), а также сетями из людей и компьютеров (например, вычислений какой-нибудь компании, которые она делает в ходе её деятельности – в том числе вычислений, которые делает компания и своими исследовательскими лабораториями и производственными подразделениями, и даже службой маркетинга).

Отнюдь не все вычисления тем самым попадают под понятие мышления. Но уже понятно, что мы тут обсуждаем не нейрофизиологию. Естественный интеллект – это обеспечивающая универсальные вычисления часть вычислителя-мозга. Дальше можно обсуждать в рамках extended cognition, насколько в состав вычислений естественного интеллекта можно включать вычисления, выполняемые компьютерами. Скажем, если автор погугли в ходе написания этого поста – это его естественный интеллект работал, или уже полумашинный интеллект, поскольку вычисления в датацентрах Гугла тут тоже поучаствовали? Опять же, что естественного в человеческом интеллекте? Без inductive biases (специально устраиваемыми предпочтениями в рассуждениях), привносимых мыслительными трансдисциплинами (предобучение в детском саду, школе, вузе), никакого традиционно понимаемого «естественного интеллекта» нет, есть Маугли из джунглей, который даже разговаривать не умеет. Трансдисциплины же абсолютно искусственны сами по себе: онтология, логика, эпистемология, различные теории коммуникации, системное мышление и все остальные дисциплины из интеллект-стека придуманы людьми и продолжают придумываться-уточняться, они не «естественного происхождения». Ничего «естественного» в логике нет, это продукт работы многих поколений учёных! Логика абсолютно искусственна. Маугли из джунглей, воспитанный волками, логикой не владеет! Он даже разговаривать не умеет (человеческий язык тоже ведь не вполне естественен: мы знаем часто, какие его слова кто придумал). Так что слово «естественный» по отношению к интеллекту не вполне естественно (pun intended113).

Поэтому дальше не будем различать в мышлении «естественную» и «искусственную» составляющую, неявно отсылающую к конструктиву универсального вычислителя: на вакуумных ли лампах он, транзисторный на самых разных полупроводниках, квантовый на разных технологиях, или биологический, то есть «мозг в теле», а то и «мозг с телом» embodied intelligence традиции или даже «мозг с телом и куском окружающей среды» в extended mind традиции. Это всё оказывается про инженерию, а для разговора об интеллекте и мышлении не так важно.

Мышление – это не любые вычисления/рассуждения, а являющиеся познанием. Познание/learning – это вычисление интеллектом объяснений на базе нового набора понятий («формирование понятий», иногда обобщаемое до «формирования представлений»114), организация внимания на объектах для последующих прикладных вычислений. Это тот самый learning из «машинного обучения» и «искусственного интеллекта» как предметных областей. У СМД-методологов это «чистое мышление» + «коммуникация» в их схеме мыследеятельности115. Мышление коллективно, обеспечение коммуникации в работу/вычисления интеллекта тоже попадает! Недаром профи говорят не об «информационных технологиях»/IT, а об «информационно-коммуникационных технологиях»/ICT. Можно называть это «интеллектуальным мышлением» (мышлением интеллекта), но вообще-то и само по себе слово «мышление» лучше резервировать только для всех вычислений именно познания, и даже не для прикладных вычислений-рассуждений с использованием познанного набора понятий (у СМД-методологов для прикладных вычислений в ходе выполнения практики используется слово «мыследействие», а вот мышление+коммуникация+мыследействие называются вместе «мыследеятельность»).

Тут нужно отметить, что мы обозначаем словом «познание» как познавательную деятельность/практику людей-в-теле-и-с-инструментами в мире (эпистемология и гносеология тут используют слово cognition), так и только работу их вычислителей-интеллектов как функциональной части мозга (люди из AI используют для этого слово learning). Мы не обращаем на эти особенности внимания, ибо вычислители физичны, что позволяет им заниматься в принципе и практикой по изменению мира. Входят ли датчики и актуаторы в состав компьютера-вычислителя или человека-вычислителя, или находятся в его окружении – это вопрос отдельный. Мы уже упоминали, что, в embodied cognition и extended mind они вполне себе входят в состав вычислителя, вычислитель всегда «телесен» и тело всегда находится в окружающем его мире. Так что «деятельность/практика/мыследеятельность» и «вычисления» оказываются разве что не синонимами.

Практика – это мышление/вычисления и коммуникация по дисциплине/теории/модели/объяснению и влияние на указанные дисциплинами объекты в мире + технология как инструменты для влияния на мир, и в числе этих инструментов ещё и аппаратура вычислителя со всеми необходимыми для выполнения практики настройками/inductive bias/алгоритмами/знаниями.

Страницы: «« 1234

Читать бесплатно другие книги:

Одри Роуз Уодсворт и ее партнер по расследованию преступлений Томас Кресуэлл путешествуют через Атла...
Роман «1984» об опасности тоталитаризма стал одной из самых известных антиутопий XX века, которая ст...
Впечатляющая история, в которой конец света – это только начало финальной битвы между добром и злом,...
Лишний вес – враг нашему здоровью. Особенно женскому организму приходится нелегко, если тело обвешан...
Он работал в рекламе в 1990-х, в высокой моде – в 2000-х, сейчас он комик-обозреватель на крупнейшей...
*НАСТОЯЩИЙ МАТЕРИАЛ (ИНФОРМАЦИЯ) ПРОИЗВЕДЕН, РАСПРОСТРАНЕН И (ИЛИ) НАПРАВЛЕН ИНОСТРАННЫМ АГЕНТОМ ГОР...