Делай космос! Егоров Виталий

В октябре 2014 нам представилась уникальная возможность увидеть поверхность ядра кометы с расстояния 7,7 километра. В это время аппарат Rosetta, уже готовился к сбросу десантного модуля Philae.

За месяц до этого Rosetta вышла на квазиорбиту вокруг ядра кометы 67P/Чурюмова-Герасименко. Орбита квази потому, что зонд вращается вокруг кометы, но гравитации не хватает для его захвата, поэтому Rosetta может спокойно маневрировать при помощи двигателей.

Во время полета Европейское космическое агентство (ESA) публиковало только снимки с черно-белых навигационных камер. Кадры более «дальнобойной» камеры OSIRIS ученые держали при себе из опасения, что кто-то сможет сделать открытия быстрее них. Полные материалы с Rosetta начали выкладывать только через год после начала научной работы.

Но даже навигационные камеры открывали шикарные пейзажи пятикилометрового куска льда и камня.

С навигационными камерами можно изучать комету очень подробно. Например, некоторые обратили внимание на песчаные дюны, видимые на близких снимках. Сначала эти образования вызвали замешательство, ведь кома – большая, но разреженная, то есть фактически никакого ветра быть на поверхности не может. Но потом присмотрелись внимательнее и примерно в той же области обнаружили газовые джеты, которые бьют из тела кометы.

Судя по всему, эти потоки газа, который выделяется при нагревании ядра солнечными лучами, вырываются наружу с большой скоростью и увлекают пылинки и песчинки. Пыль улетает в космос, а мелкие песчинки уже слишком массивные, чтобы покинуть комету вместе с газом, и они выпадают, формируя дюны.

Еще ученые ESA решили наблюдать за крупным валуном, который рассмотрели на относительно ровной поверхности.

Его назвали Хеопс и опубликовали несколько фото под разными углами и с разного расстояния. Кажется, ученых привлекла его неоднородная структура. Похоже, что он включает в себя темные и светлые фрагменты.

Кстати, о свете и тьме. На снимках Rosetta поверхность кометы представляется нам чем-то вроде поверхности Луны по отражающим свойствам – светло-серой или серебристой. На самом деле это не так, съемка ведется с высокой светочувствительностью, и для нашего глаза комета была бы больше похожа на гигантский кусок угля, чем на серебристую громаду.

Специалисты ESA сделали поясняющую схему, которая позволяет сравнить степень отражающей способности различных тел Солнечной системы.

Самый блестящий объект в системе – ледяной спутник Сатурна Энцелад отражает 90 % света, Земля – 30 % света, Луна – 12 %, а ядро кометы 67P/Чурюмова-Герасименко – всего 6 %.

12 ноября началась самая захватывающая космическая операция 2014 года – посадка на комету. Комета и Rosetta неслись со скоростью 55 тысяч км/ч (15,2 км/с) в 250 миллионах километрах от Земли. И десантному модулю Philae предстояло сделать то, чего не совершалось еще в истории космонавтики.

6.5. Philae: посадка на комету

Самая сложная космическая операция 2014 года – высадка спускаемого модуля на поверхность кометы 67P/Чурюмова-Герасименко прошла, как минимум, с частичным успехом. Спускаемый аппарат Philae (в английском языке произносится как «Филэй», в русском «Филы», но мы же знаем, что малыша зовут Филя) находился на поверхности ядра кометы, стоял твердо на трех ногах, и все приборы, отработав исправно, получили первые данные и передали их на Землю.

Philae

Посадка была небезупречной. С момента отделения Philae от станции-носителя Rosetta начались проблемы: сначала определили, что прижимные двигатели не работают. Эти двигатели должны были уберечь зонд от отскакивания при касании с поверхностью.

Стокилограммовый зонд у кометы весил около 5 граммов, скорость снижения составляла 1 м/с, скорость выхода на орбиту кометы – 0,5 м/с. Чтобы не улететь в открытый космос, ударившись о поверхность, Philae был оборудован еще двумя гарпунами. Но, как оказалось, они тоже не сработали. Зонд отскочил, пролетел около километра, «прикометился» еще раз, снова подскочил, и только третья посадка стала окончательной. На первом месте посадки повезло с рыхлым грунтом, который частично погасил кинетическую энергию аппарата. Поэтому посадка все же состоялась, но не туда, куда предполагали – место финальной остановки пока даже не было определено, был известен только примерный сектор: собирались сажать в приполярную равнину, а Philae отскочил к пересеченной местности, у края большого кратера.

Снова повезло в том, что, несмотря на прыжки, аппарат сел на все три ноги, не перевернувшись и не накренившись – сработала система ориентации и стабилизации. Но рельеф местности оказался неудачным. Первый кадр поверхности натолкнул на мысль о перевернутом зонде, но оказалось, что это отвесный утес. Его можно хорошо изучить на снимках. Утес отбрасывает тень на Philae, препятствуя подпитке аккумуляторов от солнечных батарей. То есть аппарату сложно будет вести длительные наблюдения и передавать данные.

Philae был оборудован двумя аккумуляторами: автономным и перезаряжаемым. Оба были «заправлены» перед отстыковкой, но длительная работа обеспечивалась благодаря второму. После посадки выяснилось, что солнце освещает солнечные батареи от полутора часов и менее – в двенадцатичасовые сутки кометы. Это самая большая сложность, которая поставила под угрозу всю спускаемую миссию.

С Philae провели два сеанса связи по три часа. В первый сеанс загрузили плотную программу работы. Фактически за несколько часов, на которые хватало заряда аккумуляторов, требовалось отработать всем научным приборам, получить данные и передать их на Rosetta.

Во второй сеанс связи проверили состояние, получили новые снимки и остальные данные. Главная цель миссии была достигнута – по одному замеру провел каждый прибор: бур сумел провести забор грунта, образцы проверили на органику и изотопный состав газов, радар сумел провести «томографию» кометы. После того, как заряд батареи исчерпали до критической отметки, Philae отправили в гибернацию.

Следующие сеансы связи предполагались раз в сутки, но ученые лишь надеялись, что удастся набрать заряд за несколько дней. Судьба аппарата оставалась неизвестна, никто не мог даже гарантировать его пробуждение.

С другой стороны, ранее предполагалось, что аппарат на поверхности проработает 1–2 месяца, а потом интенсивное излучение приближающегося Солнца должно было убить Philae. Теперь появлялась надежда, что теневое положение зонда позволит работать ему значительно дольше, только с большими перерывами. Главное – чтобы проснулся…

6.6. Rosetta и Philae: космическая органика на кометах и не только

Проработав около 60 часов, аппарат Philae успел провести предварительные исследования. Один из приборов сумел зарегистрировать органические соединения, о чем тогда написали в официальном пресс-релизе.

Это новость наделала шуму в СМИ, и появились вопросы вроде «Что, нашли-таки иноземную жизнь?»

Для того чтобы ответить на этот вопрос, начнем с истоков – что такое «органика».

В быту принято считать, что это что-то напрямую связанное с жизнедеятельностью организмов, то есть с жизнью, но в науке это понятие шире. Более того, в науке нет однозначного определения – что есть органика. Прежде всего, для органики необходим углерод. Он может создавать бесконечное множество соединений, и если в них участвуют атомы водорода, то такое вещество однозначно считается органическим. Но есть несколько соединений, которые не являются углеводородами, но тем не менее относятся к органике просто исторически, по традиции. Но мы продолжим разговор только об углеводородах, ведь именно их, скорее всего, тогда и нашел газоанализатор COSAC на борту Philae на комете.

Вообще органика (углеводороды) на комете – это не новость. Более того, не новость и органика в метеоритах, которые падают на Землю.

Одно из самых простых органических соединений, которого в избытке в Солнечной системе – это метан. На Юпитере, к примеру, масса метана примерно равна массе всей планеты Земля. На спутнике Сатурна Титане его поменьше, но хватает для наполнения нескольких морей, рек и облаков, которые регулярно проливаются метановым дождем.

Только на Земле, как считается, большая часть метана имеет биогенное происхождение – результат жизнедеятельности микроорганизмов, разлагающих более сложные органические соединения. Считается так потому, что в нашей атмосфере слишком много кислорода, который окисляет метан.

На кометах тоже имеется метан – в составе тех летучих соединений, которые испаряются по мере приближения кометы к Солнцу. Регистрировали метан и на Марсе, но в таких ничтожных концентрациях, что пока не определились с его происхождением.

Но метан – это цветочки. В Солнечной системе летает органика и поинтереснее. Первые намеки на органические соединения в составе кометы были получены в 1986 году при исследовании кометы Галлея группой космических аппаратов, включавших в себя, в том числе советские «Веги».

Позже, в 1996 году, при дистанционном исследовании с Земли инфракрасными и радиотелескопами, у кометы C/1996B2 Hyakutake определили выделения метанола, метилцианида, цианида водорода, формальдегида, метана, этанола и этана.

Наконец, миссия Stardust смогла доставить частички кометной пыли на Землю. Как оказалось, комета 81P/Wild 2 была далеко не такой простой, как ожидалось. Результаты анализов добытой пыли привели к некоторому переосмыслению того, что такое вообще кометы. Ранее казалось, что кометы и астероиды – это обособленные тела, которые формировались различными путями в различных регионах протопланетного облака. Теперь же оказалось, что пылевые частицы комет практически идентичны составу углеродсодержащим метеоритам С-класса.

Эти же метеориты, особенно группы CI, CM, и CR, содержат в себе богатейший набор сложных органических соединений, в том числе пуриновые и пиримидиновые азотистые основания, которые в земных организмах являются структурными единицами хранения информации в РНК и ДНК. Характерно, что эти метеориты даже внешне похожи на уголь, за что и называются «углистыми». Кометные ядра точно так же имеют очень темный цвет.

Исследование углистых метеоритов выявило целый спектр различных аминокислот и сложных органических соединений. Причем ученые подчеркивают, что их открытие не является результатом загрязнения образцов на Земле. Это было установлено по ряду факторов: некоторые найденные аминокислоты не формируются на Земле; метеориты, подобранные во льдах Антарктиды и в пустыне Австралии, не продемонстрировали разницы в содержании углеводородов; изотопное соотношения легкого водорода и дейтерия в молекулах отличалось от земных типов.

Сегодня ученые приходят к выводу, что некоторые астероиды, которые обнаружены на данный момент в Солнечной системе, являются «спящими» кометами или ядрами комет, которые исчерпали запасы летучих соединений или затаили их глубоко под поверхностью.

Другой неожиданный факт, правда, не связанный напрямую с органикой, состоит в том, что как метеориты C-класса, так и частички кометной пыли содержат в себе минералы, которые формировались при высокой температуре свыше 1000 градусов Цельсия. Это никак не согласуется с ранней гипотезой, что кометы формировались на окраине Солнечной системы в ходе конденсации газов. Поэтому-то интересна не только органика, а вообще все, что там нашел на 67P/Чурюмова-Герасименко малыш Philae, и как придется переписывать учебники после интерпретации полученных им данных.

6.7. Philae: прощание

Philae Lander может претендовать на государственную премию за работу вопреки всем обстоятельствам. Пережив десятилетний перелет и аварийную посадку, он все же сумел героически выполнить свою задачу и провести исследование кометы, пока позволял заряд батарей. Летом 2015 года он всех удивил, вернувшись к жизни, но спустя год практически не осталось возможности повторить этот подвиг.

Автоматическая межпланетная станция Rosetta Европейского космического агентства (ESA), с посадочным аппаратом Philae отправилась в космос в 2004 году для исследования кометы 67P/Чурюмова-Герасименко. Летом 2014 года произошло сближение Rosetta и ядра кометы. Кроме исследования кометы с расстояния, миссия предполагала прямой контакт с ядром кометы. Посадку должен был совершить спускаемый модуль Philae Lander. Изучив комету с расстояния, ученые выбрали подходящее место для посадки. Это было равнинное место, названное Агилкия у Южного полюса кометы.

12 ноября 2014 года Philae успешно отстыковался от Rosetta и отправился на встречу с кометой. Траектория была выбрана безупречно, и ничто не предвещало проблем, но последние метры полета оказались аварийными.

Сила притяжения четырехкилометрового куска льда и пыли невысока, поэтому Philae был оборудован несколькими инструментами, которые должны были удержать его на поверхности. В нескольких метрах от кометы аппарат должен был выстрелить специальные гарпуны, чтобы закрепиться в реголите.

Выстрела не произошло.

Коснувшись поверхности, Philae должен был включить ракетные двигатели, которые должны были «дуть» вверх и прижимать аппарат к комете.

Двигатели не сработали.

Во время работы двигателей, модуль должен был ввинтить в поверхность буры на своих ногах, чтобы надежно закрепиться на поверхности. Но без гарпунов и двигателей его ждала драматическая судьба, в которой буры оказались бесполезны. Philae повезло, что рыхлый грунт поглотил часть его кинетической энергии, и аппарат от первого удара не отбросило в космическое пространство. Зонд отскочил, пролетел несколько сот метров, снова отскочи и остановился в темной расселине только после четвертого прыжка.

Финальное место посадки сильно отличалось от того, что готовили ранее. Фактически Philae застрял в трещине глубиной несколько метров. Никто не знал места его фактической посадки. Результаты осмотра камерами с Rosetta и информация о выработке энергии солнечными батареями показали, что это довольно темное место. У ученых оставалось около двух-трех суток, чтобы реализовать весь научный потенциал Philae, задействовать все исследовательские приборы и инструменты, пока не исчерпается запас аккумуляторных батарей.

По словам ученых, за 64 часа работы Philae удалось реализовать на 80 % свою научную программу. Philae сумел оценить твердость поверхности и измерить ее температуру пенетрометром MUPUS, осмотреть поверхность камерами ROLIS, «просветить» ее георадаром CONSERT. Хроматографы Ptolemy и COSAC смогли «вдохнуть» газы кометы и изучить состав ее пыли. Более того, благодаря отскоку аппарата, удалось провести замеры некоторыми приборами в двух участках поверхности.

Что же смог узнать модуль?

Как в целом ранее и предполагалось, комета представляет собой смесь льда и пыли, причем довольно рыхлой консистенции. По данным радарного просвечивания ее пористость составляет 75–85 %. При этом, поверхность непосредственно в месте посадки оказалось неожиданно твердой. Ударник не смог продвинуться глубже 3 сантиметров рыхлого грунта. Дальше ему путь преградил твердый лед.

Обнаруженные газы у поверхности ядра кометы показали богатый набор органических соединений: формальдегид, метилизоцианат, ацетон, пропиональдегид, ацетамид и еще 11 органических соединений, богатых на углерод и азот. Основу атмосферы составляли водяные пары, угарный и углекислый газы. Исследователи отмечают, что обнаруженные органические соединения участвуют в синтезе аминокислот, сахаров, нуклеотидов и азотистых оснований – то есть являются готовыми «кирпичиками» жизни. Это не доказывает, что где-то кроме Земли есть жизнь, скорее подтверждает гипотезы о том, что кометы играли не последнюю роль в формировании жизни на Земле и могли принести на планету органические «заготовки», из которых в конечном счете появились и мы. Так что, продолжая мысль Карла Сагана, мы состоим не только из звездного вещества, но и из кометного. Может быть, оттуда такая тяга к космическим полетам?

К сожалению, радарный инструмент CONSERT не успел установить происхождение двойной структуры кометы. Для полноценного исследования недр ядра сигналы предполагалось посылать на Rosetta, а та уже должна была курсировать с обратной стороны кометы и принимать передачу CONSERT. Из-за ограниченности рабочего времени удалось пройтись «по верхам», не углубляясь дальше 100 метров в тело кометы.

По истечении 64 часов Philae уснул. То есть ушел в режим гибернации, в котором он пребывал и во время полета. Поначалу ученые давали весьма оптимистичные прогнозы по его пробуждению: сначала через неделю, потом через две, потом через два месяца. Но аппарат молчал. Комета приближалась к Солнцу, поэтому ожидалось, что солнечные батареи Philae будут получать больше энергии, и это позволит подзарядить аккумуляторы и вернуться к работе. По предварительной программе, если бы посадка удалась на равнину, к марту 2015 года палящие лучи Солнца привели бы к перегреву и выходу из строя аппарата. Но тень трещины берегла аппарат, хотя и не давала ему возможности вернуться к работе.

Летом 2015 года ученые решили повторить попытки выйти на связь. Прямой контакт Philae с Землей был невозможен, поэтому Rosetta выступала ретранслятором. И близкое Солнце вносило свои коррективы – поверхность кометы нагревалась, испарения возрастали, кома окутывала ядро и не позволяла Rosetta приближаться к поверхности. Поэтому орбитальному зонду приходилось лететь в сотне километров перед кометой.

В то же время солнечный свет давал шанс на восстановление работоспособности Philae. В любом случае, нельзя было просто включить передатчик и начать вещание. Зонд лежал в трещине, а его антенна упиралась в стенку, вместо того, чтобы возвышаться над равниной, как предполагала первоначальная программа. Поэтому первое, что требовалось инженерам – найти оптимальную траекторию Rosetta, которая позволила бы ей эффективно обмениваться сигналами с Philae.

Это настоящий космический детектив!

В июне 2015 года Rosetta принялась передавать сигналы на комету, ожидая получить ответ от Philae. Предыдущие попытки в марте закончились неудачей, поэтому 11–12 июня пришлось собрать инженерную группу и обсудить перспективность новых попыток выйти на связь. И через день Philae ответил!

Пока мы радовались хорошим новостям, ученые и инженеры миссии пытались продиагностировать сидящий аппарат и оптимизировать траекторию летающего. Для возвращения к научной деятельности в нормальном режиме, требовалось принять объем телеметрических данных – записи сведений о состоянии Philae от момента его повторного включения и до момента установления связи. Включился он сам – за несколько месяцев до того, как с ним вышли на связь. В очереди стояло примерно 8 тысяч пакетов телеметрии, на передачу которых потребовалось бы 40 минут прямой связи. Проблема была в том, что первый сеанс связи длился всего 78 секунд, второй сеанс – 4 минуты, третий – 19 минут. Но проблемы не заканчивались, и сеансы связи проходили с частыми сбоями, в результате, удавалось передавать ограниченное количество пакетов телеметрии.

В то же время, принятые данные позволили определить, что первое пробуждение Philae состоялось еще 26 апреля, потом 5 и 6 мая, а потом уже 13 июня по сигналу с Rosetta. Счет на борту ведется в «Comet day», которые длятся 12,5 часов.

Данные с солнечных батарей позволяли установить интенсивность освещения каждой панели и помогали определить точнее расположение аппарата относительно стенок трещины.

Телеметрия за эти дни указывала на устойчивый рост бортовой температуры, что являлось показателем приближения к Солнцу. Это было хорошей новостью, так как глубокий мороз препятствовал работе аппарата.

С другой стороны, анализ двух бортовых радиоприемников показал, что один из них пережил короткое замыкание и вышел из строя.

Надежда оставалась на второй. В июне Rosetta провела несколько сеансов связи с Philae с расстояния 180–200 километров, но ей так и не удалось найти оптимальный режим и траекторию для стабильного контакта. В июле комета еще ближе подлетела к Солнцу, и Rosetta была вынуждена держаться еще дальше от ядра, чтобы пыль не забила оптику камер и звездных датчиков. А Philae не отвечал.

Инженеры решили, что второй радиоприемник тоже закоротило. Это поставило бы крест на дальнейшей работе с аппаратом. Чтобы проверить, слышит ли Philae сигналы Rosetta, приняли решение использовать радар CONSERT. Идея была такова: если приемники еще работают, и аппарат в целом функционирует, то ему передадут команду задействовать георадар. Rosetta приняла бы сигналы радара, чем подтвердила бы, что Philae еще жив.

Команду отправили… И не получили ответа CONSERT. Зато сразу смогли восстановить связь с аппаратом на расстоянии 155 километров, то есть один радиоприемник все еще функционировал. Аппаратам удалось в течение 17 минут поддерживать стабильную связь. Инженеры скачали всю накопленную в очереди телеметрию, и, казалось, ничто не мешало продолжать научную работу.

Но у Rosetta была и своя научная программа. 25 июля ей предстояло перебраться другую траекторию для изучения противоположного полушария кометы, что исключало возможность установления связи. 13 августа комета прошла ближайшую точку с Солнцем и стала постепенно отдаляться. Чуть позже Rosetta ушла от ядра кометы на 1,5 тысячу километров – держалась подальше от пыли и пыталась изучить ударную волну комы.

Всю осень 2015 года оставалась надежда связаться с Philae еще раз. По крайней мере, физические условия на комете не должны были препятствовать этому. Получить ответ пытались, пока комета 67P/Чурюмова-Герасименко не удалилась дальше орбиты Марса. На таком расстоянии от Солнца не осталось надежды на жизнеспособность Philae.

Rosetta кружила на близком расстоянии от ядра кометы и продолжала звать Philae. Причины молчания могли быть в неисправных радиопередатчиках, либо солнечные батареи покрылись пылью и утратили возможность обеспечивать энергией аппарат.

К концу 2015 года температурные условия в трещине, где застрял аппарат, были уже не совместимы с его работоспособностью, Rosetta постаралась спуститься до высоты 10 километров и провести съемку предполагаемого места посадки Philae. Снимок удался! Все смогли увидеть изделие человека на чуждом космическом теле. Однако, надежды на чудесное воскрешение уже не было.

Миссия Rosetta завершилась 30 сентября 2016 года жесткой посадкой на ядро кометы 67P/Чурюмова-Герасименко с отключением всех систем.

И многочисленным фанатам этой удивительной программы осталось сказать только: Good night, sweet princeses.

7. Юпитер

7.1. Juno: тайная жизнь гиганта

В июле 2016 года зонд NASA Juno успешно вышел на промежуточную орбиту вокруг планеты-гиганта Юпитера, и поэтому стоит узнать, что и как он изучает после начала научной работы.

Juno

Juno – далеко не первый исследователь Юпитера, но большинство зондов пролетало мимо и изучало планету лишь с пролетных траекторий.

Почти всегда гигант использовался для ускорения при гравитационных маневрах, и лишь в 90-е к нему прилетел аппарат NASA Galileo.

В отличие от Galileo, Juno полностью посвятила себя исследованию Юпитера и провела более тесные сближения и осмотр полярных областей.

Согласно распространенной шутке, Юнона (Juno), жена Юпитера, летит узнать, как он проводит время со своими любовницами и любовниками, имена которых даны многим спутникам планеты-гиганта. На самом деле миссия Juno не касается взаимоотношений Юпитера и его спутников, это исследование всецело посвящено самому гиганту.

Главные научная задача Juno – лучше узнать строение Юпитера. Это знание позволило бы больше узнать о процессах формирования газовых гигантов в Солнечной и других планетных системах.

Юпитер – уникальное тело для нашей системы – практически переходная форма от планеты к коричневому карлику. Всего под несколькими сотнями километров гелий-водородно-аммиачной газовой атмосферы Юпитер наполнен морем жидкого водорода, на дне которого еще более экзотическое вещество – металлический водород. Огромное давление и температуры формируют условия, которые просто так невозможно даже представить на Земле, можно лишь провести математическое моделирование или получить миллиграммы подобного вещества в лаборатории. Как распределяются слои в недрах Юпитера, какие там процессы происходят, есть ли твердое ядро в самом центре? На эти вопросы должна была ответить Juno.

Взгляд в Большое красное пятно должен был позволить увидеть не только богатый внутренний мир Юпитера, но и лучше понять процессы формирования планетных систем и более экзотических объектов Вселенной: коричневых карликов. Чтобы стать коричневым карликом Юпитеру понадобится найти где-то еще дюжину своих близнецов, а чтобы дойти до состояния звезды – восемь десятков. Тем не менее, Юпитер – уже совсем не та планета земного типа, которые сейчас лучше всего изучены.

Juno оборудовали приборами, каждый из которых по-своему должен был извлечь знания из юпитерианских глубин.

Внешняя газовая оболочка – самая доступная для изучения, поэтому на нее было нацелено больше всего приборов, но процессы, происходящие в юпитерианских облаках, должны были подсказать, что происходит глубже. Внешнюю атмосферу Юпитера доверили изучать двум спектрометрам: инфракрасному и ультрафиолетовому. Для «массового зрителя» установили отдельную камеру, которая снимает в видимом диапазоне, ее задача – радовать нас красивыми фото, пока она не умрет от радиации.

Инфракрасная камера должна увидеть тепловые потоки в атмосфере на глубине до 70 километров. Чтобы инфракрасные данные о Юпитере были полнее, планету заранее стали наблюдать при помощи наземных телескопов, в том числе европейского VLT.

В ультрафиолете должны были наблюдаться полярные сияния Юпитера. Сейчас этим занимается только телескоп Hubble.

Полярные сияния интересуют ученых не только с эстетической точки зрения. Магнитное поле Юпитера – самое сильное из планет Солнечной системы. Оно является причиной формирования самых мощных радиационных поясов, а хвост магнитосферы тянется на сотни миллионов километров аж до орбиты Сатурна. Природа образования магнитного поля таится в глубинах Юпитера и связана с токами в жидком металлическом водороде во внешнем ядре планеты-гиганта, поэтому изучение магнитного поля и радиационных поясов – еще одна важная задача Juno.

Например, уже сейчас известно, что у Юпитера, так же как и у Земли, географический полюс не совпадает с магнитным.

В отличие от Земли, у Юпитера есть свой собственный источник заряженных частиц, который наполняет радиационные пояса. У нас приходится ждать солнечной вспышки, чтобы увидел полярные сияния, а Юпитеру достаточно очередного крупного извержения на ближайшем крупном спутнике Ио. А поскольку Ио бурлит всегда, то и фейерверки на полюсах Юпитера не редкость.

Вулканы Ио выбрасывают пыль и газы, атомы которых ионизируются солнечным ультрафиолетом и пополняют магнитосферу Юпитера, становясь большой проблемой для космических аппаратов и возможных будущих покорителей Европы.

Для изучения заряженных частиц и плазмы Juno оснастили двумя датчиками низкоэнергичных и высокоэнергичных частиц. Специальная антенна призвана изучать радиоволны, которые создаются полярными сияниями и грозами.

Задачей магнитометра стало картографирование магнитного поля, расположенного на одном из «крыльев» космического аппарата. Этот прибор очень чуток к изменениям магнитного поля, поэтому его постарались вынести как можно дальше от электрооборудования Juno.

Для повышения точности показаний, магнитометр оснастили звездными датчиками, которые должны определять положение прибора, ориентируясь по звездам. Когда Juno пролетала мимо Земли, звездные датчики удалось протестировать и одновременно использовать в качестве видеокамеры.

Взгляд в самое нутро атмосферы Юпитера аппарат Juno должен был произвести при помощи микроволнового радиометра, позволяющего наблюдать тепловые потоки на глубине до 600 километров.

Наконец, пожалуй, одно из самых важных исследований планировали провести путем регистрации отклонений в гравитационном поле планеты. Результатом должно было стать понимание строения Юпитера, распределения слоев, уточнение массы его ядра и более точное понимание его состава. Как ни странно, для этих целей на аппарат не установили отдельного прибора. Анализ планировали производить по радиосигналу: неоднородности гравитационного поля на ничтожные доли процента должны были менять скорость космического аппарата, и эти отклонения бы определялись на Земле по эффекту Допплера, который смог бы удлинять или укорачивать волну радиосигнала Juno.

К февралю 2018 года, миссия Juno должна была завершиться путем сведения аппарата в плотные слои атмосферы планеты-гиганта.

Такое бесследное уничтожение аппарата предусмотрено, чтобы избежать опасности заражения земными микроорганизмами поверхности спутников Юпитера, прежде всего Европы, где надеялись найти собственную жизнь.

Во время работы Juno на Юпитер должен был упасть очередной крупный астероид, и это событие планировалось исследовать всем инструментарием. Как показывают наземные наблюдения, такие столкновения для Юпитера не редки, хотя предшественнику Juno, зонду Galileo, в 90-е повезло еще больше – он смог наблюдать падение кометы Шумейкеров-Леви 9 в 1994 году.

Любопытно, что до сих пор в верхней атмосфере Юпитера наблюдается повышенное содержание воды в тех регионах, куда произошло падение фрагментов кометы. Это открытие было сделано инфракрасным телескопом Herschel, и Juno тоже попытался оценить запасы воды.

Глава первоначально подготовлена для научно-популярного портала «Чердак», и опубликована под названием «Тайная жизнь гигантов».

Страница: https://chrdk.ru/sci/juno_mission

7.2. Juno: что у бога под одеждой

Автоматическая межпланетная станция NASA Juno проработала на орбите у планеты-гиганта Юпитера два года. Несмотря на технические проблемы, станция собрала немало интересных данных, наснимала изобилие красочных фото и значительно приблизилась к целям своего исследования – узнать, что скрывается в облачных недрах самой большой планеты Солнечной системы.

Благодаря новой орбите, позволяющей тесные сближения и осмотр издалека, Juno получает уникальную информацию.

В отличие от большинства дальних космических станций, Juno оборудована солнечными батареями, которые раскинулись на огромную площадь 64 кв м. На расстоянии Юпитера поступление энергии от Солнца составляет примерно 4 % от земного уровня, поэтому солнечные батареи Juno вырабатывают примерно столько энергии, сколько выдаст обычная земная солнечная батарея для дачи площадью 3 кв м. Такое решение было вынужденным, так как у NASA закончился плутоний-238, который использовали для радиоизотопных термоэлектрических генераторов. Последние запасы изотопа, в 90-е годы купленные в России, ездят по Марсу в составе марсохода Curiosity и полетели ко внешним пределам Солнечной системы в зонде New Horizons. Сейчас NASA возобновило производство плутония-238, но временно перешло на солнечную энергию.

Juno находится на вытянутой орбите вокруг Юпитера. Ближайшая точка полета над облачным слоем планеты-гиганта проходит на высоте 4200 километров, а дальняя – на расстоянии 8 миллионов километров. Полный облет станция совершает за 53,5 земных дня. Предварительный план полета предполагал сокращение эллипса орбиты до расстояния от 4200 километров до 3 миллионов километров. План пришлось менять, когда Juno столкнулась с техническими проблемами. Заело два клапана на гелиевых баках наддува топливных баков. Двигатель не смог выполнить маневр торможения и понижения орбиты, поэтому пришлось оставаться на переходной. Благодаря новой орбите стало возможным продление миссии аппарата, так как на ней меньше воздействие радиационных поясов планеты, и бортовая электроника с научными приборами прослужит дольше. В начале июня 2018 года ученые продлили научную деятельность Juno до 2021 года, а чиновники выделили на это средства.

С лета 2016 года до мая 2018-го Juno совершила двенадцать оборотов по своей орбите и смогла передать новые данные о распределении атмосферных слоев планеты, проникнуть под облачное покрывало полюсов Юпитера, открыть новый радиационный пояс и узнать о неожиданной связи недр гиганта с его магнитным полем. Все желающие имеют доступ к архиву снимков цветной камеры Juno (www.missionjuno.swri.edu/junocam), и энтузиасты самостоятельно занимаются их обработкой, создавая настоящие художественные полотна.

Наиболее эффектные картины тайфунов в инфракрасном диапазоне получились у полюса Юпитера. Один центральный полярный тайфун планеты окружен восемью другими стабильными тайфунами, причем они плохо заметны при взгляде «невооруженным глазом» и находятся на глубине.

Юпитер – не единственная планета Солнечной системе с постоянными атмосферными структурами на полюсе. Венера обладает парой тайфунов, которую тоже рассмотрели на облачной глубине в инфракрасном диапазоне. Полюс Сатурна украшает правильный шестиугольник, и хотя точно не установлены причины его возникновения, но экспериментально подтверждена возможность формирования шести тайфунов вокруг одного центрального.

Принес Юпитер сюрпризы и у более изученного экватора. Оказалось, что светлая экваториальная полоса – это поток аммиака, который поднимается из более глубокого слоя.

Ранее считалось, что верхняя атмосфера планеты-гиганта на глубину до 100 километров однородна, теперь же ясно, что это не так.

Происхождение коричневых и оранжевых оттенков в атмосфере пока неизвестно, по одной из гипотез – это углеводороды, которые меняют свой цвет под воздействием солнечного ультрафиолета. Другое возможное соединение – гидросульфид аммония, желтоватая соль на основе азота, серы и водорода. Белые облака – это кристаллы аммиака. Скорость движения встречных потоков ветра достигает 360 км/ч.

Знаменитое Большое Красное пятно Юпитера – это крупный антициклонный шторм, который возникает на стыке встречных атмосферных потоков в южном полушарии, поднимается на восемь километров выше окружающих облаков и уходит в недра планеты на глубину до 300 километров. Красное пятно имеет около 16 тысяч километров в поперечнике, то есть больше диаметра Земли. Оно наблюдается более 200 лет и за это время приобрело более темно-оранжевый цвет, и сократило свои размеры вдвое, постепенно уменьшаясь и сегодня. По краю Красного пятна дуют ветры на скоростях до 430 км/ч, но внутри движение медленнее. Причины возникновения и длительной стабильности Большого красного пятна Юпитера неизвестны, возможно, это как-то связано с неоднородностью магнитного поля планеты.

Магнитное поле Юпитера сложнее в северном полушарии планеты, где между экватором и полюсом наблюдается обширная область высокой напряженности магнитного поля, которая падает к северному полюсу. Южнее экватора магнитное поле также имеет неоднородности, в том числе в районе Красного пятна. Как считается, магнитное поле возникает от токов, протекающих во внешнем ядре Юпитера, состоящего из жидкого «металлического» водорода, который формируется в условиях высокого давления на глубине ниже 15 тысяч километров.

Магнитное поле планеты-гиганта, взаимодействуя с солнечным ветром, а также плазмой и заряженными частицами, которые выбрасываются с естественных спутников, формирует мощные радиационные пояса. Радиационные пояса Земли пополняются в основном от Солнца, у Юпитера же главный источник ионизирующего излучения – выбросы газов с Ио и других больших спутников: Европы, Ганимеда, Каллисто. Ио располагается ближе всех к Юпитеру и является самым вулканически активным телом в Солнечной системе: постоянно там извергаются десятки вулканов, и Juno смогла увидеть их в инфракрасном диапазоне.

Пролетая на близком расстоянии от облачной поверхности Юпитера, Juno смогла уточнить характеристики известных радиационных поясов и даже обнаружить новый. Три луны планеты-гиганта вращаются внутри радиационных поясов, которые представляют угрозу для электроники и будущих покорителей космоса. Электроны и тяжелые заряженные частицы: протоны, ионы различных газов, обладающие высокой энергией и скоростью, вращаются вокруг планеты на расстояниях до 1 миллиона километров. Оказалось, и на близком расстоянии от планеты в плоскости экватора имеется радиационный пояс, наполненный ионами водорода, кислорода и серы, которые движутся на скоростях близких к скорости света. Ближе к полюсам ожидалась встреча с элементами радиационного пояса, наполненного легкими и быстрыми электронами. Но и там Juno зарегистрировала наличие тяжелых заряженных частиц, которые создают большой шум в приборах.

Хотя Юпитер – газовый гигант и не имеет твердой поверхности, он далеко не весь наполнен облачными вихрями. Так называемый «погодный слой» Юпитера, который демонстрирует эффекты атмосферной динамики, простирается вглубь примерно на 3 тысячи километров. Дальше высокое давление и температура превращает основной компонент атмосферы планеты-гиганта – водород – в электропроводящую жидкость. Благодаря электропроводности, жидкий «океан» Юпитера попадает в зависимость от мощного магнитного поля планеты, и ветер «погодного слоя» уже не властен над ним. Глубже 3 тысяч километров планета ведет себя как твердое тело, что установлено при помощи анализа гравитационного поля. Предполагается, что у Сатурна облачный «погодный слой» должен быть еще толще, а у коричневых карликов, которые тоже родственны Юпитеру, – наоборот тоньше.

Исследование Юпитера продолжается. Пока не обработаны все накопленные Juno данные, и миссия идет полным ходом, поэтому впереди новые открытия, разгадки и новые тайны из недр самой большой планеты Солнечной системы.

8. Плутон

8.1. New Horizons: свидание с Плутоном

14 июля происходила самая важная встреча 2015 года, а может и всего десятилетия. Космический аппарат NASA New Horizons находился в самой активной фазе своей миссии – встречи с Плутоном и изучении этой карликовой планеты с ее окрестностями. Космический аппарат за сутки промчался через систему Плутона и его спутников, собрал несколько гигабайт научных данных и улетел дальше – в пояс Койпера, облако Оорта и к другим звездам.

История Плутона началась еще до его открытия. В 40-е гг XIX в. ученые определили, что за орбитой Урана есть другие планеты. На это указывали его особенности орбитального вращения. В результате, почти сразу открыли Нептун, но поведение Урана указывало на то, что должен быть еще один возмутитель гравитационного спокойствия. Когда, наконец, в 1930 г. нашелся Плутон, ученые решили – вот оно! Очередной триумф науки. Правда, по первоначальным прикидкам выходило, что найденная планета должна быть никак не меньше Юпитера.

New Horizons

На протяжении всего XX в. масса Плутона пересчитывалась в сторону уменьшения, пока, наконец, ученые не пришли к выводу, что Плутон никакого отношения к поведению Урана не имеет. В конце прошлого века возможности астрономической техники позволили открыть целое семейство транснептуновых объектов. Большинство занептуновых тел оказались астероидами и кометами, которые наполняют пояс Койпера. Но некоторые тела оказались не многим меньше самого Плутона, поэтому у астрономов возникла проблема: объявлять ли их планетами или лишить этого звания Плутон?

В 2006 году вопрос решился не в пользу Плутона. С тех пор правильный ответ на вопрос «Сколько планет в Солнечной системе?» таков: «восемь планет и пять карликовых планет».

После «разжалования» интерес к Плутону только возрос. Он все еще остается самым крупным телом в поясе Койпера, и, кроме всего прочего, он вместе со своим спутником Хароном представляет собой уникальное в Солнечной системе тело – двойную планету. Ближайшая аналогия такой системы – Земля и Луна. На третьем месте – Солнце и Юпитер. Дело в соотношении масс основного тела и спутника. Фактически, Харон не вращается вокруг Плутона, а оба они вращаются вокруг точки пространства между ними, которая является центром их масс.

Физику такого вращения можно представить, наблюдая за метателем молота перед броском.

У Земли и Луны тоже имеется такой общий центр масс, но он не выходит за пределы Земли, поэтому мы не считаемся двойной планетной системой. Хотя астрономы пока так и не договорились о том, что считать двойной планетой.

В январе 2006 года к Плутону стартовала миссия New Horizons. Ее создатели стремились максимально сократить время достижения карликовой планеты, поэтому сделали относительно маленький и легкий аппарат около 650 килограмм (и стоимостью около 650 миллионов долларов), который сильно разогнали у Земли. На торможение топливо просто не предусматривалось, поэтому изучение Плутона предполагалось с пролета по прямолинейной траектории.

Причин такого решения несколько. Задачу выхода на орбиту можно решить различными путями, которые потребуют гораздо больше времени, увеличения массы аппарата, дополнительных средств на его разработку и управление. Плутон слишком легкий, чтобы его гравитация помогала выходу на орбиту, а атмосфера ничтожна, чтобы пытаться использовать ее для торможения. Ключевым параметром остается время полета. Можно было загрузить побольше топлива и разгонять не так быстро, используя экономичные траектории и гравитационные маневры, как, например, летела Rosetta или Juno. Но это потребовало бы намного больше времени.

Можно понять ученых, которые хотели поскорее увидеть далекий Плутон, но, мне кажется, девятилетний полет был удобен и чиновникам, распределявшим бюджет. Было бы гораздо сложнее объяснить им перспективность миссии, которая даст результат только через двадцать лет, когда большинство утвердивших ее людей уйдет, как минимум, на пенсию.

Несмотря на прямолинейность траектории New Horizons, из его полета удалось выжать дополнительную научную информацию – изучить систему Юпитера через год после старта (для сравнения: Juno, используя экономичные орбиты, добирался до Юпитера 5 лет). New Horizons пронесся на расстоянии 2,3 миллиона километров от планеты-гиганта и провел тренировку будущей основной работы у Плутона.

Особенно удачно получились упражнения со спутником Юпитера Ио. По многим параметрам он похож на Плутон, поэтому ему уделялось особое внимание.

Съемка «дальнобойной» камерой LORRI показала феноменальную картину извержения гигантского вулкана.

Вулкан Тваштар выбрасывает лаву на 300 километров. Но он там такой не один. Наблюдение теневой стороны Ио с длинной выдержкой тремя оптическими приборами New Horizons показало множество горячих пятен, выдающих необычайную геологическую активность спутника Юпитера.

Вулканическая активность Ио – результат гравитационного взаимодействия с Юпитером. Возможно, похожие процессы происходили и между Плутоном и Хароном, так что, недра карликовой планеты тоже могут быть разогреты, а на коре могут быть обнаружены прорывы горячих гейзеров. Если бы они были на Плутоне, то инфракрасные камеры их нашли бы.

Про оптические приборы New Horizons надо сказать отдельно. Главный его калибр – LORRI – это зеркальный телескоп схемы Ричи-Кретьена с диаметром главного зеркала в 20,8 см и фокусным расстоянием в 2630 мм. Поле его зрения 0,29 градуса – это значит, что он увидел бы только 1/2 Луны, если бы посмотрел с Земли. Камера LORRI оборудована одномегапиксельной CCD панхроматической матрицей. Наилучшее разрешение на поверхности Плутона, полученное этой камерой, составляет чуть более 100 м на пиксель.

Второе устройство Ralph представляет собой, фактически, два прибора, использующие один телескоп. Фокусное расстояние Ralph в четыре раза меньше LORRI, поэтому и все видимые объекты получаются хуже качеством в сравнении с «дальнобойной камерой». Зато широта видимого поля больше в 20 раз (5,7 градуса). К тому же, Ralph – это не камера, так как вместо матрицы используются сканирующие линейки.

Цветным сканером является прибор MVIC, который имеет семь сканирующих линеек, выполненных по технологии TDI CCD. Четыре цветных сканирующих линейки видят инфракрасный, красный, синий цвета, и свечение метана в ближнем инфракрасном диапазоне. То есть простым сложением полученных снимков невозможно создать изображение в видимом диапазоне.

LEISA имеет теллурид-кадмиево-ртутный инфракрасный датчик, на котором размещено 256х256 чувствительных элементов. Элементы расположены в линии по 256 штук и работают в режиме пуш-брум, то есть каждая линия датчика воспринимает свою длину инфракрасной волны (свой отдельный цвет). Это делает LEISA инфракрасным гиперспектрометром, так как он видит в большом спектральном разрешении. Такие возможности позволят провести качественное геологическое сканирование Плутона и определить породы, из которых сложена кора карликовой планеты.

После пролета Юпитера New Horizons был отправлен в гибернацию для сохранения ресурсов оборудования. Лишь изредка его пробуждали для перепроверки работоспособности и техобслуживания. Иногда будили его и для работы: снимать пролетающие в отдалении астероиды или Нептун.

В 2015 году наступила пора возвращаться к активной работе. Уже с января New Horizons приступил к съемке системы Плутона и Харона, но его разрешающая способность еще не дотягивала до возможностей космического телескопа Hubble. С этого околоземного телескопа еще в 2012 году открыли последний из известных пяти спутников Плутона, но ученые не оставляли надежды обнаружить еще спутники или кольца. Показательно, что стартовал New Horizons, когда у Плутона знали только три спутника.

5 мая 2015 года оптические возможности камеры LORRI сравнялись с возможностями Hubble, и с этого момента научная значимость New Horizons стала расти. Практически каждый новый снимок позволял уверенно говорить «этого мы не видели ранее». Хотя, на первый взгляд снимки так и оставались малоразличимыми. Только сократив расстояние в несколько раз, New Horizons стал радовать новыми подробностями.

Как и ожидалось, поверхность Плутона оказалась очень разнородной. Ярко белые пятна на нем соседствуют с угольно черными. Такой дисбаланс наблюдается не часто в Солнечной системе. Можно только вспомнить спутник Сатурна Япет, у которого ледяная поверхность частично засыпана пылью из кольца Сатурна. Или яркие пятна Цереры приходят на ум.

Ученым еще предстоит узнать происхождение различных типов поверхности и причины появления сложных форм рельефа. Но нынешняя гипотеза столкновения прото-Плутона и прото-Харона уже указывает на катастрофические события, которые здесь произошли на заре Солнечной системы.

На спутнике Плутона Хароне, тоже не все так просто. Он оказался очень похож на нашу Луну: у него тоже два полушария отличаются друг от друга, а на том, что развернуто к Плутону, тоже видно темное «море».

New Horizons должен был изучить не только поверхность Плутона и спутников, но искать атмосферу у обоих. Для этого аппарат оборудован ультрафиолетовым спектрометром Alice. Зонд наблюдал атмосферу Плутона, чтобы определить ее состав, происхождение, распространение и динамику потери. Для более подробного изучения атмосферы, траектория пролета предусматривала полет New Horizons через тень сначала Плутона, потом Харона. Это позволило не только искать горячие точки на телах карликовой планеты и спутника, но и увидеть рассеяние солнечного света газовой оболочкой этих тел. Alice сможет определить газовый состав атмосферы или атмосфер, если таковая найдется у Харона.

Помимо оптических средств изучения New Horizons оборудован приборами для регистрации плазмы, ионизированных частиц и космической пыли, на аппарате предусмотрено даже использование радара…

После пролета системы Плутона New Horizons постарается «перехватить» еще 1 или 2 астероида из пояса Койпера, чем немало расширит границы познания человечества об этом далеком и ледяном регионе Солнечной системы. Далее путь космического аппарата проляжет в облако Оорта, а через тысячи или десятки тысяч лет полета он, возможно, посетит и какую-нибудь соседнюю звездную систему. Только мы об этом никогда не узнаем. Энерговыделение радиоизотопного термоэлектрического генератора New Horizons продолжится еще около 15 лет, а потом людям придется с ним только попрощаться. Зато на просторах Вселенной останется частичка праха первооткрывателя Плутона Клайда Томбо, как единственное представительство человечества в дальнем космосе. (А плутоний-238 РИТЭГа New Horizons станет самой далекой частичкой России).

9. Будущие цели

9.1. Где и как будут искать внеземную жизнь после Марса

Свежие научные данные открывают новые перспективы поиска внеземной жизни в Солнечной системе. С интервалом всего в месяц опубликованы результаты исследований, которые добавляют еще два «водяных» космических тела. На сегодня жидкую воду на поверхности можно найти только на Земле; на Марсе местами появляются полоски влажного песка; на спутнике Сатурна Энцеладе бьют мощные гейзеры из подледного океана через трещины в ледяной коре; и на его соседе Титане извергаются ледяной лавой криовулканы. Сегодня в число объектов, где можно «потрогать» воду, добавляются спутник Юпитера Европа и карликовая планета Церера в Главном астероидном поясе.

Европа давно известна как водный мир, и она не первый год привлекает к себе внимание астробиологов. Но на пути исследователей, ищущих белковые формы жизни, стоит не только космическое пространство и высокая радиация радиационного пояса Юпитера, но и толстая ледяная кора. По разным оценкам теория «толстой коры» предполагает толщину льда от 30 до 100 километров. Современными технологиями это расстояние преодолеть сложнее, чем миллиард километров вакуума.

Нынешний взгляд на строение Европы сформирован по данным Voyager, Galilleo и наблюдениям с Земли. Европа – это самый маленький из четырех «галилеевых» спутников Юпитера. Она отличается высокой яркостью и гладкостью поверхности. Причина такого облика – в очень молодой, по космическим меркам, ледяной коре, которая обновляется за счет тектонических процессов, похожих на земные. Гладкость поверхности является одним из косвенных доказательств наличия подледного океана, глубина, которого может достигать 100 километров. Таким образом, на Европе воды в два раза больше, чем на Земле. Ниже идет каменная мантия, а в центре предполагается металлическое ядро.

Считается, что рыжие пятна и полосы на Европе – это результаты выбросов воды через трещины и проломы во льду, а цвет возникает от железа и серы, растворенной в подледном океане. Всего три месяца назад ученые полагали, что такие выбросы происходили в древности, а к нашему времени уже прекратились.

В отличие от Земли, чьи недра, как считается, в основном нагревает радиоактивный распад, главный «обогреватель» на Европе – это приливное воздействие Юпитера. Притяжение планеты-гиганта вынуждает спутник то менять свою форму на яйцевидную, с приближением к Юпитеру, то возвращаться в шаровую по мере отдаления. Разумеется, эти колебания совсем незначительны и разница «яйца» и шара – всего в 30 метров, но деформация в масштабе всего спутника вызывает немалый нагрев, способный поддерживать океан жидкой воды.

В декабре 2013 года многолетние наблюдения Европы при помощи телескопа Hubble и его ультрафиолетового спектрометра, принесли неожиданный результат – оказалось, что ледяной панцирь спутника не монолитен. В моменты отдаления от Юпитера во льду у Южного полюса Европы открываются трещины. Из них вырываются гигантские струи воды, которые поднимаются на высоту 200 километров, а затем опадают на поверхность. Мощность выброса впечатляющая – до 5 тонн воды в секунду. Для сравнения, интенсивность гейзеров Энцелада – 200 килограмм в секунду.

Правда, неизвестна частота выбросов на Европе: за 15 лет обнаружили всего два извержения, но мониторинг осуществлялся не в постоянном режиме, поэтому, возможно, они происходят чаще.

Несмотря на эпизодичность выбросов, новое знание открывает новые возможности в исследовании Европы и поиске жизни в подледном океане.

Ранее рассматривались различные концепции и идеи преодоления ледяной преграды. Среди предложений были весьма экзотичные, вроде атомного реактора, которым предполагалось проплавить скважину и запустить под лед подводную лодку. Но для начала рассматривалась идея небольшого импактора, который надеялись просто загнать поглубже в лед, без надежды докопаться до жидкого океана. Дело дошло даже до испытаний.

Исследованию Европы при помощи бура и поискам внеземной жизни посвящен низкобюджетный фантастический фильм «Europa Report». Хотя, единственной заслугой фильма я бы назвал качественно изображенную невесомость на борту корабля, нельзя не приветствовать попытку современного кинематографа шагнуть дальше Марса.

Благодаря нынешнему открытию Hubble, вообще отпадает необходимость как в пилотируемой экспедиции, так и буровых работах. Теперь достаточно спланировать беспосадочную миссию. Аппарат должен вращаться на низкой орбите, ожидая, когда произойдет очередное извержение. В этот момент ему достаточно пролететь через струю, чтобы собрать образцы свежей воды. Таким способом конечно не порыбачить, но следы микроорганизмов или их жизнедеятельности в воде (точнее это уже будет снег) обнаружить можно. Полученные результаты позволят оценить вероятность внеземной жизни и шансы присутствия гигантских разумных кальмаров в океане Европы.

После открытия Hubble NASA решило выделить средства на запуск исследовательского космического аппарата Europa Clipper. Эта тяжелая и дорогая миссия предполагается к запуску в 2022–2025 годы. Зонд будет вращаться вокруг Юпитера, периодически сближаясь с Европой, так как представляют опасность радиационные пояса, в которых находится ледяной спутник. Возможно, сделают и небольшой посадочный модуль для изучения льда с поверхности.

Европейской космическое агентство тоже готовит экспедицию к Европе и ее соседям – JUICE – ее предполагается отправить только в 2022 году, а долетит аппарат к 2030-му, поэтому интрига сохранится надолго. Россия как-то собиралась исследовать Европу с поверхности, но не нашла возможности создания аппарата с достаточной радиационной защитой, поэтому перенацелилась на Ганимед, но до запуска еще далеко.

Вообще Европа, кажется, рекордсмен дальнего космоса по количеству отмененных миссий к ней. Сейчас у Юпитера работает зонд NASA Juno, но исследование спутников в его научную программу не входит.

Впрочем, для поисков внеземной воды и жизни на спутнике уже не обязательно лететь к Юпитеру. Вторую сенсацию в 2014 году подарила Церера при помощи инфракрасного телескопа Herschel. Анализ этой карликовой планеты позволил ученым Европейского космического агентства обнаружить выбросы воды и там.

Правда, здесь выделение воды оказалось гораздо скромнее, всего 6 килограмм в секунду. Зато удалось их точно локализовать. Выбросы осуществляются из двух круговых структур на одной широте, но в разных полушариях.

В начале 2015 года орбитальный зонд NASA Dawn достиг Цереры и значительно продвинул наши познания об этой карликовой планете, обнаружив на ней выбросы воды из двух круговых структур на одной широте, но в разных полушариях. Сегодня исследования продолжаются, и открытия еще могут произойти, однако с поверхности Цереру пока изучить нельзя, посадочных миссий пока никто не готовит.

9.2. Лунная форточка во Вселенную

Обычно тема Луны обсуждается в контексте исследования ее поверхности: осмотра с орбиты или работ луноходов или пилотируемой программы. Оказалось, наш единственный естественный спутник обещает новые возможности и радиоастрономии, которые позволят заглянуть туда, куда не смотрел еще никто. В обсуждении пользы лунной программы для радиоастрономии приняли участие Юрий Ковалев из АКЦ ФИАН, Леонид Гурвиц из объединенного института РСДБ в Европе (Joint institute for VLBI in Europe) и Михаил Могилевский из ИКИ РАН.

Заведующий лаборатории внегалактической радиоастрономии Астрокосмического центра Физического института имени П. Н. Лебедева РАН Юрий Ковалев.

– Юрий, как вы относитесь к идее строительства обитаемой базы на Луне?

– Если коротко, то строить на Луне радиообсерваторию надо, но идти на Луну только ради этого несерьезно – слишком дорого. Однако если будет принято стратегическое решение, что Россия строит лунную базу, скажу: не поставить на Луне длинноволновый радиотелескоп – преступление. Сверхдлинноволновый диапазон – это единственное окно электромагнитного спектра, которое до сих пор не открыто. Сверхдлинные волны из космоса на Землю не проходят, они отражаются от ионосферы, соответственно, надо ставить телескоп за пределами Земли. Можно ставить на орбитальный аппарат (free flyer), можно ставить на Луне. В принципе, на Луне подороже будет. С другой стороны, если там база уже есть, то поставить телескоп, который отработает в течение очень долгого времени, можно и нужно.

– А почему на спутники не ставят?

– На спутники можно ставить, однако, вы понимаете, что мы говорим про большие размеры и большое количество приемников излучения. Длина волны порядка двадцати метров. И сколько тот спутник проживет? В то же время телескоп на Луне даже обслуживать особо не надо. Просто «разбросать» проволоку по поверхности. Почему Луна? Проблема не только в том, чтобы поставить на спутник, а в том, что нам нужно защититься от помех Земли – наша планета очень «горячая» в этом диапазоне.

– То есть нужно строить на обратной стороне?

– Да, Луна здесь рассматривается как защита сверхдлинноволнового радиотелескопа от излучения Земли. Он должен ставиться либо на обратной стороне, либо в кратеры на полюсах. Естественно, будет задача передать данные на Землю. Если вы ставите на обратной стороне Луны, вам нужен ретранслятор, и, скорее всего, это будет спутник. Если ставите на полюсах, то можно поставить ретранслятор на краю кратера. Варианты обсуждаются, включая реализацию телескопа на спутнике, летающем вокруг Луны: когда телескоп закрыт Луной от Земли и проводит наблюдения и, соответственно, когда открывается, сбрасывает данные на Землю.

Пока это обсуждается на уровне идей, которые нужно продумать и отработать. Это последнее оставшееся неоткрытым окно электромагнитного спектра в изучении Вселенной.

Несколько слов про возможные научные задачи. Начнем с исследования так называемой эпохи вторичной ионизации. Это еще одна потенциальная Нобелевская премия, из-за которой длинноволновая радиоастрономия последние годы получила сильнейший толчок в развитии и интересе мирового сообщества. Излучение водорода с разных космологических расстояний во Вселенной позволяет построить трехмерную карту Вселенной в линии нейтрального водорода. Чем дальше находится водород, тем, соответственно, длиннее волна. По значению для космологии это сравнимо с реликтовым излучением.

Космический телескоп ESA Planck и его карта реликтового излучения.

LOFAR, SKA и другие проекты занимаются изучением эпохи вторичной ионизации и картографированием нейтрального водорода на более коротких волнах. Под эту задачу будет также полезно иметь сверхдлинноволновый радиотелескоп.

Не забудем, что каждое новое окно в электромагнитном спектре приносило свои сюрпризы – результаты, которые невозможно предсказать заранее. Надеюсь, обсуждаемая нами последняя «форточка» не окажется исключением.

– Вы упомянули лунный спутник. Для меня эта тема близка. Как вы считаете, в масштабах микроспутника можно ли реализовать хотя бы прототип такого телескопа?

– Если ваш лунный микроспутник может вывести наружу какой-то диполь или более хитрую измерительную систему, это было бы потенциально полезно. Важный вопрос – насколько внутренние помехи аппарата помешают работе телескопа. Требуется анализ.

Руководитель отделения космических исследований Joint institute for VLBI in Europe Леонид Гурвиц.

– Необходимое для микроволновой радиоастрономии оборудование – сравнительно просто. Радиоастрономический приемник для частот этого диапазона (частоты ниже 10–15 мегагерц) может спаять школьник-радиолюбитель. Это довольно дешево. А объем информации, грубо говоря, пропорционален несущей частоте. Поток данных сравнительно небольшой, современная цифровая система справится. Антенные системы, несмотря на свои размеры – довольно большие, – очень просты. Это могут быть просто провода, разложенные по поверхности.

– А какой они должны быть длины?

– Юрий Ковалев уже упоминал: длина волны порядка 20 метров, вот и размер антенны должен быть не меньше. В то же время существуют современные технологии, позволяющие сделать антенну много меньше. К примеру, сотовые телефоны работают на длине волны 20 сантиметров, хотя антенн таких размеров не несут. У них антенны активные, и такие же технологии могут применяться в космосе. Но для лунной поверхности она, может, и не нужна. Размотать по поверхности Луны или даже в открытом космосе катушку с очень тонким проводом не составит труда. Принципиальной разницы между спутником и поверхностью в этом нет.

Спутник выгоднее, потому что посадка на поверхность Луны какой угодно полезной нагрузки – дело сложное и дорогое. С другой стороны, раз уж мы полетим осваивать Луну, эта работа потребует доставки тонн грузов, добавить к ним несколько десятков килограммов полезной нагрузки для радиоастрономии не составит труда. А эффект будет колоссальный. Я думаю, в сверхдлинноволновой радиоастрономии запрятаны одна-две Нобелевских премии. Это уже практически закон: если какой-то параметр исследовательской установки улучшается на порядок или порядки величины, или начинается работа в совершенно новой, неосвоенной области, то гарантированно будут открытия, которые трудно предсказать. Это в полной мере относится к нашей теме.

Если пилотируемые полеты на Луну будут, а они определенно будут, то будет непростительно не использовать эту возможность для того, чтобы развернуть там сверхдлинноволновый радиотелескоп. Так что в будущей лунной программе радиоастрономия будет попутным пассажиром, а в открытом космосе можно создавать самостоятельную обсерваторию. Научная мотивация та же самая, но достоинство спутника в том, что можно создать целый рой микроспутников, в котором каждый аппарат несет на себе один антенный элемент: простой, легкий. Этот рой спутников можно поместить где-нибудь в тени Луны, например, в точке Лагранжа-2 системы Земля-Луна. Эта точка находится за Луной, там спутники будут защищены от антропогенных помех. Размещение в этой точке имеет ряд ограничений. Точка – это такая идеальная позиция. На самом деле спутник в этой точке совершает так называемую «фигуры Лиссажу» и лишь на некоторых этапах своего перемещения оказывается в тени Луны.

Можно расположить этот рой и на низкой окололунной орбите. Тогда этот рой какую-то часть своей орбиты будет проводить в конусе затенения Земли. Такие варианты рассматриваются, конкретный проект сейчас разрабатывается в Китае. Можно подумать о том, чтобы сверхдлинноволновую обсерваторию запустить куда-то очень-очень далеко. Так далеко, что антропогенные помехи от Земли будут незначительны в силу расстояния. Но надо довольно далеко улететь. Помните, в заставке фильма «Контакт» космический аппарат улетает от Земли: сначала вокруг него много помех, потом он удаляется все дальше, и на распространение сигнала требуется больше времени. Наконец они перехватывают первую телетрансляцию с берлинской Олимпиады 1936 года, потом первые радиосигналы – и тишина. Так вот, тишина наступает из-за двух факторов: во-первых, они улетели так далеко, что практически во времени переместились, а во-вторых, сказывается фактор расстояния. Расстояние сказывается пропорционально квадрату в знаменателе. То есть, если вы удалились в десять раз, то по интенсивности помеха уменьшилась в сто раз. Удалившись в десять раз дальше Луны, мы уменьшим помехи в сто раз. Удалимся в сто раз – уменьшим помехи в десять тысяч раз.

Соответственно, у нас имеется три способа: на поверхности обратной стороны Луны, на окололунном спутнике, или совсем далеко. Варианта отлета совсем далеко в реальной проработке сейчас нет. А вариант на Луне и на окололунном спутнике есть. Этим занимаются китайские коллеги в рамках программы Chang’e. В России лунная программа сейчас тоже возрождается – есть проекты «Луны-25», – 26, -27, -28… К сожалению, пока ни на одном из этих аппаратов нет полезной нагрузки для сверхдлинноволновой радиоастрономии. Это достойно сожаления, поскольку это позволило бы «срезать угол» в гонке за открытиями в этом диапазоне. По технологии и по затратам это сравнительно несложно. Построить такой сверхдлинноволновой радиотелескоп много-много дешевле, чем «Радиоастрон» или другие из серии «Спектр». Полезная нагрузка простая, дешевая, но гарантированно принесет значительные открытия.

Если говорить о тестовом спутнике, который подошел бы для наших целей, то хватило бы аппарата массой несколько килограммов. Мы разрабатывали антенну, которая подходит для наших целей, которая не диполь, а триполь. Это симбиоз обычного диполя и активной антенны с усилителем, аналого-цифровым преобразователем, системой обработки и передачи тянула на несколько килограмм. Габариты получались как у небольшого фотоштатива. Если такую штуку выкинуть на окололунной орбите, то она способна там самостоятельно функционировать.

Вам известна китайская организация Харбинский технологический университет? Они работают активно с CNSA по похожему проекту, и они это пытаются вставить в программу Chang’e. Кроме того, в рамках программы Chang’e ведется разработка антенн на двух аппаратах Chang’e. Одна антенна – на спутнике-ретрансляторе, а другая – на посадочной ступени, садящейся на обратную сторону Луны.

Рассматривается возможность поставить на оба аппарата сверхдлинноволновую полезную нагрузку. Тогда у них получится радиоинтерферометр со сверхдлинными базами, подобный «РадиоАстрону», только в сверхдлинноволновом диапазоне. Китай собирается располагать ретранслятор как раз в точке Лагранжа-2 системы Земля-Луна с известными преимуществами и недостатками этой точки, о чем мы уже говорили. Эта работа уже идет.

Благодарю за помощь в подготовке материала заведующего лабораторией физики магнитосферных процессов Института космических исследований РАН Михаила Могилевского.

9.3. Межпланетная спелеология

Пещеры с древних времен привлекают человека – их темнота полна опасностей, но тайны в глубине манят и питекантропов, и современных ученых, и туристов. На Земле изучены сотни сухопутных и подводных пещер, но впереди маячит более сложная цель – пещеры на других планетах.

Страницы: «« 12345 »»

Читать бесплатно другие книги: