Занимательная электроника. Нешаблонная энциклопедия полезных схем Кашкаров Андрей
К читателю
Монтировать, обслуживать и эксплуатировать устройства, рассмотренные в этой книге, могут ответственные радиолюбители. Это лица, ознакомленные со всеми предупреждениями и замечаниями по безопасности, а также эксплуатационными и монтажными процедурами, изложенными в соответствующих инструкциях по охране труда и наставлениях (руководствах) по электробезопасности:
• лица, прошедшие обучение и получившие полномочия на монтаж, обслуживание и эксплуатацию электро– и радиооборудования с учетом требований правил техники безопасности;
• лица, прошедшие обучение и способные использовать все необходимые защитные средства;
• лица, прошедшие обучение и способные оказать пострадавшим от электрического тока первую (доврачебную) медицинскую помощь.
Надежная и безопасная работа рекомендуемых в книге устройств зависит от исправности радиокомпонентов, грамотной сборки, соблюдения правил выполнения монтажа (особенно в устройствах, где применяются полевые транзисторы с управляющим напряжением) и своевременного технического обслуживания (регламента) электронных устройств и систем.
Чтобы рекомендованные в книге устройства служили долго, необходимо соблюдать указания по технике безопасности.
Во избежание опасности возгорания и поражения электрическим током перед первым включением электрических устройств, питающихся от напряжения 220 В осветительной сети, а также после замены деталей, необходимо при отключенном напряжении внимательно осмотреть монтажную плату с элементами, проверить правильность соединений (в соответствии с электрической схемой).
Подавать питание можно только после того, как удостоверитесь в правильности монтажа. Все устройства и узлы, рекомендованные читателям в этой книге, проверены автором на полное соответствие стандартам безопасности.
Автор не несет ответственности за повреждения устройств и травмы, полученные вследствие неправильной эксплуатации рекомендованных конструкций.
Информация, включенная в данную книгу, является собственностью автора и не может копироваться или тиражироваться любыми способами, любыми лицами и организациями без письменного разрешения автора и издателя, с которым заключен авторский договор.
Автор оставляет за собой право совершенствовать приведенные в книге радиоэлектронные устройства и узлы, внося в них изменения и дополнения, не ухудшающие их эксплуатационные характеристики без предварительного уведомления читателей.
Автор (и издатель) не несут ответственности за любые убытки, как единовременные, так и последующие, вызванные наличием ошибок в монтаже, включая типографские, электронные, арифметические и другие ошибки.
Вместо предисловия
Любое препятствие преодолевает настойчивость.
Леонардо да Винчи
В 2013 году именно для радиолюбителей издано много новых книг. Чтобы убедиться в этом, достаточно посетить любой магазин радиоэлементов, имеющий книжный отдел. С чем это связвно в век, казалось бы, передовых, прогрессивных технологий, которые динамично совершенствуются?
Разберемся подробнее. Современная техника немыслима без электроники. Электронные системы управляют самолетами, ракетами, помогают врачам ставить диагнозы и лечить людей. Без электроники не обходятся не промышленность, ни транспорт. Связь стопроцентно построена на электронике. Свой быт многие из нас также не мыслят без нее. Электроника и радиотехника в последние годы прогрессируют. Только ленивый может этого не заметить: компьютеры и мобильные телефоны – лишь вершина айсберга широкого потребления людьми радиотехнических и электронных возможностей.
На фоне увеличившейся доступности компьютеров для населения (не за горами то время, когда в России компьютер будет в каждой семье, желающей его иметь) можно с уверенностью предположить, что электроника как увлечение приобрела массовых поклонников в среде молодежи. А между тем объем накопленных радиолюбителями опытных знаний и разработок, улучшающих бытовые условия, двигающих прогресс вперед, еще долго не будет исчерпан. Возросли возможности публикации интересного материала и ознакомления с ним, даже не выходя из дома, используя Интернет.
Вот приближается робкий читатель с вопросом: «А мне можно добиться успеха, как вы думаете?» Можно, всем можно.
Однако следует помнить об охраняемой законом интеллектуальной собственности на изобретения, которая в Интернете практически не защищена.
Но множество полезных изобретений до сих пор не представлены миру. Недавно я ознакомился с прекрасной разработкой дипломированного автора из Латвии «Датчик дождя» для автомобильной техники. Причина того, что разработка не известна широкому кругу радиолюбителей, в том, что автор более года ведет переговоры о внедрении ее в массовое производство на российских автомобилях. Пока идут переговоры, которым не видно конца, интеллектуальная ценность теряет свою актуальность. Этот пример лишний раз свидетельствует о том, что очень много ценного для массового радиолюбителя материала пропадает в закромах наших Кулибиных. В этой книге я попытался восполнить пробел и предложил вниманию читателей свой вариант датчика дождя, однако, чтобы выбрать лучшее, нужно знать разное. Растет новое поколение молодых увлеченных радиолюбителей, которое уже теснит старых и опытных мастеров. Авторские статьи в журналах по радиотехнике заметно помолодели без потери их качества. Новейшие разработки электронных схем сочетают в себе узлы на микропроцессорах с силовыми ключевыми каскадами на мощных полупроводниках и микросхемах.
Эта книга – в помощь радиолюбителям, делающим самостоятельные шаги в электронике, имеет целью развить их творчество, подать импульс для новых разработок и усовершенствовать старые конструкции. Для успешной творческой деятельности не нужно много условий и правил. Достаточно придерживаться общепринятых понятий.
Сделанное хорошо остается на века. Сделанное быстро так же быстро и разрушается. Радиолюбителю, понятно, хочется поскорее сделать монтаж, подключить питание и… Хочется быстро, а не нужно быстро, нужно хорошо.
В качестве ситуации, в которой находится каждый из нас, приведу такую картинку. Вы идете за грибами по хорошей дороге и начинаете замечать на обочине грибы. У вас есть выбор – идти дальше, где грибы крупнее и их намного больше, или начинать собирать у дороги. Но если вы начнете собирать, то потеряете время и не дойдете до грибного места, куда дойдут другие.
На другом конце этой дороги грибы уже размером с театральную тумбу, и рядом бесплатно предоставляются машины для доставки грибов.
1. Поэтому первая идея, которую хочу подарить вам, дорогие читатели – не торопитесь. Занимайтесь творчеством целеустремленно, чтобы до минимума сократить раздражающие внешние воздействия. Когда человек торопится, мысли скачут словно белки. И ни одна не додумывается до конца. Всему есть время и место. «Сделанное наспех – редко хорошо сделано» (Сократ).
Что можно посоветовать радиолюбителю, чтобы не наступать на «проверенные грабли» своих коллег?
2. Желательно иметь пример. Пример человека, который намного опытнее вас и у которого вы смогли бы учиться, наблюдая и впитывая его творчество. Не нужно вычленять какие-то отдельные приемы, попробуйте почувствовать этого человека.
Чем больше разница между ним и вами – тем быстрее вы будете учиться. Учиться у того, кто не сильнее вас, бесполезно и бесполезно копировать слабых людей.
Где найти такого человека? Молодым радиолюбителям, увлеченным подросткам я бы рекомендовал отыскать такого наставника в межшкольных учебно-производственных комбинатах, работающих на факультативной основе, состоящих из мастеров на все руки, оборудованных лабораториями и хорошей базой радиоэлементов. Как правило, над такими факультативами шефствуют ведущие предприятия электронной промышленности региона.
Это совсем не обязательно человек, занимающий высокое положение. Но это обязательно несуетливый человек и человек, который пользуется авторитетом у своих знакомых и коллег по радиоделу. Мастерство незаметно, хорошо видна тяжелая работа.
В его присутствии начинаешь испытывать покой и уверенность в правильности выбранного пути. Можно сказать, что это мудрый человек, но трудно описать, как выглядит мудрость. Если вам удастся найти такого человека, постарайтесь просто проводить рядом побольше времени, перенимая опыт. В мегаполисах с интегрированной и развитой инфраструктурой нет для того препятствий, в регионах, пока, к сожалению, дела обстоят чуть хуже. Но и здесь заметны прогрессирующие изменения.
Учебные заведения сегодня уже оборудованы компьютерными классами, и учет всех документов обеспечен в электронном виде. Десятилетия назад, когда я и мои коллеги клепали «Синклеры», с благоговением смотрели на подержанный компьютер фирмы «Apple» и модели IBM PC 286 казались верхом интеграции, мы только мечтали о грядущей массовой компьютеризации населения. Теперь она реальность и что же мы видим?
Повальное увлечение молодежи играми и использование практически неограниченных ресурсов Интернета невольно притупляют личностные творческие способности. Зачем что-то придумывать, если можно воспользоваться результатами уже кем-то придуманного и проверенного временем?
На этот вопрос постарайтесь ответить себе сами.
Я же полагаю, что творчество – это путь к самосовершенствованию, индивидуальности и знанию.
3. Третья идея – развивайте свое индивидуальное творчество, набирайтесь опыта. Личное развитие – самое эффективный путь, выгоднее продажи наркотиков и оружия. Но очень сильно искушение остановиться. Вы спросите: а пока я буду заниматься радиотехникой, имея ее как хобби, кто меня будет кормить? Никто. Не нужно крайностей. Сейчас речь идет о приоритетах. Если вы каждую ситуацию рассматриваете не как способ заработать, а как возможность развиваться, как опыт, то делаете вы то же самое, но ваше умение и знания растут. Почему, например, изобретатели редко применяют свой талант для продажи собственных изобретений? Я думаю, причин несколько.
Первое – недостаточная уверенность в себе, проявляющаяся хотя бы в скромной оценке собственных способностей. Второе – это отсутствие рекламных ходов. Третье и главное объясняет американская поговорка: «Кто придумал, получает 1 доллар, кто произвел – 10, тот, кто продал, – 100».
4. Не бойтесь ошибок, в творческом процессе они неизбежны. Ошибки дают ценную информацию, они указывают на возможность развития. Не бывает случайных ошибок. Вы ошибаетесь не потому, что не знаете, а потому, что перегружены ошибочным знанием. Ошибки, как трассирующие пули, указывают на отклонение от цели. Поэтому, чтобы попасть в цель, нужно действовать невзирая на них.
С опытом люди становятся умнее, сильнее, эффективнее. Правда, не все. Некоторые, наоборот, становятся все более скучными и ориентированными на рутинную деятельность. Под умным я понимаю не человека, умеющего сдавать экзамены на пятерки в университете. Для этого нужно иметь качества хорошего магнитофона. Быть умным и эффективным, как я думаю, это не умение записывать лекции и воспроизводить на экзамене, а умение производить новые решения, подходящие к ситуации, как ключ к замку.
5. Имея уже достаточно знаний, экспериментируйте, создавайте свое или используйте чужое изобретение, создавая новую технологию на его основе. Технология должна быть лучше, чем первоначальная база. Новое всегда должно стремиться к эффективности и выгодной себестоимости. Тут есть дилемма: на чем концентрироваться – на базовой разработке или шлифовке технологии. Для меня выбор ясен. Еще одно изобретение – это выигрыш в сотни процентов; шлифовка технологии в лучшем случае – десятки. И создается это все личным трудом радиолюбителя.
В этой книге не будет разделения материала на главы и темы по градациям сложности или специализации. Большинство предлагаемых разработок не требуют для их повторения наличия на монтажном столе дорогостоящих или специальных приборов. Все, что понадобится радиолюбителю в процессе ознакомления с моим материалом, – обычный набор радиомонтажника плюс терпение и настойчивость. Под набором радиомонтажника надо понимать наличие свободного стола, стабилизированного регулируемого блока питания с защитой от перегрузок на напряжение 3-20 В (вариант его описан подробно в самом начале книги), тестер (желательно стрелочный с допуском не более 20 %), паяльник 220 В (25–40 Вт), желательно иметь паяльник с питанием от безопасного напряжения 6-36 В, монтажный материал (текстолит, гетинакс – они пригодятся для самодельных эстетичных корпусов устройств), припой ПОС-60 или аналогичный другой с невысокой температурой плавки, канифоль (флюс жидкий – раствор канифоли в спирте), ацетон, клей «Контакт», провод обмоточный (0,1–1 мм), провод монтажный изолированный типа МГТФ, кассеты с радиоэлементами, монтажный инструмент (скальпель, бокорезы-кусачки, пинцеты, отвертки и др.). Приведенный список не является обязательным или исчерпывающим и может быть расширен и дополнен.
При отсутствии гетинакса для монтажных плат можно использовать стеклотекстолит. Для безопасности легковоспламеняющиеся жидкости (ацетон, спирт, нитрокраски, клеи) хранят в удалении от рабочего стола. Крепежные детали и радиоэлементы для удобства должны быть рассортированы по размерам, типам и наименованиям и храниться в специальных отсеках (кассах).
Большинство схем, приведенных в этой книге, не нуждаются в настройке и регулировке, при правильном монтаже и исправных радиоэлементах начинают работать сразу и надежно. Автор даже специально не акцентирует внимание читателя на это в описании каждой схемы и не пишет о том, что все конструкции прошли проверку временем и при соблюдении простейших правил электробезопасности не могут ничем навредить человеку – это подразумевается само собой. Среди большого количества приведенных в книге схем все же можно выделить некоторые, требующие относительно большего опыта у радиолюбителя, чем простейшие навыки. Однако автор надеется, что такая организация материала в книге будет только способствовать тому, чтобы молодой радиолюбитель повышал свою квалификацию, знания и опыт, чтобы осваивать и новые, более сложные, разработки.
Как и в первом издании, я не уделяю здесь большого внимания рекламным целям и не описываю варианты монтажа радиосхем. Так как многие из устройств настолько просты, что не требуют, на мой взгляд, разводки специально под них печатных плат. Достаточно обычного гибридного монтажа с пайкой выводов элементов к токопроводящей поверхности фольгированного текстолита, предварительно разрезанного на изолированные друг от друга ячейки. Можно осуществлять монтаж на специальных монтажных перфорированных платах, но они радиолюбителю могут показаться пока дороги.
В этой книге описаны не только отличительные, положительные черты тех или иных конкретных схем, но и их недостатки (минусы), относительно идеала. Между тем, критическое описание сегодня почти не встречается в авторских работах. Акцентирование внимания читателей наряду с неоспоримой пользой от повторения схемы и ее последующего применения в быту, ряда недостатков-тем самым автор показывает возможный путь для совершенствования предлагаемой разработки – также, думаю, является пользой для радиолюбителей.
Особенностью книги также считаю целый раздел, посвященный технологии изготовления в домашних условиях без специальной техники различных приборов-датчиков для схем радиолюбителя. Большинство из предлагаемых читателю конструкций электронных устройств – необычны.
Можно ли использовать эти рекомендации как руководство к успеху? Я искренне отвечу: эта книга – не учебник, это большая мысль, выраженная с разных сторон, имеющая своей целью побудить читателей к творчеству, а творчество радиолюбителя неисчерпаемо по определению. Это на всю жизнь.
Здесь я постарался изложить то, что накопилось за многие годы, и если бы мне сейчас предложили написать еще что-то, то, я думаю, у меня возникли бы серьезные затруднения. Можно шлифовать, когда есть на чем наводить глянец. Заниматься мелочами, когда не решено главное, существенное, ключевое, – бессмысленно.
Хочется чем-нибудь удивить читателя. Задумайтесь: Зачем вы читаете эту книгу? Она дает возможность стать более эффективным?
Мы часто едим не от голода, а от скуки. И часто читаем не для того, чтобы найти ответы на вопросы, и даже не для развлечения, а чтобы занять голову, которая, как ветровое колесо без генератора, крутится не для того, чтобы вырабатывать электроэнергию, а потому, что не может не крутиться. Итак, люди читают. И даже в школе учат читать, правда, забывают объяснить, – зачем. А многие считают – пусть ребенок читает, вместо того чтобы шляться на улице. Надеюсь, что ваши цели, дорогие радиолюбители, при чтении более глубоки и оправданны.
Далее я буду писать, получая удовольствие от процесса создания книги. Вы будете читать (надеюсь), получая удовольствие от своего творчества, повторяя схемы и стараясь усовершенствовать их. Если вы получите удовольствие, это повысит раскупаемость книги. Если создадите нечто свое – это будет наш вклад в мировой научно-технический прогресс. В любом случае, надеюсь, вам станет приятно.
Желаю вам творческих успехов.
Благодарю всех, кто принимал участие в создании этой книги.
А. Кашкаров
Глава 1
Современные простые конструкции без микросхем
Эти устройства всегда можно сделать дома буквально за 1 световой день, имея небольшой набор радиоэлементов и паяльник.
1.1. Как сделать локальный нагревательный элемент и регулировать его температуру
Идея локального нагрева небольшого участка реализована с помощью подручных деталей, которые наверняка найдутся в запасах рачительного хозяина, к числу которых, безусловно, принадлежат и радиолюбители. Причем в качестве нагревательного элемента применен обычный постоянный резистор с мощностью рассеяния 2 Вт. В зависимости от мощности и сопротивления постоянного резистора можно достичь нагрева ограниченной площадки в широком диапазоне температур – до 40–60 °C.
Схема устройства представлена на рисунке 1.1.
Рис. 1.1. Электрическая схема устройства локального нагрева
Электрическая схема состоит из нагревательного элемента R2, светодиодного индикатора HL1 и шунтирующего резистора R1. Последний защищает светодиод от колебаний напряжения. В данной схеме светодиод HL1 (его можно включать в любом направлении, поскольку род тока в осветительной сети 220 В – переменный) выполняет роль индикатора рабочего состояний устройства, ведь если нагревательный элемент выйдет из строя, электрическая цепь будет разомкнутой и светодиод погаснет. Кроме того, в моей конструкции он мерцает (с частотой 50 Гц) довольно комфортно, являясь дополнительным индикатором исправности сети.
Впрочем, если кому-то такая индикация покажется избыточной – в данной и без того простой схеме, – смело удаляйте из схемы элементы R1 и HL1; от этого ее работоспособность не уменьшится.
При указанных на схеме значениях элементов нагрев кафельной пластины до температуры 40 °C достигается за 7–8 минут. Еще через 10 минут эта температура стабилизируется в диапазоне 50–55 °C.
В моей конструкции, которую можно взять за пример для более глубоких разработок – в части практического применения идеи, – нагревательный элемент приклеен с помощью теплостойкого клея Fix-it (см. рис. 1.2) в центре кафельной пластины размерами 2x3 см, с обратной (тыльной) ее стороны.
Рис. 1.2. Клей Fix-it склеивает столь хорошо, что конструкции после его применения выдерживают вес до 120 кг– на разрыв
Почему именно этот клей?
Ни один другой клей не обладает после высыхания столь «мощными» качествами; он может склеивать даже… камни, подходит для склеивания большинства материалов, хорошо пристает к влажным, холодным и окрашенным поверхностям. Клеевое соединение эластично, устойчиво к влаге и морозу (температуре окружающего воздуха -40 °C) и жаре (+100 °C), то есть выдерживает нагрев.
Испытан при склеивании частей металла, резины, кожи, древесины и других материалов.
Почему для данной разработки выбран именно кафель? Это хорошо проводящий тепло материал, отвечающий всем нормам электробезопасности (электрический ток не проводит, огнеупорный, твердый, маленький участок кафеля трудно расколоть). Поэтому касание к кафелю со стороны, обратной монтажу электрических проводов и нагревательного элемента, абсолютно безопасно для человека и животного. С другой стороны (с лицевой) кафельная плитка имеет гладкую полированную поверхность, что дает возможность фантазировать о практическом применении устройства, о чем поговорим чуть ниже.
Пожалуй, единственное ограничение, которое все же оставил бы, – такую конструкцию не стоит помещать в жидкую среду (чтобы не было проводимости тока). В любой другой среде и в качестве решения задачи локального подогрева она, пожалуй, покажет свои лучшие универсальные качества.
На рисунке 1.3 представлен вид на приклеенный с тыльной стороны кафеля резистор R2.
Рис. 1.3. Вид на приклеенный с тыльной стороны кафеля резистор R2
Рис. 1.4. Вид на подключение проводников к нагревательному элементу – резистору
На рисунке 1.4 представлен вид на подключенные к резистору провода.
С учетом электрической схемы (рис. 1.1) и незначительной мощности потребления мною применен двужильный провод ШВВП 2x0,75 мм. Его длина от розетки до места монтажа кафельной пластины с резистором – 2,5 м. С учетом небольшой мощности конструкции падение напряжения в проводах незначительное.
Рисунок 1.4 представлен вниманию читателей не случайно. Для надежности конструкции и устранения опасности нарушения контакта при длительном нагреве соединительные провода предварительно не только облуживаются (опаиваются), но и скручиваются с выводами резистора R2.
1.1.1. О деталях
Потребуются: кафельная плитка (толщиной 5 мм), постоянный ограничительный резистор сопротивлением 100 Ом в качестве шунта для безопасной работы светодиодного индикатора, постоянный резистор сопротивлением 17–20 кОм и мощностью рассеяния 5 Вт – в качестве нагревательного элемента, соединительный провод ШВВП (или аналогичный), светодиод с током до 10 мА (подойдет практически любой) и клей Fix-it (или аналогичный). Участок кафеля на один описанный нагревательный элемент может быть – как в моем случае – 2x3 см; для этого его уместно вырезать с помощью специального инструмента – плиткореза.
Сопротивление резистора 18–20 кОм предполагает, и это подтверждается практикой (по закону Ома), что общая потребляемая мощность при включении устройства в осветительную сеть 220 В достигнет примерно 4 Вт. Соответственно, радиолюбитель не лишен возможности установить параллельно (в электрическую схему, рис. 1.1) несколько подобных резисторов. Мощность нагрева и мощность потребления при этом кратно увеличатся, площадь обогрева – тоже.
В качестве R1 применяю МЛТ-0,5, в качестве R2 МЛТ-2. Светодиод – любой с током 10–15 мА.
1.1.2. Практика применения устройства
Перспективы применения описанной разработки довольно широки и ограничиваются только творческой фантазией.
В моем хозяйстве локальный и безопасный нагрев применяется для подогрева подложки под аквариумом зимой (на площадку 0,5 кв. м. подключается 8-10 резисторов), поверхности рабочего стола, установленного на лоджии (зимой довольно прохладно, несмотря на застекление). Если к тыльной стороне кафеля установить мощные проволочные резисторы типа ПЭВР (или аналогичные) и усилить электропроводку, кафель может нагреваться от сети 220 В до температуры и 70, и 80 °C, причем за весьма короткое время. Но тогда заявленная в первых строках моего описания экономичность разработки перестанет быть таковой.
Еще одна идея применения разработки в том, что ее без каких-либо переделок уместно использовать в качестве… фумигатора. Если на нагретую кафельную плитку положить пластинку для фумигатора, то вся конструкция выполнит роль «отпугивателя» комаров (летом) из жилого помещения. Только в данном случае пластину фумигатора можно положить не одну и в любое место подогретого стола (любой поверхности), что делает предложение более удобным в использовании, чем, к примеру, штатный или промышленный электрофумигатор.
Впрочем, напомню, что варианты практического применения этой конструкции не ограничены и могут найти в умах радиолюбителей и более изысканный путь.
Но это еще не все.
Рис. 1.5. Электрическая схема регулятора температуры нагрева
Теперь на двух разных примерах давайте посмотрим, как можно регулировать температуру нагрева резистора при подключении к сети 220 В и «безопасном» постоянном напряжении 12 В. В данном случае температура нагрева керамической пластины (плитки) прямо связана с падением напряжения на резисторе Rн (см. далее схемы на рис. 1.5 и 1.6).
1.1.3. Управление «керамическим» нагревом в осветительной сети 220 В
На рисунке 1.5 представлена электрическая схема устройства нагрева с управляющим элементом симистором.
При большом токе через нагревательный элемент (и прочие приборы с реактивным характером нагрузки) подобное устройство создаст радиопомехи как в радиоэфире, так и в электрической сети в пределах одного электрического контура (электросчетчика энергии). С другой стороны, предлагаемая на рисунке 5 схема, на мой взгляд, отличается своей простотой и эффективностью. В качестве управляющего элемента применен мощный симистор, который в открытом состоянии пропускает в нагрузку обе полуволны переменного напряжения. Дроссель L1 (45 витков трансформаторного провода ПЭЛ-0,8 на кольце 2000НН) и конденсатор С1 сглаживают пульсации напряжения в моменты неполного открытия симистора почти до нуля, что положительно сказывается на активной нагрузке. Что я имею в виду под этим словосочетанием?
Управление напряжением на симисторе осуществляется переменным резистором R2 (типа СПО-1) с линейной характеристикой изменения сопротивления (индекс В).
Рис. 1.6. Электрическая схема устройства
Устройство предназначено для регулировки напряжения на нагрузке мощностью до 100 Вт. В этих пределах симистор на теплоотвод устанавливать не нужно.
Корпус и ручка регулировки переменного резистора (для безопасности пользования) должны быть изолированы. Так как элементы узла подключены к опасному для жизни напряжению, при эксплуатации устройства следует соблюдать меры безопасности.
Должен заметить, что данная схема взята из промышленного устройства-диммера, которые хорошо продавались в розничной сети десяток лет назад. Для экономии времени экспериментов «керамического нагревателя» мною был проведен опыт именно с этой схемой (вместо Rн по замыслу производителя включается лампа накаливания мощностью 11–60 Вт). Однако устройство испытано и показало хорошие результаты: максимальный нагрев резистора Rн достигается за 4,5 минуты. При максимальном увеличении сопротивления резистора R2 падение напряжения на Rн всего около 10 В (переменного тока), и он не нагревается. В принципе элементы L1 и C1 в определенных случаях можно из схемы исключить.
Устройство в налаживании не нуждается.
Постоянные резисторы – типа МЛТ или С2-33. Ограничивающий резистор – R1 с мощностью рассеяния не менее 1 Вт. Симистор можно заменить на КУ208В-КУ208Г.
Конденсаторы С1 и С2 – типа МБМ, МБГО или аналогичные на рабочее напряжение не ниже 300 В.
1.1.4. Особенности конструкции при «низковольтном» питании 12 В
«Теплый стол» согласно схеме на рисунке 1.6 с питанием 12 В постоянного тока работает в двух аспектах – включено и выключено. Небольшое напряжение питания выбрано для максимальной безопасности работы с устройством. С помощью этой несложной схемы удается существенно расширить возможности описанного выше оригинального нагревательного элемента.
В основе схемы – популярный таймер КР1006ВИ1, включенный в качестве генератора импульсов. Скважность импульсов на выходе микросхемы (вывод 3) можно регулировать, изменяя напряжение смещения на входе 5 D1. Такое схемное решение давно получило название широтно-импульсного метода изменения выходного сигнала.
В электронную схему управления введена стабилизационная цепь, состоящая из элементов R6, C3 и стабилитрона VD1. В качестве последнего желательно применить любой из имеющихся полупроводниковых приборов с напряжением стабилизации 9 В. Ток, потребляемый микросхемой D1, в рабочем режиме – менее 10 мА, поэтому применение «простого» стабилитрона оправданно. Электролитический (оксидный) конденсатор С4 сглаживает низкочастотные пульсации по питанию.
Микросхема D1 при включении питания вырабатывает электрические импульсы прямоугольной формы. Частота импульсов определяется значениями элементов вре-мязадающей цепи R3C2. Чем меньше емкость конденсатора С2, тем выше частота импульсов на выходе (вывод 3 D1). Резисторы R1, R4, R5 образуют делитель напряжения с возможностью регулировки. Конденсатор С1 обеспечивает плавное изменение скважности прямоугольных импульсов. Форма импульсов показана внизу рисунка.
Составной транзистор VT1 открывается с каждым положительным фронтом прямоугольных импульсов, приходящих в его базу через ограничительный резистор с выхода микросхемы. Коэффициент заполнения последовательности импульсов колеблется, в зависимости от сопротивления делителя напряжения на входе D1, примерно от 35 до 100 %.
Поэтому напряжение на нагревательном элементе увеличивается пропорционально уменьшению сопротивления переменного резистора R5. При сопротивлении R5, равном 1 кОм и менее, напряжение на RK максимально.
Электролитические (оксидные) конденсаторы типа К50-29 – на рабочее напряжение не ниже 25 В.
Остальные конденсаторы в схеме выбраны керамическими или типа КМ. Вместо составного транзистора, управляющего нагревательным элементом, можно применить прибор КТ834А-КТ834В.
Составной транзистор VT1 необходимо установить на изолированный от массы автомобиля радиатор. Это повысит безопасность электронных элементов и надежность всего узла при длительной эксплуатации. Электрические параметры рекомендуемых транзисторов таковы, что весь узел имеет необходимый запас работоспособности; судите сами: максимальная мощность рассеивания КТ827 и КТ834 – 100 Вт; максимально допустимый ток через переход коллектор-эмиттер данных составных транзисторов – 5–8 А.
В настоящее время устройство доказало свою эффективность.
1.2. Электронный сигнализатор нарушения целостности теплоизоляции
Многие в своей жизни сталкивались с таким явлением, как продувка. Я веду речь о продувке ветром через «неплотности» в закрытом окне; причем даже современные стеклопакеты на окнах – не панацея от таких вещей. Небольшую струйку воздуха можно ощутить тактильно, буквально с помощью руки, если приложить ее к месту возможной щели. Продувание ветром с улицы сквозь щели в окнах (рамах) особенно опасны там, где на полу жилой комнаты играют дети, да и в эстетическом плане ветер с улицы портит картину – оставляет на окне черные разводы. Таким образом, нарушение изоляции в стеклопакетах можно заметить уже через неделю после их установки визуально, без всякого прибора – невооруженных глазом. Но что делать, когда проблема не выявляет себя, утечка холодного воздуха есть, но незначительная, вроде бы дети болеют от сквозняков – с улицы дует, но прямо это «не доказано». Тогда на помощь приходит простое приспособление, электрическая схема которого представлена на рисунке 1.7.
Рис. 1.7. Электрическая схема устройства
Электрическая схема устройства, сигнализирующего на поток холодного воздуха (сигнализатор продувки), реализована на трех транзисторах n-p-n-проводимости.
Отличительные особенности устройства – в простоте повторения и необычном датчике – термопаре. Я взял термопару ТТД-1 от популярного мультиметра и при испытаниях обнаружил интересный эффект.
Термопара, если есть разность температур между горячим и холодным концом, вырабатывает ЭДС. Оказалось, термопара очень чувствительна к резкому изменению температуры окружающей среды.
1.2.1. Особенность идеи
Так и родилась эта идея определения места продувки (течи воздуха) в применении… термопары.
Чувствительным датчиком устройства является термопара типа К – температурный щуп ТТД-1 – термопара открытого типа от популярного цифрового мультиметра (многофункционального тестера) М-830В; подключаются в схему в качестве датчика температуры. Технические характеристики поверхностного температурного щупа ТТД-01 типа ХА (К) таковы:
• диапазон измерения температуры: -50…+300 °C;
• длина погружной части (рабочая поверхность термопары): 2,5 мм;
• длина соединительного провода: 900 мм.
Особенность щупа ТТД-1 – в малой инерционности изменения состояния, поэтому его уместно использовать для определения локального воздушного потока.
Кстати, на практике установлено, что благодаря качественному изготовлению термопар точность измерения температур (у мультиметра М-830В) весьма высока.
Термопару я расположил в самодельном корпусе от… зубной щетки – в месте перфорации (отверстий). Воздушный поток через перфорацию в корпусе устройства (см. рис. 1.8) достигает рабочей поверхности термопары ТТД-1, охлаждая ее, вследствие чего возникает ЭДС (в зависимости от интенсивности воздушного потока, воздействующего на рабочую поверхность ТТД-1).
Рис. 1.8. Устройство в корпусе от зубной щетки
Испытания проводились в марте: как известно, это самый ветреный весенний месяц.
Холодный воздух (температурой ниже нуля), проникающий через «неплотности» изоляции на застекленной лоджии, приводит к увеличению тока в цепи датчика (базы и базы транзистора VT1).
На этом эффекте термопары основана работа всей схемы. Рассмотрим ее подробнее.
Подобные схемы многократно описаны в литературе, однако, на мой взгляд, большинство из них неоправданно усложнены, хоть при этом и применяется современная электронная база – операционные усилители и компараторы. Предлагаемая же простая схема основана на принципе последовательного усиления с использованием популярных кремниевых транзисторов (имеет высокий суммарный коэффициент усиления).
Транзисторы включены по схеме с общим эмиттером по принципу усилителя тока. Когда на датчик воздействует холодный поток воздуха, ток увеличивается и изменяется величина смещения на базе транзистора VT1. Следующий каскад еще больше усиливает ток. Нагрузкой транзисторного усилителя служит светодиод HL1. Его свечение свидетельствует об обнаружении в районе установки термопары воздушной тяги.
Устройство стабильно работает в диапазоне питающего напряжения постоянного тока 2,7–4 В. Для напряжения выше указанного в схеме потребуется изменить номиналы постоянных резисторов R1-R4.
В качестве источника питания используется аккумулятор в виде «мизинчиковой» батареи UltraFire 18650/ 2400 мАч с номинальным напряжением 3,7 В. Он содержат электронную плату контроля внешнего/внутреннего напряжения и автоматически отключает зарядку батареи при превышении напряжения 4,2 В, а также при глубокой разрядке элемента (ниже 2,75 В). Система внутренней защиты/контроля убережет аккумулятор UltraFire 18650 3,7 В от случайного короткого замыкания.
Для питания схемы (рис. 1.7) можно применить и «плоский» элемент CR3032 c номинальным напряжением питания 3 В.
1.2.2. Принцип работы устройства
Даже при слабом потоке воздуха (незначительной продувке) включается светодиод. Световой поток от него пропорционален силе воздушного потока в области проверки.
Чувствительность прибора регулируется изменением сопротивления постоянного резистора R1; при его увеличении чувствительность устройства повышается.
Для приведенной схемы, если она смонтирована без ошибок и с применением исправных радиоэлементов, нет необходимости в сложной настройке. Сопротивление R1 при напряжении питания 3,7 В выбрано таким, при температуре окружающего воздуха +22 °C светодиод не светился.
Индикатор продувки хорошо реагирует на локальный поток ветра с расстояния 0,5–6 см.
В приведенной конструкции постоянные резисторы типа МЛТ-0,125, светодиод HL1 – любой с током 1015 мА, транзисторы КТ315 можно заменить на аналогичные маломощные приборы КТ3102, КТ503, КТ373, КТ342 с любым буквенным индексом.
Корпус прибора может быть любой компактный.
В данном варианте сигнализатор продувки испытан не только для выявления неплотности в оконном проеме (окнах, рамах), но и в ряде других случаев, к примеру, для сигнализации тяги в бытовых вытяжках (рис. 1.9 и 1.10).
Рис. 1.9. Применение прибора для контроля тяги вытяжки
Рис. 1.10. Иллюстрация работы: светодиодный индикатор показывает наличие потока холодного воздуха
Нельзя сказать, что этот прибор в быту незаменим, однако необычное использование термопары и простая идея обнаружения несанкционированных воздушных потоков небольшой величины, пожалуй, стоят дальнейших разработок (усовершенствований) в этой области.
1.2.3. Варианты применения устройства
Второй вариант применения – выявление мест локального проникновения холодного воздуха через рамы и окна (см. рис. 1.11).
Рис. 1.11. Иллюстрация работы прибора по выявлению мест проникновения холодного воздуха через неплотности рам и окон – особенно полезно осенью и зимой
Кроме рассмотренного вариантов применения такого электронного устройства немало. Я опробовал и хочу поделиться только двумя из них, оставив радиолюбителям творческий простор для иных возможных вариантов.
Может возникнуть вопрос: зачем нужен сигнализатор прохладного воздуха в квартирах, если этот параметр можно контролировать визуально или, как чукча, выставлять послюнявленный указательный палец для тактильной диагностики воздушных потоков?
Отвечаю: нужен. Во-первых, кожа рук по-разному, в зависимости от общего состояния организма диагноста и окружающей температуры, воспринимает то или иное воздействие; тем более, когда речь идет не о сильных ветряных потоках, а об относительно слабом напоре воздуха.
То есть визуально фиксировать продувку сквозь изоляцию можно только с большой неточностью. Электроника, с позволения сказать, более объективна в этом, и почему бы не поручить ей такой безобидный контроль, сняв с человека хоть малую толику заботы?
Во-вторых, работа мысли в этом направлении стимулирует радиолюбителя к новым усовершенствованиям и открытиям в сфере применения как термопар (на рассмотренном примере показавших хорошие результаты в части безынерционности изменения тока в цепи и, как следствие, чувствительности всего устройства к потокам воздуха), так и самой схемы.
1.3. Сигнализатор засорившейся вытяжки
Фильтры для вытяжки улавливают от 85 до 99,95 % жировых аллергенов и загрязнителей размером до 0,001 мкм – эти частицы в десятки раз меньше, чем способны уловить фильтры S-класса в «бюджетных» моделях вытяжек, устанавливаемых на кухне.
Однако ничто не служит вечно, даже фильтры приходится менять – примерно раз в год. А это удовольствие – не из дешевых. Вот и возникает вопрос: а нельзя ли тут сэкономить?
Можно! И вот каким образом: нужно оснастить эконом-вытяжку индикатором и датчиком чистоты воздуха. Эти устройства помогут вовремя подать сигнал SOS, обнаружив непробиваемые наросты на внешнем фильтре вытяжки – акрилового типа KR-60 и установленного сразу за решеткой всасывания воздушного потока.
Датчик сработает, неоновый индикатор замерцает – это и будет сигналом о срочной замене дешевого внешнего фильтра: выбросил дешевый – уберег дорогой внутренний.
Сделать несложную доработку вытяжки сможет любой желающий.
1.3.1. С чем работать будем: кухонная вытяжка Bright
Вытяжка Bright отличается от остальных моделей в том же ценовом диапазоне техническими характеристиками: небольшим уровнем шума в максимальном режиме – всего 51 дБ и воздухопроизводительностью не менее 250 м3/ч.
Имеет сменный угольный и акриловые (жировой) фильтры (KR-60), три скоростных режима обеспечивает один электродвигатель-вентилятор. Остальные параметры аналогичны другим моделям кухонных вытяжек.
Рис. 1.12. Внешний вид кухонной вытяжки Bright в сборе
Для нашей переделки выбираем особо чувствительный датчик CG-P1 и световой индикатор в виде неоновой лампы. Датчик можно купить отдельно или снять с современного пылесоса, к примеру Elenberg VS-2015 c максимальной мощностью 1400 Вт. На рисунке 1.13 представлен вид на открытый корпус портативного пылесоса с датчиком пыли.
Рис. 1.12. Вид на датчик пыли CG-P1
Технические характеристики индикатора пыли CG-P1:
• ток – до 20 мА;
• напряжение – 250 В переменного тока;
• диапазон рабочих температур (в том числе температур входящего воздуха)– 0…95 °C;
• максимальное давление входящего воздуха – 5 кРа.
Рис. 1.14. График зависимости сопротивления датчика CG-P1 (кОм по оси ОХ) от загрязнения воздушного потока (в% по оси ОУ)
Датчик пыли серии CG-P1 предназначен для автоматического выключения. Он может использоваться в качестве защитного устройства и индикации в пылесбор-никах и разных типов вытяжек.
Принцип действия датчика пыли прост. Датчик оснащен тонкой (внутренний диаметр 0,8 мм, внешний – 1,2 мм) полихлорвиниловой трубочкой (длина 25 см). С одной стороны трубочка подключена к датчику CG-P1 (рис. 1.13), а другой ее конец выходит непосредственно в мешок пылесборника пылесоса, перед всасывающим раструбом вентилятора электродвигателя.
При наполнении пылесборника всасывание начинает тормозить, и в потоке всасываемого воздуха растет концентрация пыли, которая через трубку начинает «бомбардировать» датчик CG-P1. В результате датчик изменяет внутреннее сопротивление с единиц ГОм до десятков и сотен – в соответствии с графиком, представленным на рисунке 1.14.
Кстати, материал трубочки может быть и другим – к примеру, аналогичный медицинской капельнице с малым внутренним диаметром.
Отмечу, что датчик пыли CG-P1 – неразборный, не ремонтопригодный, не нуждается во внешнем уходе и чистке. Выпускаются изделия следующих номинальных диаметров, (мм): DN 25-40-50-65-80-150 – в соответствии с предназначением и объемом контролируемого воздушного потока.
В бытовых пылесосах я встречал только 25– и 40-миллиметровые датчики.
Изменение сопротивления (регулировка чувствительности) может быть сделано только вручную с помощью поворота эксцентрического вала в торце датчика (шлиц сделан под крестообразную отвертку) по часовой стрелке. Для этого в датчике делается отверстие под винт.
Датчик подключается в электрическую цепь согласно схеме на рисунке 1.15.
Рис. 1.15. Электрическая схема подключения датчика пыли и индикаторной лампы
В качестве индикатора используется любая неоновая лампа, в которой газ начинает светиться даже при незначительном токе в цепи, что вполне соответствует незначительному изменению сопротивления высокоомного датчика CG-P1.
В качестве неоновой лампы можно применить и миниатюрную лампу от подсветки современных включателей освещения и вентиляторов.
1.3.2. Практика применения устройства
В пылесосе индикаторная лампа установлена на корпусе. При переносе датчика пыли в корпус вытяжки Bright (или аналогичной) лампу также выводят на переднюю панель – для визуального контроля загрязненности внутренних фильтров.
Куда в вытяжку поставить датчик и индикатор? Сам датчик пыли CG-P1 устанавливается внутри корпуса вытяжки в любом удобном месте так, как это представлено на рисунке 1.16.
Рис. 1.16. Установка датчика пыли CG-P1 внутри вытяжки Bright
Для установки датчика пыли и индикатора в кухонную вытяжку открывают ее нижнюю крышку корпуса с фильтром типа KR-60.
Что лучше не делать: не рекомендуем использовать в кухонной вытяжке, оснащенной фильтром S-класса, малоэффективные многоразовые тканевые пылесборники: чем хуже очистка воздуха, тем раньше выйдет из строя фильтр.
С помощью шуруповерта сверлят отверстие под крепление датчика и неонового индикатора, затем с помощью одного самореза устанавливают (фиксируют) датчик недалеко от входящего раструба всасывающего вентилятора вытяжки.
Трубку всасывания воздуха располагают непосредственно перед всасывающим раструбом (для этого потребуется снять круглый угольный фильтр вытяжки) и фиксируют полоской скотча.
Вот теперь доработка кухонной вытяжки может считаться законченной.
Аналогичным образом датчик пыли с индикатором можно добавить в другие промышленные и самодельные устройства. Например, можно сделать автоматическую вытяжку для паяльной станции в домашней лаборатории.
1.4. Чувствительный аудио-и видеоусилитель своими руками
Этот материал будет полезен тем, кто занимается применением схем видеоконтроля на ограниченном участке. Касаясь возможных вариантов обеспечения охраны в замкнутых помещениях, я замечал, что не всегда рентабельно нанимать физическую охрану. Во многих случаях вполне эффективно, зло и дешево будет действовать электронная система. В пользу такого подхода говорит и тот аргумент, что электроника не подвержена настроению, состояниям апатии или депрессии, иногда свойственным людям. Конечно, при принятии решения и выборе системы охраны для своего имущества или контроля объектов руководителю следует учитывать все аспекты. Я же могу на этих страницах вести речь только о тех или иных вариантах, освещать положительные и отрицательные качества той или иной схемы, устройства, подхода. Причем положительные качества одной и той же схемы могут оказаться отрицательными или нейтральными в том или ином варианте ее применения. Поэтому все зависит от конкретных задач и конкретных специалистов технических подразделений.
На рисунке 1.17 показана общая блок-схема взаимодействия устройств. Как правило, устройства видеоконтроля помещений состоят из видеодатчика (электронного глазка), видеоусилителя и монитора.
Рис. 1.17. Блок-схема взаимодействия устройств при появления в зоне ответственности объекта
Устройства контроля звукового пространства (шума) состоят из высокочувствительных звуковых микрофонов, усилителей с большим коэффициентом усиления и оконечных УНЧ, замыкающихся на динамические головки.
В обоих случаях (и аудио-, и видеоконтроля) необходимо присутствие человека-оператора, который наблюдает за монитором, динамиками, таким образом контролируя охраняемую зону. Иметь такого работника-охранника, который занимается только этим вопросом, я считаю не эффективным.