Почему наш мир таков, каков он есть. Природа. Человек. Общество (сборник) Кронгауз Максим

Это важно, потому что этот же прием используется и для коммуникации по поводу Украины. Активно придумываются слова ненависти, которые замещают уходящие. Назвать украинца хохлом или русского москалем уже не обидно. Это стертые названия, и стерты они как раз юмором, шутками о москалях и хохлах. На их месте появляются новые слова: это уже упомянутые «колорады», а также «ватники», «вата», то есть еще более бессмысленная, неживая масса. Это тоже снижение, но скорее не по национальному, а по социальному признаку: ватник – одежда низших слоев.

Очень важны официальные слова ненависти. Если мы называем врага террористом, то его можно уничтожать – главное, кто первым выберет слово. Сейчас во всем мире слово «террорист» используется гораздо шире, чем это заложено в словарях любого языка. Назвать врагов террористами – значит получить право с ними расправиться. С другой стороны, возникают «укры», «укропы», регулярно встречающиеся в прессе «бандеровцы», «фашисты». «Укры» – это издевательство, отсылающее к Украине как «родине укров». Далее появляется еще более издевательский «укроп» (это уже не животная, а растительная метафора). В ответ на это украинцы вдруг начинают использовать укроп как официальный символ Украины. Порошенко даже предложил расшифровывать «укроп» как «украинское сопротивление» (от слова «опiр»).

Известная украинская писательница Оксана Забужко предложила различить названия: старое – «хохол» – обросло пустоватыми ассоциациями и коннотациями, а «укры» – это страшные существа, которых надо бояться. Уже есть и анекдот, где мимо старушки, продающей укроп, пробегает мужчина в камуфляже и говорит: «Своих не едим!»

Оксана Стефановна Забужко – р. 1960 – Украинская писательница и поэтесса.

Очень важный прием борьбы с оскорблениями, унижениями, словами ненависти – одомашнивание слова. Смеясь, человек осваивает слова, и они перестают быть для него оскорбительными. Отчасти такие же процессы произошли с «хохлом» и с «москалем», героями многих анекдотов. В ответ на «ватники» возникло слово «вышиватник» и «вышиванка» – так называют чрезмерных патриотов Украины. Эти приемы тоже используются обеими сторонами.

В чем ошибся Оруэлл

Романы, где язык играет одну из главных ролей, построены на том, что автор играет с языком – создает некий конструктор, который чем-то похож на кусочки реальности, но в реальность эту модель воплотить невозможно. У Оруэлла новояз отличался от других языков тем, что словарный запас его с каждым годом не увеличивался, а уменьшался. В реальности же язык расширяется хотя бы за счет тех же «слов ненависти». В жизни власть проводит с языком эксперименты, вводя разного рода политические слова и выражения, но все же главная работа власти происходит с коммуникацией, потому что коммуникацию гораздо легче ограничить, усечь. Запретить в коммуникации гораздо легче, чем запретить в языке. Ограничивается общение между властью и обществом, исчезает возможность общественного диалога и обмена мыслями. В результате оппозиция, противник, вытесняется из средств массовой информации и публичного пространства.

Запретить что-то в языке в полной мере вообще невозможно. Власть контролирует публичное пространство, но запрещенные в публичном пространстве слова могут функционировать в каких-то сообществах. Все попытки сильных тоталитарных государств менять язык ограничивались контролем над языком в публичном пространстве. Вне публичного пространства люди используют те слова, которые хотят.

Лев Патрушев. Геном и жизнь: почему мы такие разные?

Лев Патрушев – Доктор биологических наук, профессор, ведущий научный сотрудник лаборатории биотехнологии ФГБУН Института биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова РАН.

Наш геном[6] – это совокупность всех генов нашего организма, причем точная копия генома содержится в каждой клетке человека. Следовательно, каждая клетка заключает в себе все наши гены. Гены, в свою очередь, образованы длинными линейными молекулами ДНК. У человека около двадцати тысяч генов. Поскольку они управляют всеми биохимическими процессами организма от рождения до смерти, положение генома в организме человека привилегированное. Геном можно сравнить с жестким диском компьютера, на котором записаны файлы-гены. Каждый ген имеет индивидуальную метку, благодаря которой другой ген может его найти и заставить работать или замолчать. По мере развития человека через взаимодействие файлов-генов происходит выполнение генетической программы, заложенной в геноме. Взаимодействующие друг с другом гены, как компьютеры, работающие в интернете, образуют сложные сети.

Тело человека построено из самых разных клеток, общее число которых приближается к ста триллионам. Благодаря работе генов образуется все разнообразие клеток человека: например, клетки мозга – нейроны, клетки печени – гепатоциты или клетки соединительной ткани – фибробласты. Такое разнообразие обеспечивается работой определенных групп генов в клетках разных типов. Высокая надежность функционирования генома обеспечивается тем, что в каждой клетке он представлен двумя копиями – одну копию мы получаем от матери, а другую (в момент оплодотворения яйцеклетки) от отца. Действительно, в том случае, если одна копия гена повреждается и начинает хуже работать, другая копия берет на себя выполнение функций, утраченных первым геном.

Как устроен наш геном?

Огромный геном человека, образованный молекулами ДНК, заключен в ядре каждой клетки. Общая длина молекул ДНК генома человека, если их вытянуть в одну линию, составляет около двух метров, тогда как диаметр ядра не превышает нескольких десятков микрометров. Следовательно, геном человека в ядре плотно упакован. Геном человека представлен не одной огромной нитью молекулы ДНК, а разделен на отрезки разной длины, которые называют хромосомами. Так же, как и весь геном, каждая хромосома представлена двумя копиями (парой хромосом), полученными от отца и от матери. У здоровых людей 46 хромосом: по 23 от каждого из родителей.

Гигантские молекулы ДНК, составляющие геном человека, построены всего из четырех строительных блоков – нуклеотидов, которые обозначают латинскими буквами A, T, G и C. Нуклеотиды, как буквы в тексте, чередуются в молекуле ДНК в строго определенном порядке, образуя осмысленный текст – множество уникальных последовательностей, формирующих гены. Каждую из таких последовательностей нуклеотидов, составляющих отдельный ген, можно сравнить с конкретным словом или предложением нашего языка. Суммарно все молекулы ДНК генома человека построены из трех миллиардов нуклеотидов. Прочитав заключенный в геноме текст из трех миллиардов букв, можно оценить многие биологические особенности конкретной личности: сделать вывод о здоровье человека и его психических особенностях. Поэтому изучение последовательностей нуклеотидов очень важно, но из-за гигантского размера генома человека это чрезвычайно сложно.

Почему геномы разные?

Не нужно быть генетиком, чтобы сделать вывод о том, что двух одинаковых людей не бывает. Сегодня хорошо известно, что большинство этих особенностей определяется различиями в последовательностях «букв», составляющих гены конкретных людей.

От родителей потомству передается по одной копии генома, которые, объединившись в яйцеклетке, запускают работу генов и формируют личность. Чтобы это стало возможным, геном родителей должен копироваться при делении половых клеток. Поскольку точность копирования ограничена, возникают ошибки в последовательности «букв», составляющих гены. Одна или несколько «букв» могут меняться на другие. Из-за таких ошибок меняется и смысл всего слова, а вместе с тем эффективность и корректность работы измененного гена. Ошибки в последовательностях нуклеотидов называют мутациями.

Помимо ошибок копирования генома источником мутаций могут быть мутагены, химические вещества, резко повышающие частоту возникновения мутаций. Физические факторы окружающей среды – ультрафиолетовый свет, радиоактивное излучение – также приводят к повышенному накоплению мутаций.

Удивительно, но основным источником мутаций у человека являются все же внутренние причины. В здоровом организме человека протекают биохимические процессы, в результате которых образуются вещества, повреждающие его гены. К таким веществам, в частности, относятся активные формы кислорода. Под действием этих веществ в каждой клетке человека ежедневно возникает до двухсот тысяч повреждений ДНК, большая часть которых исправляется многочисленными защитными механизмами. Нарушение защитных механизмов приводит к развитию у человека тяжелых патологий, включая рак, диабет и аутоиммунные заболевания. Наличие таких внутренних отравляющих веществ – один из основных факторов, ограничивающих продолжительность нашей жизни.

Непрерывно возникающие в геноме человека мутации накапливаются в обществе из поколения в поколение в виде большого генетического груза и служат источником генетического разнообразия человечества.

«Хотя число индивидов, составляющих нацию, можно пересчитать, генетическое разнообразие генофонда бесконечно: в нем непрерывно возникают новые варианты генов и их сочетаний».

Лев Патрушев

Нейтральные и вредные мутации в геноме

Несмотря на большой размер, геном человека содержит не очень много генов. Исследования структуры генома последних лет показали, что ДНК генов составляет лишь 3 % всей геномной ДНК. Функции остальной части генома в настоящее время неизвестны. Изменения в части генома человека, относящейся к генам, чаще всего приводят к заболеваниям. Бывают сильные мутации, которые полностью выключают работу отдельных генов. Если ребенку и от отца, и от матери достается поврежденный ген, у него неотвратимо развивается патологический процесс.

Возникновение таких распространенных заболеваний, как рак, диабет, ожирение, сердечно-сосудистые и нейродегенеративные болезни, так просто не объясняется. Развитие этих заболеваний обусловлено действием на организм человека двух групп факторов: генетических и факторов окружающей среды. На сегодняшний день обнаружено большое число широко распространенных мутаций, иначе называемых полиморфизмами, которые ассоциированы с такими заболеваниями. Человек с этими мутациями в геноме попадает в группу риска – вероятность развития соответствующей патологии у него выше, но только вероятность, которая может и не реализоваться.

На основании данных о таких мутациях никогда нельзя предсказать с полной уверенностью, заболеет человек или нет. То есть тестировать геном внешне здорового человека на наличие в нем таких мутаций бессмысленно. В современной медицине сложилась неопределенная ситуация с прогнозом развития сложных многофакторных заболеваний у внешне здорового человека.

Несмотря на то что набор генов у всех людей почти один и тот же, каждый конкретный ген в популяциях человека представлен очень большим числом вариантов из-за разных мутаций, накопленных в нем в процессе эволюции. Этим обеспечивается неповторимость генома каждого человека. Также уникальны и формирующиеся сети взаимодействующих генов. При внесении в такую сеть нового мутантного варианта гена она перестраивается и достигает нового равновесия. В результате предсказать влияние отдельной распространенной мутации на здоровье человека в настоящее время практически невозможно. Такие мутации нельзя рассматривать изолированно от остального генома – они являются его неотъемлемой частью и на уникальном генетическом фоне конкретного человека могут и не проявиться. Теоретически выявить опасность можно было бы, определив полную структуру всего генома, то есть установив полную последовательность «букв» его ДНК, а это исключительно сложно.

Революция в исследовании генома человека

Первая полная усредненная структура генома человека была расшифрована к 2000 году. В этой грандиозной работе принимали участие две группы исследователей. С одной стороны, до 1997 года такими исследованиями занимался большой международный консорциум, деятельность которого координировал Фрэнсис Коллинз, ныне занимающий пост директора Национального института здоровья США. В 1997 году, когда работа была близка к завершению, а все полученные результаты были опубликованы, к исследованиям независимо подключился американец Джон Крейг Вентер. На пожертвования он организовал фирму Сelera Genomics, которая проводила исследования структуры генома преимущественно самого Вентера. В итоге обе группы одновременно пришли к финишу. Затраты на расшифровку генома человека и с той и с другой стороны составили приблизительно по 3 миллиарда долларов. Расшифровка генома Вентера оказалась первой опубликованной структурой персонального генома человека.

Фрэнсис Коллинз – р. 1950 – Американский генетик, получивший всемирную известность как руководитель проекта по расшифровке генома человека.

Джон Крейг Вентер – р. 1946 – Американский биолог и предприниматель. Президент компании Celera Genomics, занимавшейся параллельной коммерческой версией проекта «Геном человека». Первоначально предполагалось платное использование данных, однако позже Вентер опубликовал свои результаты и включил их в проект «Геном человека». В 2000 г. Вентер и Коллинз вместе доложили президенту США о составлении карты человеческого генома.

На сегодняшний день благодаря методической революции в определении последовательности нуклеотидов стоимость прочтения персонального генома снизилась с трех миллиардов до 3–5 тысяч долларов. Новые методы стали пригодны для проведения широких клинических исследований. Были сконструированы приборы нового поколения, работающие на совершенно иных принципах. Одна современная машина для определения структуры генома человека заменяет по производительности сотни старых приборов, использовавшихся в первых экспериментах по расшифровке генома. Последним достижением в этой области является разработка английских ученых – прибор, который помещается на ладони, подключается к ноутбуку через разъем USB и, как обещают, будет стоить около 900 долларов. Если этот прибор выйдет на рынок, то расшифровка по крайней мере значительной части генома человека в скором времени может стать общедоступной.

Одним из результатов использования в исследованиях генома приборов нового поколения было завершение в 2012 году международной программы «1000 геномов». В ходе программы были расшифрованы персональные геномы тысячи человек, относящихся к разным расам и популяциям, а также геномы отдельных семей: мать – отец – ребенок. Полученные данные подтвердили прогнозы и накопленную ранее информацию об исключительном разнообразии геномов: у каждого обследованного человека количество отличий от стандартного генома составило около 3,5 миллиона однобуквенных замен. При этом в каждом персональном геноме здорового человека обнаруживали до пятисот тысяч ранее неизвестных мутаций. Было также выявлено большое количество мутаций, ассоциированных с тяжелыми заболеваниями. Доказанный факт, что геном каждого человека является уникальным и неповторимым, лег в основу новой концепции терапии больного человека.

Концепция персонализированной медицины и ее возможные последствия

В соответствии с новой концепцией современные методы лечения должны основываться на учете генетических особенностей организма пациента. Для каждого лекарства в организме имеется биологическая мишень в виде белка-рецептора или фермента – больших молекул, структура которых закодирована в генах человека. Поскольку в геномах людей могут встречаться различные варианты конкретных генов, различаться будут и белки-мишени, которые ими кодируются. В результате одно лекарство может по-разному взаимодействовать с мишенями: если для одного человека лекарство эффективно, для другого оно может быть бесполезно. Выходит, каждому пациенту для эффективного лечения нужно подбирать лекарственный препарат с учетом его индивидуальных генетических особенностей. Хорошо известным примером является терапия лекарством варфарин, применяемым для предотвращения избыточного свертывания крови. В зависимости от вариантов конкретных генов, участвующих в реализации его действия, пациентам требуется разная эффективная доза лекарства. Известны клинические случаи, когда в силу особенностей строения генома варфарин на пациента не действует вообще. Для подбора правильной дозы лекарства пациентам, принимающим варфарин, рекомендовано генетическое тестирование.

У концепции персонализированной медицины есть и темная сторона – возможное злоупотребление генетическими данными. Если концепцию применить к токсинам, то она может превратиться в свою противоположность и лечь в основу разработки биологического оружия персонального действия. В зависимости от генетических особенностей люди могут быть разделены на группы, чувствительные и устойчивые к токсину. Примером такого избирательного действия лекарств может быть повышенная чувствительность отдельных людей к конкретным распространенным лекарственным препаратам. Современные технологии модификации химических веществ достигли такого уровня, что с их помощью можно создавать вещества, действующие на конкретные генетические варианты мишеней в организме человека. Необходимо помнить об опасности такого использования данных о структуре генома. В этой связи распространение генетических данных о полной структуре персональных геномов должно быть четко регламентировано.

Генетическая дискриминация

Конфиденциальность при обмене данными о геномах отдельных людей необходимо соблюдать также из-за возможной дискриминации. Уникальность сочетаний вариантов генов говорит о том, что люди по своим биологическим возможностям не равны между собой. Основываясь на данных генетических тестов, некоторые социальные институты дискриминируют людей по генетическим признакам. Прежде всего речь идет о страховых компаниях, которые при страховании жизни или здоровья человека пытаются получить от врачей данные об особенностях его генома. Смысл заключается в том, чтобы снизить сумму страховки при наличии у человека генетической предрасположенности к каким-либо заболеваниям. Дискриминационный подход был отмечен и у некоторых работодателей: фирмы отказывали в приеме на работу людям на основании результатов их генетического тестирования. Такие же явления встречались и в семейных отношениях: открывающиеся данные о наличии вредных вариантов генов у здоровых супругов создают напряженность и могут стать причиной распада семьи. При усыновлении детей люди начинают требовать данные генетических тестов ребенка. Согласно опросам, до 50 % бессимптомных людей с предрасположенностью к болезни Хантингтона[7] подвергались дискриминации во всех трех вышеперечисленных сферах социальной жизни, причем не где-нибудь, а в США, Западной Европе и Австралии.

В настоящее время в большинстве развитых стран генетическая дискриминация ограничена или полностью запрещена на законодательном уровне. Основным научным аргументом, запрещающим генетическую дискриминацию, является неопределенность действия потенциально вредных вариантов гена на здоровье человека. Бессимптомный носитель таких вариантов попадает в группу риска, но сама патология у него может так и не развиться. Как уже упоминалось, возможная причина такой неопределенности – сложные сети взаимодействующих генов, уникальные для каждого человека.

Несмотря на то что генетическое тестирование в нашей стране получает все большее распространение, в Российской Федерации нет законов, запрещающих генетическую дискриминацию и бесконтрольное распространение персональных генетических данных. Эта проблема требует быстрого юридического разрешения.

Как сохранить генофонд?

В современной популяционной генетике и популярной литературе часто употребляют термин «генофонд». Под генофондом понимают совокупность всех вариантов генов, которые встречаются у людей, проживающих на конкретной территории. Среди таких вариантов могут быть как вредные, так и внешне нейтральные или даже полезные мутации. Из-за ограниченности наших знаний о взаимодействиях вариантов генов мы не можем однозначно отнести тот или иной вариант к вредным, нейтральным или полезным. Хотя число индивидов, составляющих нацию, можно пересчитать, генетическое разнообразие генофонда бесконечно. В генофонде непрерывно возникают новые варианты генов и их сочетаний. Состояние генетического равновесия автоматически поддерживается в генофонде природными силами. Наиболее вредные мутации сами выбраковываются естественным отбором: например, на стадии раннего развития зародыша при спонтанных абортах.

Поскольку большинство вновь возникающих в генофонде мутаций либо нейтральные, либо вредные, необходимо защищать человека от неблагоприятных воздействий внешней среды, которые повышают вероятность возникновения вредных вариантов генов. С теми же целями человек может, например, отказаться от некоторых вредных привычек. Для сохранения генофонда необходимо усилиями всего общества развивать науку, которая помогает понять многочисленные последствия от взаимодействия бесконечных вариантов генов. На мой взгляд, было бы ошибочным пытаться улучшить генофонд путем подбора семейных пар по внешним признакам психического и физического здоровья, как это делают селекционеры домашних животных и сельскохозяйственных растений. В обществе, где в результате такого отбора все люди стали бы высокими и голубоглазыми, никогда не были бы написаны ни «Война и мир», ни «Братья Карамазовы», не появились бы ни Гленн Гульд, ни Святослав Рихтер.

Святослав Рихтер – 1915–1997 – Крупнейший музыкант XX века, советский и российский пианист. Семья Рихтера жила на территории Украины и сочетала в себе немецкие и русские национальные корни.

Гленн Гульд – 1932–1982 – Канадский пианист, выдающийся интерпретатор Баха. Среди предков Гульда – евреи, славяне, англосаксы и норвежцы (родственники композитора Эдварда Грига).

Для сохранения генофонда нации любое цивилизованное государство должно заботиться о каждом конкретном человеке. Необходимо, чтобы каждый гражданин достойно дожил до репродуктивного возраста, оставил и воспитал уникальное и неповторимое потомство.

Сегодня мы еще слишком мало знаем о геноме, чтобы делать однозначные выводы о будущем влиянии конкретных вариантов генов на здоровье личности. Наличие вредных вариантов генов в геноме человека в большинстве случаев не является для него приговором. Необходимо отказаться от прямолинейной оценки и прогноза возможного влияния вариантов генов на организм и здоровье человека. Развитие патологического процесса зависит от многих факторов, на большинство из которых человек может повлиять сам, немного изменив свой образ жизни. Пусть впереди нас ждет только радость!

Максим Либанов. Почему наш мир таков, каков он есть

Максим Либанов – Доктор физико-математических наук, профессор МГУ.

Каждый из нас задается вопросами. Сначала, в детстве, это простые и наивные вопросы о том, почему на небе звезды, почему солнце встает, а реки текут. Ответы на большинство этих вопросов мы получаем в школе. Реже нам отвечают на вопрос «Что такое жизнь?» и совсем редко – на вопросы вроде «Зачем все это нужно?». Мы задаемся вопросами, потому что наш мозг устроен таким образом, что он постоянно строит модели, которые затем он может применять в различных ситуациях.

Основной принцип, который использует наш мозг при построении моделей, – это поиск гармонии. Энциклопедический словарь дает следующее определение: «Гармония – соразмерность частей, слияние различных компонентов объекта в единое органическое целое». Другими словами, гармония – это некоторая красота, симметрия или простота. Гармоничные вещи нам гораздо проще встроить в модель, чем запоминать огромные объемы часто ненужной информации.

Бал правит симметрия

Одним из краеугольных камней гармонии является принцип симметрии. Когда говорят о симметрии, мы представляем себе «обычные» симметрии, встречающиеся в природе, такие как симметрия снежинки, кристалла или бабочки. Но симметрии могут быть и более сложными и не столь очевидными. Когда вместо геоцентрической системы Коперник предложил гелиоцентрическую систему и тем самым «симметризовал» нашу планету по отношению ко всем остальным планетам, он совершил великую революцию в физике и в нашем сознании. После этого законы физики, законы небесной механики стали значительно проще и нагляднее.

Целью науки фактически служит открытие наиболее фундаментальных законов, и эти законы должны быть органичны, просты, красивы и логичны. Все основные уравнения с виду довольно просты и по мере развития науки становятся проще. В основе птолемеевской космологии лежало представление о мире, в котором Земля являлась центром Вселенной. Описание такого мира требовало построения сложных математических конструкций. Однако стоило лишь отказаться от идеи, что Земля в центре, и описание стало значительно короче и стройнее. Краткость и простота математического описания – верный знак того, что оно правильно отражает красоту и гармонию самой Вселенной.

Сам вид уравнений Эйнштейна и Максвелла (уравнений электродинамики), а также уравнений, описывающих два других типа взаимодействий – сильного и слабого, практически однозначно фиксируется симметриями, которые существуют в природе. Можно предположить, что, знай, например, Ньютон в XVII веке те симметрии, которые знаем мы, он наверняка бы вывел и уравнение Эйнштейна, и уравнения Максвелла, что называется, на кончике пера. Однако потребовалось более двухсот лет для того, чтобы понять, какие именно симметрии лежат в основе этих теорий.

Альберт Эйнштейн – 1879–1955 – Немецкий и американский физик, создатель теории относительности. Формула Эйнштейна, связывающая массу и энергию, стала самым известным среди населения земли физическим соотношением.

Исаак Ньютон – 1643–1727 – Английский физик и математик, основоположник классической механики и теории гравитации.

Возникает вопрос: можно ли вывести все физические уравнения из единственного требования красоты и симметрии? Возможно, ответ на этот вопрос положителен, но на современном уровне понимания проблемы одной только симметрии явно недостаточно. Дело в том, что в существующих физических теориях во все уравнения входят константы, такие как заряд или масса электрона. Если эти параметры изменить, вид уравнения – а значит, его красота и симметричность – не изменится. Но как повлияет такая процедура на законы физики, на сам вид Вселенной, в которой мы живем? На этот вопрос есть два ответа: либо ничего не поменяется, либо Вселенная изменится до неузнаваемости. Я хочу продемонстрировать, что правильный ответ второй: Вселенная станет неузнаваемой, если лишь чуть-чуть подправить константы в уравнениях.

Точная настройка мира

Начнем с числа измерений нашего мира, которое тоже можно рассматривать как фундаментальную константу. Все мы хорошо представляем, что наше пространство трехмерно: для того чтобы точно задать положение тела, надо знать три числа – скажем, широту, долготу и высоту относительно Земли. Другим фактом, отражающим трехмерность нашего пространства, является то, что через одну точку можно провести ровно три взаимно ортогональные прямые. Строго говоря, необходимо также задать момент времени, когда тело находилось в данной точке, – тогда мы приходим к понятию четырехмерного пространства-времени. Но в дальнейшем мы не будем обращать внимания на эту тонкость и будем говорить о числе пространственных измерений.

Еще древние греки заметили, что геометрия двумерного и трехмерного пространств различна. Так, в двух измерениях существует бесконечное количество правильных многоугольников, а в трехмерном мире – всего пять правильных многогранников[8]. Из этого факта они делали вывод о красоте и гармоничности трехмерного пространства, а в красоте древние греки знали толк. Возникает вопрос, а что было бы (кроме отсутствия гармонии в понимании древних греков), если бы наше пространство не являлось трехмерным? Дело в том, что законы физики, то есть уравнения, о которых говорилось выше, без труда переносятся на любое число измерений. Более того, с одной стороны, справедливость этих уравнений проверена экспериментально в двумерных системах, таких как графен. А с другой стороны, некоторые современные теории, например теория суперструн или М-теория, могут быть непротиворечивым образом сформулированы в десяти– или одиннадцатимерном пространстве-времени.

«Уравнения физики красивы хотя бы потому, что они короткие. Уравнение Эйнштейна, занимающее одну строчку, описывает все в нашей Вселенной».

Максим Либанов

Рассмотрим одномерный случай, например прямую. На прямой практически любое движение двух и более тел приводило бы к столкновениям. Вряд ли в такой системе могли бы появиться сложные формы организации материи, такие как жизнь. Шуточным аргументом против существования жизни в двумерном пространстве является следующее наблюдение. У высокоорганизованных двумерных животных пищеварительный тракт должен начинаться и заканчиваться в одном месте. В противном случае животное было бы разделено на две не связанные друг с другом части. По этой же причине у такого животного были бы проблемы с кровообращением. Еще одним, более серьезным аргументом против двумерной жизни является то, что в четном числе измерений у распространяющейся волны нет четкого заднего фронта (эффект реверберации). Это привело бы к тому, что двумерное существо слышало бы не последовательный набор звуков (слов), как мы, а наряду со вторым звуком слышало бы отголоски первого. Точно такие же проблемы возникли бы и с визуализацией (поскольку свет – это волна), да и с любым способом передачи информации посредством волн. Другими словами, в четном числе измерений были бы проблемы с коммуникацией, и вряд ли в таких условиях была бы способна появиться высокоорганизованная жизнь.

Более сильный аргумент – законы Ньютона и Кулона[9] в нашем мире. Со школы мы помним, что есть закон обратных квадратов: два тела (или заряда) притягиваются друг к другу с силой, обратно пропорциональной квадрату расстояния между ними. Несмотря на то что уравнения, приводящие к этому закону, выглядят одинаково в любом числе измерений, решение этих уравнений, то есть сам закон, зависит от числа измерений. Так, в двумерном мире сила была бы обратно пропорциональна расстоянию (а не квадрату расстояния) между телами. Поразительным является тот факт, что только в случае выполнения закона обратных квадратов могут существовать стационарные орбиты планет и уровни электронов в атоме. Другими словами, в любом другом пространстве с числом измерений, отличным от трех, не существовали бы ни планеты, ни даже атомы, и жизнь вообще не смогла бы существовать и даже возникнуть. Нам с тремя измерениями повезло.

Шарль Огюстен де Кулон – 1736–1806 – Французский физик и инженер, сформулировавший закон взаимодействия электрических зарядов.

Попробуем теперь немного изменить другие физические константы. Мы знаем, что масса электрона намного меньше, чем масса нуклона. Вследствие такого соотношения электрон вращается по орбите вокруг ядра, которое практически покоится. Если массу электрона сделать порядка массы нуклона, то и электрон, и ядро будут вращаться относительно их общего центра тяжести. В результате не будет определенного положения ядра. В таком случае не было бы не только химиков и физиков, но и никого другого, потому что не было бы молекул. Существование молекул зависит от простого факта, что электрон намного легче нуклона.

Чтобы идти дальше, вспомним, откуда во Вселенной вещество. Согласно современным представлениям, все вещество во Вселенной было произведено в момент Большого взрыва – периода развития ранней Вселенной, характеризующейся огромной температурой и давлением. После Большого взрыва Вселенная начала расширяться и, подобно расширяющемуся газу, охлаждаться. Приблизительно через 300 секунд температура упала настолько, что стал возможен синтез легких элементов, таких как гелий, – произошел первичный нуклеосинтез. Было вычислено, что во Вселенной должно быть 75 % водорода и около 25 % гелия, что прекрасно согласуется с наблюдательными данными. Поразительно, что эти цифры получились за счет очень точной подстройки констант. Если константы были бы немного другими, то во Вселенной могло бы не оказаться водорода – он бы (почти) весь переработался в гелий. В такой Вселенной жизнь была бы невозможной.

Далее допустим, что массы нуклонов (протонов или нейтронов) отличались бы от известных значений на доли процента в большую или меньшую сторону, и посмотрим, как выглядел бы мир.

Известно, что протон стабилен[10]: его время жизни более 1030 лет. Это огромное число, гораздо больше возраста Вселенной, которой 10–15 млрд лет. Нейтрон, напротив, нестабилен. Свободный нейтрон распадается за 15 минут. Он распадается на протон, электрон и нейтрино, и происходит это за счет того, что масса нейтрона больше, чем сумма масс протона и электрона. Разность масс нейтрона и протона меньше, чем энергия связи нуклонов в ядре, за счет чего и существуют стабильные элементы – нейтрон не может распасться в ядре по энергетическим соображениям. Но если увеличить массу нейтрона всего на 1 %, разность масс окажется больше, чем энергия связи в ядре. Это означало бы, что нейтроны в ядрах были бы нестабильны – все ядра распались бы. Остались бы только ядра водорода – протоны. Вместо нашей разнообразной Вселенной мы получили бы просто водородный пузырь, в котором опять же жизнь была бы невозможна.

Если, напротив, уменьшить разницу в массах между протоном и нейтроном, то распад нейтрона станет куда менее вероятным. Тогда в ранней горячей Вселенной число протонов и нейтронов стало бы более или менее одинаковым. Из такой каши с большой вероятностью образовались бы ядра гелия. Гелий, как мы знаем, инертный газ – а значит, жить во Вселенной из гелия было бы скучновато. Звезды, которые могли бы в ней образоваться, были бы короткоживущими и, следовательно, не дали бы возможности зародиться жизни на окружающих их планетах (если бы такие смогли образоваться). Кроме того, в такой Вселенной не было бы водорода, столь необходимого для образования воды и органических кислот. Сложно представить, что в такой Вселенной была бы возможна жизнь.

А если еще увеличить массу протона, он станет тяжелее нейтрона и будет распадаться на нейтрон, позитрон и нейтрино. В мире останутся только нейтроны, которые не могут притягивать электроны. Не будет атомов, не будет химии, не будет химиков, не будет ничего. Таким образом, все разнообразие мира, каким мы его знаем, определяется очень точным подбором разницы масс протона и нейтрона.

Но откуда берутся такие удивительным образом подобранные константы, мы не знаем. Можно предположить, что это Великий Замысел Творца. А может быть, это фундаментальное свойство природы или счастливая случайность. Физики надеются (они почти уверены), что существует некая теория – теория суперструн или то, что называют М-теорией, – более фундаментальная, чем то, что мы имеем, и которая сможет ответить на эти вопросы, а все таким удивительным образом подобранные значения констант будут следствием некоторых простых симметрий.

Мир для нас

Физики и философы сформулировали так называемые антропные принципы[11]. Один из них – сильный антропный принцип – гласит: «Законы Вселенной должны быть таковы, чтобы допускать развитие разумной жизни, которая эти законы формулирует». В действительности в такой формулировке этот принцип не несет никакой гносеологической нагрузки, то есть устанавливает границы нашего познания и эквивалентен признанию существования Великого Замысла или Великой Случайности. На мой взгляд, гораздо интереснее и содержательнее слабый антропный принцип: «Наблюдение данного набора значений мировых констант тем вероятнее, чем с большей вероятностью этот набор констант приводит к возникновению наблюдателей».

По сути слабый антропный принцип допускает, что во Вселенной могут быть разные места с разными значениями констант. То есть набор констант может отличаться от места к месту. Возможно, существует много вселенных, в каждой из которых реализуется свой набор констант. В таком случае наблюдатель существует только в той вселенной, где константы подобраны так, как было описано выше. Если бы значения констант были другие, такая вселенная была бы пуста, в ней не было бы наблюдателя – а значит, такие константы никто не может наблюдать, и мы в том числе. Выходит, что мир, который мы видим, потому таков, что в нем существуем мы. Это следствие того, что константы в нашей Вселенной подобрались единственно правильным образом. Соседняя вселенная, где константы будут чуть-чуть отличаться, окажется пустой. Без наблюдателя там некому будет задумываться и читать лекции о физических константах.

На самом деле существуют наблюдательные данные (хотя и не вполне подтвержденные), что постоянная тонкой структуры[12] изменилась за время существования Вселенной на стотысячные доли. Это может означать, что за космологическим горизонтом она тоже может отличаться, и гораздо сильнее.

Интересно, что слабую формулировку антропного принципа можно применять для того, чтобы что-то предсказывать, используя факт нашего существования как одно из наблюдательных данных.

Рассмотрим один пример. Ядра большинства химических элементов (все, что тяжелее гелия) образуются в звездах. Эти реакции происходят примерно так. При слиянии ядер водорода (термоядерной реакции) образуется гелий. Три ядра гелия сливаются в углерод. Концентрация гелия при этом падает, соответственно, падает и температура, и давление, противостоящее гравитации. Далее гравитация начинает сжимать звезду, и температура снова растет. Начинается следующий этап реакции, и возникает новый элемент: слияние углерода и гелия дает кислород. Такие звездные циклы повторяются в звезде много раз и вырабатывают все вещество, которое мы видим. Считается, что когда-то на месте нашего Солнца была другая, более крупная звезда, которая перегорела, взорвалась как сверхновая, а из рассеянного взрывом вещества образовались Солнце и наши планеты. Все наше богатство химических элементов – продукт жизнедеятельности этой древней звезды. Железо, кислород и кремний, из которых в основном состоит Земля, – просто наиболее энергетически выгодный финальный продукт слияния ядер в недрах этой протозвезды.

Если взглянуть на график зависимости энергии ядерной связи от порядкового номера элемента в таблице Менделеева, видно, что железо – действительно наиболее вероятный продукт звездного горения. Золото куда дальше от оптимума, поэтому золото в нашей Вселенной будет редким элементом.

В описанном достаточно стройном сценарии образования химических элементов есть одна проблема: для того чтобы образовались тяжелые элементы, необходимо, чтобы образовался углерод – так называемое углеродное горлышко. Но реакция слияния гелия в ядро углерода идет очень плохо. Чтобы пошла эта реакция, нужно, чтобы три ядра гелия одновременно оказались в одной точке. Интуитивно ясно, что это очень маловероятно. Вероятность того, что два ядра окажутся в одной точке, велика, но практически невероятно, что и третье ядро окажутся в той же точке. К 1952 году стало ясно, что эта реакция крайне маловероятна, а других реакций, приводящих к образованию углерода, просто не было. С другой стороны, мы существуем: наше существование можно рассматривать как экспериментальный факт, из которого следует, что углерод должен существовать. Исходя из этого факта, Фред Хойл в 1953 году предсказал, что должен быть резонансный энергетический уровень ядра углерода, благодаря которому реакция становится возможной. В предсказании фигурировало значение 7,7 МэВ, а уже год спустя этот уровень действительно был открыт, и оказался чуть меньше, 7,66 МэВ, – поразительное совпадение (МэВ = 106 эВ – единица измерения энергии в ядерной физике).

Фред Хойл – 1915–2001 – Британский астроном, внесший большой вклад в представления об эволюции звезд. Первым употребил термин «Большой взрыв», хотя сам придерживался альтернативной – стационарной – модели Вселенной.

Резонанс – это очень простая штука, которую мы постоянно наблюдаем и используем. Например, качаясь на качелях, нужно вовремя подгибать и разгибать ноги. Вовремя – значит, нужно попасть в такт. Попадание в такт и есть резонанс. Если вы правильно дозируете свои усилия, увеличивается амплитуда колебаний. Если такой резонансный уровень имеется у ядер углерода, если энергия трех ядер подбирается правильным образом и попадает в резонансные пики, то реакция идет хорошо. Если же нет, то она идет плохо. Оказалось, что в случае производства углерода без резонанса не обойтись.

Но это еще не вся история. Следующая реакция – это переработка углерода и гелия в кислород – она уже не резонансная. Оказалось, что резонанс у кислорода на десятые доли процента отличается от суммарной энергии углерода и гелия. Если бы эта реакция была резонансной, то перегорел бы весь углерод. В природе не было бы углерода, а были кислород и более тяжелые элементы. Возможно, была бы кремниевая жизнь. Но наша жизнь углеродная – тоже поразительный факт. Вновь все решило тонкое соотношение чисел.

Другая проблема, к решению которой можно подойти с точки зрения антропного принципа, связана с так называемой космологической постоянной. Те, кто интересуется или посматривает на странички интернета, связанные с физикой, возможно, слышали о темной энергии и космологической постоянной. Проблема состоит в следующем. В обычной ньютоновской механике энергию можно отсчитывать от любого уровня: от уровня моря, от стола, от пола – от чего угодно, важна только разность энергий. Это справедливо для всех физических теорий, кроме единственной: теории гравитации Эйнштейна. Из знаменитой формулы E = mc следует, что энергия есть масса, способная притягивать другую массу, и это притяжение зависит не от разности энергий, а от их абсолютного значения. А значит, очень важно, от какого уровня мы будем отсчитывать энергию во Вселенной. У вакуума – состояния с наименьшей энергией – совсем не обязательно будет энергия, равная нулю. Эта энергия вакуума называется космологической постоянной и обозначается буквой . Она вносит вклад в общую плотность энергии во Вселенной, а от значения этой плотности зависит, будет ли Вселенная расширяться бесконечно или, наоборот, схлопнется в точку.

Космологическая постоянная могла бы быть равна нулю – это было бы красиво. Такое значение космологической постоянной можно было бы объяснить некоторой (пока еще неизвестной) симметрией. Однако если предположить, что нет механизмов, обращающих в ноль космологическую постоянную, то простая размерная оценка показывает, что в этом случае ее наиболее «естественное» значение на 120 порядков (на единицу со ста двадцатью нулями!) превосходит плотность материи[13] во Вселенной. Будь космологическая постоянная на самом деле такой, Вселенная мгновенно раздулась бы до гигантских размеров. Настолько гигантских, что плотность вещества стала бы меньше одного нуклона на всю видимую часть Вселенной. Ясно, что ни о какой жизни в такой Вселенной не может идти и речи.

В 1987 году нобелевский лауреат Стивен Вайнберг, исходя из антропного принципа, а именно опираясь на факт существования галактик, показал, что если космологическая постоянная отлична от нуля, то она не может сильно превышать плотность материи во Вселенной. В противном случае галактики просто не смогли бы образоваться, не было бы звезд и не было бы космологов.

Стивен Вайнберг – род. 1933 – Американский физик, лауреат Нобелевской премии (вместе с Шелдоном Ли Глэшоу и Абдусом Саламом) за создание объединенной теории электрослабого взаимодействия. На русском языке изданы научно-популярные книги Вайнберга «Первые три минуты» и «Мечты об окончательной теории».

В 1998 году, наблюдая за сверхновыми типа Ia, две группы астрофизиков независимо друг от друга открыли, что наша Вселенная не просто расширяется, а расширяется ускоренно. В дальнейшем этот факт был подтвержден другими независимыми наблюдениями, и в 2011 году это открытие было отмечено Нобелевской премией. Почему так важен этот факт, что ученые, обнаружившие его, были удостоены такой высокой награды? Дело в том, что любая «обычная» материя (и темная, и барионная, способная взаимодействовать со светом) не может привести к ускоренному расширению Вселенной. Расширение если и будет, то замедленным. Только субстанция с необычными свойствами (отрицательным давлением, а давление в теории гравитации тоже весит) может привести к ускорению. Такую субстанцию называют темной энергией (не путать с темной материей – веществом, не взаимодействующим со светом и, следовательно, невидимым для нас). Частным случаем темной энергии является космологическая постоянная. Частным, потому что в общем случае темная энергия может быть динамической, то есть зависеть от времени. В настоящее время нет никаких достоверных свидетельств, что темная энергия является динамической, а все имеющиеся наблюдательные данные прекрасно отражаются в рамках модели CDM – модели, описывающей эволюцию Вселенной, в которой роль темной энергии играет космологическая постоянная. (Аббревиатура CDM означает Cold Dark Matter – «холодная темная материя» – еще одна компонента, дающая вклад в полную плотность энергии во Вселенной и необходимая для правильного описания эволюции последней). Кроме того, из наблюдательны данных удалось извлечь значение космологической постоянной: оно оказалось в три раза больше плотности энергии вещества и близко к значению, предсказанному Вайнбергом! При этом суммарная плотность энергии такова, что наше пространство остается плоским и евклидовым, оно не сжимается в точку и не расширяется слишком быстро. Мы видим, что и здесь тоже налицо тонкая настройка параметров, делающая мир вполне пригодным для нашего с вами проживания.

«По всей видимости, жизнь вообще не смогла бы организоваться и существовать при числе измерений, отличном от трех, и нам с нашими тремя измерениями повезло».

Максим Либанов

Разные миры

Слабый антропный принцип допускает (и предполагает) существование либо разных частей с разными константами в нашей Вселенной, либо существование разных вселенных. На самом деле это напоминает то, что предлагал Джордано Бруно: множественность миров. Хотя Бруно и говорил о планетах, современным физикам планет мало, они говорят о вселенных. Можно спросить, где эти вселенные, но лучше спросить, где и когда эти вселенные. Один из вариантов такой: Вселенная циклически сжимается и расширяется, чуть-чуть меняя свои параметры в каждом цикле. Рано или поздно она приходит в такой цикл, где параметры подбираются такими, какими мы их видим, – такими, которые допускают появление нас с вами. Соответственно, мы появляемся и описываем увиденное нами в созданных нами теориях.

Другой вариант множественности миров – то, что называется вселенными Эверетта. Это чисто квантово-механический эффект, эффект наблюдателя. В квантово-механической картине мира физический закон предсказывает не точный исход процесса, а лишь вероятность разных исходов. Лишь в момент наблюдения природа «выбирает», в какой точке пространства мы увидим электрон или в какой момент времени зафиксируем распад нейтрона. В 1957 году Хью Эверетт предположил, что в момент наблюдения (то есть фактически в каждый момент времени) история Вселенной расщепляется на множество вариантов, соответствующих каждому из возможных результатов наблюдения. А значит, буквально «рядом» существует другой мир, где мы все делаем чуть-чуть по-другому, причем таких миров бесконечно много.

Хью Эверетт – 1930–1982 – Американский физик, автор «многомировой» интерпретации квантовой механики (1957). После защиты докторской диссертации оставил физику, не встретив поддержки коллег.

Третий вариант множественных миров связан с теорией инфляции[14]. В ее основе – очень хорошо согласующаяся с наблюдениями идея, что на начальном этапе эволюции наша Вселенная претерпела очень быстрое расширение. Произойти это могло из-за того, что на самом элементарном уровне наше пространство динамично, оно постоянно меняется за счет квантовых осцилляций. На расстояниях порядка планковской длины пространство схлопывается, образуется и снова схлопывается. Образуется так называемая пространственно-временная пена. Но иногда, с небольшой вероятностью, возникают очень большие флуктуации, больше планковской длины. Пузырек такого нового пространства вместо того чтобы схлопнуться, начинает раздуваться. Стадия быстрого раздувания называется инфляцией и происходит очень быстро, за 10–35 секунд. Из таких пузырей и образуются различные вселенные. Их может быть много, и в каждой из них могут быть свои законы.

Что находится между этими вселенными? Ничего. Вообще ничего. Там нет пространства и даже нет времени. Инфляция происходит с самим пространством. Между вселенными – возможно, квантовая пена, о которой физика пока не может сказать ничего определенного, потому что там ничего нет, в том числе и физики.

Наконец, один из вариантов множественных миров предлагает теория струн, в которую прекрасно вписывается инфляция. Эта теория возникла для того, чтобы снять противоречия между квантовой механикой и теорией гравитации. Электроны, фотоны, гравитоны, весь зоопарк частиц – это колебания струны. В теории струн есть всего одна константа связи вместо тех, которые мы знаем (в настоящее время их чуть больше двадцати). Была (и остается) надежда, что из этой константы можно будет получить все остальные константы и они будут такие, как надо. Это была бы действительно фундаментальная теория, объясняющая все на свете.

Однако оказалось, что уравнения этой теории приобретают смысл лишь в том случае, если число измерений пространства-времени – не четыре, а десять. Почему мы видим лишь три пространственных измерения и одно временное? Потому что лишние измерения «свернуты» в многомерные поверхности ничтожно малого размера, подобно тому как свернуто в кольцо одно из измерений (поперечное) на двумерной поверхности шланга. От того, как именно устроены эти поверхности, зависят конкретные предсказания теории о нашей Вселенной.

Выяснилось, что число способов прийти от десяти измерений к нашим трем варьируется от 10 100 до 10 500. Возможно, их даже больше, вплоть до бесконечности. Каждому такому переходу, каждому типу такого перехода будет соответствовать своя вселенная со своим набором констант связи. Они будут либо раздуваться, либо схлопываться, они могут быть пустые. Вероятность найти среди них вселенную, где образуются звезды и галактики, условно говоря, будет порядка 10 – 500 степени, то есть почти нуль. Если почти нулевое число умножить на почти бесконечность, получится «немножко» вселенных, в которых бывает жизнь и бывают разумные особи, удивляющиеся тому, как устроен мир.

Может показаться, что все это бред сумасшедшего или фантазии ученых, что никакой практической пользы от этого не может быть. Есть, однако, одна история, связанная с величайшим физиком XX века Эрнестом Резерфордом. Этот человек открыл альфа– и бета-излучение, обнаружил протон, доказал, что атом устроен планетарным образом – что электроны вращаются вокруг ядра, – и сделал еще массу других открытий, каждое из которых могло бы быть удостоено Нобелевской премии по физике. Сделав как никто много для ядерной физики, Резерфорд в 1933 году сказал: «Каждый, кто надеется, что преобразование атомных ядер станет источником энергии, исповедует вздор». Как теперь ясно, он сильно ошибался: до атомного взрыва в Хиросиме оставалось всего двенадцать лет.

Эрнест Резерфорд – 1871–1937 – Английский физик, заложивший основы теории строения атома. Лауреат Нобелевской премии 1908 г.

Конечно, никто сейчас не может дать гарантии, что открытие, например, ненулевой космологической постоянной принесет в обозримом будущем какую-то практическую пользу. Но совершенно очевидно, что никакой пользы точно не будет, если не задаваться вопросами, поставленными в этой лекции, если не пытаться понять, как и почему так, а не иначе, устроен наш мир. Именно поэтому тратятся немалые средства на проведение исследований в области фундаментальной физики. Именно поэтому на Большом адронном коллайдере (по разным оценкам, стоимость от 6 до 10 миллиардов долларов) разработана целая программа по поиску подтверждений теории струн. Ищут квантовые черные дыры, которые могут появиться в некоторых моделях, ищут проявления дополнительных измерений. Возможно, нам повезет и мы найдем подтверждения теории струн, возможно, мы удостоверимся в существовании других вселенных и, возможно, когда-нибудь будет найден способ сделать туннель в другую вселенную. И когда наша Вселенная рано или поздно умрет (а это случится почти наверняка хотя бы из-за ненулевой космологической постоянной), мы сможем перебраться в новый мир, и разум не погибнет вместе с нашей Вселенной.

…Или не сможем – время покажет, как на самом деле устроен мир.

Сергей Попов. Истории из жизни звездного неба

Сергей Попов – Астрофизик, доктор физико-математических наук, ведущий научный сотрудник Астрономического института им. П. К. Штернберга (ГАИШ) МГУ.

Одному довольно известному политическому деятелю приписывается высказывание: «Искусство должно быть понятно народу». Но история показала, что искусство никому ничего не должно: оно идет своим путем – кто-то идет с ним, а кто-то не идет. На мой взгляд, с наукой в ХХ веке получилось как с искусством. Каждый из них шел своим путем, а в результате как современное искусство, так и современная наука многим сегодня непонятны. В искусстве я ничего не понимаю, но науку могу сделать немножко понятнее.

Если взять науку и искусство какого-нибудь XVII века, мы оказываемся на очень комфортном нулевом уровне понимания. Вы подходите к картине Боттичелли и видите, что это просто красиво. Подойти к произведению современного актуального искусства и сказать, что это красиво, можно в очень редких случаях. С наукой произошло примерно то же самое. Нет ничего удивительней, чем посмотреть в телескоп на Сатурн. Если не смотрели, то посмотрите. Или рассмотреть в микроскоп каких-нибудь инфузорий – это потрясающе. Это такой же нулевой уровень понимания, такой же условный «ах!».

История открытия колец Сатурна сама по себе очень интересна. Вообще говоря, кольца Сатурна в первые телескопы видно было плохо. Галилей[15] увидел, что Сатурн не круглый. Все думают, что Чебурашку придумал Успенский, но это был Галилей. Он посмотрел на Сатурн и увидел нечто похожее на Чебурашку – диск с ушами. Галилей был крайне рациональный человек: он никому не стал рассказывать об увиденном, но оставил зашифрованное сообщение, чтобы потом можно было отстоять приоритет. А когда через какое-то время с помощью более качественного телескопа снова посмотрел на Сатурн, чтобы получше разглядеть, – ничего не увидел и подумал, что померещилось. Еще через несколько десятилетий с помощью еще более мощных телескопов были открыты кольца Сатурна, но это сделал уже не Галилей. Дело в том, что на Сатурне, как и на Земле, есть времена года. В зависимости от угла мы видим кольца красивыми, как привыкли видеть на картинке, или с ребра – и тогда ничего не видно.

В современной научной статье очень редко можно увидеть изображения (если там вообще есть изображения), которые бы вызвали пресловутый «ах!». Скорее это будет нечто больше похожее на «ууу…»: это непонятно и не всегда красиво.

Откуда пошла Вселенная

Начнем издалека – с краткой истории вселенной. Вселенная имеет конечный возраст. Идея эта очень интересна, и рационально мыслящие люди в нее не всегда верили. Под вселенной в данном случае я понимаю «вселенную с маленькой буквы» – то, что мы видим вокруг, что мы видим в телескопы сейчас и сможем увидеть в сколько-нибудь обозримом будущем. Всего этого когда-то не было. Это очень жесткое, абсолютно не философское, но наблюдательное утверждение. Сейчас мы в этом убедимся.

Представим, что вселенная бесконечна и заполнена звездами (это рациональная вселенная XIX века). Нигде нет никакого центра, мы не живем в центре скопления звезд. Если бы мы жили в центре мира, это было бы очень подозрительно, но мы живем в самом заурядном месте. Значит, куда бы мы ни посмотрели – взгляд рано или поздно упрется в звезду. Это легко понять: если завязать глаза и побежать даже через самый редкий лес, вы непременно найдете лбом свое дерево. Если ночью смотреть в заполненную звездами бесконечную Вселенную, где-то взгляд должен упереться в «лампочку» и все небо должно сиять, как поверхность звезды. Никакой ночной черноты не было бы. Отчего же мы, тем не менее, видим небо таким, какое оно есть, – яркие огоньки на черном фоне? Звезды где-то заканчиваются?

Правильный ответ в том, что звезды кончаются не в пространстве, а во времени – когда-то этих звезд не было. Вселенная при этом может быть бесконечна – это ничему не противоречит, просто звезды возникли какое-то время назад, и свет от далеких звезд до нас не дошел. Теперь мы знаем, какое это время – примерно 13,7 миллиарда лет назад.

Когда-то произошло нечто, что мы называем Большим взрывом[16], в котором родилась наша Вселенная. После этого она начала расширяться и продолжает это делать по сей день. Мы это действительно знаем, это наблюдательный факт, а не результат интерполяций и экстраполяций. Сначала Вселенная была очень горячей и плотной – мы видим оставшееся от той эпохи излучение. Если включить телевизор и поймать пустой канал, на экране будет рябь. Заметный процент этой ряби и есть излучение далекой горячей Вселенной. Если бы вы это заметили до 1965 года и сделали правильный вывод, получили бы Нобелевскую премию.

В какой-то момент горячее вещество остыло и, как говорят физики, рекомбинировало. Это значит, что оно стало нейтральным: электроны прицепились к ядрам, которых было всего два – водород и гелий. Тогда наступили темные времена. Нейтральное вещество ничего не излучает, а звезд еще нет. Затем, после темных веков, наконец-то начали образовываться первые звезды. Во Вселенной были места, где плотность вещества была побольше, а в других местах плотность была поменьше. Туда, где плотность больше, притягивалось еще вещество и образовывались массивные комки. В этих комках было довольно много темного вещества. В астрономии оперируют своими единицами, в частности массой Солнца. Так вот, темного вещества в типичном комке было где-то на миллион масс Солнца, а обычного вещества – водорода и немножко гелия – было на сто тысяч масс Солнца. В таком облаке в современных моделях и возникает самая первая звезда. Звезды – первые объекты, которые загорелись во Вселенной.

Темное вещество – одна из ключевых космологических загадок. Сегодня считается, что это некий вид элементарных частиц. На роль этих непонятных частиц в теории есть несколько хороших кандидатов, но пока ни одного не поймали. Этих частиц по массе примерно раз в пять больше, чем обычного вещества.

Итак, в местах наибольшей плотности получаются облачка, где загораются первые звезды. Дальше процесс продолжается, и эти плотные облачка начинают сливаться друг с другом. Их слияние дает галактику. Не только наша, но и другие галактики состоят из сотен миллиардов звезд, из большого количества газа, пыли, темного вещества. Они образованы путем слияния более мелких галактик, а изначально даже не галактик, а облаков, где было буквально по одной звезде.

Все это мы пока не видим по двум причинам: во-первых, это далеко. У нас во Вселенной все просто: есть скорость света, поэтому от далеких объектов сигнал к нам приходит спустя какое-то время – расстояние поделить на скорость света. На самом деле есть хитрость, потому что Вселенная расширяется, и расстояние увеличивается. В результате события, которые происходили давно, трудно увидеть – даже если в тот момент, когда они происходили, они были ближе, то сейчас они далеко.

Во-вторых, это связано с явлением, которое называется «красное смещение». Вселенная растягивается, и вместе с ней расширяются все несвязанные объекты. Расширяется свет: вы испустили зеленый луч, а он летит далеко-далеко во Вселенную и превращается в красный – вытягивается. Дальше он может превратиться в инфракрасный, а инфракрасный с Земли уже не видно. Чтобы все это увидеть, придется запускать телескоп в космос. Нет никакого дешевого способа с Земли увидеть инфракрасное излучение или, наоборот, рентгеновское. Поэтому нужно строить новые инструменты, которые, как все надеются, покажут нам самые первые звезды и галактики.

Как видеть далеко

Сейчас самые большие запущенные на орбиту телескопы имеют диаметр под четыре метра. Телескопы большего размера не влезают в ракету. Если нужен телескоп больше, его надо делать раскладным, как зонтик.

Телескоп – очень хитрое, сложное, высокотехнологическое устройство. В космосе его надо защищать от солнца, чтобы он не нагревался, на него влияют заряженные частицы и много что еще. В результате он получается очень сложный и в изготовлении, и в эксплуатации. Астрономические приборы такого уровня очень дороги по двум основным причинам; третья добавляется, если прибор надо отправлять в космос. Первая причина в том, что они делаются в одном экземпляре – все, что вы делаете в одном экземпляре, дорого. Если болид «Формулы-1» делать миллионными партиями, он будет гораздо дешевле, чем сейчас. Вторая причина состоит в необходимости разработки новых технологий. Третья причина в том, что в космосе все дороже.

Есть проекты наземных телескопов, которые покажут нам первые звезды и галактики. Самый большой из них – система радиотелескопов SKA[17]. Если проект будет реализован, он будет стоить несколько миллиардов долларов. Для наземной астрономии это фантастические деньги. Есть также миллиметровые телескопы на Земле, например, в пустыне Атакама. Телескопы нужно строить высоко в горах, где очень сухо, так как пары воды мешают наблюдениям в этом диапазоне спектра.

Как ни странно, про первые галактики нам могут рассказать и новые рентгеновские спутники. Эти спутники запускают в космос, потому что рентгеновское излучение, к счастью, не проходит сквозь земную атмосферу. Излучение это хорошо тем, что это почти что самые «жирные» кванты. Если вам нужно убежать и унести с собой пару миллионов долларов, все знают – надо брать крупными купюрами, потому что купюрами по доллару вы физически не унесете два миллиона. Природа мудра и поступает точно так же. Если в одном месте выделяется очень много энергии, надо уносить ее большими квантами – рентгеновскими. Когда идут какие-то бурные процессы, энергия испускается в рентгеновском диапазоне. Такие процессы происходят, например, когда вы кидаете предметы в черную дыру.

Идея очень простая. Все боятся, что на нас упадет астероид, потому что при этом происходит огромный взрыв. Это просто камень (не бомба!), но выделяется очень много энергии. Астероид падает с очень большой скоростью – если помните, есть такая формула: mv. Если из космоса кинуть предмет на Землю, он падает со скоростью несколько километров в секунду, влетает в атмосферу, дальше тормозится и выделяет энергию.

Другое дело, если предмет кинуть не на Землю, а в черную дыру. В черную дыру предмет падает со скоростью света, и если перед этим он с чем-то сталкивается, выделяется огромное количество энергии, на единицу массы гораздо больше, чем при ядерном взрыве. Самые первые черные дыры образовались из самых первых огромных звезд и начали поглощать вещество. Падая, вещество нагревалось и испускало рентгеновские лучи. Так с помощью рентгеновских спутников можно увидеть самые первые черные дыры.

Существуют ли черные дыры?

Самые естественные черные дыры возникают из звезд. Звезда живет, пока в ее недрах легкие элементы превращаются в тяжелые. Так она поддерживает устойчивость. Гравитация стремится схлопнуть звезду, а внутреннее давление этому противодействует. Чтобы было внутреннее давление, нужно, чтобы была энергия. Ее звезда берет из термоядерного синтеза. Когда эта энергия заканчивается, звезда начинает схлопываться. Если масса очень большая, то она схлопнется в черную дыру – это и есть самый естественный процесс образования черных дыр.

Я думаю, что черные дыры есть. Я бы не задумываясь поклялся правой рукой директора своего института в том, что черные дыры существуют. Считается, что в центрах галактик, в том числе и в нашей, есть очень массивные черные дыры. Пока не совсем понятно, откуда они взялись. Скорее всего, часть из них развилась из самых первых черных дыр, образованных из самых первых звезд. Они поглощали вещество и таким образом нарастили массу. Есть предсказание о первичных черных дырах, промежуточных черных дырах, но их пока никто не наблюдал.

Самые лучшие кандидаты в черные дыры появились в 1970-е годы в системах двойных звезд. Звезды, особенно массивные, по большей части рождаются парами. Идея тоже очень проста, все мы помним, как образовывалась Солнечная система: было облако газа и пыли, оно сжималось. Мы все смотрим фигурное катание и помним, что, когда объект сжимается, он начинает вращаться быстрее. Сжимаясь, это облако может начать вращаться настолько быстро, что разделится на две части: его разрывает вращением, и тогда образуются две звезды. Это общий случай, он часто встречается в природе.

В двойной звезде нет ничего необычного. Если на небе ясно, их можно наблюдать, и особенно красиво, когда они разного цвета. Как и глаза у людей, звезды тоже бывают разных цветов. Две звезды живут, и одна из них – та, которая быстрее эволюционирует, – может превратиться в черную дыру. Дальше, чтобы ее стало видно, вещество второй звезды должно начать перетекать на первую. Это происходит, если звезда раздулась и вещество с нее захватывается черной дырой. Образуется красивый диск, в котором у самой внутренней его границы вещество двигается с половиной скорости света. Вещество разогревается до миллионов градусов, и мы видим яркий рентгеновский источник.

Именно такие явления стали открывать в 1970-е годы, когда начали запускать спутники с рентгеновскими детекторами. Таких двойных звездных систем сейчас известно множество. Часто это большие системы с гигантскими звездами, которые в десятки раз тяжелее Солнца и намного ярче. В названиях звезд использовались названия спутников, их открывших, координаты звезды, созвездий; часто фигурирует буква Х (икс), потому что на всех языках, кроме русского и немецкого, рентгеновские лучи называются Х-лучами. Есть замечательная история о том, как в советские времена ученый отправил из-за границы телеграмму в свой институт, потому что было сообщение о вспышке в одной из таких двойных систем. Телеграмма не дошла, а в КГБ долго изучали сообщение: «Следите за Лебедем Х-3».

Сегодня считается, что в таких системах невидимым объектом является черная дыра. Для этого есть причины. В первую очередь это связано с отсутствием пульсаций. Если в рентгеновской системе находится не черная дыра, то это должна быть нейтронная звезда. В двойных с такими объектами часто наблюдают пульсации излучения. На самом деле они не пульсируют так, как пульсирует сердце, просто на поверхности нейтронной звезды есть яркое пятно, а звезда вращается. Периодически, как в маяке, сигнал попадает на Землю, и тогда мы видим объект, регулярно меняющий свою яркость – пульсар[18]. Чтобы объект пульсировал, у него должна быть поверхность. Если рентгеновский объект не пульсирует, скорее всего, у него нет поверхности, а единственный объект, у которого нет поверхности, – это черная дыра.

Есть также некоторые особенности излучения, которые говорят нам о том, что объект, скорее всего, является черной дырой. Но главное – они очень тяжелые. Мы представляем себе примерно, до какой степени можем издеваться над веществом и пытаться его сжать. При некотором усилии вещество отказывается дальше сопротивляться и проваливается в никуда, в черную дыру. Нижняя граница массы черных дыр соответствует трем массам Солнца. Если мы видим темный объект с массой четыре массы Солнца, то это не может быть тяжелая нейтронная звезда. Вы можете сделать кресло, но если вы сделаете кресло с массой в три массы Солнца, оно схлопнется в черную дыру. Такого предмета существовать просто не может, и его нельзя придумать. Это главная причина, почему мы считаем эти объекты черными дырами. Никаких других хороших моделей, позволяющих объяснить тяжелый темный объект, у нас сегодня нет.

Интересно рассмотреть аргумент отсутствия поверхности. Если не черная дыра, то что? В данном случае альтернатива – это нейтронные звезды. У нейтронных звезд есть поверхность, они иногда могут не пульсировать. Итак, вещество с соседней звезды начинает перетекать на нейтронную звезду. Вещество в этом случае – водород. Водород накапливается, становится горячее и плотнее. Когда водород становится все горячее и плотнее, происходит термоядерный взрыв. И это наблюдается! Однако есть точно такие же системы, где нет никаких вспышек. Единственный здравый аргумент состоит в том, что в такой системе у компактного объекта, на который течет вещество, нет поверхности. По сути это не могут объяснить иначе, чем сказав, что там находится черная дыра.

Черная дыра для физиков – это самая консервативная гипотеза. Вообще говоря, вся экзотика современой науки – темное вещество, темная энергия, черные дыры, вообще все непривычное и таинственное, что есть в современной физике, – это в то же время и самое консервативное, то есть простейшее объяснение наблюдаемых феноменов.

Самая надежная на сегодняшний день черная дыра существует в центре нашей Галактики. Мы можем сейчас наблюдать, фотографировать, складывать фото и получать реальную картину того, что там происходит. Мы видим, что звезды двигаются в центре Галактики, мы можем видеть кривые вращения, прописать их орбиты, измерить, какая масса заставляет эти звезды крутиться. И мы видим, что в самом-самом центре нашей Галактики сидит объект размером намного меньше земной орбиты, но с массой четыре миллиона масс Солнца. Его называют Sgr A*[19]. Все это мы четко видим по орбитам, так что объект там точно есть, это уже не обсуждается. Единственное здравое объяснение, которое пока придумали, – что тусклый объект с массой четыре миллиона масс Солнца – черная дыра.

А вдруг это не дыра? Расчеты показывают, что если вы разместите в области размером меньше радиуса земной орбиты практически что угодно, то это довольно быстро сколлапсирует в черную дыру. А недавно появился совсем, на мой взгляд, потрясающий аргумент в пользу того, что в центре нашей Галактики находится именно черная дыра. Космос, естественно, не пустой, в нем всегда что-то есть: какой-то мусор, газ. Если есть тяготеющий центр, то газ туда будет стремиться течь – гравитацию никто не отменял. Мы видим, как в центр течет газ, и если бы там была какая-то стенка, газ бы ударился о нее почти со скоростью света и выделил очень много энергии. Мы, напротив, видим, что более 99,6 % энергии выделяется в самом потоке: газ течет и, ни во что не врезаясь, куда-то исчезает. Единственное здравое объяснение опять – черная дыра.

Несмотря на все это никому Нобелевскую премию за черные дыры пока не дали. Существование горизонта черной дыры реально не доказано, сделать это технически сложно. Тем не менее есть надежда в ближайшие годы прямо увидеть этот горизонт. Связано это с совсем экзотическим процессом. Мы знаем, что есть двойные звезды. Одна звезда уже превратилась в черную дыру. Теперь, говорю я, вторая звезда тоже может превратиться в черную дыру. Первая превратилась, а если вторая достаточно массивна, то и ей ничего не мешает тоже превратиться в черную дыру. Итак, у нас получилось две черные дыры. Обе они крутятся в двойной системе, и эта система начинает испускать гравитационное излучение. Идея гравитационных волн на самом деле довольно простая. Известно, что общая теория относительности – это геометрическая теория гравитации. Соответственно, тяжелые тела искажают пространство. Если взять айпад и надавить на него пальцем, то есть массивным телом, поверхность исказится. Если же будет два пальца, которые, вращаясь, воздействуют на экран, будет видно, как по нему бегут волны. Примерно то же и с искривлением пространства. Теперь представьте вместо айпада пространство-время. Если взять пространство-время, то обычные волны превратятся в гравитационные. Они предсказаны теорией относительности, но до сих пор напрямую не открыты, хотя люди очень стараются и надеются. Двойные черные дыры – самый мощный источник гравитационных волн. Когда они совсем сливаются, волн становится очень много. Были построены специальные детекторы, которые заработают через несколько лет. Тогда мы прямо увидим, как искажается пространство и время в момент слияния черных дыр.

Идея детектора примерно такая. Берется труба длиной около километра. В трубе вакуум и висят зеркала массой где-то под тонну. Между ними бегает лазерный луч. Проходит гравитационная волна, и зеркала немножко сближаются-отдаляются. Они колеблются, и получается сигнал. Колебание подвешенных зеркал можно заметить. Таким образом, мы не просто увидим гравитационные волны, но увидим прямой сигнал от взаимодействия горизонтов в черных дырах. Тогда Нобелевская премия будет дана одновременно за открытие гравитационных волн и черных дыр.

«В искусстве я ничего не понимаю, но науку могу сделать немножко понятнее».

Сергей Попов

Самые интересные звезды

На самом деле черные дыры – совершенно неинтересные объекты. Самые интересные объекты во Вселенной – нейтронные звезды. Интересны они вот почему. С черными дырами Господь переусердствовал – всегда надо вовремя остановиться. Вы берете объект, вы его сжимаете. Он становится все интереснее: повышается плотность, на его поверхности больше гравитации, если было магнитное поле – оно становится сильнее. Масса та же, а радиус уменьшается. Но если переусердствовать, образуется черная дыра. В черной дыре есть один главный параметр – масса[20]. Все. Все красивые магниты, высокая плотность – все исчезло. Но если вовремя остановиться, получится очень интересный объект. Со сверхплотным веществом, разными сверхтекучестями, сверхпроводимостью, сверхсильными магнитными полями, сверхсильной гравитацией. С нейтронными звездами Господь вовремя остановился.

Мы видим их по самым разным причинам. Это объект с массой Солнца, который может делать оборот за одну тысячную секунды. При этом у него гигантское магнитное поле – в сто тысяч миллионов, даже миллиардов раз больше, чем у Земли. Это очень красивые, очень интересные объекты. В частности, внутри у них огромная плотность вещества. Мы не можем получить в лабораториях ни такие сверхсильные магнитные поля, ни сверхсильную гравитацию, ни сверхплотное вещество.

Нейтронные звезды страшно интересно исследовать, и в некотором смысле это имеет народно-хозяйственное значение. Вы строите какую-нибудь физическую теорию, применяемую в быту: электродинамику или ядерную физику. Вы хотите, чтобы теория была полна. Но чтобы она была полна, ее нужно проверять в экстремальных режимах, и эти режимы где-то надо реализовывать. В лабораториях это сделать нельзя, а в нейтронных звездах эти режимы созданы природой. На нейтронных звездах можно проверять теории с большим народно-хозяйственным значением.

Многие считают, что главная загадка нейтронных звезд – что находится в самом центре, где плотность раз в десять больше, чем плотность атомного ядра. С веществом там могут происходить чудеса. В обычном веществе есть протоны, нейтроны, электроны – все вместе нейтрально. Электроны легкие, но почти никакого вклада в массу не вносят. Если начать вещество сжимать, возникают новые, очень интересные частицы.

Есть теории, которые позволяют сделать совсем удивительную вещь – кварковое вещество. На самом деле мы состоим не просто из протонов и нейтронов. Протоны и нейтроны еще состоят из кварков. Но кварк – очень хитро устроенная частица. Кварки очень хорошо взаимодействуют друг с другом. Нормальные частицы, если их удалять друг от друга, притягиваются все слабее – это естественно. Кварки же как будто связаны пружинкой. Чем больше удалять их друг от друга, тем они сильней притягиваются друг к другу. Если вы пытаетесь вырвать кварк из протона, вы затрачиваете столько энергии, что, вырывая, на кончике этой пружинки рождаете новый кварк. Кварки в обычных условиях никогда не бывают одиноки.

Если пойти обратным путем – очень сильно сжать вещество, то кварки вдруг объединятся все вместе. У Станислава Лема есть такой рассказ: два мастера – Трурль и Клапауций – научились объединять сознания. Полетели на планету, где были сплошные военные, которые постоянно друг с другом воевали. Первый мастер полетел в один лагерь, второй – в другой лагерь. Всем военным очень понравилась идея объединения сознания: вместо того, чтобы отдавать команду двадцати разгильдяям, объединяешь сознание и отдаешь команду как бы в единое целое. Наконец, они объединили армии, и на планете наступил мир, потому что сознание достигло определенного уровня, а существа с сознанием выше определенного уровня воевать не могут. В итоге война закончилась и все стали благоденствовать. Так вот, если очень сильно сжимать вещество, кварки вдруг объединяются и появляется удивительное единое кварковое вещество со свойствами, не похожими на свойства обычного вещества.

Мы действительно не знаем, как выглядит теория, описывающая внутреннее строение нейтронных звезд. Самый главный вопрос – когда нейтронная звезда превратится в черную дыру? Неизвестно, как долго можно давить на вещество до того, как оно схлопнется. Есть разные уравнения, описывающие образование черных дыр. Открытие новых массивных нейтронных звезд опровергает некоторые уравнения. В конце, как в старом фильме про Дункана Маклауда, останется только одно. Тогда наступит счастье – мы узнаем, какое уравнение описывает сверхплотное вещество. Для ядерной физики это очень важно.

С кварковой материей есть еще одна интересная штука: она может летать вокруг нас. Как и черные дыры, все, что есть в двойных системах, теоретически может слиться. Могут слиться и нейтронные звезды. Это приводит к колоссальному энерговыделению, потому что они сталкиваются почти что со скоростью света. Хоть и в не видимом глазом диапазоне, но на короткое время они становятся ярче целой Галактики. Вещество тогда разлетается вокруг. Если внутри было кварковое вещество, оно тоже разлетится.

Прелесть кваркового вещества в том, что оно может существовать в любом количестве. Мне очень нравится, как писали в детской энциклопедии: «Если вы возьмете спичечный коробок вещества нейтронной звезды…» Но нельзя взять спичечный коробок вещества нейтронной звезды! Это вещество устойчиво только потому, что его держит огромная гравитация. А вот кварковое вещество может летать вокруг нас. Чтобы поймать его частицы, нужно ставить специальную установку. Приборы, способные ловить и распознавать частицы странного вещества, сейчас работают на МКС.

Взрывы сверхновых

И нейтронные звезды, и черные дыры рождаются при взрывах сверхновых. Есть снимки звезд перед взрывом. На снимке видно звездочку, а спустя какое-то время после взрыва все рассеялось и ничего нет. Звезда вспыхивает, становится ярче целой галактики – и исчезает. В год мы видим сотни взрывов звезд, но пока не знаем, как взрываются сверхновые.

Ожидается, что в ближайшие годы будет очень большой прогресс в изучении сверхновых. Компьютеры будут становиться мощнее, и можно будет строить более детальные модели. Наблюдения позволят нам узнать гораздо больше, чем сейчас. Мы можем надеяться увидеть очень ранний этап вспышки. Для этого нужно одновременно осматривать все небо телескопами в разных диапазонах. Сделать это очень сложно, но сейчас мы подошли к тому, что почти все небо все время под контролем. Будут также наблюдать нейтрино – замечательные частицы, очень плохо взаимодействующие с веществом. Можно сколько угодно фантазировать про частицы кваркового вещества, а нейтрино тем временем идут через нас сплошным потоком постоянно. И они нас совершенно не трогают – очень хорошее свойство. С одной стороны, их трудно поймать: они ни с чем почти не взаимодействуют. С другой стороны, они могут вылезти из такого места, откуда вылезти очень трудно. Например, они могут быть в центре взрыва сверхновой в самый момент взрыва. Там их рождается очень много. И они несут информацию о физике взрыва.

Нейтрино пока удалось увидеть лишь однажды, во время очень близкой, каких-то 150 тысяч световых лет, вспышки в Большом Магеллановом Облаке[21]. Вблизи нас нет звезд, которые должны взорваться в ближайшие годы. На физически опасном расстоянии нет ничего и близко похожего. Не знаю, хорошо это или плохо. На каком-то умеренно интересном расстоянии есть звезды, которые взорвутся через миллионы лет. Все наблюдаемые сверхновые находятся довольно далеко. Новые детекторы смогут видеть нейтрино на расстояниях в миллионы световых лет. Пока, к сожалению, ничего не взорвалось: не каждый день неподалеку взрывается сверхновая.

Совсем недавно произошло радостное событие – впервые сверхновая взорвалась в компьютере. Люди смогли построить модель, где не надо было ничего добавлять руками для того, чтобы звезда полноценно взорвалась. До этого был необходим дополнительный толчок, чтобы звезда разлеталась. Было известно, сколько должно выделяться энергии, но получалось, что выделяется меньше, так что ее добавляли руками.

Интересно, что взрыв сверхновой очень несимметричен. Представьте себе нейтронную звезду – десятикилометровый шарик с плотностью как у атомного ядра, массой Солнца и скоростью 1000 километров в секунду. А такие скорости наблюдаются! Эту звезду надо было очень несимметрично родить – в момент рождения дать ей пинка. То, что взрывы сверхновых несимметричны, очень нетривиально и очень хорошо. Это и есть тот самый пинок. Потихоньку мы действительно начинаем понимать, как взрываются сверхновые, поскольку даже из скоростей нейтронных звезд пытаемся выудить информацию о физике взрыва. Многое сделано, но многое еще предстоит.

«Нейтронные звезды страшно интересно исследовать, и в некотором смысле это имеет народно-хозяйственное значение».

Сергей Попов

Константин Северинов. Роль случая в одном научном исследовании

Константин Северинов – Доктор биологических наук, профессор Ратгерского университета (Нью-Джерси, США) и Сколковского института науки и технологии.

Этот рассказ – о том, как делаются исследования в современной биологии. Но для начала следует ввести всех в курс дела, чтобы легче было продвигаться дальше. Начнем с главного.

Центральная догма молекулярной биологии

«Догма» – не очень удачное слово. Некоторые его пугаются, думая, что это непременно нечто косное, принципиально недоказуемое, ограничивающее свободный полет мысли. Точно так же и с теорией Дарвина: почему-то есть люди, которые считают, что раз она называется теорией, то она, скорее всего, не доказана. На самом деле центральная догма молекулярной биологии просто описывает, каким образом из информации, записанной в генах, возникает что-то типа меня, присутствующих в зале слушателей или бактерий. Другими словами, как генетическая информация выражается (ученые часто говорят «экспрессируется»), в результате чего клетки приобретают свою индивидуальность.

Часто центральную догму формулируют в виде краткого афоризма: «ДНК –> РНК[22] –> белок». Вот что это значит.

Генетическая информация хранится в ДНК – это знаменитая молекула, которая выглядит как двойная спираль. Молекула ДНК – это фактически линейная последовательность оснований; для нас важно думать про них как про буквы. Это просто генетический текст. Алфавит русского языка состоит из 33 букв, и с помощью комбинаций этих букв мы можем составлять тексты, которые имеют смысл. Генетический язык для всей жизни един – он был «изобретен» только раз, и его алфавит состоит всего из четырех букв. Они называются А, G, C и T – аденин, гуанин, цитозин и тимин. Для биологической функции ДНК очень существенно, что последовательность букв, то есть генетическая информация, содержащаяся в одной цепи, отражена в – или «комплементарна», как говорят ученые, – последовательности другой цепи. Это фактически означает, что генетический текст в двойной цепочке закодирован дважды. Можно разделить цепи, а затем достроить на разделенных цепочках недостающие «буквы», чтобы спирали снова стали двойными. Теперь цепочек будет уже не одна, а две. Так генетическая информация дуплицируется и передается в поколениях. На очень грубом уровне мы возникаем из своих родителей именно в ходе такого процесса.

Итак, информация хранится, дуплицируется, то есть передается потомству, но она еще должна работать: генетический текст должен что-то нам сказать, и потом что-то должно случиться, чтобы из текста вырос живой организм. Происходит это таким образом: сначала идет процесс под названием «транскрипция»[23]. При этом одна из цепей ДНК переводится в другую молекулу, очень похожую, которая называется РНК. Последовательность букв в ней идентична исходной ДНК. А затем молекула РНК транслируется: это означает, что на ней синтезируется белок. Есть специальный генетический код, в результате которого последовательность букв в молекуле РНК, а следовательно, и в ДНК, переводится в последовательность аминокислот в белке. А белки – это то, из чего мы состоим. У меня волосы вьющиеся и темные, а у вас, возможно, другие, и связано это с тем, что белки, из которых состоят волосы, разные у каждого из нас. У разных людей эти белки очень похожи, но есть и отличия – большинство «букв» те же, но кое-где написание слегка изменено.

Итак, ДНК –> РНК –> белок. Стрелки здесь показывают, в какую сторону движется информация. Очевидно, что гены при посредничестве РНК влияют на белки – то есть на фенотип, или на то, как организм выглядит и что с ним происходит в жизни. Но обратно, от фенотипа к генам, информация не передается. То, что происходит с организмом в жизни, не влияет на его гены. Приобретенные признаки не наследуются: вопреки взглядам злополучного академика Лысенко, сколько ни обрубай мышам хвосты, бесхвостые мышата у них ни в каком поколении не появятся. Центральная догма была сформулирована в начале 1960-х годов и, безусловно, является одним из величайших фундаментальных научных открытий.

История одного опыта

Фундамент центральной догмы закладывался еще в первой половине ХХ века, и один из важнейших этапов связан с именами Сальвадора Лурии и Макса Дельбрюка, позже ставших нобелевскими лауреатами.

Макс Людвиг Хеннинг Дельбрюк – 1906–1981 – Американский биофизик немецкого происхождения, лауреат Нобелевской премии по физиологии и медицине 1969 г. (совместно с Алфредом Херши и Сальвадором Лурией) «за открытия, касающиеся механизма репликации и генетической структуры вирусов».

Сальвадор Эдвард Лурия – 1912–1991 – Американский микробиолог, лауреат Нобелевской премии 1969 года (совместно с Алфредом Херши и Максом Дельбрюком).

Макс Дельбрюк – физик, убежавший из гитлеровской Германии в Америку. Биологией он занялся по настоянию нашего соотечественника Тимофеева-Ресовского. Дельбрюк чувствовал, что время великих открытий в физике подходит к концу, а Тимофеев-Ресовский убедил его, что природа наследственности стоит того, чтобы ею заниматься. Вместе они сделали несколько классических работ по определению размера гена. Сальвадор Лурия, в свою очередь, бежал в Америку из фашистской Италии. По специальности он был микробиолог.

Дельбрюка и Лурию заинтересовал исключительно фундаментальный вопрос – как возникают наследуемые изменения – мутации – у бактерий. Рассмотрим, например, мутации, вызывающие у бактерий устойчивость к бактериальным вирусам (их называют бактериофагами). Возьмем бактерию под названием «кишечная палочка» – она живет в каждом из нас в огромном количестве и является излюбленным модельным объектом молекулярных биологов. Если кишечная палочка встретится с вирусом-бактериофагом, она наверняка будет им убита. Но это относится к нормальной кишечной палочке (ее еще называют бактерией дикого типа). Если мы возьмем много-много бактерий и заразим их вирусом, мы увидим, что несколько бактерий непременно выживут и образуют на чашке с питательной средой вполне здоровые и жизнеспособные колонии, как будто вирус им нипочем. Можно показать, что все клетки в этой колонии стали устойчивы к вирусу. Значит, они произошли из клетки-родителя, у которой каким-то образом появилась устойчивость к вирусу. Как могла возникнуть такая устойчивость?

«Многие люди, которые занимались системой приобретенного иммунитета, не сразу поняли, при чем тут генная медицина, и прошляпили открытие своей жизни».

Константин Северинов

Здесь есть два варианта ответа. Первый вариант: встретившись с вирусом, некоторые клетки научились с ним бороться. В свое время Ламарк предположил, что жираф тянулся к высоким веткам, поэтому у него отросла длинная шея. Так и здесь: клетки, оказавшись в очень вредных, очень неприятных условиях среды, начинают бороться, изменяться, пока наконец не найдут способ победить обстоятельства. Чистое торжество воли, как в немецкой философии. Сначала изменилась окружающая среда (в нашем случае в ней появился смертельный вирус), это дало вам какой-то сигнал, и вы решили поменяться, потому что если вы не поменяетесь, то вас больше не будет, вы исчезнете. Вероятность победить невелика – скажем, 0,001 %, – но поскольку клеток изначально было много, по статистике каким-то из них непременно удастся вырвать у вируса победу, и их потомки увидят зарю следующего дня, образуют колонии.

Жан-Батист Ламарк – 1744–1829 – Французский естествоиспытатель, создатель первой целостной эволюционной теории (позднее названной ламаркизмом).

Второй вариант – так называемые спонтанные мутации. Об их существование неявно предполагал еще Чарльз Дарвин, который, впрочем, ничего не знал про гены. Спонтанные мутации возникают случайно, вне всякой связи с тем, в каких условиях находится организм и какие изменения могли бы принести ему пользу. Просто клетка без всякой причины во время деления вдруг переходит в новое состояние. Оно может никак не проявиться, но если эта клетка (или ее потомки) окажутся в условиях, где это новое состояние играет роль для выживания, они воспользуются свалившейся на них с неба возможностью.

Чарльз Роберт Дарвин – 1809–1882 – Английский натуралист, предположивший в своем труде «Происхождение видов», что движущей силой эволюции является естественный отбор небольших ненаправленных наследственных изменений (позднее названных мутациями).

В условиях нашего опыта выбор между первым и вторым вариантом можно сформулировать так: возникает ли у клеток устойчивость к вирусу только в процессе вирусной инфекции или в любой момент времени, независимо от того, есть вирус или нет? Если вы задумаетесь, то поймете, что различить эти два варианта в эксперименте не так уж просто. Ведь для того, чтобы увидеть, возникла ли у клетки устойчивость к вирусу, надо ее этим вирусом заразить. А после того как вирус и клетка встретились, всякий может сказать, что именно эта встреча и стала причиной возникновения устойчивости (как в первом варианте). Даже если верен второй вариант и мутации возникают тогда, когда никаких вирусов вокруг нет, то у нас не будет никакого способа их заметить без добавления вируса.

Опыт Дельбрюка и Лурии позволил сделать выбор между этими двумя возможностями. Этот опыт настолько простой, что каждый может повторить его у себя на кухне. Возьмем десять пробирок, посадим в каждую по одной клетке кишечной палочки[24] и дадим им делиться, пока из каждой клетки не возникнут сотни тысяч потомков. Потом добавим в каждую пробирку вирус, так чтобы на каждую бактерию приходилась хотя бы одна частица вируса.

Если верен первый вариант – мутации возникают как результат борьбы с вирусом с вероятностью победы в 0,001 %, – в каждой пробирке победителями окажется некоторое количество клеток. Эти клетки образуют колонии на чашках с питательной средой, когда мы выльем на них содержимое наших пробирок с выжившими клетками. Количество образованных колоний не будет одинаковым, но в целом число колоний, образованных на разных чашках, окажется более или менее сходным: например, на одной чашке будет пять, на другой – возможно, четырнадцать, на третьей – десять. В целом распределение колоний на разных чашках будет довольно равномерным.

Но если верен вариант номер два, тогда спонтанные мутации могут произойти в любой из пробирок задолго до встречи с вирусом. Например, у самой первой клетки или у одного из двух, четырех, восьми ее потомков, возникших соответственно после первого, второго или третьего деления. В этом случае в какой-то из культур устойчивых клеток окажется гораздо больше. А у числа устойчивых клеток из разных пробирок будет совсем другое, неравномерное распределение. Именно такое крайне неравномерное распределение и наблюдали Лурия и Дельбрюк.

Их вывод: мутации возникают спонтанно. Окружающая среда лишь позволяет им проявиться и принести пользу (или вред). Те, кто и раньше догадывались, что дело именно так и обстоит, в те годы назывались генетиками, а приверженцев противоположной точки зрения в СССР называли лысенковцами: первые оказались правы, вторые – нет.

Дельбрюк и Лурия получили за свое открытие Нобелевскую премию, а генетики в последующие пару десятилетий поняли, как все на самом деле происходит. В ДНК хранится генетическая информация, при ее копировании случаются ошибки, эти ошибки иногда могут быть полезными, а все изменения в ДНК, как вредные, так и полезные, передаются от предков к потомкам. Таким образом, центральная догма молекулярной биологии возникла из эксперимента Дельбрюка и Лурии. Это очень красивый эксперимент, потому что он прост. Все красивые эксперименты просты.

Загадочный автограф

Промотаем время на сорок лет вперед. Мы окажемся в конце 1980-х годов, когда только-только стала возникать наука геномика. Люди научились определять последовательность букв в генах. Геном бактерии – несколько миллионов букв, и есть технология, которая позволяет читать эти и даже гораздо более длинные генетические тексты, например геном человека, длина которого составляет три миллиарда букв. Генетические тексты можно читать и анализировать с помощью компьютера, занимается этим новая отрасль биологии – биоинформатика.

При анализе генетических текстов выяснилось, что некоторые из них являются генами, то есть кодируют белки. Но есть и такие участки, которые, казалось бы, ничего не кодируют. Один такой любопытный участок был обнаружен в ДНК кишечной палочки. Он сложен из многократно повторенной короткой последовательности длиной всего тридцать-сорок букв-нуклеотидов. А между этими повторами заключены другие кусочки, примерно такой же длины, но имеющие разные, неповторяющиеся последовательности. То есть имеется кассета с повторами и находящимися между ними спейсерами-разделителями. Позже подобные кассеты были обнаружены у самых разных бактерий, но для чего они нужны, какая у них функция, ученые не знали. Назвали такие кассеты CRISPR – от английского «сгруппированные, регулярно разделенные короткие палиндромные повторы».

Но тот факт, что ученые не понимали биологическую роль CRISPR, совершенно не помешал предприимчивым людям их использовать. Выяснилось, например, что у бактерий, вызывающих туберкулез[25], почти все гены одинаковые, а CRISPR-участки – разные. Бактерия, выделенная в томской тюрьме, и бактерия, выделенная в омской тюрьме (а туберкулез распространяется в основном в тюрьмах), содержат совершенно разные спейсеры-разделители в своих CRISPR-кассетах. Если в московский госпиталь приходит человек с туберкулезом, там выясняют, каков набор спейсеров в ДНК заразивших его бактерий. Когда выяснится, что у него скорее «омская», чем «томская» бактерия, можно принять соответствующие эпидемиологические меры.

А можно использовать CRISPR и по-другому. Компания Danisco[26] контролировала около 40 % мирового рынка культур-заквасок для кисломолочных продуктов. Компания располагала огромным каталогом различных штаммов бактерий, и каждый штамм позволял делать какой-то кисломолочный продукт с определенными коммерческими свойствами. Свои штаммы они продавали на молочные заводы. Надо сказать, что это непростой бизнес: если вы продаете кому-то живую культуру, то у вас ее купят один раз, а больше покупать не будут, а начнут выращивать сами, да еще и передавать другим, как русские бабушки передают друг другу культуру чайного гриба. К счастью, CRISPR можно использовать для выявления, кто у кого что украл. Дело в том, что все бактерии, которые делают молочнокислые продукты, родственны друг другу, но все-таки чуть-чуть различаются. В частности, очень сильно различаются последовательности и число CRISPR-спейсеров, то есть они являются диагностическим признаком того или другого штамма. По этому признаку можно достоверно выявить штамм, похищенный из Danisco, и доказать факт нарушения контракта. Поэтому работники компании составили каталог CRISPR-спейсеров во всех культурах из своей коллекции и пользовались ими как базой отпечатков пальцев. По-прежнему не понимая, зачем они на самом деле нужны бактериям.

Тем временем владельцев молочных заводов мучила другая проблема. Помните, мы говорили о вирусах-бактериофагах? На земле их живет очень много, примерно в триллион миллиардов раз больше, чем людей. Бактериофаги любят жить там, где есть их еда, то есть бактерии, и часть их живет на молочных заводах, где они заражают бактерии заквасок. Вы купили молоко, внесли закваску, потираете руки в ожидании барышей, но вдруг появляется бактериофаг, культура портится, молоко приходится вылить. В ценовом выражении потери составляют до общего объема этого бизнеса.

Как помочь людям, которые хотят доставить на прилавки вкусные молочные продукты? Нужно сделать тот самый эксперимент, что делали Дельбрюк и Лурия в 1943 году: получить бактерии, устойчивые к вирусу. Это и делали в компании Danisco: брали бактерию из своего каталога, брали вирус, доставляющий проблемы на каком-то молочном заводе, и получали устойчивую к вирусу культуру. Только теперь это уже не кишечная палочка, за которую когда-то была получена Нобелевская премия, а лактобациллы[27].

А перед тем как продать эту культуру промышленникам, ее каталогизируют, чтобы никто не украл: это все-таки бизнес. Для этого подробно описывают кассету CRISPR – берут «автограф», отпечаток пальца полученной линии бактерий. Тут-то и заметили, что у всех устойчивых к вирусу культур в кассете появлялись новые фрагменты-спейсеры, в точности до одной буквы повторяющие кусочек генома того самого вируса, к которому появилась устойчивость. Вот такой любопытный научный результат.

Мы начинаем думать, что это неспроста: возможно, устойчивость связана с добавлением фрагмента из ДНК вируса в CRISPR-кассету бактерии. Говоря математическим языком, мы уже доказали, что это «необходимо»: у всех устойчивых культур в геноме появлялся новый вирусный кусочек. Чтобы доказать «достаточность», поставили молекулярно-генетический эксперимент: ученые сами взяли из вируса кусочек ДНК и вставили его в бактериальную клетку методами молекулярной генетики. И получили устойчивые к вирусу бактерии! Значит, для устойчивости необходимо и достаточно попадания небольшого участка вирусной ДНК в CRISPR-кассету бактерии.

Этот результат был опубликован в 2007 году в журнале Science, и он много что перевернул в биологической науке. Помните спонтанность мутаций? Это был основной вывод из работы Дельбрюка и Лурии, которые за это получили Нобелевскую премию. А в этом опыте, проведенном сотрудниками Danisco, результат оказался ровно обратным: ведь чтобы вставить кусок ДНК из вируса в CRISPR-кассету, надо хотя бы с этим вирусом встретиться. Если вируса нет, то и вставлять в кассету нечего.

Опыт, проведенный сотрудниками Danisco, фактически идентичен тому, что ставили Лурия и Дельбрюк, но результат получился противоположный. Люди ели кефир и в 1943 году, и если бы Лурия и Дельбрюк случайно взяли для своего опыта не кишечную палочку, а лактобациллу или какой-нибудь другой микроб, они пришли бы к другому выводу. Получается, что здание молекулярной биологии строится на довольно хлипких основаниях. Неужели зашаталась центральная догма?

Нет, мир не перевернулся. Дельбрюк и Лурия работали с изнеженной лабораторной культурой кишечной палочки, у которой по каким-то причинам механизм приобретенного иммунитета за счет действия CRISPR просто отсутствовал. Именно это и позволило им обнаружить важнейший факт спонтанного возникновения мутаций. Если бы у их бактерий работала кассета CRISPR, результат эксперимента был бы в некотором смысле безнадежно испорчен. Что, конечно, не помешало бы спонтанным мутациям оставаться главным механизмом дарвиновской эволюции – за исключением ламарковского явления приобретенного бактериального иммунитета под действием CRISPR-систем и еще, возможно, пары-тройки других особых случаев.

О пользе точности для генной медицины

Прикладные специалисты из Danisco свою проблему решили, но фундаментальным ученым (типа меня) стало крайне интересно, как работает приобретенный, адаптивный иммунитет бактерий на молекулярном уровне. Выяснилось следующее. Система бактериального иммунитета основана на РНК (помните: ДНК –> РНК –> белок?). Когда вирус заражает клетку, он иногда не сразу убивает ее, и маленький кусочек ДНК вируса успевает встроиться между двумя повторами в CRISPR-кассету бактерии. Потом ДНК кассеты транскрибируется – с нее считывается РНК. Эта РНК специальными белками разрезается на кусочки длиной в шестьдесят нуклеотидов, в шестьдесят букв. У каждой из возникающих коротких молекул РНК концевые участки одинаковые – они соответствуют CRISPR-повторам, а средние участки разные, их последовательности соответствуют спейсерам. Если теперь в клетку сунется вирус, в ДНК которого есть участок, соответствующий одному из спейсеров, то одна из коротких молекул РНК узнает ДНК этого вируса – просто по правилу комплементарности (ведь РНК – это фактически копия вирусной ДНК). А после узнавания в дело вступает специальный белок (его называют Cas, и он является существенным компонентом CRISPR-системы), который раскусывает ДНК вируса в месте узнавания. И все, больше нет вируса, клетка спасена.

«Мы похожи на людей, которые тыкают пальцем в черную занавеску, пытаясь во что-то попасть, но что за этой занавеской, никто не знает».

Константин Северинов

Но это не значит, что бактерия и все ее потомки навеки гарантированы от заражения: вирус тоже не дремлет. Он мутирует, изменяя время от времени последовательность букв-оснований в своем геноме. И когда он случайно изменит хоть одну букву из тех, что записаны в спейсере CRISPR-кассеты, вирус снова станет победителем, а бактерия останется безоружной, пока не подцепит себе новую охранную грамоту – дополнительный спейсер – от того же паразита.

Таким образом, если есть хоть одно несоответствие между фрагментом ДНК вируса и CRISPR-спейсером бактерии, защиты не будет. К чему такая точность? Дело в том, что определенная последовательность из тридцати-сорока нуклеотидов – автограф вируса, оставленный в виде спейсера, – по статистике вряд ли случайно встретится на бактериальной хромосоме. Но если допустить возможность хотя бы одной опечатки, вероятность случайного совпадения с какой-нибудь последовательностью ДНК бактерии резко возрастает, a это может привести к автоиммунному ответу. Другими словами, чтобы система CRISPR не начала случайно громить хромосому бактерии, она должна работать очень точно и быть чувствительной даже к единичным несоответствиям между ДНК вируса и последовательностью спейсеров.

Страницы: «« 1234 »»

Читать бесплатно другие книги:

Андрей Иванов – русский прозаик, живущий в Таллине, лауреат премии «НОС», финалист премии «Русский Б...
События происходят после смерти Петра Первого. Морской офицер Семен Плахов, обвиненный в убийстве фи...
Понятие личности считается во многом достижением христианской мысли, тесно связанным с развитием три...
«Бизнес-копирайтинг» – четвертая книга Дениса Каплунова, одного из самых ярких и успешных современны...
В этой книге читатель найдет как знаменитые, так и менее известные стихи великого португальского поэ...
Книга повествует о сильных людях в экстремальных ситуациях. Разнообразие персонажей создает широкое ...