Против богов. Укрощение риска Бернстайн Питер

Данные, содержащиеся в записях из Бреслау, были не вполне в русле предпринятой Галлеем работы, но, пообещав Королевскому обществу серию статей для его вновь учрежденного научного журнала «Philosophical Transactions», он оказался вынужденным рыскать в поисках чего-нибудь необычного, о чем можно было бы написать. Зная о некоторых погрешностях в работе Гранта, которые признавал сам Грант, он решил, пользуясь случаем, подготовить статью для «Transactions» о полученных из Бреслау данных, приложив для разнообразия руку к анализу социальной, а не небесной статистики.

Грант, не имея надежных данных о всем населении Лондона, был вынужден оценивать их на основе фрагментарной информации. У него были записи о числе и причинах смертей, но не было полных данных о возрасте умерших. С учетом осуществлявшейся годами постоянной миграции населения в Лондон и обратно надежность оценок Гранта оставалась под вопросом.

В данных, предоставленных Лейбницем Королевскому обществу, содержались помесячные записи по Бреслау за 1687-1691 годы, выполненные, по словам Галлея, «со всей возможной точностью и добросовестностью». Они включали в себя возраст и пол всех умерших и число родившихся за каждый год. Галлей обратил внимание на то, что Бреслау расположен вдали от моря и «в нем сравнительно мало чужаков». Число рождений совсем не намного превышало «похоронные записи», и численность населения была намного стабильнее, чем в Лондоне, но при этом в полученной документации не было данных о численности населения города в целом. Галлей был уверен, что данных о смертности и рождаемости вполне достаточно для надежной оценки численности населения.

Он вычислил, что за пятилетний период в среднем ежегодно фиксировалось 1 238 рождений и 1 174 смерти, то есть ежегодный прирост населения составлял 64 человека, относительно чего Галлей высказал предположение, что это число, «вероятно, могло уравновешиваться рекрутскими наборами на императорскую военную службу». Учитывая 1 228 ежегодных рождений и исследуя распределение умерших по возрастам, Галлей вычислил, что «только 692 ребенка доживают до полных шести лет», то есть значительно меньше 64%, которые получил Грант. С другой стороны, среди множества смертей в Бреслау дюжина случаев смерти пришлась на возраст между 81 и 100 годами. Объединив годовые оценки процента смертности для каждой возрастной группы, Галлей из распределения по возрастам вывел итоговую оценку населения города — 34 000 человек.

Следующим шагом было получение таблицы с разбиением населения на возрастные группы «от рождения до самой старости». Как утверждал Галлей, эта таблица предоставляет массу возможностей для использования в разных целях и дает «более точное представление о государстве и состоянии рода человеческого, чем что-либо иное из того, что я знаю». Например, в таблицах есть полезная информация о том, сколько в городе мужчин в возрасте, позволяющем нести воинскую службу, — 9 000 человек, и Галлей утверждает, что эта оценка 9/34 населения может «быть использована и в других местностях».

Анализ Галлея наполняет понятие вероятности конкретным содержанием и в конечном счете подключает его к управлению риском. Галлей продемонстрировал, как его таблицы «показывают шансы», что человек любого заданного возраста «не умрет в течение года». В качестве иллюстрации он приводит возрастную группу 25-летних численностью 567 человек и группу 26-летних численностью 560 человек. Разница между двумя группами в 7 человек означала, что вероятность смерти 25-летнего в течение года составляла 7/567 или шансы 25-летнего дожить до 26 лет составляли 80 к 1. Пользуясь этой же процедурой вычитания числа людей более позднего возраста из числа людей заданного возраста и принимая последнее за базовое, из таблицы можно получить шансы людей 40-летнего возраста дожить до 47 лет; в городе Бреслау в описываемые таблицей годы они равнялись 5 к 1.

Галлей продолжил анализ. «Если возникнет вопрос, через какое число лет среднестатистический человек любого возраста имеет равные шансы умереть или остаться в живых, таблица готова дать ответ». Например, в городе 531 человек в возрасте 30 лет, и половина от этого числа равна 265. Нужно найти в таблице возрастную группу с такой численностью — это группа между 57 и 58 годами, и «можно держать пари с равными шансами... что у 30-летнего есть возможность прожить еще 27-28 лет».

Следующий уровень анализа Галлея имел наибольшее значение. Таблица могла быть использована для расчета стоимости страхования жизни для разных возрастов: «100 шансов к 1 за то, что 20-летний не умрет в течение года, и 38 к 1 за то же для человека в возрасте 50 лет». На основе шансов наступления смерти в течение каждого года таблица дает необходимую информацию для вычисления величины пожизненной ренты. По этому поводу Галлей пускается в детальный математический анализ величины разных видов ренты, включая ренту, рассчитанную не только на одну жизнь, но и на наследников до второго и третьего колена. При этом он предлагает использовать таблицу логарифмов, чтобы избавиться от «вульгарной арифметики» при выполнении множества вычислительных операций.

Этот раздел работы появился с большим опозданием. Первые сведения о понятии ренты относятся к 250 году после Рождества Христова, когда видный римский юрист Ульпиан разработал набор таблиц ожидаемой продолжительности жизни. Таблицы Ульпиана оставались последним словом науки в течение 1400 лет!

Работа Галлея подтолкнула к вычислению ожидаемой продолжительности жизни на континенте, но его собственное правительство в то время не обратило на его таблицы никакого внимания. Взяв голландский пример продажи пожизненной ренты для пополнения казны, английское правительство попыталось собрать миллион фунтов стерлингов за счет продажи пожизненной ренты, которая давала покупателю возможность вернуть вложенные в ренту деньги за 14 лет, причем контракты были одинаковы для всех независимо от возраста! В результате правительство понесло серьезные финансовые убытки. Тем не менее политика продажи ренты всем по одинаковой цене продолжалась до 1789 года. Предположение о том, что средняя ожидаемая продолжительность жизни от рождения составит 14 лет, было по крайней мере неким прогрессом по сравнению с прошлым: в 1540 году английское правительство продавало пожизненную ренту, которая «окупалась» за 7 лет, причем возраст покупателя не учитывался[17].

После публикации таблиц продолжительности жизни Галлея в «Transactions» в 1693 году правительству и страховым компаниям понадобилось целое столетие, чтобы начать принимать в расчет ожидаемую на основе вероятностного анализа продолжительность жизни. Подобно его комете, таблицы Галлея оказались чем-то большим, чем вспышка, только однажды появляющаяся на небосклоне: его манипуляции с числами заложили основу для возникновения современной системы страхования жизни.

***

Как-то в 1637 году, когда Гранту было всего семнадцать лет, а Галлей еще не родился, Канопиус, ученый с острова Крит, сидел после полудня в своей комнате в Оксфорде и готовил себе чашку крепкого кофе. Считается, что Канопиус первым завез кофе в Англию; напиток быстро завоевал такую популярность, что по всему Лондону кофейни стали открываться сотнями.

Какое отношение имеет кофе Канопиуса к Гранту, Галлею или к понятию риска? Дело в том, что одна из упомянутых кофеен стала местом рождения лондонской компании Ллойда, остававшейся на протяжении более чем двух столетий самой знаменитой из всех страховых компаний[18]. Страхование — это бизнес, полностью зависящий от таких понятий, как выборка, среднее, независимость наблюдений, норма, которые легли в основу обследования населения Лондона Грантом и Бреслау Галлеем. Бурное развитие страхового бизнеса в период, когда Грант и Галлей опубликовали результаты своих исследований, — это не случайное совпадение, а знамение времени, когда новаторство в бизнесе и финансах стало нормой.

Английское слово, обозначающее биржевого посредника, — stockbroker или stock jobber ('тот, кто работает за комиссионные, выполняет случайную или сдельную работу', совр. 'биржевой маклер'), появилось впервые около 1688 года, за сто лет до того, как люди стали торговать акциями вокруг гигантского платана на Уолл-стрит в Нью-Йорке. На сцену внезапно выступило множество всевозможных корпораций, многие с весьма странными названиями, подобные Lute-String Company, Tapestry Company и Diving Company (компания «Струна лютни», компания Гобеленов и Водолазная компания). Была даже Royal Academies Company (компания Королевской академии), которая обещала нанять «лучших современных ученых» для обучения 2000 победителей большой лотереи тому, чему они захотят научиться.

Вторая половина XVII века стала временем расцвета торговли. В то время первой коммерческой державой в мире была Голландия, а Англия — ее главной соперницей. Корабли ежедневно прибывали из колоний и в изобилии снабжали весь мир товарами, которые когда-то были редкостью или недоступной роскошью, — сахаром и специями, кофе и чаем, хлопком-сырцом и тонким фарфором. Богатство перестало быть привилегией наследников предшествующих поколений: теперь его можно было заработать, найти, накопить, инвестировать и защитить.

Ближе к концу столетия Англии пришлось финансировать ряд дорогостоящих войн с Францией, начавшихся неудавшимся вторжением Людовика XIV в Англию в мае 1692 года и окончившихся победой Англии при Бленхейме и заключением Утрехтского мира в 1713 году. 15 декабря 1693 года палата общин приняла неудачное постановление о продаже вышеупомянутых полисов пожизненной ренты на сумму в миллионы фунтов стерлингов, заложив основы национального долга Англии. В 1849 году Томас Бабингтон Маколей, великий английский историк, охарактеризовал это важное событие следующими знаменательными словами: «Таково происхождение этого долга, который стал величайшим чудом, всегда вызывавшим недоумение и смущавшим гордыню государственных мужей и философов»[19].

Пришло время Лондону критически оценить себя и свою роль в мире. Это было время связанных с войной утонченных финансовых операций, быстрого роста класса состоятельных людей и расширения заморской торговли. Информация из отдаленных районов земного шара приобрела решающее значение для хозяйства страны. В условиях бурного развития судоходства возник живой спрос на текущую информацию о продолжительности плавания между различными точками земного шара, погодных условиях и опасностях, подстерегающих в неизведанных морях.

При отсутствии средств массовой информации кофейни были основными источниками новостей и слухов. В 1675 году Карл II, который, как многие правители, с подозрением относился к местам, где публика могла обмениваться информацией, зарыл все кофейни, но поднялся такой шум, что через шестнадцать дней он был вынужден пойти на попятную. Сэмюэл Пепис часто посещал кофейни с целью узнать новости о прибытии кораблей, которые его интересовали; он считал, что здесь сможет получить более надежную информацию, чем у себя на службе в Адмиралтействе.

Кофейня, которую Эдвард Ллойд открыл в 1687 году близ Темзы на Тауэр-стрит, была любимым пристанищем моряков с судов, которыми кишели лондонские доки. Она была, как отмечалось в публикации того времени, «просторной... удобной и посещалась известными купцами». Кофейня стала настолько популярной, что в 1691 году Ллойд перевел ее в значительно более просторное и роскошное помещение на Ломбард-стрит. Нэт Уорд, трактирщик, которого Александр Поп обличил как .автора отвратительных стишков, сочиняемых в обмен на понюх табаку, сообщает, что столы в новой кофейне были «очень чистыми и натерты до блеска». Штат из пяти подавальщиков наряду с кофе разносил чай и шербет.

Ллойд стал на ноги во времена Оливера Кромвеля и пережил чуму, Большой лондонский пожар, голландское вторжение на Темзу в 1667 году и Славную революцию 1688 года. Он был не просто ловким хозяином кофейни. Заметив настойчивый интерес своих клиентов к определенного рода информации, он в 1696 году начал выпускать «Lloyd's List», содержащий информацию о прибывающих и отплывающих судах, сведения об обстановке за границей и на морях. Эту информацию ему поставляла сеть корреспондентов из главных портов Англии и континента. В здании кофейни регулярно проводились судовые аукционы, и Ллойд услужливо предоставлял бумагу и чернила, необходимые для фиксации сделок. Один угол в его кофейне был зарезервирован для капитанов судов, где они могли сравнивать свои заметки об опасностях новых открывающихся маршрутов — маршрутов, которые уводили их все дальше на восток, на юг и на запад. Заведение Ллойда бывало открыто почти в любой час, и всегда в нем было полно народу.

В те времена, как и сейчас, каждый желающий застраховаться от какого-либо риска обращался к брокеру, который затем продавал право застраховать риск кому-либо из тех, кто соглашался его гарантировать. Таких легко было найти, потому что собирались они в кофейне или на огороженном дворе здания Королевской биржи. При совершении сделки гарант должен был подтвердить свое согласие покрыть все потери клиента в обмен на точно определенную премию, поставив свою подпись под условиями контракта; вскоре такого рода дельцы стали называться страховщиками (буквально 'подписчики', underwriters).

Дух азартной игры, свойственный этой удачливой эпохе, стимулировал быстрое совершенствование страховой индустрии в Лондоне. Страховщики были готовы подписывать страховые полисы, касающиеся почти всех видов риска, включая разрушение дома, разбой на большой дороге, смерть от пьянства, смерть от лошадей и «страхование женского целомудрия». Все эти виды страхования, кроме последнего, существуют и по сей день[20]. Страхование от пожара приобрело значительную популярность и распространение после Большого лондонского пожара 1666 года.

Кофейня Ллойда благодаря его связям с купцами и моряками с самого начала стала главной квартирой страховщиков, специализирующихся на страховании морских перевозок. «Lloyd's List» со временем увеличился в объеме за счет ежедневных сообщений о курсе акций, иностранных рынках, периодах подъема воды у Лондонского моста, и всё это наряду с обычными заметками о прибытии и отплытии судов и отчетами о происшествиях и кораблекрушениях. {3}

В 1720 году, не устоявши перед взяткой в 300 000 фунтов стерлингов, король Георг I согласился на учреждение двух первых страховых компаний Англии — Королевской биржевой страховой корпорации (Royal Exchange Assurance Corporation) и Лондонской страховой корпорации (London Assurance Corporation), предоставив им «исключительные относительно всех других корпораций и обществ» права. Хотя предоставление такой монополии препятствовало учреждению других страховых компаний, «частным и отдельным лицам», было все же разрешено принимать на себя чужие риски. На деле корпорации постоянно испытывали трудности из-за своей неспособности склонить опытных страховщиков к сотрудничеству.

В 1771 году, примерно через сто лет после открытия Эдвардом Ллойдом кофейни на Тауэр-стрит, семьдесят девять страховщиков, которые вели свои дела в кофейне Ллойда, сложились по 100 фунтов стерлингов и объединились в Общество Ллойда (Lloyd's Society), не инкорпорированную, т. е. не являющуюся юридическим лицом, группу индивидуальных предпринимателей, работающих в соответствии с собственным кодексом поведения. Это были первые члены Общества Ллойда (Members of Lloyd's); позже они стали известны как Имена (Names). Они пустили в дело всё, чем владел каждый, и весь имевшийся у них финансовый капитал, чтобы обеспечить безусловное выполнение обязательств по возмещению потерь своих клиентов. Эта скрупулезная честность стала одной из основных причин бурного роста их бизнеса в течение многих лет. Вот так выпитая Канопиусом чашка кофе привела к созданию самой знаменитой страховой компании в истории.

К 1770-м годам страховая индустрия проникла в американские колонии, хотя наиболее крупные полисы всё еще подписывались в Англии. Бенджамин Франклин в 1752 году основал компанию по страхованию от пожара и назвал ее Первой Американской компанией (First American); первый договор страхования жизни был подписан Фондом пресвитерианских священников (Presbyterian Ministers' Fund), основанным в 1759 году. Позже, когда разразилась революция, американцам, лишенным возможности пользоваться услугами Общества Ллойда, пришлось развивать собственные страховые компании. Первой акционерной страховой компанией стала Североамериканская страховая компания (Insurance Company of North America) в Филадельфии, которая занималась страхованием от пожаров, страхованием судоходства и выпустила первые в Америке полисы по страхованию жизни {4} [21].

***

В качестве коммерческого понятия страхование окончательно оформилось только в XVIII веке после Р. X., однако начало страхового бизнеса следует отнести к XVIII веку до Р. X. В Кодексе Хамму-рапи, появившемся примерно за 1800 лет до Р.Х., 282 статьи посвящены так называемому корабельному займу, или бодмерее. Бодмерея — это заем или ссуда под залог судна, которую брал его владелец для финансирования морского путешествия. Страховая премия, насколько нам известно, при этом не уплачивалась. Если судно погибало, ссуда не подлежала возврату. {5} Этот древний вариант страхования судоходства использовался и в эпоху Римской империи, когда страхование стало превращаться в профессию. Император Клавдий (10 г. до Р. X. — 54 г. после Р. X.), будучи весьма заинтересован в развитии торговли зерном, создал собственную компанию бесплатного страхования, взяв на себя ответственность за потери римских купцов от морской стихии, подобно тому как современные правительства оказывают помощь в районах стихийных бедствий при землетрясениях, ураганах или наводнениях.

В Греции и Риме профессиональные гильдии создавали кооперативы, члены которых вносили деньги в общий котел для помощи семьям, потерявшим кормильца. Эта практика сохранялась и во времена Эдварда Ллойда, когда общества взаимопомощи еще использовали эту простую форму страхования жизни. {6}

Развитие торговли в средние века обусловило развитие финансовой деятельности и страхования. Основные финансовые центры возникли в Амстердаме, Аугсбурге, Антверпене, Франкфурте, Лионе и Венеции; в Брюгге в 1310 году была учреждена страховая палата. Не все эти города были портами, большую часть товаров тогда еще перевозили по суше. Получили распространение такие новые инструменты, как векселя, облегчающие перемещение денег от клиентов к судовладельцам, от кредиторов к должникам и обратно, а также крупных сумм от повсеместно разбросанных церковных владений в Рим.

Помимо финансовых форм управления риском, купцы издавна научились использовать разные способы диверсификации риска. Именно так поступал венецианский купец Антонио из известной комедии Шекспира:

  • Мой риск не одному я вверил судну,
  • Не одному и месту; состоянье
  • Мое не мерится текущим годом:
  • Я не грущу из-за моих товаров.
(Акт I, сцена 1) {*1}

Сфера применения страхования ни в коем случае не ограничивалась морскими перевозками. Например, крестьяне настолько зависели от природных условий, что жили под постоянным страхом перед непредсказуемыми и опустошительными бедствиями, такими, как засухи, наводнения или падеж скота. Поскольку эти события по существу своему не зависят друг от друга и представляют для крестьян неотвратимую опасность, они создают благоприятную почву для развития системы страхования. В Италии, например, крестьяне учреждали сельскохозяйственные кооперативные объединения для подстраховки друг друга на случай плохих погодных условий, — крестьяне, проживавшие в районах, где погодные условия оказывались благоприятными, компенсировали потери тех, кому в этом году с погодой не повезло. Банк Монте дей Пачи (Monte dei Paschi), один из крупнейших в Италии, был учрежден в Сиене в 1473 году для осуществления посредничества в таких соглашениях[22]. Подобные простые соглашения практикуются и сейчас в малоразвитых странах, экономика которых ориентирована на сельскохозяйственное производство[23].

...На озере поднялся бурный ветер, и заливало их волнами, и они были в опасности. И, подойдя, разбудили Его и сказали: Наставник! Наставник! погибаем. Но Он, встав, запретил ветру и волнению воды; и перестали, и сделалась тишина...

(Лк., 8: 23-24)

Хотя во всех этих случаях группы людей соглашаются взаимно обезопасить друг друга, механизм страхования в целом работает так же. Страховые компании используют страховые взносы людей, не потерпевших потерь, для выплат потерпевшим. Этот же принцип действует и в казино, где выигрыши оплачиваются из ставок проигравших. Анонимность перемещения денег в рамках страховой компании или казино делает это посредничество менее очевидным. И все же самые изощренные схемы организации страховых компаний и игорных домов являются просто вариациями на тему Монте дей Пачи.

В XIV веке страховщики в Италии не всегда выполняли свои обязательства перед клиентами, и случаи недовольства известны. Флорентийский купец Франческо ди Марко Датини, торговавший в Барселоне и Саутгемптоне, жалуясь на своих страховщиков, писал жене: «Те, кто страхует, им хорошо, когда берут деньги; но когда приходит несчастье, всё меняется, и все отворачиваются, стараясь увильнуть от уплаты»[24]. Франческо знал, о чем говорил, потому что после его смерти осталось четыреста судовых страховых полисов.

Активизация страхового бизнеса получила толчок примерно в 1600 году. Слово «полис», уже бывшее к тому времени в употреблении, происходит от итальянского polizza, что означает 'обещание' или 'соглашение'. В 1601 году Фрэнсис Бэкон внес на рассмотрение парламента билль о регламентации полисов, которые «имели хождение среди купцов королевства и других наций».

***

Прибыль от вложений в товары, которые нужно перевезти морем на большие расстояния, прежде чем они попадут на рынок, зависит не только от погоды. Она зависит также от обоснованной оценки потребительского спроса, уровня цен и моды в момент прибытия судна, не говоря уже о затратах на покупку, доставку и продажу товара. Поэтому предсказания, которыми долгое время гнушались как занятием в лучшем случае тщетным, в худшем — греховным, стали в XVII веке абсолютной необходимостью для предприимчивых людей, желавших своими руками и по своему вкусу устроить собственное будущее.

Сейчас деловые прогнозы стали привычными, но в конце XVII века это было большой новостью. Пока математики исключали торговые дела из сферы своих теоретических изысканий, науке об управлении риском приходилось ждать, когда кто-нибудь задаст новые вопросы, которые, подобно вопросам, поставленным Грантом, потребуют выйти за пределы правил игры в balla или в кости. Даже смелые вычисления продолжительности жизни, выполненные Галлеем, для него самого были лишь социологическим упражнением или арифметической игрой, разыгранной, чтобы изумить его ученых коллег; в этом плане показательно, что он не ссылается на теоретическую работу Паскаля о вероятности, опубликованную за тридцать лет до того.

Нужно было преодолеть огромный концептуальный барьер, чтобы осуществить переход от идентификации определенных с неумолимой математической точностью шансов к установлению вероятности неопределенных исходов, от сбора сырых данных к принятию решения о том, как их использовать. С этого момента интеллектуальные достижения становятся во многих отношениях более удивительными, чем те, свидетелями которых мы уже были.

Некоторые из первопроходцев черпали вдохновение, глядя на звезды, другие получали его в ходе манипуляций с понятием вероятности, какие никогда и не снились Паскалю и Ферма. Но сейчас мы встретимся с фигурой, самой оригинальной из всех: его внимание было обращено на вопросы, связанные с богатством людей. Мы черпаем из его ответов чуть ли не ежедневно на протяжении всей нашей жизни.

Часть III

1700-1900. ИЗМЕРИТЬ МОЖНО ВСЁ

***********************************

Глава 6

Нужно учитывать природу человека

За очень короткий срок основные математические открытия Кардано и Паскаля стали применять там, где это прежде считалось немыслимым. Сначала Грант, Петти и Галлей использовали понятие вероятности для анализа необработанных данных. Примерно в это же время автор «Логики» Пор-Рояля внес в измерения субъективные элементы, когда написал: «Страх перед ущербом должен быть пропорционален не только величине ущерба, но и вероятности его нанесения».

В 1738 году в «Известиях Императорской Санкт-Петербургской Академии наук» появилась статья с интересным тезисом: «Ценность чего-либо должна иметь основанием не цену, но скорее полезность (utility)».[1] Первоначально статья была представлена Академии в 1731 году под названием «Specimen Theoriae Novae de Mensura Sortis» («Изложение новой теории об измерении риска»).  {1} Автор любил выделять слова курсивом. Это касается и отрывков, приводимых далее.

Можно только гадать, читал ли автор «Логику» Пор-Рояля, но концептуальная связь между двумя текстами бросается в глаза. Это неудивительно: в XVIII веке интерес к «Логике» охватил всю Западную Европу.

Авторы обеих работ исходят из предположения, что процесс принятия любого решения, связанного с риском, имеет два разных, но неразделимых аспекта: объективные факты и субъективные представления относительно желательности выигрыша или проигрыша. И объективные результаты измерения, и субъективная позиция одинаково важны и в отрыве друг от друга не являются самодостаточными.

У каждого из двух авторов свои предпочтения. Автор из Пор-Рояля убежден, что лишь питающий патологическое отвращение к риску человек принимает решения, учитывая только последствия и пренебрегая их вероятностью. Автор «Новой теории» доказывает, что только безумец может основывать свой выбор исключительно на анализе вероятности, не учитывая возможные последствия.

***

Автором санкт-петербургской публикации был швейцарский математик Даниил Бернулли, которому в ту пору исполнилось 38 лет.[2] Хотя имя Даниила Бернулли известно в основном только ученым, его статья является одним из наиболее значительных из когда-либо написанных текстов по проблемам как риска, так и человеческого поведения вообще. Сложные взаимосвязи между измерением и волевыми предпочтениями, на которые он впервые обратил внимание, затрагивают почти все аспекты жизни.

Даниил Бернулли был членом знаменитого семейства. С конца XVII по конец XVIII века восемь Бернулли стали прославленными математиками. Эти люди, как пишет историк Эрик Белл (Bell), произвели «уйму потомков... и большая часть их потомства получила известность, а многие достигли высокого положения — в юриспруденции, литературе, науке, на поприще административной деятельности и в искусстве. В их роду неудачников не было».[3]

Основателем этого клана был Николай Бернулли из Базеля, богатый купец, чьи протестантские предки бежали из католического Антверпена около 1585 года. Николай прожил долгую жизнь с 1623-го по 1708 год и имел троих сыновей: Якоба, Николая (известного как Николай I) и Иоганна. С Якобом мы вскоре встретимся, когда пойдет речь об открытом им законе больших чисел и его книге «Ars Conjectandi» («Искусство предположений»). Стоит добавить, что он был одновременно и крупным педагогом, поучиться у которого стремились студенты со всей Европы, и выдающимся математиком, инженером и астрономом. Статистик Викторианской эпохи Фрэнсис Гальтон описывает его как человека с «желчным и меланхоличным характером... уверенного, но медлительного».[4] Его отношения с отцом были настолько скверными, что он взял себе девиз Invito patre sidera verso (Среди звезд вопреки отцу).[5]

Гальтон не ограничивается язвительной характеристикой одного Якоба. Хотя семья Бернулли служила замечательным подтверждением его теории евгеники, в своей книге «Наследственная одаренность» («Hereditary Genius») он характеризует семью Бернулли в целом как людей «преимущественно сварливых и завистливых».[6]

Похоже, что этими чертами действительно обладало большинство представителей семейства. Младшего брата Якоба, Иоганна, тоже математика и отца Даниила, историк науки Джеймс Ньюмен описывает как «вспыльчивого, бестактного... и при случае нечестного» человека.[7] {2} Когда Даниил получил премию Французской Академии наук за работу об орбитах планет, отец, сам претендовавший на эту премию, выбросил его из дома. Ньюмер сообщает, что Иоганн дожил до 80 лет, «до конца сохранив и силы, и мерзкий характер».

А ведь был еще сын среднего брата, Николая I, известный как Николай II. Когда дядя Николая II Якоб в 1705 году умер после тяжелой болезни, не успев завершить работу над «Ars Conjectandi», Николай II, которому было в ту пору только восемнадцать, получил предложение подготовить работу к опубликованию. На это ушло восемь лет! В предисловии к изданию Николай II признал, что сильно затянул с изданием книги, и приводил в качестве оправдания «постоянные разъезды» и тот факт, что он был «слишком молод и неопытен для завершения этой работы».[8]

Возможно, промедление пошло на пользу делу — за эти восемь лет он собрал мнения ведущих математиков того времени, включая Исаака Ньютона. Он не только вел активную переписку, но и ездил в Лондон и Париж для личных консультаций с известными учеными. Кроме того, он внес ряд собственных конструктивных математических дополнений, включая анализ использования предположений и теории вероятностей в применении, к юриспруденции.

Для полноты картины отметим, что у Даниила Бернулли был брат пятью годами старше, тоже Николай, которого принято называть Николаем III, считая его деда Николаем без номера, его дядю Николаем I, а его первого старшего кузена Николаем И. Этот Николай III сам был выдающимся ученым и обучал математике Даниила, когда тому было одиннадцать лет. Иоганн поощрял занятия математикой своего старшего сына, Николая III, который к восьми годам говорил на четырех языках, а к девятнадцати уже получил степень доктора философии в Базеле; в 1725 году, когда ему исполнилось тридцать, он стал профессором математики в Санкт-Петербурге и через год умер от какой-то лихорадки.

Даниил Бернулли получил приглашение в Санкт-Петербург одновременно со своим братом Николаем III и оставался там до 1733 года, после чего возвратился в родной Базель и стал профессором физики и философии. Он входил в число первых выдающихся ученых, которых Петр Великий пригласил в Россию в надежде превратить свою новую столицу в интеллектуальный центр Европы. По свидетельству Гальтона, он был «врачом, ботаником, анатомом, специалистом по гидродинамике; не по годам развитым».[9] Кроме того, он был выдающимся математиком и статистиком, проявлявшим особый интерес к теории вероятностей.

Бернулли был типичным представителем своего времени. XVIII век стал веком разума, сменившего страсти бесконечных религиозных войн предыдущего столетия. Когда кровавые войны затихли, на смену неистовству Контрреформации и характерной для искусства барокко эмоциональности пришла тяга к порядку и классическим формам. Уравновешенность и уважение к разуму были отличительными чертами эпохи Просвещения. Совершенно в духе своего времени Бернулли трансформировал мистицизм «Логики» Пор-Рояля в логическую конструкцию, адресованную людям, решениями которых руководит разум.

***

Санкт-петербургская статья Даниила Бернулли начинается с изложения тезиса, который он намеревается атаковать:

«С тех пор как математики занялись измерением риска, было общепринятым следующее предположение: ожидаемое значение случайной величины вычисляется умножением всех возможных значений на число случаев, в которых эти значения могут иметь место, и делением суммы этих произведений на общее число случаев»[10]

{3}

Бернулли находит это предположение недостаточным для описания процесса принятия решения в реальной жизни, потому что оно учитывает только факты и игнорирует отношение к вероятным исходам личности, которая должна принять решение в условиях неопределенности. Знания цены и вероятности еще недостаточно для определения ценности исхода. Хотя факты для всех одинаковы, «полезность... в каждом отдельном случае зависит от личности, делающей оценку... Нет оснований предполагать, что... риск, воспринимаемый каждым по-своему, может оцениваться одинаково». Каждому свое.

Понятие полезности постигается интуитивно. Оно ассоциируется с пользой, желательностью или удовлетворением. Понятие, вызывающее неприязнь Бернулли, — «ожидаемое значение» — носит скорее технический характер. Как указывает Бернулли, ожидаемое значение равно сумме произведений значений величины в некотором числе возможных исходов на вероятности этих исходов, деленной на общее число всех возможных исходов. Отметим, что математики вместо термина «ожидаемое значение» до сих пор иногда используют термин «математическое ожидание».

У монеты две стороны, орел и решка, каждая может выпасть с вероятностью 50%, поскольку не могут обе стороны одновременно смотреть вверх. Каков ожидаемый результат бросания монеты? Мы умножаем 50% на один для орла, делаем то же самое для решки, берем сумму — 100% — и делим на два. Ожидаемое значение при бросании монеты равно 50%. Орел и решка выпадают с одинаковой вероятностью.

Каково ожидаемое значение при бросании двух костей? Если мы сложим 11 возможных чисел — 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12, то в сумме получим 77. Ожидаемое значение от бросания двух костей равно 77/11, или ровно 7.

Однако эти 11 чисел выпадают не с одинаковой вероятностью. Как показал Кардано, некоторые числа должны появляться чаще других, потому что при бросании двух костей возможны 36 разных комбинаций двух чисел, которые в сумме дают 11 возможных значений от 2 до 12; например, два получается только при варианте дубль-один, а четыре — в результате трех исходов, а именно: 3 + 1, 1 + З и 2 + 2. Полезная таблица Кардано (с. 70) показывает число комбинаций, дающих каждый из 11 исходов:

Ожидаемое значение, или математическое ожидание, при бросании двух костей равно 7, что соответствует результату нашего предыдущего подсчета 77/11. Теперь ясно, почему семерка играет такую важную роль в игре в крепс.

Бернулли согласен, что такие расчеты хороши для случайных игр, но настаивает на том, что в повседневной жизни дело обстоит иначе. Даже если вероятности известны (упрощение, впоследствии отвергнутое математиками), разумный человек, принимая решение, постарается максимизировать скорее ожидаемую полезность (или степень удовлетворения), чем ожидаемое значение. Ожидаемая полезность вычисляется с использованием тех же методов, что и ожидаемое значение, но оценивается с учетом весомости фактора полезности.[11]

Например, Антуан Арно, почтенный автор «Логики» Пор-Рояля, обвинял людей, боящихся раскатов грома, в переоценке того, насколько мала вероятность попадания в них молнии. Он был не прав. Не они, а он кое-что игнорирует. Факты одни и те же для всех, и даже тот, кто приходит в ужас от первого раската грома, прекрасно осознаёт, насколько мала вероятность попадания молнии именно в то место, где он находится. Ситуацию прояснил Бернулли: люди, боящиеся попадания в них молнии, придают такой вес последствиям этого исхода, что, сколь бы мала ни была его вероятность, само ее наличие способно ужаснуть.

Оценка исхода превалирует над измерением. Порасспросите-ка пассажиров самолета, попавшего несколько раз подряд в воздушные ямы, одинакова ли у них степень беспокойства. Большинство людей прекрасно знают, что в наше время полет на самолете безопаснее езды на автомобиле, но некоторые пассажиры доставят немало хлопот стюардессам, в то время как другие в это время спокойно вздремнут.

И это хорошо. Если бы все стали оценивать риск одинаково, многие благоприятные возможности были бы упущены. Азартные люди предпочитают большую и маловероятную выгоду более вероятной, но малой выгоде. Других мало привлекает вероятность выигрыша, потому что их заветной целью является сохранение того, что у них есть. Один видит солнце, другой ждет грозы. Без авантюристов Земля вращалась бы медленнее. Представьте себе, во что превратилась бы наша жизнь, если бы каждый боялся выходить во время грозы, летать на самолете или вкладывать деньги в новые предприятия. Нам повезло, что люди по-разному относятся к риску.

***

Стоило Бернулли высказать свой основной тезис о том, что люди по-разному оценивают одни и те же значения риска, как он пришел к кардинальной идее: «Польза от небольшого увеличения богатства обратно пропорциональна величине уже имеющегося богатства». Далее он замечает: «Что касается человеческой природы, мне кажется, что предлагаемую гипотезу можно счесть пригодной для понимания поведения многих людей, в отношении которых это сравнение имеет смысл».

Гипотеза о том, что польза от прироста обратно пропорциональна величине уже имеющегося богатства, является одним из величайших интеллектуальных достижений в истории идей. Меньше чем на одной странице процесс вычисления вероятностей превращен в процедуру подключения субъективных соображений к процессу принятия решений в ситуациях с неопределенными исходами.

Бернулли блистательно сформулировал мысль о том, что в отличие от фактов, дающих однозначный ответ на вопрос об ожидаемом значении (факты для всех одни и те же), субъективный процесс оценки этого значения приводит к такому же количеству ответов, сколько людей в нем участвуют. Но и это еще не всё; дальше он предлагает методику подхода к определению того, насколько сильно и много или мало чего-то хочет каждый, принимающий решение: объем и степень пожеланий обратно пропорциональны количеству того, что уже есть.

Впервые в истории Бернулли применил измерение к чему-то, чего нельзя сосчитать. Он обвенчал интуицию с измерением. Кар-дано, Паскаль и Ферма создали метод вычисления риска при бросании костей, но Бернулли подвел нас к рискующему, к игроку, решающему, сколько поставить и ставить ли вообще. Если теория вероятностей рационализирует выбор, то Бернулли определяет мотивацию личности, которая выбирает. Фактически он указал на новый предмет изучения и заложил интеллектуальные основы того, что позднее нашло применение не только в экономической теории, но и в общей теории принятия решений в разных жизненных ситуациях.

***

В своей статье Бернулли приводит ряд интересных примеров, иллюстрирующих его идеи. Самым интригующим и знаменитым из них стал так называемый петербургский парадокс, предложенный его «глубоко почитаемым кузеном, славным Николаем Бернулли» — медлительным издателем «Ars Conjectandi». Николай предложил игру между Петром и Павлом, в которой Петр бросает монету до тех пор, пока не выпадет орел. Петр должен заплатить Павлу один дукат, если орел выпадет в первом броске, два дуката, если орел выпадет во втором броске, четыре — в третьем броске, и так далее. С каждым следующим броском число дукатов, которые Петр должен заплатить Павлу, удваивается.{4} Сколько должен заплатить Павлу за право занять его место в этой игре тот, кто захочет загрести порядочную сумму?

Причину парадокса Бернулли усматривает в том, что «принятый метод вычисления [ожидаемого значения] на деле делает оценку перспектив Павла бесконечно большой, [но] никто не захочет купить [эти перспективы] за достаточно высокую цену... Каждый сколько-нибудь разумный человек с большим удовольствием продаст свой шанс за двадцать дукатов».{5}

Бернулли провел подробный математический анализ проблемы, основанный на предположении, что польза от приращения богатства обратно пропорциональна первоначальному богатству. В соответствии с этим предположением сумма, которую Павел может выиграть на двухсотом броске, принесет ему бесконечно малую добавочную пользу по сравнению с тем, что он должен был накопить к сто первому броску; даже к пятьдесят первому броску у него уже должно быть более 1 000 000 000 000 000 дукатов. (Для сравнения отметим, что национальный долг правительства США составляет ныне в долларах сумму, представляемую четверкой с двенадцатью нулями.)

В дукатах или в долларах, оценка ожиданий Павла долгое время привлекала внимание ведущих математиков, философов и экономистов. В истории математики англичанина Исаака Тодхантера, опубликованной в 1865 году, содержатся многочисленные ссылки на петербургский парадокс и обсуждаются некоторые решения, предложенные математиками за годы, прошедшие после опубликования статьи Бернулли.[12] Между тем многие годы статью Бернулли можно было прочесть только в оригинале на латыни, пока в 1896 году не появился первый немецкий перевод. Внимание математиков к петербургскому парадоксу резко возросло после того, как Джон Мейнард Кейнс сослался на него в своем «Курсе теории вероятности» («A Treatise of Probability»), опубликованном в 1921 году. Но только в 1954 году — через 216 лет после первой публикации — статья Бернулли появилась в английском переводе.

Петербургский парадокс — это нечто большее, чем академическое упражнение в описании и истолковании вероятностных аспектов бросания монеты. Представьте себе крупную растущую компанию со столь блестящими перспективами роста, что они представляются бесконечными. Даже при абсурдном предположении, что мы сможем точно предсказать прибыли компании в бесконечно далеком будущем — обычно мы радуемся, когда это удается на квартал вперед, — какой должна быть цена акций этой компании? Бесконечной? {6}

Бывают моменты, когда серьезные, трезвые, опытные инвесторы подпадают под власть подобных несбыточных надежд, — моменты, когда о вероятностных законах забывают. В конце 60-х и начале 70-х годов нынешнего столетия портфельные менеджеры крупнейших корпораций настолько соблазнились идеей общего роста курсов, и прежде всего роста так называемых акций Nifty-Fifty, что готовы были платить любые деньги за право владения акциями таких компаний, как Xerox, Coca-Cola, IBM и Polaroid. Эти менеджеры усматривали риск не в возможности переплатить за акции Nifty-Fifty, a в опасности их упустить: перспективы роста казались настолько бесспорными, что считалось, что уровень грядущих прибылей и дивидендов, Бог даст, всегда оправдает любую цену. Они считали риск переплаты мизерным по сравнению с риском при покупке акций таких компаний, как Union Carbide или General Motors, чьи перспективы казались неопределенными из-за цикличности котировок и жесткой конкуренции.

Ажиотаж дошел до того, что в конце концов рыночная цена таких мелких компаний, как International Flavors и Flagrances, с объемом годовых продаж всего 138 миллионов долларов сравнялась с ценой «менее обаятельных» гигантов типа U.S. Steel с годовым объемом сбыта в 5 миллиардов долларов. В декабре 1972 года акции Polaroid шли по цене, в 96 раз превышающей прибыль на акцию за 1972 год, акции McDonald's — в 80 раз, акции IFF — в 73 раза; в то же время акции индекса Standard & Poor's 500 в целом шли по цене, только в 19 раз превышающей величину прибыли на акцию. При этом в среднем дивиденды на акцию Nifty-Fifty не достигали и половины среднего уровня дивидендов на акции индекса Standard & Poor's 500.

Этот специфический пудинг надо было съесть, чтобы понять, насколько он горек на вкус. На деле ослепительные перспективы оказались весьма скромными. К 1976 году цены на акции IFF снизились на 40% , а котировка акций U. S. Steel выросла в два с лишним раза. Доход акционеров компаний, входящих в индекс S&Р 500, к концу 1976 года превысил предыдущее пиковое значение, а акции компаний Nifty-Fifty до июля 1980 года не могли обеспечить уровень доходов, достигнутый в 1972 году. Хуже того, с 1976-го по 1990 год эффективность равновзвешенного портфеля акций Nifty-Fifty была значительно ниже, чем у индекса S&Р 500.

Но как можно инвестировать с расчетом на бесконечность? Джереми Сигел (Siegel), профессор Уортонской школы бизнеса в Пенсильванском университете, подробно просчитал эффективность акций Nifty-Fifty с конца 1970 года по конец 1993-го.[13] Равновзвешенный портфель из пятидесяти акций Nifty-Fifty, даже купленных в момент пика в декабре 1972 года, принес к концу 1993 года совокупный доход, почти на один процентный пункт меньший, чем индекс S&Р 500. Если бы этот портфель купили двумя годами раньше, в декабре 1970 года, доходность портфеля опережала бы доходность индекса S&Р 500 на один процентный пункт в год. Да и в нижней точке спада в 1974 году отрицательный разрыв между внутренней стоимостью и рыночной ценой был бы меньше.

Для поистине терпеливых людей, которые лучше всего себя чувствуют, имея акции известных и солидных компаний, с чьей продукцией они сталкиваются в быту, инвестиции в Nifty-Fifty могли бы принести известную пользу. Но этот портфель показался бы малопривлекательным для не столь терпеливых инвесторов, кому не понравилось бы иметь портфель из 50 акций, 5 из которых в течение двадцати одного года приносили бы только убытки, 20 приносили бы меньше, чем можно заработать на 90-дневных казначейских векселях, и только 11 приносили бы больше, чем индекс S&Р 500. Но, как сказал бы за стаканом вина сам Бернулли, человек получает то, на что он ставит.

***

Бернулли ввел еще одно новое понятие, которое современные экономисты считают движущей силой экономического развития, — человеческий капитал. Понятие выросло из определения богатства как «чего угодно, что может содействовать адекватному удовлетворению каких-либо желаний... В этом смысле никто не может сказать, что у него ничего нет, пока он не умер от голода».

Какие формы принимает богатство большинства людей? Бернулли говорит, что материальные активы и финансовые права представляют собой меньшую ценность, чем способность к продуктивной деятельности, даже если это умение нищенствовать. Он утверждает, что человек, умеющий добыть 10 дукатов в год за счет подаяния, по-видимому, отказался бы от вознаграждения в 50 дукатов в обмен на отказ от сбора милостыни в будущем: потратив эти 50 дукатов, он не знал бы, на что жить. Но должна же быть какая-то сумма, за которую он согласился бы навсегда отказаться от сбора милостыни? Если для этого достаточно, к примеру, 100 дукатов, «мы можем сказать, что состояние нищего оценивается в 100 дукатов».

Сегодня мы рассматриваем идею человеческого капитала — совокупность образования, природных талантов, квалификации и опыта, являющуюся источником будущего заработка, — как основополагающую для понимания важнейших аспектов мировой экономики. Человеческий капитал играет ту же роль для наемного работника, какую семена и сельскохозяйственные орудия для фермера. Несмотря на огромный прирост материального богатства с 1738 года, для огромного большинства людей человеческий капитал все еще остается главным источником дохода. Если бы это было не так, к чему столь многим кормильцам вкладывать заработанные тяжелым трудом деньги в страхование жизни?

Для Бернулли случайные игры и абстрактные проблемы были только средствами для иллюстрации его основного довода, касающегося стремления к богатству и использованию благоприятных возможностей. Он акцентирует внимание скорее на процессе принятия решений, чем на математических тонкостях теории вероятностей. Он сразу провозглашает, что хочет установить «правила, которыми сможет руководствоваться всякий, желающий уяснить свои перспективы в рискованных предприятиях, связанных с определенными финансовыми обстоятельствами». Эти слова являются зерном для мельницы любого современного финансиста, менеджера и инвестора. Риск перестал быть просто столкновением с независящими от нас обстоятельствами; теперь его понимают как набор возможностей, открытых для выбора.

Используемое Бернулли понятие пользы наряду с его утверждением об обратной зависимости между степенью удовлетворенности определенным приращением богатства и объемом наличного богатства было настолько здравым, что оказало весомое влияние на работы крупных мыслителей последующих поколений. Понятие полезности легло в основу закона спроса и предложения — впечатляющего достижения экономистов Викторианской эпохи, которое стало исходным пунктом для понимания того, как функционируют рынки и как покупатели и продавцы договариваются о цене. Понятие полезности оказалась столь продуктивным, что в последующие двести лет превратилось в основной инструмент объяснения процесса принятия решения и теории выбора в областях, весьма далеких от финансовых операций. Теория игр — изобретенный в XX веке подход к принятию решений в войне, политике и бизнесе — сделала понятие полезности неотъемлемой частью единого системного подхода.

Понятие полезности оказало решающее влияние на психологию и философию, потому что Бернулли предложил стандарт для оценки разумности человеческого поведения. Например, люди, для которых полезность богатства растет вместе с его ростом, считаются большинством психологов и моралистов невротиками; алчность не привлекала Бернулли, не вписывается она и в современные представления о рациональности.

Теория полезности требует от разумного человека способности оценивать полезность при любых обстоятельствах и, руководствуясь этой оценкой, делать выбор и принимать соответствующие решения — высокая планка, если учесть, что нам всю жизнь приходится действовать в условиях неопределенности. Работа явно нелегкая, даже если, как предполагал Бернулли, факты для всех одни. Но во многих случаях факты все-таки не для всех одинаковы. У каждого своя информация, и к тому же каждый склонен окрашивать ее по-своему. Даже самые разумные люди часто не могут договориться о том, что значат те или иные факты.

Каким бы современным ни казался Бернулли, он был типичным представителем своего времени. Его понимание разумности человеческого поведения прекрасно вписывается в интеллектуальную обстановку эпохи Просвещения. Это было время, когда писатели, художники, композиторы и политические философы обратились к классическим формам и идее порядка и утверждали, что накопление знаний поможет человечеству проникнуть в тайны бытия. В 1738 году, когда появилась статья Бернулли, Александр Поп был на вершине славы. Его поэмы полны ссылок на классиков и предостережений, что «невежество опасно» и что «для понимания человечества нужно изучать человека». Вскоре Дени Дидро начал работу над 28-томной энциклопедией, а Сэмюэл Джонсон уже завершал создание первого словаря английского языка. Неромантические взгляды Вольтера на общество завоевывали умы европейцев, а Гайдн в 1750 году определил классические формы симфонии и сонаты.

Безудержный оптимизм философии Просвещения ярко проявился в Декларации независимости и оказал решающее влияние на Конституцию Соединенных Штатов Америки. Но, увы, их пример и идеи эпохи Просвещения подвигли народ Франции на казнь королевской семьи и на коронацию в алтаре собора Нотр-Дам идола Разума.

***

Мысль о том, что каждый из нас, даже самый разумный, имеет собственный набор ценностей и реагирует на ситуации в соответствии с этим набором, была смелой новацией Бернулли, но его одаренность проявилась и в понимании необходимости пойти дальше. Сформулировав тезис о том, что полезность благ обратно пропорциональна их наличному количеству, он открыл нам поразительный путь к пониманию того, как человек в условиях риска делает выбор и принимает решения.

По мнению Бернулли, наши решения имеют определенную и предсказуемую структуру. В рациональном мире мы все хотели бы быть не бедными, а богатыми, но интенсивность нашего желания разбогатеть определяется тем, насколько мы богаты в данный момент. Много лет назад один из моих клиентов, которого я консультировал по поводу инвестиций, при первой же встрече погрозил мне пальцем и предупредил: «Помните, молодой человек, Вы не должны делать меня богатым. Я уже богат!»

Логическим следствием прозрений Бернулли явилось совершенно новое восприятие риска. Если удовлетворение, получаемое от каждого последующего приращения богатства, меньше, чем от первого, то ущерб от проигрыша будет всегда превышать полезность от равного по размерам выигрыша. Мой клиент имел в виду именно это.

Представьте себе богатство в виде штабеля, в основании которого большой брусок, а поверх него чем выше, тем всё меньшие бруски. Каждый брусок, снятый с вершины, будет больше, чем брусок, который вы могли бы на него положить. Ущерб от потери бруска больше, чем польза от добавления еще одного.

Бернулли приводит такой пример: два человека, у каждого по 100 дукатов, решили сыграть в азартную игру, скажем в орлянку, с шансами выигрыша или проигрыша 50 на 50. Каждый ставит на кон 50 дукатов, то есть у каждого равные шансы закончить игру со 150 или с 50 дукатами.

Станет ли разумный человек играть в такую игру? Математическое ожидание для суммы, которой будет обладать каждый после такой игры с равными шансами, те же 100 дукатов (сумма 150 + 50, деленная на 2), с которыми каждый игрок начинал игру. Для каждого ожидаемое значение такое же, как если бы они вообще не садились играть.

Предложенная Бернулли концепция полезности выявляет асимметрию, объясняющую непривлекательность такой игры. Весомость потери 50 дукатов в случае проигрыша выше, чем весомость приобретения 50 дукатов в случае выигрыша. Так же как с кучей брусков, огорчений от потери 50 дукатов больше, чем радости от выигрыша такой же суммы.{7} . В математическом смысле, если оценивать игру с нулевой суммой с позиций полезности, — это проигрышная игра. Обоим было бы лучше отказаться от такой игры.

Бернулли использует пример, чтобы убедить игроков в том, что они окажутся в убытке даже при честной игре. Этот пессимистический вывод он выражает следующими словами:

«Разумнее вообще не играть в кости... Каждый, участвующий частью своего состояния в случайной игре с равными шансами, поступает неразумно... Опрометчивость игрока возрастает с возрастанием части его состояния, на которую он ставит в случайной игре»

Большинство из нас согласится с Бернулли, что с точки зрения полезности азартная игра всегда проигрышна. Мы, как говорят психологи, «не предрасположены» или «не склонны» к риску. Смысл этого выражения достаточно любопытен.

Вообразите, что вам нужно сделать выбор: получить в подарок 25 долларов или сыграть в игру, в которой вы имеете равные шансы или выиграть 50 долларов, или не выиграть ничего. Математическое ожидание результата игры равно 25 долларам, то есть равноценно подарку, но результат не определен. Нерасположенный к риску человек предпочтет игре подарок. Впрочем, у каждого свое отношение к риску.

Вы можете оценить степень собственной предрасположенности к риску, узнав свой «эквивалент определенности». Каким должно быть математическое ожидание в игре, которую вы предпочли бы подарку? Может быть, 30 долларов, что означало бы, что вы имели бы равные шансы выиграть 60 долларов или ничего? Тогда математическое ожидание выигрыша в 30 долларов будет эквивалентно подарку в 25 долларов. Но может быть, вы согласитесь играть, когда математическое ожидание равно только 26 долларам. Вы можете оказаться в душе рисковым человеком и предпочесть игру с математическим ожиданием, меньшим 25 долларов, т. е. меньшим, чем гарантированная ценность подарка. Такое возможно, например, в игре, в которой вы можете выиграть 40 долларов, если выпадет решка, или остаться ни с чем, если выпадет орел, а математическое ожидание составит только 20. Но большинство людей все-таки предпочло бы игру, в которой ожидаемый выигрыш несколько превышал бы предложенные в примере 50 долларов. Популярные лотереи представляют собой интересное исключение из этого правила, потому что в большинстве лотерей установленная прибыль устроителей настолько велика, что они оказываются чудовищно несправедливыми по отношению к игрокам.

Здесь вступает в действие важный принцип. Предположим, ваш биржевой маклер рекомендовал вам вложить деньги во взаимный инвестиционный фонд, который инвестирует в самые мелкие компании рынка. За последние 69 лет акции 20% самых мелких компаний фондового рынка давали в среднем 18% ежегодного дохода (рост котировок плюс дивиденды). Вообще говоря, это неплохо. Но зато эта часть рынка отличается нестабильностью: для двух третей акций в этом сегменте рынка прибыльность колебалась от -23% до +59%; почти каждый третий год случались убытки и составляли в среднем 20%. Поэтому, несмотря на высокую среднюю прибыльность этих акций в длительной перспективе, для каждого отдельно взятого года ситуация представляется в высшей степени неопределенной.

Предположим теперь, что другой маклер предложил в качестве альтернативы покупку 500 акций Standart & Poor's Composite Index. Средний годовой доход по этим акциям за последние 69 лет составил 13%, но две трети времени его колебания были ограничены более узким диапазоном от -11% до +36%, причем отрицательные значения в соответствующие годы составили в среднем 13%. Предполагая, что в будущем все будет происходить приблизительно так же, как в прошлом, и учитывая, что у вас может не оказаться 70 лет, чтобы оценить свой выбор, удовлетворит ли вас первый вариант с более высоким ожидаемым средним доходом, но и более сильными колебаниями? Какой из двух вариантов вы выберете?

***

Даниил Бернулли преобразил сцену, на которой разыгрывается драма взаимодействия с риском. Предложенное им описание того, как люди используют измерения и собственный темперамент в процессе принятия решений в условиях неопределенности, явилось впечатляющим достижением. Как он сам с удовлетворением отметил в своей статье, «поскольку все наши предположения полностью согласуются с опытом, было бы ошибкой отвергнуть их как абстракции, опирающиеся на сомнительные гипотезы».

Спустя два столетия мощная критическая атака доказала, что в своих предположениях Бернулли все-таки не достиг полного соответствия опыту, главным образом потому, что его гипотезы о разумности человека оказались более произвольными, чем мог предположить этот человек эпохи Просвещения. Но до этого последнего критического натиска на протяжении двух столетий после опубликования статьи Бернулли понятие полезности оставалось в центре философских дебатов о разумности человеческого поведения. Сам он вряд ли мог предположить, как долго это понятие будет занимать представителей последующих поколений. Правда, в этом была заслуга ученых, которые пришли к нему самостоятельно, не подозревая о новаторской работе Бернулли.

Глава 7

В поисках практической достоверности

Шла Вторая мировая война. Зимней ночью во время одного из налетов немецкой авиации на Москву известный советский профессор статистики неожиданно появился в своем дворовом бомбоубежище. До тех пор он никогда туда не спускался. «В Москве семь миллионов жителей, — говаривал он. — Почему я должен ожидать, что попадут именно в меня?» Удивленные друзья поинтересовались, что заставило его изменить свою точку зрения. «Подумать только! — воскликнул он. — В Москве семь миллионов жителей и один слон. Прошлой ночью они убили слона».

Это современный вариант рассматриваемого в «Логике» Пор-Рояля примера с боязнью грозы, хотя и отличается от него мотивацией личностной установки в условиях риска. Здесь профессор превосходно понимал, насколько мала математическая вероятность попасть под бомбу. Его поведение наглядно иллюстрирует двойственный характер всего, что связано с вероятностью: частота события в прошлом вступает в конфликт с эмоциональной оценкой действительности и влияет на выбор поведения в условиях риска.

Смысл истории этим не исчерпывается. Она перекликается с подходом Гранта, Петти и Галлея: если точное знание будущего и даже прошлого недостижимо, какова достоверность имеющейся у нас информации? Что важнее для принятия решения: семь миллионов москвичей или погибший слон? Как мы должны оценивать добавочную информацию и как включать ее в оценки, базирующиеся на исходной информации? Является ли теория вероятностей математической забавой или серьезным инструментом прогнозирования?

Теория вероятностей является серьезным инструментом прогнозирования, но при пользовании им нельзя забывать о том, что, как говорится, дьявол в мелочах, что все зависит от качества информации, на основе которой вероятность оценивается. Эта глава посвящена осуществленной в течение XVIII столетия последовательности гигантских шагов, революционизировавших использование информации и определивших методологию применения теории вероятностей в задачах выбора и принятия решений в современном мире.

***

Впервые изучением связей между вероятностью события и качеством исходной информации занялся второй из старших Бернулли — Якоб (1654-1705), дядя известного Даниила Бернулли.[1] Он был еще ребенком, когда Паскаль и Ферма высказали свои замечательные математические идеи, и умер, когда его племяннику Даниилу едва исполнилось пять лет. Талантливый, как все Бернулли, он был современником Исаака Ньютона и, обладая свойственным всем Бернулли сложным и самолюбивым характером, считал себя соперником великого английского ученого.

Сама по себе постановка Якобом обсуждаемого вопроса, даже если отвлечься от предложенных им ответов, была научным подвигом. По его признанию, он размышлял над этой проблемой двадцать лет и окончил посвященный ей труд незадолго до смерти, последовавшей в 1705 году.

Якоб был самым мрачным из Бернулли, особенно к концу жизни, несмотря на то что он жил в веселые и легкомысленные времена, наступившие в Англии после реставрации монархии в 1660 году и восшествия на престол Карла II{1}, когда, например, один из его весьма известных современников Джон Арбутнот, лекарь королевы Анны, член Королевского общества и математик-дилетант, занимавшийся проблемами вероятности, считал уместным для иллюстрации содержащихся в своих опусах положений сдабривать их фривольными примерами, обсуждая вероятность того, что «женщина в двадцатилетнем возрасте сохранила девственность» или что «лондонский щеголь того же возраста не болен триппером».[2]

В 1703 году Якоб Бернулли впервые поставил вопрос о зависимости получаемого значения вероятности от выборки. В письме к своему другу Лейбницу он заметил, что ему кажется странным, что нам известна вероятность выпадения семи, а не восьми очков при игре в кости, но мы не знаем, с какой вероятностью двадцатилетний переживет шестидесятилетнего. Не следует ли нам, спрашивает он, для ответа на этот вопрос подвергнуть исследованию множество пар людей всех возрастов?

Отвечая Бернулли, Лейбниц пессимистически оценил этот подход. «Природа установила шаблоны, имеющие причиной повторяемость событий, — пишет он, — но только в большинстве случаев. Новые болезни захлестнули человечество, так что не имеет значения, сколько опытов вы провели над трупами, — на их основе вам не установить таких границ природы событий, чтобы в будущем не осталось места вариациям»[3]. Хотя письмо Лейбница написано на латыни, выражение «но только в большинстве случаев» он написал по-гречески: . Очевидно, этим он хотел подчеркнуть, что конечное число опытов, предлагаемое Якобом, с неизбежностью окажется недостаточным для точного исчисления замыслов природы {2}.

Реакция Лейбница не обескуражила Якоба, но внесла коррективы в его подход к решению проблемы. Лейбницево предупреждение по-гречески не прошло даром.

Усилия Якоба определить вероятность на основе обследования выборки данных нашли отражение в его «Ars Conjectandi», работе, которую его племянник Николай полностью опубликовал через восемь лет после смерти автора в 1713 году[4]. Интерес Якоба сосредоточен на том, чтобы показать, где метод логического вывода — объективный анализ данных — кончается и начинается другой метод — прогнозирование на основе вероятностных законов. В известном смысле здесь прогнозирование рассматривается как процесс восстановления целого по части.

Якоб начинает свой анализ с констатации того, что в теории вероятностей для принятия гипотезы о возможности события «необходимо только подсчитать точное число возможных событий и затем определить, насколько наступление одного события более вероятно, нежели наступление другого». Трудность, на которую он постоянно указывает, заключается в том, что использование вероятности ограничено почти исключительно случайными играми. С этой точки зрения достижения Паскаля представляются не более как интеллектуальной забавой.

Для Якоба это ограничение имеет принципиальное значение, о чем свидетельствует его рассуждение, созвучное Лейбницеву предупреждению:

«Но кто из смертных... может установить число болезней, подсчитав все, причиняющие страдания человеческому телу... и насколько фатальный исход от одной болезни более вероятен, чем от другой — от чумы или от водянки... от водянки или от лихорадки, — и на этой основе сделать предсказания о соотношении жизни и смерти для будущих поколений?

...Кто может претендовать на столь губокое проникновение в природу человеческого духа и изумительную структуру тела, чтобы в играх, результат которых зависит от... остроты ума или физической ловкости игроков, рискнуть предсказать, кто из игроков выиграет и кто проиграет?»

Якоб указывает на принципиальное отличие между реальностью и абстракцией при использовании вероятностных законов. Например, предложенное Пацциоли рассмотрение незавершенной игры в balla, как и пример с гипотетическим неоконченным турниром на первенство по бейсболу, о котором у нас шла речь при обсуждении треугольника Паскаля, не имеет ничего общего с реальными жизненными ситуациями. В реальной жизни игроки в balla, как и участники бейсбольного турнира, обладают различной «остротой ума и физической ловкостью» — качествами, которые я игнорировал в приведенных ранее упрощенных примерах использования законов вероятности для предсказания событий. Треугольник Паскаля дает только намек на исход игры в реальных условиях.

Теория может определить вероятность тех или иных исходов для игры в казино или лотереи — здесь нет необходимости вращать колесо рулетки или считать лотерейные билеты, чтобы определить характер результата, но в реальной жизни важна относящаяся к делу информация. Беда в том, что мы никогда не обладаем ей в нужном объеме. Природа устанавливает шаблоны, но «только в большинстве случаев». В теории, которая абстрагируется от природы, дело обстоит проще: мы или имеем необходимую информацию, или не нуждаемся в ней. Как сказал цитированный в введении Фишер Блэк, мир выглядит более упорядоченным с территории Массачусетского технологического института, чем в перспективе хаотического бурления Уолл-стрит.

В нашем обсуждении гипотетической игры в balla и воображаемого бейсбольного турнира статистика игр, физические способности и интеллектуальное развитие игроков не имели отношения к делу. Игнорировалась даже сама природа игры. Теоретический подход полностью подменял конкретную информацию.

В реальности фанатики бейсбола, как и брокеры фондовой биржи, собирают массу статистических данных, потому что эта информация необходима им для оценки класса игроков и команд или для оценки будущей прибыльности акций. И даже заключения экспертов с вероятностными оценками конечных результатов, полученные на основе обработки тысяч фактов, и в спорте и в финансах оставляют место сомнениям и неопределенности.

Треугольник Паскаля и все предшествующие работы по теории вероятностей отвечали только на один вопрос: какова вероятность того или иного отдельного события. Ответ на этот вопрос в большинстве случаев имеет ограниченную ценность, поскольку чаще всего он мало что дает для оценки ситуации. Что на деле даст нам знание того, что игрок А имеет 60% шансов победить в отдельной партии в balla? Можно ли на этом основании утверждать, что он способен победить игрока В в 60% партий? Ведь победы в одном турнире недостаточно для этого утверждения. Сколько раз должны сыграть А и В, чтобы мы могли убедиться, что А играет лучше, чем В? Что говорит нам результат бейсбольного турнира этого года о вероятности того, что победившая команда является самой сильной вообще, а не только в этом году? Что говорит высокий процент смертности от рака легких среди курильщиков о вероятности того, что курение раньше срока сведет в могилу именно вас? Свидетельствует ли смерть слона о целесообразности спускаться в бомбоубежище при налетах?

Реальные жизненные ситуации часто требуют от нас определения вероятности вполне определенного исхода на пути заключения от частного к общему. В жизни очень редко встречаются задачи, сводящиеся к чистой игре случая, для которых можно определить вероятность исхода до изучения ряда событий — a priori, как сказал бы Якоб Бернулли. В большинстве случаев мы вынуждены определять вероятности на основе имеющихся данных после ряда происшедших событий — a posteriori. Само понятие a posteriori предполагает эксперимент и измерение степени уверенности. В Москве семь миллионов жителей, но после гибели слона от фашистской бомбы профессор решил, что пришло время спускаться в бомбоубежище.

***

Вклад Якоба Бернулли в решение проблемы определения вероятности на основе информации об ограниченном наборе реальных событий был двояким. С одной стороны, он сформулировал задачу в этом виде в то время, когда никто еще даже не усматривал необходимости ее постановки. С другой — он предложил решение, зависящее только от одного необходимого условия: мы должны предположить, что «при равных условиях наступление (или не наступление) события в будущем будет следовать тем же закономерностям, какие наблюдались в прошлом»[5].

Это допущение чрезвычайно важно. Якоб мог сетовать на то, что в реальной жизни информация очень редко оказывается достаточно полной, чтобы применять простые вероятностные законы для предсказания результатов. Но он признаёт, что оценка вероятностей постфактум также невозможна, пока мы не примем предположения, что прошлое является прообразом будущего. Трудность этого предположения не требует пояснений.

Какие бы данные мы ни отбирали для анализа, прошлое остается лишь фрагментом реальности. Эта фрагментарность играет решающую роль при переходе от ограниченного набора данных к обобщению. Мы никогда не имеем (или не можем позволить себе собрать) всей информации, в которой нуждаемся, чтобы обладать той же уверенностью, с какой без тени сомнения утверждаем, что у игральной кости шесть граней с нанесенными на каждую разными цифрами или что у колеса европейской рулетки 37 лунок (у американской 38) с разными числами против каждой. Реальность представляет собой серию взаимосвязанных событий, зависимых друг от друга, и принципиально отличается от случайных игр, в которых результат каждой отдельной игры не влияет на результат последующей. В случайных играх все сводится к определенным числам, а в реальной жизни мы чаще используем приблизительные оценки — «мало», «много» или «не очень много», а не точные количественные величины.

Якоб Бернулли невольно определил содержание оставшейся части моей книги. С этого момента разговор об управлении риском будет сводиться к использованию трех его основополагающих предположений — полнота информации, независимость испытаний и надежность количественных оценок. В каждом отдельном случае вопрос о правомерности этих предположений является главным для решения вопроса о том, насколько успешно мы можем использовать измерения и информацию для прогнозирования будущего. По существу, эти предположения определяют наш взгляд на прошлое: можем ли мы объяснить происшедшее, или при описании события следует прибегнуть к понятию чистой случайности (что, иначе говоря, означало бы, что мы не имеем объяснения)?

***

Несмотря на все трудности, нам приходится иногда осознанно, чаще неосознанно предполагать, что перечисленные Якобом необходимые условия выполняются, даже если нам достаточно хорошо известны отличия реальности от идеального случая. Наши ответы могут быть неточными, но описанная в этой главе методология, разработанная Якобом Бернулли и другими математиками, просто принуждает нас заняться определением вероятности будущих событий на основе ограниченных наборов данных о прошлых событиях.

Теорема Якоба Бернулли о вычислении вероятности a postetiori известна как закон больших чисел. Вопреки распространенной точке зрения этот закон не дает метода оценки наблюдаемых фактов, которые являются лишь несовершенным отображением явления в целом. Не следует из него и утверждение, будто увеличение числа наблюдений влечет за собой возрастание вероятности совпадения того, что мы видим, с тем, что мы исследуем. Закон не является и средством улучшения качества тестов: Якоб не забыл замечание Лейбница и отверг свои первоначальные идеи о поиске четких ответов на основе эмпирических тестов.

Якоба интересовало другое определение вероятности. Предположим, вы подбрасываете монету. Закон больших чисел не утверждает, что среднее число выпадений орла будет приближаться к 50% при увеличении числа бросков; простые вычисления дадут вам этот ответ и избавят от утомительного подбрасывания монеты. Закон, скорее, утверждает, что при увеличении числа бросков будет возрастать вероятность того, что процент появлений орла в общем числе бросков будет отличаться от 50% на величину, меньшую сколь угодно малой заданной величины. В слове «отличаться» все дело. Речь идет не об истинности значения 50%, а о вероятности того, что отклонение наблюдаемого среднего значения вероятности от расчетного будет меньше, чем, скажем, 2%, — другими словами, что с увеличением числа бросков эта вероятность будет возрастать.

Это не означает, что при бесконечном числе бросков отклонений не будет; Якоб явным образом исключает этот случай. Не означает это и того, что отклонение будет с необходимостью становиться пренебрежимо малым. Закон лишь утверждает, что среднее значение при большом числе бросков будет с большей, чем при малом числе бросков, вероятностью отличаться от истинного среднего на величину, меньшую наперед заданной. Но всегда останется возможность того, что наблюдаемый результат будет отличаться от истинного среднего на величину, большую некоей заданной. Семи миллионов жителей Москвы оказалось недостаточно для профессора статистики.

Закон больших чисел не надо путать с законом о среднем. Математики говорят нам, что вероятность выпадения орла при одном бросании монеты составляет 50%, — но результат каждого броска не зависит от всех остальных. Он не зависит от результата предшествующих бросков и не влияет на результаты последующих. Следовательно, закон больших чисел не утверждает, что вероятность выпадения орла для отдельного броска станет выше 50%, если в первых ста или миллионе бросков только в 40% случаев выпал орел. Закон больших чисел отнюдь не обещает, что вы отыграетесь после серии проигрышей.

Для иллюстрации закона больших чисел Якоб предложил мысленный эксперимент с кувшином, наполненным 3000 белых камешков и 2000 черных, ставший с тех пор очень популярным среди специалистов по теории вероятностей и авторов математических головоломок. Он оговаривает, что нам должно быть неизвестно, сколько камешков каждого цвета в кувшине. Мы по одному вынимаем камешки из кувшина, фиксируем цвет каждого из них и возвращаем обратно в кувшин. Из факта, что по мере возрастания числа обследованных таким образом камешков мы получаем «практическую достоверность» (moral certainty) — имеется в виду достоверность в обыденном смысле слова, а не абсолютная достоверность — того, что число белых и число черных камешков будут соотноситься как 3:2, Якоб заключает, что «мы можем определить это соотношение a posteriori с почти той же точностью, как если бы оно было известно нам a priori»[6]. Его расчеты показывают, что 25 550-кратного вытаскивания камешков из кувшина будет достаточно, чтобы с вероятностью, превышающей 1000/1001, утверждать, что результат будет 3/2 с точностью 2%. Это и есть ваша практическая достоверность.

Якоб не использует выражение «практическая достоверность» необдуманно. Оно покоится на его определении вероятности, позаимствованном из одной ранней работы Лейбница. «Вероятность, — утверждает он, — это степень достоверности и отличается от абсолютной достоверности как часть отличается от целого»[7].

Но Якоб идет дальше Лейбница в обсуждении того, что означает понятие «достоверность». Наше индивидуальное суждение о достоверности — вот что привлекает внимание Якоба: условие практической достоверности имеет место, если мы почти абсолютно убеждены в верности суждения. Когда Лейбниц вводил это понятие, он определил его как «бесконечную вероятность». Сам Якоб удовлетворяется вероятностью 1000/1001, но он хочет подстраховаться: «Было бы полезным, если бы должностные лица установили пределы практической достоверности»[8].

***

Якоб торжествует. Отныне, утверждает он, мы можем делать предсказания о любых неопределенных величинах с той же степенью научной обоснованности, как и предсказания в случайных играх. Он перевел вероятность из сферы теории в мир реальности:

«Если вместо кувшина мы обратимся, например, к атмосфере или человеческому телу, в котором таится множество самых разных процессов или болезней, как камешков в кувшине, то на основе наблюдений мы сможем определить, насколько наступление одного события более вероятно, чем наступление другого»[9]

Однако, как оказалось, с кувшином у Якоба не обошлось без хлопот. Расчет, показавший необходимость 25 550 испытаний для получения практической достоверности, должен был ужаснуть его неприемлемой величиной этого числа; в те времена население его родного города Базеля было меньше 25 550 человек. Судя по тому, что именно на этом месте его книга обрывается, можно предположить, что он растерялся и не знал, как быть дальше. Приходилось делать вывод, что трудно найти в реальной жизни случаи, в которых все наблюдения удовлетворяли бы требованию независимости друг от друга:

«Таким образом, если все события вечно повторяются, приходится признать, что всё в мире происходит по определенным причинам в соответствии с определенными правилами, и мы вынуждены предположить относительно наиболее явно случайных вещей наличие некоей необходимости, или, иначе говоря, РОКА»[10]

Тем не менее его кувшин с камешками заслужил бессмертие. Эти камешки стали инструментом в первой попытке измерить неопределенность — точнее, определить ее — и вычислить вероятность того, что эмпирически определенное значение случайной величины близко к истинному, даже если истинное значение неизвестно.

***

Якоб Бернулли умер в 1705 году. Его племянник Николай — Николай Медлительный — продолжил исследования дяди, связанные с определением вероятностей на основе наблюдений, одновременно медленно, но верно завершая подготовку к изданию «Ars Conjectandi». Его результаты были опубликованы в том же 1713 году, в котором наконец вышла в свет книга Якоба.

Якоб для начала задает вероятность того, что отклонение наблюдаемого значения от истинного окажется в некоем определенном интервале, а затем вычисляет число наблюдений, необходимое для получения именно этого заданного значения. Николай поставил перед собой обратную задачу. Считая число наблюдений заданным, он вычислял вероятность того, что отклонение наблюдаемого среднего от истинного окажется в заданных пределах. Он использовал пример, в котором предполагал, что отношение числа рождающихся мальчиков к числу рождающихся девочек равно 18:17. Если общее число рождений составляет, скажем, 14000, ожидаемое число рождений мальчиков должно быть 7200. Затем он рассчитал, что с шансами по меньшей мере 43,58 к 1 действительное число родившихся мальчиков окажется в интервале 7200 + 163 и 7200 - 163, то есть между 7363 и 7037.

В 1718 году Николай предложил французскому математику Абрахаму де Муавру присоединиться к его исследованиям, но де Муавр отверг это предложение: «Я хотел бы оказаться способным... применить теорию случайностей (Doctrine of Chances) к решению экономических и политических задач, [но] с готовностью передаю мою часть работы в лучшие руки».[11] Из этого ответа де Муавра Николаю следует, что исследования по использованию вероятности и прогнозированию быстро продвигались вперед.

Де Муавр родился в 1667 году — через 13 лет после Якоба Бернулли — в протестантской семье во Франции, в обстановке возрастающей враждебности ко всем некатоликам.[12] В 1685 году, когда ему было 18 лет, король Людовик XIV отменил Нантский эдикт, провозглашенный в 1598 году родившимся в протестантской вере королем Генрихом IV и предоставивший протестантам, называемым гугенотами, равные политические права с католиками. После отмены эдикта исповедование реформатской религии было запрещено, дети гугенотов должны были воспитываться в католической вере, эмиграцию запретили. Де Муавр свыше двух лет провел в тюрьме за свои религиозные убеждения. Ненавидя Францию и все с нею связанное, он в 1688 году бежал в Лондон, где Славная революция как раз покончила с остатками государственного католицизма. На родину он так и не вернулся.

В Англии де Муавр вел печальную и неустроенную жизнь. Несмотря на все усилия, ему не удалось добиться приличной академической должности. Он зарабатывал на жизнь уроками математики и консультациями по применению теории вероятностей для игроков и страховых брокеров. С этой целью он держал неофициальную приемную в кофейне Слайтера, что на улице Святого Мартина, где большей частью и проводил остаток дня по окончании занятий с учениками. Хотя он был другом Ньютона и стал членом Королевского общества уже в тридцать лет, он так и остался едким, ушедшим в себя, асоциальным человеком. Умер он в 1754 году в бедности и слепоте в возрасте 87-ми лет.

В 1725 году де Муавр опубликовал работу, озаглавленную «Пожизненная рента» («Annuities upon Lives»), с анализом таблиц Галлея о продолжительности жизни и смертности в Бреслау. Хотя книга посвящена главным образом научным проблемам, в ней обсуждаются многие вопросы, относящиеся к головоломкам, которые пытались решить Бернулли и которые позднее де Муавр детально исследовал.

Историк статистики Стивен Стиглер (Stigler) приводит интересный пример, рассмотренный в работе де Муавра о ренте. Таблицы Галлея свидетельствовали, что в Бреслау из 346 человек пятидесятилетнего возраста только 142, то есть 41%, дожили до семидесяти лет. Это очень маленькая выборка. В какой мере можно использовать этот результат для выводов об ожидаемой продолжительности жизни пятидесятилетних? Де Муавр не мог использовать эти числа для определения вероятности того, что человек в возрасте пятидесяти лет имеет меньше 50% шансов дожить до семидесяти, но он мог бы ответить вот на какой вопрос: «Если в действительности шансы равны, какова вероятность того, что выборка покажет величину не более 142/346

Первая прямо посвященная теории вероятностей работа де Муавра озаглавлена «De Mensura Sortis» (буквально «Об измерении случайных величин»). Работа была впервые опубликована в 1711 году в журнале Королевского общества «Philosophical Transactions». В 1718 году де Муавр предпринял значительно расширенное издание этой работы на английском языке, озаглавленное «Теория случайностей» («The Doctrine of Chances»), с посвящением своему близкому другу Исааку Ньютону. Книга имела огромный успех и выдержала еще два издания в 1738-м и 1756 годах. Работа, видимо, произвела сильное впечатление на Ньютона, который при случае говорил своим студентам: «Обратитесь к мистеру де Муавру, он знает эти вещи лучше меня». «De Mensura Sortis», по-видимому, первая работа, в которой риск определен как шанс проигрыша: «Риск проиграть некую сумму обратен ожиданию выигрыша, и истинной мерой его является произведение поставленной на кон суммы на вероятность проигрыша».

В 1730 году де Муавр в конце концов обратился к предложенной Николаем Бернулли теме — насколько хорошо реальная выборка отображает свойства совокупности, на основе которой она построена. В 1733 году он опубликовал полное решение задачи и включил его во второе и третье издания «Теории случайностей». Он начинает с признания, что Якоб и Николай Бернулли «показали очень большое искусство... Однако некоторые вещи нуждаются в дальнейшей разработке». В частности, подход обоих Бернулли «представляется настолько трудоемким и связан с такими сложностями, что до сих пор мало кто соглашался их преодолевать».

Действительно, необходимость проведения 25 550 испытаний делала решение задачи практически неосуществимым. Даже если бы, как утверждал Джеймс Ньюмен, Якоб Бернулли в приведенном им примере был бы готов удовлетвориться «практической достоверностью», не большей, чем в пари с равными шансами, — вероятностью 50/100 того, что результат будет с точностью до 2% равен 3/2, — и то понадобилось бы 8 400 испытаний. По нынешним стандартам требование Якобом вероятности 1000/1001 курьезно само по себе. Сегодня большинство статистиков принимают несовпадение не более чем в 1 из 20 случаев как основание признания значимости (так сегодня называют практическую достоверность) результата с более чем достаточной степенью вероятности.

Достижения де Муавра в решении этой проблемы стоят в ряду наиболее важных математических открытий. Используя вычисления и основные свойства треугольника Паскаля, составляющие содержание биномиальной теоремы, де Муавр демонстрирует, как ряд случайных испытаний, подобных опытам Бернулли с кувшином, приводит к распределению результата вокруг среднего значения. К примеру, предположим, вы вытащили сто камешков подряд из кувшина Якоба, каждый раз возвращая камешек в кувшин и фиксируя отношение числа черных и белых камешков. Теперь предположим, вы выполнили серию таких опытов по сто испытаний в каждом. Де Муавр смог бы заранее приблизительно сказать вам, сколько из этих отношений будут близки к среднему отношению в суммарном числе испытаний и как эти отдельные отношения будут распределены относительно этого среднего.

Распределение де Муавра ныне известно как нормальная, или, в соответствии с ее формой, колоколообразная кривая. Эта кривая показывает, что наибольшее число наблюдений группируется в центре, вблизи среднего значения, вычисленного для суммарного числа наблюдений. Она симметрично спускается по обе стороны от среднего значения, вблизи его круто, а затем все более полого. Другими словами, результаты наблюдений, далекие от среднего значения, менее вероятны, чем близкие к нему.

Форма кривой де Муавра позволила ему вычислить статистическую меру ее дисперсии относительно среднего значения. Эта мера, известная как стандартное или среднее квадратичное отклонение{*1}, чрезвычайно важна для решения вопроса о том, включает ли в себя совокупность наблюдений достаточно репрезентативную для изучаемой совокупности выборку. В нормальном распределении приблизительно 68% результатов наблюдений оказываются в пределах одного среднего квадратичного отклонения от среднего значения и 98% — в пределах двух средних квадратичных отклонений.

Среднее квадратичное отклонение может сказать нам, не имеем ли мы дело со случаем «голова-в-духовке-ноги-в-холодильнике», когда любые рассуждения о среднем являются бессмысленными. Среднее квадратичное отклонение может также сказать нам, что 25 550 манипуляций с камешками Якоба позволяют весьма точно оценить соотношение числа черных и белых камешков в кувшине, поскольку относительно малое число наблюдений будет сильно отличаться от среднего значения.

Де Муавр был поражен закономерностью, которая проявлялась с увеличением числа случайных и независимых наблюдений; он относил эту упорядоченность к предписаниям Всемогущего. Это приводит к мысли, что при правильно выбранных условиях измерения можно в самом деле преодолеть неопределенность и приручить риск. Используя курсив, чтобы подчеркнуть значение сказанного, де Муавр так подытожил свои исследования:

«Случай порождает Отклонения от закономерности, однако бесконечно велики Шансы, что с течением Времени эти Отклонения окажутся пренебрежимо ничтожными относительно повторяемости того Порядка, который естественным образом является результатом БОЖЕСТВЕННОГО ПРЕДНАЧЕРТАНИЯ».[13]

***

Вкладом де Муавра в математику был инструмент, который сделал возможной оценку вероятности того, что заданное число наблюдений попадет в некоторую область вокруг истинного отношения. Этот результат нашел широкое практическое применение.

Например, все производители опасаются того, что результатом сборки может оказаться бракованная продукция, которая дойдет до потребителей. Стопроцентное качество в большинстве случаев практически невозможно — наш мир, похоже, непоправимо враждебен совершенству.

Представьте себе директора булавочной фабрики, который старается добиться, чтобы бракованные булавки встречались не чаще, чем в 10 случаях из 100 000, то есть чтобы брак составлял не более 0,01% от объема производства[14]. Для контроля дел он проводит обследование произвольной выборки из 100 000 сошедших с конвейера булавок и выясняет, что у 12 нет головок — на 2 больше, чем он надеялся получить в среднем по всей производимой продукции. Насколько значима эта разница? Какова вероятность найти 12 бракованных булавок из выборки объемом в 100 000, если средний процент брака составляет 10 бракованных булавок на каждый 1 000 000? Нормальное распределение и среднее квадратичное отклонение де Муавра дают ответ на этот вопрос.

Но обычно вопрос ставится по-иному. Чаще никто точно не знает, сколько именно бракованных изделий в среднем выпускает фабрика. Вопреки благим намерениям действительная доля брака может оказаться в среднем выше, чем 10 из 100000. Что скажет выборка из 100000 булавок о вероятности того, что для всей выпускаемой продукции брак в среднем составляет 0,01%? Насколько более точные сведения можно получить из выборки объемом в 200 000 булавок? Какова вероятность того, что процент брака окажется в пределах от 0,009% до 0,011%? А в пределах от 0,007% до 0,013%? Какова вероятность того, что одна наугад взятая булавка окажется бракованной?

Здесь исходными данными являются 10 булавок, 12 булавок, 1 булавка, а вероятность оказывается искомой величиной. В такой постановке задача сводится к вычислению так называемой обратной вероятности: какова вероятность того, что по всей произведенной продукции брак составляет в среднем 0,01%, если в выборке из 100000 булавок оказалось 12 бракованных?

***

Одно из наиболее эффективных решений этой задачи было предложено пастором Томасом Байесом, который родился в 1701 году и жил в Кенте[15]. Байес был нонконформистом. Он отвергал большинство обрядов англиканской церкви, перенятых ею от католической после отделения от Рима во время правления Генриха VIII.

Хоть Байес и был членом Королевского общества, известно о нем немного. В одном довольно скучном и безликом учебнике статистики он характеризуется как «загадочная личность»[16]. При жизни он не издал ни одного сочинения по математике и оставил только две работы, которые были опубликованы после его смерти, но не смогли обратить на себя должного внимания.

Тем не менее одна из этих работ, «О решении проблемы в теории случайностей» («Essay towards Solving a Problem in the Doctrine of Chances»), оказалась замечательно оригинальным произведением, которое обессмертило имя Байеса среди статистиков, экономистов и других представителей социальных наук. В нем заложены основы современных методов статистического анализа, начало работы над которыми было положено трудами Якоба Бернулли.

После смерти Байеса в 1761 году, согласно составленному за год до того завещанию, рукопись этой работы и сто фунтов стерлингов достались «Ричарду Прайсу, в настоящее время, как я полагаю, пастору в Ньюингтон-Грин»[17]. Любопытно, что у Байеса были столь неверные сведения о Прайсе, фигуре тогда намного более важной, чем простой священник в маленьком городке графства Кент.

Ричард Прайс был человеком высоких нравственных принципов, страстным поборником свободы вообще и свободы вероисповедания в частности. Он был убежден, что свобода дана человеку Богом и поэтому является непременным условием нравственного поведения, и утверждал, что лучше быть свободным грешником, чем рабом. В 1780 году он написал книгу об американской революции с чрезвычайно длинным названием: «Соображения о значении американской революции и путях превращения ее во всемирное благо» («Observations on the Importance of the American Revolution and the Means of Making it a Benefit to the World»), в которой выразил свою веру в то, что революция была предначертана Богом. Рискуя собой, он заботился о перемещенных в Англию американских военнопленных. Он был другом Бенджамина Франклина и хорошо знал Адама Смита. Смит отсылал Франклину и Прайсу некоторые главы книги «О богатстве народов» («The Wealth of Nations») для чтения и критических замечаний.

Одна разновидность свободы беспокоила Прайса: свобода заимствования. Он был глубоко озабочен величиной национального долга Британии, выросшего в результате войн с Францией и с колонистами Северной Америки. Он сетовал по поводу непрекращающегося накопления государственного долга и называл его «величайшим национальным злом»[18].

Но Прайс был не просто священником и страстным поборником свободы. Он известен также как математик, который за работы в области теории вероятностей был принят в члены Королевского общества.

В 1765 году три человека из страховой компании, носящей название «Общество справедливости» (Equitable Society), пригласили Прайса помочь им в составлении таблиц смертности, на основе которых должны были определяться размеры сборов при страховании жизни и продаже пожизненной ренты. После изучения среди прочих трудов Галлея и де Муавра Прайс опубликовал по этому вопросу две статьи в «Philosophical Transactions»; его биограф Карл Кон сообщает, что голова Прайса поседела за одну ночь от напряжения при работе над второй из этих статей.

Прайс начал с изучения записей в лондонских регистрационных книгах, но математическое ожидание продолжительности жизни, получаемое на основе этих записей, оказалось значительно ниже имевшихся данных о смертности[19]. Тогда он обратился в графство Нортгемптон, где записи велись более аккуратно, чем в Лондоне. Он опубликовал результаты своих изысканий в 1771 году в книге, озаглавленной «Заметки о страховых выплатах» («Observations on Reversionary Payments»), которая оставалась катехизисом страховщиков до конца XIX столетия. Эта работа принесла ему славу основоположника страховой статистики как комплекса вероятностных методов, применяемых ныне всеми страховыми компаниями в качестве основы исчисления сборов и выплат.

Однако в работе Прайса были серьезные, весьма дорогостоящие ошибки, частично обусловленные погрешностями исходных данных, которые не охватывали большое число незарегистрированных рождений. Более того, он завысил коэффициенты смертности для ранних возрастов и занизил их для старших, а его оценки величины миграции населения в Нортгемптон и из него оказались неточными. Наиболее серьезные последствия имело занижение ожидаемой продолжительности жизни, что привело к значительному завышению сборов при страховании жизни. «Общество справедливости» обогатилось на этой ошибке, а британское правительство, использовавшее те же таблицы для определения выплат покупателям пожизненной ренты, понесло значительные убытки[20].

***

Через два года после смерти Байеса Прайс послал копию его «очень остроумной» работы некоему Джону Кантону, другому члену Королевского общества, с сопроводительным письмом, дающим представление о намерениях, с которыми Байес ее писал. Впоследствии в 1764 году Королевское общество опубликовало ее в «Philosophical Transactions», но и это не помешало новаторской работе Байеса прозябать в безвестности в течение двадцати лет.

Здесь приводится постановка Байесом задачи, которую он пытался решить:

ЗАДАЧА

Дано: число случаев [в выборке], в которых некое событие наступило, и число случаев, в которых оно не наступило.

Требуется определить: вероятность того, что вероятность наступления события в одном испытании [в генеральной совокупности] находится в некоем заданном интервале значений[21].

Поставленная здесь задача в точности обратна задаче, поставленной Якобом Бернулли примерно шестьюдесятью годами ранее (с. 136). Байес задается вопросом, как определить вероятность того, что событие будет иметь место, при том что мы знаем только, что оно в определенном числе случаев наступило и в некоем другом числе случаев не наступило. Другими словами, булавка может оказаться бракованной или качественной. Если мы обнаружим десять бракованных булавок в выборке из ста, какова вероятность, что во всей совокупности булавок — не только в выборке из ста — процент брака окажется в интервале между 9 и 11%?

Сопроводительное письмо Прайса Кантону показывает, как далеко за одно столетие продвинулся анализ вероятности в практике принятия решений. «Каждый здравомыслящий человек, — пишет Прайс, — поймет, что поставленная здесь задача ни в коем случае не является простым упражнением в области теории случайностей, но требует решения в целях построения прочного основания для всех наших суждений относительно предыдущих событий и выяснения вероятности последующих»[22]. Он далее указывает, что ни Якоб Бернулли, ни де Муавр не поставили вопрос именно таким образом, хотя де Муавр и охарактеризовал трудности в получении своего собственного решения как «наибольшие из всех, какие можно ожидать в теории случайностей ».

Для доказательства своей точки зрения Байес использовал не очень подходящий для диссидентствующего священника пример — бильярд. Запущенный по бильярдному столу шар где-то останавливается и остается на месте. Затем другой шар многократно запускается таким же образом, и подсчитывается число случаев, когда он останавливается справа от первого. Это «число случаев, когда неопределенное событие наступило», — успех. Неуспех — это число случаев, когда событие не наступило, то есть шар оказался слева от первого. Вероятность местонахождения первого шара — единичное испытание — следует вывести из «успеха» или «неуспеха» второго[23].

Важнейшее применение подхода Байеса заключается в использовании новой информации для уточнения вероятности, основанной на старой информации, или, пользуясь языком статистики, сравнении апостериорной вероятности с априорной. В случае с бильярдными шарами положение первого шара представляет собой априорную, а многократные оценки его местонахождения повторяющимися запусками второго шара — апостериорную вероятность.

Процедура пересмотра выводов относительно старой информации по мере получения новой имеет источником философскую точку зрения, делающую достижения Байеса чрезвычайно современными: в динамичном мире в условиях неопределенности нет однозначных ответов. Математик А. Ф. М. Смит (Smith) это очень хорошо сформулировал: «Каждая попытка научно обосновать ответы, возникающие в ситуации сложной неопределенности, является, на мой вкус, тоталитарной пародией на считающийся разумным процесс познания»[24].

Хотя из-за сложности байесовского подхода детальное рассмотрение его здесь неуместно, пример типичного применения его приведен в конце этой главы.

***

Важнейшей отличительной особенностью всех описанных в этой главе научных достижений является смелая мысль, что неопределенность может быть измерена. Неопределенность означает, что значение вероятности неизвестно; перефразируя высказывание Хакинга об определенности, можно сказать, что нечто является неопределенным, если наша информация верна, а событие не происходит или если наша информация неверна, а событие происходит.

Якоб Бернулли, Абрахам де Муавр и Томас Байес показали, как вычислять величину вероятности на основании эмпирических фактов. В этих достижениях впечатляют живость ума, проявленная в постановке вопросов, и смелость, с которой он дерзко атакует неизвестное. Де Муавр не скрывал восхищенного удивления перед собственными результатами, когда сослался на БОЖЕСТВЕННОЕ ПРЕДНАЧЕРТАНИЕ. Он любил такого рода выражения. В другом месте у него читаем:

«Если бы мы не ослепляли себя метафизической пылью, то могли бы коротким и очевидным путем прийти к познанию великого СОЗДАТЕЛЯ и ВСЕДЕРЖИТЕЛЯ всего сущего»[25].

Мы уже основательно углубились в XVIII столетие, когда англичане считали познание высшей формой человеческой деятельности. Это действительно было время, когда ученые стряхнули со своих глаз метафизическую пыль. Не было больше препятствий для исследования непознанного и созидания нового. Огромные успехи в освоении природы риска, достигнутые до 1800 года, дали мощный толчок науке наступающего столетия, и в Викторианскую эпоху исследования в этом направлении получили дальнейшее развитие.

Приложение
Пример практического применения Байесова подхода к статистическим задачам

Обратимся вновь к булавочной компании. Компания имеет две фабрики, причем старая выпускает 40% продукции. Это означает, что взятая наугад булавка, бракованная или нет, с вероятностью 40% выпущена на старой фабрике; это исходная вероятность. Известно, что на старой фабрике процент брака вдвое больше, чем на новой. Если клиент звонит и сообщает о купленной им бракованной булавке, на какую из двух фабрик должен звонить менеджер по сбыту?

Исходная вероятность побуждает утверждать, что, скорее всего, бракованная булавка сделана на новой фабрике, выпускающей 60% продукции компании. С другой стороны, частота появления брака на этой фабрике вдвое меньше, чем на старой. Пересмотрев исходную вероятность с учетом этой дополнительной информации, получаем, что вероятность выпуска бракованной булавки новой фабрикой равна только 42,8%; это значит, что с вероятностью 57,2% виновата старая фабрика. Эта новая оценка становится апостериорной вероятностью.

Глава 8

Предельный закон хаоса

Страницы: «« 12345678 ... »»

Читать бесплатно другие книги:

Перед вами – яркий и необычный политический портрет одного из крупнейших в мире государственных деят...
Первый роман знаменитого кинорежиссера Дэвида Кроненберга доказал, что читателя он умеет держать в н...
Вашему вниманию предлагается уникальное издание – последний цикл бесед Ошо, своеобразное духовное за...
В ноябре 1969 года на ледяной остров, дрейфующий на севере Восточно-Сибирского моря, была высажена г...
В сборник вошли шесть повестей разных лет – от почти правдоподобных и трагических («Малахитовый беге...
Каждый человек наделен природой неисчерпаемыми способностями. Одной из них является возможность само...