Идеальная теория. Битва за общую теорию относительности Феррейра Педро
Эта книга появилась благодаря двум людям. Патрик Уолш (Patrick Walsh) не только убедил меня написать о предмете моей страсти, но и предоставил мне такую возможность. Кортни Янг (Courtney Young) взяла мою рукопись и с удивительным тактом, но одновременно с твердостью превратила ее в книгу, которую хочется прочитать.
Я полагался на замечания, советы и критику, которые мне на протяжении многи хлет давали коллеги, друзья, члены семьи, читатели и писатели. Вот их список (возможно, неполный): Энди Албрехт (Andy Albrecht), Арлен Андерсон (Arlen Anderson), Тесса Бейкер (Tessa Baker), Макс Банадос (Мах Banados), Джулиан Барбур (Julian Barbour), Джон Бэрроу (John Barrow), Адриан Бикрофт (Adrian Beecroft), Яаков Бекенштейн (Jacob Bekenstein), Джоселин Белл Бёрнелл (Jocelyn Bell Burnell), Орфей Бертолами (Orfeu Bertolami), Стив Биллер (Steve Biller), Майкл Брукс (Michael Brooks), Харви Браун (Harvey Brown), Фил Булл (Phil Bull), Алекс Баттерворс (Alex Butterworth), Филипп Канделас (Philip Candelas), Ребекка Картер (Rebecca Carter), Крис Кларксон (Chris Clarkson), Тим Клифтон (Tim Clifton), Фрэнк Клоуз (Frank Close), Питер Коулс (Peter Coles), Аманда Кук (Amanda Cook), Марк Дэвис (Marc Davis), Ксения де ла Осса (Xenia de la Ossa), Сесиль Девитт-Моретт (Cecile DeWitt-Morette), Майк Дафф (Mike Duff), Джо Данкли (Jo Dunkley), Рут Дюрер (Ruth Durrer), Джордж Эфстатиу (George Efstathiou), Джордж Эллис (George Ellis), Грэм Фармело (Graeme Farmelo), Хьюго и Карин Джил Феррейра (Hugo and Karin Gil Ferreira), Эндрю Ходжес (Andrew Hodges), Крис Ишам (Chris Isham), Эндрю Яффе (Andrew Jaffe), Дэвид Кайзер (David Kaiser), Янна Левин (Janna Levin), Рой Маартенс (Roy Maartens), Эд Макъюли (Ed Macaulay), Жуан Магейжу (Joao Magueijo), Дэвид Марш (David Marsh), Джон Миллер (John Miller), Ланс Миллер (Lance Miller), Жозе Мауро (Jose Mourao), Самая Ниссанке (Samaya Nissanke), Тим Палмер (Tim Palmer), Джон Пикок (John Peacock), Джим Пиблс (Jim Peebles), Роджер Пенроуз (Roger Penrose), Жоао Пиментел (Joao Pimentel), Эндрю Понтцен (Andrew Pontzen), Франс Преториус (Frans Pretorius), Димитриос Псалтис (Dimitrios Psaltis), Мартин Рис (Martin Rees), Бернар Шатц (Bernard Schutz), Джо Силк (Joe Silk), Константинас Скордис (Constantinos Skordis), Ли Смолин (Lee Smolin), Джордж Смут (George Smoot), Андрей Старинен, (Andrei Starinets), Келли Стел (Kelly Stelle), Франческо Силос-Лабини (Francesco Sylos-Labini), Кип Торн (Kip Thorne), Нил Турок (Neil Turok), Тони Тайсон (Tony Tyson), Гиза Вешкаль-нис (Gisa Weszkalnys), Джон Уитер (John Wheater), Адам Уишарт (Adam Wishart), Лукас Виловски (Lukas Wilowski), Андреа Вульф (Andrea Wulf) и Том Злосник (Tom Zlosnik). Их вклад неоценим, а за любые ошибки и заблуждения, оказавшиеся в окончательной версии текста, ответственность лежит исключительно на мне.
Команда агентства Conville and Walsh была невероятно доброжелательно настроена к данной книге, а коллеги из Оксфордского университета полны энтузиазма и готовы помочь.
Пролог
Доклад Артура Эддингтона на совместном заседании Королевского и Астрономического обществ 6 ноября 1919 года в корне изменил парадигму гравитационной физики. С торжественной монотонностью кембриджский астроном описал свое путешествие на маленький, поросший буйной зеленью остров Принсипи у западного побережья Африки, где с помощью телескопа он сфотографировал полное солнечное затмение, постаравшись запечатлеть находящееся за Солнцем неяркое звездное скопление. Измерив положение звезд, Эддингтон обнаружил отклонения от закона всемирного тяготения, открытого покровителем британской науки Исааком Ньютоном и безоговорочно принимавшегося в течение более чем двух столетий. Астроном утверждал, что место этого закона теперь занимает новая и более правильная теория, предложенная Альбертом Эйнштейном под названием «общая теория относительности».
В то время теория относительности Эйнштейна была известна не только своим потенциалом в плане объяснения происходящих во Вселенной явлений, но и своей невообразимой сложностью. После церемонии, когда слушатели и докладчики уже готовились выйти в лондонские сумерки, к Эддингтону подошел польский физик Людвиг Зильберштейн. Зильбер-штейн был автором книги о более ограниченной «специальной теории относительности» Эйнштейна и с интересом следил за выступлением Эддингтона. Он сказал: «Профессор Эддингтон, вы, должно быть, один из трех человек в мире, понимающий общую теорию относительности». Заметив замешательство Эддингтона, Зильберштейн добавил: «Не скромничайте». Эддингтон решительно взглянул на него и произнес: «Напротив, я пытаюсь понять, кто же является третьим».
К моменту моего первого знакомства с общей теорией относительности названную Зильберштейном цифру уже можно было скорректировать в сторону увеличения. В начале 1980-х я услышал, как Карл Саган рассказывает о сжатии и растяжении времени и пространства в телесериале «Космос». Я немедленно попросил отца объяснить мне эту теорию. Он ограничился словами о том, что она крайне сложна. «Вряд ли кто-то понимает общую теорию относительности», — вот как он сказал. Но остановить меня было непросто. В этой странной теории с ее искривленными сетками пространства-времени, обернутыми вокруг пустынных впадин небытия, имелось что-то до крайности притягательное. Действие принципа общей относительности можно было наблюдать в старых эпизодах «Звездного пути», когда «черная звезда» отправляла в прошлое космический корабль «Энтерпрайз» или когда Джеймс Т. Кирк путался в измерениях пространства-времени. Неужели понять все это настолько сложно?
Несколькими годами позднее я изучал инженерное дело в Лиссабонском университете, в тяжеловесном здании из камня, железа и стекла, представлявшем собой превосходный образчик архитектуры времен Салазара. Обстановка удивительно подходила для бесконечных лекций, обучающих нас полезным вещам: искусству создания компьютеров, мостов и машин. Некоторые студенты спасались от этого занудства, читая в свободное время материалы по современной физике. И каждый мечтал стать Альбертом Эйнштейном. Время от времени на наших лекциях излагались некоторые из его идей. Мы узнали о связи массы с энергией и о том, что свет на самом деле состоит из частиц. Когда дело дошло до изучения электромагнитных волн, нас познакомили со специальной теорией относительности. Эйнштейн сформулировал ее в 1905 году, когда ему было двадцать шесть, то есть всего на несколько лет больше, чем нам. Один из наиболее просвещенных преподавателей посоветовал нам почитать оригинальные труды Эйнштейна. В сравнении с нудными упражнениями, которые мы были вынуждены делать, это были шедевры выразительности и ясности. Однако общая теория относительности — созданная Эйнштейном грандиозная теория пространства-времени — в нашу программу не входила.
В какой-то момент я решил самостоятельно заняться ее изучением. В библиотеке нашего университета обнаружилась завораживающая коллекция монографий и учебников величайших физиков и математиков двадцатого столетия. Там были Артур Эддингтон, президент Королевского астрономического общества из Кембриджа; Герман Вейль, математик из Геттингена; отцы квантовой физики Эрвин Шрёдингер и Вольфганг Паули, — и у каждого из них было свое мнение о том, как следует преподавать теорию Эйнштейна. Один том выглядел как большая черная телефонная книга и насчитывал более тысячи страниц, уснащенных орнаментами и комментариями тройки американских релятивистов. Другой, написанный физиком-теоретиком Полем Дираком, содержал всего семь десятков глянцевых страниц. Я полностью погрузился в совершенно новую Вселенную идей, населенную самыми увлекательными персонажами.
Понимание этих идей давалось непросто. Пришлось учиться думать по-новому, опираясь на выкладки, которые изначально воспринимались как трудная для понимания геометрия и абстрактная математика. Для расшифровки теории Эйнштейна требуется овладеть математическим языком. Тогда я не знал, что в попытках разобраться в собственной теории Эйнштейну пришлось пройти тот же самый путь. Изучив лексику и грамматику, я пришел в восторг от открывшихся возможностей. И тогда начался мой роман с общей теорией относительности длиною в жизнь.
Это будет сильным преувеличением, но выразиться по-другому я не могу: наградой за покорение общей теории относительности Эйнштейна становится ключ к пониманию истории Вселенной, возникновению времени, эволюции звезд и галактик. Эта теория может рассказать, что находится в самых дальних уголках Вселенной, и объяснить, как это влияет на нашу жизнь. Она проливает свет на возникновение частиц высоких энергий из ничего и объясняет, как появляется ткань реальности, пространства и времени, превращаясь в основу Вселенной.
За месяцы интенсивного обучения я понял, что общая теория относительности оживляет пространство и время. Пространство — это не просто место существования вещей, а время — не только часы, отсчитывающие мгновения. Согласно Эйнштейну, пространство и время переплетены в космическом танце, отвечая за каждый кусочек материи, от частиц до галактик, и соединяясь в сложные структуры, которые порождают самые невероятные эффекты. Предложенная им теория с момента своего появления применялась для исследования окружающего мира, открыв, что Вселенная является динамическим объектом, расширяющимся с головокружительной скоростью и наполненным черными дырами, ужасными пробоями пространства и времени, громадными волнами энергии, каждая из которых сравнима по мощности с энергией целой галактики. Общая теория относительности позволяет заглянуть в такие дали, о которых мы никогда не мечтали.
При первом знакомстве с общей теорией относительности меня поразил еще один факт. Эйнштейн занимался ее созданием почти десятилетие, но с той поры она не изменилась. Почти целый век она рассматривалась многими как совершенная, служа источником глубокого восхищения для всех, кто имел честь с ней познакомиться. Благодаря своей незыблемости она стала культовой, как центральный элемент современной мысли и как общечеловеческое достижение, наравне с Сикстинской капеллой, сюитами Баха для виолончели и фильмами Антониони. Общая теория относительности лаконично воплощается в наборе уравнений и правил, которые можно легко сформулировать и записать. Они не просто красивы, они кое-что говорят об окружающем мире. С их помощью был сделан ряд прогнозов касательно нашей Вселенной, подтвердившихся впоследствии через наблюдения. Существует твердое убеждение, что эта теория скрывает еще более глубокие секреты, которые только предстоит открыть. Чего еще мне было желать? Почти двадцать пять лет общая теория относительности является частью моей повседневной жизни. Она попала в центр моих исследований и послужила фундаментом многих вещей, которые мы с коллегами пытались понять. Мой первый опыт столкновения с этой теорией был далеко не уникальным; я встречаю людей со всего мира, которых она зацепила настолько, что они посвятили свою жизнь раскрытию ее тайн. Говоря про весь мир, я не преувеличиваю. Из самых разных городов, от Киншасы до Кракова, от Кентербери до Сантьяго, мне регулярно присылают научные работы, авторы которых пытаются искать новые решения или даже вносить изменения в общую теорию относительности. При всей сложности для восприятия теория Эйнштейна очень доступна; ее сложность и неподатливость означают лишь то, что до момента, когда из нее будут получены все возможные выводы, еще работать и работать. И проявить себя на этом поприще может любой, обладающий ручкой, бумагой и упорством.
Я часто слышал, как руководители докторантов отговаривали своих подопечных от погружения в общую теорию относительности, пугая их невозможностью впоследствии найти работу. Для многих она является слишком заумной. Посвящение своей жизни общей теории относительности — это, конечно же, бескорыстный труд и почти безответное призвание. Но те, кто однажды подцепил этот вирус, идут на все, чтобы продолжать свои изыскания в этой области. Недавно я встречался с ведущим светилом в моделировании климатических изменений. Он настоящий пионер, член Королевского общества, эксперт в такой чертовски трудной для исследований сфере, как предсказания погоды и климата. Но он не всегда зарабатывал этим себе на жизнь. В 1970-е годы, еще юношей, он изучал общую теорию относительности. С того времени прошло почти сорок лет, но при нашей первой встрече он, криво улыбнувшись, сказал мне: «На самом деле я релятивист».
Мой друг оставил научную деятельность после почти двадцати лет работы над теорией Эйнштейна. Теперь он трудится в компании, производящей программное обеспечение, и занимается задачами хранения больших объемов данных. Всю неделю он летает по миру, настраивая сложные и дорогие системы в банках, корпорациях и правительственных учреждениях. Но при наших встречах он расспрашивает меня или сам делится последними размышлениями по поводу общей теории относительности. Он не может с ней расстаться.
Общая теория относительности всегда озадачивала меня одним обстоятельством. Каким образом, появившись почти век назад, она продолжает приносить новые плоды? Ей посвящали свое время столь мощные умы, что, казалось, еще десятилетия назад из нее можно было выжать все до последней капли. При всей ее сложности должен же быть предел того, что она в состоянии нам дать? Не достаточно ли нам черных дыр и расширяющейся Вселенной? Однако продолжая исследовать вытекающие из этой теории идеи и встречаться с работающими над ней блестящими умами, я пришел к выводу, что история общей теории относительности представляет собой увлекательное и чудесное повествование, возможно, столь же сложное, как она сама. Чтобы понять, почему эта теория еще не списана со счетов, имеет смысл проследить за почти вековыми перипетиями ее существования.
Эта книга представляет собой биографию общей теории относительности. Идея Эйнштейна об объединении времени и пространства начала жить сама по себе, оставаясь на всем протяжении XX века источником восторгов и разочарований самых гениальных умов. Это теория, постоянно преподносящая сюрпризы, гениальные озарения о природе нашего мира, принять которые было сложно даже самому Эйнштейну. По мере захвата ею все новых умов возникали неожиданные открытия, причем в самых странных ситуациях. Концепция черных дыр была впервые предложена на полях сражений Первой мировой войны и достигла своей зрелости в руках первопроходцев, занимающихся созданием советской и американской атомных бомб. Идею расширяющейся Вселенной первыми предложили священник из Бельгии и метролог из России. Новые и загадочные астрофизические объекты, сыгравшие важную роль в стабилизации общей теории относительности, обнаруживали иногда совершенно случайно. Нейтронные звезды Джоселин Белл открыла среди Кембриджских болот при помощи металлической сетки, натянутой на хрупкую конструкцию из дерева и гвоздей.
Более того, общая теория относительности стала центром ряда основных интеллектуальных сражений XX века. Ее преследовали в гитлеровской Германии, травили в сталинской России и отвергали в Америке 1950-х. Она развела величайших физиков и астрономов по разные стороны баррикад в битве за окончательную модель Вселенной. Они выясняли, началась ли Вселенная с Большого взрыва или же существовала всегда, они пытались понять фундаментальную структуру пространства и времени. Одновременно она объединяла разрозненные сообщества; в разгар холодной войны советские, британские и американские ученые начали вместе работать над проблемой происхождения черных дыр.
История общей теории относительности связана не только с прошлым. За последние десять лет стало понятно, что если общая теория относительности верна, то большая часть нашей Вселенной является темной. Ее заполняет материя, которая не только не излучает свет, но даже не отражает и не поглощает его. Существует огромное количество эмпирических данных. По всей видимости, почти треть Вселенной состоит из темной материи: тяжелого, невидимого вещества, роящегося по галактикам, как множество рассерженных пчел. Остальные две трети имеют вид эфирной субстанции, темной энергии, которая раздвигает пространство в стороны. И только четыре процента Вселенной состоит из привычных для нас атомов. Нас практически не видно. Но это в случае, если теория Эйнштейна верна. Однако существует вероятность, что мы просто достигли пределов ее применимости, где теория начинает давать сбои.
Теория Эйнштейна имеет важное значение для новой фундаментальной теории природы, из-за которой физики-теоретики рвут друг другу глотки. Теория струн, пытающаяся зайти дальше, чем Ньютон с Эйнштейном, и объединить все природные явления, опирается на сложные варианты пространства-времени, приобретающие при увеличении размерности странные свойства. Эту теорию, куда более запутанную, чем любые построения Эйнштейна, одни прославляют как окончательную победу, другие же считают скорее романтической фантазией, чем наукой. Хотя теория струн не появилась бы без общей теории относительности, многие практикующие релятивисты смотрят на нее весьма скептически.
Темная материя, темная энергия, черные дыры, теория струн — все эти порождения теории Эйнштейна доминируют в физике и астрономии. Читая лекции в университетах, посещая семинары и участвуя в заседаниях Европейского космического агентства, отвечающего за важнейшие научно-исследовательские спутники, я понял, что мы находимся на пороге важных преобразований в современной физике. У нас есть талантливые молодые ученые, рассматривающие общую теорию относительности с позиций опыта, накопленного за век работы гениальных людей. Они анализируют теорию Эйнштейна, вооружившись беспрецедентными вычислительными мощностями, рассматривая альтернативные варианты теорий, способные опровергнуть концепции Эйнштейна, и пытаясь найти в космосе неизвестные объекты, позволяющие подтвердить или оспорить основные положения общей теории относительности. Еще более широкое научное сообщество разом получило стимул к созданию грандиозных машин, позволяющих заглянуть глубже в космос и получить более четкую картину, спутников, настроенных на поиск доказательств того, что предсказала нам теория Эйнштейна.
История общей теории относительности необыкновенна и всеобъемлюща, поэтому ее следует рассказать миру. Ведь даже войдя в XXI век, мы продолжаем сталкиваться с множеством порожденных ею великих открытий и оставшихся без ответа вопросов. В ближайшие годы должно произойти что-то действительно важное, и нужно понимать, откуда оно придет. Я подозреваю, что если XX век стал веком квантовой физики, то в XXI в полной мере проявит себя общая теория относительности.
Глава 1.
Человек в свободном падении
Осенью 1907 года Альберт Эйнштейн работал в стрессовых условиях. Ежегодник Electronics and Radioactivity попросил его прислать полный обзор теории относительности. Обобщить столь солидный труд за короткий срок было непросто, особенно если учесть, что работать приходилось исключительно в свободное время. С 8 утра до 6 вечера с понедельника по субботу Эйнштейн находился в Федеральном бюро патентования изобретений в только что построенном здании почты и телеграфа, где он тщательно изучал схемы вновь придуманных электрических устройств и пытался определить, есть ли в них какая-либо ценность. Начальник советовал ему: «Взяв в руки заявку, представь, что все написанное изобретателем — вранье», и Эйнштейн старательно следовал этому совету. Большую часть дня заметки и расчеты, связанные с его собственными теориями, лежали во втором ящике стола, который Эйнштейн называл своей «кафедрой теоретической физики».
Обзор Эйнштейна был призван закрепить торжественное объединение механики Галилео Галилея и Исаака Ньютона с теориями электричества и магнетизма Майкла Фарадея и Джеймса Клерка Максвелла. Он объяснял бы открытое несколькими годами раньше замедление хода часов при движении и уменьшение размеров движущихся тел. Он проливал бы свет на странную формулу, демонстрирующую взаимозаменяемость массы и энергии и утверждающую, что превысить скорость света невозможно. Обзор принципа относительности показал бы, что почти вся физика должна определяться новым общим набором правил.
За несколько месяцев 1905 года Эйнштейн написал ряд работ, которые преобразовали физику. Во вдохновенном порыве он продемонстрировал, что свет ведет себя как пучки энергии, напоминающие частицы материи. Также им было показано, что хаотичные перемещения пылинок на поверхности налитой в блюдце воды вызваны молекулами воды, вибрирующими и отскакивающими друг от друга. Кроме того, он решил проблему, досаждавшую физикам почти полвека: почему кажется, что действие физических законов зависит от того, каким образом мы на них смотрим. Все это Эйнштейн систематизировал в своем принципе относительности.
И эти ошеломляющие открытия Эйнштейн сделал, работая скромным патентным экспертом в Берне и попутно анализируя научные и технические разработки того времени. В 1907 году он все еще находился там, так и не попав в, казалось бы, избегающие его высокие академические круги. На самом деле Эйнштейн мало напоминал человека, способного переписать часть основных физических законов. Во время обучения в высшей технической школе Цюриха он пропускал не интересующие его лекции и восстанавливал против себя людей, которые могли бы пестовать его гений. Один из профессоров сказал ему: «Вы очень умный мальчик… Но у вас есть один недостаток: вы никогда не позволяете, чтобы вам на что-либо указывали». Из-за того, что научный руководитель запретил Эйнштейну работать над самостоятельно выбранной темой, его финальная работа оказалась столь унылой, что заслужила крайне низкий балл, впоследствии помешавший ему получить должность ассистента во всех университетах, куда он посылал заявки.
С момента выпуска в 1900 году до поступления на работу в патентное бюро в 1902 карьера Эйнштейна представляла собой цепь неудач. Довершил его разочарование тот факт, что отправленная в 1901 году в Цюрихский университет докторская диссертация годом позже была отклонена. В представленной рукописи Эйнштейн опровергал ряд идей, выдвинутых одним из величайших физиков-теоретиков конца XIX века Людвигом Больцманом. Попытка иконоборчества потерпела фиаско. И докторскую степень он получил только в 1905 году за работу «Новое определение размера молекул». Для себя же Эйнштейн обнаружил, что степень «значительно облегчает взаимоотношения с людьми».
Пока он пробивал себе путь, его друг Марсель Гроссман шел к должности достопочтимого профессора кратчайшим путем. Именно благодаря дисциплинированному, старательному и любимому учителями Гроссману, который подробно и тщательно вел конспекты лекций, Эйнштейну удалось удержаться в университете. Во время обучения в Цюрихе Гроссман стал близким другом Эйнштейна и его будущей жены Милевы Марич. Все трое окончили университет одновременно. В отличие от карьеры Эйнштейна, карьера Гроссмана с самого начала шла гладко. В 1902 году он был назначен ассистентом в Цюрихе и в 1902 получил докторскую степень. После недолгой преподавательской деятельности Гроссман стал профессором начертательной геометрии в Швейцарской высшей технической школе в Цюрихе. Эйнштейну же не удавалось устроиться даже на место школьного учителя. И только благодаря рекомендации отца Гроссмана, знакомого с главой Федерального бюро патентования изобретений, Эйнштейн был взят на должность патентного эксперта.
Работа в бюро патентов стала для Эйнштейна благословлением. После долгой финансовой нестабильности и зависимости от отца он, наконец, смог жениться на Милеве и начать семейную жизнь в Берне. Относительная монотонность работы с четко определенными задачами и отсутствием отвлекающих факторов создала идеальную среду для размышлений. За несколько часов Эйнштейн справлялся с текущими делами и мог сконцентрироваться на собственных проблемах. За маленьким деревянным столом в компании немногочисленных книг и бумаг со своей «кафедры теоретической физики» он мог мысленно ставить эксперименты. И в процессе этих, как он называл их по-немецки, gedanken experimenten, Эйнштейн воображал ситуации и конструкции, позволяющие исследовать физические законы. В отсутствие настоящей лаборатории он прокручивал в голове тщательно моделируемые игры, инсценируя события, которые затем детально изучал. Эйнштейн хорошо знал математику и мог изложить результаты таких экспериментов на бумаге, создавая изысканные шедевры, в конечном счете поменявшие путь развития физики.
Владельцы патентного бюро были довольны работой Эйнштейна и повысили его до эксперта II класса, и это никак не было связано с появившейся у него научной репутацией. Эйнштейн все еще корпел над ежедневными порциями патентов, когда в 1907 году немецкий физик Йоханесс Штарк поручил ему обзор «О принципе относительности и вытекающих из него следствиях». На эту работу было отведено два месяца, и за это время Эйнштейн осознал, что выведенный им принцип относительности не универсален и требует тщательного пересмотра.
Статья в ежегоднике предполагалась как краткое изложение исходного принципа относительности, который гласил, что законы физики должны быть одинаковы в любой инерциальной системе отсчета. Лежащая в основе принципа идея была не нова и эксплуатировалась столетиями.
Законы физики и механики описывают движение, ускорение и замедление объектов под действием сил. В XVII веке английский физик и математик Исаак Ньютон сформулировал законы, объясняющие реакцию объектов на механические силы. Они последовательно демонстрировали, что произойдет при столкновении двух бильярдных шаров, вылете пули из ружья или при подбрасывании мяча в воздух.
Инерциальной называется система отсчета, движущаяся с постоянной скоростью. Если вы читаете эту книгу, сидя на одном месте, например дома в кресле или за столиком в кафе, вы находитесь в инерциальной системе отсчета. Другим классическим примером является равномерно перемещающийся скорый поезд с закрытыми окнами. Находящийся внутри человек после достижения постоянной скорости движения не сможет определить, движется поезд или стоит. Обнаружить разницу между двумя инерциальными системами в принципе невозможно, даже если одна перемещается с большой скоростью, а вторая покоится. Результат измерения действующих на объект сил будет тождественным в любой из инерциальных систем. Законы физики работают во всех этих системах одинаково.
Девятнадцатый век породил совершенно новые законы, объединившие две основные силы: электричество и магнетизм. На первый взгляд эти явления не связаны друг с другом. Электричество — это лампочки у нас дома или молнии во время грозы, а с проявлениями магнетизма мы сталкиваемся, прикрепляя магнитики к холодильнику или определяя направление по компасу. Шотландский физик Джеймс Клерк Максвелл показал, что эти две силы можно рассматривать как различные проявления общей базовой силы, электромагнетизма, восприятие которой зависит от того, как именно движется наблюдатель. Человек, сидящий рядом с магнитным бруском, столкнется с магнетизмом, но не с электричеством. А вот при быстром круговом движении можно ощутить не только магнетизм, но и толику электричества. Максвелл скомпоновал две силы в одну, не зависящую от положения и скорости наблюдателя.
При попытке объединить ньютоновские законы движения с описывающими электромагнитное взаимодействие законами Максвелла возникает проблема. Если бы окружающий мир и в самом деле подчинялся этим законам, из магнитов, проводов и блоков можно было бы создать инструмент, не ощущающий воздействия сил в одной инерциальной системе, но способный регистрировать силу в другой, нарушая постулат о неразличимости инерциальных систем. Соответственно, создавалось впечатление, что законы Ньютона противоречат законам Максвелла. Эйнштейн хотел устранить эту «асимметрию».
За предшествующий публикациям 1905 года срок, проведя серию направленных на решение данной проблемы мысленных экспериментов, Эйнштейн разработал компактный принцип относительности. Результатом его умственных упражнений стали два постулата. По-новому был сформулирован сам принцип: проявления законов физики должны выглядеть одинаково в любой инерциальной системе отсчета. Второй постулат был более радикальным: в любой инерциальной системе отсчета скорость света всегда одинакова и составляет 299 792 километра в секунду. Именно эти постулаты позволили скорректировать ньютоновскую механику и законы движения таким образом, что при их объединении с законами электромагнитного взаимодействия Максвелла инерциальные системы оставались бы неразличимыми. Кроме того, новый принцип относительности Эйнштейна привел к ошеломительным результатам.
Последний постулат требует корректировки законов Ньютона. В классической Вселенной Ньютона скорость аддитивна. Свет фар движущегося автомобиля перемещается быстрее, чем свет стационарного источника. А во Вселенной Эйнштейна это не так. Существует предельная космическая скорость, равная 299 792 километрам в секунду. Этот барьер не в состоянии преодолеть даже самая мощная ракета. Но возникает странный эффект. К примеру, человек, путешествующий в поезде, движущемся со скоростью, близкой к скорости света, будет стареть медленнее, чем человек, стоящий на платформе и наблюдающий, как этот поезд проходит мимо. А размер такого поезда во время движения оказывается меньше, чем во время стоянки. Время растягивается, а пространство сжимается. Эти странные вещи показывают, что в мире относительности время и пространство переплетены друг с другом и взаимозаменяемы.
Казалось бы, принцип относительности Эйнштейна упростил физику, но последствия при этом получались странные. И осенью 1907 года в процессе подготовки обзора ему пришлось признать, что хорошо работающая на первый взгляд гипотеза пока далека от завершения. В картину не укладывалась теория тяготения Ньютона.
До появления Альберта Эйнштейна Ньютон считался богом в мире физики. Его работы демонстрировались как пример ошеломляющего успеха современной мысли. В конце XVII века Ньютон объединил действующую на очень маленькие и на очень большие объекты силу тяжести в одно простое уравнение. Оно объясняло как космические явления, так и нашу повседневную жизнь.
Закон всемирного тяготения Ньютона, или «закон обратных квадратов», на удивление прост. Он гласит, что гравитационное притяжение между двумя объектами прямо пропорционально массе каждого из объектов и обратно пропорционально расстоянию между ними. При увеличении массы одного из объектов в два раза сила гравитационного притяжения также удваивается. А если в два раза увеличить расстояние между объектами, притяжение ослабнет в четыре раза. На протяжении двух веков закон Ньютона использовался для объяснения любых физических явлений. Наиболее ярким примером его применения стало обоснование орбит существующих планет, а также предсказание новых.
Во второй половине XVIII века появились данные о странной неустойчивости орбиты Урана. По мере накопления эмпирических сведений астрономы могли все больше уточнять маршрут движения этой планеты. Предсказание орбиты Урана — задача нетривиальная. Нужно в соответствии с законом всемирного тяготения Ньютона рассчитать влияние на Уран других планет, корректируя орбиту то с одной, то с другой стороны и все более ее усложняя. Астрономы и математики публиковали данные о перемещениях Урана в форме таблиц, позволяющих предсказать положение планеты в любой день и год. Но предсказания необъяснимо отличались от результатов последующих наблюдений.
Французский астроном и математик Урбен Леверье имел большой опыт расчетов астрономических орбит. Именно он рассчитал траектории перемещения различных планет Солнечной системы. Сосредоточив свое внимание на Уране, он первым делом предположил, что теория Ньютона верна. Ведь с другими планетами она дала прекрасные результаты. В этом случае единственным объяснением происходящего могло быть наличие некоего неучтенного до сих пор фактора. И Леверье сделал смелый шаг, предсказав существование новой условной планеты и рассчитав ее астрономическую таблицу. К его восторгу, немецкий астроном из Берлина Готтфрид Галле направил свой телескоп в соответствии с указанными в таблице координатами и обнаружил неизвестную большую мерцавшую планету. Как выразился Галле в письме к Леверье: «Месье, планета, положение которой вы указали, действительно существует».
Леверье воспользовался теорией Ньютона глубже, чем кто-либо другой, и был вознагражден за свою дерзость. Десятилетиями Нептун называли «планетой Леверье». Марсель Пруст в цикле «В поисках утраченного времени» использовал открытие Леверье как аналогию процесса над парламентской коррупцией, а Чарльз Диккенс упомянул его при описании напряженной работы сыщиков в рассказе «Сыскная полиция». Ведь это был прекрасный пример применения фундаментальных правил научной дедукции. Греющийся в лучах славы Леверье обратил свои взоры к Меркурию. Орбита этой планеты тоже казалась странной и неожиданной.
В рамках ньютоновской механики изолированная планета должна вращаться вокруг Солнца по простой замкнутой орбите, имеющей форму сплющенного круга, то есть эллипса. Планета бесконечно следует по одной траектории, то подходя ближе к Солнцу, то удаляясь от него. Ближайшая к Солнцу точка планетарной орбиты, называемая перигелием, со временем не меняется. Орбиты некоторых планет, например Земли, представляют собой практически окружности, в то время как, к примеру, Меркурий движется по более эллиптическому контуру.
Учтя влияние всех прочих планет на орбиту Меркурия, Леверье обнаружил, что движение этой планеты не подчиняется закону всемирного тяготения; ее перигелий смещается примерно на 40 угловых секунд в столетие. (Угловой секундой называется внесистемная астрономическая единица измерения малых углов; небесный купол состоит из 1,3 миллиона угловых секунд, или 360 градусов.) Эту аномалию, известную как смещение перигелия Меркурия, Леверье не смог объяснить при помощи законов Ньютона. Присутствовало влияние дополнительного фактора.
И снова постулировав корректность законов Ньютона, Леверье в 1859 году предположил наличие недалеко от Солнца планеты Вулкан, размер которой примерно совпадал с размерами Меркурия. Это была крайне дерзкая и нелепая гипотеза. Как выразился сам Леверье: «Неужели очень яркую и расположенную недалеко от Солнца планету нельзя было заметить во время полного солнечного затмения?»
Гипотеза Леверье спровоцировала настоящую гонку за новой планетой. В течение десятилетий то и дело поступали сведения об обнаружении рядом с Солнцем некоего объекта, но при внимательном изучении информация не выдерживала критики. Поиск продолжался даже после смерти Леверье, но объяснить аномалию удалось и без помощи невидимой планеты.
Когда в 1907 году гравитационными взаимодействиями заинтересовался Эйнштейн, ему требовалось согласовать теорию Ньютона с собственным принципом относительности. В глубине души он понимал, что одновременно следует найти объяснение аномальной орбите Меркурия. Это была тяжелая задача.
Теория гравитационных взаимодействий Ньютона противоречила обоим постулатам красивого и лаконичного принципа относительности. Сила тяжести действует мгновенно. Как только два объекта оказываются рядом, между ними возникает гравитационное взаимодействие — время для его передачи от одного объекта к другому не требуется. Но как быть с тем, что в соответствии с принципом относительности ничто, никакой сигнал и никакой эффект не могут перемещаться со скоростью, превышающей скорость света? Фактически согласовавший механику и электромагнетизм, принцип относительности Эйнштейна не распространялся на гравитационные взаимодействия. Более того, ньютоновская гравитация по-разному выглядела в разных инерциальных системах отсчета.
Первый шаг на длинном пути к устранению данного противоречия и обобщению теории относительности был сделан в патентном бюро, где Эйнштейн сидел, погрузившись в собственные мысли. Годы спустя он вспоминал идею, позволившую ему распространить свою теорию на гравитационные взаимодействия: «В свободном падении человек не чувствует собственного веса».
Поставьте себя на место провалившейся в кроличью нору Алисы, падению которой ничто не в силах помешать. Так как вы падаете под действием силы тяжести, скорость движения будет равномерно увеличиваться. Ускорение точно совпадает с гравитационным притяжением, и в результате ваше падение будет ощущаться как не требующее усилий — вы не почувствуете, что вас что-то подталкивает или тянет, хотя такое падение, без сомнения, внушит вам ужас, ведь вы мчитесь сквозь пространство. А теперь представьте, что вместе с вами падает ряд предметов: книга, чашка чая, белый кролик, пребывающий в такой же панике, как и вы. Движение всех этих объектов также будет равноускоренным, компенсируя силу тяжести. В результате они начнут парить вокруг вас в процессе вашего совместного падения. Если поставить эксперимент и попытаться определить движение этих объектов относительно вас и измерить силу тяжести, это ничего не даст. Вы будете чувствовать себя невесомым, невесомыми будут выглядеть и падающие вместе с вами объекты. Все это указывает на наличие тесной взаимосвязи между ускоренным движением и силой тяжести — в данном случае одно полностью компенсирует другое.
Возможно, свободное падение — излишне радикальный эксперимент. Слишком много отвлекающих факторов: в ушах свистит воздух, а мысль о том, что рано или поздно вы достигнете дна, мешает ясности мышления. Проделаем более простые и куда более спокойные действия. Представьте, что вы вошли в лифт на первом этаже высотного дома. В первые несколько секунд подъема, пока лифт ускоряется, вы чувствуете, что стали немного тяжелее. И наоборот, представьте движение в лифте вниз с последнего этажа. В первый момент, пока он набирает скорость, вы ощутите легкость. Разумеется, после достижения максимальной скорости перемещения ваш вес меняться уже не будет. Но ускорение и замедление лифта сдвигают ваше восприятие собственного веса, а значит, и силы тяжести. Другими словами, ощущение силы тяжести зависит от того, разгоняетесь вы или тормозите.
В тот день 1907 года, когда Эйнштейн представил себе падающего человека, он понял, что между силой тяжести и ускорением существует тесная связь, которая и послужит ключом к двери, открывающей гравитационным взаимодействиям путь в его теорию относительности. Если отредактировать принцип относительности таким образом, чтобы сделать законы физики инвариантными по отношению не только к системам отсчета, движущимся с постоянной скоростью, но и к ускоряющимся или замедляющимся системам, он позволит добавить к комбинации механики и электродинамики еще и гравитационные взаимодействия. Полной уверенности в правильности выбранного пути не было, но именно это гениальное озарение стало первым шагом на пути к универсальной теории относительности.
Под давлением немецкого редактора Эйнштейн написал обзор «О принципе относительности и вытекающих из него следствиях». Туда он включил раздел, описывающий, что произойдет, если подправить принцип с учетом гравитационных взаимодействий. Вкратце были отмечены некоторые следствия, например то, что наличие гравитации меняет скорость света и заставляет часы двигаться медленнее. Обобщенный принцип относительности позволял объяснить даже дрейфующую орбиту Меркурия. Все эти перечисленные в конце статьи эффекты можно было использовать для проверки высказанной идеи, но их следовало проработать более тщательно и подробно. Все это могло подождать. И на несколько лет Эйнштейн оставил свою теорию.
К концу 1907 года великолепная безвестность Эйнштейна завершается. Медленно; но верно опубликованные в 1905 году работы начинают привлекать к себе внимание. Начинают приходить письма от выдающихся физиков с просьбами прислать копии статей и с обсуждениями выдвинутых Эйнштейном идей. Взволнованный всем этим Эйнштейн говорит друзьям: «Мои работы получили большое признание и дают мне стимул к дальнейшим исследованиям». Один из его поклонников съязвил: «Должен признаться; я был поражен, прочитав, что вам приходилось по восемь часов высиживать в офисе. Но история полна дурными шутками!» Жизнь Эйнштейна нельзя назвать плохой. Работа в Берне позволила ему создать семью с Милевой. В 1904 году у них родился сын Ганс Альберт. График работы в патентном бюро позволял Эйнштейну проводить время дома, мастеря игрушки для ребенка, хотя он уже был готов ворваться в научный мир.
В 1908 году Эйнштейн наконец получает возможность читать факультатив в университете Берна. Он счел преподавание ужасно обременительным и как лектор заработал ужасную репутацию. Тем не менее в 1909 году его пригласили на должность экстраординарного профессора в университет Цюриха. Там он оставался чуть больше года. Уже в 1911 году он получает предложение возглавить кафедру в Немецком университете в Праге. На этот раз преподавательская деятельность не вошла в его обязанности. Без этого груза ум Эйнштейна вернулся в то состояние, которое владело им в упорядоченной и изолированной атмосфере патентного бюро. Он снова мог размышлять над тем, как сделать теорию относительности более универсальной.
Глава 2.
Самое ценное открытие
Однажды Альберт Эйнштейн признался своему другу и коллеге Отто Штерну: «Занимаясь расчетами, ты попадаешь впросак, прежде чем успеваешь это осознать». Это вовсе не означает, что он недостаточно хорошо знал математику. Он прекрасно успевал по этому предмету во время учебы и без проблем мог изложить свои идеи на бумаге. В его работах соблюдался совершенный баланс между физическими обоснованиями и их представлением в математической форме. Но сделанные в 1907 году расчеты обобщенной теории в плане математики оказались не совсем удачными — один из цюрихских профессоров сказал, что работа Эйнштейна является «математически громоздкой». На математику Эйнштейн посматривал свысока, называя ее «избыточным умственным багажом», и иронизировал: «С тех пор как на теорию относительности обрушилась математика, я перестал ее понимать». Но в 1911 году, пересматривая концепции из своего обзора, Эйнштейн понял, что развить их дальше поможет именно математика.
Рассматривая свой принцип относительности, он в очередной раз подумал про свет. Представьте, что вы находитесь в летящем вдалеке от планет и звезд космическом корабле. Луч далекой звезды проникает внутрь через маленький иллюминатор справа, пересекает корабль и через аналогичное окошко слева выходит наружу. Бели космический корабль неподвижен, траектория движения луча не изменится, входить и выходить свет будет под прямым углом. А вот при очень быстром перемещении с постоянной скоростью к моменту, когда луч достигнет противоположной стены, корабль сместится вперед, и выход луча наружу произойдет уже через окно, расположенное дальше по борту. Со своей точки наблюдения вы увидите луч, вошедший под непрямым углом и прошедший через внутрикорабельное пространство по прямой. Совсем другая картина нарисуется при ускорении: световой луч опишет дугу и выйдет наружу где-то в задней части корабля.
Вот тут нам и пригодится озарение Эйнштейна о природе силы тяжести. Мы испытываем одинаковые ощущения в движущемся с ускорением корабле и в корабле, стоящем на месте, когда на нас действует земное тяготение. Эйнштейн понял, что на простейшем уровне ускорение неотличимо от силы тяжести. Человек, сидящий в покоящемся на поверхности планеты корабле, и человек в корабле, движущемся с ускорением, увидят одно и то же: луч света, изогнутый под действием силы тяжести. Другими словами, Эйнштейн понял, что гравитация, как линза, отклоняет световые лучи.
Однако выявить такое отклонение можно только при очень сильном гравитационном притяжении — одной планетой тут не обойтись. Эйнштейн предложил простую проверку с применением более массивного объекта: нужно было измерить отклонение луча далекой звезды в момент его прохождения рядом с Солнцем. Угловые позиции далеких звезд должны слегка измениться в момент прохождения перед ними Солнца — примерно на одну четырехтысячную градуса. Существовавшие в то время телескопы уже давали возможность регистрировать такие почти незаметные отклонения. Эксперимент следовало проводить во время полного солнечного затмения, чтобы слишком яркий солнечный свет не помешал зафиксировать положение звезд.
Эйнштейн нашел способ проверить обоснованность своих новых идей, но до завершения теории было еще далеко. Он все еще занимался импровизациями на тему посетившего его в патентном бюро озарения — человека в свободном полете. На преподавательскую деятельность тратить время уже не приходилось, и можно было предаться мысленным экспериментам и тщательному обдумыванию теории, но счастливым Эйнштейн себя не ощущал. Непосредственно перед прибытием в Прагу родился его второй сын Эдуард, и жена чувствовала себя несчастной и одинокой, лишившись окружения, к которому она привыкла в Цюрихе. Поэтому в 1912 году Эйнштейн ухватился за возможность вернуться в этот город, став профессором своей родной Швейцарской технической школы.
За время пребывания в Праге Эйнштейн понял, что для проверки приходящих ему в голову идей требуется язык другого типа. С одной стороны, он не хотел прибегать к заумной математике, способной затруднить понимание прекрасных физических концепций, которые он пытался собрать воедино, а с другой — через несколько недель после прибытия в Цюрих он умолял одного из своих старых друзей, математика Марселя Гроссмана: «Ты должен мне помочь, или я сойду с ума». На манеру физиков решать проблемы на скорую руку Гроссман смотрел скептически, но приложил все усилия, чтобы помочь другу.
Эйнштейн наблюдал, как движутся объекты в случае ускорения и под действием силы тяжести. Маршрут их перемещений в пространстве отличался от простых прямых линий, описывавших движение в инерциальных системах. Усложненные форма и характер этого движения требовали от Эйнштейна выхода за пределы обычной геометрии. Гроссман дал ему учебник по неевклидовой, или римановой, геометрии.
Почти за сто лет до того как Эйнштейн начал разрабатывать свой принцип относительности, в 20-х годах XIX века немецкий математик Карл Фридрих Гаусс предпринял дерзкую попытку вырваться за пределы геометрии Евклида. Евклид сформулировал правила для линий и форм на плоскости. Именно эту геометрию преподают в современных школах, и именно она утверждает, что параллельные линии никогда не пересекаются, а две прямые могут пересечься всего один раз. Мы усваиваем, что сумма углов треугольника составляет 180 градусов, а у прямоугольника четыре прямых угла. Мы изучаем и применяем целый свод правил. Мы чертим фигуры на плоских листах бумаги и досках, и эти правила служат нам верой и правдой.
А как быть, если нас попросят взять искривленный лист бумаги? К примеру, если нужно нарисовать геометрические фигуры на поверхности гладкого баскетбольного мяча? Наши простые правила сразу перестают работать. Так, две линии, под прямым углом пересекающие экватор, должны быть параллельными. Они и в самом деле параллельны, но если двигаться вдоль этих линий, выясняется, что на одном из полюсов они пересекаются. То есть пересечение параллельных линий на сфере возможно. Можно пойти еще дальше и расположить эти линии таким образом, чтобы они пересекались друг с другом под прямым углом. В результате мы получим треугольник, сумма углов которого будет равна не 180, а 270 градусов. Правило, к которому мы привыкли, снова будет нарушено.
Более того, любая поверхность сложной формы — сфера, тор, смятый лист бумаги — будет обладать собственной геометрией с собственными правилами. Гаусс выработал геометрию для поверхностей произвольного вида. Он придерживался демократических взглядов: все поверхности следовало считать тождественными и выработать для работы с ними общий набор правил. Геометрия Гаусса является крайне мощным и сложным инструментом. Дальнейшей ее разработкой в 1850 годах занялся другой немецкий математик, Бернхард Риман. Он создал столь изощренную и сложную область математики, что даже порекомендовавший Эйнштейну обратить внимание в эту сторону Гроссман счел, что Риман зашел слишком далеко, чтобы плодами его труда мог воспользоваться физик. Геометрия Римана представляла собой хаос с множеством функций, обернутых в ужасные нелинейные конструкции, но это была крайне мощная штука. Освоив ее, Эйнштейн смог бы одолеть собственную теорию.
Новая геометрия была дьявольски трудной, но зайдя в тупик при попытке обобщить свою теорию относительности, Эйнштейн был вынужден приступить к ее освоению. Это была крайне сложная задача — все равно что выучить с нуля санскрит и написать на нем роман.
К началу 1913-го, освоив новую геометрию, Эйнштейн вместе с Гроссманом работал над двумя статьями, кратко описывающими его теорию. Одному из коллег он сказал: «К своему полному удовольствию, я уяснил, что такое гравитация». Теория, сформулированная языком новой математики, с написанным Гроссманом разделом, в котором особенности римановой геометрии объяснялись потенциально неосведомленному сообществу физиков, включала в себя прогнозы, предлагавшиеся Эйнштейном ранее. Эйнштейну удалось добиться одинакового вида всех законов физики в любой системе отсчета, а не только в инерциальной. Он смог описать электромагнитные явления и законы движения Ньютона так же, как это было сделано в первой, более ограниченной версии теории относительности. Более того, у него получилось адаптировать практически все законы физики, кроме закона всемирного тяготения. Новая версия этого закона, предложенная Эйнштейном и Гроссманом, не укладывалась в последовательность, подчиняющуюся общему принципу относительности. Не помогло даже призванное подкрепить физические догадки введение новой математики. Эйнштейн все равно был убежден, что движется в правильном направлении и для завершения теории достаточно устранить мелкие шероховатости. Но он ошибался. Новый подход к теории пространства-времени знаменовался все меньшим количеством прорывов и все более частыми пробуксовками.
В 1914 году жизнь Эйнштейна наконец вошла в колею. Из Берлина ему пришло приглашение возглавить только что созданный институт физики имени кайзера Вильгельма. Это дало достойный заработок и членство в Прусской академии наук. Эйнштейн попал на вершину европейского научного сообщества и получил возможность работать в окружении таких коллег, как Макс Планк и Вальтер Нернст. При этом ему не приходилось заниматься преподавательской деятельностью. Словом, он получил идеальную работу, в тот же самый период потерпев крах в личной жизни. Семье Эйнштейна надоели его скитания по Европе, и к месту нового назначения они не поехали. Жена Милева с сыновьями осталась в Цюрихе. После пяти лет жизни врозь в 1919 году они разведутся, и Эйнштейн начнет новую жизнь и новые отношения со своей кузиной Эльзой Левенталь. Они поженятся в 1919 году и проживут вместе до смерти Эльзы в 1936-м.
Эйнштейн прибыл в Берлин в начале Первой мировой войны и сразу попал, по его выражению, в «сумасшедший дом» немецкого национализма. Безумие охватило практически всех. Его коллеги собирались на фронт или занимались разработками нового оружия, такого как ужасающий иприт. В сентябре 1914-го был опубликован поддерживающий германское правительство манифест «К культурному миру». Подписанный девяносто тремя немецкими учеными, писателями, артистами и деятелями культуры, он был направлен против дезинформации, распространяемой о Германии. По крайней мере, так думали подписанты. Манифест утверждал, что немцы не несут ответственности за разразившуюся войну. Замалчивался факт, что Германия только что вторглась в Бельгию и разрушила город Левен. Вместо этого было написано: «Неправда, что наши солдаты посягнули на жизнь хотя бы одного бельгийского гражданина и его имущество». Манифест был вызывающим и скандальным, большая его часть была неправдой.
Эйнштейна происходящее шокировало. Будучи пацифистом и интернационалистом, он вступил в борьбу, подписав контрманифест «К европейцам». В нем Эйнштейн с горсткой коллег отмежевывались от «Манифеста девяносто трех», осуждая тех, кто его подписал, и умоляя «образованных людей из всех стран» бороться с разрушительной войной. Но обращение «К европейцам» было, по большому счету, проигнорировано. Остальной мир воспринимал Эйнштейна как еще одного немецкого ученого, поддержавшего документ девяносто трех, а значит, как врага. По крайней мере, так считалось в Англии.
Англичанин Артур Эддингтон был знаменит своими долгими велосипедными прогулками. В качестве меры своей выносливости он использовал число Е. Оно обозначало максимальное число дней, в которые он проезжал больше, чем Е миль. Сомневаюсь, что мое Е превосходит 5 или 6. Я проезжал шесть миль в день не более шести раз в жизни — я знаю, что это мизерная цифра. Когда Эддингтон умер, его число Е было равно 87, то есть он предпринял восемьдесят семь индивидуальных велосипедных выездов протяженностью более восьмидесяти семи миль. Уникальная выносливость и настойчивость позволили ему достичь выдающихся результатов во всех сферах жизни.
Эйнштейну пришлось бороться за право приступить к научной карьере, а Эддингтон легко проник в сердце английских академических кругов. Продвигая собственные идеи, Эддингтон бывал высокомерным, пренебрежительным, бескомпромиссно упрямым, но одновременно это был настойчивый ученый, практически никогда не отступавший ни перед чертовски сложными астрономическими наблюдениями, ни перед запутанной новой математикой. Он родился в набожной квакерской семье и с раннего возраста отлично успевал в школе. В шестнадцать лет он отправляется в Манчестер изучать математику и физику и в конце концов оказывается в Кембридже, где получает звание самого успевающего студента года, известное как «мистер Математик». Сразу после получения степени бакалавра он становится ассистентом в Королевской обсерватории и сотрудником Тринити-колледжа в Кембридже.
Кембридж относится к заведениям высшего эшелона, поэтому Эддингтон сразу оказался в компании гениальных ученых. Там был открывший электрон Джозеф Джон Томпсон, а также Альфред Норт Уайтхед и Бертран Рассел, соавторы «Принципов математики», ставших настоящей библией для специалистов в области логики. Со временем к ним присоединились Эрнест Резерфорд, Ральф Фаулер, Поль Дирак — все сливки физического общества XX века. Эддингтон хорошо вписался в коллектив. Проведя несколько лет в Гринвичской обсерватории в Лондоне, он вернулся в Кембридж. В тридцать один год он уже был назначен на престижную должность профессора астрономии и экспериментальной философии (Plumian Professor of Astronomy and Experimental Philosophy) в Кембридже. Также он получил должность директора расположенной на окраине Кембриджской обсерватории. Рядом с ней он и поселился вместе с матерью и сестрой, чтобы стать со временем ведущим специалистом по астрономии в Великобритании. Он проживет там до конца своих дней, принимая участие в жизни колледжа с ее официальными ужинами и степенными дискуссиями, регулярно посещая Королевское астрономическое общество для Демонстрации достигнутых результатов, а для проведения измерений и наблюдений за небом периодически путешествуя в отдаленные уголки мира.
Именно в одной из таких поездок Эддингтон узнал о новых взглядах Эйнштейна на природу силы тяжести. Предложенная концепция изгибающихся лучей уже привлекла внимание ряда астрономов, которые попытались провести измерения. Экспедиции отправились в разные страны — в Америку, Россию и Бразилию, — чтобы захватить нужный момент солнечного затмения и зафиксировать небольшое отклонение света далеких звезд. В Бразилии в процессе наблюдения за затмением Эддингтон встретил одного из таких астрономов, американца Чарльза Перрайна, и был крайне заинтригован его действиями. Поэтому после возвращения в Кембридж он решил познакомиться с идеями Эйнштейна.
После начала Первой мировой войны Эйнштейн был одним из немногих, кто выступал против волны фанатичного национализма, захватившей не только страну, но и его коллег. Ситуация приводила его в отчаяние. В издании The Observatory, которое было рупором британских астрономов, появился ряд недоброжелательных статей, призывающих к прекращению сотрудничества с немецкими учеными. Как кратко сформулировал профессор Оксфордского университета Герберт Тернер: «Можно снова принять Германию в международное сообщество, ослабив нормы международного права, или исключить ее, ужесточив эти нормы. Третьего варианта не существует». Ненависть ко всему немецкому была столь сильной, что предложение подать в отставку получил имеющий немецкие корни президент Королевского астрономического общества. На время войны были заморожены все контакты британских ученых с немецкими коллегами.
Эддингтон думал и вел себя по-другому. Будучи религиозным человеком, он горячо протестовал против войны. Вокруг активно насаждалось неприязненное отношение к немецкой интеллигенции, но он имел особое мнение. «Подумайте не о символической Германии, а о вашем бывшем друге, например профессоре X, — обращался он к коллегам, — назовите его дикарем, грабителем, убийцей детей и попробуйте ощутить ярость. У вас ничего не получится из этой нелепой затеи». Эддингтон не только высказывался в пользу немцев, он отказывался отправляться на фронт и вступать в бой. После того как некоторые его коллеги были отправлены на фронт и пали смертью храбрых, он стал агитировать против войны. Его «национальная важность» — для нации он был важнее в качестве астронома, чем в качестве пехотинца, — позволила ему прибрести нескольких друзей.
В Берлине, в окружении военной истерии, Эйнштейн в одиночку работал над окончательной версией своей теории. Все выглядело корректно, но для правильного оформления требовались дополнительные математические выкладки. И он отправляется в Геттингенский университет, впоследствии ставший «математической Меккой», для встречи с Давидом Гильбертом. Гильберт был колоссом, правившим миром математиков. Он преобразовал существующий подход, пытаясь сложить устойчивое формальное основание, на котором можно было бы строить все остальное. В математике не было места несогласованности. Все следовало выводить из базового набора принципов в соответствии с общепринятыми формальными правилами. Математически точные вещи считались истинными только при условии доказательства в соответствии с этими правилами. Позднее этот подход стали называть «программой Гильберта».
Гильберт собрал вокруг себя наиболее значимых математиков мира. Один из его коллег, Герман Минковский, показал Эйнштейну, как при помощи знаний, которые Эйнштейн еще несколько лет назад пренебрежительно называл «избыточным умственным багажом», записать специальную теорию относительности более элегантным математическим языком. Ученики и ассистенты Гильберта, такие как Герман Вейль, Джон фон Нейман и Эрнст Цермело, стали ведущими математиками XX века. У Гильберта и его группы в Геттингене были большие планы: они хотели провести аксиоматизацию физики, как это было сделано с математикой. Работу Эйнштейна Гильберт считал неотъемлемой частью своего проекта.
Во время короткого визита в Геттинген в июне 1915 года Эйнштейн читал лекции, а Гильберт делал заметки. Они бесконечно дискутировали по поводу отдельных деталей. Физика была сильной стороной Эйнштейна, математика — сильной стороной Гильберта. Но вперед они не продвинулись ни на йоту. По-прежнему с подозрением относящийся к математике и не очень разбирающийся в римановой геометрии Эйнштейн не смог до конца понять излагаемые Гильбертом технические детали.
После завершения этого казавшегося бесплодным визита Эйнштейн начал сомневаться в своей новой теории относительности. Он уже был осведомлен, что универсальной она не является: когда в 1913 году они с Гроссманом завершили работу над статьями, стало ясно, что закон всемирного тяготения в выдвинутую концепцию не вписывается. Ошибочными оказались и некоторые прогнозы. К примеру, теория предсказывала отклонение орбиты Меркурия в соответствии со сделанными почти пятьдесят лет назад наблюдениями Леверье, но практика показала, что Эйнштейн ошибся в два раза. Ему пришлось снова пересматривать свое уравнение.
Через три недели Эйнштейн решил отказаться от нового закона всемирного тяготения, который они разработали вместе с Гроссманом и который не подчинялся общему принципу относительности. Ему был нужен другой закон всемирного тяготения, который подобно остальным физическим законам был бы справедливым во всех системах отсчета. Кроме того, он хотел воспользоваться новой римановой геометрией, которой его научил Гроссман. Каждые несколько дней он вносил поправки в уже сделанную работу по формулировке закона, убирая часть допущений и одновременно вводя другие. Постепенно он избавлялся от некоторых мешавших ему продвигаться вперед физических предрассудков, все глубже и глубже погружаясь в новую для него математику. Он понял, что с верно служившей на протяжении его головокружительной карьеры физической интуицией следует быть осторожным, не давая ей заслонять более общую картину, вырисовывающуюся при помощи математики.
К концу ноября, наконец, стало ясно, что работа закончена. Эйнштейн сформулировал общий закон всемирного тяготения, согласующийся с общей теорией относительности. В пределах Солнечной системы этот закон хорошо описывался классической теорией тяготения Ньютона, как это, собственно, и должно было быть. Более того, он точно предсказывал установленную Леверье прецессию перигелия Меркурия. В соответствии с этой теорией искривление лучей света, проходящих рядом с тяжелым объектом, должно быть еще больше — в два раза больше величины, предсказанной при первом обдумывании теории в Праге.
Готовая общая теория относительности Эйнштейна предлагала совершенно новый подход к пониманию физики, заменивший господствовавший в течение веков подход Ньютона. Теория предлагала набор уравнений, которые впоследствии стали называть «уравнениями Эйнштейна». Хотя лежащая в их основе идея, связывающая уравнения Гаусса и Римана с силой тяжести, была красивой, или, как выразились бы физики, «элегантной», подробные уравнения производили впечатление полного хаоса. Фактически это был набор из десяти уравнений для десяти функций геометрии пространства и времени, нелинейных и переплетенных между собой таким образом, что решить отдельное уравнение было попросту невозможно — решались они только вместе. При лобовом подходе такая перспектива пугала. Тем не менее эта система уравнений обещала очень много, так как ее решение позволяло предсказывать протекание происходящих в окружающем мире процессов, от полета пули и падающего с дерева яблока до движения планет в Солнечной системе. Казалось, что решение уравнений Эйнштейна дало ключ к секретам Вселенной.
25 ноября 1915 года Эйнштейн представил свои уравнения Прусской академии наук в виде небольшой трехстраничной работы. Его версия закона всемирного тяготения радикально отличалась от всех предлагавшихся ранее. По сути, Эйнштейн утверждал, что явление, которое мы называем силой тяжести, — не что иное, как движение объектов в геометрии пространства-времени. Массивные объекты влияют на эту геометрию, искривляя пространство и время. Эйнштейн наконец получил действительно общую теорию относительности. Но по этой дороге он шел не в одиночку. Обдумывая геттингенские лекции Эйнштейна, Гильберт предпринял собственную попытку описания гравитационных взаимодействий. И независимо от Эйнштейна пришел к тем же самым гравитационным законам. 20 ноября, за пять дней до выступления Эйнштейна в Берлинской академии, он представил свои результаты в Королевском научном обществе в Геттингене. В итоге создалось впечатление, что Гильберт опередил Эйнштейна.
Несколько недель после доклада отношения Гильберта и Эйнштейна были крайне напряженными. В письмах к Эйнштейну Гильберт утверждал, что не помнит ничего из лекций, в которых Эйнштейн рассказывал про свои попытки построения уравнений гравитации, и к Рождеству Эйнштейн согласился с тем, что в данном случае речь о нечестной игре не шла. Письмо Гильберту Эйнштейн начал с фразы «у нас произошла размолвка», но он смирился с происшедшим настолько, что написал: «Я вновь думаю о вас с ничем не замутненным дружеским чувством…» Они и в самом деле остались друзьями и коллегами, так как Гильберт больше никогда не заявлял о правах на фундаментальный труд Эйнштейна. И до самой своей смерти называл полученные ими обоими уравнения «уравнениями Эйнштейна».
Работа Эйнштейна шла к завершению. Постепенно поддаваясь силе математики, он смог получить окончательные версии уравнений. С этого момента математика стала его проводником наряду с мысленными экспериментами. Эйнштейна потрясла математическая красота готовой теории. Про уравнения он говорил как про «наиболее ценное открытие в моей жизни».
От своего друга, голландского астронома Виллема де Ситтера, Эддингтон получал оттиски статей из Праги, затем из Цюриха и, наконец, из Берлина. Его крайне заинтриговал совершенно новый подход к рассмотрению гравитации в рамках сложного математического языка. Он был астрономом, и его обязанности сводились к измерениям и наблюдениям с последующими попытками интерпретации результатов, тем не менее он был готов приступить к изучению использовавшейся Эйнштейном для описания своей теории римановой геометрии. Игра явно стоила свеч, ведь Эйнштейн сделал ряд достаточно четких прогнозов, позволяющих проверить его теорию практикой. Идеальной возможностью подобной проверки явилось ожидаемое 29 мая 1919 года солнечное затмение, и было очевидно, что команду наблюдателей возглавит именно Эддингтон.
Существовала, однако, одна, но крайне серьезная проблема. Европу охватил пожар войны, Эддингтон был пацифистом, а Эйнштейн состоял в сговоре с врагом. По крайней мере, коллеги Эддингтона пытались склонить его к этому мнению. В 1918 году военный конфликт достиг своего апогея, возрос риск полного поглощения англичан и французов немецкой армией, что привело к новой волне мобилизации. Эддингтона призвали на фронт, но у него были совсем другие планы.
Став горячим сторонником новой теории гравитационных взаимодействий, Эддингтон столкнулся с неприязнью коллег. В попытке откреститься от немецкой науки как от не имеющей ценности один из них заявил: «Мы пытались думать, что чрезмерные и неправомерные притязания Германии обусловлены временным помутнением на почве недавнего экономического роста. Но подобные примеры заставляют задуматься, не может ли печальная истина иметь более глубокие причины». И несмотря на то что королевский астроном Фрэнк Дайсон поддерживал назначение Эддингтона главой экспедиции, за отказ отправляться на фронт его хотели отправить в тюрьму. Для рассмотрения взглядов Эддингтона в Кембридже был созван правительственный трибунал. В процессе слушания враждебность по отношению к Эддингтону нарастала. В освобождении было бы отказано, если бы не вмешательство Фрэнка Дайсона. Он объявил, что Эддингтон является ключевой для экспедиции фигурой, кроме того, «в сложившихся условиях наблюдать за затмением будет крайне немногочисленная группа. Профессор Эддингтон имеет исключительную квалификацию в подобных наблюдениях, и я надеюсь, что суд даст ему разрешение взяться за эту задачу». Затмение заинтересовало суд, и Эддингтона освободили в связи с «государственной необходимостью». Увлечение теорией Эйнштейна спасло его от отправки на фронт.
Эта теория предсказывала отклонение света далеких звезд при прохождении рядом с массивным телом, например с Солнцем. Эксперимент Эддингтона сводился к наблюдению за звездным скоплением Гиады два раза в год. Сначала предполагалось аккуратно измерить положение звезд в Гиадах ясной ночью, когда ничто не мешает наблюдениям и ничто не влияет на лучи света. Затем эксперимент требовалось повторить с Солнцем на переднем плане. Эту операцию следовало проделать во время полного солнечного затмения, когда практически весь яркий свет Солнца блокируется Луной. 29 мая 1919 года Гиады находились справа от Солнца, что создавало прекрасные условия для измерений. Сравнение результатов двух экспериментов — с Солнцем и без него — должно было показать, возникает ли отклонение. И если бы оно оказалось равным примерно одной четырехтысячной градуса, или 1,7 угловой секунды, правота теории Эйнштейна была бы доказана. Вот такая простая и понятная задача.
Но на самом деле все было далеко не так просто. Те немногочисленные места, откуда можно было наблюдать полное затмение, находились далеко друг от друга. Для установки оборудования астрономам приходилось отправляться в дальние путешествия. Эддингтон вместе с Эдвардом Коттингемом из Гринвичской обсерватории начали работу на острове Принсипи. Резервная команда из двух астрономов, Эндрю Кром-мелина и Чарльза Девидсона, отправилась в деревушку Собраль, расположенную в сердце северо-восточного региона Бразилии — бедной пыльной области недалеко от экватора.
Принсипи представляет собой маленький остров в Гвинейском заливе. Это португальская колония, известная своим какао. Покрытый пышной растительностью остров в жарком, влажном, сдобренном тропическими штормами климате разделен на несколько больших плантаций, или, как их называют, rogas, появившихся там, где португальские землевладельцы использовали труд местных жителей для обработки земли. В течение десятилетий британской корпорацией Cadbury отсюда поставлялись какао-бобы. В начале XX века обвиненные в использовании рабского труда плантации потеряли свои контракты, что разрушило экономику острова. На момент прибытия туда Эддингтона остров был практически предан забвению.
Эддингтон установил аппаратуру в удаленном уголке Roca Sundy, где она находилась под присмотром землевладельца. Коротая время за игрой в теннис на единственном корте острова, он ждал дня затмения, молясь, чтобы работе не помешали раз за разом повторяющиеся ливни и серое небо. Коттингем подготовил телескоп, надеясь, что тепло не приведет к искажению изображений.
В утро затмения шел сильный дождь, небо было совершенно серым, но менее чем за час до наступления завершающей фазы стало светлеть. Увидеть Солнце Эддингтону и Коттингему удалось, когда затмение уже шло полным ходом. К 14:15 небо полностью очистилось, что позволило провести измерения — было получено шестнадцать фотопластин со снимками Солнца, на заднем плане которого проглядывало скопление Гиады. К концу затмения на небе не было ни облачка. Эддингтон телеграфировал Фрэнку Дайсону: «Через облака. Надеюсь».
Возможно, именно сильная облачность в начале эксперимента помогла получить приемлемые результаты. В бразильской деревне Собраль был жаркий и ясный день, что позволило наблюдать затмение с самого начала. Окруженные ликующими местными жителями, жаждущими принять участие в историческом событии, Кроммелин и Девидсон смогли получить девятнадцать пластин в дополнение к шестнадцати пластинам Эллингтона и Коттингема. В восторге они послали телеграмму: «Затмение. Великолепно». В тот момент они не понимали, что прекрасные условия наблюдения и жаркая погода фактически сорвали эксперимент. Жара настолько деформировала аппаратуру, что измерять фотопластинки было уже бесполезно. И только резервные наблюдения с меньшего телескопа позволили экспедиции внести в эксперимент свою лепту.
Быстро вернуться домой астрономы не могли, поэтому к анализу пластинок приступили только в конце июля. Из шестнадцати предоставленных Эддингтоном снимков только на двух оказалось достаточное для корректного измерения отклонения количество звезд. В результате получили отклонение в 1,61 угловой секунды с погрешностью в 0,3 угловой секунды, что согласовывалось с предсказанной Эйнштейном цифрой 1,7 угловой секунды. Результаты анализа бразильских пластинок вызвали тревогу. Отклонение составило всего 0,93 угловой секунды, что совсем не совпадало с релятивистскими прогнозами, зато укладывалось в теорию Ньютона. Впрочем, это были пластинки, пострадавшие от тепла. Анализ резервных наблюдений из деревни Собраль, полученных при помощи меньшего телескопа, показал, что отклонение составляет 1,98 угловой секунды, что всего на 0,12 угловой секунды превысило предсказанное Эйнштейном число.
6 ноября 1919 года команда исследователей отчиталась о результатах на совместном заседании королевского и астрономического обществ. В серии выступлений под руководством Фрэнка Дайсона члены экспедиции представили аудитории, состоящей из их коллег, различные измерения. После того как были приняты во внимание проблемы, с которыми столкнулась экспедиция в деревне Собраль, докладчики продемонстрировали, что результаты измерений блестяще подтверждают предсказания Эйнштейна.
Президент Королевского общества Джозеф Джон Томсон отозвался об измерениях так: «Это самый важный результат, полученный в теории тяготения после Ньютона». Он добавил: «Если таким образом поддерживается справедливость рассуждений Эйнштейна — и были пройдены две серьезные проверки в рамках уточнения перигелия Меркурия и настоящего затмения, — то данный результат относится к одному из величайших достижений человеческой мысли».
На следующий день после собрания в Берлингтон-хаузе слова Томпсона появились в лондонской газете Times. Рядом с множеством заголовков, посвященных годовщине перемирия и провозглашавших «Славу погибшим», располагалась статья, озаглавленная «Революция в науке. Новая теория Вселенной. Идеи Ньютона опровергнуты». В ней описывались результаты экспедиций. Новости и мнения по поводу новой теории Эйнштейна и экспедиции Эддингтона распространялись по англоязычным странам со скоростью лесного пожара. К 10 ноября информация достигла Америки, и в газете New York Times появились статьи под броскими заголовками «Весь свет скривился в небесах», «Триумф теории Эйнштейна». Была даже статья с витиеватым названием «Звезды не там, где кажутся, и не там, где они должны быть по расчетам, но для волнений нет причин».
Рискованная игра Эддингтона принесла плоды. Изучив и проверив новую общую теорию относительности Эйнштейна, он превратился в пророка новой физики. С этого момента он стал одним из немногих ученых мужей, на взгляды которых полагались при обсуждении нового релятивизма. Его мнение о том, как следует интерпретировать или разрабатывать теорию Эйнштейна, спрашивали чаще, чем кого бы то ни было.
И разумеется, блестящая экспедиция Эддингтона превратила Эйнштейна в суперзвезду. Его выводы изменили жизнь Эйнштейна и обеспечили общей теории относительности на редкость высокий уровень популярности и славы, по крайней мере на некоторое время. Ньютон был сброшен с трона, который он занимал в течение сотен лет. Теория Эйнштейна была непонятной и формулировалась математическим языком, известным крайне небольшому кругу людей, но она с честью выдержала устроенные Эддингтоном испытания. Кроме всего прочего, Эйнштейн перестал быть врагом. Несмотря на окончание войны, неприязнь к немецким ученым все еще существовала, но Эйнштейна она не касалась. Стало широко известно, что он не подписывал манифест 93-х, более того, он был не немцем, а швейцарским евреем. Как Эйнштейн выразился в статье Times вскоре после исторического доклада Эддингтона в Королевском астрономическом обществе: «В Германии меня называют немецким ученым, а для Англии я являюсь швейцарским евреем. Если же потребуется вызвать ко мне неприязнь, характеристики поменяются местами, и для Германии я стану швейцарским евреем, а для Англии — немецким ученым».
Из имеющего склонность к высокомерию неизвестного служащего патентного бюро, которым восхищались несколько узких специалистов, Эйнштейн превратился в культурный символ и стал получать приглашения прочитать лекции в Америке, в Японии, в странах Европы. А его общая теория относительности, впервые увидевшая свет в процессе простого мысленного эксперимента в бернском офисе, сформировала совершенно новый подход в физике. В релятивистской физике математика нашла твердую поддержку, породив набор сложных и красивых уравнений, готовых разлететься по миру. Пришло время выяснить, что эти уравнения означают.
Глава 3.
Корректная математика, отвратительная физика
Уравнения поля Эйнштейна представляют собой набор сложных связанных друг с другом функций, тем не менее их может решить любой человек, обладающий необходимыми навыками и настойчивостью. В следующие за открытием Эйнштейна десятилетия советский математик и метеоролог Александр Фридман и бельгийский католический священник Жорж Леметр сформировали на основе уравнений общей теории относительности радикально новый взгляд на Вселенную. Сам Эйнштейн долгое время его не разделял. Но именно благодаря их трудам теория получила новую жизнь, неподконтрольную Эйнштейну.
В 1915 году, сформулировав уравнения поля, Эйнштейн хотел решить их самостоятельно. Такое решение, позволяющее точно смоделировать всю Вселенную, казалось хорошей отправной точкой. В 1917 году, сделав несколько допущений, он предпринял первые шаги в этом направлении. В его теории поведение пространства определялось распределением материи и энергии. Для моделирования целой Вселенной требовалось учесть всю входящую во Вселенную материю и энергию. Простейшим и наиболее логичным было сделанное при первой попытке решения предположение о равномерном распределении материи и энергии в пространстве. Этим Эйнштейн просто продолжал рассуждения, в XVI веке преобразовавшие астрономию. Тогда Николай Коперник сделал смелое предположение, что Земля не является центром Вселенной, а на самом деле вращается вокруг Солнца. Эта «революция Коперника» с течением времени делала наше место в космосе все более незначительным. К середине XIX века стало ясно, что даже Солнце не имеет особой важности и располагается в каком-то непонятном месте на одном из спиральных рукавов Млечного пути нашей галактики. Взявшись за решение своих уравнений, Эйнштейн расширил допущение о том, что любое место во Вселенной должно выглядеть более или менее одинаково, доведя его до логического следствия: предпочтительного места или выделенного центра существовать не должно.
Предположение о наличии во Вселенной равномерно распределенной в пространстве материи упростило уравнения, но привело к странным последствиям. Из уравнений вытекало, что такая Вселенная должна расширяться. В какой-то момент все равномерно распределенные фрагменты энергии и материи начнут двигаться друг относительно друга упорядоченным образом. В крупном масштабе ничто не остается статичным. В конечном счете все может упасть на себя же, утянув за собой пространство-время и приведя к коллапсу Вселенной в целом.
В 1916 году общие представления астрономов о космосе находились в лучшем случае на уровне церковно-приходской школы. Имелась достаточно подробная карта Млечного пути, но о том, что находится за его пределами, не было ни малейшего представления. Ни у кого не было данных о том, как ведет себя Вселенная в целом. Все наблюдения показывали небольшое движение звезд, но эти перемещения не были резкими и, разумеется, не производили впечатление организованного и систематического явления. Эйнштейну, как и для большинству людей, небо казалось статичным. Никаких доказательств сжатия или расширения Вселенной не было. Подчинившись своей физической интуиции и предвзятому мнению, Эйнштейн нашел способ убрать из теории расширяющуюся Вселенную. Он ввел в уравнения новый постоянный член. Космологическая постоянная была призвана стабилизировать Вселенную, в точности компенсируя все ее содержимое. Вся энергия и материя, которую Эйнштейн равномерно распределил по Вселенной, пыталась затянуть в себя пространство-время, а космологическая постоянная выталкивала пространство-время назад, препятствуя коллапсу. Работа на сжатие и расширение сохраняла хрупкое сбалансированное состояние Вселенной, фиксированное и статичное, как хотелось видеть Эйнштейну.
Отступление от идеи расширения Вселенной сильно усложнило теорию Эйнштейна. Как он впоследствии признавал: «Введение этой постоянной в изрядной степени лишило теорию ее логической простоты». Одному другу он сказал, что эта постоянная «сделала с теорией гравитации нечто, угрожавшее привести его в сумасшедший дом». Но свою роль она исполняла.
В период, предшествующий открытию теории относительности, Эйнштейн активно переписывался с голландским астрономом из Лейденского университета Виллемом де Ситтером. Живший в период Первой мировой войны в нейтральной стране, де Ситтер сыграл важную роль в передаче в Англию информации о теории Эйнштейна, где Эддингтон смог подробно ее изучить; именно благодаря де Ситтеру в 1919 году началась подготовка к экспедиции для наблюдения за солнечным затмением.
Будучи математиком по образованию, де Ситтер имел необходимые для решения уравнений Эйнштейна навыки. Сразу после получения от Эйнштейна проекта с описанием статической Вселенной, появившейся из изуродованных космологической постоянной уравнений, он понял, что решение Эйнштейна не было единственно возможным. И показал, что можно сконструировать Вселенную, не содержащую ничего, кроме космологической постоянной. Он предложил реалистичную модель Вселенной, включающую в себя звезды, галактики и другую материю, но в настолько малом количестве, что никак не влияло на пространство-время и не могло скомпенсировать космологическую постоянную. В результате геометрия Вселенной де Ситтера полностью определялась этой постоянной.
Вселенные как Эйнштейна, так и де Ситтера были статичными и не расширялись, в точности соответствуя предвзятым представлениям Эйнштейна. Но модель де Ситтера обладала странным свойством, которое он отметил в своих работах. Свою Вселенную, как и ранее Эйнштейн, он построил таким образом, чтобы пространство-время оказалось статичным. Геометрия этой Вселенной, например кривизна пространства в каждой точке, со временем не менялась. Но стоило поместить туда несколько звезд и галактик — что в рамках мысленного эксперимента вполне разумно, ведь настоящая Вселенная ими наполнена, — как они начинали согласованно отодвигаться от центра. Несмотря на совершенно статичную, не меняющуюся со временем геометрию Вселенной де Ситтера, населяющие ее объекты статичными уже не являлись.
Итак, через несколько недель после получения от Эйнштейна работы с описанием статичной Вселенной де Ситтер написал собственное решение и отправил его Эйнштейну. Последний признал математическую корректность предложенной модели, но особого впечатления она на него не произвела. Еще Эйнштейну не понравилось полное отсутствие планет и звезд. Он считал всю эту материю крайне существенной, позволяющей нам понять, что мы движемся или разворачиваемся. Только рассматривая свое положение относительно небесных светил, можно определить собственное ускорение, замедление или вращение. Они дают опорную точку для применения всех законов физики. Без этой материи чутье Эйнштейна не работало. Своим раздражением по поводу лишенного материи мира он поделился с Паулем Эренфестом: «Допускать такую возможность не имеет смысла». Тем не менее, несмотря на ворчание Эйнштейна, через несколько лет с момента своего появления общая теория относительности породила две разные по своей сути статические модели Вселенной.
В то время как Эйнштейн работал над общей теорией относительности, Александр Фридман бомбил Австрию, будучи летчиком русской армии. В 1914 году он записался в добровольцы и сначала воевал в подразделении воздушной разведки на северном фронте, а потом перевелся во Львов. Некоторое время казалось, что русские почти одолели врага. Совершая регулярные ночные вылеты над Южной Австрией, он вместе со своими товарищами пытался подчинить окруженные русской армией города. Русские брали под свой контроль город за городом.
Фридман не походил на других летчиков. Его товарищи бросали бомбы на глаз, примерно прикидывая место их приземления, он же старался обеспечить точность попаданий. Фридман вывел формулу, предсказывающую, где в зависимости от скорости полета, а также скорости и веса бомбы нужно ее бросать. В результате его бомбы всегда попадали куда нужно. За храбрость на поле боя его наградили орденом Святого Георгия.
Фридман, до 1914 года специализировавшийся в чистой и прикладной математике, имел талант к вычислениям. Он часто принимался за задачи, точное решение которых до появления компьютеров было крайне сложным. Из уравнений он бесстрашно убирал все, кроме самого необходимого, везде, где можно, устраняя избыточную путаницу и избавляясь от любого дополнительного бремени. Если даже после этого уравнение не решалось, он рисовал графики, приближенно показывающие правильные результаты. С одинаковым энтузиазмом он брался за любые задачи, от предсказаний погоды до поведения циклонов, от течения жидкостей до траекторий падающих бомб. Трудности его не пугали.
В начале XX века Россия менялась. Монархия переживала кризис за кризисом, не в силах бороться с растущим недовольством среди сильно обедневшего населения на фоне увеличивающегося хаоса в еще более нестабильной Европе. Фридмана воодушевляла возможность стать частью происходящих вокруг социальных изменений. Еще гимназистом он вместе с сокурсниками принимал участие в потрясших страну во время первой русской революции 1905 года выступлениях учащихся. Он выделялся своими способностями среди студентов последних курсов Санкт-Петербургского университета, а во время войны был одним из лучших солдат, принимая участие в вылетах и бомбометании, изучая воздухоплавание и разрабатывая промышленные установки для производства навигационных инструментов.
После войны Александр Фридман обосновался в Петрограде (позднее переименованном в Ленинград), работая преподавателем. «Релятивистский цирк», как его называл Эйнштейн, докатился и до России. Заинтригованный странными и чарующими математическими выкладками, Фридман решил бросить все свои грандиозные способности на решение Уравнений Эйнштейна. Как и Эйнштейн, Фридман разрубил сложный узел уравнений предположением, что в большом Масштабе Вселенная проста, материя в ней распространена Равномерно, а геометрия пространства может быть описана всего одним числом — его кривизной. Эйнштейн утверждал, что это число раз и навсегда зафиксировано, обеспечивая тонкую грань между введенной им космологической постоянной и плотностью распределенной в пространстве материи в виде звезд и планет.
Полученные Эйнштейном результаты Фридман проигнорировал и начал все с нуля. Изучая влияние материи и космологической постоянной на геометрию Вселенной, он столкнулся с удивительным фактом: кривизна пространства меняется со временем. Разбросанная по Вселенной в виде звезд и галактик материя может привести к тому, что пространство свернется в ноль. Выраженная положительным числом космологическая постоянная призвана раздвигать пространство, заставляя его расширяться. Эйнштейн сбалансировал оба этих эффекта — сжатие и растяжение — таким образом, чтобы пространство стало статичным. Но с точки зрения Фридмана, подобное решение представляло собой частный случай. Общее же решение сводилось к тому, что Вселенной приходилось меняться, сжимаясь или расширяясь в зависимости от того, что именно — материя или космологическая постоянная — играло ведущую роль.
В 1922 году Фридман опубликовал статью «О кривизне пространства», в которой демонстрировалось, что Вселенные Эйнштейна и де Ситтера представляют собой частные случаи широкого диапазона доступных вариантов поведения. Собственно, наиболее общие решения были представлены для сжимающих или расширяющихся Вселенных. У моделей определенного класса расширение могло сменяться сжатием, приводя к бесконечной последовательности циклов. Результаты Фридмана освободили космологическую постоянную от обязанности сохранять статичность Вселенной. В отличие от исходной модели Эйнштейна теперь данную константу стало невозможно связать с каким-то определенным значением. 3 заключение Фридман снисходительно написал: «Космологическая постоянная не определена… так как это произвольная константа». Отказавшись от выдвинутого Эйнштейном требования статичности Вселенной, Фридман продемонстрировал, что космологическая постоянная не оказывает никакого влияния на различные явления. Если Вселенная меняется, нет нужды усложнять теорию вводом дополнительного случайного фактора.
Эта статья стала большой неожиданностью. Фридман ничего не обсуждал с Эйнштейном, не слушал его лекций в Прусской академии наук. Он был человеком со стороны, захваченным поднявшейся после экспедиции Эддингтона волной всеобщей эйфории. Как специалист в первую очередь в области математической физики, Фридман везде применял те же самые навыки, при помощи которых он изучал падение бомб и изменения погоды. И получил результат, вступивший в противоречие с интуитивными озарениями Эйнштейна.
Эйнштейну возможность меняющейся Вселенной представлялась абсурдной. При первом чтении работы Фридмана он отказывался признавать, что его теория может поддерживать подобные вещи. Эйнштейн загорелся идеей доказать неправоту Фридмана. Он тщательно изучил его работы и нашел, как ему показалось, фундаментальную ошибку. После ее исправления расчеты Фридмана стали показывать картину статической Вселенной, в точности в соответствии с предсказаниями Эйнштейна. И Эйнштейн поторопился опубликовать заметку, в которой утверждал, что работа Фридмана «значима» как подтверждение постоянства и неизменности Вселенной.
Заметка сильно обидела Фридмана. Он был уверен в правильности своих выкладок и в том, что Эйнштейн сам ошибся в расчетах. Он написал письмо, разъясняющее Эйнштейну его ошибку, которое заканчивалось так: «Если вы сочтете представленные здесь вычисления корректными, будьте так добры, сообщите это редакторам журнала Zeitschrift fr Physik». Отправив свое послание в Берлин, Фридман надеялся на быструю реакцию Эйнштейна.
Эйнштейн мог вообще не получить это письмо. Его слава привела к бесконечной цепи семинаров и конференций, заставляя путешествовать по всему миру от Голландии и Швейцарии до Палестины и Японии и препятствуя возвращению в Берлин, где пылилось письмо Фридмана. И только случайная встреча в Лейденской обсерватории с коллегой Фридмана позволила Эйнштейну узнать о том, что в Берлине его ждет письмо. И только спустя шесть месяцев Эйнштейн опубликовал поправку к своим исправлениям статьи Фридмана, признав правомерность основных результатов и согласившись, что для Вселенной «возможны меняющиеся со временем решения». И в самом деле, в общей теории относительности развитие Вселенной вполне допустимо. Тем не менее, по мнению Эйнштейна, все сделанное Фридманом лишь показало наличие в теории Эйнштейна решений, приводящих к меняющейся Вселенной. Эйнштейн считал, что это были не более чем математически расчеты на базе его теории. И предвзято продолжал верить в статичность Вселенной.
Фридман получил известность как человек, внесший поправки в результаты великого ученого. Несмотря на наличие аспирантов, способных развить его идеи, и на то, что сам он продолжал предавать работы Эйнштейна гласности на территории Советского Союза, Фридман вернулся к метеорологии. В 1925 году в возрасте тридцати семи лет он умер от брюшного тифа, которым заразился в Крыму. На несколько лет его модель развивающейся Вселенной была позабыта.
С математикой и религией Жорж Леметр познакомился в юном возрасте. Он хорошо решал уравнения и изобретал новые красивые разгадки предлагаемых в школе математических головоломок. Поступив в иезуитский колледж в Брюсселе, он начал изучать горное дело и занимался этим до призыва на фронт в 1914 году. В момент вторжения немцев в Бельгию, когда Эйнштейн и Эддингтон вовсю агитировали за мир, Жорж Леметр воевал на передовой. Немцы разрушили город Лувен, возмутив своим поступком международное сообщество, что привело к печально известному «Манифесту девяносто трех», сильно навредившему научным связям между Англией и Германией. Леметр был образцовым солдатом, прошедшим по карьерной лестнице от простого артиллериста до офицера. Как и Александр Фридман, он применял свои способности для решения сложных задач в области баллистики. После окончания войны Леметр был награжден орденом за храбрость.
Бойня, свидетелем которой он стал на фронте, разрушительное действие газообразного хлора и окружающая жестокость оказали на него сильное влияние. После действительной военной службы Леметр не только возвращается к изучению физики и математики, но и поступает в 1920 году в семинарию Святого Румольда в Малине, а в 1923 году принимает сан священника. До конца своих дней Леметр будет очарован математикой и останется верным служителем католической Церкви, увенчав свою карьеру президентством в Папской академии наук. Священник-ученый, занявшийся решением Уравнений Вселенной.
Еще в университете Лувена Леметра привлекала общая теория относительности Эйнштейна, по которой он проводил семинары и писал небольшие обзоры. Часть 1923 года он провел в Англии, в Кембридже, в доме для католических духовных лиц, сотрудничая с Эддингтоном. Последний познакомил Леметра с основами теории относительности, предоставив место в первом ряду в разворачивающемся поиске истинной теории Вселенной. Эддингтон считал Леметра «крайне одаренным студентом, быстро схватывающим и проницательным, обладающим недюжинными математическими способностями». После переезда в 1924 году в Кембридж в штате Массачусетс Леметра в основном заботила нерешенная проблема точного моделирования Вселенной. Он углубился в нее с таким же рвением, как и в работу над своей докторской диссертацией в Массачусетском технологическом институте.
Когда в 1923 году Леметр обратился к космологии, в мире все еще рассматривались модели Эйнштейна и де Ситтера. Это были единственные математические модели, полученные из уравнений Эйнштейна, при этом они не были подтверждены никакими наблюдениями. Развивающаяся Вселенная Александра Фридмана ни на что не повлияла, так как предубеждение Эйнштейна против подобной модели имело такой вес, что никто не осмеливался ему противоречить. Поэтому в соответствии с преобладающими взглядами Вселенная оставалась статичной, хотя Эддингтона заинтересовала модель де Ситтера, в которой звезды и галактики удалялись от центра Вселенной. Де Ситтер утверждал, что одна из характеристик его Вселенной доступна для наблюдений. Удаленные объекты будут выделяться на общем фоне, так как свет от них окрасится в красный цвет.
Свет можно представить в виде набора волн с разной длиной, соответствующих различным состояниям энергии. Красному свету соответствует большая длина волны и более низкое энергетическое состояние, чем расположенному на другом конце спектра синему. Звезды, галактики и другие яркие объекты испускают набор таких волн, некоторые обладают большей энергией, чем другие. Де Ситтер обнаружил, что свет любого удаленного объекта смещается в красную сторону спектра, создавая впечатление большей длины волны й более низкой энергии, чем у аналогичных близкорасположенных объектов. Чем сильнее удален объект, тем более красным является его свечение. Поиск подобного явления в реальной Вселенной был гарантированным способом проверки жизнеспособности модели де Ситтера.
Эффект красного смещения показывал, что с моделью де Ситтера не все ясно. Вместе с Германом Вейлем, одним из геттингенских учеников Давида Гильберта, Эддингтон более подробно исследовал решение де Ситтера и обнаружил, что при распределении звезд или галактик по всему пространству-времени существует тесное линейное соотношение между красным смещением и расстоянием до звезды или галактики. Красное смещение объекта, расположенного от Земли в два раза дальше другого объекта, оказывается в два раза сильнее. Этот принцип стал известен как эффект де Ситтера.
Когда в 1924 году Леметр внимательно исследовал Вселенную де Ситтера и выводы Эддингтона и Вейля, он обнаружил в уравнениях необычную деталь. Свою теорию де Ситтер формулировал, взяв за основу статическую Вселенную со странным свойством: она обладала центром, причем для помещенного в этот центр наблюдателя существовал горизонт, за которым ничего нельзя было увидеть. Это шло вразрез с основным предположением Эйнштейна об эквивалентности всех мест во Вселенной. После того как Леметр убрал из модели горизонт и сделал все точки равноправными, оказалось, что Вселенная де Ситтера ведет себя совсем по-другому. При более простом взгляде на Вселенную, предложенном Леметром, кривизна пространства менялась со временем, а геометрия эволюционировала таким образом, что точки пространства разбегались друг от друга. Это объясняло эффект де Ситтера.
Леметр, как и Фридман за пару лет до него, столкнулся с расширяющейся Вселенной. Но в отличие от выкладок Фридмана, открытая им связь расширения Вселенной и красного смещения допускала проверку путем наблюдений.
Леметр пошел в своем анализе дальше и стал искать дополнительные решения. К его удивлению, оказалось, что статические модели, продвигаемые Эйнштейном и де Ситтером, представляли собой не просто частные случаи, а почти отклонения от теории пространства-времени Эйнштейна. Если модель де Ситтера можно было перестроить в развивающуюся Вселенную, то модель Эйнштейна страдала от нестабильности, способной быстро нарушить весь порядок. При минимальном дисбалансе между материей и космологической постоянной Вселенная Эйнштейна начинала быстро расширяться или сжиматься, уходя от так желаемого Эйнштейном равновесного состояния. Более того, оказалось, что модели Эйнштейна и де Ситтера входят в огромное семейство моделей, все из которых со временем расширяются.
Эффект де Ситтера не прошел среди астрономов незамеченным. На самом деле еще в 1915 году, то есть до тоо как де Ситтер предложил свою модель и ее отличительную особенность, американский астроном Весто Слайфер измерил красное смещение разбросанных по небу световых пятен, известных как туманности. Для этого он измерял спектры туманностей. Элементы, из которых состоит испускающий свет объект, будь это электрическая лампочка, раскаленный кусок угля, звезда или туманность, продуцируют уникальный набор волн разной длины. При измерении спектрометром эти волны дают набор линий, напоминающий штрихкод. Именно он и называется спектром объекта.
Воспользовавшись оборудованием Ловелловской обсерватории в городе Флагстафф, штат Аризона, Слайфер измерил спектры рассеянных по небу туманностей. Затем он сравнил ля со спектрами, которые получились бы при измерении свечения объектов, состоящих из аналогичных элементов, если бы эти объекты располагались непосредственно перед его носом. (Спектры элементов, составляющих туманность, уже были хорошо известны, так что повторять эксперимент ему не пришлось.) И оказалось, что результаты измерений были смещены относительно ожидаемого. Каждый штрих-код демонстрировал смещение влево или вправо.
Сдвиг спектра указывал на факт движения измеряемых объектов. При удалении источника света от наблюдателя кажется, что длины световых волн увеличиваются. В итоге свет выглядит более красным. И наоборот, если источник света движется на наблюдателя, его спектр сдвигается в сторону более коротких волн и он выглядит более синим. Это явление называется эффектом Доплера, и, скорее всего, вы слышали о нем в связи со звуковыми волнами. Представьте быстро едущую карету скорой помощи — звук ее сирены будет меняться по мере движения, становясь более низким по мере удаления от вас. Аналогичный эффект позволил Слайферу понять, как именно перемещаются объекты во Вселенной.
В целом полученные результаты Слайфера не удивили. Как он и ожидал, объекты перемещаются под действием гравитационного притяжения других объектов. После его первых измерений создалось ощущение, что одна из наиболее ярких туманностей, туманность Андромеды, движется по направлению к нам: ее свет демонстрировал фиолетовое смещение. Однако методичный Слайфер этим не ограничился и записал спектры еще ряда туманностей. Результат его озадачил — казалось, что почти все туманности от нас удаляются. Это была тенденция.
В 1924 году молодой шведский астроном Кнут Лундмарк взял данные Слайфера и сделал приблизительный подсчет расстояния до различных туманностей. Определить точные расстояния ему не удалось, но тенденция прослеживалась: чем дальше располагалась та или иная туманность, тем быстрее она двигалась.
И вот в 1927 году аббат Леметр заново вывел тенденцию, которая проявилась в модели де Ситтера и которую зафиксировал при своих наблюдениях Слайфер. Его расчеты показали, что измерения красных смещений и расстояний до далеких галактик должны выявить линейную зависимость между этими параметрами. Если откладывать расстояние по горизонтальной оси, а красное смещение — по вертикальной, то на графике все галактики выстроятся в почти прямую линию. Не зная о работах Фридмана, Леметр включил результаты в свою диссертацию и опубликовал их в безвестном бельгийском журнале. В свои расчеты он включил короткий раздел с обсуждением эмпирических данных и вычислением угла наклона обнаруженной им самим, Эддингтоном и Вейлем линейной зависимости. Указывающие на расширение эмпирические данные были предварительными и содержали серьезные ошибки, но прослеживающаяся тенденция казалась крайне перспективной.
К разочарованию Леметра, ведущие теоретики в области релятивизма, в том числе его бывший консультант Эддингтон, его статью полностью проигнорировали. Когда в том же году Леметр на одной из конференций встретил Эйнштейна, последний не высказал никакой заинтересованности и только любезно указал, что работа Леметра всего лишь воспроизводит открытие Александра Фридмана. Признавая корректность вычислений Фридмана, Эйнштейн считал странную расширяющуюся Вселенную математическим курьезом, не имеющим отношения к реальной Вселенной, которая, по его мнению, была статичной. Оценку работы Леметра он завершил уничижительным замечанием: «Ваши вычисления правильны, но ваше понимание физики отвратительно». После этого, по крайней мере на некоторое время, Вселенная Леметра была забыта.
Эдвина Хаббла куда больше уважали за его умение улаживать проблемы, чем за личное обаяние. Он учился в Чикагском университете, где, как он утверждал, стал чемпионом по боксу. Затем как стипендиат Родса он провел несколько лет в Оксфорде, подцепив там раздражающе искусственный британский акцент, с которым говорил до конца своих дней. Свои напыщенные манеры он довершал твидовым костюмом и трубкой — обязательными атрибутами английского эсквайра. После Оксфорда Хаббл, подобно Фридману с Леметром, участвовал в Первой мировой войне, но сразу после ее окончания добился успеха в профессиональной сфере.
В конце 1920-х годов люди обратили внимание на работы Хаббла, потому что несколькими годами ранее он натолкнулся на золотую жилу. В начале XX века было известно, что мы живем внутри огромного водоворота звезд, из которого состоит наша галактика. Это так называемый Млечный путь. Со временем у астрономов возник вопрос: а является ли Млечный путь единственной галактикой, одиноким островком в пустом пространстве или же в космосе существует множество галактик? При взгляде на небо легко заметить слабые таинственные световые пятна, те самые туманности, которые измерял Слайфер. Являются ли они развивающимися звездами Млечного пути или же это удаленные галактики в процессе становления? Второе означало, что Млечный путь — всего лишь одна из множества галактик.
Ответ на этот вопрос Хаббл нашел в процессе измерения расстояния до туманности Андромеды. Он понял, что в качестве опорных точек может воспользоваться очень яркими звездами, известными как цефеиды. Определив, насколько светимость цефеид в туманности Андромеды меньше светимости более близких звезд, он смог выяснить расстояние до этой туманности. Чем более тусклой выглядит звезда, тем дальше она должна находиться. Полученное Хабблом расстояние до Андромеды было громадным — почти миллион световых лет, что в пять или даже в десять раз превышало оценочное расстояние до Млечного пути. Значит, туманность Андромеды не могла быть частью Млечного пути, поскольку находилась слишком далеко. Напрашивалось естественное объяснение: это всего лишь еще одна галактика. И если оно было верным для Андромеды, оно могло оказаться верным и для множества остальных туманностей. Так в 1925 году единственный эксперимент Хаббла сильно увеличил размер Вселенной.
В 1927 году Хаббл принял участие во встрече Международного союза астрономов в Голландии. Он знал, какой шум поднял сделанный де Ситтером, Эддингтоном и Вейлем прогноз о наличии красного смещения в туманности и познакомился с измерениями Слайфера, которые можно было трактовать как первый намек на наличие данного эффекта. Опубликованная в 1924 году статья Лундмарка, в которой делалась попытка показать соотношение между скоростями и расстоянием, предшествовала проделанным Хабблом измерениям расстояния до Андромеды и была встречена скептически. Аббат Леметр использовал данные Хаббла в своей работе 1927 года, но она была опубликована в малоизвестном бельгийском журнале на французском языке, поэтому никто ее не читал. Хаббл увидел возможность включиться в процесс и самостоятельно открыть эффект де Ситтера, проигнорировав все предшествующие попытки и позиционировав себя как первооткрывателя.
Для этого он заручился поддержкой Милтона Хьюмасона, сотрудника обсерватории Маунт-Вилсон. Ночь за ночью Хьюмасон настраивал призмы телескопа, установленного в калифорнийских горах над Пасаденой, и снимал спектры. Это была неблагодарная работа. Под куполом было холодно и темно, а от железного пола у Хьюмасона немели и начинали ныть ноги. Болела спина, ведь смотреть в окуляр, пытаясь обнаружить спектральные линии выбранных туманностей, приходилось в неудобной позе. Он знал, что должен превзойти Слайфера, и поэтому рассматривал совсем тусклые туманности. Чем слабее было их свечение, тем дальше они могли находиться. Но инструмент, которым он пользовался, не был предназначен для подобной работы. Получение одного спектра занимало от двух до трех дней, в то время как другие телескопы позволяли делать то же самое за несколько часов.
Пока Хьюмасон искал красные смещения, Хаббл сосредоточился на определении расстояний. Он измерял испускаемое каждой туманностью количество света и сравнивал результаты с расстоянием до туманности Андромеды. Это позволило примерно представить, насколько далеко от Земли находятся рассматриваемые объекты. Полученные данные объединялись с измеренным Слайфером и Хьюмасоном красным смещением в поисках линейной зависимости между двумя параметрами, однозначно указывающей на эффект де Ситтера.
К январю 1929 года Хаббл и Хьюмасон собрали данные о красном смещении сорока шести туманностей. Хаббл определил расстояние до тех двадцати четырех из них, которые располагались ближе всего и красное смещение которых измерял Слайфер. Был построен график: по оси х откладывались расстояния, а по оси у — скорости перемещения, определенные путем измерения красного смещения. Разброс получился достаточно большим, но график выглядел лучше предыдущих, полученных Лундмарком и Леметром, и явно указывал на тенденцию: чем дальше находилась туманность, тем сильнее было красное смещение.
Свои данные Хаббл опубликовал сам без Хьюмасона в короткой работе «Связь между расстоянием и лучевой скоростью межгалактических туманностей». Статья Лундмарка на эту тему вышла куда раньше, но Хаббл, мимоходом о ней упомянув, предпочел заострить внимание на важности собственных результатов. В последнем абзаце он писал: «Впрочем, существует возможность того, что соотношение между скоростью и расстоянием указывает на эффект де Ситтера, а значит, численные данные можно ввести в обсуждение общей кривизны пространства». В тот же день была отправлена короткая скромная статья, в которой Хьюмасон представлял результаты своих измерений красного смещения и расстояния до туманности, которая располагалась в два раза дальше, чем все туманности, упомянутые в работе Хаббла. Полученные данные тоже укладывались в обнаруженное Хабблом соотношение. Это был эффект де Ситтера.
Хотя Лундмарк и Леметр уже публиковали аналогичные данные, именно открытие линейной зависимости красного смещения от расстояния послужило катализатором, объединившим космологию. После публикации в 1929 году основополагающей работы Хаббла муссировавшиеся до этого почти десятилетие идеи Эйнштейна, де Ситтера, Фридмана и Леметра наконец сложились в одну простую картину. И хотя данные Слайфера, а также анализ Лундмарка и Леметра однозначно указывали на то, что галактики разбегаются, именно работы Хаббла и Хьюмасона убедили астрономов в реальности эффекта де Ситтера.
Через год после выхода статьи Хаббла Эддингтон высказал свое мнение по поводу эффекта де Ситтера и наблюдений Хаббла в журнале The Observatory, в котором во время Первой мировой войны он публиковал свои пацифистские призывы. После чтения этой статьи плотно обосновавшийся в университете Лувена аббат Леметр пришел в замешательство. Ведь там не было ни малейшего упоминания о его работе. Его более простая модель расширяющейся Вселенной была забыта. Немедленно он отправил Эддингтону письмо с описанием своей работы 1927 года, в которой демонстрировалась возможность дополнительных решений уравнений Эйнштейна, указывающих на расширение Вселенной. В конце Леметр добавил: «Я отправляю вам несколько копий статьи. Возможно, вы сможете переслать ее де Ситтеру. В свое время я послал ему эту статью, но, похоже, он ее не прочитал». Эддингтон был раздавлен. Его «блестящий» и «проницательный» ученик сообщал о своих попытках заниматься теорией относительности, но Эддингтон просто списал его со счетов и забыл про его работу. Он быстро приступил к статье, продвигающей взгляд Леметра на Вселенную и убеждающей де Ситтера отбросить собственную модель и принять модель Леметра. Теперь настала очередь Эйнштейна признать существование расширяющейся Вселенной.
Годы известности отвлекли Эйнштейна и от его теории, бурно развиваемой Фридманом и Леметром, и от наблюдений за удаляющимися галактиками. Но к лету 1930 года ему пришлось признать, что кое-что изменилось. Во время визита в Кембридж он остановился у Эддингтона и его сестры и заразился энтузиазмом Эддингтона, связанным с результатами Хаббла и Вселенной Леметра. Во время одной из многочисленных поездок он посетил Калифорнию и Маунт-Вилсон, где в общих чертах обсудил с Хабблом новое видение Вселенной. Эйнштейн пока не очень хорошо говорил по-английски, а Хаббл Не понимал немецкого, но они оба видели, что концепция расширяющейся Вселенной прижилась как среди физиков, так и среди астрономов. Во время следующей поездки, на этот раз в Лейден, во время беседы с де Ситтером Эйнштейн увлекся идеей новой космологии, родившейся из его теории и породившей варианты расширяющейся Вселенной. Они согласились избавиться от параметра, который ввел Эйнштейн, чтобы обеспечить статичность теории Вселенной. Добавленной в теорию задним числом космологической константе пришел конец.
Обнаружив в уравнениях Эйнштейна расширяющуюся Вселенную, Леметр решил развить заодно и его общую теорию относительности. Он понял, что данная теория позволит получить картину того, с чего все началось. Ведь из постулата о расширении Вселенной вытекал вопрос, каким образом и почему она начала вести себя подобным образом. И отмотав время назад, можно прийти к моменту, когда пространство-время существовало в виде точки. Эта странная ситуация не похожа ни на одно из явлений, наблюдаемых в окружающем мире. Но модели Фридмана и Леметра, по-видимому, демонстрировали именно это: первый момент зарождения пространства-времени.
Леметр предложил радикальную идею возникновения Вселенной. Она включала начало всего. В этой концепции Вселенная появлялась из одной точки, первоначального атома, или, как его называл Леметр, «космического яйца». Этот атом породил весь заполняющий современную Вселенную материал. Он должен был распасться в соответствии с законами квантовой физики, разработка которых в то время только начиналась. По аналогичной схеме происходит наблюдаемый в лабораториях радиоактивный распад частиц. Потомки первичного атома в свою очередь распадались на дополнительные атомы и т. д.
Это была простая, умозрительная, почти библейская модель, но Леметр всеми силами старался в своих предположениях держаться подальше от религии. Будучи священником, он больше чем кто-либо другой рисковал быть обвиненным в привнесении элемента веры в чисто научную гипотезу. В журнале Nature он опубликовал заметку, озаглавленную «Начало мира с точки зрения квантовой теории». Этим заголовком было сказано все. Речь о божественном вмешательстве или теологических конструкциях не шла. Это был практический вывод из холодных беспристрастных законов физики. Так устроена природа. Свое видение Леметр изложил так: «Если мир начался с одного кванта, понятия пространства и времени вначале должны быть лишены какого-либо смысла; они должны начаться только в момент, когда первоначальный квант разделяется на достаточное количество квантов. Бели это предположение корректно, начало мира произошло немного раньше возникновения пространства и времени».
В январе 1931 года в своем обращении к Британской математической ассоциации Эддингтон рассказал, что он думает о новейшей идее Леметра, начав так: «Мне не нравится современное представление о начале окружающего мира». Эддингтон поддержал работу Леметра, посвященную расширяющейся Вселенной, и убедил Эйнштейна отказаться от концепции статической Вселенной. Своей международной известностью Леметр обязан Эддингтону. Но воспринять наиболее передовые идеи Леметра Эддингтон был не в состоянии. Они выводили теорию пространства-времени Эйнштейна за границы применимости. По крайней мере, такое мнение озвучивал Эддингтон.
Аналогично тому как Эйнштейн отвергал расширение пространства в работах Фридмана и Леметра, Эддингтон отказывался принять результаты, вытекающие из математических расчетов. Вместо этого он предложил другое решение. Благодаря полученным Хабблом и Хьюмасоном доказательствам того, что галактики разбегаются, была отброшена модель статической Вселенной Эйнштейна. В процессе поиска всех возможных решений Леметр показал, что эта статическая Вселенная обладает свойством, которое усиливает позицию Эддингтона, — она нестабильна. Достаточно добавить туда немного материи — дополнительную галактику, звезду или даже один-единственный атом, — и Вселенная начнет сворачиваться в одну точку. И наоборот, удаление материи приводит к ее расширению, в результате чего она начинает вести себя подобно Вселенным Фридмана и Леметра. Именно эту нестабильность модифицировал Эддингтон, чтобы объяснить процесс расширения.
Объяснение, предложенное Эддингтоном, при своей неоднородности и незавершенности было правдоподобным и простым. Начало Вселенной описывалось моделью Эйнштейна, то есть она была статичной и неподвижной. На самом деле было бы ошибкой утверждать, что Вселенная имела начало; она могла находиться в статичном состоянии бесконечно долгое время, пока в соответствии с предложением Эддингтона материя каким-то способом, который еще требовалось определить, не начала группироваться. Из возникающих конгломератов материи сформировались звезды и галактики, а находящееся между ними пустое пространство привело к дестабилизации модели Эйнштейна и положило начало расширению. Произошел изящный переход Вселенной, находящейся вне времени, в расширяющуюся Вселенную.
Эддингтона предложенная Леметром радикальная гипотеза начала Вселенной не убедила, а вот Эйнштейн придерживался иного мнения. Зимой 1933 года путешествующие по Соединенным Штатам Америки Эйнштейн и Леметр встретились в Пасадене, в Калифорнийском технологическом институте, куда аббата пригласили прочитать две лекции. Их предыдущая встреча в Сольвее в 1927 году, во время которой Эйнштейн отозвался о работе Леметра как о наборе правильных, но не имеющих отношения к делу выводов из его собственной теории, прошла не слишком удачно. Но теперь все изменилось. Леметр пользовался уважением как одно из ведущих светил новой науки — космологии. Во время этой встречи ученые, погруженные в беседу, бродили по саду Атенеума, центра социальной жизни Калтеха. Газета Los Angeles Times описывала эту встречу так: «Серьезные выражения их лиц свидетельствовали о том, что идет обсуждение современного состояния дел, связанных с космосом». Было логичным и присутствие Эйнштейна на лекциях Леметра. В конце одного из семинаров он встал и сказал: «Это наиболее красивое и исчерпывающее объяснение мироздания, которое я когда-либо слышал».
После более чем десяти лет заблуждений Эйнштейн, наконец, увидел свет. Это был интересный поворот событий. Создателю общей теории относительности не хватило храбрости принять вытекающие из этой теории предсказания по поводу Вселенной, и он попытался ввести дополнительный фактор, чтобы подогнать результат под свои представления. Только Фридман и Леметр, принявшие общую теорию относительности во всей ее математической красоте, смогли предложить концепцию развивающейся, расширяющейся Вселенной. И экспериментальные данные подтвердили их правоту. Похвала Эйнштейна подняла Леметра в глазах массовой прессы. И подобно Эйнштейну, находящемуся в зените славы, Леметр был признан «ведущим мировым космологом». Он смог стать одним из столпов современной космологии. Его Идеи наряду с идеями Александра Фридмана подготовили почву для происшедшей тридцатью годами позднее революции в этой науке.
Глава 4.
КОЛЛАПСАРЫ
Роберта Оппенгеймера общая теория относительности не сильно интересовала. Он в нее верил, как любой здравомыслящий физик, но считал, что для современной науки она не имеет особого значения. По иронии судьбы именно Оппенгеймеру принадлежит открытие черных дыр — одного из самых странных и экзотических предсказаний этой теории.
Оппенгеймера интересовала другая продвигавшаяся в последние десять лет теория. Приобретя первый опыт и познакомившись в Европе с хорошо развитой современной физикой, он прославился как квантовый физик, в конечном счете создав на базе Калифорнийского университета в Беркли ведущую группу специалистов в этой области. До определенной степени причиной временной стагнации и блокады теории Эйнштейна стал именно подъем квантовой физики и таких ученых, как Оппенгеймер. Но в 1939 году пытаясь вместе со своим студентом Хартландом Снайдером понять, что происходит в конце жизненного цикла массивных звезд, Оппенгеймер обнаружил странное, находящееся за пределами его понимания решение общей теории относительности, на которое не обращали внимания почти двадцать лет. Он показал, что достаточно большая и плотная звезда будет исчезать из поля зрения. По его словам, через некоторое время «звезда стремится закрыться от любого взаимодействия с удаленным наблюдателем; сохраняется только ее гравитационное поле». Вокруг сжимающегося шара света и энергии как будто возникает таинственная пелена, скрывающая его от внешнего мира, а пространство-время завязывается в невозможно тугой узел. Из этой пелены не может вырваться ничто, даже свет. Вывод Оппенгеймера стал еще одним порожденным уравнениями Эйнштейна математическим курьезом, и многие сочли его слишком сложным для понимания.
Почти за четверть века до открытия Оппенгеймера и Снайдера немецкий астроном Шварцшильд послал Эйнштейну письмо с такой припиской: «Как видите, война отнеслась ко мне достаточно любезно, позволив, несмотря на близкий артиллерийский огонь, совершить прогулку в страну ваших идей». Это был декабрь 1915 года, и Шварцшильд писал с передовой Западного фронта. Сразу же после объявления Первой мировой войны в 1914 году он пошел в армию добровольцем, хотя как директор астрофизической обсерватории в Потсдаме был освобожден от призыва. Но как позднее сказал о нем Эддингтон, «Шварцшильд всегда больше тяготел к практике». Как и Фридман, Шварцшильд применял свои способности физика во время армейской службы и даже отправил в Берлинскую академию работу «Влияние ветра и плотности воздуха на траекторию полета тяжелых снарядов».
В России Шварцшильд получил последнюю копию журнала Proceedings Прусской академии наук. Там он обнаружил короткое, но захватывающее изложение новой общей теории относительности Эйнштейна. И приступил к распутыванию предложенных Эйнштейном уравнений на примере простейшей наиболее физически интересной ситуации, которую смог придумать. В отличие от Александра Фридмана и Жоржа Леметра, которые годы спустя будут рассматривать Вселенную в целом, Шварцшильд решил сосредоточиться на менее масштабном объекте: пространстве-времени вокруг сферической Массы, например планеты или звезды.
Решать запутанные системы уравнений, подобные предложенным Эйнштейном, помогают упрощения. Рассматривая пространство-время вокруг звезды, Шварцшильд сфокусировался на поиске статичного, то есть не меняющегося со временем, решения. Кроме того, он хотел получить результат, который на полюсе выглядел бы так же, как на экваторе, чтобы значение имело только расстояние любой точки пространства до центра звезды.
Решение Шварцшильда было отменно простым и выражалось быстро выводимой формулой. В некоторой степени оно было даже очевидным. На большом расстоянии от центра звезды ее гравитационное поле ведет себя в соответствии со сделанными несколько веков назад предсказаниями Ньютона: гравитационное притяжение звезды зависит от ее массы и уменьшается пропорционально квадрату расстояния. Правда, формула Шварцшильда оказалась немного другой. Отличие было минимальным, тем не менее его хватило для объяснения прецессии орбиты Меркурия, послужившей толчком к исследованиям Эйнштейна.
По мере приближения к звезде начинают происходить странные вещи. Небольшая, но достаточно тяжелая звезда как будто оказывается окруженной сферической поверхностью, скрывающей от взгляда всё, что за ней находится, — именно ее много лет спустя обнаружат Оппенгеймер и Снайдер. Эта поверхность пагубно влияет на все объекты, пытающиеся ее пересечь. Подлетевший слишком близко к звезде и попавший внутрь сферической границы предмет уже не в состоянии улететь прочь — это точка невозврата. Для выхода из магической сферы Шварцшильда требуется скорость, превышающая скорость света. А она, согласно теории Эйнштейна, недостижима. Шварцшильд открыл то, что более чем полвека спустя назовут черными дырами.
Он быстро записал полученные результаты и отправил их Эйнштейну с просьбой передать письмо в Прусскую академию наук. Эйнштейн в своем ответе высказал одобрение, написав: «Я не ожидал, что точное решение задачи может быть сформулировано так просто». В конце января 1916 года выкладки Шварцшильда были обнародованы.
Найденное Шварцшильдом решение так и не получило своего развития, более того, он даже не смог познакомиться с расчетами Оппенгеймера и Снайдера. Несколько месяцев спустя, находясь в России, он заболел опасным аутоиммунным заболеванием и в мае 1916 года умер.
Решение Шварцшильда быстро присвоили себе Эйнштейн и его последователи. Оно было простым, удобным в использовании и идеально подходящим для прогнозов. С его помощью можно, к примеру, смоделировать движение планет вокруг Солнца, точно предсказав прецессию орбиты Меркурия. Также точно оно предсказывало искривление световых лучей, за подтверждением которого Эддингтону потребовалось отправиться на остров Принсипи. Решение Шварцшильда хорошо служило новым релятивистам, если не обращать внимания на необъяснимое свойство странной поверхности, окружающей центр маленьких звезд определенной плотности и засасывающей всё извне.
Эта поверхность неустранимо присутствовала в уравнениях и их решении. Ее наличие следовало из общей теории относительности Эйнштейна. Но существовала ли она на самом деле?
В 1920 годах Артур Эддингтон заинтересовался вопросом формирования и развития звезд. Он хотел дать полную характеристику их структуры с помощью фундаментальных законов физики, выраженных математическими уравнениями. Он писал: «Умудряясь понять результат через математический анализ, мы получаем сведения об изменяющихся предпосылках реальных физических проблем». При подключении математики все сводится к решению уравнений, как это случилось с общей теорией относительности. В 1926 году выходит книга Эддингтона «Внутреннее строение звезд», которая для астрофизики быстро становится библией, связанной со звездами. Эддингтон был не только авторитетом в общей теории относительности, но и ведущим светилом в области изучения звезд.
Раньше звезды были загадкой. Никто не знал, каким образом они испускают такое количество энергии. Именно Эддингтон придумал правдоподобный механизм свечения звезд. Для понимания его идеи следует обратить пристальное внимание на атомы. Атом водорода состоит из двух частиц: протона (который заряжен положительно) и электрона (несущего отрицательный заряд). Протон и электрон удерживает рядом электромагнитная сила, заставляющая притягиваться друг к другу противоположные заряды. Протон примерно в две тысячи раз тяжелее электрона, поэтому именно он определяет вес атома водорода.
Атом гелия состоит из двух электронов и двух протонов. Но еще его ядро содержит две нейтральные частицы. Это нейтроны, вес которых практически совпадает с весом протонов. В простой модели атома гелия ядро состоит из двух протонов и двух нейтронов, вокруг которых вращаются два электрона. Практически весь вес этого атома обеспечивается четырьмя входящими в ядро частицами, поэтому, казалось бы, атом гелия должен быть в четыре раза тяжелее атома водорода. Но на самом деле он на 0,7% легче расчетного значения. Часть его массы куда-то исчезла. А в соответствии со специальной теорией относительности Эйнштейна уменьшение массы означает уменьшение энергии. Этим обстоятельством и воспользовался Эддингтон.
Эддингтон рассудил, что источником энергии для звезд, возможно, служит превращение водорода в гелий. В раскаленном аду в самой сердцевине звезды может происходить объединение ядер атомов водорода. В ходе радиоактивного распада часть протонов превращается в нейтроны, а из протонов и нейтронов формируются ядра гелия. При этом каждый атом высвобождает незначительное количество энергии. Однако общей энергии всех атомов хватает на то, чтобы питать звезду и излучать свет. Если большая часть Солнца состоит из водорода, до завершения его преобразования в гелий процесс горения должен продолжаться почти 9 миллиардов лет. Учитывая, что возраст Земли составляет 4,5 миллиарда лет, речь, по всей видимости, идет о сумме указанных чисел.
В своей книге для объяснения звездной астрофизики Эддингтон создал целую доктрину. Предложив источник звездной энергии, он пояснил, почему звезды не сжимаются: испуская наружу всю вырабатываемую энергию, они противостоят силе тяжести. Звезды представляют собой совершенные физические системы, которые могут быть описаны в терминах его уравнений. Однако книга «Внутреннее строение звезд» — далеко не исчерпывающий источник информации. С математическим красноречием Эддингтон смог описать жизнь звезд, но не стал касаться их смерти. Логика подсказывала ему, что в какой-то момент питающее звезду топливо заканчивается и исчезает излучение, которое не давало ей сжиматься под действием собственной гравитации. Как он пишет в своей книге: «Кажется, при истощении запаса субатомной энергии, которое в конце концов должно наступить, звезда сталкивается со значительными трудностями… Это любопытная проблема, и можно делать самые фантастические предположения о том, что происходит после этого». Разумеется, в число фантастических предположений входила и теория Эйнштейна с решением Шварцшильда, поэтому Эддингтон написал: «Сила тяжести будет столь большой, что преодолеть ее не сможет даже свет, его лучи начнут падать на поверхность звезды, как камень на землю». С точки зрения Эддингтона, это был слишком надуманный и исключительно математический результат. В книге он написал: «Когда мы доказываем результат, не понимая его — просто потому что он неожиданно появился из лабиринта математических формул, — нет оснований надеяться, что мы сможем его где-то применить».
Но если отбросить самые фантастические предположения, что могло бы происходить после выгорания топлива? Наблюдения 1914 года намекали на возможность существования кладбищ таких коллапсировавших звезд. При изучении Сириуса — самой яркой звезды нашего неба, почти в тридцать раз превосходящей яркостью Солнце, — астрономы обнаружили на ее орбите странный тусклый спутник. Названный Сириусом В, вопреки тусклому свечению, он был очень горячим и обладал примечательными свойствами: при массе, сравнимой с массой Солнца, его радиус был меньше радиуса Земли. Это означает очень большую плотность. В начале 1920-х годов этот объект получил название «белый карлик» и стал считаться одной из загадок звездного зоопарка, возможной конечной точкой жизненного цикла звезд. Ключом к пониманию природы белых карликов могла бы стать новомодная теория квантовой физики.
Квантовая физика делит природу на мельчайшие составляющие и странным образом объединяет их обратно. Причиной ее появления стало необычное явление, с которым ученые столкнулись в XIX веке. Оказалось, что соединения и химические вещества особым образом поглощают и испускают свет. Результатом этих процессов является отнюдь не непрерывный диапазон длин волн. Вещества отражают свет в виде дискретного набора волн с определенными длинами, формируя похожий на штрихкод спектр, который впоследствии Весто Слайфер и Милтон Хьюмасон использовали для открытия красного смещения. Господствовавшая в то время ньютоновская физика вкупе с теорией электричества Максвелла были не в состоянии объяснить это странное явление.
В удивительном 1905 году Эйнштейн принялся за объяснение другого странного экспериментального факта: фотоэлектрического эффекта. Атомы бомбардируемого светом металла поглощают этот свет, периодически выбрасывая электроны. Вот как описал это явление его первооткрыватель Филипп Ленард: «При простом воздействии ультрафиолетового света металлические пластины выделяют в воздух отрицательное статическое электричество». Может показаться, что достаточно облучить металл сильным потоком света, но на самом деле это не так. Для эмиссии электронов требуется определенная энергия и частота светового пучка. Наблюдая этот эффект, Эйнштейн предположил, что свет перемещается квантованными порциями, аналогично тому, как материя распадается на элементарные частицы. И только нужная частота такого квантования обеспечивает фотоэффект. Эйнштейн назвал их «квантами света», позднее они стали известны как фотоны.
По мере совершенствования экспериментальных методов на рубеже XX века природа стала представляться все более Дискретной. Другими словами, казалось, что природа тоже квантована. В начале XX века начали появляться импровизированные модели окружающего мира в мельчайшем масштабе, Целый набор новых правил поведения атомов и взаимодействия их со светом. И хотя Эйнштейн внес свой личный вклад в новую Науку, в основном он наблюдал за ее развитием с некоторым Недоверием. Предложенные для квантованного мира правила были достаточно корявыми и не вписывались в вытекавшую из принципов относительности элегантную математическую картину.
К 1927 году правила квантовой физики окончательно прояснились. Независимо друг от друга два физика, Вернер Гейзенберг и Эрвин Шрёдингер, предложили теории, непротиворечиво объясняющие квантовую природу атомов. И подобно тому, как Эйнштейн конструировал свою общую теорию относительности, эти ученые были вынуждены математически сформулировать свои версии квантовой теории. Гейзенберг использовал матрицы — таблицы чисел, работа с которыми требовала крайней аккуратности. В отличие от обычных чисел результат умножения матрицы А на матрицу В, как правило, отличается от результата умножения матрицы В на матрицу А. Это свойство имеет самые поразительные следствия. Шрёдингер предпочел описать реальность, то есть атомы, ядра и электроны, образующие материю, в терминах волн — экзотических объектов, которые, как и в теории Гейзенберга, приводили к ряду странных явлений.
Наиболее известным следствием новой физики стал принцип неопределенности. В классической физике Ньютона объекты двигаются, предсказуемым образом реагируя на внешние силы. Зная точное положение и скорости составных частей системы, а также действующие в этой системе силы, можно предсказать все ее будущие конфигурации. Прогнозы составляются очень легко; достаточно информации о положении каждой частицы в пространстве, а также о направлении и величине ее скорости. В новой квантовой теории одновременно узнать положение и скорость частицы с удовлетворительной точностью абсолютно невозможно. Самый настойчивый и упорный экспериментатор, попытавшись с идеальной точностью определить положение частицы, уже не сможет получить представления о ее скорости. Представьте, что вы работаете с сидящим в клетке злым зверем: чем сильнее вы пытаетесь его ограничить, тем яростнее он будет стучать по стенам клетки. Если поместить его в слишком маленький объем, его давление на стены станет огромным. Квантовая физика привнесла неопределенность и хаос в самое сердце физики. И именно этот хаос стал ключом к решению проблемы белых карликов.
Субраманьян Чандрасекар отчаянно стремился к великим делам. Рожденный в обеспеченной семье ученых в Пакистане, Чандра, как его стали называть позднее, был усердным и целеустремленным студентом. Он преуспел в математике, он скрупулезно и бесстрашно брался за любые расчеты. Во время учебы в Мадрасском университете Чандра попал под влияние новых идей, исходящих из Европы, и был впечатлен великим человеком, создающим физику двадцатого столетия. С юных лет охваченный энтузиазмом, он жаждал приобщиться к работе на ниве современной физики. Как он говорил позднее: «Разумеется, одним из моих самых ранних побуждений было желание показать, на что способны индусы».
Чандра был очарован только что возникшей квантовой физикой. Он прочитал все новые учебники, которые попадали к нему в руки, в том числе недавно изданную книгу Эддингтона «Внутреннее строение звезд». Но больше всего его привлекла книга немецкого физика Арнольда Зоммерфельда, посвященная квантовым свойствам материи. Вдохновленный работой Зоммерфельда, он занялся написанием статей о статистических свойствах квантовых систем и способах их взаимодействия. Один из его первых трудов был опубликован в журнале Proceedings Королевского общества, когда Чандре еще не исполнилось восемнадцати лет. Чувствуя в себе потенциал к совершению открытий в области новой квантовой Физики, Чандра выбрал для реализации своего призвания Англию и отправился в долгое путешествие за докторской степенью в Кембридж.
Во время длительного плавания на корабле компании Lloyd Triestino Чандра сделал потрясающее открытие, изменившее его жизнь. Одержимый работой, он решил в дороге сосредоточиться на статье, написанной одним из кембриджских коллег Эддингтона Ральфом Фаулером, который, казалось, решил проблему белых карликов. Фаулер применил к астрофизике две квантовые концепции. Первой был принцип неопределенности Гейзенберга, гласивший, что невозможно зафиксировать в пространстве частицу, одновременно определив ее состояние движения, то есть скорость. Второй концепцией был принцип запрета, согласно которому два электрона (или протона) — необычная волновая материя, предложенная Шрёдингером в качестве фундаментального квантового описания частиц, — в одном атоме не могут одновременно находиться в одном и том же физическом состоянии. По сути, между ними существует неумолимое отторжение, мешающее иметь одно и то же состояние.
Взяв принципы неопределенности и запрета, Фаулер применил их к Сириусу В. Он рассудил, что вещество, из которого состоит этот белый карлик, является настолько плотным, что его можно представить как сжатый газ из электронов и протонов. Электроны, как более легкие, могли свободнее перемещаться и совершать более энергичные колебания. Принцип запрета означает, что им приходится быть крайне осмотрительными, чтобы не вторгаться в пространство друг друга, но по мере роста плотности у каждого из электронов остается все меньше пространства для движения. При фиксации электронов в пространстве в соответствии с принципом неопределенности растет скорость электронов, заставляя их быстрее перемещаться друг относительно друга. Эти быстро колеблющиеся электроны стимулируют направленное наружу квантовое давление, которое может противодействовать силе тяжести. В определенном состоянии это давление уравновешивает гравитационное притяжение, и белый карлик получает возможность спокойно существовать, практически не светясь, но сопротивляясь своей гибели. Объяснение Фаулера прояснило проблему Эддингтона. Возникло впечатление, что звезды, умирая, могут превращаться в белых карликов. Это обстоятельство завершало историю звездной эволюции и решало проблему, поднятую в книге «Внутреннее строение звезд». По крайней мере, так тогда казалось.
Внимательно изучив результаты Фаулера, Чандра сделал крайне простую вещь. Он выразил в цифрах ожидаемую плотность электронного газа в белых карликах. Полученная цифра была огромной, но не удивительной, собственно, как и предсказывал в своей статье Фаулер. Однако Фаулеру не удалось показать, какими должны быть скорости электронов. Произведя несложные вычисления, Чандра испытал шок: электронам пришлось бы колебаться со скоростью, близкой к скорости света. В этом месте аргументация Фаулера начинала давать сбой, так как он совершенно проигнорировал правила специальной теории относительности, которые начинают сказываться при перемещении объектов со скоростью света. Фаулер сделал ошибку, предположив, что электроны внутри белого карлика могут двигаться так быстро, как им заблагорассудится, даже если это означало бы скорость большую, чем скорость света.
Чандра задался целью исправить эту ошибку. Он проследил за рассуждениями Фаулера до момента, когда скорость электронов приблизилась к скорости света. Для слишком плотного белого карлика, в котором частицы перемещаются практически со скоростью света, он воспользовался постулатом специальной теории относительности, гласящим, что эту скорость превзойти невозможно. Результат получился интересным. Оказалось, что как только белый карлик становится слишком тяжелым, его плотность также чрезмерно возрастает, в результате электроны больше не могут сопротивляться гравитационному притяжению. Другими словами, у белых карликов существует предел массы. Чандра рассчитал, что этот предел не превосходит 90% от массы Солнца. (Годы спустя было показано, что корректное значение — это более чем 140% от массы Солнца.) Завершившая свое существование звезда с массой выше указанного предела не в состоянии себя поддерживать. Побеждает гравитация, и неизбежно наступает коллапс.
Прибыв в Кембридж, Чандра показал Эддингтону и Фаулеру проект своих расчетов, но они оставили его без внимания. В нестабильности, которая могла разрушить столь многообещающую доктрину, выдвинутую Эддингтоном и поддерживаемую Фаулером, было нечто пугающее, поэтому ученые мужи из Кембриджа предпочли держаться на расстоянии. За следующие четыре года Чандра усовершенствовал свою доказательную базу, и его уверенность в собственных выкладках возросла. В 1933 году он завершил работу над диссертацией и в возрасте двадцати двух лет был зачислен в штат колледжа Тринити. К 1935 году Чандра доработал свои расчеты и был готов представить полученный результат на ежемесячном заседании Королевского астрономического общества.
11 января 1935 года он предстал перед группой выдающихся астрономов Королевского астрономического общества в Берлингтонхаузе в Лондоне. Тщательно и скрупулезно Чандра оглашал детали своей девятнадцатистраничной статьи, которая была практически готова к публикации в журнале общества Monthly Notices. Свою речь он завершил фразой: «Звезда большой массы не может пройти через стадию белого карлика, поэтому остается строить предположения о других возможностях». Этот парадоксальный результат был представлен вызывающим всеобщее доверие языком математики и физики, поэтому его приняли всерьез. Завершение речи было встречено вежливыми аплодисментами и небольшим количеством вопросов. Дело было сделано.
Затем президент общества повернулся к Эддингтону и пригласил его на трибуну для представления работы «Релятивистское вырождение». Эддингтон вышел и произнес короткую пятнадцатиминутную речь. Он строго разобрал расчеты Чандры, дискредитирующие решение проблемы белых карликов, предложенное Фаулером. А затем бесцеремонно отбросил безупречный результат. С точки зрения Эддингтона, этот результат является «доведенной до абсурда формулой релятивистского вырождения». На самом деле он был твердо уверен, что «в дело могут вмешаться различные случайности, которые спасут звезду», и поэтому заявил: «Я думаю, что должен существовать закон природы, мешающий звезде вести себя подобным абсурдным образом!» Авторитет Эддингтона был столь высок, что большая часть аудитории немедленно отвергла аргументы Чандры. Уж если Эддингтон счел новую идею ложной, значит, она должна быть таковой.
Чандра выступил против могущественного Эддингтона и проиграл. Он подрывал разработанную Эддингтоном красивую теорию жизни и смерти звезд, и разумеется, последнему это не понравилось. Если гравитационный коллапс перекрывает все прочие воздействия, на сцену выходит странное решение Шварцшильда с множеством нетривиальных выводов. Как много лет спустя говорил сам Чандра: «Теперь ясно видно… Эддингтон понял, как из существования предельной массы вытекает наличие в природе черных дыр. Но этот вывод он не принял. Если бы он смог это сделать, то лет на сорок опередил бы всех остальных. В известном смысле это плохо».
В подавленном состоянии Чандра вернулся в Кембридж. Стычка с Эддингтоном повлияла на всю его дальнейшую жизнь. Через несколько лет его пригласили занять пост в Йеркской обсерватории в Чикаго. Он перестал работать над проблемой белых карликов и старался не думать о том, что на самом деле случается при слишком большой их массе. Происходит ли неумолимый переход к решению Шварцшильда? Или что-то мешает событиям развиваться данным способом? Ответ на эти вопросы найдет Роберт Оппенгеймер.