Витамания. История нашей одержимости витаминами Прайс Кэтрин
Через некоторое время я повторила свою просьбу, но его ответ остался прежним.
— Порошки для демонстрации, — сказал он. — Вам разрешается трогать их, но я не уверен, стоит ли пробовать их на язык, ведь многие люди тоже к ним прикасались.
Было ясно, что я поставила его в неловкую ситуацию: в нем боролись дружелюбный симпатяга, который хотел доставить мне удовольствие, и сотрудник компании Nutrilite, обеспокоенный по поводу возможного иска от отравившейся журналистки.
Сайто сделал все, что от него зависело, но, как только я увидела порошки, меня было не остановить. На столе стоял аптечный шкафчик, на полках — ряды колб с разноцветными порошками, на которых были наклеены ярлыки с изображением соответствующего фрукта или овоща: люцерны, спаржи, брокколи, календулы, петрушки и шалфея. Еще там была гуава (желтого цвета) и зеленый чай (как ни странно, розовый). На одном ярлыке просто значилось: «Биофлавоноиды».
Я начала с черники — фиолетового зернистого порошка, который оказался чуть сладковатым на запах и вкус. Томатный порошок был относительно нейтральным, с легким привкусом песка, и настолько насыщенного темно-красного цвета, что, казалось, его легко можно использовать в качестве красителя. Порошок из шпината имел зеленый цвет и был горьковат. Календула сделала мою ладонь оранжевой, а по вкусу немного напоминала йод. Люцерна навеяла воспоминания о сене. Биофлавоноиды представляли собой пахнущую цитрусовыми смесь из сушеного апельсина и лимонной цедры. Разнообразие вкусов, ароматов и текстур свидетельствовало о многообразии фитохимических веществ.
— Вы первый гость, от которого я получаю такую обратную связь, — проронил Сайто. Он выглядел шокированным и заинтригованным одновременно. И вот, добравшись до яблока, я наконец убедила его последовать моему примеру.
Далее привожу точную запись нашей беседы:
Я: О боже, это отвратительно. О боже.
Сайто: Ой, как горько. Как будто зола. Ой.
Я: Пахнет как догоревшая свеча.
Сайто: Как костер.
Я: Я такого не ожидала.
Сайто: О, это ужасно.
Горькая, похожая на золу, терпкая вяжущая субстанция, на вкус даже отдаленно не напоминающая яблоко. Неужели это те химические вещества, которые отвечали за необыкновенное антиоксидантное действие этого любимого нами фрукта? Неужели возможно, чтобы что-то полезное имело такой вкус и запах?
Это позволяет сделать прекрасный вывод о наших нынешних отношениях не только с фруктами и овощами, но и со всеми продуктами, которые мы покупаем для своего здоровья. Мы из кожи вон лезем, чтобы извлечь их, разделить на элементы, измерить и — как в случае очищенных и обогащенных витаминами продуктов — вернуть их обратно в продукты питания. Но уберите воду и сладкий вкус, доберитесь до так называемой души — и вы будете удивлены, узнав, что происходит там внутри.
Пожалуй, единственный факт, который нельзя подвергать сомнению, состоит в следующем. Когда вы едите яблоко (или, если уж на то пошло, любой другой натуральный продукт), происходит синергия, то есть явление, при котором вещества работают вместе иначе, чем по отдельности. Например, витамин C, содержащийся в яблоке, в чистом виде может оказывать иное воздействие, нежели находясь в окружении других веществ. Подумайте также о берберине — алкалоиде, содержащемся в растении под названием «желтокорень канадский», которое известно своими антибактериальными свойствами[548]. При употреблении внутрь в составе растения берберин обычно нетоксичен. Но та же доза берберина в изолированном виде, как отметил Джеймс Нил-Кабебик — тот самый, который обнаружил виагру в растительной пищевой добавке, — «может весьма быстро стать ядом». Это еще раз демонстрирует, почему крайне неблагоразумно предполагать, что добавка, сделанная из натурального вещества, обязательно безопасна.
Воздействие некоторых элементов также зависит от того, с чем они употребляются: жирорастворимые витамины (A, или бета-каротин, D, E и K) требуют для усвоения достаточного количества жиров (это одна из причин, почему приготовление овощей с использованием небольшого количества масла делает их более полезными), тогда как водорастворимые витамины (C и витамины группы B) нет. Более того, часто оказывается, что некоторые продукты содержат вещества, необходимые для того, чтобы полезные фитохимикаты были усвоены и использованы организмом. Так, по ходу исследования брокколи в 2011 году[549] было обнаружено, что, когда участникам давали соцветия брокколи, их организм усваивал и преобразовывал в семь раз больше противораковых соединений, известных как глюкозинолаты, которые есть в брокколи и других крестоцветных, чем если им давали глюкозинолаты в чистой форме в капсулах, — предположительно потому, что целая брокколи имела в составе другие соединения, которые помогали организму усваивать противораковые вещества. Действительно, нередко активные формы растительных элементов, обнаруженные в крови человека, оказываются не такими, как в пище, что свидетельствует о наличии некой переработки[550].
Томаты привлекли к себе повышенное внимание из-за высокого содержания в них ликопина — красно-оранжевого каротиноида с сильным антиоксидантным эффектом, благодаря которому слово «ликопин» стало весьма модным в сфере питания и то и дело мелькает на этикетках самых разных продуктов. (Ликопин, как все каротиноиды, жирорастворимый, так что, если готовить его с маслом, он всасывается лучше.) Но в томатах, помимо ликопина, содержится много других биоактивных химических веществ, среди которых и витамины, такие как фолиевая кислота, C и E, и другие каротиноиды, например фитоен, фитофлюен, бета-каротин, и флавонолы — кверцетин и кемпферол. Наличие этих соединений может более точно объяснить результаты исследования, опубликованные в Journal of Nutrition в 2004 году, согласно которым порошок из целого помидора, подвергшегося сублимационной сушке, оказался более эффективным, чем отдельная добавка с ликопином, — по крайней мере для замедления роста раковых опухолей простаты у крыс[551].
«Это нельзя описать как A делает B, а X дает вам Y, — заметил Нил-Кабебик. — Еще многое предстоит открыть и понять. Мы пока на вершине айсберга и еще даже не заглянули под воду, чтобы увидеть объем работы, которая нам предстоит».
Как я узнала ранее в Управлении по вопросам питания, изучив премудрости этих отдельных фитохимикатов, они тоже пришли к заключению, что пищевую синергию, по всей видимости, невозможно (или по крайней мере экономически невыгодно) воссоздать искусственным путем.
«Мы отходим от идеи о выделении определенного вещества, к примеру из яблока или лука, и вместо этого движемся к экстрактам, — сказала Бетти Дэвис, руководитель исследовательской группы по оптимизации производительности из Управления по вопросам питания. — Это происходит по двум причинам. Во-первых, выделение элементов — очень дорогой процесс. А во-вторых, могут встречаться проблемы с биодоступностью, усвоением и синергией, которые, честно говоря, мы пока не понимаем».
Не все, впрочем, фокусируются на цельных экстрактах. Учитывая потенциальную прибыль от витаминизации, пищевая промышленность крайне заинтересована в растительных соединениях, но обычно более специфическим образом. Coca-Cola, например, финансировала исследование, опубликованное под названием «Пилотное исследование воздействия краткосрочного потребления напитков с высоким содержанием полифенола на биомаркеры коронарной недостаточности, выявляемые с помощью протеомных анализов мочи», — вероятно, с намерением определить, какие конкретно фитохимические вещества имеет смысл добавить в продукцию. А исследование о томатах и раке простаты, которое я упоминала выше, было изначально представлено на конференции по питанию и раку[552], которую спонсировали несколько организаций, включая Campbell Soup Company (компания по производству супа), Cranberry Institute (Институт клюквы), National Fisheries Institute (Национальный институт рыболовства), Hill’s Pet Nutrition (компания по производству кормов для животных) и United Soybean Board (Объединенный совет по производству сои).
Хотя насыщенная фитохимикатами и витаминами еда уже доступна в вашем супермаркете, стоит помнить, что идея изолированной синергии, по существу, оксюморон, — и я имею в виду именно то, что пишу. Как утверждает один из исследователей: «Понимание листика в лесу не обязательно ведет к пониманию всего леса. Взаимосвязь между психологией человека и биологической активностью растительной и животной пищи, которую люди потребляют, невероятно сложна, полна прерываний, противовесов и циклов обратной связи, зависящих от мириад веществ, отличия которых едва уловимы».
Это не те вопросы, которые годятся для исследования в контролируемых клинических условиях со случайной выборкой субъектов, сама цель которых — в установлении причинной связи при изолированном изучении вещей[553]. Учитывая тысячи химических веществ, присутствующих в растениях (и если уж на то пошло, продуктах животного происхождения), разобраться в тайнах их взаимодействий друг с другом — и с нашим организмом — это пугающая, едва ли выполнимая задача.
Между тем подход Nutrilite в теории хорош: вместо того чтобы изолировать каждый химический элемент на «грязной хроматограмме», она пытается оставить их вместе. То есть цель — извлечь из них пользу даже при отсутствии понимания, как они действуют. Но данный подход порождает такой же логичный, как и сама эта философия, вопрос: зачем нам вообще нужны таблетки? Если мы действительно хотим завладеть потенциально полезными для здоровья свойствами нутриентов природного происхождения, почему бы нам просто не есть больше продуктов, в которых они содержатся?
Однако независимо от ответа на вопрос почему, правда заключается в том, что мы не можем этого сделать. Согласно «Отчету Консультативного комитета по здоровому питанию о рекомендациях по правильному питанию для американцев» от 2010 года (ярко-оранжевая хрестоматия из 445 страниц, полная рассказов о неутешительных открытиях в области наших пищевых привычек), всего около 5 % взрослых американцев младше пятидесяти лет соблюдают рекомендации по потреблению темно-зеленых овощей[554] и только около 25 % из нас следуют рекомендациям по потреблению фруктов, если учитывать соки (которые, по существу, представляют собой жидкий сахар). Зато источник калорий номер один в рационе американцев — мучные десерты: торты, печенье, пирожки, пончики, чипсы и фруктовые пироги{71}. Если окажется, что невитаминные фитохимикаты действительно настолько важны, как предполагают многие ученые, значит, наша одержимость поливитаминами — которые не содержат этих веществ — может означать, что мы страхуем себя не от тех опасностей. Это все равно что страховаться от землетрясений в регионе, где главная опасность — наводнения.
Вероятно, еще более удивительным, чем нехватка невитаминных веществ, является тот факт, что некоторые из нас все еще испытывают дефицит в витаминах и минералах, даже учитывая широкую практику обогащения и витаминизации продуктов и выпуск поливитаминов. Возможно, это связано с тем, что огромное количество крайне популярных продуктов до сих пор не обогащены витаминами, например картофельные чипсы, картофель фри, газировка и шоколадные батончики. Вышеупомянутые мучные десерты, хотя они нередко готовятся из обогащенной муки, часто не содержат другие питательные микроэлементы. Чтобы усугубить проблему, добавим, что, согласно анализу данных Национальной программы проверки здоровья и питания (National Health and Nutrition Examination Survey, NHANES), люди, принимающие БАДы, чаще остальных употребляют продукты, от природы богатые витаминами (не говоря уже о регулярных занятиях спортом, воздержании от курения и чрезмерного потребления спиртных напитков)[555]. Это означает, что большая часть витаминов и других пищевых добавок принимается людьми, которые меньше всех в них нуждаются.
Какова бы ни была причина, данные NHANES[556] свидетельствуют о том, что многие американцы не выполняют пищевые стандарты Министерства сельского хозяйства США по употреблению витаминов и микроэлементов, включая витамин D, кальций, калий и в меньшей степени холин (витамин B4), магний и витамины A, C, E и K (не говоря уже о клетчатке). Анализы крови и мочи, проведенные центрами по контролю за заболеваниями (которые чаще всего точны, поскольку не основаны на воспоминаниях людей), также показывают, что недостаток витаминов B6, D, C и B12 также может быть проблемой[557]. Учитывая, что наши знания о витаминах весьма неполные (что заставляет задуматься, а точны ли нынешние рекомендации по питанию), возникает вопрос, который задают современные исследователи: может ли этот, от легкого до умеренного, дефицит микроэлементов вызвать проблемы в долгосрочной перспективе?
Брюс Эймс полагает, что может. Эймс, с которым я встретилась в его офисе в Научно-исследовательском институте при детской больнице Окленда, — настоящее светило науки. Этот биохимик наиболее известен как создатель теста Эймса — простого и недорогого способа проверить наличие в продукте потенциальных канцерогенных свойств. Он завоевал популярность среди защитников окружающей среды своими работами, которые демонстрировали, что многие искусственно созданные человеком вещества канцерогенны, — правда, затем впал у них в немилость, когда обнаружил, что многие соединения природного происхождения тоже являются таковыми. Эймс убежден, что рацион американцев, которому, по его мнению, недостает многих полезных микроэлементов, оказывает катастрофическое влияние на здоровье в долгосрочной перспективе.
— Мой талант заключается в умении видеть картину в целом и открывать новые горизонты, — сказал он мне, когда мы сидели друг напротив друга, разделенные блюдом с фруктами из папье-маше, за круглым столом в его офисе. Именно эта способность привела его к мысли о том, что повреждение ДНК вызывает некоторые виды рака, что, в свою очередь, привело к разработке вышеупомянутого теста Эймса.
— Я заинтересовался предотвращением заболевания, выясняя, что вызывает повреждение ДНК и как этого можно избежать, — сказал он. — Мы начали выращивать человеческие клетки, и, как только они получали недостаточное количество какого-нибудь витамина или минерала, происходило повреждение ДНК — повреждение такого вида, который может привести к раку. Я спросил: «Эй, какого черта природа это делает?» И однажды меня осенило: дело в различии между краткосрочным и долгосрочным выживанием.
Эймс называет эту гипотезу, которую он впервые опубликовал в 2006 году, теорией сортировки. Она сводится к следующему: подобно военному врачу, организм имеет приоритеты, и его первоочередная задача — поддерживать нашу жизнь. Если какого-либо микроэлемента не хватает, организм сначала будет использовать его для наиболее срочных и насущных потребностей. Только после того, как эти потребности удовлетворены, оставшиеся микроэлементы становятся доступны для выполнения остальных функций.
Возьмем витамин K, название которого произошло от датского слова, обозначающего коагуляцию (свертывание), и который, как известно, необходим для свертывания крови и здоровья костей. Эймс полагает, что, помимо всего прочего, он также играет роль в предотвращении рака и болезней сердца. Витамин K, который содержится в наибольших количествах в темно-зеленых овощах, таких как шпинат и мангольд (листовая свекла), не включается в большую часть поливитаминов, и это один из витаминов, для которого еще нет РНП.
В идеальном мире у нас было бы достаточно витамина K для всех задач, что он выполняет в организме, какими бы они ни были. Но Эймс утверждает, что, если его запасы ограниченны — что характерно для рациона многих американцев (особенно бедных, страдающих лишним весом и пожилых), — свертываемость крови имеет приоритет перед остальными функциями, менее насущными для эволюции. Это снижает вероятность того, что вы истечете кровью в краткосрочной перспективе, но может подвергнуть вас риску других, долгосрочных, связанных с возрастом проблем, для предотвращения которых необходим витамин K, таких как костные переломы и болезни сердца.
Это похоже на ремонт: если у вас ограниченный бюджет и вы пытаетесь решить, предотвратить ли немедленное затопление подвала или заделать небольшую щель в крыше, наверняка подвал победит. Это хорошее решение в краткосрочной перспективе, но пробоина в крыше, если с ней ничего не делать, позже может вызвать большие проблемы. По мнению Эймса и его соратника Джойса Маккэнна, тот факт, что многие из нас употребляют небогатую питательными веществами (но богатую калориями) пищу, означает, что нашим телам просто не хватает основных элементов, необходимых для того, чтобы поддерживать здоровье в долгосрочной перспективе. Мы можем все еще чувствовать себя хорошо, но, с точки зрения Эймса, этот незначительный дефицит, сохраняющийся в течение продолжительного периода времени, может вызвать повреждения, которые, вероятно, будут способствовать возникновению проблем, связанных с возрастом, — от рака и болезней сердца до остеопороза, нарушений иммунной системы и старческого слабоумия. В связи с этим Эймс обращает внимание на последствия хронического среднего дефицита витаминов и минералов, но то же самое может оказаться правдой и для фитохимикатов и других пищевых элементов.
В отличие от многих других исследователей в области питания, Эймс — поклонник ежедневного приема поливитаминных добавок; особенно, по его мнению, такого ежедневного приема должно придерживаться бедное население. Он посвятил несколько лет разработке некоего продукта под названием CHORI-Bar: по сути, это поливитамин в виде черного батончика, покрытого тонким слоем шоколада и обсыпанного сахаром. Эймс надеется, что он поможет улучшить состояние людей, которые не принимают поливитамины или не могут себе позволить (или не хотят есть) больше продуктов, от природы богатых питательными веществами. Но независимо от используемых средств он убежден, что мы обязаны что-то делать.
— Я полагаю, главная причина ухудшения здоровья в том, что мы делаем сами с собой, — сказал он мне. — Питание — вот что лежит на поверхности в сфере превентивной медицины и вот куда мы должны направить свои усилия. Мне восемьдесят три года, и я не знаю, сколько лет мне осталось говорить об этом.
Независимо от того, верна ли теория сортировки, работа Эймса затрагивает и другую новую огромную область в сфере исследований питания, а именно пищевую геномику (иногда ее называют нутригеномикой). Эта перспективная отрасль науки о том, как гены определяют реакцию нашего организма на пищу (особенно в отношении развития болезней) и как именно пища может влиять на наши гены.
В теории эта развивающаяся сфера пищевой геномики может позволить нам создавать действительно индивидуализированные диеты, разработанные согласно определяемым генетически нуждам и уязвимым местам каждого человека. Ряд компаний уже утверждают, что могут предложить индивидуальные рекомендации по питанию, основанные на генетических особенностях, в том числе генетический тест по контролю веса, предлагаемый компанией Inherent Health. Согласно сайту этой компании, тест позволит «сделать выводы о том, как потерять вес», путем анализа отдельных участков вашей ДНК.
«Не тратьте еще один день на неправильную диету! — призывает реклама. — Каков необходимый процент углеводов, жиров и белков для вашего рациона? Нужно ли вам интенсивно заниматься спортом, или вы можете обойтись умеренными физическими упражнениями? Результаты теста помогут найти индивидуальный ответ на вопрос, что необходимо вам, чтобы достичь здорового веса».
Большая часть научных организаций крайне сомневается в ценности сегодняшних генетических тестов по питанию, хотя многие ученые полагают, что они могут быть полезны в будущем[558]. Но прежде чем углубляться в рассуждения об их пользе, давайте посвятим минутку той науке, на которую они опираются. Как вы, вероятно, помните из уроков биологии в старшей школе, гены (от греч. genos — «рождение») — это фрагменты кода, помещенного в двойную спираль нашей ДНК, которые передают наследственные черты от одного поколения другому. Гены часто сравнивают с предложениями, каждый из генов состоит из длинной последовательности генетических букв алфавита — A, T, C и G, которые представляют собой основания нуклеиновых кислот: аденин (A), тимин (T) (не путать с тиамином), цитозин (C) и гуанин (G). Каждое из этих генетических предложений содержит инструкции, как генерировать органические вещества, наиболее известные из которых — белки.
Белки — это большие молекулы, которые помогают нашему организму осуществлять какую-либо деятельность (например, гормоны и ферменты являются белками) и создавать значительную часть структуры наших тканей. В результате гены (или, точнее, белок, который они генерируют) определяют наследственные черты — какой у вас цвет волос или какой рукой вам удобно писать. Согласно последним гипотезам, высказанным исследователями проекта «Геном человека», у человека около двадцати пяти тысяч генов с белковым кодом.
Рынок генетических тестов, которые должны помочь составить идеальную диету, найти отца ребенка или определить предрасположенность к каким-либо заболеваниям, начал расцветать после успешной картографии человеческого генома в 2003 году. Тесты выявляют генетические вариации, называемые однонуклеотидными полиморфизмами, или SNP (произносится «снип»), метками, возникающими на нашей ДНК, когда одна генетическая буква заменяется другой[559]. SNP, объясняющие большую часть генетических различий между людьми, происходят примерно один раз в триста генетических букв и обычно находятся на участках ДНК, в которых закодированы не белки (только около в 3–5 % нашей ДНК закодированы белки, а остальное является для нас тайной).
Наша ДНК состоит примерно из трех миллиардов базовых букв, и это означает, что в каждом человеке примерно десять миллионов SNP[560]. Так как большая часть SNP вызвана ошибками репликации (генетический эквивалент опечаток) и так как нам нужно создать полную копию ДНК для каждой новой клетки нашего тела, мы можем копить дополнительные SNP в течение жизни — и даже передать некоторые нашим детям. Новые SNP тоже могут появляться между поколениями: в каждом младенце примерно от пятидесяти до семидесяти новых SNP, большинство из них созданы по чистой случайности[561].
Повторим еще раз, что SNP фактически не являются генами — это просто отдельные заменяемые элементы в составе генов. Таким образом, обычно кажется, что SNP не несут особого значения: если я напишу «леснница» вместо «лестница», вы все равно поймете из контекста, что я имела в виду. Но если написать «рука» вместо «река», это полностью изменит высказывание. Аналогично некоторые SNP влияют на код гена так, что либо меняют экспрессию генов (это научный метод описания того факта, были они активированы или нет), либо меняют белки, которые генерируют. Некоторые из этих изменений могут иметь нейтральный или даже положительный эффект — на самом деле благотворные SNP необходимы для развития эволюции, поскольку могут привести к возникновению полезных особенностей, таких как способность выживать на высоте. Но считается, что другие влияют на экспрессию генов таким образом, что могут вызвать болезнь[562]. Как указано на сайте Национальной коалиции по вопросам здравоохранения профессионального образования в области генетики (National Coalition for Health Professional Education in Genetics, NCHPEG): «Так как гены и продукты генов включены в процесс возникновения всех заболеваний, вопрос должен формулироваться не как “Это генетическое нарушение?”, а скорее как “Какую роль сыграли гены в развитии данной болезни у этого человека?”»[563].
И гены (предложения), и SNP (опечатки) могут определять нашу чувствительность к определенным факторам внешней среды, включая пищу и лекарственные препараты. Это могло бы объяснить, почему некоторые препараты лучше действуют на одних людей, чем на других, или почему многие исследования в области питания дают противоречивые результаты (например, некоторые исследования показали, что кофеин повышает риск возникновения остеопороза[564], в то время как другие признали его скорее полезным в этом отношении), почему определенные нации более уязвимы, чем другие, по отношению к отдельным болезням, таким как диабет первого и второго типа, и почему риск возникновения болезни может варьироваться даже среди людей, чей стиль жизни и рацион, по сути, совпадают.
С ростом нашего понимания отношений между окружающей средой и генетикой мы в конечном счете сможем использовать генетические тесты, чтобы давать рекомендации по питанию на индивидуальном (или полуиндивидуальном) уровне. Теоретически это могло бы прояснить путаницу с питанием, объяснить людям, каким советам нужно следовать, а на какие они могут не обращать внимания. Возможно, генетический тест покажет, что вы можете потреблять углеводы в больших количествах, чем другие люди, и не набирать вес. Или, может быть, он покажет, что вы нуждаетесь в витаминах больше, чем основная часть населения, и что поэтому вам надо принимать добавки. Чем более сложными станут тесты, тем более индивидуальными сделаются наши диеты.
Доведем мысль до крайности: если совместить этот тип генетического портрета с точными ранними быстрыми тестами на пищевой дефицит, полностью исчезнет необходимость в пищевых указаниях популяционного уровня, таких как РНП. Джеральд Комбс пишет в своей книге «Витамины»: «Быстро приближается время, когда станет возможным определение предрасположенности к болезням, особенностей метаболизма и особых пищевых нужд индивидов на основе быстрых геномных и метаболических анализов. Когда это станет осуществимо, популяционная парадигма потеряет большую часть своего значения»[565].
Но несмотря на обещания ориентированных на потребителя компаний, проводящих генетические тесты, мы еще к этому не пришли — в значительной степени потому, что, хотя мы и можем определить SNP с удивительной точностью, нам еще не известно, какой именно смысл это несет, как они могут работать вместе, или влиять друг на друга, или даже на те ли из них мы вообще обращаем внимание. (Это одна из причин, по которой FDA запретило продажу некоторых из этих тестов.) Вспомним аналогию, проведенную Хосе Ордовасом, директором Лаборатории генетики и питания при Центре изучения питания и старения человека имени Жана Майера при Министерстве сельского хозяйства США в Университете Тафтса, который работал над вопросом индивидуализированного питания более двадцати пяти лет.
«Как будто кто-то звонит в дверь, и вы можете посмотреть в глазок. Ну, кто пришел? Прежде всего человек может спрятаться, так что вы не увидите ничего. Или вы увидите только этого человека, но не двадцать других, которые стоят по обе стороны от него. Вы смотрите на то, что находится прямо перед вами, но вы упускаете все, что происходит вне поля вашего зрения»[566].
В результате по крайней мере на данный момент нет смысла выкладывать сотни долларов за ориентированные на клиента генетические тесты питания. Скорее всего, вам просто разошлют типичные советы по питанию («Ешьте больше овощей и фруктов и меньше полуфабрикатов»), следования которым вы и хотели избежать с помощью теста.
Пока ученые работают над задачей создания индивидуальных (или полуиндивидуальных) советов по питанию, каждый следующий шаг, кажется, приводит к новой тайне, включая другую сторону пищевой геномики: если наши гены могут определять, как наше тело реагирует на пищу, тогда какое влияние может пища оказывать на наши собственные гены? Как и многое в сфере питания, этот вопрос остается открытым. Но то, что мы уже знаем, кажется безумным.
Вопрос о том, какой эффект питание может оказывать на наши гены, часто всплывает в контексте Голодной зимы в Нидерландах — массового голода, поразившего гражданское население Нидерландов в конце Второй мировой войны. Войска союзников совершили выброску парашютного десанта за линией нацистского фронта, рядом с городом Арнем, в смелой попытке расчистить путь сухопутному наступлению на Германию, но операция прошла неудачно, и нацисты приняли ответные меры против нидерландского сопротивления, поддержавшего союзников, объявив полное эмбарго на оккупированной территории. Города в западной части Нидерландов уже израсходовали свои запасы, и нацисты несколько уступили, разрешив провозить продовольствие по воде. Но это мало помогло: в 1944 году зима наступила рано, и каналы быстро замерзли, делая невозможным провоз продуктов на баржах. Когда это произошло, начался серьезный голод. Официальная суточная норма на человека, установленная немцами, упала с 1400 калорий в ноябре 1944 года до 400–800 калорий с декабря по апрель следующего года[567]. Хотя люди пытались извлечь калории из всего — от травы до луковиц тюльпанов, почти вся их энергия бралась из трех продуктов: хлеба, картофеля и сахарной свеклы. Голод достиг своего апогея в апреле 1945 года, когда союзное наступление полностью отрезало западные города от остальной страны[568]. К тому моменту как Нидерланды были освобождены в мае (в результате чего нормальные поставки продовольствия были возобновлены), многие из жителей западных городов голодали уже в течение нескольких месяцев.
Голодная зима убила по крайней мере двадцать две тысячи человек и оставила двести тысяч с болезнями[569]. Средняя потеря в весе среди выживших составляла 15–20 %. К моменту окончания голода примерно у половины женщин прекратился менструальный цикл, а девять месяцев спустя рождаемость упала на 50 % — такая неутешительная статистика отражает воздействие, которое оказал голод на репродуктивную способность.
Это была предотвратимая трагедия, к которой привели военная стратегия и политика. Однако Голодная зима создала условия для проведения так называемого естественного эксперимента, ведь подобные факторы невозможно было бы воспроизвести намеренно — с материально-технической и моральной точки зрения. Голодная зима не только оказывала воздействие на большое количество людей в течение одного и того же времени, но и охватывала все социально-экономические слои населения. Люди получали примерно одно и то же питание, а поскольку голодали только жители западной части страны, население других регионов автоматически становилось контрольной группой. К тому же Нидерланды славились тщательным ведением учета, и позднее власти предоставили исследователям доступ к данным о здоровье граждан, полученным в результате медицинских и военных осмотров на протяжении десятилетий. Итак, Голодная зима предоставила ученым уникальную возможность изучить связь между питанием и состоянием здоровья и, что немаловажно, узнать, как недостаточное питание беременных женщин влияет на их детей.
Исследования начались в 1970-х годах, и в то время уже было известно, что питание людей непосредственно влияет на химические процессы в организме. Об этом свидетельствуют случаи авитаминозов, ведь без витаминов отдельные химические реакции становятся невозможными, и мы заболеваем. Аналогично токсичные вещества из окружающей среды негативно воздействуют на здоровье, например частицы асбеста способствуют возникновению рака легких. Но до недавнего времени допускалось, что, хотя факторы окружающей среды и могут привести к экспрессии генов, вызывающей заболевания, их воздействие на человека, который ее пережил, прекращалось и они не должны передаваться следующему поколению. Предполагалось, что сама ДНК (по крайней мере в краткосрочной перспективе) остается неизменной.
Однако во второй половине XX века взгляды ученых начали меняться — когда исследования показали, что внешние факторы, например курение во время беременности, на самом деле оказывают негативный эффект на здоровье детей. Результаты исследований Голодной зимы продвинули эту теорию еще на шаг вперед, поскольку касались именно питания, а не токсинов. В зависимости от того, в какой момент беременности будущих матерей настиг голод, их повзрослевшие дети находились в группе риска по возникновению физических и психических проблем со здоровьем — депрессий, сердечно-сосудистых и метаболических заболеваний, в частности диабета второго типа[570]. (Подобные результаты были недавно зафиксированы у гамбийских детей — в зависимости от того, были они зачаты в сухой сезон или в дождливый[571].) У тех, кто был зачат в тот момент, когда голод достиг апогея, наблюдался двойной риск развития шизофрении по сравнению с детьми, зачатыми в другое время[572]. Эту связь подтвердил еще один естественный эксперимент — ужасный голод в Китае, случившийся из-за так называемого Большого скачка Мао Цзэдуна{72}.
Дискуссии о том, что именно — гены или окружающая среда — в большей степени влияет на человека и определяет его интеллектуальные способности, личностные качества, предрасположенность к определенным заболеваниям и прочие факторы, которые делают индивида уникальным, ведутся давно, и наверняка вы слышали о них или даже сами принимали в них участие. В данном случае по аналогии с курением матери может показаться, что дети Голодной зимы просто пострадали от плохих условий вынашивания: более высокий процент заболеваемости среди них — это следствие физического истощения и стрессового состояния их матерей. То есть на детей влияют условия вынашивания, но возникшие проблемы не передаются по наследству.
Однако все как раз наоборот: как подтвердилось в ходе дальнейших исследований, последствия голода действительно повлияли на психологическое и физическое здоровье не только детей, но и внуков тех матерей. Например, выяснилось, что дети женщин, чьи матери подверглись голоду, когда те были в утробе, имеют больше жировых тканей при рождении и больше проблем со здоровьем в течение жизни, чем люди, чьи бабушки не страдали от голода в период беременности. (Также оказалось, что внуки курильщиков подвержены большему риску возникновения астмы[573].)
В одной из научных статей говорится: «Мы только начинаем принимать во внимание затронувшее поколение воздействие условий среды в ранний период жизни, что может быть особенно значимо в отношении наций, находящихся в стадии перехода от традиционного строя к индустриальному. Это может пролить свет на такие проблемные состояния, как диабет, ожирение и сердечно-сосудистые заболевания, которые быстро распространяются в таких странах»[574]. Все они, а еще остеопороз, заболевания нервной системы и разнообразные воспалительные процессы связаны с питанием[575].
Эти трансгенерационные (межпоколенческие) последствия, как их называют в научной литературе, кажется, сводят на нет строгую теорию среды — ведь младенец следующего поколения никогда не попадал под прямое воздействие утробы своей бабушки. Более того, согласно результатам другого исследования, предрасположенность к некоторым заболеваниям может передаваться внукам от их дедушек, у которых, очевидно, вообще нет утроб![576] Но трансгенерационные последствия также едва ли были вызваны изменениями в генетической природе детей и внуков, так как изменения в генах национального масштаба сами по себе требуют гораздо больше времени для развития. Коротко говоря, по-видимому, риски для здоровья первого и второго поколений не были вызваны исключительно их генетической природой или пренатальным развитием. На самом деле, кажется, они имеют отношение к тому, в какой среде находилась сама генетическая природа детей.
Мои собственные представления о среде и наследственности сформировались на последнем курсе колледжа, когда мне поставили диагноз «диабет первого типа». Это неизлечимое аутоиммунное заболевание, при котором организм уничтожает клетки, производящие важный гормон инсулин. Свыкнувшись с мыслью о болезни, я захотела узнать: было ли развитие диабета первого типа обусловлено генетически? Если так, почему я узнала о заболевании, только когда мне исполнилось двадцать два? В качестве объяснения врачи привели следующую метафору: «Генетика заряжает пистолет, — говорили они мне. — Но на спусковой крючок нажимает среда».
Будучи человеком, порой склонным к излишнему буквализму, я не находила этот ответ удовлетворительным, но не по вине моих врачей. Вопрос о том, как факторы среды (включая питание и не только) влияют на активность наших генов — не говоря уже о том, как эти изменения могут повлиять на будущие поколения, — это совершенно новая область научных изысканий.
Эта область известна как эпигенетика. Данный термин относится к вторичному набору инструкций, которые сообщают нашим генам, где, когда и в каком объеме должна произойти их экспрессия. (Слово «эпигенетика» означает «над» или «помимо» генетики.) Позаимствовав аналогию у британского ученого Нессы Керри, автора прекрасной книги The Epigenetics Revolution{73}, вы можете взглянуть на это через призму голливудского фильма: если ДНК — это сценарий, эпигенетика — то, как его будут ставить. Например, адаптация «Ромео и Джульетты» 1996 года, где играли Клэр Дэйнс и Леонардо Ди Каприо, была основана на тексте Шекспира, но данная постановка сильно отличалась от изначальной версии, поставленной на сцене театра «Глобус»[577]. Эти особые инструкции имеют отношение к эпигенетическим маркерам и могут быть порождены внешними факторами, такими как постоянный стресс, эмоциональная травма, воздействие химикатов, и да, питание.
Нас окружают эпигенетические примеры, пусть даже мы не осознаем, что это они. Подумайте вот о чем: каждая клетка вашего тела (за исключением красных кровяных телец) содержит полную копию вашей ДНК и вместе с тем каждый из примерно двадцати пяти тысяч генов с белковым кодом. ДНК в вашем сердце содержит информацию о том, как вырастить глаз, ДНК вашего кишечника тоже знает, что вы правша. И все же благодаря эпигенетическим маркерам наши ноги знают, что не должны отращивать зубы, а наши желудки не выращивают уши. Организм женщин знает, что не надо производить грудное молоко постоянно. К тому же в зависимости от того, какие гены активированы и не активированы, одно и то же существо может выглядеть совершенно по-разному на различных стадиях жизни — вспомните о гусенице, которая превращается в бабочку.
Эпигенетические маркеры не меняют сами базовые гены (и они отличаются от SNP, которые фактически встроены в нашу ДНК) — они просто говорят генам, как себя вести. В связи с этим эпигенетические маркеры могут быть постоянными или временными, что объясняет, почему у женщин появляется грудное молоко только в определенные периоды жизни, а бабочка никогда не вернется в состояние гусеницы. Если вы представите, что ДНК — это жесткий диск, заполненный программами, эпигенетика — это механизм, который решает, как и когда их запустить. Или вернемся к примеру с диабетом: если генетика зарядила пистолет, эпигенетические факторы (которые мои врачи назвали средой) нажали на курок.
Каждый раз при делении клетки передают многие эпигенетические маркеры — поэтому, когда делится клетка мышцы, новые дочерние клетки знают, что они должны быть клетками мышц, а не печени. Впрочем, большая часть эпигенетических маркеров не передается нашим детям — напротив, в момент зачатия организм производит перепрограммирование, которое, как оказывается, стирает большинство маркеров, накопленных родителями за свою жизнь. Этот «чистый лист» позволяет союзу единственного сперматозоида и яйцеклетки превратиться в новенькое человеческое тело. Но большая часть — это не все. Некоторые эпигенетические маркеры, по-видимому, наследуются. И кроме того, даже самое доскональное перепрограммирование все же оставит восприимчивость плода к новым эпигенетическим маркерам, добавляемым в период его нахождения в утробе.
В исследованиях Голодной зимы налицо оба этих фактора. В первом поколении эпигенетические сигналы, вызванные голоданием беременных женщин, по-видимому, оказали мгновенный эффект на экспрессию генов их малышей, которые, в свою очередь, передали некую версию тех приобретенных эпигенетических маркеров своим собственным детям.
Давайте остановимся на минуту, чтобы признать, насколько еретической является эта идея. Изучая материалы об эпигенетике, вы неизбежно столкнетесь с упоминанием о Жан-Батисте Ламарке, французском ученом додарвиновского периода. В 1809 году он написал книгу «Философия зоологии», где предложил теорию приобретенных черт, предполагавшую, что виды могут приобретать новые характеристики из-за влияния среды и передавать их своим потомкам. Так, по его мнению, кузнецы передают сыновьям сильные предплечья, сформировавшиеся вследствие тяжелого физического труда, а жирафы, обитающие в местах, где почва постоянно сухая, вынуждены постоянно тянуться за листвой, которая является для них единственным источником пропитания, и именно поэтому имеют такие длинные шеи.
Спустя пятьдесят лет Чарльз Дарвин опубликовал свой знаменитый труд «О происхождении видов», и успех теории эволюции отправил работы Ламарка в мусорное ведро. Большую часть современной истории ламаркизм считался нелепостью, пережитком эры примитивной науки. Сейчас считается, что, если у сыновей кузнеца развились сильные предплечья, это произошло потому, что они выполняли некий род физической активности, которая укрепила их мышцы, и независимо от того, изучала ли я французский в старшей школе, он не передастся напрямую моему ребенку. (Tant pis!{74})
Но что поразительно, стремительно развивающаяся эпигенетика предполагает, что Ламарк мог быть в чем-то прав — не относительно приобретенного знания (те французские глаголы умрут вместе со мной), а относительно других черт. В одной из научных статей 2012 года утверждается: «Обнаружение того, что на установление эпигенома может влиять среда, вместе с обнаружением того, что некоторые эпигенетические маркеры избегают перепрограммирования при переходе от одного поколения к другому, повышает вероятность того, что эпигенетические маркеры, на которые повлияла среда, могут наследоваться следующим поколением. Если бы это было правдой, — продолжает автор, — это бы в корне изменило наше представление о наследственности»[578].
Выводы из этой теории относительно питания особенно важны, так как рацион — сфера, над которой у индивидов есть значительная доля контроля. Это дает основание предполагать, что мы не только то, что мы едим. Мы — то, что ели наши бабушки и дедушки и наши родители. А наши внуки точно так же могут подвергнуться воздействию того, что едим мы.
Хотя этот аспект пищевой геномики — идея о том, что наш рацион может иметь трансгенерационный эпигенетический эффект, — все еще представляется спорным, получивший широкий резонанс доклад 2003 года исследователей из Университета Дьюка наглядно продемонстрировал его потенциал[579]. Их эксперимент часто иллюстрируют фотографией двух мышей — современный эквивалент фотографий лабораторных крыс, которые Элмер Макколум везде носил с собой в кармане, чтобы демонстрировать важность витаминов[580]. На картинке одна мышь коричневая, худая, ничем не примечательная, а другая — желтая и чрезвычайно толстая, как большой надувной мяч. Если только вы сильно не перекармливали своего домашнего хомяка, вы никогда не видели ничего подобного. Мыши однозначно разные. Но при этом они — однояйцевые близнецы.
Их физические различия вызваны тем, что известно как ген агути, — отсюда их прозвище, напоминающее название музыкальной группы «Сестры-агути». Ген агути (которого нет у людей) влияет на цвет меха, таким образом предоставляя подходящий визуальный индикатор ученым, пытающимся определить, в какой степени он активирован: если не активирован, мышь остается коричневой, если да — обретает желтый окрас (если частично — становится пятнистой). Ген агути также приводит к дисбалансу в гормонах, который вызывает неутолимый голод, что ведет к ожирению и риску возникновения у мыши диабета второго типа и рака. Даже при одном взгляде на фотографию становится ясно, что у толстой желтой мыши гены агути сильно активированы.
Вероятно, есть много способов, которыми эпигенетические факторы активируют и дезактивируют гены. Мы не знаем всех деталей, но считается, что ген агути связан с процессом, который мы лучше всего понимаем: метилированием. Метильные группы — это базовые структуры органической химии, которые состоят из одного атома углерода и трех атомов водорода. Если метильные группы присоединяются к определенным звеньям ДНК или белку внутри ДНК, ген, который контролируется этим участком ДНК, подвергается воздействию. В случае с мышами ген агути коричневой мыши был метилирован (что его дезактивировало), в то время как ген желтой мыши не был метилирован и, таким образом, стал активирован.
В данном конкретном эксперименте исследователи хотели определить, могут ли они влиять на паттерны метилирования и, таким образом, на то, какие гены активировать, меняя рацион мышей. Сначала они кормили беременную мышь, чьи гены агути были не выражены (которая была худой и коричневой), пищей, включавшей вещество бисфенол А, более известный как BPA, который используют в продукции из пластика (бутылки для воды, крышки от одноразовых кофейных стаканчиков, детские бутылочки, зубные пломбы и герметики, и даже чернила для печати чековых лент).
Последнее время BPA вызывает споры, не в последнюю очередь из-за его потенциального воздействия на экспрессию генов — и по крайней мере в случае с мышами эта теория кажется правдивой: ДНК детенышей, рожденных от самок, подвергнутых воздействию BPA (включая отдел, содержащий гены агути), была менее метилирована, чем у мышей, чьи матери его не потребляли. Предположительно в результате введения в их рацион BPA их гены агути сохранились, и несмотря на то, что матери были худыми и коричневыми, большая часть детенышей стали толстыми и желтыми.
Затем исследователи провели второй эксперимент. Наряду с BPA они давали беременным коричневым мышам добавки с фолиевой кислотой, витамином B12, холином и бетаином — веществом, которое от природы содержится в морепродуктах, шпинате, свекле и вине[581]. Все эти соединения содержали метильные группы, которые организм мог использовать для метилирования ДНК, делая из них так называемых метильных доноров. Большая часть детенышей этих мышей были худыми и коричневыми, даже несмотря на воздействие BPA. Пищевые добавки — три из которых были витаминами (если считать холин), — по-видимому, обеспечили мышей метильными группами, необходимыми, чтобы гены агути не активировались. В исследованиях шизофрении в контексте Голодной зимы сторонники теории фолиевой кислоты полагают, что нечто подобное произошло и с людьми: дефицит фолиевой кислоты в момент зачатия мог повлиять на метилирование — а следовательно, и на экспрессию — определенных генов таким образом, что это в итоге привело к нарушениям психики у потомков матери.
Хотя и пищевая геномика, и эпигенетика являются совершенно новыми областями науки — и хотя всегда небезопасно допускать, что если что-то происходит с мышами, то с людьми происходит то же самое, — подобные примеры решительно подталкивают к многообещающему и шокирующему выводу: наш ежедневный выбор, что же съесть (и воздействие на нас химикатов окружающей среды), может повлиять на экспрессию наших генов.
Каким бы интересным ни было исследование мышей агути, это не означает, что мы все должны начать глотать пищевые добавки, — на самом деле наше понимание того, как рацион влияет на эмбрион, еще само находится в зачаточном состоянии[582]. Исследователи из Университета Дьюка подчеркнули, что благотворное влияние метилирования на один ген не означает, что оно оказалось полезным для всех остальных или что их открытия в отношении мышей должны автоматически переноситься на людей. По поводу добавления фолиевой кислоты в зерновую продукцию, ставшего обязательным в США в 1998 году, они утверждают следующее: «Обогащение фолиевой кислотой в популяционном масштабе, направленное на снижение количества дефектов нервной трубки, может оказывать непредусмотренное влияние на установление эпигенетических генорегуляторных механизмов в ходе развития человеческого эмбриона». Перевод: «Мы не знаем, какое еще влияние это может иметь».
Также мы не знаем, каковы долгосрочные эпигенетические эффекты того, что мы употребляем очень мало натуральной еды, такой как овощи (и сопутствующие им фитохимикаты), и много продуктов, подвергшихся обработке. Нам неизвестны последствия нашего общенационального пристрастия к жирной пище или привычки постоянно колебаться между разными моделями питания.
И уж точно мы не знаем, какой эффект оказывает рацион на нашу микрофлору: бесчисленные бактерии, вирусы, грибок и простейшие микроорганизмы, которые живут в нашем кишечнике и, вероятно, имеют важное значение для нашего здоровья[583]. Национальная академия наук назвала микрофлору «возможно, самой тесной связью человека с внешней средой, осуществляемой в основном через питание»[584], а ее численность почти невероятно огромна[585]. Проект «Микробиом человека» предполагает, что микробные клетки по количеству превосходят человеческие в десять раз. Даже несмотря на то, что каждая микробная клетка по размеру составляет одну десятую от одной сотой человеческой клетки, вся наша микрофлора, по оценкам, составляет 1–2 % от общего веса нашего тела[586]. В то время как в человеческом теле содержится примерно двадцать пять тысяч генов с белковым кодом, считается, что в нашей микрофлоре их около 3,3 миллиона, и экспрессия каждого гена в теории может подвергаться влиянию того, что мы едим[587]. Более того, многие микроорганизмы сами производят вещества, которые дополняют наш рацион (например, некоторые кишечные бактерии могут вырабатывать витамин K). Количество вопросов без ответа просто поражает воображение.
Итак, может показаться странным, что я заканчиваю книгу о витаминах такими экзотическими терминами, как «фитохимикаты», «синергия», «пищевая геномика» и «микробиом», стоящими бесконечно далеко от моряков, страдавших от цинги, и заключенных, болевших пеллагрой. Но замените любое из этих современных понятий словом «витамины», и вы увидите, что ситуация, в которой мы находимся сегодня, удивительно схожа с той, в которой находились наши предшественники в начале XX века. Как и они, мы выявляем все новые пробелы в наших представлениях о питании. Как и они, мы узнаем о потенциальных опасностях нашей самонадеянности. И как и они, мы находимся на пороге новых открытий, которые покажут, как то, что мы едим, может влиять на наше здоровье.
Будь то попытки Элмера Макколлума определить, что за вещество, содержащееся в молоке, спасало его крыс, или эксперименты ученых с мышами агути, все это — различные эпизоды единого исторического процесса, каждый из которых представляет собой передовой рубеж в науке на определенный момент. Вполне вероятно, что, подобно тому как первые нутрициологи не могли даже подумать о существовании каких-то веществ (например, витаминов), которые сегодня мы воспринимаем как должное, лет через сто наши потомки будут удивляться нашему высокомерию и смеяться над нашей уверенностью, что мы все знаем о питании.
Но витамины в большей степени, чем другие компоненты пищи, не просто поучают или предостерегают. Они также говорят нам и о нас самих — о наших надеждах, страхах и отчаянной жажде контроля. Вместо того чтобы задавать вопросы, пусть они могут остаться без ответа (или посягнуть на нынешнее положение дел в пищевой промышленности), мы пассивно принимаем любые новые утверждения о здоровье или рекомендации, которые слышим. Кажется, будто мы сами хотим это делать: нас успокаивает мысль, что, даже если нас самих сфера питания сбивает с толку, есть кто-то, кому известна истина.
В результате мы продолжаем верить, что все, в чем содержатся витамины, полезно, несмотря на внутреннее осознание, что продавцы используют это убеждение, чтобы манипулировать нами. Мы не спрашиваем, откуда взялись синтетические витамины в определенных продуктах или почему наши пищевые ресурсы требуют использования такого количества технологий. Вместо этого мы разрешаем отнимать у нас способность мыслить рационально при помощи одного слова. И несмотря на тот факт, что очень многие люди принимают витамины в виде таблеток (и почти все ассоциируют слово «витамин» со здоровьем), почти никто из нас не остановится, чтобы поинтересоваться, почему — из тысяч веществ, содержащихся в пище, — мы чтим именно эти тринадцать, почему мы смотрим на них не только с признательностью, но и с чем-то, что часто напоминает религиозную веру.
Вот, возможно, самый главный вопрос о витаминах, который нуждается в прояснении. Я пришла к выводу, что ответ на него лежит в основе всех религий: это спасение от неопределенности. Мы ненавидим неизвестное, протестуем против него, поскольку оно заставляет нас чувствовать себя бессильными и парализованными. Так что мы даем имена веществам, считаем калории и классифицируем продукты, ищем советы на упаковках и в новостях, делаем все возможное, чтобы сохранить чувство контроля над нашими телами и нашим миром. В таких важнейших сферах, как здоровье, когда объяснения часто являются неполными, а гарантии невозможными, мы смягчаем испытываемый нами дискомфорт, находя то, во что можно верить и что дает нам ощущение безопасности. В случае с религией мы верим в Бога. А в случае с питанием у нас есть витамины.
Эпилог
Неуверенность может причинять большие неудобства, особенно если дело касается питания (ведь мы едим каждый день!). И хотя такое чувство ответственности может загнать нас в ступор, оно равным образом способно и придать нам сил — просто не надо терять из-за него голову. Мы должны отдавать себе отчет, что все еще не достигли окончательного понимания всех тонкостей взаимоотношений продуктов с нашим организмом, и использовать этот факт, принимая решения о том, что и как есть.
Возьмем для примера эпигенетику. Зная, что ваш рацион может навредить самым младшим или самым старшим членам семьи, что вы приготовите сегодня на обед? Если этот вопрос кажется вам неразрешимым, предлагаю познакомиться с точкой зрения Нессы Керри. «Мы чрезвычайно сложные организмы, и наше здоровье и качество жизни зависят от генома, эпигенома и окружающей среды»[588] — пишет она. — Но помните о том, что даже для инбредной мышки агути, содержащейся в строго контролируемых стандартных условиях, ученые не могут с абсолютной точностью предсказать, насколько желтым и упитанным будет каждый мышонок из ее потомства. Так почему бы нам не постараться сделать все возможное для своей здоровой и долгой жизни? А если мы собираемся заводить детей, разве не захотим мы приложить все силы, чтобы дать им возможность вырасти здоровыми?»
Иными словами, почему бы нам не признать, что у нас нет ответов на все вопросы, чтобы потом использовать все, что мы знаем, для собственной пользы?
Если подойти к проблеме с этой точки зрения, наше понимание витаминов может послужить отличным руководством, даже несмотря на то (а возможно, именно потому), что оно заведомо неполное. Мы знаем, что наш организм нуждается в витаминах и что без них мы умрем. Мы знаем, что чем глубже процесс переработки и очистки пищи, тем меньше в ней остается витаминов (и других потенциально важных элементов) и тем больше она нуждается в возмещении и обогащении теми веществами, которых лишилась. Мы знаем, что сверхдозы витаминов не только не полезны, но в ряде случаев способны принести вред. Мы знаем, что психология нашего подхода к витаминам превратила их в мощные маркетинговые инструменты, и это часто подталкивает нас к покупке и употреблению таких продуктов, от которых мы (если бы не их заявленная витаминная ценность) могли — и должны были — отказаться. Мы знаем, что если перейдем на употребление одних поливитаминов и обогащенных продуктов, то лишимся прочих природных компонентов, содержащихся в пище, и что многие из этих компонентов, очевидно, очень важны для здоровья. И с другой стороны, мы знаем, что пища, богатая витаминами, не менее богата этими самыми неизвестными пока полезными веществами.
Вооруженные этими знаниями, мы легко ответим на вопрос, чем питаться, с точки зрения теории микронутриентов. Выбирайте такие продукты, в которых много витаминов от природы, а не с подачи человека, — и ваши шансы на правильный выбор возрастут. (Действительно, если вы будете покупать продукты с минимальной степенью обработки, вам уже не придется держать дома запас поливитаминов!) Прежде чем купить обогащенный продукт, спросите себя: «Почему я его покупаю? Купил бы я его, если бы он не был обогащен витаминами?» И если нет, предпочтите ему продукт, от природы обладающий питательной ценностью. Вместо того чтобы беспокоиться о новой порции поливитаминов, беспокойтесь о том, чтобы еда на вашем столе была качественной, — и постарайтесь придерживаться такой диеты, чтобы не было нужды глотать таблетки. Ну а уж если вас действительно приводят в экстаз энергетические батончики с витаминами и прочие искусственно созданные смеси, что ж, побалуйте себя разок-другой. Только отдавайте себе отчет в том, что вы едите сладкий батончик, приукрашенный витаминами: не позволяйте его витаминовой мантии превратить добавку в основу рациона.
Если мы будем следовать этим правилам, в итоге вполне сможем прийти к современной версии той самой «защитной диеты», которую больше ста лет назад рекомендовал исследователь витаминов Элмер Макколлум: рацион, основанный на широком выборе продуктов с высокой от природы пищевой ценностью, как способ удовлетворить все наши потребности. Построенная на той же философии, сегодняшняя «защитная диета» заставит судить о пищевой ценности продукта не по тому, что в него было добавлено, а по тому, какие микронутриенты содержатся в его начальной, необогащенной версии. Равным образом это приучит нас выбирать продукты с самым высоким содержанием пока неизвестных, но важных для здоровья микронутриентов: они будут служить нам независимо от того, знаем мы о них или нет. Это неизбежно обратит наш взгляд на фрукты и овощи, на цельнозерновые крупы, содержащие действительно цельное зерно, не превращенное в рафинированную муку, крекеры или хлопья, и орехи. В нашем рационе появится и минимально переработанное мясо, и много жирной рыбы, и, конечно же, молочные продукты. Отдавая предпочтение свежим продуктам, тем не менее мы не будем забывать, что в ряде случаев, особенно в отношении жирорастворимых витаминов, есть способы приготовления, которые облегчают усвояемость[589],{75}. С точки зрения теории микронутриентов самым главным советом будет есть как можно больше овощей, фруктов и других питательно ценных продуктов независимо от способа их приготовления.
Современная «защитная диета» также может составляться не только на основе того, что она должна содержать (если уж на то пошло, этот список и так всем известен), а на основе того, что из нее следует исключить. Прежде всего это переработанные и обогащенные зерновые, сладкие напитки и прочие примеры попыток человека синтезировать полноценные продукты. Отдавая предпочтение пище, богатой нутриентами от природы, мы также избавимся от парадокса, сложившегося в нашем подходе к еде: несмотря на одержимость в следовании пищевым рекомендациям, мы сумеем от них отказаться.
И наконец, избавив нас от необходимости в мелочной опеке и внушив достаточно отваги для принятия неизвестного вместо страха перед ним, «защитная диета» станет буфером, способным защитить нас от противоречивых рекомендаций, которые мы ежедневно получаем благодаря рекламе. Мы сумеем вовремя вспомнить о том, что гонка за сенсациями нередко раздувает значение очередной научной «новости» и что для настоящего прорыва в науке требуется не один день. Если мы будем придерживаться современной «защитной диеты», нам не придется напряженно следить за заголовками популярных изданий или превращать свое меню в математическую головоломку. Хотя кому-то она может показаться парадоксальной, простота такой концепции делает ее максимально научным — и, я готова поспорить на что угодно, максимально приятным — подходом к питанию.
Приложение A
Витамины
Витамин А (ретинол): открыт в 1915 году, выделен в 1937 году, определена структурная формула в 1942 году, синтезирован в 1947 году.
Этот витамин называют ретинолом, поскольку он играет важнейшую роль для нормального функционирования сетчатки глаза (от лат. retina — «сетчатка»). Источниками витамина A служат продукты животного происхождения — печень, рыба жирных сортов, яичные желтки, а также молочная продукция — цельное молоко и сыр. Кроме того, вы можете получить его из продуктов, обогащенных витамином A, — как правило, это обезжиренное молоко, маргарин, а также некоторые виды хлеба и каш. Человек также способен получить ретинол из каротиноидов, содержащихся в растительной пище, которые в организме превращаются в витамин A. Наиболее известный каротиноид — бета-каротин, придающий ярко-оранжевый цвет фруктам и овощам, в которых содержится в большом количестве: моркови, дыне-канталупе, абрикосам и сладкому картофелю. Также бета-каротин встречается в темно-зеленых листовых овощах, таких как капуста и шпинат, однако его маскирует хлорофилл — пигмент, который придает растениям зеленую окраску.
Витамин A считается наиболее опасным из витаминов, поскольку он может быть ядовитым даже в сравнительно низких дозах и, являясь жирорастворимым, имеет свойство накапливаться в тканях организма, откуда его очень сложно вывести. Получить вредную дозу ретинола из обычных, необогащенных продуктов практически невозможно, однако имеются исключения: в печени некоторых видов животных и рыб, в частности тюленей, белых медведей, палтуса и собак породы хаски, содержится огромное количество витамина A. Причем имеется в виду угрожающий избыток: так, в 1 г печени белого медведя целых 20 000 МЕ витамина A, в то время как норма потребления ретинола в сутки — всего 3000 МЕ, а МП (максимальное переносимое потребление) для взрослого человека составляет 10 000 МЕ.
К сожалению, первые путешественники-исследователи ничего не знали об этом. Во время одной северной экспедиции, которую предприняли австралийский полярник Дуглас Моусон и его товарищ, альпинист из Швейцарии Ксавье Мерц, собачья упряжка с провиантом провалилась в ледниковую трещину. Тогда они попытались выжить, поедая собак-хаски, которые тащили их сани, включая, разумеется, и их печень. Несколько недель спустя их кожа начала шелушиться, а волосы — выпадать клочьями. В своей книге под названием Polar Journeys («Полярные экспедиции») Роберт Фини приводит следующее описание: «Моусон вспоминает, как Мерц произнес: “Секундочку”, — и снял с его уха кожную оболочку. Он сделал для товарища то же самое. Вся одежда путешественников была в коже и волосах».
Важно отметить, что витамин A также необходим для обеспечения деятельности слизисто-секреторных эпителиальных клеток, которые окружают (и защищают) дыхательный аппарат и другие жизненно важные органы, и играет немаловажную роль в нормальном функционировании иммунной системы и предотвращении различных инфекций. Он помогает предотвратить «ночную слепоту» (заболевание, известное еще как куриная слепота, или ксерофтальмия) и участвует в формировании и поддержании красивой кожи, здоровых зубов, костей и мягких тканей. Витамин A легко разрушается в результате длительного приготовления или хранения. И да, это правда: чрезмерное употребление продуктов, содержащих бета-каротин, хотя и не представляет опасности, но приведет к изменению оттенка вашей кожи на желтоватый или оранжевый.
Витамин B1 (тиамин, аневрин): открыт в 1906 году, выделен в 1926 году, определена структурная формула в 1932 году, синтезирован в 1933 году.
Тиамин присутствует в таких продуктах, как дрожжи, обогащенный хлеб, мука, яйца, постное и органическое мясо, фасоль, орехи, крупы, горох и цельные злаки. Это водорастворимый витамин, чувствительный к высокой температуре и щелочной среде. Также довольно высокое количество витамина B1 характерно для сыров с плесенью, таких как бри и камамбер, — в них содержится примерно 0,4 мг тиамина на 100 г, что в 10 раз больше, чем, скажем, в молоке. И кто после этого скажет, что сыр вреден?
Тиамин необходим для осуществления ферментативных реакций, в ходе которых углеводы преобразуются в энергию, а также играет важную роль в функционировании сердечно-сосудистой, мышечной и нервной систем. Существенный недостаток витамина B1 вызывает такое заболевание, как бери-бери, весьма распространенное в странах, где основу рациона составлял белый шлифованный рис, поскольку удаление рисовой оболочки приводит и к удалению тиамина. Во многом благодаря обогащению муки и зерновых продуктов нехватка тиамина в настоящее время встречается нечасто. Однако с этой проблемой сталкиваются алкоголики — отчасти из-за скудного рациона, которого они, как правило, придерживаются, а отчасти вследствие того, что спиртные напитки препятствуют всасыванию тиамина из пищи. Кроме того, неспособность к всасыванию тиамина может быть обусловлена генетически. Эта особенность проявляется только со временем, и врачи обычно затрудняются с диагнозом, поскольку большинство из них ассоциируют бери-бери с алкоголизмом. Название «тиамин» происходит от греч. thios — «сера» и свидетельствует о том, что этот витамин содержит серу.
Витамин B2 (рибофлавин): открыт в 1933 году, выделен в 1933 году, определена структурная формула в 1934 году, синтезирован в 1935 году.
Рибофлавин играет важную роль в образовании эритроцитов, стимулирует производство энергии в клетках, способствует поддержанию здоровья кожи и нормальному функционированию органов пищеварения. Рибофлавин естественным образом присутствует в продуктах питания, в частности в молочных продуктах, зеленых листовых овощах и мясе, и благодаря обогащению муки попадает в хлеб и каши. Интересно отметить, что молоко, полученное от коров, питавшихся свежей травой, содержит больше рибофлавина, нежели от коров, которым давали сухую траву (а рацион коров, как известно, зависит от времени года). Прежде известный как витамин G, рибофлавин устойчив к высоким температурам и потому не разрушается в процессе приготовления пищи, однако при отмачивании он довольно легко переходит в воду и очень быстро разрушается под воздействием света. Недостаток рибофлавина встречается относительно редко и характеризуется такими симптомами, как анемия (малокровие), воспаление кожи, трещинки и язвочки в уголках рта, резь в глазах и воспаление их слизистой оболочки (а иногда еще и слизистой оболочки вульвы или мошонки!) Передозировка рибофлавина — явление редкое, поскольку он не слишком хорошо всасывается и выводится вместе с мочой. В связи с этим помните, что при избытке рибофлавина моча приобретает желтый оттенок (от лат. flavus — «желтый») — это состояние, которое иногда проявляется в результате приема поливитаминов.
Витамин B3 (ниацин): открыт в 1926 году, выделен в 1937 году, определена структурная формула в 1937 году, синтезирован в 1867 году.
Ниацин — водорастворимый витамин, необходимый для нормального функционирования пищеварительной и нервной систем и здоровой кожи. Также он способствует выделению энергии из пищи и входит в состав ферментов, обеспечивающих клеточное дыхание. Нехватка ниацина вызывает пеллагру — заболевание, весьма распространенное в конце XIX — начале XX века в южных штатах США, клиническая картина которого характеризуется тремя симптомами, известными как три Д: диарея, деменция и дерматит, — и довольно часто приводившее к смертельному исходу. Важнейшими источниками ниацина являются пивные дрожжи и мясо, также его можно найти в яйцах, рыбе, бобовых, орехах, дичи и, разумеется, в обогащенных хлебе и кашах. Кроме того, он содержится в зернах кофе, при обжаривании которых его количество только возрастает. Этот витамин был синтезирован первым в далеком 1867 году, но в то время никто и не подозревал о связи никотиновой кислоты (так раньше назывался ниацин) с питанием. (На изменении названия настояли производители хлеба, которые боялись, что покупатели подумают, будто в их продукцию добавлен никотин.) Ниацин — очень устойчивый витамин, на него не влияет длительное хранение, он не уничтожается в процессе приготовления пищи, однако даже в нормальных количествах он способен вызывать покраснения кожи. Иногда его рекомендуют для снижения уровня холестерина. Он может взаимодействовать с другими лекарственными средствами, особенно с антикоагулянтами (препаратами, разжижающими кровь), а также с препаратами для нормализации артериального давления и уровня сахара в крови.
Витамин B5 (пантотеновая кислота): открыт в 1931 году, выделен в 1939 году, определена структурная формула в 1939 году, синтезирован в 1940 году.
Пантотеновая кислота — это сравнительно устойчивый к внешним воздействиям водорастворимый коэнзим, который играет важную роль в окислении жирных кислот и углеводов, синтезе аминокислот, а также необходим для здоровой кожи. Чувствительный к воздействию высоких температур, он содержится в пищевых продуктах, которые являются источниками других витаминов группы B, в частности в субпродуктах, авокадо, брокколи, грибах и дрожжах. Лучшими природными источниками пантотеновой кислоты (невероятно, но факт!) являются маточное молочко и молока холодноводных рыб. До сих пор непонятно, каким образом человеческий организм регулирует содержание пантотеновой кислоты, однако есть предположение, что мы способны в некотором роде перерабатывать ее и использовать повторно. Человеку, который нормально питается и не голодает, невероятно сложно ощутить, что же такое нехватка пантотеновой кислоты. Кстати, сам термин происходит от греч. pantothen — «всюду», то есть название говорит о том, насколько распространен этот витамин. Однако стоит отметить, что он не встречается в таких высокорафинированных продуктах, как сахар, жиры, масла и кукурузный крахмал. Депантенол, предшественник пантотеновой кислоты (провитамин, который в нашем организме переходит в полноценный витамин), широко используется в косметической промышленности: он обладает увлажняющим эффектом и делает волосы блестящими (кстати, именно он дал название известной марке Pantene Pro-V).
Витамин B6 (пиридоксин): открыт в 1934 году, выделен в 1936 году, определена структурная формула в 1938 году, синтезирован в 1939 году.
Все формы витамина B6 в нашем организме преобразуются в кофермент под названием «пиридоксальфосфат», который отвечает за удивительно большое количество разнообразных процессов и состояний, включая рост, когнитивное развитие, наличие или отсутствие депрессии и усталости, поддержание нормального иммунитета и активность стероидных гормонов. Он помогает организму продуцировать антитела и гемоглобин (белок, содержащийся в эритроцитах, который осуществляет доставку кислорода из легких в ткани), способствует нормальной работе нервной системы и усвоению белка. Если вы получаете полноценное питание, то недостаток витамина B6 вам вряд ли угрожает. Его можно получить из тех же продуктов, которые содержат другие витамины группы B. Лучшими источниками считаются мясо, цельнозерновые продукты (в особенности пшеница), овощи и орехи. Кроме того, он может синтезироваться бактериями, поэтому встречается также в сырах с плесенью. Витамин B6 в продуктах питания достаточно устойчив к внешним воздействиям в кислотной среде, однако в иных условиях он чувствителен и к свету, и к нагреванию.
Витамин B7 (биотин): открыт в 1926 году, выделен в 1939 году, определена структурная формула в 1924 году, синтезирован в 1943 году.
Наряду с пантотеновой кислотой и пиридоксином, биотин является одним из витаминов группы B, о поступлении которого в организм мы задумываемся меньше всего. Это водорастворимый, достаточно устойчивый к внешним воздействиям фермент, который помогает расщеплять углеводы и жиры и играет важную роль в клеточном дыхании. Однако нам достаточно совсем небольшого количества биотина; кроме того, он присутствует во многих продуктах, таких как пивные дрожжи, яйца, орехи, сардины, цельные злаки и бобовые, поэтому его нехватка встречается чрезвычайно редко. В группе риска по недостатку витамина B7 — беременные женщины, люди, которые длительное время получали питание через трубочку, а также те, кто попросту голодает. Действенного способа измерить количество биотина в организме не существует, и о его нехватке можно судить лишь по внешним проявлениям, таким как выпадение волос, красная шелушащаяся кожа вокруг глаз, носа и рта. Кроме того, недостаток биотина вызывает нервные расстройства — депрессию, переутомление и галлюцинации. Интересный факт: первоначальное название биотина — витамин H (от немецких слов haar and haut — «волосы» и «кожа»). И еще: в белках сырых яиц имеется вещество, которое связывает биотин в нашем кишечнике, в результате чего он не усваивается. Если вы мечтаете узнать, что же такое недостаток биотина, просто попробуйте съедать два или более сырых яичных белка ежедневно в течение нескольких месяцев.
Витамин B9 (фолаты, фолиевая кислота): открыт в 1931 году, выделен в 1939 году, определена структурная формула в 1943 году, синтезирован в 1946 году.
Фолат, синтетическая форма которого известна как фолиевая кислота, играет ключевую роль в закрытии нервной трубки эмбриона, внутри которой заключены головной и спинной мозг будущего младенца. Если на момент зачатия женщина испытывает недостаток фолиевой кислоты, трубка может закрыться не полностью, что приведет к возникновению такого дефекта, как расщепление позвоночника, которое, в свою очередь, приводит к повреждению нервной системы и неподвижности ног или к анэнцефалии — врожденному отсутствию головного мозга, что заканчивается смертельным исходом. Вам следует убедиться, что ваш организм получает достаточное количество фолиевой кислоты еще до зачатия, поскольку нервная трубка закрывается еще до того, как женщина понимает, что беременна.
На сегодняшний день в Соединенных Штатах Америки фолиевая кислота в обязательном порядке входит в состав всех обогащенных зерновых продуктов, что является попыткой предотвратить врожденные патологии. С 1998 года, когда было введено соответствующее постановление, количество дефектов нервной трубки сократилось примерно на 25–50 %. Тем не менее в данном случае больше не значит лучше (спасибо постановлению, показатель увеличивается), поскольку чрезмерное употребление фолиевой кислоты часто маскирует симптомы дефицита витамина B12.
Фолат нередко именуют фактором Уиллс — в честь женщины, которая в свое время помогла открыть этот витамин. Люси Уиллс — доктор из Великобритании, которая работала с беременными, страдающими анемией, в Бомбее (современное название — Мумбай). Предположив, что анемия может быть вызвана ошибками в питании, она начала экспериментировать с рационом своих пациенток и в конце концов обнаружила, что излечить анемию позволяет мармит — дрожжевая паста, которая, как мы сейчас знаем, богата витаминами группы B, любимая британцами, но абсолютно не признанная в других уголках земного шара. Фолат способствует образованию новых клеток в организме, и это еще одна важная причина, по которой беременным важно употреблять фолиевую кислоту. Кроме того, наряду с витаминами B12 и C фолиевая кислота участвует в усвоении и продуцировании новых белков, а также играет важную роль в формировании эритроцитов и воспроизводстве ДНК.
Фолиевая кислота присутствует в таких продуктах, как зеленые листовые овощи (само название происходит от лат. folium — «лист»), мясо, фасоль, горох, орехи, соки из цитрусовых, обогащенный хлеб и каши, однако под воздействием кислорода ее содержание резко снижается, и кроме того, при варке она обычно переходит в воду. Помимо врожденных пороков, недостаток фолиевой кислоты может стать причиной диареи, возникновения язвочек во рту и определенных видов анемии. Для ее выделения в чистом виде понадобилось целых четыре тонны шпината.
Витамин B12 (цианкобаламин): открыт в 1926 году, выделен в 1948 году, определена структурная формула в 1955 году, синтезирован в 1970 году.
Во многих отношениях витамин B12 — самый странный из витаминов. Имеющий в чистом виде насыщенно-красный цвет и кристаллическую структуру, он синтезируется микроорганизмами, включая бактерии рубца коровы или те, что встречаются в очистных сооружениях. Это единственная молекула человеческого тела, в которой содержится кобальт (отсюда и другие названия — кобаламин или цианкобаламин). Кроме того, он способен аккумулироваться в организме: младенцам, которые при рождении имеют весьма скромные запасы витамина B12, этого количества хватает на год.
B12 дает наглядное представление о том, насколько недавно на самом деле были открыты витамины, ведь некоторые люди, работавшие над его выделением в чистом виде, живы до сих пор. Мне посчастливилось находиться рядом с самим Джеральдом Комбсом-старшим, нутрициологом-профессионалом, который подошел весьма близко к тому, чтобы выделить витамин B12 в 1948 году (и отцом Джеральда Комбса-младшего, автора учебника The Vitamines («Витамины»)). «Я был всего лишь юным трудолюбивым аспирантом, — сказал он, когда я задала ему вопрос о его реакции на новость о выделении витамина B12 учеными лаборатории Глаксо, — но если бы я смог получить его в кристаллической форме и объявить об этом раньше, то, безусловно, стал бы знаменитым мальчиком!»
Витамин B12 практически не разрушается в процессе приготовления пищи. Каждая его молекула состоит из 181 атома — больше, чем содержится в любом другом витамине, а по сравнению с витамином C и его 20 атомами он и вовсе монстр. Ученым понадобилось целых 23 года на то, чтобы синтезировать его (для сравнения: на синтез фолиевой кислоты ушло всего три года). Вследствие сложности формулы синтетический B12 получают только путем микробиологической ферментации. Естественными источниками витамина B12 являются только продукты животного происхождения — мясо, рыба и молочная продукция (в организме животных синтезируется микрофлорой кишечника), вот почему вегетарианцы и веганы так часто испытывают его недостаток. Также этот витамин присутствует в печени, почках, устрицах, а еще (хотя я не рекомендую их к употреблению) в фекалиях.
Молекула витамина B12 настолько сложна, что процесс его всасывания проходит в несколько этапов. Сначала вашему организму необходимо выделить достаточное количество желудочного сока, чтобы отсечь витамин от остальной пищи. Затем особый фермент, продуцируемый в желудке, который называется внутренним фактором, делает его подходящим для вас. (Кстати, сам витамин B12 известен также как внешний фактор.) Если ваш организм не способен выделить достаточное количество желудочного сока или если не вырабатывается внутренний фактор, то процесс всасывания витамина B12, поступающего с пищей, нарушается и вы можете испытывать его нехватку.
Таким образом, если вам больше пятидесяти лет, вы вегетарианец, принимаете антациды или ингибиторы протонных насосов, скорее всего, вам необходим дополнительный прием витамина B12 в виде таблеток. Из таблетки B12 всасывается гораздо легче, поскольку в данном случае он не связан едой и доступен без желудочного сока и внутреннего фактора. Если вы испытываете острую нехватку B12, врач может назначить вам его инъекции — это самый простой способ получения этого витамина, поскольку в данном случае желудочно-кишечный тракт остается незадействованным вовсе. (К этому способу следует прибегать только при наличии действительно серьезных проблем со здоровьем. Последняя модная фишка — «Инъекции B12 для повышения уровня энергии» — не более чем развод на деньги.)
Витамин B12 играет ключевую роль в синтезе ДНК, нормальном функционировании нервной системы и образовании эритроцитов. Последствия дефицита B12 могут быть самыми разными — от потери равновесия до галлюцинаций, дезориентации в пространстве, онемения, покалывания в руках, потери памяти, мегалобластной анемии и слабоумия{76}. Благодаря решающему значению этого витамина для формирования эритроцитов его недостаток вне зависимости от того, обусловлен он неправильным рационом или врожденным отсутствием внутреннего фактора, может спровоцировать довольно редкое заболевание, которое прежде всегда приводило к смертельному исходу, — пернициозную анемию (даже более серьезное, нежели анемия мегалобластная).
Внутренний фактор открыл ученый по имени Уильям Босворт Касл, который пытался спасти своих родителей, умиравших от пернициозной анемии. Его метод был очень креативным, однако сегодня он вряд ли бы вызвал одобрение: Касл глотал куски практически сырого мяса, давал им возможность достичь его желудка и перевариться примерно наполовину, а затем вызывал у себя искусственную рвоту и вводил полученную массу своим родителям через трубочку. Благодаря тому, что в организме доктора присутствовал внутренний фактор, его родители могли всасывать витамин B12. Пожилые люди даже и представить не могли, что их спасение — это примитивная рвота.
Витамин B12 также может быть противоядием при отравлении цианидом.
Витамин C (аскорбиновая кислота): открыт в 1907 году, выделен в 1926 году, определена структурная формула в 1932 году, синтезирован в 1933 году.
В наше время известно, что человек наряду с морскими свинками, плотоядными летучими мышами и некоторыми приматами — это единственное млекопитающее, организм которого не в состоянии вырабатывать витамин C самостоятельно. (Витамин C, который вырабатывается в организме животного, обычно называют аскорбиновой кислотой.) Витамин C способствует образованию коллагена — это белок, который отвечает за состояние кожи, связок, сухожилий и кровеносных сосудов. Также он способствует заживлению и рубцеванию ран, а еще восстановлению и поддержанию в нормальном состоянии хрящей, костей и зубов (яркими симптомами авитаминоза витамина C — цинги, как известно, являются кровоточивость десен и выпадение зубов). Кроме того, это важнейший антиоксидант.
Витамин C является весьма неустойчивым (на него влияет буквально все). Его богатейшие источники — свежие, необработанные овощи и фрукты, в особенности цитрусовые, например апельсины и лимоны, дыня-канталупа, киви, разнообразные ягоды, брокколи, брюссельская и цветная капуста, болгарский перец, зеленые листовые овощи и помидоры. Также он в изобилии присутствует в квашеной капусте{77}. Витамин C является водорастворимым, и его передозировка — явление довольно редкое, поскольку избыток выводится с мочой, но тем не менее большинство специалистов сходятся во мнении, что очень большие дозы витамина C вряд ли помогут избавиться даже от обычной простуды (не говоря уже о других, более серьезных заболеваниях). Кроме того, люди, которые курят, как правило, получают меньше витамина C.
Витамин C в синтетической форме выпускается в большем количестве, нежели другие витамины, поскольку он широко используется не только для питания, но и для других нужд. В частности, это вкусовая добавка, которая помогает предотвратить различные не очень приятные реакции, например потемнение срезов фруктов и овощей или появление постороннего привкуса. Также его применяют в промышленности, например в фотосъемке, производстве пластмасс, водоочистке (для удаления избытка хлора), изготовлении пятновыводителей, средств по уходу за кожей и волосами. В истории открытия витамина C задействован один из наиболее колоритных персонажей в истории витаминов — венгерский биохимик Альберт Сент-Дьердьи, который выделил витамин C из апельсинов, лимонов, капусты, надпочечников (а позже из стручкового перца), при этом понятия не имея о том, что это за вещество. Сент-Дьердьи был очень увлечен своим делом. Во время Первой мировой войны он проходил службу в качестве армейского врача и, чтобы иметь возможность вернуться к научным исследованиям, даже прострелил себе руку.
Больше всего в биографии Сент-Дьердьи привлекает одна деталь: поиски названия для таинственного вещества, которое теперь мы знаем как витамин C. Его первым вариантом было Ignose (от ignosco — «я не знаю» и ose — для обозначения сахара). Когда это название было отвергнуто, он предложил другое слово — Godnose (то есть «знает Бог»). Однако редактор журнала Biochemical Journal, по-видимому, не обладавший чувством юмора, отклонил и это слово, и в итоге было выбрано название «гексуроновая кислота» (поскольку в нем присутствовало шесть атомов углерода). По мне, оно никуда не годится!
Витамин D: открыт в 1919 году, выделен в 1932 году, определена структурная формула в 1932 году (D2), 1936 году (D3), синтезирован в 1932 году (D2), 1936 году (D3).
В отличие от большинства витаминов, которые тем или иным образом принимают участие в ферментативных реакциях, витамин D является гормоном, то есть химическим элементом, который «говорит» нашему организму сделать что-то в определенном месте. Также в отличие от других витаминов нам необязательно получать витамин D с пищей, поскольку он сам вырабатывается в нашем организме под воздействием солнечного света, попадающего на кожу. Правда, данное утверждение немного устарело: в прошлом мы действительно получали витамин D именно благодаря солнцу, поскольку в большинстве продуктов питания он содержится в очень небольшом количестве. Лучшими естественными источниками этого витамина являются жирная рыба, в частности тунец, семга и скумбрия, а также сам пресловутый рыбий жир. (Витамин D, содержащийся в молоке, добавляется туда искусственным путем.) Витамин D является жирорастворимым и достаточно устойчивым к внешним воздействиям, за исключением, пожалуй, кислот и, что весьма забавно, света, благодаря которому мы его и получаем.
Витамин D необходим нашему организму для усвоения кальция — минерала, который играет ключевую роль в формировании крепких костей. Вот почему недостаток этого витамина может привести к возникновению рахита у детей или размягчению костей (остеомиелиту) у взрослых{78}. (Благодаря тому огромному значению, которое имеет витамин D для всасывания кальция, стал возможен один из наименее «здоровых» способов его применения — в качестве крысиного яда.) Некоторые ученые предполагают, что витамин D может применяться также для лечения других заболеваний, в частности раковых опухолей или диабета первого типа. Однако эти потенциальные возможности еще до конца не изучены, и специальный комитет совета по продовольствию и питанию Института медицины пришел к заключению, что укрепление костей — единственный доказанный положительный эффект от употребления кальция и витамина D, и потому именно этот эффект справедливо считается отправной точкой. Однако, как отмечают сами представители комитета, это вовсе не означает, что в остальном витамин D бесполезный. Просто необходимо проделать дополнительную работу, чтобы лучше изучить его свойства.
Многое в отношении витамина D до сих пор неясно. Большинство экспертов сходятся во мнении, что те, кто проживает севернее линии, проходящей через Сан-Франциско, Афины и Пекин, недополучают витамин D, особенно в зимнее время, и потому им необходимо принимать его дополнительно. Точно так же, если вы мало времени проводите на свежем воздухе или постоянно пользуетесь солнцезащитным кремом, который не позволяет вашему организму вырабатывать витамин D, если у вас смуглая кожа, вы предпочитаете одежду, закрывающую большую часть вашего тела, а также если вы пожилой человек с лишним весом или ожирением, помните, что все это может негативно сказаться на вашей способности получать витамин D и вам потребуется его дополнительный прием.
Очень важно помнить о взаимодействии витамина D с определенными лекарственными средствами, в особенности с теми, которые отвечают за повышение фермента цитохрома CYP3A4 в печени. Известно, что именно цитохром CYP3A4 отвечает за метаболизм лекарственных веществ, однако он также может снижать уровень активных форм витамина D, и это значит, что вы нуждаетесь в более высокой дозе этого витамина, чтобы его содержание в крови не уменьшилось. Чтобы узнать, находитесь ли вы в группе риска, просто введите в строку поисковика название витамина, который вы принимаете, и CYP3A4 или же проконсультируйтесь со своим лечащим врачом.
Витамин D выпускается в двух лекарственных формах — эргокальциферол (витамин D2) и холекальциферол (витамин D3). D2 получают из растений, а D3 синтезируют из животного жира (наиболее частый способ — облучение ланолина). По мнению доктора Майкла Ливайна, главного врача Центра здоровых костей при Детской больнице Филадельфии, при ежедневном приеме хороша любая форма витамина. Однако если вы употребляете добавку только раз в неделю (что вполне приемлемо, поскольку витамин D является жирорастворимым и не выводится с мочой), он рекомендует использовать именно D3, поскольку эта форма — более «долговечная», нежели D2. Конечно, и в этом случае больше не значит лучше: слишком высокое содержание витамина D в организме приведет к всасыванию излишнего количества кальция, который может осесть в совершенно не тех местах, например в артериях. Однако не бойтесь, что вы получите слишком большую дозу витамина D в результате воздействия солнечного света — наш организм сам знает, когда следует остановить его выработку.
Витамин E: открыт в 1922 году, выделен в 1936 году, определена структурная формула в 1938 году, синтезирован в 1938 году.
Витамин E — это общее название для целой группы веществ (их по меньшей мере восемь), отличающихся биологической активностью, наиболее активным из которых является альфа-токоферол (от греч. tokos — «потомство» и pherein — «приносить»). Он был открыт не в последнюю очередь благодаря своей способности лечить бесплодие у крыс. В настоящее время он по-прежнему овеян загадочным ореолом и роль, которую он играет в нашем организме, до конца неизвестна. Мы знаем, что витамин E — это важнейший жирорастворимый антиоксидант, который спасает клетки от окислительного повреждения. Вместе с водорастворимыми антиоксидантами, например витамином C, витамин E образует своего рода антиоксидантную сеть. Кроме того, благодаря выраженным антиоксидантным свойствам витамин E часто добавляют в продукты питания и корма для животных, поскольку он помогает увеличить срок годности. Альфа-токоферол — это наиболее биологически доступная и биологически активная форма. Как и остальные формы витамина E, в чистом виде он имеет бледно-желтый цвет и является достаточно вязким. Под воздействием света, при нагревании и в щелочной среде он темнеет, что сопоставимо с той же окислительной реакцией, которая приводит к потемнению срезов фруктов. Альфа-токоферол становится менее устойчивым при отрицательных температурах.
Некоторые формы витамина E присутствуют в оболочках клеток фотосинтезирующих организмов. Его концентрация выше в тех растительных тканях, которые обращены к свету. Помимо масла зародышей пшеницы, богатейшими источниками витамина E являются также другие растительные масла, в частности кукурузное, соевое, пальмовое, подсолнечное и шафрановое, а еще орехи и семечки. Несмотря на то что этот витамин жирорастворимый, его передозировка с пищей встречается крайне редко. Кроме того, благодаря распространенности витамина Е его дефицит — также явление, практически невозможное, поэтому нет никакой необходимости вспоминать о реабсорбции эмбриона у крыс, которая в свое время вызывала такое беспокойство у Элмера Макколлума.
Витамин K: открыт в 1929 году, выделен в 1939 году, определена структурная формула в 1939 году, синтезирован в 1940 году.
Свое название витамин K получил от слова «коагуляция» (свертываемость), и оно вполне оправданно, поскольку подчеркивает его важную роль в процессе свертывания крови. Иногда доктора рекомендуют принимать его для нейтрализации действия лекарственных препаратов, которые разжижают кровь, — и это значит, что вам не следует применять его, если у вас густая кровь и вы пытаетесь сделать ее более жидкой с помощью антикоагулянтов. Также витамин K способствует формированию крепких костей. Естественным образом он содержится в зеленых листовых овощах, например в кудрявой капусте, шпинате, ботве репы и свеклы, петрушке, а еще в брокколи, цветной, белокочанной и брюссельской капусте. В небольших количествах витамин K также присутствует в рыбе, печени, мясе и яйцах, а кроме того, бактерии желудочно-кишечного тракта также в состоянии вырабатывать его самостоятельно (хотя и по чуть-чуть). Достаточно устойчивый к нагреванию, витамин K является жирорастворимым, и его острый дефицит — явление очень редкое. Часто его даже не включают в мультивитаминные комплексы.
Холин
Специалисты до сих пор спорят, можно ли считать холин, содержащийся в яйцах, говяжьей печени, зародышах пшеницы и овощах семейства крестоцветных, четырнадцатым по счету витамином (если да, то его обычно относят к семейству витаминов группы B). Вот что говорит по этому поводу Джеральд Комбс, автор учебника «Витамины»:
«Очевидно, что есть случаи, когда животные, способные вырабатывать холин, также получают пользу и от холина в виде добавок. Если уж на то пошло, то и некоторые люди, а именно те, что употребляют мало белка, а следовательно, и метионина — первоисточника подвижных метильных групп, необходимых для выработки холина. Также я полагаю, что дополнительный прием холина будет полезен для людей, которые недополучают необходимые питательные вещества из-за несбалансированного рациона, связанного с болезнью, потерей аппетита, преклонным возрастом, бедностью и так далее. Как правило, эти группы не учитываются при составлении РНП, которые рассчитаны на среднестатистического человека (вот почему не приводится РНП для холина). Однако холин — это единственное питательное вещество, недостаток которого очень сильно увеличивает риск развития раковых заболеваний. Поэтому, с моей точки зрения, с нашей стороны было бы весьма недальновидно сбрасывать его со счетов».
И еще одно важное замечание: холин — это предшественник химического вещества триметиламина, при накоплении которого в организме (неспособность к его расщеплению иногда бывает заложена генетически) от человека начинает исходить очень сильный неприятный запах, напоминающий запах рыбы.
Приложение Б
Список сокращений, определения и рекомендуемые нормы потребления витаминов
АП — адекватное потребление
ВОЗ — Всемирная организация здравоохранения
ГМО — генетически модифицированный организм
ИМ — Институт медицины
МЕ — международная единица
МПП — максимальное переносимое потребление
НАН — Национальная академия наук
ОНП — однонуклеотидный полиморфизм
ОСП — ожидаемая средняя потребность
ПФЭ — пищевой фолатный эквивалент
РНП — рекомендуемая норма потребления
РПП — рекомендуемое потребление с пищей
ЭАР — эквивалент активности ретинола
CRN — Council for Responsible Nutrition (Совет по здоровому питанию)
FDA — Food and Drug Administration (Управление по санитарному надзору за качеством пищевых продуктов и медикаментов)
GMPs — Good Manufacturing Practices (правила организации производства и контроля качества продукции)
GRAS — Generally Recognized As Safe (общепризнано безопасным)
MRE — Meals Ready to Eat (пища, готовая к употреблению, американские сухие пайки)
NCCAM — National Center for Complementary and Alternative Medicine (Национальный центр дополнительной и альтернативной медицины)
NIH — National Institutes of Health (Национальные институты здравоохранения)
Рекомендуемая норма потребления (РНП) — это усредненное количество потребляемой пищи в сутки, необходимое для удовлетворения в питательных веществах практически всего здорового населения (97–98 %) на определенном этапе развития и в зависимости от половой принадлежности.
Адекватное потребление (АП) — рекомендуемая суточная норма потребления пищевых и биологически активных веществ, установленная на основе наблюдений или экспериментов, а также на основе средних оценок потребления этих веществ группой (группами) практически здоровых людей, для которых данное потребление считается адекватным. Используется в тех случаях, когда рекомендуемая норма потребления не может быть определена.
Максимальное переносимое потребление (МПП) — максимальный уровень регулярного употребления какого-либо нутриента, не сопровождающегося неблагоприятными эффектами для здоровья большинства представителей всех слоев населения. Если МПП превышает АП, риск возникновения неблагоприятных последствий для здоровья увеличивается.
Ожидаемая средняя потребность (ОСП) — ежедневный средний уровень потребления питательных веществ, который может удовлетворить потребности половины здоровых людей из определенных по возрасту и полу групп населения.
В таблице приведены рекомендуемые нормы потребления витаминов, разработанные Институтом медицины при Совете по продовольствию и питанию Национальной академии наук США (Institute of Medicine at the National Academy of Science Food and Nutrition Board) — неправительственной организацией, с которой представители Конгресса договорились о сотрудничестве в вопросе о рекомендациях по питанию.
Обратите внимание, что FDA, а не Совет по продовольствию и питанию принимает окончательное решение относительно того, какие версии РНП появятся на этикетках пищевых продуктов и БАДов. Вопрос об обновлении норм пока находится на рассмотрении, однако по состоянию на конец 2014 года большая часть данных на этикетках пищевых продуктов и БАДов приводится в соответствии с рекомендациями, разработанными в 1968 году. Это означает, что, пока обновленные нормы не будут утверждены, на упаковках будут приводиться, мягко говоря, устаревшие данные. Если вы хотите подсчитать, какой процент определенного витамина от современной РНП содержится в продукте, воспользуйтесь этой таблицей.
В данной таблице (составленной на основе докладов по РПП, см. www.nap.edu) рекомендуемые нормы потребления выделены жирным шрифтом, а нормы адекватного потребления обозначены звездочкой (*). РНП — это усредненное количество потребляемой пищи в сутки, необходимое для удовлетворения в питательных веществах практически всего здорового населения (97–98 %). РНП связана с ожидаемой средней потребностью (ОСП). Если информации для определения ОСП недостаточно, то приводятся РНП и АП. Для здоровых младенцев, находящихся на грудном вскармливании, главный показатель — это АП. Что касается АП для других половозрастных групп, оно должно удовлетворять потребности в витаминах практически здоровых людей, для которых данное потребление считается адекватным, однако из-за недостатка информации определить данный показатель бывает весьма сложно.
Витамин A: эквивалент активности ретинола (ЭАР). 1 ЭАР = 1 мкг ретинола, 12 мкг бета-каротина, 24 мкг альфа-каротина или 24 мкг бета-криптоксантина. ЭАР для каротиноидов предпочтительнее, нежели ретиноловый эквивалент (РЭ), несмотря на то что ЭАР и РЭ для витамина A идентичны.
Витамин D: колекальциферол. 1 мкг колекальциферола = 40 МЕ витамина D, при минимальном воздействии солнечного света.
Витамин E: альфа-токоферол. Альфа-токоферол включает RRR-альфа-токоферол — это единственная форма альфа-токоферола, которая присутствует в пище естественным образом, а также 2R-стереоизомерные формы альфа-токоферола (RRR-, RSR-, RRS— и RSS-альфа-токоферол), которые содержатся в обогащенных продуктах и БАДах. Не включает 2S-стереоизомерные формы альфа-токоферола (SRR-, SSR-, SRS— и SSS-альфа-токоферол), также встречающиеся в обогащенных продуктах и БАДах.
Ниацин: ниациновый эквивалент (НЭ). 1 мг ниацина = 60 мг триптофана; для детей в возрасте 0–6 месяцев НЭ не используется (имеет значение только ниацин из продуктов питания).
Фолиевая кислота: пищевой фолатный эквивалент (ПФЭ). 1 ПФЭ = 1 мкг пищевого фолата = 0,6 мкг фолиевой кислоты из обогащенных продуктов или БАДов, употребляемых с пищей, = 0,5 мкг из БАДов, принятых на пустой желудок.
Холин: хотя для холина установлены нормы АП, необходимо учитывать, что достоверных данных о том, какое количество холина необходимо употреблять каждой возрастной группе, нет, поскольку в зависимости от состава рациона биогенный синтез холина может претерпевать изменения.
Витамин B12: поскольку от 10 до 30 % пожилых людей страдают низкой всасываемостью витамина B12, тем, кому уже исполнилось 50 лет, настоятельно рекомендуется включать в свой рацион продукты или БАДы, в состав которых входит этот витамин.
В связи с очевидностью того факта, что дефицит фолиевой кислоты в организме беременной женщины приводит к дефектам нервной трубки плода, всем женщинам, которые в ближайшее время планируют зачатие, рекомендуется в дополнение к привычному рациону принимать 400 мкг фолиевой кислоты из БАДов или обогащенных продуктов.
Считается, что беременные должны принимать дополнительные 400 мкг фолиевой кислоты, пока их беременность не подтвердится окончательно и они не встанут на учет, что обычно происходит по окончании околозачаточного периода (четыре недели до зачатия и восемь недель после) — критически важного для формирования нервной трубки.
Источники: Рекомендуемое потребление с пищей кальция, фосфора, магния, витамина D и фторидов (1997); Рекомендуемое потребление с пищей тиамина, рибофлавина, ниацина, витамина B6, фолиевой кислоты, витамина B12, пантотеновой кислоты, биотина и холина, (1998); Рекомендуемое потребление с пищей витамина C, витамина E, селена и каротиноидов (2000); Рекомендуемое потребление с пищей витамина A, витамина K, мышьяка, бора, хрома, меди, йода, железа, марганца, молибдена, никеля, кремния, ванадия и цинка (2001); Рекомендуемое потребление воды, калия, натрия, хлоридов и сульфатов (2005); Рекомендуемое потребление с пищей кальция и витамина D (2011). Эти доклады приведены на сайте www.nap.edu.
Узнать РНП для представителей других возрастных групп, а также беременных и кормящих женщин можно, пройдя по ссылке: http://www.iom.edu/Activities/Nutrition/SummaryDRIs/~/media/Files/Activity Files/Nutrition/DRIs/New Material/2_ RDA and AI Values_Vitamin and Elements.pdf
Чтобы узнать максимальное переносимое потребление (максимальный уровень регулярного употребления какого-либо нутриента, не сопровождающегося неблагоприятными эффектами для здоровья большинства представителей всех слоев населения), пройдите по ссылке: http://iom.edu/Activities/Nutrition/SummaryDRIs/~/media/Files/Activity Files/Nutrition/DRIs/ULs for Vitamins and Elements.pdf
Благодарности
Я безмерно благодарна своему агенту Джею Менделу, который разглядел потенциал в моих планах, а также сотрудникам издательства Penguin Press Энн Годоф и Бенджамину Платту за то, что они сумели превратить мои планы в книгу.
Благодаря поддержке Фонда Альфреда Слоуна, который занимается развитием науки, техники и экономики, я смогла целиком и полностью погрузиться в свой проект. Члены американского отделения Общества промышленной химии любезно предоставили в мое распоряжение исторические ресурсы, а также познакомили меня со специалистами из химического фонда «Наследие». Меса Рефьюдж, этот уютный уголок для писателей, расположенный неподалеку от станции Пойнт Рейес в Калифорнии, придал мне вдохновения, и в результате я смогла довести до совершенства свой первый черновик. Знания, которые я приобрела благодаря учебному курсу по медицине при Массачусетском технологическом институте и тренингу Мэри Франс Пицциано «Практика исследования БАДов» при отделе пищевых добавок в Национальном институте здравоохранения, помогли мне существенно повысить мой профессиональный уровень.
Я бы никогда не написала эту книгу, если бы не помощь многих людей, которые, несмотря на довольно плотный график и сильную занятость, нашли время, чтобы ответить на мои вопросы, рассказать истории из жизни, поделиться своим мнением и подсказать другие источники информации. Это Эл Соммер, Джеральд Комбс-старший, Брюс Эймс, Тод Куперман, Джеймс Нил-Кабебик, Даниэл Фабрикант, Дэвид Кесслер, Анджела Поуп, Жан-Клод Тритч, Стив Мистер, Хосе Ордовас, Инго Потрикус, Петер Байер, Салим аль-Бабили, Мишель Левин и Такеши Саито. Отдельное спасибо Сьюзан Джунод, Донне Портер, Нессе Кери, сотрудникам отдела по связям с общественностью FDA, Джеральду Комбсу-младшему и Джеймсу Макклангу за то, что они потратили свое личное время на просмотр моей рукописи и указали на ошибки, которые я пропустила.
Также я получила помощь от многих людей, чьи имена и фамилии не упоминаются в окончательной редакции текста. Это Андреа Мартин и Майкл Макберни из DSM, Эшли Августняк из химического фонда «Наследие», Гай Кросби из шоу America’s Taste Kitchen, Дэвид Акетта и Джереми Витситт из Натикских военных лабораторий, Кэтрин Росс из Университета Пенсильвании, Линда Мейерс из совета по продовольствию и питанию Института медицины, Аллан Мошфег, Меган Адлер и Памела Персон из Министерства сельского хозяйства, Кристин Пфайфер и Розмари Шлейхер из Центра контроля и профилактики заболеваний, Пол Котс и Реган Бэйли из отдела пищевых добавок Национального института здравоохранения, Челси Филдс из интернет-магазина Burpee, Линдсей Потт, Кейт Рэндольф, Дж. Петер Дебас, Кевин Геленбек, Барри Трабанд и У. Кип Джонсон из Nutrilite, Марджори Маккаллоф из Американского общества по борьбе с раковыми заболеваниями, Джин Лестер, Джон Стомелл и Джанет Словин из Службы сельскохозяйственных исследований при Министерстве сельского хозяйства, Линда Лакинд из Firmenich, а также Раймонд Родригес из Центра нутрициальной геномики при Калифорнийском университете. Огромное спасибо я хочу сказать и Джанет Джинголд, Шерон Гонсалес, Саре Хатсон и Бруку Парсонсу за их помощь в редактировании, подготовке оригинал-макета и продвижении книги.
Я делаю весьма критические выводы о нашей повальной одержимости витаминами, но в то же время считаю необходимым отметить, что недостаток витаминов (и минералов) по-прежнему угрожает жизни и здоровью миллионов людей по всему миру. Поэтому я особенно благодарна таким людям, как Клаус Крамер, и организациям, подобным Sight and Life («Взгляд и жизнь»), за то, что занимаются поставкой основных питательных микроэлементов тем, кто остро в них нуждается.
Многие родные и друзья оказали мне огромную поддержку как в рабочем, так и в эмоциональном плане. Это Джеймс Влахос, Натаниэль Джонсон, Дженифер Кан, Мэри Далби, Сутц, Элеонор Джонсон, Джим и Ханна Лекманн, Стив Коровесис, Марк Хатценбухлер, Мириам Стюарт, Майкл Зиммер, Кристина и Лорен Киттилсен, Адам Бенфорадо, Брук Байлер, Натали Киттнер, Джессика Эппл, Майкл Авиад, Синтия Горни, Дейдре Инглиш, Бригитта Бентеле, Максин Макклинток, Нина Ньюби, Тодд Райс, Бетти Рош, Ал Хансен, Бонни Хэмилтон и Мэри Роач.
Я хотела бы выразить особую благодарность Джошу Березину, который мог бы стать профессиональным редактором, если бы не решил целиком посвятить себя психиатрии, и Майклу Поллану, который является для меня источником вдохновения и воодушевления вот уже на протяжении десяти лет. Я с трудом могу передать, как признательна за его внимательность, доброту и великодушие. Он оказывает огромное влияние на мою работу. Точно так же невозможно описать словами мою благодарность Ванессе Грегори, чье дружеское отношение, мудрость, чувство юмора, редакторские знания и готовность перечитывать рукопись много-много раз, как правило, в последний момент или в отпуске, помогали мне оставаться в здравом уме и сделали эту книгу заметно лучше.
Я бы никогда не осмелилась начать писательскую карьеру, если бы не мои родители с их неугасимой верой в меня и не бабушка, которой мне ужасно не хватает. И наконец (но не в последнюю очередь) я благодарна Питеру, которому пришла в голову идея этой книги и который с того момента буквально жил этой идеей. Ты мой самый необходимый микроэлемент. Я очень, очень сильно тебя люблю.