Интеллект-стек 2023 Левенчук Анатолий
Помним, что «программирование» – это для Дейкстры практика «структурного программирования», то есть дисциплина/теория алгоритмики на императивном языке с простыми структурами данных. Но вот это «чем мышление программиста отличается от мышления математика» – это оказывается важно, Дейкстра пытался разобраться, чем рассуждения с объектами программистского интереса/внимания отличаются от таковых для математиков и физиков. «Хвост коровы Маргариты – это часть стада» для системного мыслителя неправильное высказывание (нет осмысленных операций в жизни для хвоста в стаде, а вот для «хвоста у коровы»/«хвоста в корове» и для коровы в стаде – есть! Системные уровни важны, через них нельзя прыгать в мышлении!), а для математика, логика, физика – правильное. Системное мастерство по сравнению с математическим, логическим или даже физическим мастерством будут рассуждать по-разному, давать разные ответы на даже простые вопросы! Системный интеллект и математический/логический или даже физический интеллект породят разные варианты какого-то прикладного мастерства, ибо они мыслят по-разному!
Тут произошёл незаметный, но важный сдвиг в онтологическое трансдисциплинарное разбирательство: мы говорим уже не об интеллекте и мышлении, а также мастерстве и рассуждениях как таковых, а об их видах (специализациях), их экземплярах и примерах (классификациях), об их частях (композициях, именно это отношение между объектами-системами на разных системных уровнях), создании и развитии (один объект как-то создаёт и развивает другой объект, часто по цепочке создания). Мы задаёмся вопросом отношений, в которых разные экземпляры и целые множества «интеллекта», «мышления», «мастерства», «рассуждений» могут находиться друг с другом. В онтологии вопрос выбора типа отношения в трудных случаях (например, выбор специализации, классификации или даже композиции) для создания компактной теории/модели/объяснений/онтологического описания зависит от тех проблем, которые вы пытаетесь решить. Для решения каких-то проблем удобно выбрать мир состоящим из одних объектов и отношений между ними, для других проблем – выбрать по-другому. Так что пока не будем обсуждать этот вопрос более подробно, пока вы сами не займётесь исследованиями интеллекта и мышления, мастерства и рассуждения. В любом случае помним, что речь идёт о работающих вычислителях (интеллекте, мастерстве, которые реализуются работающими мозгами, компьютерами и линиями связи) и разворачивающихся во времени в них физических процессах вычисления (мышлении, рассуждениях). Так что интеллект, мастерство выделяются в окружающих людях и их компьютерах и других инструментах вниманием, равно как происходящие в ходе протекания процессов мышления и рассуждений изменения/поведение тоже выделяются изо всех изменений в окружающем мире тоже вниманием. А вот куда направлено это внимание, это и определяется трансдисциплинами, занимающимися интеллектом и мастерством, мышлением и рассуждениями.
И, конечно, познание и рассуждение тесно связаны ещё и тем, что в машинном интеллекте обсуждается как «обучение/познание всю жизнь»/lifelong learning: все рассуждения оцениваются на предмет того, насколько они оказались успешными в реальной жизни, и эта успешность или неуспешность тоже идёт как входной материал для мышления. При этом времени на мышление (познание и обучение) не хватает в живой природе, и по итогам рассуждений при действиях во время бодрствования познание идёт ещё и во сне (мозг пересматривает записи того, что там происходило в ходе практики и использованных в практике рассуждений и доучивается: перестраивает мастерство, улучшает его).
Так же рассматриваем мышление и рассуждение в ходе творчества и импровизации (помним, что там обычно участвует какой-то генератор случайностей, меняющий рассуждения), познание с подкреплением, познание на основе принципа свободной энергии (есть и такие объяснения познания живыми существами)59.
Конечно, мышление в его SoTA варианте (с выходом на осознанность в использовании каких-то новых понятий из новых полученных обучением или исследованиями объяснений/теорий/моделей) в мире встречается сильно реже, чем простые рассуждения. СМД-методологи любят говорить, что «чистое мышление» так же часто встречается в мире, как танцы лошадей. А как же люди занимаются какой-то деятельностью? Они мыследействуют!
Вычислений интеллекта, то есть мышления у человечества по объёму не так много. Это главным образом рассуждения с использованием трансдисциплин (логики, онтологии, системного мышления и т.д.). Но эти вычисления таки бывают. Основной объём «думания», прикладных рассуждений на планете – это мыследействование/вывод/рассуждение по правилам с использованием плодов интеллекта: обеспеченного/enabled интеллектом мастерства как прикладных теорий/дисциплин/моделей/объяснений по решению каких-то классов задач, для которых понятна понятийная структура. Нет затыков в (мысле) деятельности – мозг работает в режиме автомата, лёгкий режим с использованием быстрого интуитивного режима работы мозга-вычислителя S1 (как это было описано в книге Д. Канемана «Думай медленно… решай быстро»60). Случился затык, найдена проблема – включается медленный режим работы мозга S2, который за счёт падения скорости и вывода рассуждения в сознание (помним, что сознание управляет вниманием!) гарантирует выполнение правил рассуждения, то есть использование заведомо известных операций с заведомо известными объектами, которые определяются какой-то дисциплиной. Или же такое медленное осознанное рассуждение с использованием трансдисциплин будет в рамках мышления, занимающегося поиском правил для какой-то прикладной дисциплины, которую должен создать интеллект.
У мыслителей, которые главным образом вырабатывают новые понятия (наука, да и существенная часть инженерии) познания/мышления/learning много. А вот у каких-нибудь клерков среднего звена – понятийной работы ноль, сплошные «рассуждения на полном автомате», вот их и списывают за ненадобностью, заменяют компьютерами, это легко. Пока ещё плохо понятно, как заставлять заниматься мышлением компьютер, поэтому интеллект тут берётся у разработчиков софта со всем их искусством исследования рассуждений в ходе выполнения каких-то прикладных практик (методологическая работа) и пересадки найденных правил рассуждений в компьютер (программная инженерия). Но хорошо известно, как потом заставить рассуждать компьютер, когда его уже научили делать рассуждения (то есть «разработали софт»). Софт типа Bing, Bart, прочие «нейросетевые ассистенты» как-то пытаются решать эту проблему полноценного компьютерного мышления, но это ещё не слишком надёжно и плохо работает для ответственных приложений. Из компьютеров пока получаются плохие методологи, они плохо описывают новые деятельности, плохо предлагают новые понятия. В любом случае, ситуация быстро меняется, ибо человеческий и машинный интеллект задействуются не по одиночке, а совместно – и вот эта связка работает уже много надёжней.
Бесконечное развитие требует интеллекта
Эволюция заключается в бесконечном развитии, open endedness61, в выходящем на множество различных масштабов вещества и масштабов времени непрерывном познании62. Эволюция глубоко физична, по мере эволюции растёт сложность эволюционирующих систем63 и появляется всё более и более сильный интеллект.
Умность/интеллектуальность появляется в ходе эволюции как раз как средство для ускорения бесконечного развития, для бесконечного прироста видов мастерства агентов (животных, людей, а дальше технических систем и гибридных коллективов из людей и оборудования, включая датацентры с AI), бесконечного прироста в классах проблем, которые научилось решать человечество как коллективный агент. Интеллект невозможные ранее задачи (типа полёт по орбите в космосе вокруг Земли или общение по видеосвязи) превращает во вполне решаемые.
Проекты, где требовались наборы старых навыков и умений большинства людей, старое мастерство, стремительно теряют актуальность – к ним прилетают «сбоку» (из других отраслей) подрывные технологии, и эти проекты заканчиваются. Телеграф вдруг исчезает, и людям с мастерством телеграфиста нужно вписываться в новые проекты, отращивать себе новое современное мастерство – самое разное, часто никак с телеграфом не связанное. В этот момент никакой интеллект им не будет лишним, ибо сила интеллекта определяет скорость обучения новому мастерству. Если интеллект низкий, то к моменту достижения нужного уровня мастерства нужда в этом виде деятельности может отпасть. Если интеллект у человека высокий, то обучение новой деятельности пройдёт быстро, и останется ещё время это мастерство использовать (а потом всё равно нужда в этом виде деятельности отпадёт).
Интеллект тем самым проявляется на задачах, которые не встречались в момент его создания – неизвестны ни самому интеллекту, ни создателю или этого интеллекта (если речь идёт об аппаратуре – мозге людей или программно-аппаратном комплексе AI), ни учителю этого интеллекта (если речь идёт о предобучении аппаратуры – и людей, и AI). Родители не знают, с какими проблемами в ходе бесконечного развития столкнётся их ребёнок, учителя не знают, с какими проблемами столкнётся их ученик, разработчики робота не знает, с какими проблемами столкнётся их робот.
Замерять решение человеком или компьютером (или многими людьми со многими компьютерами) задач какого-то одного узкого класса, чтобы определить силу их интеллекта – неправильно. Нужно замерять способности (broad abilities) к освоению новых предметных областей, то есть скорость приобретения мастерства/skills в решении проблем в этих предметных областях.
Беря за основу вот эту диаграмму, Franois Chollet предлагает определять следующие уровни интеллекта по линии универсальности проблем/задач, которые он может научиться решать:
• полное отсутствие интеллекта: точно заданные образцы задачи. Заполнение точно известной компьютерной формы значениями, которые берутся из точно известных мест. Переноска заготовок от одного определённого станка к другому определённому станку.
• локальная генерализация aka robustness: обработка точки в более-менее плотно заданном вероятностном распределении задач – adaptation to known unknowns within a single task or well-defined set of tasks. Заполнение анкет разной формы (все возможные формы анкет известны заранее). Переноска заготовок между разными станками (между какими – известно заранее). Это подмастерье.
• широкая генерализация aka flexibility: разработчик/учитель этого не предвидел, решение широкого класса задач – adaptation to unknown unknowns across a broad category of related tasks. Заполнение анкет как таковое, самых разных форм и содержания. Переноска заготовок между всевозможными станками, и не только станками, по потребности. Это мастер, он сориентируется по обстоятельствам.
• экстремальная генерализация aka generality: как у человека – adaptation to unknown unknowns across an unknown range of tasks and domains. Умею заполнять анкеты, переносить заготовки. Вдруг потребовалось управлять синхрофазотроном – это не «задача», это уже проблема! Попотел, но смог научиться. Это талантливый человек, «интеллектуал» (у него сильный интеллект, если научился быстро! Или не очень сильный, если научился, но медленно).
• универсальность: генерализация на уровне большем, чем человек – any task that could be practically tackled within our universe. Во вселенной есть много проблем, которые человеку и в голову не придут, он с ними не столкнётся. Но интеллект уровня выше человеческого сможет научиться решать и эти задачи, сможет выработать нужные для этого знания, умения, навыки, скиллы, мастерство. Это люди со всеми их компьютерами, а потом сверхлюди (мы не знаем, как люди смогут модифицировать себя, когда они решат текущие проблемы биологического старения и смерти, ограничений в биологическом восприятии текущих органов чувств, ограничений в ловкости и силе текущего человеческого тела).
Машинный/искусственный/компьютерный интеллект сегодня в целом решает задачи локальой генерализации/robustness, то есть разбирается в узких предметных областях. Это огромный прорыв по сравнению с тупым роботом, выполняющим заданные операции в заданной последовательности только с определёнными предметами, и даже не классами этих предметов.
Chollet (и ещё множество лидеров AI) призывает решать проблемы, появляющиеся при широкой генерализации/flexibility.
Примерно это же имеют в виду люди, когда говорят о каком-то классе человеческого интеллекта: эмоциональный интеллект (интеллект, разбирающийся с самыми разными проблемами, связанными с эмоциями – что вы будете делать, когда вас захватывает эмоция, с которой ранее вы не встречались?), коммуникационный интеллект (интеллект, который может справиться с огромным разнообразием проблем, встречающихся в коммуникации – будь то в переговорах трёх конфликтующих групп, или даже в разговоре с самим собой), математический интеллект (интеллект, который способен справиться со всевозможными математическими проблемами), и так далее. По факту, это не столько «проблемы» (которые никто не знает, как решать), сколько задачи, которые можно успешно решать, если использовать уже известные людям сегодня знания. Ну, и это бытовая речь: мало что изменится, если заменить «интеллект» на «мастерство»: эоциональное мастерство, коммуникационное мастерство, хотя вот математическое мастерство уже попадает в серую зону: профессиональные математики, конечно, имеют прикладное математическое мастерство (значительная часть выпуска университетских математиков уходит работать в страховые компании и банки, где они занимаются актуарными расчётами64), но всё-таки математики формулируют проблемы и находят новые способы их решать, речь всё-таки идёт именно о математическом интеллекте как решателе проблем (интеллект находит способ решения какого-то класса задач, который непонятно как решать – умение/мастерство решения этих задач является результатом его работы). Так что в случае математического интеллекта наше онтологическое чутьё подсказывает, что это всё-таки что-то другое, чем математическое мастерство. В случае кулинарного или эмоционального мастерства наше онтологическое чутьё молчит, мы понимаем, что бытовой язык тут волен использовать какие угодно слова «для красивого словца».
AGI (artificial general intelligence, искусственный универсальный интеллект) – так называют дисциплину инженерной практики создания небиологического вычислителя для мышления. Нынешняя цель AGI – создать интеллект широкой генерализации/flexibility, в котором он потенциально может выработать мастерство в решении тех же проблем, которые мог бы научиться решать биологический человек, а не кошка или какое другое животное. Обратите внимание на формулировку, включающую в себя возможность относительно бесконечного развития: речь идёт не об умении специализированного на каком-то классе задач «искусственного мастерства» решать задачи так же, как обученный этому человек. Эта формулировка про «такое же решение задач» не включает в себя развития. Формулировка про «мог бы научиться решать человек» включает в себя бесконечное развитие, есть ещё множество проблем, которые люди ещё не научились решать, и о которых, возможно, ещё они не знают – но можно ожидать, что они это делать научатся (с помощью компьютеров, или без них).
Насколько это развитие бесконечно? Понятно, что человек сам по себе может научиться решать только конечное число классов задач. Но вместе с AI он может изменить и свою биологическую природу, и техническую природу AI (скажем, сегодня ожидается резкий скачок в скорости вычислений при переходе к универсальным алгоритмам на квантовых компьютерах). Плюс учиться решать задачи может человек не только в одиночку, но и целой группой, а хоть и целым человечеством – наука и производство сегодня глобальны, в них участвуют люди по всей планете плюс огромное количество оборудования/аппаратуры и компьютеров.
Статья о бозоне Хиггса вышла с 5154 авторами65, столько людей приняло участие в решении этой задачи. Статьи, в которых расшифровывается геном каких-то организмов, у биологов выходят с числом авторов больше тысячи. Интеллект как свойство научиться что-то делать новое/решать новые классы/виды задач существует не только у отдельных людей, но и у каких-то коллективов, в том числе включающих в себя людей и компьютеры, в том числе и у всей цивилизации в целом вместе со всем возможным оборудованием. Да, если брать все вычисления человечества, то можно говорить о совокупном интеллекте человечества! Интернет позволяет легко собрать вычислительные мощности и людей, и компьютеров, а потом после решения проблемы предоставить результаты огромному числу других людей и компьютеров, вновь найденное мастерство быстро распространится по планете.
Цель всей деятельности по усилению интеллекта как людей, так и машин – создать сверхчеловеческий универсальный интеллект за пределами человеческой экстремальной силы/универсальности/генерализации/generality. Такой интеллект сможет решить те классы задач, которые человечество пока не научилось решать. Такой интеллект экстремальной силы/универсальности не только сможет помочь людям стать биологически бессмертными, наладить межпланетные и межзвёздные путешествия (это задачи, которые нам могут прийти в голову прямо сейчас), но и в рамках бесконечного развития сможет поставить интересные проблемы, чтобы их решать и тем самым продолжить эволюцию за пределы чисто человеческой мечты. Особо обратим тут внимание, что универсальный машинный интеллект тут не представляется обязательно антропоморфным/парохиальным/земным, также не предполагается «видовое противостояние» между «биологическим видом человека» и «технологическим видом AGI». Нет, мы считаем, что люди друг с другом, а теперь и с компьютерами живут в симбиозе. Но оставим эти рассуждения философам.
Конечно, как любая сложная система (помним, что интеллект мы рассматриваем как мастерство познания в незнакомой ситуации) интеллект имеет ещё множество других характеристик кроме общности. Из наиболее интересных тут являются характеристики вменяемости/persuadability как мера изменений, нужная для рационального изменения поведения системы66. Невменяемые часы придётся переделать, кошку можно надрессировать, а людям (и вот сейчас AI) можно что-то сказать – и они изменят поведение. Дальше по этой линии идёт обсуждение prompt engineering67 и даже нейролингвистического программирования/neuro-linguistic programming68 (при этом обращение нейролингвистического программирования к «бессознательному» сегодня считают просто учётом характера человеческой нейросети, распознающей какие-то паттерны и реагирующей на эти паттерны).
Интеллект определяет скорость обучения новому мастерству
Основные отличия человеческого интеллекта от машинного интеллекта представлялись ещё несколько лет назад ровно в степени его общности/универсальности/generality, поэтому отсылка к интеллекту, который «такой же умный и вменяемый, как человек» обозначалась как artificial general intelligence. Сначала считалось, что general – это примерно «умный как человек-школьник». Поэтом незаметно стало считаться, что это «умный как средний человек», потом – «умный как средний профессор», потом – «умнее человека». После чего оказалось, что технология больших языковых моделей даёт достаточную степень общности в предметных областях (но не в типах решаемых проблем!), чтобы вот это AGI превратилось в просто AI как указание на «машинное происхождение». Заодно оказалось, что AI при помощи технологии больших языковых моделей69 не учится действовать в мире как Маугли, взаимодействуя с теми объектами окружающего мира, что случайно встретятся в природе. Нет, познание мира большими языковыми моделями проходит так же, как у людей: их «насильно встречают» с описаниями самых разных частей мира, имеющихся в текстах. Грубо говоря, большие языковые модели учатся так же, как и люди – «в школе, в университете, читая книжки». Люди и AI для получения своего интеллекта «с нуля» знакомятся с огромным объёмом книжного знания, а не просто ощупывают и осматривают окружающий мир. Разница только в том, что AI знакомится с огромным объёмом текста «по всем наукам», а человек знакомится с небольшим объёмом текста по избранным предметам, а потом добирает специализации в конкретной предметной области уже после вуза и школы.
Мы хотим специально организованным предобучением примерно бакалаврского уровня усиливать человеческий интеллект, повышая степень его широкой универсальности/генерализации/flexibility, хотя это на ступеньку меньше, чем «теоретическая» человеческая экстремальная универсальность.
При этом мы не будем забывать о ходе на универсальность через симбиоз человека с компьютерами, то есть ходе на киборгизацию, включение экзокортекса. Скажем, человек обладает биологически плохой памятью и в силу этого сниженным интеллектом – но ведение дневника даже на бумаге и тем более в компьютере поможет помнить много и неограниченно долго. Библиотека с полнотекстовой поисковой системой ещё лучше решает проблему с памятью. Человек медленно умножает десятизначные числа – инструмент-калькулятор ему в этом поможет, а программируемый калькулятор как внешний вычислитель (инструмент!) и подавно. Человек с книгой и калькулятором сможет научиться решать задачи, требующие памяти и вычислений быстрее, чем человек без книги и калькулятора. Человек с книгой и калькулятором тем самым будет умнее человека без книги и калькулятора. А человек с современным даже не компьютером, а дата-центром умнее, чем человек с книгой и калькулятором. А группа людей со множеством дата-центров вообще оказывается умнее всех одиночек с компьютерами. Вы поняли идею: мы не верим в усиление чисто человеческого интеллекта, поэтому предобучать будем сразу людей с их компьютерными экзокортексами. Отдельный вопрос, что тут происходит с вменяемостью: если группе людей дать много разных инструментов (например, баллистических ракет с ядерными боеголовками), то вероятность того, что вы рационально уговорите их изменить своё поведение, неожиданно может снизиться, а не увеличиться.
Chollet даёт вот такую диаграмму, определяющую интеллект:
По этой функциональной диаграмме интеллект/интеллектуальная система создаёт умение что-то делать как отдельное мастерство/умение/прикладное_знание/«программу скилла», и уже это мастерство/умение решает каждую отдельную задачу, потихоньку превращаясь в нетрудный для выполнения навык («автоматизируясь» через большое число повторений, уходя в бессознательное и освобождая ресурс внимания). Интеллект – это вычислитель со способностью выработать мастерство/умение, переходящее постепенно в навык, то есть исполняющееся без сознательного к нему внимания. Не можешь чему-то научиться за приемлемое время – это тебе не хватает интеллекта, какого-то входящего в состав интеллекта мыслительного мастерства!
Котёнок может быть очень умным для котёнка, но не способным научиться играть на рояле. Поэтому у котёнка мы считаем интеллект слабым по сравнению с человеком (но сильным по сравнению с рыбой). Если человек оказывается неспособным научиться играть на рояле, неспособным научиться математике, неспособным научиться операционному менеджменту, и так далее по всем видам задач – мы его не будем считать очень умным, откажем ему в интеллекте. Люди-мнемоники в цирке умеют в уме умножать десятизначные цифры, в этом они не хуже калькулятора. Или помнить бессмысленный длинный текст, не хуже книжки. Мы их не считаем особо умными, если они не демонстрируют, что они могут выучиться чему-то ещё. Калькулятор или книжку мы не ценим за их интеллекты.
Если человек постоянно демонстрирует способность освоить какую-то новую предметную область (универсальность! Сила интеллекта в его универсальности: скорости освоения самых разных новых задач!), поднимая и поднимая сложность решаемых им проблем, мы говорим, что у этого человека сильный интеллект. Если человек научился решать один класс задач, но не в состоянии выучиться чему-нибудь ещё, интеллект его будет считаться слабым (неуниверсальным! Малая скорость освоения нового, времени на новое требуется столько, что жизни не хватает!) – независимо от того, насколько сложны те немногие задачи, которым этот человек смог научиться. Этот человек может считаться уникумом, артистом цирка, рекордсменом Гиннеса – но не обладателем сильного интеллекта.
Интеллект связан с универсальностью в части классов решаемых задач и скоростью обучения их решать, а также с вменяемостью как способностью изменять своё поведение рациональным образом на основе получения информации из текста (речи, книги, выдачи компьютера). Единственный способ подтвердить интеллект – это демонстрировать, что ты научаешься решать всё более и более сложные новые проблемы, а также внимаешь рациональным аргументам для изменения своего поведения. Например, научиться арифметике, потом высшей математике, потом инженерным вычислениям, потом вычислениям универсальных алгоритмов, и так далее – до бесконечности усложняя и меняя виды проблем, классы задач и исправляя ошибки, если на них тебе указывают. Если ты просто демонстрируешь решение одного класса задач, вновь и вновь решая арифметические задачи и не двигаясь дальше, не исправляя ошибки и не реагируя на аргументы, то интеллект не будет задействован, он так и будет считаться слабым, «достаточным только для арифметики» и «механическим в своих проявлениях» по линии вменяемости.
Интеллект врождённый и приобретённый
Сам Chollet предлагает шкалу универсальности в решении разных классов проблем как силы интеллекта использовать для оценки систем сегодняшнего машинного/искусственного интеллекта. Люди не работают голыми мозгами в разработке чего бы то ни было, они задействуют компьютеры – системы автоматизации проектирования, программы имитационного моделирования, нейронные сети как универсальные аппроксиматоры и т. д. В своей работе по измерению силы интеллекта Chollet выделяет такие подсмотренные у человеческих младенцев элементарные функции как
• умение выделить объект по связности в его представлении в окружающем мире,
• отслеживать этот объект в мире при его перемещениях,
• отслеживать влияние объектов друг на друга,
• умение преследовать какую-то цель,
• умение считать,
• какие-то умения в области геометрии и топологии – типа распознать симметрию в объекте, или выделить прямую линию или прямой угол.
Эти врождённые способности как частное мыслительное мастерство (а интеллект, как мы помним, состоит из широких/трансдисциплинарных способностей!) и составляют по его мнению «аппаратную» основу человеческого интеллекта, остальному люди учатся с использованием этих врождённых способностей. Другие исследователи соглашаются, что какие-то функции у человека как носителя сильного/широкого интеллекта реализованы аппаратно лучше и связывают их со сложной структурой мозга, которая оказывается связана ещё и с генами, кодирующими microRNA70. Геном – это тоже «софт», который «исполняется», приводя к разворачиванию полноценного человеческого мозга (или осьминожного мозга, хотя там интеллекта меньше, но больше, чем у мозга тараканов – аппаратура таки важна!). А затем на этой аппаратуре реализуются те или иные «виртуальные аппаратуры», алгоритмы интеллекта. Как любят повторять специалисты по компьютерным архитектурам, «граница между программным и аппаратным обеспечением обычно размыта».
Мы согласны с Chollet, что у выросшего в цивилизованном мире человека интеллект состоит из:
• врождённых способностей/мыслительного мастерства, которые «аппаратно» имеются в мозгу человека и определяются генетически, являются результатом биологической эволюции. Эти врождённые способности могут быть использованы как основа для дальнейшего усиления интеллекта через предобучение трансдисциплинарным рассуждениям. Простые тесты из набора IQ должны быть связаны именно с врождёнными способностями, хотя на деле это и не соблюдается. Врождённые способности определяются генетически, и не так много можно сделать, чтобы их усилить обучением, хотя мозг пластичен и в какой-то мере может менять свою структуру для упрощения решения каких-то часто встречающихся задач. Кошку не научишь читать, сколько ни учи, речь об этом. Человека тоже научить можно явно не всему. В любом случае, речь идёт об интеллекте, именно поэтому про детей с большим IQ говорят «талантливый в одном будет талантлив и в другом», это прямо совпадает с определением сильного интеллекта: «универсальный талант», а не «талант к одному классу задач». Это и есть тот самый «фактор G», фактор самых общих способностей к обучению, доступных человеку. Дальше можно обсуждать, насколько это должно сопровождаться какими-то другими наследуемыми способностями. Например, усидчивость оказывается связана с талантом71: кому-то скучно потратить на какое-то действие 10 часов, а кому-то нет – и вот этот второй при том же интеллекте вдруг получает дополнительное преимущество, его нейронная сетка научится что-то делать лучше при той же аппаратуре, и это тоже наследуемое свойство!
• Выученных/приобретённых способностей/мыслительного мастерства, получаемых предобучением каким-то трансдисциплинам. Приобретённое мыслительное мастерство отличает людей с хорошим образованием от людей с плохим образованием: они оказываются «более талантливыми» (потому как правильно образованы, а не потому образованы, что оказались более талантливы!). Люди с хорошим образованием могут потом выполнить быструю подстройку своих знаний под новый проект, быстро освоить новое мастерство, разобраться с новым делом. А то и без подстройки: если окажется, что речь идёт об использовании каких-то универсальных умений (трансдисциплин), то и без подстройки можно справиться. А с плохим образованием люди тоже могут разобраться с новым делом, но это происходит медленно, их интеллект слабей. Почему медленно? Потому что им приходится не просто подстраивать свои знания, им приходится ещё для этого и дополнительно предобучаться, часто очень неоптимальным образом, без использования трансдисциплин как накопленного цивилизацией опыта предыдущих поколений. Представьте, что взрослый дикарь приехал из джунглей, где он только охотился и собирал растения. Сколько времени ему нужно потратить, чтобы стать инженером? Он даже в вуз пойти сразу не сможет, ведь у него не будет даже школьных знаний! Речь сразу идёт о многих годах, которые люди тратят на обучение трансдисциплинам. Это ничем не отличается, по большому счёту, от обучения нынешних версий AI, которых сначала долго и много учат «в школе», чтобы получить «большую языковую модель» (large language model, это обучение pretraining), затем обучают их более узким предметным областям (это finetuning), и только затем уже обучают совсем узким условиям ситуации, давая им какое-то задание с подробным описанием (in context training, prompt engineering).
Отдельно нужно обсудить: а можно ли вот так накапливать знания, передавая их от чему-то самостоятельно научившихся людей и AI к ещё не научившимся, да ещё и не лично, а через главным образом разные тексты с редкими картинками (даже не видео)? Можно ли целенаправлено провести «предобучение» для людей, грубо говоря, не заставлять их сразу «жить и работать», а обучая в школе и вузе? Или же каждый человек должен накапливать все знания «на опыте жизни», как-то самостоятельно? Были проделаны эксперименты, показывающие, что передача знания от поколения к поколению вполне возможна, и эта передача идёт на естественном языке, которого оказывается вполне остаточно. Необязательно учиться всему «с полного нуля», набивать себе собственные шишки на собственных неудачах, теряя на это много времени, можно получить опыт современников или даже предыдущих поколений из культуры, в том числе получить нужное знание через текст72 – и сразу начинать приобретать новый опыт, которого ещё не имели предыдущие поколения исследователей мира, предыдущие поколения инженеров, менеджеров, предпринимателей. И ровно то же самое происходит с искусственным интеллектом, все современные «умные чат-боты» учатся на огромных наборах текстов прежде всего.
В принципе, огромное число проблем можно решать просто методом перебора разных вариантов решения (оставим вопрос о качестве воображения, чтобы предлагать достаточное число и разнообразие вариантов). Этот метод перебора называется методом проб и ошибок. Это основной метод работы многих и многих людей, tinkering/возня как в «он возится с автомобилем», это подчёркивается в книге Нассима Талеба «Антихрупкость». Но возня/«метод проб и ошибок» срабатывает увы, за огромное время и с потреблением огромных материальных ресурсов. Ещё ведь придётся найти то, что нужно будет перебирать, заранее ведь это тоже неизвестно – и перебирать приходится по огромным цепочкам создания. Вы бы догадались, что антибиотики помогают против бактерий в те времена, когда само понятие бактерии было ещё неизвестным? Проблема поиска антибиотиков не могла быть даже поставлена! Догадались бы, что надо использовать радиотриод в качестве логического элемента в вычислительной машине времён Бэббиджа, чтобы получить электронно-вычислительную машину, а не механо-вычислительную или пневмо-вычислительную? Время «возни» можно резко сократить, если возиться с какими-то уже известными из культуры предметами (например, «возиться с микропроцессором», а не возиться с очищенным кремнием в надежде, что в итоге этой возни появится какой-то компьютер, или возиться с разными сортами стали, в надежде, что когда-то из этой возни появятся огромные стальные ракеты Starship и Super Heavy. Нет, «с чем возиться» в методе проб и ошибок тоже зависит от уже накопленного человечеством знания.
Многие сегодняшние проблемы не могут быть решены сегодняшними плохо сконструированными (а эволюция ведёт к отнюдь не оптимальным «врождённым» решениям по части интеллекта73!) и плохо обученными (образование в мире отнюдь не идеально) людьми и машинами. Так что нужно усиливать интеллект, чтобы продолжать эволюцию (как техно-эволюцию, так и биологическую) и исправлять замеченные ошибки.
Представьте, например, что мы ещё не знаем, что такое «свет», а ведь первые микроорганизмы этого не знали! Или не знаем, что такое спин74 (который используется в спинтронике75), про который догадались только в 1924 году, меньше ста лет назад. Если мы мало знаем о структуре мира, то требуется огромное время интенсивных выходящих в мир для проведения экспериментов рассуждений, чтобы узнать о каких-то проблемах, а затем их решить. И ещё надо узнать о правилах рассуждений, которые ведут к рассуждениям без ошибок, логика у человечества тоже прошла долгий путь развития.
Если мы хотя бы частично что-то знаем о структуре мира (всегда частично, всегда мало, даже через десять тысяч лет это будет «частично» и «мало», развитие бесконечно!), это бы в десятки, тысячи, миллионы раз уменьшило количество вычислений/мышления интеллекта по выработке мастерства в решении связанного с этой особенностью структуры мира класса задач.
Скажем, какую-то проблему мы можем решить человеческим мозгом за десять тысяч лет интенсивных размышлений. Это побольше, чем время существования человеческой цивилизации. Но если мы сделаем какие-то удачные догадки/гипотезы/guesses/предположения о структуре задачи и её предметной области, и они снизят объем вычислений в десять тысяч раз, то проблема будет решена всего за год. И можно будет переходить к следующим, более сложным проблемам.
Ускорение в десять тысяч раз по сравнению с «вознёй» возможно? Бывает ли ускорение на порядки величины по сравнению с «обычной скоростью решения задач»? Да, бывает! Так, квантовые компьютеры уже в определённых классах алгоритмов несравнимо (на много порядков величины) быстрее классических компьютеров, и это квантовое превосходство/quantum supremacy76 быстро увеличивается. Или в 2021 году было предложено ускорение на несколько порядков скорости обучения игры в видеоигры для алгоритмов обучения с подкреплением, и были достигнуты скорости обучения примерно такие же, как у человека. Буквально десяток лет назад речь шла о проблеме, которая вообще не решалась, компьютер не мог обучаться игре в видеоигры! Потом мог обучаться, но требовались огромные вычислительные мощности, и дело было хуже, чем у человека примерно в десять тысяч раз, требовался суперкомпьютер. И вот задача решена предложением нового алгоритма, использующего догадки о структуре знаний при игре77.
Цивилизация (и особенно в ней наука, она ровно этим и занимается) даёт нам разной степени удачности общие предположения о структуре абстрактного (математические объекты) и физического мира и учит формулировать проблемы. Это приобретённый, выученный интеллект: он позволяет решать задачи в десятки тысяч (а то и более) раз быстрее, чем это могло бы быть сделано необученным структуре окружающего мира интеллектом как «аппаратной» частью мозга «дикого» человека, не получившего образования. Цивилизованный человек, мозг, интеллект (это всё вложенные части, в быту мы используем все выражения) – это обученный, образованный человек, мозг, интеллект. Цивилизованный интеллект (мозг, человек) содержит в себе не только врождённые мыслительные способности, врождённое мыслительное мастерство, но и приобретённое/выученное. Интеллект цивилизованного человека оказывается не таким уж естественным: часть его «аппаратна», но часть «программна», прошита цивилизацией в мозгу – это ничем не отличается от любого другого вычислителя. Интеллект смартфона тоже есть врождённый (аппаратный, от микропроцессора конкретной марки), а есть приобретённый – от прошивки производителя, и от конкретного мастерства его прикладных программ. Другое дело, что интеллект смартфона очень слабый, ибо микропроцессор его очень ограниченной производительности, даже с учётом того, что в современных моделях смартфонов используются аппаратные ускорители для нейросетей, да ещё и алгоритмы прошивок абсолютно не универсальны в части возможности решения разных классов проблем.
Помним, что сила интеллекта в его универсальности, а для универсальности нужна скорость работы вычислителя и разнообразие его алгоритмов: есть теорема отсутствия бесплатного обеда/no free lunch theorem, в которой говорится, что один алгоритм не может быть универсально эффективным для всех классов задач, поэтому для универсальности требуется много разных алгоритмов работы вычислителя. Об этом подробней говорится в книге Педро Домингоса «Верховный алгоритм», которую мы рекомендовали для начального знакомства с подходами к конструированию машинного интеллекта как вычислителя с универсальным (master, верховным) алгоритмом.
Итого: приобретение нового мастерства и у человека, и у AI, и у компании не через чисто «природную смекалку» человека, AI или коллективную смекалку людей и компьютеров в компании, а через «облагороженную образованием смекалку», через получаемые из культуры путём «импорта» готового знания о структуре мира и структуре задач – и уже к этим «импортированным» знаниям предобучения добавляется «возня»/tinkering, «опыт».
Трансдисциплинарный интеллект-стек
Мастерство/умение и навык/скилл/skill – это вычислители для рассуждений по какой-то прикладной дисциплине или трансдисциплине, интеллект – это набор таких вычислителей по разным видам мыслительных практик, поддерживающих рассуждения с объектами и по правилам/объяснениям трансдисциплин этих практик, и с использованием необходимых для этого инструментов. Инструменты тут чаще всего – моделеры, использующиеся для «усиления памяти», даже ручка-бумажка, но иногда для усиления именно вычислений – компьютерные имитационные модели или даже просто калькуляторы.
Трансдисциплины – это и есть сведения о структуре мира, которая оказывается удобной для практик скоростного мышления, мыслительного мастерства быстрого разбирательства с новыми ситуациями. Трансдисциплины – это дисциплины о дисциплинах, наиболее общие мыслительные шаблоны о более конкретных мыслительных шаблонах, используемых для каких-то более конкретных предметных областей. Логика позволяет обсуждать, логичны ли рассуждения какой-нибудь астрологии или квантовой теории поля, онтология позволяет обсуждать объекты мышления в машиностроении и менеджменте, и так со всеми трансдисциплинами.
Проблема, которая займёт всё время очень смекалистого дикаря на полжизни, у обученного мышлению с использованием трансдисциплин человека может занять несколько часов, или даже несколько секунд (особенно, если такой человек будет использовать компьютерный экзокортекс).
Трансдисциплин множество самых разных, они выстроены в условный стек («стопку»), поскольку внутри рассуждений о каких-то одних типах объектов одних трансдисциплин будут использованы рассуждения о других типах объектов других трансдисциплин. Мы называем такой условный (потому как там всё-таки полноценный граф, а не какая-то последовательность, но в целях упрощения мы это игнорируем и продолжаем говорить о «стопке») стек трансдициплин, использующихся для рассуждений о самых разных предметных областях, в том числе предметных областях друг друга, интеллект-стек. Приведём его в обратном порядке, снизу-вверх, чтобы было понятней, как одни трансдисциплины пользуются в своих объяснениях уже введёнными другими трансдисциплинами объектами:
• Понятизация учит выделять какие-то типизированные (тут явное забегание вперёд: понятие типа будет определено в интеллект-стеке позже, но мы предупреждали об условности предлагаемой последовательности практик) фигуры из фона и делать их предметами рассмотрения, давать какие-то имена этим фигурам. Роль – поэт.
• Собранность учит удерживать во внимании «объекты», которые уже вытащены понятизацией. Это делается не «чистым мозгом», а при помощи внешней аппаратуры памяти и поиска в ней. Так что роль – «собранный», и этот собранный – киборг. Впрочем, интеллект-стек относится и к AI, так что «киборг» тут условно, только для людей, чьё внимание усилено компьютерными средствами.
• Семантика учит связывать физические/реальные объекты с математическими/абстрактными/ментальными/идеальными, а также работать со знаками, обозначающими объекты. Если вы вытащили своим вниманием объекты из пестроты окружающего мира, можете удержать их во внимании, то дальше можно обсуждать эти объекты, представляя объекты знаками. Роль – семантик.
• Математика учит тому, какие бывают «ментальные» объекты, как они могут себя вести, каким образом конструируются одни из других. Роль – математик.
• Физика учит тому, какие бывают физические объекты в реальном мире, а также каким образом мы используем математические/ментальные объекты с хорошо изученным поведением для представления физических объектов с целью рассуждений о них. Роль – физик.
• Теория понятий учит тому, как мы думаем о понятиях – математических/абстрактных/ментальных объектах, которые представляют физические объекты. Человеческий мозг (а значит, и AI, если его научить) представляет понятия или в виде объектов и отношений (теоретическая теория понятий), или как какие-то объекты-прототипы и объекты с описанием некоторых отличий от прототипа (теория прототипов), и это даже не единственные два варианта, есть и ещё. Логика хорошо будет работать с теоретической теорией понятий, а вот метафоры и всякая художественность – с теорией прототипов. Это пригодится для всех последующих обсуждений. Теория понятий учит машинке типов: что все объекты в каком-то смысле подобны друг другу, и это описывается типами. Примеры часто встречающихся типов отношений в теоретической теории понятий – это классификация, специализация, композиция. Появляются и конструктивные теории понятий, где объекты «конструируются» путём каких-то операций, а не просто представляются объектами и отношениями. Роль – типолог.
• Онтология учит отвечать на вопрос, каким способом мы описываем/моделируем мир: как мы определяем важное и неважное (моделирование), как мы используем модели для ответа на вопросы (рассуждения на основе моделей). Мы разбираемся с мета-моделированием (описания как абстракции получаются не произвольно, но абстрагирование управляется абстракцией более высокого уровня), разбираемся с тем, что вещи/системы на разных системных уровнях (то есть уровнях по отношению часть-целое) описываются по-разному, ибо при взаимодействии частей получаются новые свойства (эмерджентность). Модели задействуют понятия (используем теорию понятий, в том числе пользуемся идеей конструктивной онтологии, понятия которой получаются путём применения операций, а не обсуждая отношения «вечных понятий»). А ещё модели используются для проведения по ним рассуждений с целью предсказания будущего состояния мира (демоделирование/рендеринг/порождение), тем самым после разбирательства с онтологией мы уже готовы заняться рассуждениями и объяснениями. Роль – онтолог.
• Алгоритмика говорит нам о том, как эффективно (с наименьшей затратой ресурсов) вычислять, то есть проводить каким-то физическим устройством (универсальным компьютером) заданные последовательности операций (алгоритмы) над содержимым какой-то памяти, представляющей собой знаки для математических объектов. Алгоритмика тесно связана с понятием интеллекта, так как интеллект – это программно-аппаратно реализованный универсальный алгоритм, способный с большой эффективностью вычислять самые разные функции. Но физическая природа компьютера не позволяет одинаково эффективно вычислять что угодно, а алгоритмика изучает, что же возможно в этом плане сделать на текущей аппаратной базе, какие последовательности операций на той или иной аппаратуре наиболее универсальны и эффективны. Математик, физик, компьютер – это универсальные вычислители, то есть физические объекты, поведение которых как-то отражает поведение математических/идеальных/ментальных/абстрактных объектов. Алгоритмика тем самым и про живых людей с их рассуждениями/вычислениями, и про классические компьютеры с их рассуждениями, и про квантовые компьютеры с их рассуждениями/вычислениями – всё это просто разные типы физики вычислителей. Роль – алгоритмист.
• Логика говорит, какие есть способы вычислений как рассуждений над моделями, дающие наиболее безошибочные результаты: логический вывод, функциональная оценка, вычисления математических функций, интуитивные оценки в человеческом мозге, прикидки, предсказания, и т. д. Онтология для этого уже рассказала про то, как мы нарезали мир на типизированные (или сконструированные) объекты, описав эту нарезку какими-то моделями, алгоритмика уже рассказала, что такое рассуждения-как-вычисления, так что методы рассуждений работают как алгоритмы с моделями.
• Рациональность занимается созданием правильных объяснений. Объяснения представляют собой теории/модели, которые рассказывают о причинах и следствиях в физическом мире. К этому моменту, если мы изучали интеллект-стек в последовательности «снизу вверх», из онтологии уже известно про разнообразие моделей, из логики – о разнообразии правил рассуждений. Математика даст возможность оценить формальность работы с причинами и следствиями, физика позволит говорить о соотношении того, что мы представляем рациональными моделями и того, что происходит с реальным миром. Роль – разум, который не приемлет кривых объяснений и нещадно их критикует, а модели использует для принятия решений о деятельности.
• Исследования как практика познания говорит о том, каким образом мы получаем хорошие объяснения. Мы уже понимаем, какие должны быть свойства у хорошего (рационального, на основе моделей) объяснения, и надо теперь объяснить, каким образом мы накапливаем на планете всё более и более точные и удобные в использовании знания о том, как устроен мир. Мы делаем догадки о хорошей объяснительной (причинной) модели/теории, а затем критикуем эти догадки на предмет непротиворечивых результатов рассуждений по этой модели (логика) и на предмет лучшего соответствия предсказаний этой модели с результатами эксперимента (измерения). И дальше та догадка, которая пережила критику (поэтому рационализм у нас – критический!), принимается всерьёз, то есть может быть положена в основу планирования действий. Роль – исследователь.
• Эстетика даёт критерии красоты (в исследованиях принято говорить об элегантности) в результатах мышления и прикладного труда. Эстетика рассказывает, какой отклик вызывает наше поведение не столько в окружающем мире, сколько в самих агентах (и не факт, что современная эстетика обсуждает, например, эмоциональное воздействие каких-то продуктов труда и описаний только на агентов-людей. Нет, современная эстетика рассматривает и агентов с искусственным интеллектом, и искусственную жизнь). Эстетика оказывается такой же трансдисциплиной, как и любая другая. Математики о красивых доказательствах говорят, что они элегантны, «ничего лишнего, всё по делу – это красиво». Менеджеры говорят о lean/элегантном производстве. Это тоже про красоту, один из предметов, изучаемых эстетикой. Красота тесно связана с понятием стиля, «что стильно – то красиво, в стильности проявляется вкус», а понятие стиля – это прежде всего про многоуровневое паттернирование, понятие «похожести произвольного вида». Роль – эстет.
• Этика говорит нам о том, чего нужно добиваться в жизни: какие цели приемлемо ставить агенту и какими средствами добиваться реализации этих целей. Должны ли люди умирать («программируемая смерть» как полезная для эволюции), или лучше бы их сделать бессмертными? А искусственные интеллекты? К этому моменту уже владеем пониманием, что такое объяснения и как устроены исследования – можем теперь разбираться, что делать с результатами всех этих исследований, на что их можно направлять, а на что направлять вроде не следует. Этика тем самым оказывается близкой к понятию стиля, обсуждаемому в эстетике, обсуждает «стиль жизни». Роль – совесть.
• Риторика говорит о том, как убедить какого-то человека совершить какие-то действия. Начинаем с того, что у вас есть какая-то модель ситуации (полученную вами в ходе исследований) и вы имеете перед собой агента, которому вы объясняете вашу модель ситуации и пытаетесь его уговорить использовать эту модель для достижения каких-то совместных его и ваших целей, достижение этих целей вам обоим будет полезно, но агент этого ещё не знает, вы ему объясняете. Но этика вам уже известна, вы не подбиваете агентов (людей, AI, организации, сообщества) на что-то плохое. Риторика существенно связана с тем, что и люди, и AI сегодня представлены нейронными сетями, а не представляют из себя логические машины, поэтому для них задействуется prompt engineering. Риторика использует свойство вменяемости сильного интеллекта. Роль – ритор.
• Методология рассказывает о труде/деятельности, в которой агенты (раньше – только люди, а сейчас мы подходим к этому не столь антропоцентрично) организовываются в команду, занимают в ней какие-то роли, выполняют работы по каким-то практикам и тем самым добиваются своих целей. Для этого люди и их компьютеры договариваются о работе в какой-то предметной области, логично рассуждают на базе рациональных теорий, ведут коллективные исследования и не теряют внимания к объектам своей работы. Основной объект методологии – «метод работы»/«способ работы»/труд/деятельность/практика, которую выполняют какие-то роли. Методология – наука, «логия», исследует «какие бывают методы работы». Роль – методолог.
• Системная инженерия – это уже нормативная трансдисциплина. Она не столько исследует, сколько на основании методологии и наблюдения за пробами и ошибками в реальном труде предписывает на высоком уровне абстракции (мета-мета-модель из онтологии) устройство деятельности по созданию систем: какие там должны быть практики и какими ролями они потом будут выполняться. Системная инженерия называется системной, ибо исходит из того, что создаются какие-то системы как состоящие из частей-подсистем целые объекты-системы, отделённые от среды, частью которой эти объекты-системы являются. Такое рассмотрение систем изучается трансдисциплинами интеллект-стека, начиная с физики, и далее проходит красной нитью через весь интеллект стек как «системный подход» (рассмотрение мира как набора взаимодействующих систем). Инженерия – это про то, как одни системы (системы-создатели) должны создавать другие системы. Именно «должны создавать» (задаётся норма, «как надо»), ибо «как могли бы создавать» – это методология. Самые разные варианты прикладных дисциплин дальше будут просто специализацией системной инженерии для разных классов систем: если организация, то это будет менеджмент (инженерия организации), если мастерство, то это будет обучение (инженерия мастерства), и так далее. Для рассуждений об инженерных практиках задействуются все предыдущие уровни интеллект-стека (особенно если учесть, что в качестве агентов действуют люди, люди и компьютеры, и даже уже иногда сами компьютеры). Роль – инженер.
Каждая мыслительная практика, основанная на фундаментальной дисциплине/трансдисциплине, при помощи своих понятий и приёмов мышления на их основе помогает разобраться со следующей мыслительной практикой интеллект-стека, а в конце их цепочки – с прикладной практикой, основанной на прикладной дисциплине, которая поддержана какими-то инструментами моделирования (моделерами, специальным софтом для удобного описания ситуаций) или даже просто инструментами (станками, оборудованием или даже какими-то сооружениями, типа нефтяной скважины для практики нефтедобычи).
Без владения трансдисциплинами интеллект-стека трудно понимать тексты, сосредоточиться, рассуждать
без грубых ошибок
Без какого-то мастерства собранности вы не смогли бы дочитать до того места в тексте, которое вы сейчас читаете: просто много раз бы отвлеклись и давно забыли бы, чем занимаетесь. Поздравляем, какая-то собранность у вас есть!
Проверим, есть ли какой-то навык в практике теории понятий, навык в исполнении роли типолога. Есть ли у вас какой-то «дребезг» (кинестетические ощущения) в теле, когда вы читаете вот этот отрывок текста?
«Интеллект – это степень универсальности мышления. Интеллект является свойством мышления, отвечающим за новизну, за решение проблем. Как вычислитель, интеллект характеризуется его скоростью».
Люди, которые разобрались в теории понятий и опираются в мышлении на теоретическую теорию понятий (theory theory), будут чувствовать дискомфорт во всём теле, когда читают такое. Теория понятий помогает описать и удерживать при необходимости в сознании «машинку типов», которая разбирается с типами объектов. Давайте посмотрим, что сказано с точки зрения типов в вышеприведённом кусочке:
• интеллект – это степень свойства универсальности мышления
• интеллект – это свойство мышления. Но только что же было, что это степень свойства мышления, а не собственно свойство!
• интеллект имеет своим свойством скорость. То есть если интеллект – это степень свойства, то степень свойства имеет скорость (как это?). Если интеллект – это свойство, то свойство имеет скорость (как это?).
Если «машинка» типов у вас в голове не работает, то эта ахинея будет воспринята вами как вполне нормальный текст, никаких противоречий или странностей вы не заметите, нормальный ведь текст про интеллект, мышление, универсальность, проблемы и даже правда про интеллект как вычислитель! Дальше вы будете рассуждать, имея вот такие туманные представления об интеллекте: «это не-пойми-что, используемое в разговорах о мышлении и как-то относящееся к скорости и новизне, неважно как». Вы будете удивляться, почему ваши вроде как умные рассуждения будут восприниматься другими людьми с работающей «машинкой типов» как ахинея. А ахинею других людей вы будете принимать за чистую монету! У нас на входе курса «Моделирование и собранность» в Школе системного менеджмента были люди, которые честно пытались найти какой-то смысл в бреде, который породила плохо обученная нейронная сетка прошлых поколений. Это не было распознано как бред, то есть порождение больной (в данном случае кремниевой) фантазии!
Мыслительные практики дают возможность понимания чужих мыслей, своих мыслей, нахождения в них ошибок. Трансдисциплины этих практик дают для рассуждений объекты, которые важны, каждая дисциплина – это чеклист таких объектов и чеклист для операций (как рассуждений, так и действий в физическом мире) с ними. Технологии для поддержки этих трансдисциплин дают возможность удерживать это всё во внимании и проверять рассуждения на их безошибочность более надёжно. Если вы не владеете мыслительными практиками, то вы рассеяны (не используете технологии для мышления) и глупы (не используете дисциплины для мышления).
Если вы разобрались с операционным менеджментом как одной из подпрактик системного менеджмента (прежде всего – вы понимаете, какие отношения операционного менеджмента и других практик менеджмента, например, практикой орг-архитектурны), то дальше вы можете за неделю разобраться с конкретными ситуациями, в которых без этих знаний нужно было бы разбираться годами.
Так, если вы пришли на предприятие и обнаружили там специалистов, которые говорят на таинственном языке сил, текущих по жилам, ибо они в какой-то момент впечатлились книжками Алексея Андреева по русской школе менеджмента, то вы сразу распознаете, что речь идёт о «потоке», то есть это операционный менеджмент. Вы очень быстро разберётесь, как говорить на этом языке сил и жил, и как взаимодействовать с остальными людьми в этой фирме. Если у вас в голове уже прошиты общие знания по системной инженерии, а на основе этих знаний вы ознакомились с практиками системного менеджмента как системной инженерии организаций, то вы будете быстро разбираться с самыми экзотическими вариантами прикладных менеджерских дисциплин.
Для инженеров-программистов и «железных» инженеров всё ровно так же: трансдисциплины обеспечивают быстрое разбирательство с прикладными дисциплинами, которые существенно меняются на каждом месте работы. Если ты понял, как создавать всё что угодно (системная инженерия), то как создавать организацию (системный менеджмент) ты поймёшь быстрее, как создать администрацию в организации – с этим тоже быстро разберёшься, как создать софт для администрации в организации – и с этим быстро разберёшься. Будет сразу понятно, что в практике администрирования (финансы, юридическая поддержка, офис-менеджмент, поддержка компьютерных приложений и т.д.) важно, что неважно, чем отличается от других практик, зачем применяются те или иные приёмы работы, там обсуждаемые. Всё понятно сразу, беглость в применении практики наберёте быстро. Если вы не знакомы с системной инженерией в целом, и системным менеджментом как её вариантом в отношении к предприятиям, то быстро разобраться с тем, как создать администрацию предприятия будет невозможно: вроде как будете работать строго по инструкции отдельных практик администрирования, но результаты будут каждый раз не слишком полезные: проблемы будут на стыках с остальными людьми в команде проекта и внешними по отношению к проекту людьми. Скажем, бухгалтерия и юристы будут работать не на благо фирмы, а как враги, останавливая работу, а не помогая работе! Ибо лучшая для бухгалтеров и юристов фирма – это которая ничего не делает, у неё нет налогов, нет затрат, нет рисков! И лучше бы о таких эффектах узнавать из учебных курсов, сразу, нежели «из многих лет опыта ужасной жизни внутри ужасно устроенной компании».
Разные виды мастерства выполнения трансдисциплинарных практик, входящих в интеллект-стек, управляют обнаружением и удержанием объектов внимания в прикладных дисциплинах, определяют рациональные приёмы мыслительной работы с объектами этих дисциплин. Вы легко находите «приглашения» для мышления в непонятных ситуациях, часто даже без подстройки/дообучения. Сначала надо задействовать общие способности к познанию, задействовать мышление сильного интеллекта, чтобы быстро разобраться в новой ситуации, познать/learn происходящее как можно быстрее, а потом уже бегло рассуждать в пределах более-менее понятного прикладного мастерства решения задач в изученной хоть как-то прикладной предметной области. Если ты хороший инженер, и тебе надо вдруг разобраться с менеджментом, то это для тебя будет всего лишь ещё одна инженерная практика. Если ты хороший инженер, и тебе надо вдруг разобраться с инженерией личности (заняться развитием личности), то и это будет всего лишь ещё одна инженерная практика. Хорошо ли это? Конечно, это хорошо! Если четыре уравнения Максвелла компактно описывают весь бесконечно разнообразный мир электромагнитных явлений, то непонятно, почему мы не можем компактно размышлять о бесконечно разнообразном мире создания и развития самых разных систем.
Именно трансдисциплины интеллект-стека работают как алгоритмы интеллекта, когда мы учимся чему-то прикладному, подстраиваем свой мозг к работе в какой-то узкой предметной области в новом классе проектов. При обучении важна сила/универсальность нашего интеллекта, важна вменяемость.
При этом даже чтение и письмо оказываются навыком, которому надо учиться: это навык использования инструмента внешней памяти, усиливающего интеллектуальные возможности «голого биологического мозга». В 21 веке чтение и письмо сами по себе не целевые прикладные умения, а просто предобученные общие способности, нужные главным образом для научения делать что-то ещё. Это в древнем Египте писец владел письменностью как прикладным мастерством. А сейчас это просто результат предобучения, часть интеллекта, это нельзя считать прикладным мастерством/умением/скиллом, просто за умение читать-писать денег сегодня не платят. Если ты похвастаешься «я умею читать и писать», на тебя очень странно посмотрят. Более того, чтение и письмо мы не включаем прямо в состав интеллект-стека (хотя косвенно эти умения разбираются во множестве дисциплин, например, в семантике).
Общим для мыслительного мастерства является мастерство собранности, дающее способность заниматься чем-то одним не просто несколько часов без отвлечения (например, пару часов читать сложную книжку, не отрываясь, без потери внимания – это было обычной нормой образованного человека буквально пару десятков лет назад, хотя и сегодня на планете достаточно людей, которые не утратили эту способность к чтению длинного текста без отвлечения на какие-то чаты и социальные сети), но и несколько лет подряд – удерживая внимание записями, а не «ментально». Более того, есть приёмы удержания внимания целой команды людей, собранность оказывается не чисто человеческой психопрактикой! Мастерство собранности тоже познаётся, а не врождённое. Как и за все трансдисциплины, за мастерство собранности как прикладное умение не платят, эту собранность нужно применить ещё к чему-то. Например, к решению прикладной менеджерской задачи, вроде составления плана-графика конкретного проекта методом критической цепи. Отдельно за задействование мастерства логики не платят! И не платят отдельно за методологическое мастерство! Не платят отдельно за мастерство по любой из практик интеллект-стека. Платят за прикладное мастерство, но вы его не получите быстро и качественно, пока не овладеете «неоплачиваемым» мыслительным мастерством, пока не станете умным, то есть не получите фундаментальное образование.
Граница между мыслительным и прикладным мастерством размыта
Эволюция делает очень размытой саму границу между врождённым интеллектом в его биологических границах (человеческий детёныш рождается совсем не умным! Но потом растёт и быстро развивается. В том числе окружение этого детёныша и свойство пластичности мозга влияют на то, как развивается биологическая «аппаратная» часть интеллекта) и привнесённым культурой: усиления интеллекта в силу трансдисциплини прикладных дисциплин. Щенок не умеет в момент рождения ходить, но научается потихоньку и ходить, и бегать, и прыгать – щенки играют с окружающим миром, это их обучение. Люди делают то же самое. Но кроме бегать-прыгать они ещё выучиваются читать-писать, а современный человек по идее должен выучивать ещё в школе, а затем в вузе трансдисциплины, увеличивать силу своего интеллекта, расширять диапазон проблем, которые он сможет решить при встрече с ними. Так что никакой ребёнок не рождается «умным» по абсолютной шкале силы его интеллекта, разве что есть биологическая возможность этим умным стать.
По большому счёту, у людей сейчас не естественный интеллект (вспомним людей-маугли, которые вырастают в джунглях и даже разговаривать не умеют), а вполне искусственный интеллект, полученный обучением знаниям, накопленным поколениями людей – и большинство этих знаний передаются самым умным людям вообще через бумагу и экраны с текстом, а не каким-то другим путём, например, получением «опыта» в решении проблем.
Это и есть «цивилизованность»: становиться умным от научения, а не просто быть потенциально умным от рождения. Интеллект можно и нужно развивать, а различие между естественным и искусственным интеллектом в этом плане будет несущественным.
Сам интеллект оказывается не абсолютным, а относительным: он зависит ещё и от прикладных задач. Интеллект белки, определяемый батареей тестов по разным задачам скакания по деревьям, будет выше, чем интеллект скачущего по деревьям человека. Это нормально. Другое дело, что их потом могут сравнить по общему числу возможных решаемых проблем, куда попадут и другие даже телесные задачи – и белка тут же проиграет, белка своим телом не сможет делать многое из того, что сумеет сделать человек. Ровно поэтому тесты интеллекта всегда задействуют максимально широкий набор задач, говорят о батарее тестов – проверяется универсальность, а не умение решить конкретную задачу. Тест только математики ничего не скажет про ваш интеллект. А вот тест собранности ума и тела, онтологии, риторики, системного мышления, информатики, трудового кругозора – вот такая батарея тестов будет говорить о вашем интеллекте много больше. А ещё могут быть тесты на вменяемость, на агентность. Всё по поводу тестирования интеллекта становится запутанным, на настоящее время не предложено никаких способов тестирования интеллекта: само понятие интеллекта предполагает возможность решения задач, которые не предусмотрены при обучении этого интеллекта. А если задачи предусмотрены, то это тестирование прикладного мастерства.
Интеллект зависит не только от «аппаратуры» устройства AI или человека, но и от учебного плана/curriculum, т.е. порядка предъявления задач, а также от количества информации, которая была предложена в ходе научения, а ещё от качества этой информации. В какой-то момент разработчикам AI казалось, что можно получать всё более сильный интеллект, просто увеличивая размер нейронной сети («объём мозга»), но оказалось, что есть зависимость между размером нейронной сети и количеством данных, которые требуется предъявить этой нейронной сети, чтобы полностью задействовать размер этой нейронной сети78. Поэтому стратегия поменялась: стали применять более простые «аппаратные решения» (алгоритмы нейросетей меньшего размера, требующие меньше вычислительной аппаратуры для работы с ними), но предобучать их на большем количестве данных, а ещё делать лучше сами данные (по двум параметрам прежде всего: уменьшать количество ошибок в данных, чтобы в обучение арифметике не попадали примеры типа 2*2=5, а также закрывать данными более широкие классы предметных областей, ибо оказалось лучше иметь по паре примеров из десяти предметных областей, чем двадцать примеров из одной предметной области). Оказывается, «образование» кремниевых нейросетей более важно, чем «врождённый интеллект» этих нейросетей. Для людей выполняется всё то же самое. Если потенциального Эйнштейна не учить читать и писать, то он так и останется дикарём, ему не поможет никакая «врождённая гениальность».
Если вам свезло с последовательностью предъявляемых задач, то ваш интеллект может оказаться по их итогам лучше. «Ему повезло попасть в хороший проект, он там сильно вырос за последнюю пару лет» так же важно, как «ему повезло с родителями, они ему дали хорошие гены для мощного интеллекта».
Важен порядок решения проблем:
их надо решать по мере возрастания сложности
Важен не только порядок обучения, но и порядок решения проблем! Проведено много экспериментов, показывающих, что решение какой-то одной трудной проблемы «с нуля» обучающимся вычислителем на базе нейронной сети и какого-то эволюционного алгоритма часто невозможно, но решение какой-то последовательности проблем возрастающей трудности возможно79.
Рабочая жизнь – это бесконечное развитие, бесконечное познание, бесконечное обучение. Опыт предыдущих проектов ведь тоже учит мастерству, учит не только образование, понимаемое как «импорт» уже полученного кем-то знания. Получается, что чем лучше учебный план по обучению мыслительному мастерству/интеллекту – тем сильнее будет получаемый по итогам обучения интеллект! Те, кто решает больше самых разных проблем и берёт их каждый раз на границе тумана будущего, то есть на пределе своих возможностей – у тех вырабатывается не только хороший набор прикладного мастерства, но и сильный интеллект, набор общих для самых разных прикладных умений мыслительных умений/способностей, дающий возможность на следующем такте решить проблему, которую нельзя решить «с нуля», просто потратив много времени именно на её решение. Время на «упереться и попробовать решить» таким не предобученным и неопытным агентом будет потрачено, но результата не будет! Именно это неизменно подтверждается в экспериментах по AI: с нуля агент не может научиться решать какой-то класс проблем, потратив много времени, но если агент накапливает опыт решения проблем промежуточной сложности, то он справляется и с той проблемой, которую не мог решить при попытке это сделать «в лоб», методом грубой вычислительной силы.
Это ровно то, чем отличаются «вечно подающие надежды, но никак не становящиеся мастерами» от в юности середнячков, которые воспитывают из себя настоящих интеллектуалов – и оказываются потом мастерами в прикладных практиках. IQ80, показывающий развитие «аппаратуры» мозга на специфических тестах зрительного восприятия, простых лингвистических тестах, оказывается коррелирующим с уровнем интеллекта, но не определяющим его! Мозг пластичен, синаптические связи в нём отращиваются, кровоснабжение адаптируется, интеллект вполне тренируем – как мышцы. Предобучение как хорошее образование перед занятием каким-то делом, правильно подобранная последовательность задач для этого предобучения, и правильно подобранные для этого обучения трансдисциплины влияют на интеллект даже больше, чем родительские гены.
Вы должны усиливать свой интеллект обучением себя по двум направлениям:
• обучаясь трансдисциплинам и давая себе деятельностный кругозор, то есть делая «прошивку интеллекта» в её самой современной версии, доступной человеческой цивилизации. Ещё пару веков тому назад такие трансдисциплины включали в себя чтение-письмо-арифметику. Нынешнее поколение чтение-письмо-арифметику не считает даже за отдельные дисциплины (но таки в начальной школе их учат!), а разные исследователи говорят о разных наборах этих дисциплин, мы в нашем курсе предлагаем свою версию.
• обучаясь полагаться в том числе и на внешние компьютерные средства присмотра за личным и коллективным вниманием на личной и коллективной внешней памяти, т.е. улучшая свою «аппаратуру» до самой современной версии, доступной цивилизации. Да, по факту нужно становиться киборгом. Вы уже не расстаётесь со смартфоном, признайтесь себе в этом! А смартфон подключает к вам огромные датацентры, котрые начинают работать на вас, усиливая вашу аппаратуру мозга. Прошлое поколение усиливающей интеллект аппаратуры включало в себя ручку-бумажку, которые резко увеличивали объём памяти и внимания, нынешнее поколение такой аппаратуры – дата-центры (основные вычислительные мощности планеты в них!), настольные компьютеры, планшеты, смартфоны и средства связи, которые на предыдущем такте технологической эволюции люди и представить себе не могли. Человек с луком и стрелами может добыть не дающегося голым рукам зверя, человек с доступом к дата-центру может решить не дающуюся голым мозгам задачу.
Повторим: уровень IQ81 не так уж и важен для жизненного успеха. «Коэффициент интеллектуальности» – это просто умение решать какие-то классы задач, замеряемое в простых тестах. Конечно, на IQ влияет в том числе и генетика, но и обучение тоже (мозг пластичен! Если его упражнять, то он развивается). IQ дикарей меньше, ибо их мозг меньше тренировали в детстве. Более того, поскольку в 2020 году во всём мире принимались активные «антиковидные» меры по ограничению общения людей, их буквально запирали дома, как в тюрьме, возможности малышей получать новую информацию были существенно снижены. И для младенцев средний IQ (вербальные, моторные, когнитивные навыки) в США упал со 100 до 7882 именно из-за недостатка общения, стимуляции. Это непонятно, навсегда или временно, например, умение говорить должно быть освоено детьми, в более взрослом возрасте оно уже не осваивается, если человека выкормили животные и некому было его учить разговаривать. Будем надеяться, что это отставание будет навёрстано.
Но в любом случае, IQ оказывается не сильно связан с успехом в жизни: упорность и настойчивость в сочетании с удачливостью оказываются более важны. А с учётом того, что люди с низким IQ могут использовать в своих размышлениях результаты умственного труда других людей (в том числе с высоким IQ), и даже результаты вычислений компьютера, то разница и вообще становится небольшой.
Человек с низким IQ, которого выучили умножать в столбик и усилили тем самым его мозг ручкой, бумажкой и методом вычисления, может оказаться в этом умножении много искусней человека с высоким IQ, который пытается умножать в уме, да ещё и незнаком с методом умножения в столбик. Что уж говорить о более сложных умениях! Человек с низким IQ, который вовремя догадывается задавать вопросы Гуглу, легко победит в интеллекте человека с высоким IQ, который игнорирует Гугл и пытается каждый раз что-то сообразить самостоятельно. При этом лучшие умы человечества как раз используют Гугл, не стесняясь83 – а их «аппаратный IQ» вообще перестаёт играть большую роль. Большую роль играет образование (включая умение пользоваться инструментами!), использование этих инструментов (не лениться использовать! Всё записывать!), а также решение цепочек всё более трудных проблем вместо безуспешного решения запредельно трудной проблемы «в лоб» (важны способы решения проблем, которые используются, и этому тоже надо учиться).
Культурная (следующая каким-то выработанным цивилизацией шаблонам быстрого эффективного мышления, а эти шаблоны даёт хорошее образование) работа побеждает «творческое дикарство», равно как использование дополнительной вычислительной аппаратуры (от ручки-бумажки до современных дата-центров с софтом AI) уравнивает жизненные шансы людей с низким IQ и высоким IQ.
Кейс: интеллект как способность научиться
Собачка Тяпа научилась бегать и прыгать за полгода, а девочка Таня за пару лет, и то не очень. Какие из этих высказываний верны:
–– У Тяпы интеллект сильнее, ибо она научилась бегать и прыгать быстрее, чем Таня. ### Нет, интеллект сильнее у Тани, ибо она научится не только бегать и прыгать, но ещё и читать-писать, готовить, программировать, играть на рояле, а собачка Тяпа – никогда. Тут речь идёт об интеллекте в целом, его сила определяется по уровню общности в решении задач.
–– У Тяпы телесный интеллект сильнее, ибо она научилась бегать и прыгать быстрее, чем Таня. ### Нет, телесный интеллект сильнее у Тани, ибо она быстро научится не только бегать и прыгать, как собачка, но ещё и петь (мышечная работа), рисовать (мышечная работа), танцевать (мышечная работа), поднимать штангу (мышечная работа). А собачка Тяпа всего этого не сможет.
Пётр – отличный математик, никогда ничем кроме математики не занимался, «узкий специалист», но лауреат какой-то важной математической премии. Павел – занимался самым разным, и даже немножко математикой (совсем чуть-чуть, это оказалось «не его»), но там была и инженерия, и исследования по химии, и много чего ещё. Разбираться приходилось с нуля в каждом новом проекте. Премий Павел не получал, но со всеми работами справлялся, и часто получше, чем местные «узкие специалисты». У кого интеллект сильнее?
–– У Петра, у него ведь математическая премия ### Нет, интеллект определяется как эффективность в обучении новому, причём акцент на разнообразии этого нового. Пётр узкий специалист, у него интеллект «широкая генерализация» (мастерство), но не «экстремальная генерализация» (на что претендует Павел).
–– у Петра, он настоящий, глубокий специалист! ### Нет, «глубокий специалист» указывает как раз на узость предметной области (хотя сама по себе математика не так уж и узка, как предметная область, но в разнообразии задач, стоящих перед людьми, математические задачи – это крошечный класс задач)
+++ У Павла, он быстро научится любому новому делу ### Да, сила интеллекта определяется именно этим: скоростью обучения новым делам, акцент на широте этих дел, их разнообразии. «Любое новое дело» указывает на «экстремальную генерализацию» (то, чему можно научить людей), хотя понятно, что это сильное преувеличение, бытовой речевой оборот. Тем не менее, в определении силы интеллекта разнообразие выигрывает у узкой специализации.
Богдан на выходе из средней школы имел IQ 120, Марина IQ 130, Дженнифер IQ 140.
??? Кто из них разбогател через 15 лет после окончания школы?
+++ нельзя сказать ### Да, это невозможно сказать, ибо богатство больше определяется случаем, чем целенаправленными усилиями. IQ тут не влияет. Кроме того, мы даже не можем сказать, кто из них стал за 15 лет умнее (ибо кто-то мог получить хорошее высшее образование, а кто-то так и остался неучем – и никакой IQ тут не поможет). С другой стороны, статистика говорит, что у Дженнифер в плане «разбогатеть» шансы больше!
–– разбогатеет Дженнифер, у неё IQ выше всех ### нет, богатство и IQ не непосредственно связаны друг с другом. Во-первых, интеллект можно поднимать образованием, а во-вторых, богатство больше зависит от случая – чтобы стать богатым, не нужно иметь сверхвысокий IQ, достаточно не делать грубых ошибок, и чтобы удача была на твоей стороне. Поэтому нельзя сказать, кто разбогатеет. Может быть, и Дженнифер, но это определяется отнюдь не только её высоким IQ.
–– разбогатеет Марина, у неё средний IQ, поэтому у неё всё сбалансировано ### Нет, нельзя сказать, кто разбогатеет. Богатство практически не зависит от IQ, а «всё сбалансировано» – это вообще непонятно, что имеется в виду.
??? Кто из них стал самым успешным учёным, если известно, что все трое пошли в науку?
+++ нельзя сказать ### Да, это невозможно сказать, ибо успех в науке больше определяется случаем, упорством, организованностью, задействованием компьютеров, но не IQ.
–– лучше всех станет Дженнифер, у неё IQ выше всех ### нет, нобелевские премии получают учёные не с самым большим IQ, равно как разброс по IQ среди именитых и продуктивных учёных весьма велик. Может быть, великим учёным станет именно Дженнифер, но не по причине её высокого IQ.
Мышление – это функция/поведение/назначение интеллекта
Мышление – это поведение интеллекта, его функция. Интеллекты бывают разной направленности (удачные для разных классов проблем, которые только можно представить во вселенной – помним, что вычислители неодинаково эффективны для разных классов вычислений, теорема об отсутствии бесплатного обеда), разного калибра/силы/уровня/общности/эффективности в части «отращивания» разных видов прикладного мастерства. Учим интеллектам разной направленности и силы – учим мышлению разной направленности и силы. Качество мышления обученного нами интеллекта мы должны смотреть не на знакомых ему в ходе обучения ситуациях, и даже не на знакомых нам, его учителям, ситуациях, а на незнакомых ситуациях – на решении проблем, которые ранее ещё не встречались. И не в условиях «экзамена», а в условиях реальной жизни, в реальных проектах. Интеллект – это когда ты изучаешь что-то новое, научаешься новым мыслительным операциям, которые потом войдут в прикладное мастерство.
А что же с мышлением в ходе решения прикладных задач? Если будут затыки/проблемы, то это будет мышление. Если просто вы ещё и ещё раз будете решать знакомую вам задачу, то это будет не мышление. Мышление – это когда один алгоритм-интеллект составляет другой алгоритм-объяснение, кодирует правила рассуждений в объяснениях для незнакомой ранее предметной области. Если же просто производится работа прикладного вычислителя-мастерства, то в нашем случае это прикладные рассуждения, работа уже выученного робота, автоматизм. Конечно, это очень условное разделение, но оно кажется полезным, если обсуждать, каким образом прирастают знания и умения агентов. Прирост знаний – результат мышления, которое с учётом выхода «вычислений» в физический мир (эксперименты) называют «познание», а в машинном интеллекте предпочитают называть learning.
Конечно, мышление включает «просто рассуждения»/inference! Без этого никак! Это всё вычисления как операции над изменениями информации, записанной в памяти, причём эти операции делаются по определённым «правилам вывода/рассуждений/inference» – это и есть «рассуждения»/inference. Но вот использование знаний, полученных мышлением – это «просто рассуждения», а не «рассуждения мышления». Нам просто удобно разделить рассуждения::вычисления на происходящие при мышлении интеллекта и происходящие при пользовании прикладным мастерством. Так что интеллект можно задействовать для улучшения не только прикладного мастерства, но и рассуждений самого интеллекта, отрастить себе новую версию какого-то мыслительного мастерства, или даже отрастить её не в себе, а в инструменте, например, компьютере – или даже в нанятой для этих рассуждений фирме! И всё это оперирование с практиками требует интеллекта.
Если вы умеете читать, то вы просто читаете, задействуете привычное мастерство чтения, а не мыслите про чтение. Если вы умеете считать, то вы просто считаете. Работа интеллекта, мышление нужно было, когда вы знакомились с чтением и письмом, осваивали эти дисциплины. Мышление у вас работает в вузе, когда вам нужно разобраться за пару месяцев с очередной парой толстых томов с формулами. А когда вы уже пятый год на работе просто применяете эти формулы, вы это делаете автоматически, мышления не происходит – пока вы не встречаетесь с проблемой, которой раньше не было. Только в этот момент вы включаете мозг, ту его часть, которая ответственная за интеллект. И эта часть начинает работать – эта работа и есть мышление. Если проблем долго нет, то мозг пластичен: мышление не включается, пластичный мозг потихоньку деградирует, сила интеллекта потихоньку падает. В текущем году это падение с лихвой компенсировано информационно-коммуникационными технологиями: раньше нужно было «придумать решение проблемы», сегодня нужно «не забыть погуглить решение проблемы». Проще простого перейти в режим неинтеллектуальной обезьянки, которая проблемы не решает, но бодро щёлкает задачки, на которые она была надрессирована раньше – и так живёт годами, пока не окажется, что интеллект совсем зачах, прошивка мозга устарела, жизнь несётся мимо, и непонятно как вернуть те времена, когда интеллект в ходе обучения и решения проблем непрерывно усиливался, а не деградировал. Интеллект должен расти всю жизнь, это не дело, когда мышлением люди занимаются последний раз в вузе!
Напомним, что поведение вычислителя определяется не только и даже в силу универсальности вычислителей, не столько аппаратурой (хотя скорость работы аппаратуры и физика в основе работы аппаратуры – биологические нейроны, классическая электроника, квантовые явления влияют на поведение вычислителя), сколько программным обеспечением, «софтом». Тезис Тьюринга-Чёрча-Дойча про универсальность вычислителя говорит, что все вычислители независимо от физической их природы умеют вычислять ровно столько же видов функций, сколько простейшая машина Тьюринга, просто скорость вычисления будет разная. Этот тезис подробно раскрывается Дэвидом Дойчем в его книжках. И вообще, граница между аппаратурой и софтом весьма размыта.
Мы это для случая интеллекта-вычислителя и мышления как его вычислений формулируем так, что интеллект может быть не только врождённый «аппаратный» (человеческий, машинный, человеко-машинный, коллективный для людей и машин как аппаратных вычислителей, пришедших «с завода», без «предустановленного софта», необразованных), но и выученный/learned. И машины, и люди, и даже коллективы должны быть обучены, чтобы в них появился «софт» алгоритмов сильного интеллекта. Врождённого интеллекта никогда не хватает!
Можно говорить как об усилении интеллекта (вычислитель как функциональный объект), так и об усилении мышления (поведение вычислителя, его функция) – по сути, это одно и то же. «Мышление» неуловимо, как и любое поведение/работа: процессы сложно представлять, их сложно обсуждать. А интеллект как функциональная часть мозга, ответственный за освоение нового мастерства – вполне понятно, как о нём думать. В нужный момент, при появлении новой задачи, он включается, и начинает мыслить, то есть мастерить другую функциональную часть мозга, которая называется «прикладное мастерство» и будет ответственна за рассуждения по решению «на автомате» какого-то класса прикладных задач. Или даже какое-то мастерство (например, в логике) может быть ответственно за решение «на автомате» задач самого интеллекта! Поэтому развиваем интеллект (в инженерии было бы «создаём и развиваем», но мы не создаём врождённый интеллект в людях, а только развиваем его. Но в случае AI мы этот интеллект ещё и создаём), а уже потом развитый/усиленный интеллект проявляет сильное мышление во время его использования.
Всё, конечно, не так просто. Мы говорим про функциональную часть мозга, или функциональную часть компьютера, или функциональную часть мозга и компьютера вместе (гибридный интеллект человека и компьютера), или функциональную часть мозгов и компьютеров группы людей, да ещё и с неизвестным сегодня науке способом реализации конструктивными частями – анатомическими структурами мозга. Разве что в случае компьютеров тут можно рассказывать, как именно происходит мышление или рассуждения, но и тут есть оговорки: если речь идёт о компьютерных нейронных сетях, то до сих пор не очень понятно, как именно они работают. Но главное: никакой мистики, никакой психологии! Мышление, интеллект, правильные рассуждения, мастерство – обо всём этом мы можем говорить инженерно, и включать в рассуждения не голого человека, и обязательно одного, а команды людей с их компьютерами. И обсуждать как познание (обучение и исследования, образование и науку), так и работу с достижением целей на основе уже познанного: приложение мастерства.
Важно различать в обучении то, что ведёт к усилению интеллекта (знаний о том, как получать знания, как решать проблемы) и что ведёт к увеличению объёма прикладных знаний (знания о том, как решать какие-то известные классы задач, например, «умножать столбиком, если под рукой нет калькулятора, хотя сегодня калькулятор под рукой есть всегда»). При всей условности различения этих знаний, для образования нужно приоритетно выбирать знания по усилению интеллекта, то есть знания практик интеллект-стека: трансдисциплины интеллект-стека и инструменты (прежде всего моделеры) для поддержки рассуждений по этим трансдисциплинам. Это позволит решать всё более и более сложные проблемы, в том числе проблемы, связанные с развитием практик самого интеллект-стека.
Чему учиться уже образованным?
Занимаясь парой-тройкой прикладных практик, умнее не станешь, интеллект не разовьёшь. Для усиления интеллекта надо заниматься трансдисциплинами: сначала просто освоить лучшие их версии, известные на сегодняшний день, а потом пытаться решать проблемы создания новых версий трансдисциплин интеллект-стека, которые будут лучше сегодняшних (то есть заниматься мышлением по поводу самого мышления).
Трансдисциплины могут быть неосознаваемые «народные», «самопальные» («здравый смысл», а не математическая логика), или наоборот – хорошо осознаваемые лучшие известные на данный момент человечеству, SoTA. Много ли таких SoTA трансдисциплин вы изучали в школе, бакалавриате, магистратуре традиционной государственной системы образования? Можно поспорить, что ничтожное количество. Вот физкультура там была предметом, который понятным образом влияет на качество последующей жизни: здоровое тело может долго поддерживать ясность внимания, меньше уставать за полный рабочий день. Но даже физкультура (главным образом командные игры: баскетбол, волейбол, и немного лёгкая атлетика) не подавалась для этих целей. А для чего? А непонятно для чего! Для сдачи норм ГТО («готов к труду и обороне»), рудимент эпохи примата физического труда и милитаристской организации общества.
Большинство других предметов имели более чем прикладное значение (даже физика и математика!), сегодня их знание не помогает ориентироваться в непрерывно меняющейся жизни, не используется никак. Когда вы в последний раз задействовали знание различия дифракции и интерференции из курса оптики или закона Кирхгофа из раздела «Электричество» школьного курса физики? Сходу можете сказать, чем отличается момент инерции и импульс? А это вы всё учили как «базовые знания, которые пригодятся в жизни»! Ну что, пригодились ли в жизни, или пригодились только при сдаче экзамена и при изучении вузовского курса физики, который так же в жизни никак не пригодился? А учили ли вас логике как искусству правильных рассуждений, и если таки случайно учили, то сколько времени от времени всей школьной и вузовской программы? И какой версии логики вас учили? Аристотелевская логика ведь давно была «уволена» примерно так же, как была уволена теория флогистона и алхимия: она плохо работала! Нашлись варианты логики получше, state-of-the-art.
Прошивку интеллекта, полученную «исподволь» (не прямым обучением трансдисциплинам, а путём накопления более-менее случайного опыта при изучении каких-то прикладных дисциплин) в традиционном образовании, нужно менять на современную текущего года, нацеленную на будущую жизнь в условиях полной рабочей неопределённости. Помним, что интеллект работает в условиях, о которых не догадывается ни ученик, ни его учитель.
Вспомним игровую метафору. Мышление как работа интеллекта нужно, чтобы научиться играть разные проектные роли в проектах, как в ролевых играх. Мастерство в каких трансдисциплинах, исполнение каких ролей даст нам мастерство в мышлении, то есть мастерство справляться со всё новыми и новыми ситуациями, с новыми и новыми задачами? Ведь каждый раз, когда нам нужно зайти в проект, интеллект должен выбрать подходящее мастерство, сориентировать агента на занятие роли, далее следить, чтобы не было проблем. То есть мы видим агента-киборга внутри проекта в какой-то роли
Мыслительные практики (практики, которые исполняет интеллект) тоже имеют названия ролей, которые занимает агент, чей интеллект выполняет эти практики. И эти практики работают с какими-то функциональными объектами: суть практики в том, чтобы выделять вниманием из пёстрого и мелькающего окружающего и виртуального/ментального/абстрактного миров объекты и проводить с ними какие-то рассуждения по правилам.
Конечно, трансдисциплины интеллект-стека в любой его версии представляют собой плотно сплетённую сеть («клубок») объяснений, в которых они тянут какие-то тематические нити, плотно спутанные между собой. Примерно так об этом говорит Дэвид Дойч в книге «Структура реальности», он там выделяет четыре объяснительные нити, которые он считает самыми важными как лежащие в основе всех других объяснений, да ещё и переплетёнными так, что объяснения каждой из них невозможны без объяснений других нитей:
• Квантовая физика. Дойч считает, что фронтир тут – в интерпретации многих миров Эверетта.
• Эволюционная эпистемология и критический рационализм Поппера
• Вычисления и универсальный компьютер Тьюринга
• Меметика и эволюция мемов Докинза
В наш вариант интеллект-стека всё это вошло, но мы не просто перечисляем какие-то объяснения. Мы, как и Дойч, говорим, что эти объяснения дают возможность бесконечного познания, в том числе бесконечного усиления интеллекта, но мы ещё и говорим, что этим объяснениям надо целенаправленно учить и людей, и AI. Поэтому у нас есть задача нарративизации, то есть последовательного изложения этого клубка идей в развёрнутом тексте учебных курсов. Мы весьма условно растягиваем клубок объяснений разных трансдисциплин на отдельные части и располагаем их весьма условно в виде стека. Мы просто очень грубо оценили, что трансдисциплины/объяснения верхних уровней стека используют трансдисциплины/объяснения более низких уровней больше, чем наоборот (помним, что это плотно перепутанная сеть объяснений!).
Мыслительное мастерство поэтому нельзя приобрести, если просто «выучить всё снизу вверх». Нет, поскольку там клубок, то для того, чтобы последовательное изложение трансдисциплин как-то собралось в голове в связную картину мира, потребуется специальная организация учебного курса. Упоминание понятий, которые ещё не объяснены, неизбежно – и поэтому либо потребуется дважды проходить короткую последовательность курсов, чтобы откорректировать на втором проходе непонимание первого прохода, или иметь длинную якобы «однократную» версию с неизбежными повторами.
Жизненное мастерство агента в целом как мастерство отличной жизни (в том числе жизни компании! Жизнь – это просто поведение агента в ходе его существования), включает:
• непрерывно развиваемое прикладное мастерство («компетенции» для рынка, в том числе для рынка труда, если речь идёт о людях, чтобы мочь получать ресурсы для жизни), и
• мыслительное мастерство/интеллект, как врождённый (который не надо учить, доступный в момент создания агента), так и познанный. Если речь идёт о человеке, то это получаемый от родителей (гены врождённого интеллекта) и в его научаемой части в детском саду, школе, бакалавриате, в семье, в кружках, самообразованием. Мы считаем, что это владение трансдисциплинами из интеллект-стека на некотором уровне беглости, причём и личное владение, и командное владение, в том числе с учётом доступа к AI и интернету.
План действий по приобретению жизненного мастерства (очень условно, но речь идёт и о людях, и о компьютерных AI, и даже о фирмах с их гибридным коллективным интеллектом, это рассуждение общее для агентов любой природы):
1. Сначала нужно обучиться сильному мышлению, то есть поднять силу своего интеллекта, стать умным (если это фирма, то нанять умную команду и AI поумней, или нанять любую команду, но затем дать ей фундаментальное образование).
2. Затем нужно научиться каким-то прикладным практикам, за выполнение которых будут платить деньги в проектах. Прикладные практики дадут деньги, на которые можно будет продолжать что-то делать. Что делать? Избегать неприятных сюрпризов, в том числе на уровне человечества в целом (скажем, принимать участие в организации политической жизни без войн, добиться решения проблемы биологического бессмертия, решить проблему ядерного синтеза для получения больших количеств энергии, космического расселения для предотвращения рисков столкновения цивилизации с астероидами, и т.д.).
Выбор того, в какое мыслительное или прикладное мастерство в каких количествах инвестировать своё учебное время, делается практикой стратегирования (она описана в курсе «Системный менеджмент», это практика общая для стратегирования агента-личности и агента-фирмы).
За силу интеллекта (мастерство в мышлении, мыслительное мастерство) не платят, платят за приложение прикладного мастерства, которое с интеллектом связано только тем, что сильный интеллект позволяет его приобрести много быстрее. Прикладное мастерство придётся менять довольно часто, ибо практики устаревают. Нельзя ожидать ни от людей, ни от компьютеров, ни даже от фирм, что выучился какой-то профессии – и это на всю жизнь. Нет, новым прикладным практикам надо учиться всю жизнь, а для этого нужен сильный интеллект.
Если бросить все силы только на получение прикладного мастерства, чтобы стать в нём лучшим в мире, и проигнорировать фундаментальное образование (то есть дисциплины интеллект-стека), то жизнь в целом лучше не станет: менять проекты (оказываться в новой предметной и организационной ситуации), и в связи с этой сменой проектов прикладное мастерство (исполняемую в проекте основную роль) придётся довольно часто, ибо мир не стоит на месте, так что быть прикладным мастером без мастерства в мышлении (то есть без сильного интеллекта) не получится. У глупых людей (людей с низким интеллектом) возможности в жизни сильно ограничены, равно как и у глупых фирм!
Ситуация осложняется тем, что практики интеллект-стека тоже довольно быстро меняются, прогресс не стоит на месте. Но ситуация облегчается тем, что можно чередовать образование по фундаментальным и прикладным практикам, делать «блинчатый пирог» в своём образовании. Но в любом случае, надо делать это образование непрерывным, заниматься им всю жизнь, развиваться, приобретая новые «фичи», то есть научаясь выполнять всё новые и новые практики. Это относится к людям, к AI, к коллективам людей и AI (организациям), сообществам, человечеству в целом.
Так что получаем сначала мастерство в мышлении (сильный интеллект на базе освоения практик интеллект-стека), а затем используем его по прямому назначению: разбираемся во всё новых и новых проблемах (и быстро обучаясь, если знания уже где-то есть, или самостоятельно проводя исследования, если знаний ни у кого на планете нет). Это даёт возможность исполнять всё новые и новые роли (их жизнь будет подкидывать с избытком), решать всё более и более трудные проблемы, причём за деньги. Бесконечно развиваемся при помощи интеллекта, наносим непоправимую пользу человечеству прикладным мастерством, и нам за это платят! Это и есть жизнь, задействование жизненного мастерства!
Интеллект, конечно, может быть использован и для усиления самого себя, мастерством собственного мышления можно поднимать своё мастерство мышления ещё выше. Каждый агент сам решает, сколько времени «мозговые мышцы» качать, развивая мозг с экзокортексом в части трансдисциплин, а сколько времени использовать текущую силу интеллекта для прикладной работы в проектах. Хотите небольшие результаты прямо сейчас, или большие немного погодя? Синицу в руках прямо сейчас, или журавля в руках – но попозже? Да, это вечный вопрос выбора между познанием и использованием знания, exploration против exploitation, классическая проблема, не имеющая математического решения84. И это вопрос как для людей, так и для AI, так и для компаний.
Упражнение:
оценка мыслительного мастерства
Оцените по десятибалльной шкале, насколько вас научили мыслительному мастерству в вузе, и сколько вы добавили самообразованием (в сумме 10 баллов на вуз+самостоятельное изучение). Это ничего, что вы не очень понимаете пока содержание трансдисциплин интеллект-стека: попробуйте догадаться по тем функциональным объектам, которые являются предметом этих трансдисциплин. Дальше в курсе будут приведены краткие пояснения по каждой трансдисциплине, но сначала попробуйте оценить, насколько вы владеете культурой современного мышления, практиками интеллект-стека.
Особую пикантность моменту придаёт то, что SoTA практик интеллекта как мыслительного мастерства кардинально поменялось уже в 21 веке. Хорошее фундаментальное образование прошлого века работает сегодня примерно так же хорошо, как в физике работала теория флогистона до прихода современной термодинамики. То есть это образование 20 века вроде как работает, но по современным критериям очевидно, что работает плохо! Не может образование прошлого века сегодня работать хорошо! Фундаментальное знание изменилось! Теория флогистона когда-то отлично работала, потому что никто не знал, что можно вычислять точнее. Затем теория флогистона была заменена в физике более современными теориями, которые постепенно (не сразу!) попали и в массовое образование. А вот набор практик интеллект-стека в их современном состоянии пока в массовое образование не попали. Люди по-прежнему думают, что аристотелевская логика и есть та логика, которой нужно пользоваться. Но нет, математическая логика давно заменила аристотелевскую логику, в логике аристотелевская логика имеет примерно такой же статус, как теория флогистона: относится к истории логики, а не к современной логике, как и теория флогистона относится к истории физики, а не современной физике.
И не забываем, что после того, как интеллект отработал и вы сориентировались в ситуации, вам нужно будет задействовать своё прикладное мастерство: деньги-то вам заплатят за выполнение работы, а не за хорошее понимание ситуации. Если вы (или ваш компьютер с AI, или ваша фирма) торгуете хорошим пониманием ситуации, то вам придётся достичь и в этом уровня прикладного мастерства, иначе проиграете конкурентам!
Интеллект против культа карго
Интеллект работает на простом принципе: он фильтрует многообразие окружающего мира, концентрируя внимание на определённых его объектах и отношениях (или в случае перехода на конструктивные онтологии – объектах и операциях с ними). Интеллект даёт чеклист – что надо заметить в мире и его моделях, на что обратить внимание, о чём не забыть подумать, а что наоборот – откинуть. Только самое важное, только самое надёжное. Все трансдисциплины – это такие чеклисты для определения самого важного и надёжного в самых разных ситуациях.
Вы заходите в комнату с работающими людьми, вы хотите разобраться в том, что они делают. Системное мышление подсказывает: эти люди занимаются какой-то системой, выясни у них, какой. Это и есть «проект» по созданию и развитию какой-то системы. Ты выясняешь – ибо если это атомная электростанция, то это один разговор, а если вечер фортепианной музыки – то разговор будет совершенно другой. Все эти люди в проекте по поводу этой системы играют какие-то роли и выполняют какие-то практики, и вы быстро ориентируетесь, с кем о чём разговаривать и как их заинтересовать в ваших проблемах. Методология позволяет внятно описать саму деятельность, а не мычать что-то на эту тему. Системное мышление подсказывает: они тут сидят в том числе и потому, что какие-то внешние по отношению к этому проекту люди играют какие-то внешние проектные роли. Вы интересуетесь этим, и становится понятно, зачем эти собравшиеся в комнате люди собрались, что они делают, вы можете как-то предсказать результат проекта и принять решение о вашем дальнейшем участии.
Если ситуация так и осталась непонятной, то вы начинаете выдвигать какие-то догадки и проверять их. Это познание/исследование: вы абсолютно осознанно выдвигаете эти догадки/гипотезы, осознанно их проверяете. Вы не путаете физический мир и описания, знание онтологии в том числе и про это. Иногда даже начинаете заниматься созданием новой прикладной дисциплины (ибо в совсем новых проектах может встретиться деятельность, которой раньше не было), задействуя исследование и методологию.
При этом вам хватает остроты внимания на полный рабочий день, это своё внимание и память вы поддерживаете записями в компьютере – это даёт мастерство собранности. Иногда вы строите какие-то модели ситуации (или задействуете модели сидящих в комнате ваших собеседников), компьютер проводит над ними вычисления – это вы используете мастерство моделирования, включающее в себя и мастерство понятизации, и семантики, и теории понятий, и логики. А ещё вы можете объяснить другим людям ваше понимание, это даст рациональность. Сможете убедить их сделать что-то полезное для улучшения ситуации – это даст риторика.
Понятия каждой упомянутой трансдисциплины делают именно это: заставляют о чём-то думать, а что-то из мышления выкидывать в силу неважности, экономить мышление. Если у вас нет современной версии интеллекта, который даёт вам лучшие на сегодня способы мышления, то весьма вероятно, что вы создадите в проекте мыслительный культ карго85.
Во время второй мировой войны в Меланезии было замечено, что дикари строят буквально из коры и веток модели самолётов. Почему? Потому что на самолётах прилетали посланники богов, и давали им дары богов: консервы, одежду (cargo/груз на самолётах). Так что они обращали внимание на самое важное: больших птиц из непонятных материалов. Они делали таких птиц, и ожидали, что это привлечёт ушедших после окончания войны посланников богов, и они появятся из этих птиц и опять одарят их разными полезными диковинами.
Если вы не имеете понятийного мышления, привлекающего внимание к действительно важным объектам (об их важности известно из опыта человечества, данного в виде лучших на сегодняшний день объяснений/теорий/трансдисциплин), то вы в незнакомой вам ситуации неизбежно создадите прикладной карго-культ! Соорудите себе мышление из коры и веток, но оно не сможет летать.
Интеллект для того и нужен, чтобы вы смотрели не глазами дикаря, а глазами современного человека, вооружённого самым изощрённым мышлением, которое придумала человеческая цивилизация на настоящий момент.
Дикарский мир 21 века: переучиваться самому, жалеть и учить других
Дикарей нужно жалеть и учить. Население глобуса в его большинстве (кто думает только о какой-то одной стране, тот думает местечково) автор объявляет агрессивно и неполиткорректно дикарями. Почти всё это население училось в школе. Огромное число этих дикарей училось ещё и в вузах, а некоторая часть представляет собой седовласых профессоров или даже академиков. Всех их надо жалеть и учить, жалеть и учить, причём и профессоров, и академиков тоже (хотя в каких-то очень узких предметных областях профессор и академик могут быть вполне на фронтире, но мы помним, что прикладное даже фронтирное мастерство – это ещё не интеллект, интеллект занимается как раз новым и неизведанным и его свойством является универсальность/широта, а не узость и прикладность).
Ликвидация безграмотности осталась кампанией уже вековой давности, когда за парты садились и стар и млад, когда читать-писать никто не умел. А сейчас читать-писать-считать все умеют. Но лучшие известные цивилизации способы мышления изменились существенно в 21 веке, и культурные и передовые профессора двадцатилетней давности оказались дикарями в 21 веке точно так же, как дикарями в начале 20 веке оказались преподаватели теорий витализма и флогистона. Изменилось всё, даже сам 21 век уже обычно не пишут римскими цифрами, так его писали только старики, пришедшие из XX века.
Автор лично попал в группу студентов, которые были вынуждены сдавать два экзамена по квантовой химии: один по с трудом уцелевшей в СССР, но потом всё-таки списанной в утиль по старости теории резонанса86, а другой по относительно молодой тогда (конец 70-х двадцатого века) теории молекулярных орбиталей87. Это был последний год, когда теория резонанса преподавалась в вузах, и нам было объяснено, что такова традиция, и её сходу не поменяешь: учителей быстро не переучишь, и нам просто не свезло: сдавать экзамен на знание выкинутой на свалку научной истории дисциплины надо по не спрашивайте каким соображениям – социальным, историческим, административным, но ни разу не научным, не рациональным. Это было ещё в прошлом веке, теории сменяли друг друга не спеша, не было интернета, не было свободного доступа к научным журналам через планшет в парке на скамеечке.
Сегодня ровно такое массовое преподавание дисциплин со свалки научной истории происходит не с узкими прикладными теориями, но с фундаментальными, лежащими в основе светского/научного мировоззрения трансдисциплинами.
Современные «мировоззренческие» теории оказываются зубодробительными для почтенной профессорской публики примерно как сама идея современной экспериментальной науки была зубодробительна для тогдашней почтенной публики где-нибудь во времена Галилео Галилея (1564—1642), а идея о том, что не только палец давит на стол, но и стол давит на палец была неподъёмна для учёной публики во времена Исаака Ньютона (1642—1727).
Объяснить мировоззренческие изменения 21 века сложно. А без этого непонятно, в чём обвинять просвещённое и вроде как рационально (по меркам прошлого века, но не нынешнего) мыслящее население глобуса. Ведь ещё пару десятков лет назад они и были носителями state-of-the-art мышления! Они были лучшими! Но state-of-the-art, «лучшее на данный момент» жёстко привязано ко времени. То, что хорошо вчера, уже не так хорошо сегодня: в трансдисциплинах всё время появляются новые приёмы мышления, новые объяснения реальности.
Новое содержание старых мыслительных трансдисциплин интеллект-стека сегодняшним образованным людям непонятно, как непонятна была ньютоновская физика во времена Ньютона – и нельзя было даже объяснить, зачем она была нужна, аристотелевской физики ведь вполне хватало! Да ещё и Галилей со товарищи внёс в физику много нового (в том числе сделал физику экспериментальной наукой), прогресс физики был налицо, зачем вся эта новомодная ньютоновщина-лейбницевщина в те далёкие времена? Все эти новомодные «интегралы» – зачем?! Мысль о том, что этому будут через сотню-другую лет учить в средней школе всех подряд, учёным того времени даже в голову не могла прийти.
Сегодня появилось новое знание, и даже не по физике и не по математике, а по мировоззрению, лежащему в их основе – и ему нужно опять всех учить, и учить всех подряд, в школе, вузе и за их пределами. Промывать населению глобуса мозги, вымывать из них мировоззренческие флогистоны и витализмы прошлого двадцатого века. Нужно ли продолжать учить физике и математике? Да, но и в них тоже другому содержанию: они тоже поменялись, и существенно.
Трансдисциплины: название то же, содержание уже другое
Как соотносимся мы, любимые, физический мир вокруг нас и его модели/теории (ментальные, компьютерные и даже физические)? Слово «солипсизм» тут не надо вспоминать, волнует более насущное: вот у двух разных инженеров разные информационные модели одной и той же атомной станции – как их соотнести друг с другом? А у двух менеджеров разные версии вроде бы как одной и той же методологии управления проектами разработки софта SCRUM – как им договориться? Как мы узнаём, какие модели/теории мира верны, и можно ли вообще говорить о «верности» моделей? Опять же, речь не идёт о «научных доказательствах». Всё много прозаичней: постановка диагнозов, предсказание погоды, моделирование беспилотных автомобилей, предпринимательские гипотезы. И конфликты, возникающие у людей по их поводу, и бесконечные переговоры в попытках совместить разные варианты моделирования одной и той же ситуации. Интеллект-стек в его современном виде – это прикладное мировоззрение, ни разу не «история философии»! Так, слово «онтология» в нём ровно то же, что в 1920 году, но содержание дисциплины полностью другое!
Кто бы мог подумать, что работы E.T.Jaynes от 1998 года формально (то есть математически! доказательства с формулами!) покажут возможность вероятностного вывода/обновления по теореме Байеса из книжки 1763 года, известной в современной формулировке, сделанной Лапласом в 1812 году! И это даст мощный толчок работам в области искусственного интеллекта, и выдвижению гипотезы о том, что человеческий мозг – это именно байесовский вычислитель? Кто бы мог подумать, что работы, в которых показаны ограничения суждений о мире на основании чисто статистики (а хоть и «новомодной» байесовской, а не намертво устаревшей традиционной) будут выполнены уже в 21 веке. Ключевая работа Judea Pearl с доказательством того, что причины и следствия нельзя вывести из данных, и для рассуждений о них должны рассматриваться контрфактические рассуждения, вышла в 2000 году, пересмотрена в 2009 году и пересказана простым языком для широкой публики только в 2018 году как «Книга Почему: новая наука причины и следствия»88.