Достучаться до небес. Научный взгляд на устройство Вселенной Рэндалл Лиза

Самый популярный кандидат на роль «теории всего» — так называемая теория струн. Первоначально в ней речь шла о том, что на определенных масштабах фундаментальные частицы заменяются на фундаментальные струны. Сегодня нам известно, что в теории струн помимо собственно струн фигурируют и другие фундаментальные объекты (в главе 17 мы узнаем об этом больше), а ее название иногда заменяют на более широкое (но менее определенное) — М–теория. В настоящее время эта теория — самое многообещающее направление исследований квантовой гравитации.

Однако теория струн ставит перед исследователями громадные концептуальные и математические проблемы. Никто пока не знает, как сформулировать теорию струн, чтобы ответить на все вопросы, с которым должна иметь дело теория квантовой гравитации. Более того, размеры струн порядка 10_33 см, скорее всего, неподвластны экспериментам.

Поэтому возникает резонный вопрос: стоит ли тратить время и ресурсы на исследования в области теории струн? Мне очень часто задают этот вопрос. Зачем изучать теорию, из которой вряд ли следует хоть чтонибудь, что можно проверить экспериментально? Некоторые физики считают, что достаточным основанием для этого является математическая и теоретическая непротиворечивость теории. Эти люди надеются повторить успех Эйнштейна, которому удалось разработать общую теорию относительности на основе почти исключительно теоретических и математических построений.

Другим мотивом к изучению теории струн — мотивом, который лично мне представляется очень важным — является то, что она позволяет нам по–новому взглянуть на идеи, следствия из которых могут проявляться и на измеримых расстояниях. Приведем две такие идеи: это суперсимметрия и теории дополнительных измерений, о которых мы тоже поговорим в главе 17. В физике элементарных частиц эти теории имеют экспериментальные следствия. Более того, если некоторые теории, связанные с дополнительными измерениями, подтвердятся и смогут объяснить явления, наблюдаемые на энергиях БАКа, то можно будет рассчитывать на получение данных по теории струн тоже на гораздо более низких энергиях, чем считается в настоящий момент. Открытие суперсимметрии или дополнительных измерени само по себе не докажет теорию струн, но это будет сильный аргумент в пользу работы над абстрактными идеями, у которых нет прямых экспериментально проверяемых следствий.

ГЛАВА 6. «ВИДЕТЬ» — ЗНАЧИТ ВЕРИТЬ

Ученые смогли определить, из чего состоит вещество, только после того, как появились инструменты, позволившие заглянуть в его глубины. Слово «заглянуть» здесь означает не прямые наблюдения, а методики непрямых исследований, которые используются для зондирования крохотных расстояний, недоступных невооруженному глазу.

Сделать это без труда удается редко. Тем не менее, несмотря на проблемы и интуитивно непонятные результаты, иногда получаемые в ходе экспериментов, окружающая действительность реальна. Законы природы, даже те, что действуют на крохотных расстояниях, порождают измеримые следствия, до которых рано или поздно добираются самые изобретательные исследователи. Наши сегодняшние знания о веществе и его взаимодействиях — это квинтэссенция многих лет наблюдений, озарений, инноваций и теоретических разработок, позволяющих нам непротиворечиво объяснить огромное разнообразие экспериментальных результатов. При помощи непрямых наблюдений, начало которым положил несколько веков назад Галилей, физики выяснили, что скрывает вещество в своих глубинах.

Теперь мы поговорим о современном состоянии физики элементарных частиц, о теоретических прорывах и экспериментальных открытиях, которые привели нашу науку к ее нынешнему состоянию. Конечно, рассказ об этом будет похож скорее на сухой список: мне придется перечислить ингредиенты, входящие в состав вещества, и рассказать, как каждый из них был открыт. Список станет куда интереснее, если не забывать о том, что эти разнообразные ингредиенты на разных масштабах ведут себя очень по–разному. Кресло, в котором вы сидите, в итоге можно разложить на эти элементы, но, для того чтобы разобраться в его подлинной структуре, понадобилась длинная цепочка открытий.

Ричард Фейнман в свое время пошутил, говоря об одной из своих теорий: «Если она вам не нравится, отправляйтесь куданибудь в другое место — может быть, в другую Вселенную, где правила проще…» Возможно, некоторые утверждения или предположения, которые кажутся нам истинными, слишком громоздки и невнятны. Но человеческое нежелание их принимать, не изменит того факта, что природа устроена именно так — сложно и запутанно.

МАЛЫЕ ДЛИНЫ ВОЛН

Маленькие расстояния кажутся нам непривычными. Мы не можем узнать, что происходит на самых маленьких расстояниях, без специальных крохотных инструментов. Страница (или экран), которую вы сейчас читаете, выглядит совершенно не так, как элементы, из которых состоит ее вещество. Все дело в том, что человеческое зрение по природе своей основано на наблюдении видимого света. Этот свет излучают электроны, находящиеся на орбитах вокруг центров атомов. Как показано на рис. 14, длина волны видимого света не настолько мала, чтобы позволить нам заглянуть внутрь ядра.

Нам нужно быть умнее — или смелее — и определить, что происходит в атоме на крохотных расстояниях, сравнимых с размером ядра. Для этого необходимо излучение с гораздо меньшей длиной волны, чем у видимого света. Поверить в это, пожалуй, нетрудно. Представьте себе воображаемую волну, длина которой равна размеру Вселенной. С чем бы эта волна ни взаимодействовала, информации от этого взаимодействия не хватит, чтобы обнаружить в пространстве хоть чтонибудь. Если в этой волне не будет более коротких колебаний, у нас не будет возможности определить — одной только гигантской волной никак не обойтись, —что какойто определенный объект находится в какомто определенном месте. Это как если накрыть кучу вещей мелкой сетью и спросить, где в этой куче находится ваш бумажник. Вы не сможете его отыскать без инструмента с достаточным разрешением, который позволил бы заглянуть внутрь кучи и различить там более мелкие вещи.

Если имеешь дело с волнами, нужно, чтобы их гребни и впадины располагались на правильном расстоянии, примерно соответствующем размеру объекта, который ученые пытаются рассмотреть. Волна в этом смысле подобна сети, размер ячейки которой соответствует длине волны. Если известно только, что в сети чтото есть, это «чтото» гарантированно находится в пределах области, по размерам соответствующей размерам сети. Чтобы узнать о положении объекта точнее, потребуется либо сеть с меньшими ячейками, либо другой способ поиска неоднородностей в более мелком масштабе.

Квантовая механика говорит нам, что по характеристикам волны можно судить о вероятности обнаружения частицы в конкретной точке пространства. Волны, о которых идет речь, могут быть обычными световыми волнами, а могут оказаться теми, которые несет в себе каждая отдельная частица. Длина такой волны говорит нам о том, на какое минимальное разрешение мы можем рассчитывать, если будем зондировать малые расстояния с помощью частицы или излучения.

Квантовая механика также утверждает, что короткие волны требуют высоких энергий. Дело в том, что с энергией связана частота, и волны самой высокой частоты — с самой короткой, соответственно, длиной — несут в себе максимальную энергию. Таким образом, квантовая механика связывает высокие энергии и малые расстояния и подсказывает нам, что только эксперименты, оперирующие высокими энергиями, могут помочь ученым проникнуть в тайны внутреннего устройства вещества. Именно по этой принципиальной причине для зондирования самой сердцевины вещества и его фундаментального строения нам необходимы устройства, способные разгонять частицы до высоких энергий.

О том, что высокие энергии позволяют исследовать крохотные расстояния и взаимодействия на этих расстояниях, говорят и квантово–механические волновые соотношения. Чем меньшие расстояния мы хотим рассмотреть, тем более высокие энергии — и, следовательно, более короткие волны — нам потребуются. Квантово–механический принцип неопределенности, утверждающий, что малые расстояния связаны с большими импульсами, получает дополнение в лице специальной теории относительности, которая устанавливает связь между энергией, массой и импульсом и делает эту связь более отчетливой.

Ко всему прочему, Эйнштейн научил нас, что энергия и масса взаимозаменяемы и могут превращаться друг в друга. Так, при столкновении частиц их масса может обернуться энергией, поэтому чем выше энергия, тем более тяжелые материальные частицы могут быть получены, так как Е = mc2. Это уравнение означает, что высокая энергия — Е — делает возможным создание более тяжелых частиц с большей массой — m. И эта энергия носит всеобщий характер, из нее может возникнуть частица любого типа, если только она кинематически возможна (иначе говоря, достаточно легка).

Таким образом, высокие энергии, исследованием которых мы занимаемся в настоящее время, — это мостик к меньшим расстояниям и размерам, а возникающие в ходе эксперимента частицы — ключ к пониманию фундаментальных законов природы, действующих на этих расстояниях. Любые новые частицы и взаимодействия, проявляющиеся на малых расстояниях, могут стать ключом к пониманию основы так называемой Стандартной модели элементарных частиц — наших нынешних представлений о самых базовых, самых фундаментальных структурных элементах вещества и их взаимодействиях. Теперь давайте рассмотрим некоторые ключевые открытия, связанные со Стандартной моделью, и методы, которые используют сегодня ученые, чтобы еще немного продвинуться в этом направлении.

ОТКРЫТИЕ ЭЛЕКТРОНОВ И КВАРКОВ

Все объекты в атоме — электроны, обращающиеся вокруг ядра, и кварки, удерживаемые глюонами внутри протонов и нейтронов — были экспериментально обнаружены учеными при помощи Миниатюрных «зондов» с высокими энергиями. Мы уже видели, что электроны в атоме привязаны к ядру силой притяжения противоположных электрических зарядов. Благодаря этой силе энергия системы в целом — атома — оказыватся ниже, чем суммарная энергия отдельных его элементов. Поэтому, для того чтобы выделить и исследовать электроны, ктото должен передать атому достаточно энергии, чтобы его ионизировать — иначе говоря, освободить электроны, оторвав их от ядра. Отдельный электрон для физиков гораздо удобнее: его свойства, такие как заряд и масса, можно исследовать.

Открытие ядра — другой составной части атома — было еще более удивительным событием. Эрнест Резерфорд и его студенты обнаружили ядро в ходе опытов, аналогичных сегодняшним экспериментам с элементарными частицами. Они обстреливали ядрами гелия (которые тогда называли альфа–частицами, потому что о существовании у атомов ядер еще ничего не было известно) тонкую золотую фольгу. Энергия альфа–частиц оказалась достаточной, чтобы Резерфорд смог выявить некие структуры внутри ядра. Он обнаружил, что альфа–частицы, которыми они обстреливали фольгу, иногда отклонялись на значительно больший угол, чем рассчитывали ученые (рис. 20). Они ожидали, что частицы будут равномерно рассеиваться, а вместо этого обнаружили, что некоторые из них отлетают от фольги, будто рикошетят от заключенных внутри тяжелых шариков. Сам Резерфорд описывал это так:

РИС. 20. В эксперименте Резерфорда альфа–частицы (которые, как нам сегодня известно, представляют собой ядра гелия) рассеиваются на золотой фольге. Неожиданно большой угол отражения некоторых альфа–частиц продемонстрировал существование в центре атома концентрированной массы — атомного ядра

«Это было самое невероятное событие из всех, с какими я сталкивался в жизни. Это было почти столь же невероятно, как если бы вы стреляли 15–дюймовым снарядом по листу папиросной бумаги, а снаряд отскочил бы и попал рикошетом в вас самих. После, как следует поразмыслив, я пришел к выводу, что такое отражение должно быть результатом одного–единственного столкновения; я провел расчеты и убедился, что невозможно получить реакцию такой силы, если не взять систему, в которой большая часть массы атома сконцентрирована в крохотном ядре. Именно тогда у меня появилась мысль об атоме с маленьким массивным центром, несущим электрический заряд».

При экспериментальном обнаружении кварков внутри протонов и нейтронов также использовались методы, во многом аналогичные методам Резерфорда, но энергии для этого потребовались намного большие, чем были у его альфа–частиц. Требовался ускоритель частиц. Он должен был придавать электронам — и излучаемым ими фотонам — достаточно высокие энергии.

Первый кольцевой ускоритель элементарных частиц получил название циклотрон, поскольку частицы в нем, ускоряясь, двигались по окружности. Первый циклотрон построил в 1932 г. Эрнест Лоуренс в Университете Калифорнии. Это был очень маленький (около 30 см в диаметре) и слабый по современным стандартам циклотрон. Энергии, которые он позволял получать, даже близко не подходили к уровню, необходимому для обнаружения кварков. Это знаменательное открытие стало возможным лишь после многочисленных усовершенствований конструкции ускорителей; в ходе которых, кстати говоря, было сделано несколько важных открытий.

Задолго до того, как появилась возможность исследовать кварки и внутреннюю структуру атомного ядра, в 1959 г., Эмилио Сегре и Оуэн Чемберлен получили Нобелевскую премию за открытие антипротона (в 1955 г. на бэватроне Лаборатории имени Лоуренса в Беркли). Бэватрон — ускоритель более сложный, чем циклотрон — уже мог доводить энергию протонов до уровня, соответствующего шестикратной массе покоя; этого более чем достаточно для создания пар «протон — антипротон». Протонным пучком на бэватроне бомбардировали различные мишени и (согласно все той же волшебной формуле Е = mc2) получили невиданные прежде разновидности вещества, в том числе антипротоны и антинейтроны.

Вообще, антивещество играет в физике элементарных частиц очень существенную роль, поэтому давайте отвлечемся ненадолго и поговорим об этом замечательном явлении — своеобразном двойнике того вещества, которое мы наблюдаем вокруг. Поскольку заряд любой частицы и соответствующей ей античастицы в сумме дает нуль, вещество при встрече с антивеществом может аннигилировать, то есть взаимно уничтожаться. К примеру, антипротон — одна из форм антивещества — может сливаться с протоном с образованием чистой энергии согласно формуле Эйнштейна Е = mc2.

Британский физик Поль Дирак «открыл» антивещество математически в 1927 г. при попытке отыскать уравнение, которое описывало бы электрон. Единственное уравнение, соответствующее всем известным принципам симметрии, которое ему удалось записать, подразумевало существование частицы с той же массой, что у электрона, но с противоположным зарядом, — частицы, которой до того момента никто никогда не видел.

Дирак в конце концов капитулировал перед уравнением и признал, что эта загадочная частица должна существовать. Американский физик Карл Андерсон открыл позитрон в 1932 г., подтвердив тем самым утверждение Дирака, который сказал както, что «уравнение оказалось умнее меня». Антипротоны — частицы гораздо более тяжелые — были открыты на 20 с лишним лет позже.

Открытие антипротона было важно еще и потому (помимо доказательства существования самой частицы), что наглядно продемонстрировало симметрию вещества и антивещества в природе, которая играет в физическом устройстве нашей Вселенной принципиальную роль. Однако мир наш состоит из вещества, а не из антивещества, и большая часть массы обычного вещества заключена в протонах и нейтронах, а не в соответствующих им античастицах. Для существования нашего человеческого мира — такого, каким мы его знаем, — в количестве вещества и антивещества необходима асимметрия, однако пока нам неизвестно, каким образом она возникла.

ОТКРЫТИЕ КВАРКОВ

С 1967 по 1973 г. Джером Фридман, Генри Кендалл и Ричард Тейлор провели серию экспериментов, которые помогли установить существование кварков внутри протонов и нейтронов. Эксперименты проводились на линейном ускорителе, который, в отличие от прежних бэватронов и циклотронов, ускорял электроны на прямой траектории. Лаборатория в Пало–Альто получила название Стэнфордский линейный ускоритель, или сокращенно SLAC. Электроны, разогнанные на SLAC, начинали излучать фотоны. Эти энергичные — а значит, коротковолновые — фотоны взаимодействовали с кварками внутри атомных ядер. Фридман, Кендалл и Тейлор измерили, как меняется частота взаимодействий с ростом энергии столкновения. Если бы у частиц в атомном ядре не было внутренней структуры, эта частота падала бы. При наличии структуры частота тоже падала, но значительно медленнее. Как и в опыте Резерфорда, приведшем много лет назад к открытию атомного ядра, налетающие частицы (в данном случае фотоны) рассеивались иначе, чем это происходило бы, если бы протон представлял собой просто шарик без внутренней структуры.

Тем не менее даже в экспериментах, проводившихся на необходимом энергетическом уровне, распознать и классифицировать кварки оказалось непросто. Для этого и технологии, и теория должны были достичь такой стадии развития, на которой экспериментальные движения частиц можно было предсказать и понять. Глубокие эксперименты и теоретический анализ, проведенный физиками–теоретиками Джеймсом Бьеркеном и Ричардом Фейнманом, показали, что частота взаимодействий хорошо согласуется с предположением о существовании внутри атомного ядра некой структуры; таким образом было доказано наличие внутренних элементов протонов и нейтронов, то есть кварков. В 1990 г. за это открытие Фридман, Кендалл и Тейлор были удостоены Нобелевской премии.

Никто не мог надеяться на то, что кварки и их свойства можно будет увидеть собственными глазами. В этой области реально применимы только непрямые методы исследований. Тем не менее измерения подтвердили существование кварков. То, что предсказания и измеряемые характеристики хорошо согласуются между собой, а также вполне наглядная гипотеза о кварках говорили в польу их существования.

Со временем физикам и инженерам удалось создать новые, усовершенствованные типы ускорителей, способные разгонять частицы до все более высоких энергий. Чем совершеннее становились ускорители, тем более высокоэнергетические частицы можно было использовать для зондирования структуры вещества — и, соответственно, тем меньшие расстояния исследовать. Открытия, сделанные в этот период, помогли разработать Стандартную модель — ее элементы обнаруживались один за другим.

ЭКСПЕРИМЕНТЫ С НЕПОДВИЖНОЙ МИШЕНЬЮ ИЛИ КОЛЛАЙДЕРЫ?

Эксперименты, аналогичные тем, благодаря которым были открыты кварки, где пучок ускоренных электронов направляется на закрепленный образец вещества, называются экспериментами с неподвижной мишенью. В них один пучок ускоренных электронов направляется на вещество, которое играет роль своеобразной неподвижной мишени.

В современных ускорителях, работающих со сверхвысокими энергиями, все иначе. В них происходят столкновения двух потоков частиц, причем оба потока предварительно разгоняются до высоких энергий (рис. 21). Несложно догадаться, что пучки при этом должны быть точно сфокусированы и направлены в одну и ту же крошечную область — только так можно обеспечить какие бы то ни было столкновения. Это значительно уменьшает число получаемых столкновений, поскольку вероятность того, что частица в пучке взаимодействует с чемнибудь во фрагменте вещества, намного больше вероятности ее взаимодействия с частицей во встречном пучке.

РИС. 21. В одних ускорителях элементарных частиц пучок частиц взаимодействует с неподвижной мишенью. В других — два пучка частиц сталкиваются друг с другом

Однако столкновение двух пучков имеет одно серьезное преимущество. При таких столкновениях можно получить гораздо более высокие энергии. Уже Эйнштейн мог бы объяснить, почему современные ученые однозначно предпочитают коллайдеры экспериментам с неподвижной мишенью. Это связано с понятием «инвариантная масса системы». Хотя сегодня даже ребенок знает, что Эйнштейн создал теорию относительности, сам ученый считал, что более подходящим названием для нее было бы теория инвариантов. Подлинной целью его исследований было найти способ, при помощи которого можно было бы уйти от влияния конкретной системы отсчета, то есть найти инвариантные величины, характеризующие систему.

Вероятно, вы больше знакомы с этой идеей на примере пространственных характеристик, таких как линейный размер. Линейный размер неподвижного объекта не зависит от того, как именно он ориентирован в пространстве. Объект имеет фиксированный размер, который никак не связан с вашими наблюдениями, в отличие от его координат, которые зависят от произвольного набора осей и направлений, которые вы выбираете.

Эйнштейн показал, как описать явление, чтобы его характеристики не зависели от ориентации или собственного движения наблюдателя. Инвариантная масса — это мера полной энергии системы. Она говорит о том, объект какой массы может быть в принципе создан из энергии, содержащейся в вашей системе.

Чтобы определить показатель инвариантной массы, можно задать следующий вопрос: если бы ваша система была неподвижна, то есть если бы у нее не было ни скорости, ни импульса, сколько бы энергии она в себе содержала? Если система не имеет импульса, к ней применима формула Эйнштейна Е = mc2. Следовательно, если известна энергия системы в покое, известна и ее инвариантная масса. Если система находится не в покое, следует использовать более сложный вариант той же формулы, где помимо энергии фигурирует и величина импульса.

Предположим, мы сталкиваем между собой два пучка элементарных частиц с одинаковой энергией и равными по величине импульсами, направленными в противоположные стороны. При столкновении импульсы пучков складываются и в сумме дают нуль. Это означает, что система в целом находится в покое. Таким образом, вся энергия ·— сумма энергии частиц в двух отдельных пучках — может быть превращена в массу.

Эксперимент с неподвижной мишенью проходит совсем иначе. Пучок элементарных частиц в нем обладает большим импульсом, а мишень импульса не имеет. Для образования новых частиц доступна не вся энергия частицы, потому что система в целом продолжает двигаться. Изза этого движения не вся энергия столкновения может быть пущена на создание новых частиц — ведь некоторая ее часть останется в виде связанной с ними кинетической энергии. Оказывается, доступная энергия системы растет пропорционально всего лишь квадратному корню суммарной энергии частиц в пучке и в мишени. Это означает, к примеру, что если бы мы увеличили энергию протонного пучка в 100 раз и столкнули бы такой протон с другим — неподвижным — протоном, то энергия, пригодная для создания новых частиц, увеличилась бы всего в 10 раз.

Значит между столкновением во встречных пучках и столкновением с неподвижной мишенью есть большая разница. Энергия столкновения пучков намного выше — и она отнюдь не вдвое превосходит энергию столкновения пучка с неподвижной мишенью, как вы, вероятно, могли бы подумать. Такая догадка была бы основана на классическом подходе, который не годится для релятивистских частиц в пучке, летящем со скоростью, близкой к скорости света. Разница суммарной энергии между столкновениями пучок — мишень и пучок — пучок намного больше, поскольку на таких скоростях действует теория относительности. Так что если нам нужны по–настоящему высокие энергии, то выбора у нас не остается: придется обращаться к ускорителю–коллайдеру. В нем два пучка элементарных частиц будут разогнаны до высоких энергий, а затем направлены навстречу друг другу.

БАК — типичный пример ускорителя–коллайдера. В нем сталкиваются два пучка элементарных частиц, которые при помощи магнитов направляют навстречу друг другу. Основными параметрами, определяющими возможности любого коллайдера, являются тип частиц, с которыми он работает, их энергия после разгона и светимость установки (суммарная интенсивность пучков и, следовательно, число происходящих в ускорителе событий).

ТИПЫ КОЛЛАЙДЕРОВ

Итак, столкновение двух пучков позволяет получить более высокие энергии (а значит, исследовать меньшие расстояния), чем эксперименты с неподвижной мишенью, поэтому мы выбираем коллайдер. Возникает следующий вопрос: что сталкивать? Этот вопрос порождает несколько интересных вариантов, из которых нам предстоит выбрать один. В частности, мы должны решить, какие элементарные частицы следует ускорять, чтобы они могли принять участие в столкновении.

Имеет смысл воспользоваться готовым материалом, легко доступным на Земле. В принципе, мы могли бы сталкивать между собой нестабильные частицы: к примеру, частицы, получившие название мюонов (они быстро распадаются на электроны), или тяжелые кварки, такие как t–кварки (они распадаются на другие, более легкие виды частиц).

В этом случае нам, прежде чем начать разгон пучков, необходимо было бы получить нужные частицы в лаборатории, поскольку под рукой их нет. Но, даже если бы мы смогли изготовить нужное количество частиц и разогнать их, прежде чем они распадутся, нам бы пришлось еще позаботиться о безопасности и подумать, как отвести излучение. Ни одно из этих препятствий не является непреодолимым — и особенно это относится к мюонам, возможность использовать которые в пучках в настоящее время исследуется. Ясно, однако, что по сравнению со стабильными частицами нестабильные ставят перед исследователями дополнительные проблемы.

Так что давайте остановимся на более понятном и простом варианте: возьмем стабильные частицы, которые имеются на Земле в любом необходимом количестве и сами по себе не распадаются. В эту категорию попадают легкие частицы или на крайний случай связанные стабильные конфигурации легких частиц, такие как протоны. Кроме того, мы предпочли бы заряженные частицы, которые можно без труда разгонять электрическим полем. Это оставлят нам на выбор протоны и электроны—частицы, которых вокруг полным–полно.

Что же выбрать? У той и другой частицы есть свои сильные и слабые стороны. Электроны хороши тем, что столкновения у них получаются чистые и понятные — в конце концов, это фундаментальные частицы. Когда электрон с чемто сталкивается, его энергия не распыляется на входящие в его состав субструктуры: насколько нам известно на настоящий момент, электрон дальше уже не делится. А раз сам по себе он не делится, мы можем очень точно проследить за тем, что происходит при его столкновении с иным объектом.

А вот с протонами дело обстоит иначе. Напомню, что протон состоит из трех кварков, связанных сильным взаимодействием; кварки обмениваются глюонами, которые «склеивают» протон воедино, как уже говорилось в главе 5. Когда протон с высокой энергией сталкивается с чемто, в интересующем нас взаимодействии — том, при котором могут возникнуть тяжелые частицы — обычно участвует только одна из частиц в составе протона, то есть один из кварков или глюонов.

Разумеется, кварку достается далеко не вся энергия протона. Сам протон может обладать очень высокой энергией, но составляющим его кваркам энергии достается гораздо меньше. Тем не менее энергия кварка тоже может быть достаточно высока.

Помимо всего прочего, картина столкновения с участием протонов всегда очень сложная. Дело в том, что остальные части протона хоть и не участвуют в сверхвысокоэнергетическом столкновении, но продолжают лететь рядом и тоже взаимодействуют между собой — а это означает, что вокруг интересующего нас взаимодействия происходит множество других, мешающих увидеть картину.

Казалось бы, при описанных условиях никому не захочется иметь дело с протоном, но на самом деле желающие находятся. Почему? Дело в том, что протон тяжелее электрона; его масса превосходит массу электрона примерно в 2000 раз — а это очень важно, когда пытаешься разогнать протон до высокой энергии. Чтобы передать протону энергию, электрическое поле разгоняет частицу по кругу, и с каждым витком она движется все быстрее. Но движущиеся с ускорением частицы излучают, и чем они легче, тем больше излучение.

Это означает, что как бы нам ни хотелось столкнуть между собой электроны со сверхвысокой энергией, вряд ли это удастся сделать в ближайшее время. Вообщето, электрон можно разогнать до очень высоких энергий, но такие электроны, разгоняясь по кругу, излучают значительную часть своей энергии в пространство. (Именно поэтому в Лаборатории SLAC в Пало–Альто, где ускоряют электроны, используется линейный коллайдер.) Так что протоны все же побеждают в соревновании с точки зрения как чистой энергии, так и исследовательских возможностей. Протоны можно разогнать до достаточно высоких энергий, чтобы их составные части — кварки и глюоны — несли больше энергии, чем ускоренный электрон.

Надо сказать, что оба типа коллайдеров — и протонные, и электронные, — многое рассказали физикам об элементарных частицах. Коллайдеры, оперирующие пучком электронов, не работают с такими высокими энергиями, какие достигаются в лучших протонных ускорителях. Но эксперименты на коллайдерах с электронными пучками позволяют провести более точные измерения; на протонных коллайдерах о такой точности не приходится даже мечтать. В частности, проведенные в 1990–е гг. эксперименты на SLAC и на Большом электронно–позитронном коллайдере LEP в Европейском центре ядерных исследований помогли проверить предсказания Стандартной модели элементарных частиц с впечатляющей точностью.

Эксперименты, связанные с точным измерением электрослабых взаимодействий, помогли исследовать множество самых разных процессов. К примеру, были измерены массы переносчиков слабого взаимодействия, скорости распада на разные типы частиц, а также явления асимметрии в сигналах регистрируемых передней и задней (по отношению к движению частиц) частями детектора.

Точное измерение электрослабых взаимодействий стало возможным в результате разумного применения эффективной теории. Как только физики смогли провести достаточное количество экспериментов, чтобы точно определить некоторые параметры Стандартной модели (к примеру, силы, задействованные в каждом из фундаментальных взаимодействий), оказалось, что все остальное можно предсказать. Ученые проверяют все экспериментальные данные на непротиворечивость и ищут отклонения, которые могли бы указать на какоето недостающее звено. До сих пор все известные наблюдения и измерения указывают на то, что Стандартная модель прекрасно работает — настолько хорошо, что мы до сих пор не имеем никаких зацепок, по которым можно было бы судить, что нас ожидает на следующем уровне. Пока ясно одно: что бы это ни было, его влияние при достигнутых на LEP энергиях чрезвычайно слабо.

Из этого можно сделать вывод о том, что получить больше информации о еще более тяжелых частицах и еще более энергичных взаимодействиях невозможно без прямого исследования процессов, протекающих при энергиях, значительно более высоких, чем все, что удалось достичь на LEP и SLAC. В столкновениях электронов попросту не будут получены энергии, нужные, по мнению ученых, для ответа на вопрос о том, что придает частицам массу и почему они обладают именно такой массой, какой обладают, по крайней мере этого не удастся сделать в ближайшем будущем. Для ответа на эти вопросы нужны столкновения протонов.

Вот почему физики решили разгонять в тоннеле, построенном в 1980–е гг. для LEP, протоны, а не электроны. В конце концов Центр вывел LEP из эксплуатации, чтобы дать дорогу новому колоссальному проекту—Большому адронному коллайдеру. Поскольку протоны излучают во много раз меньше энергии, чем электроны, сам процесс разгона проходит гораздо более эффективно, и протоны удается разогнать до более высоких энергий. При столкновениях протонов, конечно, возникает больше мусора, чем при столкновениях электронов, и перед экспериментаторами встает множество сложнейших проблем, но при работе с пучком протонов появляется шанс задействовать в одном столкновении достаточно высокие энергии и получить прямой ответ на вопрос, который не дает нам покоя уже несколько десятилетий.

Но, прежде чем окончательно решить, какие именно частицы сталкивать в коллайдере, мы должны ответить еще на один вопрос. Итак, в столкновении участвует два пучка. Мы уже решили, что один из пучков должен состоять из протонов. Но из чего должен состоять второй пучок — из тех же частиц (протонов) или из соответствующих античастиц (антипротонов)? Масса протона и антипротона одинакова, поэтому и излучают они при разгоне одинаково, поэтому при выборе между тем и другим следует использовать иные критерии.

Ясно, что протонов в окружающем нас мире гораздо больше, чем антипротонов. Антипротон практически невозможно встретить просто так, случайно, ведь если бы он появился, то тут же аннигилировал бы с одним из многочисленных протонов, превратившись в энергию или другие, более элементарные частицы. Почему же тогда вопрос об использовании антипротонов вообще рассматривается? Какую выгоду мы от них получим?

Ответить на этот вопрос можно просто: немалую. Во–первых, разгонять пучки будет проще, поскольку одно и то же магнитное поле можно использовать для разгона протонов и антипротонов в противоположных направлениях. Но главный аргумент — частицы, которые можно получить при столкновении.

Частицы и античастицы обладают одинаковой массой, но противоположным зарядом. Это означает, что суммарный заряд сталкивающихся частиц вполне соответствует заряду, который может нести чистая энергия, — а именно нулевому заряду. Согласно формуле Е = mc2 это означает, что при столкновении частица и античастица могут целиком превратиться в энергию, которая, в свою очередь, может породить любую другую пару частица — античастица; для этого нужно лишь, чтобы новая пара не была слишком тяжелой и обладала достаточно сильным взаимодействием с первоначальной парой.

Возникшие частицы могут оказаться совершенно новыми и обладать зарядом, отличным от заряда частиц Стандартной модели. У новой пары нет суммарного заряда, как и у первоначальнй пары. Поэтому даже если заряды новых частиц будут отличаться от зарядов Стандартной модели, вместе они будут иметь нулевой заряд и — по крайней мере в принципе — смогут возникнуть.

Попробуем рассмотреть с этой точки зрения электроны. При столкновении двух частиц с одинаковыми зарядами, к примеру двух электронов, можно получить только объекты с тем же суммарным зарядом. Могут родиться либо один объект с двойным зарядом, либо два разных объекта, которые, подобно электронам, будут нести на себе единичный заряд. Это несколько ограничивает наши возможности.

Итак, столкновение двух частиц с одинаковым зарядом сильно ограничивает экспериментаторов. С другой стороны, столкновение частицы и античастицы открывает множество новых путей, в противном случае невозможных. При электронно–позитронном столкновении (а именно так работал LEP) возникает гораздо больше потенциальных возможностей, чем при столкновении двух электронов, — ведь и число возможных конечных состояний гораздо больше. К примеру, именно в столкновениях электронов с соответствующими античастицами — позитронами — были наряду с множеством достаточно легких пар частица — античастица получены и тяжелые незаряженные частицы, такие как калибровочный –бозон. Хотя за использование античастиц в столкновениях приходится дорого платить — слишком уж сложно их хранить, — выигрыш тоже достаточно велик, особенно в тех случаях, когда новые частицы, которые мы надеемся обнаружить, обладают не такими зарядами, как исходные.

В последнее время в самых высокоэнергетических коллайдерах ученые использовали один пучок протонов и один пучок антипротонов. Для этого потребовался, конечно, надежный способ получения и хранения антипротонов. Вообще, способ эффективного хранения антипротонов — одно из серьезнейших достижений CERN. Еще до того, как там был создан электронно–позитронный коллайдер LEP, европейская лаборатория работала с высокоэнергетическими пучками протонов и антипротонов.

Самым важным открытием, сделанным в Центре при столкновениях протонов и антипротонов, был электрослабый калибровочный бозон, передающий электрослабое взаимодействие. За это открытие в 1984 г. Карло Руббиа и Симон ван дер Мер получили Нобелевскую премию. Слабое взаимодействие, как и другие виды взаимодействия, передается частицами. В данном случае это слабые калибровочные бозоны — положительно и отрицательно заряженные W–бозоны и нейтральные –бозоны; именно эти три частицы отвечают за слабое взаимодействие. Для меня W- и –бозоны до сих пор остаются «чертовыми векторными бозонами»; так, помнится, называл их подвыпивший британский физик, который бродил по комнатам, где жили в то время приглашенные физики и студенты–практиканты (в том числе и я). Его очень беспокоило доминирование Америки, и он с нетерпением ждал первого крупного открытия европейских ученых в этой области науки. Калибровочные, или векторные, бозоны W и , открытые в начале 1980–х гг. в CERN, экспериментально подтвердили Стандартную модель элементарных частиц, в которой слабое взаимодействие играет принципиальную роль.

Решающую роль в успехе тех экспериментов сыграл новый метод хранения антипротонов, разработанный ван дер Мером. Ясно, что хранение антипротонов — сложная задача, ведь каждая из этих частиц только и ждет встречи с какимнибудь случайным протоном, с которым можно будет аннигилировать. Метод ван дер Мера, получивший название метода стохастического охлаждения, заключается в том, что специальный датчик отслеживает электрические характеристики сгустка частиц, а корректирующее устройство — так называемый кикер — «дает пинка» тем частицам, которые обладают максимальным импульсом, охлаждая таким образом весь сгусток; частицы в нем начинают двигаться медленнее и уже не могут легко столкнуться со стенками контейнера. Таким способом можно хранить даже антипротоны.

Идея коллайдера, в котором сталкивались бы протоны и антипротоны, рассматривалась не только в Европе. Самым высокоэнергетическим коллайдером такого типа был ТэВатрон в городке Батавия (штат Иллинойс). В тэватроне удалось достичь энергии 2 ТэВ (что примерно в 2000 раз превышает энергию покоя протона)[25]. Протоны и антипротоны сталкивались там с образованием новых частиц, которые мы могли затем изучить во всех подробностях. Самым значительным открытием, сделанным на тэватроне, стало открытие t–кварка — самой тяжелой и последней по времени обнаружения из частиц Стандартной модели.

Однако БАК отличается и от первого коллайдера CERN, и от тэватрона (обзор различных типов коллайдеров см. на рис. 22). БАК сталкивает не протоны с антипротонами, а два протонных пучка. Причина, по которой ученые предпочли работать с двумя протонными пучками вместо одного пучка протонов и одного — антипротонов, требует дополнительных пояснений. Как мы уже говорили, максимальными потенциальными возможностями обладают те столкновения частиц, при которых суммарный заряд участвующих частиц равен нулю. В этом случае можно получить что угодно плюс соответствующую античастицу (если, конечно, хватит энергии). Если в столкновении участвует два электрона, суммарный заряд того, что получится, должен будет равняться -2, что, понятно, заранее исключает множество возможностей. Можно подумать, что столкновение двух протонов — столь же неудачная идея. В конце концов, их суммарный заряд равен +2, и на первый взгляд кажется, что плюс два ничем не лучше минус двух.

Если бы протоны были фундаментальными частицами, это был бы совершенно правильный вывод. Однако, как мы уже говорили в главе 5, протоны состоят из более мелких деталей. Протоны содержат кварки, связанные глюонами. Но даже в этом случае, если бы дело ограничивалось тремя валентными кварками — двумя верхними и одним нижним, — которые, собственно, несут на себе заряд частицы, дело обстояло бы немногим лучше: никакая пара валентных кварков не дает нулевого суммарного заряда.

РИС. 22. Сравнительная таблица коллайдеров. Показаны их энергии, что именно сталкивается и форма ускорителя * LEP был модернизирован и превратился в LEP2.

Однако большая часть массы протона обусловлена не массой содержащихся в нем кварков. Своей массой протон обязан прежде всего энергии связей, удерживающих эту частицу как единое целое. Летящий с высокой скоростью протон несет на себе огромное количество энергии. При этом он помимо трех валентных кварков, ответственных за заряд, содержит целое море кварков, антикварков и глюонов. Это значит, что, если заглянуть внутрь высокоэнергетического протона, там обнаружатся не только три валентных кварка, но и множество виртуальных кварков, антикварков и глюонов, заряды которых складываются и дают в сумме нуль.

Из сказанного следует, что при рассмотрении протонных столкновений нам следует быть немного более аккуратными в своих логических построениях и выводах, чем когда мы рассуждаем об электронах. Интересные события — результат столкновения субчастиц и заряды в них складываются тех же субчастиц, а вовсе не протонов. Хотя на общий заряд протона «дополнительные» кварки и глюоны не влияют, в его составе они все же присутствуют.

При столкновении протонов может так случиться, что один из трех валентных кварков одного протона столкнется с одним из валентных кварков другого протона, и тогда суммарный заряд частиц, участвующих в столкновении, будет ненулевым. Даже при ненулевом суммарном заряде могут иногда происходить интересные события с участием удачной суммы зарядов, но такое столкновение, конечно, не имеет тех широчайших возможностей, которые характерны для столкновения с нулевым суммарным зарядом.

Однако мы будем наблюдать немало и других интересных столкновений с участием частиц из виртуального моря; здесь вполне возможны ситуации, когда какойнибудь кварк столкнется с соответствующим антикварком или глюон с глюоном, и тогда столкновение будет иметь нулевой суммарный заряд. При столкновении протонов любой кварк одного из них может столкнуться с соответствующим антикварком из другого, хотя, конечно, это не самый распротраненный тип столкновения. Если задаться вопросом, что происходит в БАКе, то окажется, что свою роль в столкновениях протонов играют все возможные процессы, включая и столкновения субчастиц из виртуального моря. Более того, по мере ускорения протонов и, соответственно, повышения их энергии, «морские» столкновения становятся все более вероятными.

Полный заряд протона не определяет, какие частицы образуются при столкновении, потому что остальная часть протона просто улетает дальше. Части протонов, не участвующие в событии, уносят с собой остальную часть заряда частицы, которая затем теряется. Это, кстати говоря, ответ на вопрос падуанского мэра, который спросил, куда деваются при столкновениях в БАКе заряды протонов. Все дело в составной природе протона и высокой энергии летящих частиц; именно она гарантирует, что в столкновении непосредственно участвуют лишь самые мелкие из известных нам элементов — кварки и глюоны.

Поскольку в столкновении участвуют только части протонов, причем иногда (при столкновениях с нулевым суммарным зарядом) это виртуальные фрагменты, выбор между протон–протонным и протон–антипротонным коллайдерами не так уж очевиден. Если в прошлом в низкоэнергетических коллайдерах имело смысл идти на дополнительные сложности, связанные с производством и хранением антипротонов, чтобы обеспечить как можно большее число интересных событий, то теперь в БАКе все иначе. При тех уровнях энергии, с которыми работаем, на виртуальные кварки, антикварки и глюоны приходится значительная часть энергии протона.

Итак, физики и инженеры проекта БАКа выбрали вариант с двумя пучками протонов и отказались от работы с протонами и антипротонами[26]. При этом высокая светимость, то есть высокое число событий, становится гораздо более достижимой целью, а получить пучок протонов все же гораздо проще, чем пучок антипротонов такой же плотности.

Так что БАК — протон–протонный, а не протон–антипротонный коллайдер. В нем происходит очень много столкновений (конечно, ведь с двумя протонными пучками добиться этого гораздо проще), и потенциал его огромен!

ГЛАВА 7. НА КРАЮ ВСЕЛЕННОЙ

Первого декабря 2009 г. я неохотно проснулась в шесть часов утра в отеле Marriott в Барселоне, чтобы отправиться в аэропорт. Я прилетала в город на испанскую премьеру небольшой оперы о физиках и открытиях, написанную на мое либретто. Уикенд получился просто замечательный, но я очень устала и с нетерпением ждала возвращения домой. Однако меня задержал в пути еще один приятный сюрприз.

Заголовок ведущей новости в свежей газете, которую работники отеля не забыли оставить возле моей двери, звучал так: «Ядерный ускоритель устанавливает рекорд». Да, представьте себе! Главной новостью дня была не какаянибудь жуткая катастрофа и не забавный случай, а рассказ о том, что пару дней назад ученым удалось получить на Большом адронном коллайдере рекордное значение энергии. Журналист писал о новом достижении БАКа с неподдельным возбуждением.

Еще через пару недель, когда два высокоэнергетических протонных пучка и в самом деле столкнулись, на первой полосе The New York Times появилась новостная статья под заголовком «Коллайдер устанавливает рекорд, а Европа принимает у США эстафету лидерства». О рекордной энергии, ставшей темой первой новости, здесь уже говорилось как всего лишь о первом из целой серии рубежей, которых должен достигнуть БАК в ближайшем десятилетии.

В настоящее время на БАКе исследуются самые крохотные расстояния за всю историю человечества. В то же время спутниковые телескопы и обсерватории исследуют крупнейшие расстояния в космосе и разбираются в подробностях реликтового микроволнового фонового излучения, сохранившегося со времен Большого взрыва.

Мы сегодня много знаем о строении Вселенной. Тем не менее, как и в большинстве аналогичных случаев, расширение круга знаний порождает новые вопросы. Некоторые открытия буквально обнажают принципиальные пробелы в наших теоретических построениях. Во многих случаях, однако, мы понимаем природу недостающих звеньев достаточно хорошо, чтобы сознавать, что именно следует искать и как.

Давайте подробнее рассмотрим, какие в настоящий момент ведутся эксперименты и что, согласно нынешним представлениям, мы можем обнаружить с их помощью. В этой главе я расскажу о некоторых главных вопросах и физических исследованиях, которым будет посвящена остальная часть книги.

ЧТО ТАМ, ЗА СТАНДАРТНОЙ МОДЕЛЬЮ? ПОМОЖЕТ ЛИ БАК ПОЛУЧИТЬ ОТВЕТ НА ЭТОТ ВОПРОС?

Стандартная модель элементарных частиц учит нас делать верные предсказания о легких частицах, из которых все мы состоим. Она также описывает другие, более тяжелые частицы с аналогичными взаимодействиями. Эти тяжелые частицы взаимодействуют с легкими частицами и с атомными ядрами посредством тех же самых взаимодействий, которые действуют на частицы, составляющие наши тела и нашу Солнечную систему.

Физикам известно об электроне и о более тяжелых, но аналогичных заряженных частицах, которые называются мюон и тау–лептон. Мы знаем, что каждая из этих частиц, известных под общим именем лептоны, имеет парную нейтральную частицу (то есть частицу без заряда, которая не участвует непосредственно в электромагнитных взаимодействиях) под названием нейтрино; все нейтрино взаимодействуют с другими частицами только посредством силы с прозаическим названием слабое взаимодействие. Именно слабым взаимодействием объясняются радиоактивный бета–распад нейтронов с образованием протонов (а также бета–распад атомных ядер в целом) и некоторые ядерные процессы, протекающие в глубинах Солнца. Все вещество Стандартной модели подвержено слабому взаимодействию.

Нам известно также о кварках, обнаруженных внутри протонов и нейтронов. Кварки подвержены как слабому, так и электромагнитному взаимодействию, а также сильному взаимодействию, которое удерживает легкие кварки вместе внутри протонов и нейтронов. Сильное взаимодействие ставит перед нами некоторые вычислительные проблемы, но базовую его структуру мы себе представляем.

Кварки и лептоны вместе с сильным, слабым и электромагнитным типами взаимодействия составляют суть Стандартной модели (рис. 23). До сих пор этих ингредиентов хватало, чтобы успешно предсказывать результаты всех экспериментов с элементарными частицами. Мы очень хорошо понимаем и частицы Стандартной модели, и то, как работают задействованные в ней силы.

Остается, однако, немало серьезных вопросов и загадок.

Основная проблема здесь — как вписывается во всю эту систему гравитация. Это главный вопрос, в котором БАК имеет некоторый шанс разобраться, но который он вовсе не обязательно решит. Энергия БАКа — достаточно высокая как с точки зрения того, что нам прежде удавалось достичь на Земле, так и по отношению к решению некоторых других крупных вопросов из этого списка — слишком низка, чтобы наверняка получить ответы на вопросы, имеющие отношение к квантовой гравитации. Для этого нам пришлось бы изучить те бесконечно малые расстояния, где могут проявиться и квантово–механические, и гравитационные эффекты, а эти расстояния выходят далеко за пределы возможностей проекта БАКа. Если нам повезет и окажется, что гравитация играет существенную роль в проблемах частиц, которыми мы вскоре займемся, то нам будет гораздо проще искать ответ на этот вопрос, а БАК, возможно, станет источником важной информации о гравитации и пространстве. В противном случае экспериментальной проверки любой квантовой теории гравитации, включая и теорию струн, придется, скорее всего, ждать еще долго.

РИС. 23. Элементы Стандартной модели элементарных частиц, описывающей самые фундаментальные из известных элементов вещества и их взаимодействия. Кварки верхнего и нижнего ряда участвуют в сильном, слабом и электромагнитном взаимодействиях. Заряженные лептоны участвуют в слабом и электромагнитном взаимодействия, тогда как нейтрино участвуют только в слабом взаимодействии. Глюоны, слабые калибровочные бозоны и фотоны передают эти взаимодействия. Бозон Хиггса по состоянию на 2010 г. еще только предстояло обнаружить

Однако отношение гравитационного взаимодействия к другим типам взаимодействий — не единственный серьезный вопрос, на который у нас до сих пор нет ответа. Еще один важный пробел в наших знаниях — причем такой, что БАК, по идее, может его заполнить — это вопрос о том, откуда берутся массы фундаментальных частиц.

Вероятно, на первый взгляд такой вопрос кажется странным (если только вы не читали моей первой книги): ведь мы обычно представляем себе массу как некую данность, изначальное и неотъемлемое свойство частицы. В определенном смысле это правда. Масса — это одно из свойств, определяющих тип частицы (вместе с зарядом и типами взаимодействий). Любая частица несет ненулевую энергию, но масса — это изначально присущее частице свойство, которое может принимать разные значения, в том числе и нулевое. Одна из главных заслуг Эйнштейна заключается в выводе о том, что масса частицы говорит, сколько энергии имеет эта частица в состоянии покоя. Но частицы не всегда имеют неисчезающую массу, а те, что имеют нулевую массу покоя, как фотон, никогда в покое не находятся.

Однако ненулевые массы элементарных частиц, присущие им изначально, — громадная загадка. Ненулевую массу имеют не только кварки и лептоны, но и «слабые» калибровочные бозоны — частицы, передающие слабое взаимодействие. Экспериментаторы сумели измерить эти массы, но согласно простейшим законам физики их просто не должно быть. Предсказания Стандартной модели «работают», если мы просто примем эти массы как данность. Но мы не знаем, откуда они берутся. Ясно, что простейшие законы здесь неприменимы и что в данном случае действуют другие, более сложные правила.

Специалисты по физике элементарных частиц считают, что неисчезающие массы возникают только потому, что в самом начале истории нашей Вселенной произошло чтото серьезное и имел место процесс, получивший название механизма Хиггса в честь шотландского физика Питера Хиггса, который одним из первых показал, как могли возникнуть эти массы. Аналогичные мысли, правда, высказали тогда по крайней мере шесть авторов, так что иногда можно услышать и о механизме Энглерта — Браута — Хиггса — Гуральника — Хагена — Киббла; я буду в дальнейшем придерживаться варианта с одним именем[27]. Идея (как бы мы ее ни называли) заключается в том, что имел место фазовый переход (похожий, возможно, на фазовый переход кипящей воды в газообразный пар)[28], изменивший ни много ни мало природу Вселенной. Если в самом начале частицы не имели массы и носились повсюду со скоростью света, то позже — после фазового перехода с участием так называемого поля Хиггса — они уже обладали массой и летали медленнее. Механизм Хиггса говорит о том, как элементарные частицы видоизменились от нулевой массы при отсутствии поля Хиггса к ненулевой массе, которую мы можем измерить экспериментально.

Если физики правы и во Вселенной действительно действует механизм Хиггса, то БАК покажет характерные признаки, которые позволят судить о прошлом Вселенной. В простейшем варианте свидетельством должна стать частица — бозон, названный в честь Хиггса. В более сложных физических теориях, где тем не менее действует указанный механизм, бозон Хиггса может сопровождаться другими частицами примерно той же массы или заменяться какойто совершенно иной частицей.

Независимо от того, как реализуется механизм Хиггса, мы ждем от БАКа новых интересных открытий. Это может быть бозон Хиггса. Это могут быть свидетельства в пользу другой, более экзотической теории, такой как теория техноцвета, о которой мы поговорим позже. Или это может оказаться чтото совершенно неожиданное. Если все пойдет по плану, эксперименты на БАКе помогут установить, что запустило механизм Хиггса. Но вне зависимости от того, что именно будет обнаружено, это открытие сможет рассказать нам немало интересного о том, как частицы обрели массу.

Стандартная модель элементарных частиц, описывающая самые фундаментальные элементы вещества и их взаимодействия, прекрасно работает. Ее предсказания уже не раз подтверждались с высокой точностью. Не обнаруженная пока частица Хиггса — последняя деталь нашей головоломки[29]. Сегодня мы говорим, что частицы обладают массой. Разобравшись в механизме Хиггса, мы узнаем, откуда взялась у частиц масса. Механизм Хиггса, о котором мы поговорим подробнее в главе 16, очень важен для глубокого понимания массы.

В физике элементарных частиц существует еще одна, даже более крупная загадка, в решении которой БАК вполне может сыграть важную роль. Возможно, что эксперименты на коллайдере помогут осветить вопрос, известный как проблема иерархии в физике элементарных частиц. Если механизм Хиггса имеет отношение к вопросу о том, почему частицы обладают массой, то проблема иерархии задает другой вопрос: почему эти массы именно таковы?

В физике элементарных частиц считается, что массы возникают изза так называемого поля Хиггса, которое пронизывает Вселенную; кроме того, считается, что нам известна энергия, при которой произошел переход от частиц, не обладающих массой, к частицам массивным. Дело в том, что механизм Хиггса придает некоторым частицам массу вполне предсказуемым образом, который зависит только от силы слабого взаимодействия и от энергии, при которой происходит переход.

Странность в том, что эта энергия перехода с точки зрения фундаментальной теории представляется бессмысленной. Если сложить все, что мы знаем из квантовой механики и специальной теории относительности и вычислить на основании этих данных массу частиц, то расчетные величины окажутся намного больше тех, что измерены экспериментально. По расчетам на основе квантовой механики и специальной теории относительности массы частиц (если не найдется новой, более подходящей теории) должны быть намного больше — ни много ни мало в 10 квадрильонов, или 1016, раз больше. Теория держится лишь за счет огромной «заплатки», которую физики, ничуть не смущаясь, назвали «тонкой подстройкой».

Проблема иерархии в физике элементарных частиц представляет собой одну из величайших проблем фундаментальной теории вещества. Мы хотим знать, почему массы частиц настолько отличаются от ожидаемых. Из квантово–механических расчетов следует, что их массы должны выходить далеко за пределы масштаба слабых взаимодействий, которые, вообще говоря, эти массы определяют. Мы не в состоянии понять масштаб слабых энергий в совсем несложной, казалось бы, версии Стандартной модели, и это очень серьезное препятствие к созданию полной законченной теории.

Существует вероятность, что нынешнюю весьма наивную модель когданибудь сменит более интересная, тонкая и точная теория; физикам такая перспектива представляется куда более убедительной, чем разговоры о тонкой настройке теории и, соответственно, научного взгляда на мир. Несмотря на то что решение проблемы иерархии представляется весьма амбициозной задачей, БАК, скорее всего, сможет пролить на нее свет. Квантовая механика и теория относительности задают не только вклад в массу частицы, но и энергию, при которой должны появиться (или, скорее, проявиться) новые явления. В данном случае речь идет как раз о том диапазоне энергий, с которым будет работать БАК.

Ожидается, что именно эксперименты на БАКе помогут появиться новой интересной теории. Этой теории — а она обязательно попытается объяснить загадки, связанные с массами частиц — по идее следовало бы появиться в тот момент, когда будут обнаружены новые частицы, силы или симметрии. Вообще, это одна из самых серьезных загадок, решению которых, как мы надеемся, будут способствовать эксперименты на женевском коллайдере.

Ответ на этот вопрос интересен и сам по себе, но важно еще и то, что он, возможно, окажется ключом к другим, еще более глубоким тайнам природы. Два наиболее убедительных возожных ответа предполагают либо расширение набора симметрий пространства и времени, либо пересмотр наших представлений о пространстве.

В сценариях, которые будут разъяснены более подробно в главе 17, говорится, что пространство может содержать больше, чем три известных нам измерения. В частности, в нем, возможно, имеются совершенно невидимые измерения, в которых заключен ключ к пониманию свойств и масс элементарных частиц. Если это на самом деле так, то БАК поможет ученым доказать это: в экспериментах на коллайдере будут получены свидетельства их существования — так называемые частицы Калуцы — Клейна, путешествующие в полном многомерном пространстве–времени.

Пока же ясно одно: какая бы из теорий ни разрешила проблему иерархии, она должна обеспечить экспериментально доступные доказательства тому в масштабе слабых энергий. Цепочка логически безупречных рассуждений свяжет находки, сделанные на БАКе, с теорией, которая в конечном итоге решит проблему иерархии. Эта теория может оказаться одной из уже предложенных или совершенно неожиданной, но, так или иначе, она должна быть убедительной и безумно интересной.

ТЕМНАЯ МАТЕРИЯ

Не исключено, что помимо вопросов физики элементарных частиц БАК поможет осветить природу темной материи (известной также как скрытая масса) Вселенной — вещества, которое оказывает гравитационное воздействие, но не излучает и не поглощает свет. Все, что мы видим, — Земля, стул, на котором вы сидите, ваш любимый попугайчик — состоит из частиц Стандартной модели, взаимодействующих со светом. Но видимое вещество, которое взаимодействует со светом и взаимодействие которого с окружающим миром мы понимаем, составляет всего лишь около 4% энергетической плотности Вселенной. Еще около 23% энергии Вселенной заключено в так называемом темной материи, сущность которой остается пока для нас совершенной загадкой.

Темная материя — это на самом деле некое вещество. Это значит, что оно собирается в сгустки под действием гравитационных сил и таким образом (вместе с обычным веществом) вносит свой вклад в существующие во Вселенной структуры, к примеру галактики. Однако в отличие от привычного нам вещества, из которого состоим и мы сами, и звезды в небе, оно не излучает и не поглощает света. Наше зрение основано на восприятии излученного или поглощенного света, поэтому «увидеть» темное вещество очень трудно.

На самом деле термин «темная материя» ошибочен. Так называемая темная материя, в общемто, вовсе не темная. Все темное поглощает свет. Там, где свет поглощается, мы видим темные объекты. А вот темная материя не взаимодействует ни с каким светом никаким наблюдаемым образом, и, говоря формально, это «темное» вещество прозрачно. Но я и дальше буду использовать традиционную терминологию и называть эту неуловимую субстанцию «темной».

О том, что темная материя существует, мы можем судить по ее гравитационному воздействию. Но непосредственно мы ее не видим и не можем знать, что она из себя представляет. Состоит ли она из множества крохотных идентичных частиц? Если так, то какова масса такой частицы, как и с чем она взаимодействует?

Не исключено, однако, что в самом ближайшем будущем мы будем знать больше. Возможно, энергии, достигаемой в БАКе,, окажется достаточно для получения частиц, из которых состоит темное вещество. Ключевой критерий темного вещества — то, что во Вселенной его содержится ровно столько, сколько нужно для получения измеренных гравитационных эффектов. Следовательно, реликтовая плотность — количество запасенной энергии, уцелевшей до наших дней согласно предсказанию наших космологических моделей — должна совпасть с измеренной величиной. Удивительно, но если взять стабильную частицу с массой, соответствующей диапазону слабых энергий, которых будет исследовать БАК (согласно все той же формуле Е = mc2), причем такую, которая взаимодействует с другими частицами того же диапазона энергий, то ее реликтовая плотность по приблизительной оценке будет примерно соответствовать характеристикам темного вещества.

Не исключено, таким образом, что БАК не только поможет ученым глубже заглянуть в тайны физики элементарных частиц, но и позволит понять, что происходит сегодня там, во Вселенной, и как это все начиналось. Эти вопросы относятся скорее к сфере космологии — науки, которая изучает эволюцию Вселенной.

Об истории Вселенной, как и об элементарных частицах и их взаимодействиях, мы знаем на удивление много. Но и здесь, как и в физике элементарных частиц, остается немало очень серьезных вопросов. Вот главные среди них. Что такое темное вещество (скрытая масса)? Что представляет собой еще более загадочная сущность, получившая название темной энергии? Что было причиной экспоненциального расширения ранней Вселенной, известного как космологическая инфляция?

Сегодня великолепное время для наблюдений, которые, возможно, смогут подсказать нам ответы на эти вопросы. На переднем плане науки, на стыке между физикой элементарных частиц и космологией, активно идут исследования скрытой массы, или темного вещества. Считается, что темное вещество взаимодействует с обычным веществом — таким, из которого мы можем изготовить детекторы — чрезвычайно слабо, причем настолько слабо, что мы до сих пор не видели никаких свидетельств существования темного вещества, кроме его гравитационного воздействия.

В основе нынешних поисков, таким образом, лежит принятое на веру утверждение о том, что темное вещество, несмотря на практически полную невидимость, все же взаимодействует слабо (но не невозможно слабо) с известным нам веществом. Считая так, мы не просто принимаем желаемое за действительное. Мы опираемся на уже упоминавшиеся расчеты, которые показывают, что стабильные частицы с энергией взаимодействия, лежащей в диапазоне, который очень скоро будет исследовать БАК, имели бы подходящую плотность, чтобы быть темным веществом. Так что, хотя до сих пор нам не удалось определить состав темного вещества, мы очень надеемся сделать это в ближайшем будущем.

Однако в большинстве своем космологические эксперименты проходят не на ускорителях. Решением космологических проблем мы обязаны в основном другим экспериментам, направленным вовне и проводимым как на Земле, так и в космосе.

К примеру, астрофизики отправили в космос спутники, которые теперь наблюдают за Вселенной оттуда, где им не мешают физические и химические процессы, протекающие на поверхности Земли и над ней, а также пыль. В то же время земные телескопы и эксперименты, проводимые на поверхности планеты, позволяют получать информацию в среде, которую ученые могут непосредственно контролировать в большей степени. Все эти эксперименты — и земные, и космические — призваны пролить свет на многие вопросы, связанные с рождением Вселенной.

Мы надеемся, что достаточно мощный сигнал в какомнибудь из этих экспериментов (подробнее мы поговорим о них в главе 21) позволит нам разгадать загадки темного вещества. Возможно, эти эксперименты расскажут нам о природе темного вещества, осветят проблемы, связанные с его взаимодействием и массой. А пока теоретики продумывают всевозможные модели темного вещества и рассуждают о том, как можно при помощи имеющихся у нас средств и методов определить, что оно собой представляет.

ТЕМНАЯ ЭНЕРГИЯ

Но обычного вещества и темного вещества, даже вместе взятых, недостаточно, чтобы объяснить суммарную энергию Вселенной. Все вещество — и темное, и обычное — составляет здесь всего лишь около 27%. Субстанция, представляющая оставшиеся 73% энергии и еще более загадочная, чем темное вещество, получила название темной энергии.

Открытие темной энергии стало самым крупным событием в физике конца XX в. Конечно, мы многого еще не знаем об эволюции Вселенной, но у нас имеется весьма успешная теория, основанная на представлениях о так называемом Большом взрыве и дополнительном периоде экспоненциального расширения Вселенной, известного как космологическая инфляция.

Эта теория согласуетс с широким спектром самых разных наблюдательных данных, включая данные о микроволновом космическом излучении — фоновом излучении, оставшемся со времен Большого взрыва. Первоначально Вселенная представляла собой горячий плотный огненный шар. За 13,75 млрд лет своего существования она успела сильно разредиться и остыть, и температура реликтового излучения на сегодня составляет всего лишь 2,7 К — всего на пару градусов выше абсолютного нуля. Кроме того, в пользу теории Большого взрыва и расширения Вселенной свидетельствуют подробные подсчеты количества ядер, которые были «изготовлены» на ранних стадиях эволюции Вселенной, и данные о скорости ее расширения.

Фундаментальные уравнения, которыми мы пользуемся при описании эволюции Вселенной, —это уравнения, полученные Эйнштейном в начале XX в. Они говорят о том, как получить характеристики гравитационного поля на основании данных о распределении вещества и энергии. Эти уравнения можно использовать для описания гравитационного поля между Землей и Солнцем, но с тем же успехом они справедливы и по отношению к Вселенной в целом. В любом случае, чтобы вычислить чтото на основании этих уравнений, необходимо знать все о веществе и энергии вокруг нас.

Тот факт, что измеренные параметры Вселенной требуют присутствия новой неизвестной формы энергии, стал для ученых настоящим шоком. Эта неизвестная энергия не переносится ни частицами, ни какой бы то ни было другой формой вещества, и не собирается в сгустки, подобно традиционному веществу. Она также не становится более разреженной по мере расширения Вселенной, а сохраняет постоянную плотность. Благодаря этой таинственной энергии, равномерно пронизывающей всю Вселенную даже там, где в ней совсем нет вещества, расширение Вселенной постепенно ускоряется.

Эйнштейн первоначально предложил учесть существование такой формы энергии в виде константы, которую он назвал универсальной константой; позже она получила известность среди физиков под именем космологической константы. Однако Эйнштейн вскоре решил, что это была ошибка и что он зря попытался объяснить таким образом стационарность Вселенной, — ведь Вселенная на самом деле расширяется, как установил Эдвин Хаббл вскоре после того, как Эйнштейн предложил свою константу. Расширение Вселенной вполне реально, но в настоящее время считается, что она расширяется все быстрее благодаря той самой забавной энергии, которую в 1930–е гг. сначала предложил, а затем отверг Эйнштейн.

Мы, ученые, хотим больше узнать о загадочной темной энергии и лучше понять ее. В настоящее время разрабатываются эксперименты, цель которых — определить, что она собой представляет — просто фоновую энергию, которую предлагал ввести Эйнштейн, или новую форму энергии, изменяющейся во времени. А может, это чтото третье и совершенно неожиданное — чтото такое, чего мы пока даже представить не в состоянии.

ДРУГИЕ КОСМОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ

Это всего лишь пример — хотя и весьма важный — тех задач, которые мы сегодня решаем. Кроме уже описанных, в настоящее время готовится немало и других космологических экспериментов. Детекторы гравитационных волн попытаются уловить гравитационное излучение, возникающее при слиянии черных дыр и при других интереснейших явлениях, в которых принимают участие громадные количества массы и энергии. Космические эксперименты по регистрации микроволнового излучения позволят нам больше узнать об инфляции. Детекторы космических лучей расскажут нам новые подробности о составе Вселенной. А детекторы инфракрасного излучения, возможно, обнаружат в небе новые необычные объекты.

В некоторых случаях мы сможем понять данные, полученные в результате экспериментов, достаточно хорошо, чтобы сделать на их основе новые выводы о фундаментальной природе вещества и законов природы. В других случаях нам придется потратить немало времени на то, чтобы разобраться в полученных данных и понять, что же они означают. В любом случае работа по согласованию теории и экспериментальных данных позволит нам пройти еще несколько шагов по пути познания окружающего мира и распространит наши знания на новые, пока недоступные области.

Результаты некоторых экспериментов, вполне вероятно, будут получены очень скоро. Другие, может быть, растянутся на много лет. Но так или иначе по мере поступления данных теоретики вынуждены будут пересматривать и иногда даже отвергать существующие объяснения; теории придется дорабатывать и учиться корректно применять. Возможно, это звучит не слишком оптимистично, но на самом деле все не так плохо. Мы очень рассчитываем на новые ориентиры, которые помогут нам ответить на старые вопросы, а результаты экспериментов указывают нам путь и гарантируют, что когданибудь прогресс будет достигнут, даже если новые данные потребуют отказаться от старых представлений. Научные гипотезы зачастую основываются на теоретической непротиворечивости, но, как мы убедимся далее, в итоге именно эксперимент — а ни в коем случае не слепая вера — определяет, которая из них верна.

Часть III АППАРАТУРА, ИЗМЕРЕНИЯ И ВЕРОЯТНОСТИ

ГЛАВА 8. ОДНО КОЛЬЦО, ЧТОБЫ ПРАВИТЬ ВСЕМ…

Вообщето, я не люблю преувеличений и уверена, что великие события и достижения говорят сами за себя. В Америке нежелание приукрашивать — не популярный подход, ведь люди здесь так часто используют превосходные степени, что даже обычная похвала без эпитета «самый» иногда воспринимается как принижение заслуг. Мне часто советуют добавить к похвальному отзыву несколько красивостей. Но в случае с БАКом я не стану экономить на эпитетах и сразу скажу, что это громадное достижение. БАК невероятно красив и притягателен, а уровень примененных в нем технологий просто ошеломляет.

В этой главе мы начнем знакомство с этим невероятным аппаратом. В следующей главе совершим путешествие по кольцу БАКа, а еще через несколько глав попадем в мир экспериментов, которые регистрируют все, что в нем происходит. Но пока мы сосредоточимся на самом агрегате, способном выделять, ускорять и сталкивать между собой протоны высоких энергий, которые, как мы надеемся, откроют перед нами новые миры.

БОЛЬШОЙ АДРОННЫЙ КОЛЛАЙДЕР

В первый раз, когда мне случилось побывать на БАКе, он внушил мне восторг и благоговение, несмотря на то что я много раз бывала на коллайдерах и видела установленное на них оборудование и детекторы. Но здесь все было в другом масштабе. Мы вошли, надели каски, прошли в тоннель, остановились у громадной выемки, куда предполагалось опустить детектор ATLAS, и наконец добрались до самой экспериментальной установки. Она все еще строилась, и ATLAS пока стоял на виду (позже его установили на место и закрыли).

Ученый во мне, разумеется, не склонен был видеть в этом невероятно точном и сложном техническом чуде произведение искусства, но я все же не удержалась и полезла за фотоаппаратом. Сложность, выверенность да и просто масштаб установки, не говоря уже о сочетании цветов — трудно передать словами, — все в целом производит сильнейшее впечатление.

Надо сказать, что люди искусства реагировали на это зрелище точно так же. Коллекционер Франческа фон Габсбург привезла с собой на строительство профессионального фотографа, и снимки получились настолько красивыми, что их опубликовал известный журнал Vanity Fair. Кинопродюсер Джесс Дилан увидел в Большом адронном коллайдере громадный и совершенно замечательный арт–проект — «высшее достижение», к величию и красоте которого хочется приобщиться. Джесс попытался передать свои впечатления при помощи видео.

Актер и ведущий Алан Алда сравнил коллайдер с одним из древних чудес света. Физик Дэвид Г росс — с египетскими пирамидами. Инженер и предприниматель Элон Маек — один из основателей системы PayPal, руководитель компании Tesla, выпускающей электромобили, создатель и руководитель SpaceX (компании — производителя ракет и космических кораблей, которые будут доставлять грузы н Международную космическую станцию) — сказал о БАКе: «Определенно, это одно из величайших достижений человечества».

Мне приходилось слышать подобные утверждения от людей самых разных профессий. Интернет, гибридные автомобили, «зеленая» энергетика и космические путешествия — лишь некоторые из наиболее интересных и активных на сегодняшний день областей прикладных научных исследований. Но попытка познать фундаментальные законы Вселенной даже в этом ряду стоит особняком, а масштабы исследований и экспериментов, предпринимаемых в этой области, поражают. И художники, и ученые стремятся познать мир и разгадать загадку его происхождения. Конечно, можно спорить о том, что именно считать величайшим достижением человечества, но я не думаю, что ктото усомнится, что стремление человека заглянуть за грань доступного и выяснить, что там, — одна из самых замечательных его черт. Только человеку свойственно стремиться к неведомому.

Столкновения, которые мы планируем изучать на БАКе, сродни тем, что происходили в первую триллионную долю миллисекунды после Большого взрыва. Они расскажут нам о малых расстояниях, о характере вещества и взаимодействий в самом начале времен. Вообще, коллайдер можно представить этаким супермикроскопом — ведь он позволяет изучать частицы и взаимодействия на невероятно малых расстояниях порядка одной десятой от одной тысячной от одной триллионной доли миллиметра[30].

БАК достигает результатов на этом крохотном масштабе за счет того, что столкновения частиц в нем проходят при таких высоких энергиях, какие до сих пор на Земле не имели места; энергия столкновения в БАК примерно в семь раз выше, чем энергия столкновения в мощнейшем из прежних коллайдеров — тэватроне, расположенном в Батавии (штат Иллинойс). В главе 6 я уже объяснила, почему квантовая механика и волновые процессы в ней требуют таких высоких энергий для исследования столь крохотных расстояний. Кроме того, светимость (интенсивность столкновений частиц) нового коллайдера будет в 50 раз выше, чем у тэватрона, поэтому там гораздо чаще будут происходить редкие события, позволяющие проникнуть во внутреннюю суть природы, и вероятность обнаружения таких событий, соответственно, будет намного выше.

Хоть я и не люблю преувеличений, но БАК принадлежит к миру, описывать который можно только превосходными степенями. Он не просто огромен: БАК — самая крупная в истории человечества машина. В нем не просто холодно: температура в 1,9 К (то есть на 1,9 градуса выше абсолютного нуля), необходимая для работы сверхпроводящих магнитов, делает соответствующие участки самыми холодными известными человеку протяженными областями во Вселенной; там холоднее, чем в космосе. Магнитное поле в БАКе не просто сильное: сверхпроводящие дипольные магниты генерируют поле в 1 000 000 раз более мощное, чем магнитное поле Земли, и это самые сильные из когдалибо производившихся магнитов.

Рекорды на этом не заканчиваются. Вакуум в протонных каналах БАКа (давление там составляет 10 триллионных долей атмосферного) — это самый глубокий вакуум, когдалибо достигнутый в таком объеме. Энергия столкновений — самая высокая из всех, когдалибо имевших место на Земле, что позволяет нам изучать взаимодействия, происходившие в ранней Вселенной, ближе чем когдалибо к моменту Большого взрыва.

Кроме того, в БАКе задействованы громадные энергии. Одно только магнитное поле эквивалентно по энергии паре тонн тринитротолуола, да и каждый из протонных пучков несет в себе примерно 10% от этого количества. Эта энергия сосредоточена в одной миллиардной доле грамма вещества — крохотной пылинке, не видимой при обычных обстоятельствах даже под микроскопом. После окончания работы с пучком аппарат сбрасывает эту энергию в графитовый цилиндр восьмиметровой длины и метрового диаметра, заключенный в бетонную оболочку весом 1000 т.

Невозможные ранее результаты, достигнутые на БАКе, стали возможны благодаря новейшим технологиям. Такие технологии недешевы, а превосходные степени, как правило, зримо отражаются на стоимости. БАК можно признать самой дорогой из всех когдалибо построенных машин. Примерно две трети стоимости установки оплатил Европейский центр ядерных исследований, бюджет которого формируют 20 стран–участников (размеры взноса каждой страны зависят от средств и колеблются от 20% для Германии до 0,2% для Болгарии). Оставшуюся треть стоимости строительства оплатили страны, не входящие в организацию, в том числе США, Япония и Канада. Кроме того, Центр взял на себя 20% расходов на экспериментальные установки, которые финансируются международными научными коллективами. Так, в 2008 г., когда строительство установки было в основном завершено, на детекторах CMS и ATLAS работало более тысячи американских ученых, и США вложили в БАК 531 млн долларов.

КАК НАЧИНАЛСЯ БАК

Европейский центр ядерных исследований, где разместился Большой адронный коллайдер, — это исследовательская организация, где одновременно реализуется множество научных программ. Однако основные ресурсы Центра, как правило, сосредоточены в одной флагманской программе. В 1980–е гг. такой программой был протон–антипротонный коллайдер SppS[31]; именно на нем были об: наружены частицы — переносчики фундаментальных взаимодействий, без которых Стандартная модель[32] физики элементарных частиц была бы невозможна. В ходе знаменитых экспериментов 1983 г. были открыты слабые калибровочные бозоны — переносчики слабого взаимодействия (два по–разному заряженных W–бозона и нейтральный –бозон). Именно их на тот момент не хватало в Стандартной модели, и это открытие принесло ведущим ученым проекта SppS Нобелевскую премию.

Еще в ходе работы на SppS ученые и инженеры начали планировать строительство нового коллайдера, получившего название LEP; в нем предполагалось сталкивать электроны и соответствующие им античастицы — позитроны, что позволяло изучать слабое взаимодействие и Стандартную модель в мельчайших подробностях. Эти планы были реализованы в 1990–е гг.; благодаря высочайшей точности измерений на LEP и исследованию миллионов событий с участием слабых калибровочных бозонов физики очень многое узнали о взаимодействиях частиц Стандартной модели.

LEP представлял собой кольцевой коллайдер с длиной окружности 27 км. Электроны и позитроны, кружа по кольцу, раз за разом получали все новые порции энергии. Электронный пучок с обычной для T. F. P энергией примерно в 100 ГэВ на каждом обороте терял около 3% своей энергии. Потери вроде бы невелики, но, если бы мы захотели разогнать электроны в этом тоннеле до более высоких энергий, такие потери не позволили бы нам это сделать. При увеличении энергии пучка в 10 раз энергетические потери при кольцевом движении выросли бы в 10 000 раз, и эффективность ускорителя очень быстро упала бы до неприемлемого уровня.

Поэтому, когда LEP только еще проектировался, ученые уже думали о следующем флагманском проекте Европейского центра ядерных исследований, который, по идее, должен был оперировать еще более высокими энергиями. С учетом неприемлемых энергетических потерь при разгоне электронов было ясно, что если Центр захочет построить следующий, еще более высокоэнергетический ускоритель, то работать он должен будет с протонами, которые намного тяжелее электронов и потому излучают намного меньше. Физики и инженеры, проектировавшие LEP, прекрасно знали о такой перспективе и построили кольцевой тоннель для LEP достаточно широким, чтобы в будущем, когда электронно–позитронная машина будет остановлена и разобрана, он мог вместить гипотетический протонный коллайдер.

Сегодня, спустя около 25 лет, протонные пучки носятся по тоннелю, построенному первоначально для ускорителя LEP (рис. 24). Большой адронный коллайдер на пару лет отстает от графика и уже процентов на 20 вышел из первоначального бюджета. Прискорбно, конечно, но, может быть, все не так уж страшно — ведь это самый крупный, самый международный, самый высокоэнергетический, самый амбициозный эксперимент из сех, проводившихся когдалибо. Сценарист и режиссер Джеймс Брукс, услышав о задержках и проблемах при строительстве БАКа, шутливо сказал: «Я знаю людей, у которых примерно столько же времени уходит на то, чтобы коекак наклеить обои. Не исключено, что разгадка тайн Вселенной — несколько более достойная цель».

РИС. 24. Примерное расположение Большого адронного коллайдера. Белым условно обозначен подземный тоннель, дальше видны Женевское озеро и горы. (Фото предоставлено Европейским центром ядерных исследований.)

БРАТСТВО КОЛЕЦ

Протоны всюду — и вокруг, и внутри нас. Как правило, однако, они связаны в ядрах атомов, окруженных к тому же электронами. Они не изолированы от электронов и не коллимированы (то есть не выстроены параллельными рядами) в пучках. БАК первым делом выделяет и разгоняет протоны, а затем направляет пучок частиц навстречу уготованной им судьбе. При этом многочисленные рекордные возможности БАКа оказываются совсем не лишними.

Первый шаг в подготовке протонных пучков — нагревание атомов водорода; при этом атомы теряют электроны и остаются

одни протоны (ядро атома водорода — это, собственно, и есть протон). Магнитные поля задают этим протонам направление движения и формируют из них пучки. Затем БАК в несколько этапов разгоняет эти пучки. Происходит это в определенных зонах; протоны, двигаясь от одного «акселератора» к другому, всякий раз увеличивают свою энергию, пока, наконец, не отклоняются от одного из двух параллельных пучков, чтобы столкнуться.

Первая фаза ускорения происходит в линейных ускорителях типа Linac — на прямых участках тоннеля, где протоны разгоняются по прямой при помощи радиоизлучения. В пике стоячей радиоволны связанное с ней электрическое поле разгоняет протоны. Затем пучок протонов вынуждают выйти из поля, чтобы при его ослаблении протоны не замедлились. Далее, при приближении к очередному пику волны, протоны возвращаются в поле и вновь ускоряются — и так раз за разом. По существу, электромагнитная волна здесь периодически подталкивает протоны — примерно так же, как вы подталкиваете ребенка, раскачивая его на качелях. Энергия протонов растет, но на этой — первой — стадии ускорения частицы получают лишь крохотную ее долю.

На следующей стадии магниты направляют протоны в систему колец, где они продолжают ускоряться. Каждый из этих циклических ускорителей действует примерно так же, как описанный выше линейный ускоритель, однако кольцевая форма позволяет им подталкивать протоны и повышать тем самым их энергию на каждом круге в тысячи раз. Промежуточные кольцевые ускорители передают частицам значительную часть энергии.

«Братство колец», ускоряющее протоны перед подачей их в большое кольцо БАКа, состоит из протонного синхротрона–разгонщика (protonsynchrotronbooster, PSB), обеспечивающего разгон частиц до 1,4 ГэВ, протонного синхротрона (protonsynchrotron, PS), поднимающего энергию частиц до 26 ГэВ, и протонного суперсинхротрона (superprotonsynchrotron, SPS), доводящего ее до так называемой энергии впрыска, равной 450 ГэВ (маршрут путешествия протона можно увидеть на рис. 25). Именно с такой энергией протоны попадают в 27–километровый тоннель на последнюю стадию ускорения.

Два ускорительных кольца из перечисленных «пришли» из прежних проектов Европейского центра ядерных исследований. Старейшее из них — кольцо PS — в ноябре 2009 г. отметило золотой юбилей, a PSB в 1980–е годы играл важнейшую роль в предыдущем крупном проекте — ускорителе LEP.

После SPS для протонов начинается двадцатиминутная фаза впрыска, или инжекции. За это время пришедшие из SPS протоны с энергией 450 ГэВ разгоняются в большом кольце БАКа до полной энергии. Протоны в тоннеле движутся двумя отдельными пучками в противоположных направлениях по тонким трехдюймовым трубам, протянувшимся на все 27 км подземного кольца.

РИС. 25. Путь, который проходит протон в процессе ускорения в БАКе

В тоннеле шириной 3,8 м, построенном в 1980–е гг., протонные пучки проходят сегодня последнюю стадию ускорения. В тоннеле светло и прохладно, он достаточно просторен. Мне довелось прогуляться по нему еще в те времена, когда коллайдер только строился. Я прошла по нему совсем немного, но на эти несколько шагов потребовалось гораздо больше времени, чем те 89 миллионных долей секунды, за которые проходит все кольцо длиной 26,6 км ускоренный высокоэнергетический протон, летящий со скоростью в 99,9999991% скорости света.

Тоннель находится на глубине около 100 м под землей; в разных местах глубина его заложения колеблется от 50 до 175 м. Это защищает поверхность земли от излучения и означает также, что во время строительства не пришлось сносить все фермы и сельхозугодья над местом прохождения тоннеля. Тем не менее в 1980–е гг. вопросы имущественных прав задержали строительство тоннеля, тогда еще для LEP. Проблема в том, что во Франции землевладелец имеет права не только на сельскохозяйственные угодья, которые обрабатывает, но и на недра под своим участком, вплоть до центра Земли. Тоннель удалось прорыть только после того, как французские власти позаботились об этом и подписали Декларацию об общественной пользе (Declaration d’Utilite Publique), сделав таким образом скальное основание — и, в принципе, магму под ним тоже — общественной собственностью.

Физики спорят о том, зачем тоннель сделали наклонным, а его глубину соответственно — неравномерной. То ли дело в геологии, то ли целью было дополнительно защитить поверхность от излучения, но так или иначе наклон тоннеля оказался полезен в обоих отношениях. Неоднородный рельеф района поставил перед строителями тоннеля сложную задачу и, безусловно, повлиял на его расположение и форму. Под этой местностью залегают в основном осадочные горные породы, но под речными и морскими отложениями имеются водоносные слои — гравий, песок и глина, и строить тоннель в таких грунтах вряд ли стоило. Таким образом, наклон помогает тоннелю все время оставаться в прочных скальных породах. Благодаря этому, кстати, одна из секций тоннеля у подножья живописных гор Юра на окраине Центра находится чуть ближе к поверхности, так что поднимать и опускать грузы и людей по вертикальной шахте в этом месте было немного проще (и дешевле).

Ускоряющие электрические поля в главном тоннеле организованы не совсем правильным кольцом. Большое кольцо БАКа состоит из восьми больших дуг, перемежающихся восемью семисотметровыми прямыми участками. Каждый из восьми секторов можно независимо нагревать и охлаждать, что очень облегчает ремонт и обслуживание. Впрыснутые в тоннель протоны ускоряются на каждом из коротких прямых участков при помощи радиоволн примерно так же, как они разгонялись на предыдущих этапах, пока не достигли энергии впрыска. Ускорение происходит на ускоряющих промежутках, содержащих радиосигнал частотой 400 МГц — той самой, которой вы пользуетесь при дистанционном открывании дверцы автомобиля. Сгусток протонов, проходя через ускоряющий промежуток, получает приращение энергии всего лишь в 485 миллиардных долей ТэВ. На первый взгляд это немного, но ведь протоны делают полный круг по кольцу БАКа 11000 раз в секунду! Таким образом, всего за 20 минут удается поднять энергию протонов в пучке от энергии впрыска (450 ГэВ) до целевой энергии (7 ТэВ), то есть примерно в 15 раз. Часть протонов теряется изза столкновений и просто случайных отклонений, но большая их часть будет кружить по кольцу еще примерно 12 часов, прежде чем поредевший пучок пора будет сбрасывать в грунт и заменять свежим пучком только что впрыснутых протонов.

Протоны, циркулирующие по кольцу БАКа, распределены по его окружности неравномерно. Их посылают по кольцу так называемыми сгустками — всего их 2808 — по 115 млрд протонов в каждом. Вначале каждый сгусток представляет собой вытянутую группу протонов длиной 10 см и шириной 1 мм; расстояние между соседними сгустками составляет примерно 10 м. Так проще, потому что каждый сгусток ускоряется отдельно, сам по себе. Есть и ещ одно преимущество: такая группировка протонов гарантирует, что сгустки частиц взаимодействуют с промежутками по крайней мере 25-75 не; этого достаточно, чтобы каждое столкновение двух сгустков записывалось отдельно. В сгустке во много раз меньше протонов, чем в целом пучке, поэтому и разбираться в столкновениях намного проще, ведь одновременно могут сталкиваться только протоны одного сгустка, а не всего пучка сразу.

ДИПОЛЬНЫЕ КРИОГЕННЫЕ МАГНИТЫ

Разгон протонов до столь высоких энергий — безусловно, серьезное достижение. Но самой сложной в техническом отношении задачей при строительстве коллайдера стала разработка и изготовление мощных магнитов, которые должны удерживать протоны на правильной кольцевой траектории. Без магнитов протоны летели бы по прямой, а для удержания высокоэнергетических протонов в кольце магнитное поле должно быть чрезвычайно мощным.

Тоннель БАКа очень велик, поэтому главной инженерно–технической задачей оказалось изготовление мощнейших магнитов в промышленных масштабах, то есть практически серийно. Сильное поле требуется для удержания высокоэнергетических протонов в тоннеле. Чем выше энергия протонов, тем более мощные магниты нужны для удержания их в тоннеле — и тем больше должен быть диаметр ускорительного кольца, чтобы протоны могли поворачивать по нему плавно. Размер кольца был известен заранее, так что целевая энергия протонов в нем определяется максимальной мощностью магнитного поля, которой удастся достигнуть.

Американский сверхпроводящий суперколлайдер SSC, если бы он был достроен, располагался бы в гораздо большем по протяженности тоннеле длиной 87 км (его даже успели частично проложить) и по проекту должен был разгонять протоны до энергии 40 ТэВ, что почти втрое превышает целевую энергию проекта БАКа. Такая значительная разница объясняется тем, что эта установка разрабатывалась заново, практически с нуля и проектировщиков не ограничивали размеры уже существующего тоннеля и, соответственно, не слишком реалистичные требования по поддержанию мощнейшего магнитного поля. Однако предложенный европейцами план имел немало практических преимуществ, начиная от существующего тоннеля и заканчивая развитой научной, инженерной и транспортной инфраструктурой Европейского центра ядерных исследований.

Едва ли не самое сильное впечатление во время визита в Центр на меня произвел прототип гигантского цилиндрического магнита для БАКа (на рис. 26 он изображен в сечении). Таких магнитов вокруг разгонного кольца БАКа установлено немало —1232 штуки, но и каждый из них в отдельности — это нечто грандиозное. Это махина весом 30 т и длиной 15 м. Надо заметить, что длина магнита определена относительно небольшой шириной тоннеля — и, конечно, необходимостью перевозить готовые магниты по европейским дорогам. Каждый из магнитов обошелся в 700 000 евро; соответственно, общая стоимость одних только магнитов в БАКе превысила миллиард долларов.

Тонкие трубки, по которым разгоняются протонные пучки, проложены внутри дипольных магнитов, которые установлены вплотную один за другим и тянутся, таким образом, внутри тоннеля по всей его длине. Они генерируют магнитное поле напряженностью до 8,3 Тл — это примерно в тысячу раз выше, чем напряженность поля, создаваемого магнитиком на холодильнике. По мере того как энергия протонов в пучке увеличивается с 450 до 7 Тэв, напряженность магнитного поля, которое должно удерживать все более энергичные протоны на их кольцевом маршруте, возрастает с 0,54 до 8,3 Тл.

Магнитное поле, которое генерируют эти магниты, настолько мощно, что сами магниты не удержались бы на месте, если бы не специальные крепления. Отчасти сила, действующая на магнит, компенсируется за счет геометрии витков, но в конечном итоге магниты удерживают на месте специально спроектированные стальные «воротники», или хомуты, толщиной 4 см.

Мощные магниты БАКа были бы невозможны без сверхпроводящих технологий. Инженеры БАКа пользовались при проектировании технологиями, разработанными для американского проекта SSC, для тэватрона Лаборатории имени Ферми, расположенной в штате Иллинойс, а также для немецкого электронно–позитронного коллайдера в гамбургском ускорительном центре DESY.

РИС. 26. Схема устройства дипольного криомагнита. Протоны удерживаются на кольцевом маршруте внутри тоннеля при помощи 1232 таких сверхпроводящих магнитов

В обычных условиях провода (к примеру, медные провода, из которых сделана проводка в вашем доме) имеют сопротивление. Это означает, что при прохождении по ним электрического тока теряется энергия. А вот сверхпроводящие проводники не рассеивают энергию, и электрический ток проходит по ним без помех. Витки сверхпроводящей проволоки способны генерировать очень мощные магнитные поля; более того, такое поле, раз установившись, будет поддерживаться без дополнительного притока энергии.

Каждый диполь БАКа содержит катушку ниобиево–титанового сверхпроводящего кабеля, каждый из которых свит из тончайших проволочек толщиной всего шесть микрон — намного тоньше человеческого волоса. Всего на сооружение БАКа пошло 1200 т этой замечательной проволоки. Если размотать, ее длина сравнялась бы с длиной орбиты Марса.

В процессе работы сверхпроводящие диполи должны быть очень холодными, так как сверхпроводимость «включается» лишь при достаточно низких температурах. Вокруг сверхпроводящих кабелей поддерживается температура на 1,9 градуса выше абсолютного нуля, то есть на 271 градус ниже температуры замерзания воды. Это даже ниже температуры фонового микроволнового излучения в открытом космосе, которая составляет 2,7 К. В тоннеле БАКа находится самая холодная протяженная область во Вселенной — по крайней мере насколько нам известно. Изза сверхнизких температур магниты БАКа называют криодиполями.

Помимо невероятных «проволочных» технологий, использованных в магнитах БАКа, нельзя не упомянуть и систему охлаждения (криогенную систему), которая сама по себе является серьезным достижением и заслуживает самых восторженных эпитетов. Естественно, это самая большая в мире система охлаждения. Сверхнизкую температуру в ней обеспечивает проточный гелий. Магниты, нуждающиеся в охлаждении, окружает специальная оболочка, в которой содержится примерно 97 т жидкого гелия. Это не обычный гелий в виде газа, а гелий, который при помощи давления поддерживают в состоянии сверхтекучести. Сверхтекучий гелий не обладает вязкостью обычных материалов и способен очень эффективно рассеивать все тепло, выделяемое в дипольной системе. Сначала охлаждают 10000 т жидкого азота, который, в свою очередь, охлаждает 130 т жидкого гелия, циркулирующего в диполях.

Не все части БАКа располагаются под землей. У коллайдера есть и наземные здания, где размещены оборудование, электроника и рефрижераторные установки. Традиционная морозильная установка охлаждает гелий до 4,5 К, а затем происходит окончательное охлаждение со снижением давления. Этот процесс (также, как и согревание) занимает около месяца. Ясно, что при любом включении или выключении коллайдера, а также при любой попытке ремонта на согревание и охлаждение уходит много дополнительного времени.

Страницы: «« 12345678 »»

Читать бесплатно другие книги:

Воспользовавшись рекомендациями специалистов по сбалансированному питанию и здоровому образу жизни, ...
«Молитва есть восхождение ума и сердца к Богу», – говорил преподобный Нил Синайский. Молитвослов же ...
Легкомысленное приключение в заснеженной Миннесоте оборачивается для инструктора по лыжам Энн Райс г...
Тесные новые туфли и неработающий фонарь на перекрестке едва не привели Максин на больничную койку. ...
Робин Морриган не знает себе цены, поэтому работает на скучной должности секретаря ресепшен, поэтому...
Молодой и успешный англичанин Дэн Робинсон в личной жизни предпочитает жить иллюзиями. Почему-то ему...