Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства Млодинов Леонард

В этой более дружелюбной среде, при Урбане, Галилей взялся за работу над новой книгой, которую закончил в свои шестьдесят восемь, в 1632 году. Плод его трудов назывался «Dialogo Sopra I due Massimi Sistemi del Mondo» («Диалог о двух главнейших системах мира»[178]). Но «диалог» вышел изрядно односторонним, и Церковь отреагировала – ожидаемо – так, будто книга называлась «Почему Церковное мировоззрение ошибочно, а Папа Урбан – болван».

«Диалог» Галилей составил в форме дружеского разговора между Симпличио, приверженного последователя Аристотеля, Сагредо, умной нейтральной стороны, и Сальвиати, предлагавшего убедительные аргументы в пользу взглядов Коперника. Галилей писал эту книгу беззаботно, поскольку рассказал о ней Урбану, и тот ее вроде бы одобрил. Но Галилей уверил Папу, что цель этой книги – защитить Церковь и итальянскую науку от нападок, дескать Ватикан запретил гелиоцентризм из-за своего невежества, и одобрение Урбана основывалось на договоренности, что Галилей представит интеллектуальные доводы обеих сторон без предубеждения. Если Галилей и пытался этого добиться, получилось у него из рук вон плохо. По словам его биографа Дж. Л. Хейлброна, «Диалог» Галилея «пренебрег философами, приверженными взглядам о неподвижной Земле, как недолюдьми, нелепыми, зашоренными, тупоумными идиотами и воспел коперниканцев как причастных к высшему разуму»[179].

Книга нанесла еще одно оскорбление. Урбан желал, чтобы Галилей включил в книгу пояснение – текст, подтверждающий состоятельность мировоззрения Церкви, но вместо того, чтобы написать этот текст от своего имени, как просил Урбан, Галилей вложил его в уста своего персонажа Симпличио, которого Хейлброн именует «дурындой». Папа Урбан, совсем не дурында, страшно обиделся.

Когда звездная пыль улеглась, Галилея обвинили в нарушении указа Церкви от 1616 года о запрете распространения учения Коперника и потребовали отречения от его взглядов. Преступление Галилея – в той же мере нарушение границ власти и контроля, или же «владения» истиной, как и в мировоззренческих особенностях[180]. Большая часть интеллектуальной верхушки Церкви понимала, что взгляды Коперника, возможно, верны, однако восставали они против ренегата, распространявшего эти взгляды и ставившего под сомнение учение Церкви[181].

22 июня 1633 года облаченный в белую рубаху узника Галилей склонил колени перед обвинявшим его трибуналом и сдался требованию подтвердить верховенство Писания: «Я, Галилей, сын покойного Винченцо Галилея, флорентинец, семидесяти лет отроду… клянусь, что всегда веровал, верую и с Божьей помощью буду веровать и далее во все, что принимает и проповедует и чему учит Святая Католическая и Апостольская Римская Церковь».

Вопреки заявлению, что он всегда принимал учение Церкви, Галилей, тем не менее, продолжил признанием, что поддерживал осуждаемую теорию Коперника, даже «после того, как было сделано официальное внушение» Церковью, чтобы он, по словам Церкви, «оставил ложное мнение, что Солнце есть центр мира и неподвижно, и что Земля – не центр мира и движется…»

Интереснее всего формулировка Галилеева признания: «Я написал и издал книгу, – сказал он, – в которой описываю новое, но уже осужденное учение, и привожу в его пользу доводы великой убедительности». Даже объявляя о своей приверженности Церковной версии истины, он по-прежнему защищает содержание своей книги.

Галилей завершает покаяние, говоря «желая устранить из умов вашего Святейшества и всех честных христиан сильное подозрение, справедливо против меня бытующее, с искренним сердцем и неподдельной верой я отрекаюсь, проклинаю и презираю вышеупомянутые ошибки и ереси. и клянусь в будущем никогда не говорить и не утверждать, устно или на письме, ничего, что может дать повод для подобных же подозрений касательно меня»[182].

Галилей не подвергся столь же зверскому наказанию, на какое обрекла Инквизиция Джордано Бруно, который тоже утверждал, что Земля вращается вокруг Солнца и за свою ересь сгорел на костре в Риме в 1600 году. Однако суд на Галилеем обозначил позицию Церкви вполне отчетливо.

Через два дня Галилея отпустили под опеку флорентинского посла. Он провел последние годы жизни под своего рода домашним арестом у себя на вилле в Арчетри, близ Флоренции. Еще в Падуе Галилей прижил троих внебрачных детей. Дочь, с которой он был чрезвычайно близок, умерла от чумы в Германии, вторая дочь отдалилась от него, а сын Винченцо, живший неподалеку, с любовью заботился об отце. И хотя Галилей был узником, он имел право на посетителей, даже еретиков – лишь бы не математиков. Одним из них был юный английский поэт Джон Мильтон [Милтон] (позднее он поминал Галилея и его телескоп в поэме «Потерянный рай»).

Как ни парадоксально, именно во время своего затворничества в Арчетри Галилей записал наиболее подробные соображения о физике движения – в книге, которую сам считал своей величайшей работой: «Рассуждения и математические доказательства, касающиеся двух новых наук»[183]. Книгу в Италии издавать было нельзя, поскольку Папа запретил его труды, и потому рукопись контрабандой доставили в Лейден и напечатали там в 1638 году.

К тому времени здоровье Галилея совсем испортилось. В 1637 году он ослеп, а на следующий год у него начались страшные беды с пищеварением. «Все мне кажется отвратительным, – писал он, – вино совершенно скверно для головы и глаз, от воды болит в боку… аппетита никакого, ничто меня не привлекает, а если что и привлекает, [врачи] запретят»[184].

И все же ум его оставался подвижен, и один гость, повидавший его незадолго до смерти, говорил, что, невзирая на запреты на посетителей с такой профессией, Галилей на днях с удовольствием слушал спор двух математиков. Он умер в семьдесят семь, в 1642-м – в год, когда родился Ньютон, – на руках у сына Винченцо, и – да, в присутствии нескольких математиков.

Галилей желал быть похороненным рядом с отцом в главной Базилике Санта-Кроче во Флоренции. Фердинандо, наследник великого герцога Козимо, даже собрался выстроить для него величественную усыпальницу – напротив усыпальницы Микеланджело. Однако Папа Урбан дал понять, что «нехорошо это – строить мавзолей такому [человеку]… поскольку добрые люди могут возмутиться и впасть в предубеждение относительно Святейшей власти»[185]. И потому родственники Галилея упокоили его останки в гробнице размером с чулан, под церковной колокольней, и провели скромные похороны, на которых присутствовали только близкие друзья, родня и последователи. И все же многие, даже в самой Церкви, ощутили утрату. Смерть Галилея, как отважно писал хранитель архивов при дворе кардинала Барберини в Риме, «затрагивает не только Флоренцию, но и весь мир и весь наш век, получивший от этого божественного человека больше великолепия, чем от почти всех остальных обыкновенных философов»[186].

Глава 7

Механическая вселенная

Опубликовав «Рассуждения и математические доказательства, касающиеся двух новых наук», Галилей подвел человеческую культуру к границе нового мира. Исаак Ньютон сделал последние великанские шаги и по ходу дела завершил построение системы совершенно нового мышления. Вслед за Ньютоном наука отказалась от Аристотелева взгляда на природу, движимую предназначением, и приняла Вселенную Пифагора, движимую числами. Вслед за Ньютоном, ионийское утверждение, что мир можно понять посредством наблюдения и рассуждения, преобразилось в метафору: мир подобен часам, его механизмами управляют численные законы, придающие любому аспекту природы – включая, как многие считали, и взаимодействия между людьми – полную предсказуемость.

В далекой Америке отцы-основатели страны приняли Ньютоново мировоззрение вдобавок к теологии и закрепили в Декларации независимости, что «законы природы и ее Бога наделяют»[187] людей правом на политическое самоопределение. Во Франции после Революции с ее неприятием науки Пьер-Симон де Лаплас поднял Ньютонову физику на новый уровень математической сложности и заявил, что, применяя теорию Ньютона, высокоразвитый интеллект способен «объять одной и той же формулой движения и величайшие тела во Вселенной, и мельчайшие атомы – ничто для него не останется неопределенным, и будущее, как и прошлое, явлено будет взгляду его».

Ныне мы все рассуждаем по-ньютоновски. Мы говорим о силе применительно к человеческому характеру и об ускорении – к распространению заболевания. Мы говорим о физической или даже умственной инерции и об импульсе, приобретенном спортивной командой. Мыслить в таких понятиях до Ньютона было непредставимо, не мыслить в таких понятиях непредставимо в наши дни. Даже те, кто ничего не слыхал о законах Ньютона, взращены на его взглядах. И потому изучать работы Ньютона означает изучать наши собственные корни.

Поскольку мировоззрение Ньютона для нас совершенно естественно, чтобы оценить потрясающий гений его творения, нужно хорошенько постараться. В средней школе, когда мне впервые рассказали про «законы Ньютона», они показались мне настолько простыми, что я удивился, с чего такой сыр-бор. Странное дело: чтобы придумать нечто, понятное мне, пятнадцатилетнему мальчишке, за пару уроков, понадобился один из умнейших людей в истории науки – и многолетний труд. Как вышло, что совершенно доступные для меня представления оказались труднейшими для понимания несколько столетий назад?

Мой отец, кажется, понял, почему. Я рассказываю своим детям историю про «Пост-ит», а мой отец обычно обращался к преданьям старины. Когда люди смотрели на мир сотни лет назад, говорил он мне, они видели действительность совсем не так, как мы воспринимаем ее сегодня. Он рассказывал мне о временах, когда, еще подростками в Польше, они с друзьями набрасывали на козу простыню и загоняли ее в дом. Старшие родственники думали, что это привидение. Ладно, дело было на еврейский праздник Пурим, а старшие были изрядно пьяны, но отец объяснял их реакцию не опьянением: он говорил, что они истолковывали увиденное в контексте своих верований, а привидения были привычной их частью. Я, может, считаю это невежеством, говорил он, но то, что Ньютон сказал миру о математических законах Вселенной, вероятно, казалось людям того времени столь же странным, сколь привидения – мне. Так и есть: ныне, даже если вы никогда не изучали физику, дух Исаака Ньютона хоть самую малость, но в вас есть. Но не вырасти мы в Ньютоновой культуре, те законы, что вроде бы самоочевидны, были бы для большинства из нас непостижимы[188].

* * *

Описывая незадолго до смерти свою жизнь, Ньютон так характеризовал свой вклад в науку: «Мне неизвестно, кем я кажусь миру, но сам себя я вижу мальчишкой, который играл на берегу моря и радовался, находя камешек глаже или ракушку красивее прочих, а великий океан истины раскинулся предо мной, непознанный»[189].

На любом из Ньютоновых камешков ученые менее одаренные и плодовитые могли бы сделать потрясающую карьеру. Помимо работ, посвященных силе тяготения и движению, он отдал много лет раскрытию тайн оптики и света, изобрел известную нам ныне физику, а заодно и математический анализ. Когда я изложил все это отцу, который до того, как я взялся изучать работы Ньютона, и не слыхал о нем, отец нахмурился и сказал: «Не будь как он. Занимайся чем-нибудь одним!» Поначалу я отнесся к этому наставлению с той разновидностью высокомерия, в которой подростки большие мастера. Но вообще-то отец в некотором смысле дело говорил. Ньютон подошел опасно близко к тому, чтобы стать гением, который за все берется и ничего не доводит до конца. К счастью, как мы знаем, вмешался рок, и Ньютон ныне считается провозвестником всей революции мышления.

Одного Ньютон не делал никогда – не играл на морском берегу. Хоть он и извлек немало пользы из эпизодического общения с учеными и в Британии, и на континенте, зачастую – почтой, он никогда не покидал окрестности небольшого треугольника, связывавшего его родной Вулсторп, его университет в Кембридже и Лондон. Да и вообще не «играл» он – ни в каком смысле слова из тех, какие мы в него вкладываем. Ньютон обошелся в жизни без друзей и родственников, с которыми он ощущал бы близость, не было в его жизни места даже для какой-нибудь возлюбленной, хоть одной: по крайней мере, до его более взрослых лет заставить Ньютона общаться было примерно равносильно попытке уговорить котов сыграть в «Скрэббл». Вероятно, точнейшим можно считать замечание одного дальнего родственника, Хамфри Ньютона, трудившегося у него помощником пять лет: он сказал, что Ньютон рассмеялся всего раз – когда кто-то спросил его, зачем вообще изучать Евклида.

Ньютоном владела чистая безучастная страсть понимать мир, а не желание сделать его лучше на благо человечеству. Он достиг великой славы при жизни, но разделить ее ему было не с кем. Добился интеллектуальных побед, но никак не любви. Принял высочайшие звания и почести, но большую часть времени посвятил интеллектуальным сварам. Было бы мило иметь основания утверждать, что этот исполин интеллекта был сердечным, приятным человеком, но, если и были у него подобные наклонности, он изрядно постарался их подавить и являть себя миру высокомерным мизантропом. Он был из тех людей, какие, заметь вы при них, что день сер, скажут: «Нет, небо на самом деле голубое». Что еще неприятнее – он мог это доказать. Физик Ричард Фейнман (1918–1988) выразил эти чувства многих погруженных в себя ученых, написав книгу «Не все ли равно, что думают другие?»[190]. Ньютон не написал мемуаров, однако, случись такое, он, вероятно, назвал бы их «Надеюсь, я как следует вас достал» или, может, «Отвяжись от меня, болван».

Стивен Хокинг однажды сказал мне, что в этом смысле он рад своему параличу: тот позволил сильнее сосредоточиться на работе. Полагаю, Ньютон мог бы сказать, по той же причине, какие восхитительные преимущества дает жизнь полностью в своем собственном мире – не расходуя время, не делясь им с кем-то еще. На самом деле, недавние исследования показали, что у одаренных в математике студентов значительно больше склонности к научной карьере, если им недостает навыков общения[191]. Я тоже давно подозревал, что неспособность общаться впрямую связана с успехом в науке. Уж во всяком случае мне известно несколько состоявшихся ученых, которых сочли слишком странными для работы где угодно, кроме больших исследовательских учреждений. Один коллега-аспирант надевал день за днем одни и те же штаны и белую футболку, хотя поговаривали, что у него два таких набора, и поэтому одежде время от времени перепадала стирка. Еще один коллега, знаменитый профессор, был настолько стеснителен, что обычно отводил глаза, говорил очень тихо и отступал на шаг, если замечал, что вы стоите к нему ближе четырех футов. Две последние особенности затрудняли послесеминарское общение, поскольку профессора было почти не слышно. При нашей первой встрече, еще когда я был студентом, я оплошал и подошел слишком близко, а затем продолжал надвигаться на него, пока тот ретировался, и в результате бедняга чуть не упал, наткнувшись на стул.

Наука – предмет потрясающей красоты. Но, хотя развитие науки требует перекрестного опыления мыслями, какое может случиться лишь при взаимодействии с другими творческими умами, оно требует и долгих уединенных часов, что может представляться однозначным преимуществом тем, кто не склонен к общению или даже предпочел бы жить совсем отдельно. Как писал Альберт Эйнштейн, «одна из сильнейших мотиваций, какие толкают людей в искусства и науки, – побег от повседневной жизни с ее мучительной грубостью и безнадежной скукой… Всяк делает это мироздание и его сотворение стержнем своей эмоциональной жизни, чтобы так обрести покой и уверенность, какие не находятся в тесном водовороте личного опыта»[192].

Ньютоново презрение к повседневным заботам мира позволило ему заботиться о своих интересах и нимало не отвлекаться, но также заставило его скрыть значительную часть своей научной работы – он решил не издавать огромный массив своих изысканий. К счастью, он от них и не избавлялся – был таким барахольщиком, что заслужил бы личного реалити-шоу, однако Ньютон копил не скелеты домашних животных, старые журналы или обувь, из которой вырос еще в семь лет, а записи обо всем на свете – от математики, физики, алхимии, религии и философии до отчетов о каждом потраченном пенни и описаний своих чувств к родителям.

Ньютон сберег практически все, что написал за жизнь, – даже листки с никчемными расчетами и старые школьные тетради, – позволив тем, кто желал копаться, постичь в беспрецедентных подробностях эволюцию Ньютоновых взглядов. Большая часть его научных бумаг досталась библиотеке Кембриджа, его интеллектуального дома. Но другие документы, в общей сложности включающие миллионы слов, были постепенно распроданы на аукционе Сотби, где экономист Джон Мэйнард Кейнс [Мейнэрд Кинз], участвуя в торгах, скупил почти все труды Ньютона по алхимии.

Биограф Ньютона Ричард Уэстфолл посвятил двадцать лет изучению жизни ученого и пришел к заключению, что Ньютона «нельзя оценивать по критериям, с которыми мы подходим к пониманию людей»[193]. Но даже если Ньютон был инопланетянином, он по крайней мере оставил нам своим дневники.

* * *

Ньютоново стремление понять мир происходило от чрезвычайной любознательности – мощного побудителя к открытиям, какой исходил словно бы полностью изнутри, подобно импульсу, толкнувшему моего отца обменять кусок хлеба на математическую разгадку. Но в случае Ньютона эту тягу питало что-то иное. Хотя ему поклоняются как идеалу научной рациональности, его интерес к природе Вселенной был, как и у всех вплоть до обитателей Гёбекли-Тепе, сложно переплетен с духовностью и религией. Ньютон верил, что Бог явлен нам и в слове его, и в деле[194], и потому изучение законов природы есть изучение Бога, а рвение в науке – разновидность религиозного пыла.

Ньютонова тяга к уединению и многие часы ежедневной работы – большое преимущество, по крайней мере, для его интеллектуальных достижений. Однако, хоть его затворничество в пространстве ума стало для науки настоящим подарком, сам Ньютон заплатил за них дорого, и, похоже, это результат болезненного детства, проведенного в одиночестве.

Учась в школе, я сочувствовал детям, которые никому не нравились, особенно потому, что сам был таким. Ньютону пришлось еще хуже. Он не нравился собственной матери. Он появился на свет 25 декабря 1642 года эдаким непрошенным рождественским подарком. Отец умер за несколько месяцев до этого, а мать Анна [Ханна], вероятно, полагала, что существование Исаака – лишь краткосрочное неудобство, поскольку родился он недоношенным и вряд ли бы выжил. Более восьмидесяти лет спустя Ньютон сказал мужу своей племянницы, что при рождении был так мал, что поместился бы в квартовый горшок, и так слаб, что потребовался валик на шею – удерживать голову на плечах. Так скверно шли дела у маленького болванчика, что женщины, отправленные за пару миль добыть припасы, не слишком торопились – были уверены, что ребенок к их возращению уже будет мертв. Но они ошиблись. Для сохранения младенцу жизни не понадобилось никаких других технических ухищрений, кроме валика.

Может, Ньютон не видел никакого смысла в людях в своей жизни потому, что его мать никогда, похоже, не видела смысла в нем самом. Когда ему было три, она вышла замуж за богатого ректора, преподобного Барнэбэса Смита. Преподобный Смит был старше Ханны в два с лишним раза, ему хотелось юной жены – но не юного пасынка.

Нельзя сказать наверняка, к какому духу в семье это могло привести, однако более или менее уверенно можно предположить, что некое напряжение имелось, поскольку, много лет спустя, в записях о детстве Ньютон вспоминает, что «угрожал отцу и матери Смит сжечь и их, и дом вместе с ними»[195]. Исаак не сообщает, как родители отозвались на его угрозу, однако известно, что вскоре его услали прочь и вверили заботам бабушки. Та с Исааком ладила получше, но много ль ему было надо. Близки они точно не были – нигде в записях и черновиках, оставшихся после Ньютона, нет ни единого нежного воспоминания о прародительнице. Впрочем, мило, что нет и воспоминаний о том, как он хотел ее поджечь и спалить дотла ее дом.

Когда Ньютону было десять, преподобный Смит помер, и Исаак ненадолго вернулся домой, где теперь обитало еще трое детей его матери от второго брака. Через пару лет после смерти Смита Ханна отправила старшего сына в пуританскую школу в Грэнтэм, в восьми милях от Вулсторпа. Учась в Грэнтэме, Ньютон жил в доме аптекаря и химика по имени Уильям Кларк; тот восхищался Ньютоном и поддерживал в нем изобретательность и любопытство. Юный Исаак научился толочь химические вещества пестиком в ступке, измерял силу штормового ветра, прыгая по направлению его и против и сравнивая потом длину прыжка, мастерил маленькие мельницы с приводом от колеса, которое крутила мышь, а также четырехколесную телегу, которую приводил в движение, сидя в ней и крутя ручку. А еще сделал воздушного змея, к хвосту которого привязал светильник и запускал по ночам, пугая соседей.

С Кларком-то Ньютон ладил, а вот одноклассники – другая история. В школе Ньютон, со всей очевидностью не похожий на остальных и интеллектуально превосходивших всех, вызывал к себе то же отношение, что возникает в таких случаях и в наши дни: другие дети его терпеть не могли. Одинокая, но крайне творческая жизнь, которую он вел, когда был мальчишкой, готовила его к творческой, но мучительной и одинокой судьбе, большую часть его зрелости отнюдь не счастливой.

Ближе к семнадцати годам Ньютона мать забрала его из школы, желая, чтобы сын вернулся домой – управлять имением. Но хозяйственник из Ньютона вышел не лучший, что доказывает: можно быть гением и рассчитывать орбиты планет – и полным растяпой, когда дело доходит до выращивания люцерны. Более того – хозяйство его и не интересовало. Пока изгороди в его владениях приходили в негодность, а свиньи носились по кукурузным посадкам, Ньютон мастерил водяные колеса на ручье или же просто читал. Как пишет Уэстфолл, Ньютон протестовал против жизни, которую проводят, «пася овец или гребя навоз»[196]. Как и большинство знакомых мне физиков.

К счастью, вмешались дядя Ньютона и директор Грэнтэмской школы. Распознав в нем гения, в июне 1661 года они отправили его в Колледж Св. Троицы в Кембридже. Там он познакомился с научным мышлением своего времени – лишь для того, чтобы в один прекрасный день восстать и свергнуть его. Слуги праздновали его отбытие – не потому что радовались за него, а потому что он сурово с ними обращался. С таким характером, считали они, место ему лишь в университете.

* * *

Кембридж для Ньютона более чем на три с половиной десятка лет стал домом и стартовой площадкой умственной революции, которую он запустил. Хотя эту революцию часто изображают как череду озарений, борьба за тайны Вселенной, которую вел Ньютон, скорее походила на окопную войну – одна тяжкая интеллектуальная битва за другой, и в этой войне каждую пядь земли приходилось присваивать постепенно и ценой громадных вложений сил и времени. Гений меньшего калибра или меньшей фанатической приверженности такую борьбу вести бы не смог.

Поначалу даже условия жизни Ньютона были для него испытанием. Мать наделила его стипендией всего в десять фунтов, хотя сама получала неплохой ежегодный доход в семьсот с лишним. Такая стипендия поместила Ньютона в самые низы общественного устройства Кембриджского университета.

Стипендиат («сайзер»), в жесткой кембриджской иерархии, – бедный студент, не плативший за еду и обучение и получавший небольшие карманные деньги, обслуживая более состоятельных учащихся: причесывая их, чистя им обувь, принося им хлеб и пиво и опорожняя их ночные горшки. Стать стипендиатом для Ньютона было повышением в должности – начинал он с субстипендиата, а это означало ту же черновую работу, что и у стипендиата, только субстипендиаты сами платили за еду и посещаемые лекции. Свыкнуться с положением слуги у мальчишек того же племени, что измывались над ним в Грэнтэмской школе, было для Ньютона явно непросто. В Кембридже он, что называется, нюхнул жизни «под лестницей».

В 1661 году Галилеевым «Рассуждениям и математическим доказательствам, касающимся двух новых наук» было всего двадцать лет, и, как и многие другие работы Галилея, эта на кембриджскую учебную программу заметного влияния тогда еще не оказала. Это означало, что в обмен на услуги и плату Ньютону предлагали уроки, включавшие в себя все, что ученые – приверженные Аристотелю – знали о мире: Аристотелеву космологию, Аристотелеву физику, Аристотелеву риторику… Ньютон читал Аристотеля в подлиннике, изучал учебники по дисциплинам Аристотеля, копался во всех книгах, положенных по программе. Ни одну так и не дочитал, поскольку, подобно Галилею, не счел доводы Аристотеля убедительными.

И все же труды Аристотеля являли первый изощренный подход к знанию, с каким столкнулся Ньютон, и потому, даже опровергая его, он из самого этого опровержения извлек урок, как нужно подходить к разнообразным вопросам природы и думать о них организованно и последовательно – и с потрясающей неукоснительностью. Ньютон, убежденный холостяк, редко включавшийся в потехи и досуги, трудился больше, чем кто угодно в пределах моего знания, – по восемнадцать часов в день, семь дней в неделю. Эту привычку он поддерживал многие десятилетия подряд.

Не приняв ничего из Аристотелевых трудов, включенных в программу Кембриджа, Ньютон начал свое долгое странствие к новому мировоззрению в 1664 году: в его записях отмечается, что он взялся создать собственную программу обучения, читая и осмысляя работы великих современных европейских мыслителей, включая Кеплера, Галилея и Декарта. Хоть и не блистательно, однако Ньютон все же закончил в 1665 году университет и получил титул исследователя, а также финансовую поддержку на следующие четыре года дополнительного образования.

А летом 1665 года Кембридж накрыло внезапной страшной волной чумы, и заведение закрыли вплоть до весны 1667-го. Пока учиться было негде, Ньютон вернулся в отчий дом в Вулсторпе и продолжил трудиться в одиночестве. В некоторых изложениях 1666 год именуется Ньютоновым annus mirabilis[197]. По этим преданиям, Ньютон сидел в семейном поместье, изобретал математический анализ, разбирался с законами движения, а затем, увидев падающее яблоко, открыл закон всемирного тяготения.

Что верно, то верно, год вышел недурной. Но все происходило не так. Теория всемирного тяготения сложилась не вот так запросто, единой блестящей мыслью, какую можно ухватить благодаря озарению, – это целый корпус трудов, сформировавшийся вокруг совершенно новой научной традиции[198]. Более того, от картинки из учебника, изображающей Ньютона и яблоко, один вред, потому что из-за нее создается впечатление, будто физики добиваются результатов благодаря громадным внезапным прозрениям: кому-нибудь эдак дали в лоб, и у него от этого открылся дар предсказывать погоду. В действительности, даже в случае с Ньютоном, чтобы чего-то добиться, нужно было получить по лбу много-много раз, провести много-много лет в осмыслении собственных соображений и прийти наконец к подлинному пониманию их потенциала. Мы, ученые, терпим от этих ударов по лбу головную боль, потому что, как и футболистам, спорт нравится нам больше, чем не нравится из-за него страдать.

Вот почему большинство историков сомневается в истории с чудесным озарением: прозрения Ньютона в физике во время чумного периода случились не все скопом, а за три года – с 1664 по 1666-й. Более того, никакой ньютонианской революции в конце этого периода не случилось: в 1666 году сам Ньютон еще не был ньютонианцем. Он все еще считал, что равномерное движение возникает из чего-то присущего движущемуся телу изнутри, а под «гравитацией» понимал некое внутреннее свойство, возникающее в материи, из которой создано тело, а не внешнюю силу, исходящую от Земли. Представления, развитые им в тот период, – лишь начало, кое ввергло его в растерянность и брожение ума на самые разные темы, включая силу, гравитацию и движение, то есть обо всех ключевых понятиях, которые в конце концов объединятся в предмет его великого труда – «Philosophiae Naturalis Principia Mathematica».

Мы довольно неплохо знаем, о чем думал Ньютон у себя в имении в Вулсторпе, поскольку он по своему обыкновению записывал это в громадную, почти не использованную тетрадь, доставшуюся от преподобного Смита. Ньютону с той тетрадью повезло, а в более зрелые годы повезло располагать бумагой в достатке, чтобы записать миллионы слов и математических выражений, в которые он облек свои работы.

Я помянул нововведения вроде университетов и применения математических уравнений, но были и другие невоспетые подспорья научной революции, которые мы воспринимаем как должное, и среди них следует отдельно отметить возросшую доступность бумаги. К удаче Ньютона, первая коммерчески успешная мануфактура по производству бумаги в Англии была основана в 1588 году. Не менее важно и то, что Королевская почта в 1635 году начала обслуживать частные отправления, что позволило нелюдиму Ньютону общаться на бумаге с другими учеными даже из очень дальних краев. Но бумага во дни Ньютона по-прежнему стоила недешево, и потому он дорожил своей тетрадью, которую называл «Черновой книгой». В ней – подробности Ньютонова подхода к физике движения, редкая возможность увидеть, как развивается мысль в блистательном уме.

Мы, к примеру, знаем, что 20 января 1665 года Ньютон начал записывать в «Черновой книге» развернутое математическое – а не философское – расследование движения. Ключевой для этого расследования была разработка математического анализа – новой разновидности математики, задуманной для изучения меняющихся величин.

Продолжая традицию Орема, Ньютон представлял себе изменение как наклонную линию. Допустим, если отражать на графике расстояние, пройденное телом, на вертикальной оси, а время – на горизонтальной, тогда наклонная линия на графике – отображение скорости тела. Горизонтальная линия, таким образом, представляет неизменное положение тела, а наклонная или кривая показывает, что положение тела резко меняется – тело движется с большой скоростью.

Графики (а), (б) и (в) изображают равномерное движение с (а) нулевой скоростью (тело покоится), (б) малой скоростью,(в) большой скоростью. График (г) отражает движение с ускорением

Но Орем и другие толковали графики в более качественном смысле, нежели мы в наши дни. Про график «расстояние-время», например, не понимали, что он в каждой точке представляет расстояние, пройденное за время, равное координате на горизонтальной оси. Не понимали и того, что наклон линии на графике представляет скорость тела в каждый момент времени. До Ньютона скорость для физиков была средней, то есть все пройденное расстояние, деленное на продолжительность времени в пути. То были довольно грубые расчеты, поскольку время в них обычно исчислялось часами, днями или даже неделями. Вообще-то засекать короткие промежутки времени с хоть какой-то точностью было и невозможно – вплоть до 1670 года, когда английский часовщик Уильям Клемент изобрел маятниковые «ходики», благодаря которым время стало можно измерять с точностью до секунды.

Пойти дальше средних величин к значениям графиков и их уклонов в каждой отдельной точке – вот откровение Ньютонова анализа. Он взялся разбираться с тем, с чем никто до него не возился: как определить мгновенную скорость тела, ее скорость в каждый миг? Как разделить расстояние, пройденное телом, на затраченное время, если речь идет о временном промежутке размером с точку? Мыслимо ли это вообще? Эту задачу Ньютон и взялся решать в «Черновой книге».

Галилей воображал себе «предельные случаи» – например, плоскость, чей угол наклона все увеличивают и увеличивают, пока он не достигнет прямого, Ньютон же довел этот подход до предела возможности. Чтобы определить мгновенную скорость в данный момент времени, он представил, как будет рассчитывать среднюю скорость традиционно, то есть за некоторый промежуток времени, включая и то мгновение, которое его интересует. Затем он представил себе нечто новое и абстрактное: сужение этого промежутка, еще и еще, пока, в предельном случае, его протяженность не приблизится к нулю.

Иными словами, Ньютон представил, что временной промежуток можно взять столь малым, что он будет меньше любого конечного числа – но все-таки больше нуля. Ныне длина такого промежутка называется «стремящейся к нулю» или «бесконечно малой». Если рассчитать среднюю скорость в определенный промежуток времени, а затем уменьшить этот промежуток до бесконечно малого, получится скорость тела в определенный миг, или мгновенная скорость.

Математические правила нахождения мгновенной скорости в данный момент времени – или, в общем случае, наклона линии в данной точке – и есть основа математического анализа[199]. Если атомы – неделимые составляющие химических веществ, то бесконечно малые величины – своего рода неделимые составляющие пространства и времени.

Вместе с математическим анализом Ньютон изобрел математику изменения. В особенности применительно к движению изощренное понимание мгновенной скорости он предложил культуре, где лишь недавно придумали способ измерять скорость: бросать прикрепленную к лагу веревку, на которой завязаны узлы, за корму и считать, сколько узлов ушло за борт за единицу времени. Впервые появился смысл в понятии скорости тела – или же в изменении чего угодно – в заданный момент времени.

Ныне математический анализ применяется для описания каких угодно изменений – обтекание крыльев самолета воздухом, рост населения, перемены в климатических системах, подъемы и падения биржевых показателей, ход химических реакций. В любом деле, где можно графически отразить количество, в любой области науки, математический анализ – ключевой инструмент[200].

Математический анализ позволил Ньютону соотнести приложенную к телу силу в любой момент времени с изменением скорости в этот же момент. Более того, постепенно прояснилось, как сложить все бесконечно малые изменения скорости и вывести из этого траекторию тела как функцию от времени. Но этим законам и методам пришлось подождать открытия еще несколько десятилетий.

И в физике, и в математике «Черновая книга» Ньютона превзошла все доселе вообразимое. До Ньютона, к примеру, столкновение тел воспринималось как состязание между внутренними устройствами этих тел, словно двое мускулистых гладиаторов пытаются вышвырнуть друг друга с арены. В видении Ньютона же каждое тело осмысляется лишь в понятиях воздействующего на них внешнего побудителя, сиречь силы.

Вопреки этому мыслительному прорыву, среди более чем сотни аксиом «Черновой книги», связанных с этой задачей, Ньютон дает лишь неполное и заковыристое определение того, что он понимает под «силой». Самое главное: он совсем не поясняет, как определять количественно силу, с коей, например, Земля притягивает тела, или ту, что «меняет движение» тела. Полотно, которое Ньютон принялся писать в Вулсторпские годы, останется незавершенным почти двадцать лет, и оно – лишь тень той искры, что потребовалась для ньютонианской революции.

* * *

Физик Джереми Бернстайн рассказывает историю посещения Соединенных Штатов австрийским физиком Вольфгангом Паули в 1958 году. Паули представил свою теорию публике Колумбийского университета, среди которой находился Нильс Бор, относившийся к соображениям Паули скептически. Паули согласился, что на первый взгляд его теория может казаться несколько безумной, однако Бор ответил, что нет, беда как раз в том, что теория недостаточно безумна. На что Паули, обращаясь к залу, возразил: «Нет, моя теория безумна достаточно!» Но Бор не унимался: «Нет, ваша теория не безумна в нужной мере!»[201] И вот уж двое знаменитых физиков ссорятся посреди зала и вопят, как пятиклашки.

Я вспомнил эту историю, дабы показать, что все физики – и все новаторы – предлагают гораздо больше ошибочных суждений, нежели верных, и, если физик – мастер своего дела, у него возникают и безумные соображения, которые как раз лучше всех – если, конечно, они верны. Отличить заблуждение от прозрения – дело не из легких, на него может уйти уйма времени и усилий. А значит, к людям с диковинными идеями следует относиться с пониманием. Ньютон был одним из них: столь бодро начав в период чумы, он затем провел значительную часть своей жизни, развивая ошибочные соображения, которые позднейшие ученые, изучавшие труды Ньютона, считали безумными.

Все начиналось неплохо. Весной 1667 года, вскоре после возобновления работы Кембриджа, Ньютон вернулся в Колледж Св. Троицы. Той осенью в колледже проходили выборы. Все мы временами оказываемся в обстоятельствах, оказывающих громадное влияние на наше будущее, – личные преодоления, собеседования, способные изменить всю нашу жизнь, экзамены в колледжи или профессиональные школы, чьи результаты могут сильно расширить наши дальнейшие возможности. Выборы в Колледже Св. Троицы оказались для Ньютона всем сразу: их результат определял, сможет ли двадцатичетырехлетний ученый остаться в университете на положении «соискателя», или же далее ему придется пасти овец и грести навоз. Шансы его были невелики: выборов в Колледже Троицы не происходило уже три года[202], мест было всего девять, а кандидатов гораздо больше, многие – с политическими связями. Некоторые даже располагали письмами с визой короля, с требованием принять подателя письма на свободное место. Но Ньютона все же выбрали.

Сельскохозяйственная карьера теперь прочно осталась в прошлом, и, казалось бы, Ньютону – полная воля взяться за дело и преобразовать записи из «Черновой книги» по математическому анализу и движению в законы Ньютона. Но нет. Следующие несколько лет Ньютон трудился в двух совершенно других областях – в оптике и математике, в особенности в алгебре. За последнее ему было щедро воздано: вскоре в небольшом сообществе кембриджских математиков его стали считать гением. В результате, когда влиятельный Исаак Барроу [Айзек Бэрроу] покинул почетный пост Лукасовского профессора математики – им несколько столетий спустя стал Стивен Хокинг, – он, по сути, устроил так, чтобы его место занял Ньютон[203]. Заработок по тем временам получался потрясающий: теперь университет был готов платить Ньютону в десять раз больше, чем выделяла ему мать – сто фунтов в год.

Усилия Ньютона, посвященные оптике, впрочем, принесли ему меньше славы. Еще студентом он прочел свежие труды по оптике и свету оксфордского ученого Роберта Бойля [Бойла] (1627–1691), который был еще и первопроходцем-химиком, и Роберта Гука (1635–1703), «скрюченного и бледнолицего» человека – хорошего теоретика и блестящего экспериментатора, как показала его работа ассистентом у Бойля. Труды Бойля и Гука вдохновили Ньютона, однако он так в этом и не признался. Но вскоре уже не просто занимался расчетами – он экспериментировал, вытачивал стекла и совершенствовал телескоп.

Ньютон взялся за изучение света под всевозможными углами[204]. Он вводил себе в глаз иглу и жал на него, пока не начинал видеть белые и цветные круги. Происходит ли свет от давления? Ньютон таращился на солнце, покуда хватало терпения – так долго, что потом несколько дней приходил в себя, – и отмечал, что, отводя взгляд от солнца, видел цвета искаженными. Свет существует на самом деле, или же это плод воображения?

Чтобы изучать свет лабораторно, Ньютон проделал дырочку в ставнях на единственном окне у себя в кабинете, чтобы свет проникал внутрь в виде луча. Такой свет, как думали ученые, белый чистейшего свойства, то есть совершенно бесцветный. Гук пропускал луч света через призмы и наблюдал, как из них струится цветной свет. Он заключил, что прозрачные вещества вроде призмы производят цвет. Но Ньютон тоже пропускал луч света через призмы и пришел к другому выводу. Он отметил, что призмы расщепляют белый свет на цвета, однако цветной свет не меняют. Наконец Ньютон заключил, что стекло не производит цвет, но, изгибая поток света по-разному для разных цветов, делит белый свет на цвета, из которых состоит. Белый свет не есть чистый цвет, а смесь цветов, объявил Ньютон.

Эти наблюдения привели Ньютона к теории цвета и света, над которой он трудился с 1666 по 1670 год. Результатом стал вывод – когда Гук назвал его «гипотезой», Ньютон рассвирепел, – что свет состоит из крошечных «корпускул», вроде атомов. Теперь-то мы знаем, что Ньютонова теория ошибочна в частностях. Действительно, представление о корпускулах света вернется к жизни через несколько веков, в работах Эйнштейна, и ныне мы называем эти корпускулы фотонами. Но фотоны Эйнштейна – квантовые частицы, и они в теорию Ньютона не укладываются.

Хотя работа Ньютона над усовершенствованием телескопа принесла ему славу, представление о световых корпускулах было воспринято во времена Ньютона, как это вышло и с Эйнштейном, с большим скепсисом. А в случае с Робертом Гуком, чья теория описывала свет состоящим из волн, – с неприятием. Более того, Гук жаловался, что Ньютон лишь слегка видоизменил его эксперименты, которые Гук поставил первым, и выдал их за свои.

Годы беспорядочного питания и бессонных ночей, проведенные в оптических исследованиях, привели Ньютона к интеллектуальному сражению, которое быстро сделалось озлобленным и жестоким. Что еще хуже, Гук был человеком порывистым и рубил с плеча – сочинял ответы Ньютону всего за пару часов, тогда как Ньютон, педантичный и тщательный во всем, ощущал нужду отвечать со всей прилежностью. На один такой ответ у него как-то раз ушло несколько месяцев.

Но да пусть ее, личную вражду: так состоялось знакомство Ньютона с публичной стороной нового научного метода – с открытым обсуждением и стычками идей. Ньютону не понравилось. Он, и без того склонный к уединению, из ученого общения устранился.

Заскучав от математики и разозлившись на критику своей оптики, к середине 1670-х Ньютон, к тому времени слегка за тридцать, но уже седой и обычно непричесанный, практически отрезал себя от всего научного сообщества. Отрезанным он и остался – на целый десяток лет.

Нетерпимость к противостояниям стала не единственной причиной его вновь обретенной почти полной изоляции: за предыдущие несколько лет, даже работая в математике и оптике, Ньютон начал уделять все больше времени своих сточасовых рабочих недель двум новым увлечениям, которые он не стремился ни с кем обсуждать. То были «безумные» исследовательские программы, за которые его с тех пор часто критикуют. И, конечно, они лежали сильно в стороне от столбовой дороги научных интересов: математический и текстовый анализ Библии – и алхимия.

Позднейшим исследователям решение Ньютона посвятить себя трудам по теологии и алхимии часто казалось непостижимым, словно он забросил писать статьи для журнала «Нейчер» и предпочел сочинять буклеты для сайентологов. Осуждение это, правда, не берет в расчет подлинного размаха затеи: задача, объединявшая усилия Ньютона в физике, теологии и алхимии, была одна и та же – постичь истину этого мира. Интересно всмотреться, хотя бы коротко, в эту работу – не потому, что она привела к верному ответу, и не потому, что доказывает, будто у Ньютона случались приступы сумасшествия, но потому что она делает зримой зачастую тонкую грань между научным поиском, который в итоге оказывается плодотворным, и бесплодными усилиями.

Ньютон верил обещаниям Библии, что истина будет явлена людям набожным, хотя некоторые стороны этой истины одним лишь чтением текстов не увидеть. Верил он и в то, что набожные люди прошлого, включая великих алхимиков вроде швейцарского врача Парацельса, обрели важные прозрения и включили их в свои работы в зашифрованном виде – чтобы скрыть от неверных. Выведя закон всемирного тяготения[205], Ньютон уверился, что Моисей, Пифагор и Платон постигали этот закон задолго до него.

Что Ньютон превратил свои замыслы в математический анализ Библии, понять можно – с его-то талантами. В ходе работы он обратил внимание на точные даты Творения, постройки Ноева Ковчега и других библейских событий. На основании библейских текстов он рассчитал и неоднократно пересмотрел предсказания конца света[206]. В одной из последних версий мир придет к своему концу где-то между 2060 и 2344 годами. (Не могу сказать, окажется ли это правдой, но, как ни странно, это предсказание точно совпадает с некоторыми сценариями глобальной перемены климата.)

Вдобавок Ньютон усомнился в подлинности многих фрагментов текста Библии и пришел заключению, что имел место впечатляющий подлог, исказивший наследие ранней Церкви в пользу представления о Христе как о Боге, что Ньютон считал идолопоклонничеством. Вкратце: Ньютон не верил в Святую Троицу, что в его положении профессора Колледжа Троицы может показаться забавным. Придерживаться таких взглядов было опасно: Ньютон мог запросто потерять и свое положение, и, вероятно, кое-что посерьезнее, узнай о его воззрениях кто-нибудь неподходящий. Но Ньютон, разбираясь в христианстве, был в отношении публичности своих работ крайне осмотрителен: невзирая на то, что эти труды посвящались религии, а не революции в науке, Ньютон считал их наиболее важными.

Вторая страсть Ньютона в те годы, алхимия, тоже поглощала колоссальные время и силы, и эти исследования продолжались тридцать лет – куда больше, чем он когда-либо посвящал физике. Денег они тоже требовали немало: Ньютон не только оснащал себе алхимическую лабораторию, но и собирал библиотеку. Здесь тоже легко пренебречь этими его исканиями как ненаучными – и ошибиться: как и прочие свои исследования, алхимические Ньютон проводил с тем же тщанием и, с учетом его глубинных взглядов, с той же добротной аргументацией. В этой области Ньютон также пришел к выводам, которые нам трудно понять, поскольку рассуждения его укоренены в контексте, для нас совершенно незнакомом.

Ныне мы представляем себе алхимиков бородатыми мужчинами в мантиях, произносившими заклинания в попытках превратить мускатный орех в золото. Конечно, первый известный нам алхимик – египтянин по имени Болос из Мендеса, живший около 200 года до н. э., который завершал каждый «эксперимент» заклинанием: «Одна сущность в другой утешается. Одна сущность другой истребляется. Одна сущность другой подчиняется»[207]. Смахивает на перечисление возможных событий в брачном союзе двоих людей. Но сущности, о которых говорил Болос, – химические вещества, и Болос в химических реакциях явно кое-что смыслил. Ньютон верил, что в далеком прошлом ученые, подобные Болосу, открыли глубинные истины, с тех пор утерянные, но восстановимые путем анализа греческих мифов, кои, по убеждению Ньютона, не что иное как зашифрованные алхимические рецепты.

В своих алхимических изысканиях Ньютон, сохраняя тщательность научного подхода, провел великое множество продуманных экспериментов с подробнейшими описаниями. Будущий автор «Принципов», часто именуемых величайшей книгой в истории науки, провел многие годы, исписывая тетради лабораторными наблюдениями вроде вот таких: «Растворить летучего зеленого льва в центральной соли Венеры, перегнать. Полученный спирит есть зеленый лев кровь зеленого льва Венеры, Вавилонский Дракон, убивающий все своим ядом, но, побежденный смягчением Горлиц Дианы, есть Узы Меркурия»[208].

Начиная карьеру в науке, я поклонялся ее героям, Ньютонам и Эйнштейнам – и историческим, и современным гениям вроде Фейнмана. Вступать в поле, на котором родились все эти великие, – дело для юного ученого требовательное. Я ощутил это давление величия, когда получил место в Калтехе[209]. Похоже я себя чувствовал накануне первого дня в старшей школе, когда боялся идти на занятие по физкультуре и особенно мыться потом в душе на глазах у других пацанов. В теоретической физике оголяешься – не физически, но интеллектуально, и все на тебя смотрят – и выносят суждения.

Об этих неуверенностях редко говорят, ими редко делятся, и все же они обычны. Любому физику приходится искать собственный способ преодолевать это напряжение, но, чтобы достичь успеха, одного последствия следует избегать каждому: боязни ошибиться. Томасу Эдисону часто приписывают совет: «Чтобы вышел отличный замысел, плодите их обильно». И, разумеется, любой новатор проходит гораздо больше тупиков, нежели достославных бульваров, и потому бояться ошибиться поворотом означает наверняка никогда не прийти в какое-нибудь интересное место. И потому я в те свои времена был бы рад услышать обо всех Ньютоновых заблуждениях и впустую потраченных годах.

Тем, кому утешительно знать, что люди блистательно правые тоже иногда ошибаются, сообщаем: даже гений, подобный Ньютону, может заблуждаться. Да, он догадался, что тепло есть результат движения крошечных частиц, из которых, как он считал, состоит вся материя, но он же, подумав, что заболел туберкулезом, прописал себе «лекарство» из скипидара, розовой воды, пчелиного воска и оливкового масла. (Это снадобье считалось целительным и при болезнях грудей, и от укуса бешеной собаки.) Да, он изобрел математический анализ, но полагал, что поэтажный план затерянного храма царя Соломона в Иерусалиме скрывает математические подсказки касательно конца света.

Почему Ньютон так сильно отклонился от курса? Если присмотреться к обстоятельствам жизни ученого, один фактор бросается в глаза: его обособленность. В точности так же, как интеллектуальная обособленность привела к скверному положению в науке в средневековом арабском мире, она же, судя по всему, препятствовала и Ньютону, хотя в его случае уединение он предпочел для себя сам, поскольку свои религиозные и алхимические взгляды держал при себе, не желая подвергаться риску осмеяния или даже запретов, какие могли возникнуть, откройся он для интеллектуального обсуждения. Не было «хорошего» и «плохого» Ньютона[210], рационального и иррационального, писал оксфордский философ У. Х. Ньютон-Смит. Ньютон заблуждался, потому что не открыл свои взгляды для обсуждения и критики «общественному форуму», а это – одна из важнейших «норм института науки».

Ньютон, на дух не выносивший критики, в той же мере не торопился делиться своими революционными исследованиями, которые проводил в области физики движения в чумные годы. Пробыв на посту Лукасовского профессора пятнадцать лет, он все еще не опубликовал и не закончил эту свою работу. В итоге в 1684 году, когда ему уже был сорок один, этот маниакально прилежный гений имел на руках лишь ворох разрозненных заметок и статей по алхимии и религии, труд, состоявший из неоконченных математических выкладок, и теорию движения, все еще путаную и неполную. Ньютон произвел подробнейшие исследования в нескольких областях, но не пришел ни к какому твердому выводу, оставив свои соображения в математике и физике в состоянии, подобном пересыщенным солевым растворам, – переполненными содержанием, но не кристаллизовавшимися.

Вот к чему пришел в те годы Ньютон. Историк Уэстфолл говорит: «Умри Ньютон в 1684 году и оставь по себе свои записи, о существовании этого гения мы бы узнали из них. Но не славили бы его как человека, придавшего форму современному интеллекту, а в лучшем случае поминали парой абзацев, скорбя по его неспособности довести замыслы до полноты воплощения»[211].

Что судьба Ньютона сложилась иначе – заслуга не сознательного решения ученого закончить и издать свой труд. Напротив, в 1684 году ход научной истории изменила почти случайная встреча, разговор с коллегой, подарившим необходимые соображения и стимулы, которых Ньютону не хватало. Не будь этой встречи, история науки, да и нынешний мир, были бы совсем другими – и вряд ли лучше.

* * *

Семя, выросшее в величайшее достижение науки из всех, какие видел мир, проросло после встречи Ньютона с коллегой, заезжавшим в Кембридж жарким поздним летом.

В январе того судьбоносного года астроном Эдмунд Галлей – тот самый, имени которого комета, – присутствовал на заседании Королевского общества в Лондоне, влиятельного ученого сообщества, посвященного науке, где обсуждал с двумя своими коллегами горячую тему дня. Несколькими десятилетиями ранее, применив данные невероятной точности, собранные датским аристократом Тихо Браге [Тио Бра] (1546–1601), Иоганн [Йоханнес] Кеплер открыл три закона, описывающие, похоже, орбиты планет. Он заявил, что орбиты планет эллиптичны, что Солнце размещается в одном из двух фокусов эллипса, и сформулировал определенные правила, которым эти орбиты подчиняются: к примеру, что квадрат времени, потребный для совершения полного цикла по орбите, пропорционален кубу среднего расстояния до Солнца. В некотором смысле эти законы – красивые и компактные описания того, как планеты движутся в пространстве, однако в ином смысле – порожние наблюдения, случайно совпавшие утверждения, не проливавшие никакого света на то, почему именно по таким орбитам движутся планеты.

Галлей и двое его коллег заподозрили, что законы Кеплера отражают некую глубинную истину. В частности, они предположили, что все законы Кеплера вытекают из допущения, что Солнце притягивает к себе любую планету с силой, ослабевающей пропорционально квадрату расстояния до этой планеты, то есть в согласии с математической формулировкой, именуемой «законом обратных квадратов».

То, что сила, исходящая во все стороны от удаленного тела, подобного Солнцу, должна уменьшаться пропорционально квадрату расстояния от этого тела, можно доказать геометрически. Вообразите исполинскую сферу – до того большую, что Солнце будет всего лишь точкой в центре. Все точки поверхности этой сферы равноудалены от Солнца, следовательно, в отсутствие других причин считать иначе, можно предположить, что физическое влияние Солнца – по сути, «силовое поле» – должно быть распределено равномерно по всей поверхности сферы.

Теперь представим сферу, скажем, вдвое больше. Законы геометрии говорят нам, что увеличение радиуса сферы вдвое дает вчетверо большую поверхность, а значит, теперь сила притяжения солнца будет распределена по поверхности в четыре раза большей. В таком случае разумно считать, что в юбой точке большей сферы притяжение Солнца составит одну четвертую от значения для исходной сферы. Вот так работает закон обратных квадратов: чем дальше от источника силы, тем слабее притяжение – в обратной пропорции к квадрату расстояния.

Галлей и его коллеги предположили, что за законами Кеплера стоит закон обратных квадратов, но могли ли они это доказать? Один, Роберт Гук, сказал, что может. Второй, Кристофер Рен, которого мы ныне лучше всего знаем по архитектурным работам, был в те времена еще и известным астрономом, и он предложил Гуку награду в обмен на доказательство. Гук отказался. Он был знаменит противоречивостью, но объявленные им основания отказа выглядели сомнительно: он сказал, что не раскроет доказательства, чтобы другие, не сумев с ним справиться, оценили всю сложность задачи. Быть может, Гук и впрямь справился. Быть может, он и дирижабль, на котором можно долететь до Венеры, изобрел. В любом случае доказательства он так никогда никому и не показал.

Через семь месяцев после того разговора Галлей, оказавшись в Кембридже, решил заглянуть к профессору-отшельнику Ньютону. Как и Гук, Ньютон сказал, что проделал работу, доказывающую предположение Галлея. Как и Гук, он его не предъявил. Порылся в каких-то бумагах, доказательства не нашел, но пообещал еще поискать и погодя Галлею прислать. Прошло несколько месяцев, но Галлей так ничего не получил. Интересно, что он себе думал. Вот просит он двух умных взрослых людей решить задачку, один говорит: «Ответ знаю, но не скажу!», а второй, по сути: «Мою домашку съела собака». Награда по-прежнему оставалась у Рена.

Ньютон все же откопал доказательство, однако, всмотревшись в него еще раз, обнаружил ошибку. Однако не сдался – он переработал свои соображения и в конце концов добился успеха. Тем ноябрем он отправил Галлею трактат на девяти страницах, доказывающий, что все три закона Кеплера – действительно математические следствия закона обратных квадратов. Он назвал свой краткий труд «De Motu Corporum in Gyrum» («О движении тел по орбите»).

Галлей пришел в восторг. Он увидел в подходе Ньютона революцию и захотел, чтобы Королевское общество опубликовало эту работу. Однако Ньютон отклонил предложение. «Я занялся этим предметом, – сказал он, – и рад был бы разобраться до основания и лишь потом издавать свои записи»[212]. Ньютон «рад был бы разобраться»? То, что далее последовало, превратилось в титанический подвиг, приведший, быть может, к самому значительному интеллектуальному прозрению за всю историю, а сказанные в начале этого похода слова – самое грандиозное в истории преуменьшение значимости. Ньютон разберется с этой задачей «до основания», доказав, что фундаментальная основа устройства планетарных орбит – всеобщая теория движения и силы, применимая к любым телам, и небесным, и земным.

В последующие полтора года Ньютон занимался исключительно составлением трактата, который превратится в «Математические принципы». Он сделался машиной физики. Он всегда, чем-нибудь увлекшись, забывал о еде и даже о сне. Говорят, его кот растолстел, доедая пищу, которую Ньютон оставлял недоеденной на подносе, а старый сосед по жилищу в колледже сообщал, что нередко заставал Ньютона утром на том же месте, что и накануне вечером: великий затворник продолжал работать над той же задачей. Но на сей раз Ньютон пошел еще дальше. Он отказался от практически всех человеческих связей. Редко покидал комнату, а когда изредка все же наведывался в трапезную колледжа, перекусывал быстро и немного, стоя, после чего стремительно возвращался к себе.

Наконец-то Ньютон закрыл свою алхимическую лабораторию и отложил теологические изыскания. Лекции он читать продолжал, раз требовалось, однако получались они до странности смутные и путаные. Позднее стало понятно почему: Ньютон попросту являлся на занятия и читал черновики «Принципов».

* * *

Пусть Ньютон несколько десятков лет после получения должности в Колледже Св. Троицы не мог довести работу о силе и движении до конца, но в 1680-х он располагал куда более мощным интеллектом, нежели был у него в чумные 1660-е. Он теперь оказался гораздо лучше математически подготовлен, а благодаря занятиям алхимией имел и научный опыт. Некоторые историки даже считают, что именно годы занятий алхимией сделали возможным прорыв в изучении движения и написание «Принципов».

Парадокс: одним из катализаторов Ньютонова прорыва стало письмо, которое, как он вспоминал, он получил пятью годами ранее – от Роберта Гука. Тот предложил смотреть на движение по орбите как на сумму двух разных воздействий. Рассмотрим тело (например, планету), обращающееся по круговой орбите вокруг некоего другого тела, притягивающего его (как Солнце). Предположим, что обращающееся тело имеет склонность продолжать движение по прямой – то есть слететь с круговой орбиты и понестись дальше, как автомобиль, водитель которого не вписался в поворот на мокрой трассе. Математики называют это движением по касательной, или тангенциальным.

Теперь допустим, что у тела есть вторая склонность – притяжение к центру орбиты. Математики называют это движение нормальным, или центростремительным. Склонность к центростремительному движению, писал Гук, может быть дополняющим к тангенциальному, и тогда вместе они обеспечивают движение по орбите.

Легко понять, как это соображение отозвалось в Ньютоне. Вспомним, что, совершенствуя закон инерции Галилея, Ньютон предположил у себя в «Черновой книге», что все тела склонны продолжать движение по прямой, если нет внешнего воздействия на них, то есть силы. Для тела на орбите первая склонность – слететь с орбиты по прямой – естественно вытекает из этого закона. Ньютон понял, что, если добавить в эту картину силу, притягивающую тело к центру орбиты, возникнет причина центростремительного движения – второй необходимой составляющей, предложенной Гуком.

Но как это описать математически и, в особенности, как установить связь между конкретной формулой закона обратных квадратов и конкретными математическими свойствами орбит, описанными Кеплером?

Мысленно поделим время на крошечные интервалы. В каждом интервале времени тело, движущееся по орбите, можно представить себе движущимся по касательной на очень маленькие расстояния и в то же время центростремительно – тоже понемножку. Сумма этих движений возвращает тело на орбиту, но чуточку дальше вдоль окружности, чем вначале. Повторив эту последовательность много раз, получим зубчатую круговую орбиту, как показано на рисунке.

Круговое движение, возникающее из движения по касательной (тангенциального) и центростремительного (нормального)

Если на такой орбите взять достаточно малые промежутки времени, траектория будет совпадать с окружностью сколь угодно плотно. И вот тут пригодились наработки Ньютона в математическом анализе: если интервалы бесконечно малы, траектория в данном конкретном случае и есть окружность.

Таково описание орбит, какое позволила составить новая математика Ньютона. Он сложил вместе изображение тангенциального движения тела по орбите и нормального «падения», получилась зубчатая траектория – а затем взял предельный случай такого движения, в котором линейные сегменты сделались исчезающе малы. Таким образом зубчатость изгладилась до окружности.

Орбитальное движение в таком варианте есть движение любого тела, которое постоянно отклоняется от движения по касательной под действием силы, тянущей его к некоему центру. Дело в шляпе: применив закон обратных квадратов для описания центростремительной силы в математике орбит, Ньютон воспроизвел три закона Кеплера, как и просил Галлей.

Доказательство, что свободное падение и движение по орбите суть два проявления одних и тех же законов силы и движения, – один из величайших триумфов Ньютона, поскольку это раз и навсегда опровергло заявление Аристотеля, что небеса и Земля – разные «царства». Астрономические наблюдения Галилея выявили, что другие планеты очень похожи на Землю, работа Ньютона же доказала, что законы природы применимы и к другим планетам, а не только к Земле.

Но даже в 1684 году, тем не менее, Ньютоново понимание силы тяготения и движения не были внезапными всплесками ясности, на какие намекает история с падающим яблоком. Напротив, революционная мысль[213] о том, что сила тяготения – всемирна, дошла до Ньютона, похоже, постепенно, пока он дорабатывал черновики «Принципов».

Прежде ученые, если и подозревали, что у планет есть сила тяготения, считали, что это тяготение воздействует только на их луны, но не на другие планеты, словно каждая планета – отдельный замкнутый мир со своими законами. Ньютон и сам поначалу разбирался лишь с тем, распространяется ли причина падения тел к Земле на притяжение Луны Землей, но не с притяжением планет Солнцем.

Следует признать творческую силу Ньютона, незашоренность его мысли: он усомнился в привычном мировоззрении. Он написал одному английскому астроному и запросил даты движения комет в 1680 и 1684 годах, а также орбитальные скорости Юпитера и Сатурна в момент их сближения. Произведя изнурительные расчеты по присланным очень точным данным и сравнив результаты, Ньютон удостоверился, что одни и те же законы тяготения применимы повсюду – на Земле и меж небесных тел. Он внес это замечание в текст «Принципов».

Мощь законов Ньютона – не только в их революционном понятийном содержимом. Применяя их, он смог получать предсказательные результаты с неслыханной доселе точностью и сравнивать их с экспериментально полученными. К примеру, применив данные о расстоянии до Луны и радиусе Земли и приняв во внимание такие мелочи, как искажение лунной орбиты из-за притяжения Солнца, центробежную силу вращения Земли и отклонение формы Земли от идеального шара, Ньютон заключил, что на широте Парижа тело, брошенное из положения покоя, пролетит за первую секунду пятнадцать футов и одну восьмую дюйма[214]. Это, сообщил неизменно дотошный Ньютон, соответствует эксперименту с точностью до одной трехтысячной доли[215]. Более того, он кропотливо повторил эксперимент с разными материалами – золотом, серебром, свинцом, стеклом, песком, солью, водой, деревом и пшеном. Любое тело, пришел он к выводу, независимо от своего устройства, хоть на Земле, хоть на небесах, притягивает любое другое тело, и притяжение это всегда подчиняется одним и тем же законам.

* * *

Когда Ньютон «добрался до основания» начатого, работа «О движении тел по орбите» распухла с девяти страниц до трех томов – до «Принципов», а точнее – «Математических принципов натуральной философии».

«Принципы» Ньютон посвятил не исключительно движению тел по орбите – он подробно излагал теорию силы и движения как таковую. Суть движения – взаимосвязь трех количественных параметров: силы, импульса (который Ньютон называл количеством движения) и массы.

Мы уже знаем, как Ньютон силился сформулировать свои законы. Теперь давайте посмотрим на сами законы и разберемся в их значении. Первый – уточнение Галилеева закона инерции, но с важным дополнительным утверждением, что сила есть причина изменений:

Первый закон Ньютона: Всякое тело продолжает оставаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

Ньютон, как и Галилей, определяет движение, при котором тело перемещается по прямой с постоянной скоростью, как естественное положение дел. Поскольку ныне мы склонны думать в ньютоновских понятиях, оценить, до чего неочевидно это представление, затруднительно. Но движение, которое мы наблюдаем вокруг, в основном не происходит по Ньютонову описанию: предметы, падая, ускоряются или же замедляются сопротивлением воздуха – или движутся по искривленным траекториям, перемещаясь к земле. Ньютон считал, что эти виды движения – в некотором смысле отклонения от нормального, результат действия незримых сил вроде гравитации или трения. Если предоставить тело самому себе, говорил он, оно будет двигаться равномерно, а если траектория движения искривляется, или же меняется скорость, это происходит под действием внешних сил.

Факт, что тела, предоставленные себе, продолжают сохранять свое состояние движения, позволяет нам исследовать космос. На Земле «феррари», к примеру, может разогнаться с нуля до шестидесяти миль в час менее чем за четыре секунды, однако, чтобы сохранять эту скорость, автомобилю приходится изрядно стараться – из-за сопротивления воздуха и трения. Средство перемещения в открытом космосе сталкивается с одной случайной молекулой примерно раз в сто тысяч миль, и потому о трении или торможении можно не беспокоиться. Это означает, что достаточно разогнать космическое судно, и оно продолжит двигаться по прямой с постоянной скоростью без замедления, в отличие от «феррари». А если не выключать двигатели, можно продолжать разгоняться, не теряя при этом энергии на трении. Если, скажем, ваш космический корабль разгоняется со скоростью «феррари», и разгон продолжится год, а не секунду, удастся достичь половинной скорости света.

Есть, конечно, кое-какие практические трудности – масса топлива, которую придется везти с собой, а также эффекты относительности, до которых мы еще доберемся. Кроме того, если хотите долететь до какой-нибудь звезды, придется хорошенько прицелиться: звездные системы до того разрежены, что, если нацелить корабль «от балды», прежде чем достичь какой-нибудь другой солнечной системы, он в среднем улетит дальше, чем удалось свету со времен Большого взрыва.

Ньютон не воображал визиты человека на другие планеты, однако, постановив, что сила придает телу ускорения, во втором законе он количественно определяет связь между количеством силы, массой и ускорением (в современных понятиях «изменение количества движения» означает смену импульса, то есть равно массе, умноженной на ускорение):

Второй закон Ньютона: Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

Представьте, что толкаете тележку с ребенком в ней. Закон утверждает: если, не учитывая трения, толкнуть 75 фунтов тележки с ребенком так, чтобы она разогналась до пяти миль в час, то на разгон 150-фунтовой тележки с подростком до той же скорости пришлось бы затратить вдвое больше усилий – или же толкать вдвое дольше. Вот что хорошо (опять-таки, без учета трения): можно разогнать 750 000-фунтовый аэробус до скорости пять миль в час, толкая его в 10 000 раз сильнее, что трудно, или в 10 000 раз дольше, а это просто требует терпения. Поэтому, если вы готовы прилагать равномерные усилия 10 000 секунд – а это не так долго, всего-то два часа сорок семь минут – могли бы покатать целый аэробус пассажиров.

В наши дни мы записываем второй закон Ньютона так: F = та, то есть сила равно масса, умноженная на ускорение, однако второй закон принял вид уравнения много позже, уже после смерти Ньютона и через сто лет после того, как Ньютон этот закон сформулировал.

В третьем законе Ньютон утверждает, что общее количество движения во Вселенной не меняется. Оно может передаваться от тела к телу, но его ни отнять, ни прибавить. Суммарное количество движения, наличное во Вселенной, было от ее рождения и останется неизменным, пока существует Вселенная.

Важно отметить: согласно формулировке Ньютона, количество движения в одном направлении, сложенное с соответствующим движением в противоположном направлении, дает сумму движения, равную нулю. Таким образом, тело можно перевести из состояния покоя в движение, не нарушая третий закон Ньютона, если это движение скомпенсировано изменением движения второго тела в противоположном направлении. Ньютон формулирует это так:

Третий закон Ньютона: Действию всегда есть равное и противоположное противодействие.

Эта невинная с виду фраза сообщает нам, что, если пуля летит вперед, ружье сдает назад. Если конькобежка отталкивается ото льда лезвием конька, сама она поедет вперед. Если вы чихнете, исторгая воздух изо рта вперед, голова у вас откинется назад (со средним ускорением, втрое превышающим ускорение свободного падения, как сообщает нам журнал «Спайн»)[216]. А если космический корабль выбрасывает горячие газы из сопла, сам он ускоряется с импульсом, равным по величине, но противоположным относительно движения горячих газов, вытолкнутых в космический вакуум.

Законы Ньютона, представленные в «Принципах», не были просто абстракциями. Ньютон смог убедительно доказать, что этой малостью математических принципов можно описать бессчетное множество явлений действительности. Вот некоторые практические приложения: он показал, что сила тяготения создает наблюдаемые неравномерности в движении Луны; объяснил морские приливы; рассчитал скорость звука в воздухе; показал, что предварение равноденствий[217] – воздействие гравитационного притяжения Луны на экваториальную выпуклость Земли.

То были поразительные достижения, и мир, конечно, поразился. Но в некотором смысле еще больше потрясает, что Ньютон понимал: у его законов есть практические пределы применимости. Он, к примеру, знал, что, хотя его законы движения – в целом, отличное приближение наблюдаемого вокруг нас, они истинны в абсолютном смысле лишь в идеальном мире, где нет ни сопротивления воздуха, ни трения.

Величие гения Ньютона, как и Галилея, еще и в том, что он осознавал множество усложняющих факторов, существующих в нашей действительности, и мог абстрагироваться от них и явить изящество законов, действующих на более глубоком уровне.

Возьмем свободное падение: если предмет уронить, он начнет падать с ускорением, в полном соответствии с законом Ньютона, – но лишь поначалу. Далее, если только предмет не падает в вакууме, среда, в которой происходит падение, постепенно затормаживает ускорение. Это происходит оттого, что, чем быстрее предмет падает в среде, тем большее сопротивление испытывает, поскольку ежесекундно сталкивается с большим числом молекул среды, а также потому, что эти столкновения сильнее. В конце концов, по мере того, как падающий предмет набирает скорость, тяготение и сопротивление среды уравновешивают друг друга, и скорость предмета перестает расти.

Эту максимальную скорость мы теперь именуем равновесной. Равновесная скорость и время падения, необходимое, чтобы этой скорости достичь, зависит от формы и массы падающего тела, а также от свойств среды, в которой происходит падение. Предмет, падая в вакууме, набирает в скорости по 22 мили в час каждую секунду падения, а капля дождя, падающая в воздухе, перестает ускоряться, достигнув скорости в 15 миль в час; у пинг-понгового шарика равновесная скорость – 20, у шара для гольфа – 90, у шара для боулинга – 350 миль в час.

Ваша собственная равновесная скорость составляет примерно 125 миль в час, если вы раскинете руки-ноги в стороны, и около 200 миль в час – если свернетесь в плотный клубок. А если спрыгнете с очень большой высоты, где воздух разрежен, вам удастся достичь в падении скорости, превышающей скорость звука, а это 761 миля в час. Один австрияк-сорвиголова именно это в 2012 году и проделал – спрыгнул с воздушного шара на высоте 128000 футов и достиг скорости 843,6 миль в час (американец Ален Юстэс в 2014 году спрыгнул с еще большей высоты, но такой высокой скорости набрать не смог). Хотя Ньютон о свойствах воздуха, обусловливающих равновесную скорость, знал немного, во втором томе «Принципов» он представил теоретическую картину свободного падения, которую я только что описал.

Незадолго до рождения Ньютона философ и ученый Фрэнсис Бэкон [Бейкен] писал: «Изучение природы… [добилось] скудных успехов»[218]. Через несколько десятилетий после смерти Ньютона физик-священник Руджер Бошкович писал, напротив, что «если закон силы известен, а также известны положение, скорость и направление движения всех точек в любой момент времени»[219], возможно «предсказать все явления, непременно из этих движений вытекающие». Могучий ум, создавший предпосылки для такой перемены ветра между эпохами до и после себя, – Ньютонов, это он предложил настолько точные и глубокие разгадки главным научным шарадам своего времени, что сто лет получалось открывать что-то новое лишь в тех областях знания, которых сам Ньютон не касался.

* * *

19 мая 1686 года Королевское общество согласилось издать «Принципы», но только при условии, что Галлей оплатит печать. Тому оставалось лишь согласиться. Само Общество издателем не было. Оно взялось за это в 1685 году и погорело, опубликовав книгу «История рыб», которая, невзирая на увлекательное название, продавалась не бойко. Королевское общество до того истощило на это издание свои ресурсы, что далее не смогло даже выплачивать Галлею положенные ему как своему делопроизводителю пятьдесят фунтов в год – выдало плату экземплярами «Истории рыб». Галлей, короче говоря, принял условия Общества. Книга должна была увидеть свет на следующий год.

Оплатив издание, Галлей, по сути, стал издателем Ньютона. Он же был неформальным редактором и маркетологом «Принципов». Он разослал экземпляры «Принципов» всем ведущим философам и ученым того времени, и книга взяла Британию приступом. Слух о ней распространялся в кафе и интеллектуальных кругах по всей Европе.

Вскоре стало ясно, что Ньютон написал книгу, которой суждено преобразить человеческое мышление, самую влиятельную работу в истории науки.

Никто не был готов к труду такого широкого охвата и такой глубины. Три ведущих журнала с континента воспели ее в своих обзорах, в одном даже сообщалось, что это издание предлагает «совершеннейшую механику, какую только можно вообразить»[220]. Даже Джон Локк [Лок], величайший философ Просвещения, но не математик, «вознамерился освоить книгу». Все признали: Ньютону удалось наконец свергнуть вековую империю Аристотелевой качественной физики, и его работа теперь будет образцом, по которому следует заниматься наукой.

Если и были отрицательные отклики на «Принципы», они исходили в основном от недовольных, что ключевые мысли, представленные в них, рождены не одним Ньютоном – или не им первым. Немецкий философ и математик Готтфрид Вильгельм Лейбниц [Вильхельм Лайбниц], независимо от Ньютона, хоть и чуть позже, разработавший математический анализ, заявил, что Ньютон пытается присвоить себе право первоизобретателя. Еще как: ершистый Ньютон считал[221], что расшифровщик божественного знания на Земле может быть в единицу времени лишь один, и на сей раз это он, Ньютон. Меж тем Роберт Гук назвал «Принципы» «важнейшим открытием в природе с создания мира» – после чего обиженно заявил, что Ньютон украл у него значимую идею о законе обратных квадратов. У его заявления были некие доказательства: не исключено, что в основе своей это и впрямь идея Гука, хотя с математикой закона разобрался именно Ньютон.

Кто-то обвинил Ньютона и в поддержке сверхъестественных или «оккультных» сил, поскольку его сила тяготения действовала на расстоянии, и посредством ее массивные небесные тела могут влиять на удаленные предметы через космическую пустоту без всяких явных посредников этого влияния. Этот аспект Ньютоновой теории нарушал специальную теорию относительности Эйнштейна, которая утверждает невозможность перемещения быстрее скорости света. Эйнштейн за свои слова отвечал: он создал свою теорию всемирного тяготения – общую теорию относительности, которая смогла разобраться с неувязкой теории Ньютона и заместить эту теорию вообще. Однако современники Ньютона, критиковавшие представление о гравитации, действующей на расстоянии, ничего взамен предложить не могли, и им пришлось признать научную мощь Ньютоновых достижений.

Отклик Ньютона на критику[222] оказался теперь совсем иным, нежели на неприятие его работы по оптике в начале 1670-х. В те поры, запуганный Гуком и прочими, он удалился от миа и пресек большую часть своих связей. Теперь же, доведя исследование до завершенности, целиком сознавая великое значение своих достижений, он принял бой. Он встретил критиков шумной и яростной контратакой, продолжившейся в случаях оспаривания права на первенство вплоть до самой смерти Гука и Лейбница – и даже после. На упреки в оккультизме Ньютон ответил заявлением: «Эти принципы я считаю не оккультными Качествами… а общими Законами Природы… их истина видна нам в Явлениях, хоть их Причины пока не открыты»[223].

«Принципы» изменили жизнь Ньютона не только потому, что их признали великой вехой в интеллектуальной истории, но и оттого, что они вытолкнули ученого в поле общественного внимания, и слава, как выяснилось, ему понравилась. Он стал общительнее и на последующие двадцать лет отставил почти все свои радикальные исследования в теологии. Усилия в области алхимии он хоть и не прекратил совсем, но все же умерил.

Перемены начались в марте 1867 года, вскоре после завершения Ньютоном его великого труда. Став отважнее, чем когда-либо прежде, он ввязался в политическое противостояние между Кембриджским университетом и королем Яковом II. Король, пытавшийся обратить страну в католичество, попробовал надавить на университет, чтобы тот наделил одного монаха-бенедиктинца ученой степенью без надлежащих экзаменов и клятв Церкви Англии. Университет победил, а для Ньютона это стало поворотной точкой. Его участие в борьбе сделало его настолько значимой политической фигурой Кембриджа, что университетский сенат на заседании 1689 года проголосовал за делегирование Ньютона в Парламент.

Судя по всему, Ньютону в Парламенте было неинтересно, и слово он там взял лишь чтобы пожаловаться на сквозняки. Однако Лондон полюбил, и греться в лучах обожания многих ведущих интеллектуалов и финансистов, с которыми свел знакомство, ему тоже понравилось. В 1696 году, проведя тридцать пять лет в Кембридже, Ньютон оставил университетскую жизнь и переехал в столицу.

Ньютон променял престижнейший пост на относительно незначимый бюрократический в Лондоне: стал смотрителем Монетного двора. Но Лондон запал ему в душу, да и интеллектуальная мощь его, к тому времени уже сильно за пятьдесят, начала, как он сам чувствовал, оставлять. Более того, его стесняла университетская ставка. Когда-то она, может, и казалась ему щедрой, но смотрителем Монетного двора он стал получать гораздо больше – четыреста фунтов. Вероятно, осознавал он и то, что, как ведущий интеллектуал Англии, может, при соответствующих маневрах, сделаться управляющим Монетного двора – так в 1700 году и вышло. Его доход на этом посту составлял в среднем 1650 фунтов, примерно в семьдесят пять раз больше заработка обычного ремесленника, и, конечно, по сравнению с таким воздаянием его кембриджская ставка и впрямь смотрелась нищенски. В результате следующие двадцать семь лет он провел, как сливки Лондонского общества, – и премного этим был доволен.

Ньютон дорос до главенства в организации, издавшей его «магнум опус»: в 1703 году, после смерти Гука, Ньютона избрали президентом Королевского общества. Возраст и успех, тем не менее, его не смягчили. Он правил Обществом железной рукой[224], вплоть до вышвыривания членов Общества с заседаний, если они выказывали признаки «легкомыслия или неблагопристойности». Он все меньше желал делиться славой за свои открытия и укреплял свое положение, плетя разнообразные мстительные козни.

* * *

23 марта 1726 года Королевское общество записало у себя в журнале: «Президентское кресло в связи со смертью сэра Исаака Ньютона сего Дня не занято, и потому Заседание не состоялось»[225]. Ньютон умер несколькими днями раньше, в восемьдесят четыре года.

Исаак Ньютон в молодости и в зрелые годы

Ньютон знал о приближении смерти уже некоторое время – он страдал от тяжелого хронического воспаления легких. Маялся он и многими другими хворями, каких можно ожидать в жизни алхимика, анализ чьих волос века спустя показал концентрации свинца, мышьяка и сурьмы в четыре раза, а концентрацию ртути – в пятнадцать раз выше нормы[226]. Однако предсмертный диагноз Ньютона – камни в мочевом пузыре. Боль была сокрушительной.

Судьба Ньютона являет яркий контраст Галилеевой. За годы успеха ньютоновской науки противостояние Церкви новым веяниям в науке до того остыло, что даже католическим астрономам[227] в Италии дали право не только преподавать, но и развивать теорию Коперника – лишь бы они постоянно повторяли, как велено по закону талдычить про эволюцию школьным учителям в Канзасе, что «это просто теория». Меж тем в Англии стали очевидны возможности науки помочь промышленности и улучшить жизни людей. Наука развилась в целую культуру экспериментов и расчетов и превратилась в дело невероятно престижное – по крайней мере, в высших слоях общества. Более того, в преклонные годы Ньютона Европа вступила в такой период, когда противостояние власти сделалось частью европейской культуры – хоть в виде несогласия с античными деятелями вроде Аристотеля или Птолемея, хоть с религией и монархиями.

Нет лучше примера, показывающего разницу приема, полученного Галилеем и Ньютоном, нежели их погребения. Галилею разрешили тихую, семейную церемонию и упокоили в темном углу церкви, где он просил себя похоронить, а тело Ньютона выставили в Вестминстерском аббатстве и после похорон возвели там же громадный памятник, а его останки поместили в каменный саркофаг на пьедестале. На гробнице изобразили барельеф: несколько юношей держат инструменты, символизирующие величайшие открытия Ньютона, а на гробнице написано:

Здесь покоится сэр Исаак Ньютон, дворянин, который почти божественным разумом первый доказал с факелом математики движение планет, пути комет и приливы океанов.

Он исследовал различие световых лучей и появляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. Прилежный, мудрый и верный истолкователь природы, древности и Святого писания, он утверждал своей философией величие всемогущего Бога, а нравом выражал евангельскую простоту. Пусть смертные радуются, что существовало такое украшение рода человеческого.

Родился 25 декабря 1642 года, скончался 20 марта 1727 года[228].

Жизни Ньютона и Галилея в сумме составили более 160 лет, и вместе они засвидетельствовали – и во многих отношениях инициировали – то, что фактически именуется научной революцией.

За свою долгую карьеру Ньютон смог сообщить нам много чего о нашей планете и Солнечной системе, применив сформулированные им законы движения и единственный закон силы, открытый им, – закон тяготения. Но его устремления сильно превзошли это знание. Он считал, что сила – фундаментальная причина любых изменений в природе, от химических реакций до отражения света в зеркале. Более того, он не сомневался, что когда-либо в будущем мы дозреем до понимания сил притяжения и отталкивания, которые действуют на малых расстояниях, между крошечными «частицами», составляющими материю, – такова была его версия извечного представления об атомах, – и его законы движения смогут объяснить все наблюдаемое во Вселенной.

Ныне понятно, что Ньютон был провидцем. Его прозрение того, что будет значить понимание сил, действующих между атомами, оказалось очень в точку. Но этому пониманию пришлось подождать 250 лет. А когда оно случилось, мы поняли, что законы, управляющие атомом, не вписываются в рамки построенной им физики. Зато они явят нам новый мир за пределами опыта наших чувств, новую действительность, которую люди могут увидеть лишь в воображении, действительность, чье устройство до того затейливо, что знаменитые законы Ньютона придется заменить целиком – новым набором законов, которые Ньютону показались бы чужеродными даже более, чем физика Аристотеля.

Глава 8

Из чего все сделано

Еще подростком я увлекся двумя отчетливо разными научными подходами к тайнам Вселенной. До меня постоянно долетали странные слухи о достижениях физиков, об их открытии квантовых законов, согласно которым я вроде как мог находиться в двух местах одновременно. Я сомневался, что в настоящей жизни такое и впрямь бывает, да и мест, где я бы хотел оказаться, было не так много. Но еще я слыхал и о более приземленных тайнах, которыми занимались химики, – устрашающих и опасных, но мало похожих на отмычку от Вселенной: они возбуждали во мне дух приключений и обещали наделить силами, каких дети обычно не имеют. Вскоре я уже смешивал аммиак с раствором йода, перхлорат калия с сахаром и цинковую пыль с нитратом и хлоридом аммония – и взрывал все подряд. Архимед говорил, дескать, дайте ему точку опоры, и он перевернет мир; я верил, что с помощью подходящей бытовой химии я его взорву. Вот она, сила постижения веществ вокруг нас.

Первые научные мыслители этого мира торили эти два пути изучения физического мира. Они задавались вопросом, что творит изменения, и разбирались, из чего все сделано и как состав предметов влияет на их свойства. Со временем Аристотель предложил план движения по обоим направлениям, но указанные им дороги оказались тупиковыми.

Ньютон и его предшественники прошли долгий путь к пониманию вопросов о переменах. Ньютон попытался понять и науку материи, но и близко не стал химиком столь же великим, каким был физиком. Загвоздка не в том, что ему не хватило интеллекта, и даже не в том, что он брел длинной тупиковой дорогой алхимии. Мешало ему вот что: хотя химия, наука о веществе, развивалась бок о бок с физикой, наукой о переменах, она совсем другого свойства. Она грязнее и сложнее, и заниматься ею настолько основательно, как Ньютон возился с изучением изменений, потребовало бы множества технических нововведений, большинство которых во времена Ньютона еще не были изобретены. И потому Ньютон оказался в безвыходном положении, а химии не хватало могучей фигуры, которая вывела бы эту дисциплину (а вместе с ней – и эту самую фигуру) к славе. Так что химия развивалась постепенно, а слава досталась нескольким первопроходцам разом.

История о том, как человечество разбиралось с составом всего, дорога моему сердцу, поскольку химия – моя первая любовь. Я вырос в маленькой двухэтажной квартире в Чикаго, где жили тесно, зато имелся большой подвал, в котором я, предоставленный сам себе, смог построить собственный Диснейленд – затейливую лабораторию, загроможденную полками со склянками, разноцветными порошками и бутылками с крепчайшими кислотами и щелочами.

Кое-какие реактивы приходилось покупать из-под полы или невольной помощью моих родителей («Вот был бы у меня галлон муравьиной кислоты, уж я б ту кошачью мочу от бетона-то оттер»). Нимало не чураясь хитрости, я понял, что, изучая химию, мог бы создавать клевые салюты, а попутно утолять любопытство, каким я пылал к окружающему миру. И, видимо, подобно Ньютону, я осознал, что у моего занятия есть масса преимуществ перед попытками обустраивать общение с людьми. Реактивы добывать проще, чем друзей, и когда мне хотелось играть с реактивами, они не говорили, что им нужно идти мыть голову или что-нибудь менее вежливое – типа, что не хотят водиться с чудиками. Впрочем, как это бывает со многими первыми любовями, мы с химией друг к другу охладели. Я начал флиртовать с другой дисциплиной – физикой. И вот тогда-то понял, что разница между разными отраслями науки – не только в том, что они отвечают на разные вопросы, но и в том, что вокруг них складываются разные культуры.

Разница между физикой и химией ярче всего проступала в совершаемых мною ошибках. Я довольно быстро понял, к примеру, что, если мои физические расчеты сводились в конце концов к уравнению «4 = 28», это означало, что я не открыл некую глубинную прежде не замеченную истину, а, скорее, сделал какую-то ошибку. Но ошибка эта безобидная, существовавшая только на бумаге. В физике подобные ляпы почти неизбежно приводили к безопасной, хоть и раздражающей математической белиберде. Химия – другое дело. Мои ошибки в химии венчались большими объемами дыма и огня, а также кислотным ожогам кожи, и оставляли рубцы, не сходившие десятилетиями.

Мой отец описывал разницу между физикой и химией по опыту своего общения со знакомцами, которые были ближе всего к практике этих дисциплин. «Физик» – точнее, математик – в концентрационном лагере, который объяснил отцу, как решить ту самую задачку, в обмен на хлеб. Человек, которого отец именовал «химиком», – из еврейского подполья[229], которого он встретил перед отправкой в Бухенвальд[230].

Мой отец состоял в группе, планировавшей подрыв железной дороги, шедшей через их город, Ченстохову. Химик, рассказывал отец, мог пустить под откос поезд, применив взрывчатку, хитро установленную на рельсы, но ему для этого нужно было выбраться из гетто и добыть кое-какие исходные материалы, которые, как он утверждал, можно приобрести взятками и воровством. На это потребовалось несколько ходок, но из последней он так и не вернулся, и больше о нем ничего не слыхали.

Физик, по словам отца, был изящный тихий человек, нашедший прибежище от ужасов лагеря, как умел: скрывшись в мире своего же ума. Химик же был ковбоем и мечтателем с горящими глазами, он бросался в гущу событий и сломя голову – в бой с хаосом. В этом и состояла, по мнению отца, разница между химией и физикой.

Что правда, то правда: в отличие от первых физиков, первым химикам требовалось немало чистой физической смелости, ибо случайные взрывы были неизбежным риском их работы, равно как и отравления: химики, чтобы определять вещества, частенько пробовали их на вкус. Быть может, самый знаменитый из давних экспериментаторов – Карл Шееле. Шееле выжил, хоть и был первым химиком, выделившим страшно едкий и ядовитый газ хлор, и каким-то чудом сумел подробно описать вкус цианистого водорода, чрезвычайно ядовитого газа, и при этом не умер. Но в 1786 году сорокатрехлетнего Шееле все же добила болезнь, подозрительно похожая на тяжелое отравление ртутью[231].

Если же говорить о личном, разница между химиком и физиком для меня самого походила на разницу между отцом и мной. После исчезновения химика отец и четверо других заговорщиков продолжили осуществлять план расшатать рельсы с применением только подручных инструментов – «всяких отверток»[232], как он объяснил, – а не взрывчатки. Все пошло наперекосяк: один из подпольщиков запаниковал и привлек внимание оказавшихся неподалеку эсэсовцев. В итоге уцелеть удалось лишь моему отцу и еще одному диверсанту – они легли на рельсы и остались незамеченными: над ними прогромыхал длинный товарный состав. Я же, напротив, редко берусь за какое-нибудь значимое во внешнем мире дело, а только рассчитываю последствия событий при помощи уравнений и бумаги.

Пропасть между физикой и химией также отражают происхождение и культуры обеих дисциплин. Физика началась с умозрительного теоретизирования Фалеса, Пифагора и Аристотеля, а химия родилась в кладовках торговцев и темных подвалах алхимиков. Хотя практики в обеих областях были движимы горним желанием познавать, химия еще и коренится в дольнем – иногда в стремлении облегчить жизнь человеческую, иногда в жажде наживы. Есть в химии благородство – благородство стремления постигать и приручать материю, но всегда есть и потенциал больших барышей.

* * *

Три закона движения, открытые Ньютоном, были в некотором смысле просты, хоть и прячутся от обычного взгляда во мгле трения, сопротивления воздуха и незримости силы тяготения. Химия, однако, не управляется набором постановлений, подобных Ньютоновой тройке универсальных законов движения. В химии все гораздо запутаннее: наш мир богат на ошарашивающее разнообразие веществ, и химии пришлось постепенно с ними всеми разбираться.

Первое открытие в химии было таким: некоторые вещества – «элементы» – базовые, а другие состоят из различных комбинаций элементов. Интуитивно это осознали еще греки. По Аристотелю, например, элемент есть «одно из тех тел, до которого можно разложить другие тела, а сам он разложен быть на составляющие не может»[233]. Называл он четыре элемента: земля, воздух, вода и огонь.

Очевидно, многие вещества состоят из других веществ. Соль плюс пресная вода равно соленая вода; железо плюс вода равно ржавчина; водка плюс вермут равно мартини. И наоборот: можно разложить многие вещества на составляющие путем нагревания. К примеру, если нагреть известняк, он разложится на негашеную известь и газ – диоксид углерода[234]. Сахар разлагается на углерод и воду. Подобные простенькие наблюдения, впрочем, ведут недалеко, поскольку не существует единого описания того, что именно происходит. Допустим, если нагревать воду, она превращается в газ, но этот газ химически не отличается от жидкости, это просто другое ее физическое состояние. Ртуть при нагревании тоже не распадается на составляющие – напротив, соединяется с незримым кислородом воздуха и образуется вещество, именуемое ртутной окалиной.

А есть еще горение. Представьте горящую древесину. При сжигании дерева получаются огонь и зола, но было бы ошибкой предполагать, что дерево состоит из огня и золы. Более того, в пику Аристотелеву описанию, огонь – вообще не вещество, а, скорее, свет и тепло, выделяющиеся, когда вещества претерпевают химические превращения. На самом же деле при горении дерева выделяются невидимые газы[235] – в основном, диоксид углерода и водяной пар, но вообще там более сотни разных газов, и у древних не было никаких приборов, которые позволили бы им эти газы собрать и уж тем более разделить или идентифицировать.

Такого рода трудности делали непосильным понимание, что именно сделано из двух или более веществ, а что – вещество простое. В результате этой путаницы многие ученые, подобно Аристотелю, ошибочно считали воду, огонь и другие фундаментальными элементами, но при этом не смогли опознать семь металлических простых веществ – ртуть, медь, железо, свинец, олово, золото и серебро, хотя те были ученым знакомы.

Так же, как рождение физики зависело от математических нововведений, рождение настоящей химии дожидалось определенных технических изобретений – оборудования для точного взвешивания веществ, для измерения тепла, поглощаемого или выделяемого в ходе реакций, для определения, кислота вещество или щелочь, для уловления, отделения и манипулирования газами, а также для определения температуры и давления. Лишь с разработкой этих приспособлений в XVII–XVIII веках химики смогли начать разбираться в запутанных прядях своего знания и развивать плодотворные методы представления химических реакций. Следует отдать должное человеческому упорству: даже и до всех этих технических усовершенствований люди, практиковавшие ремесла, зародившиеся в древних городах, собрали громадный массив знаний во множестве различных направлений этой области постижения – в окрашивании, парфюмерии, стекольном деле, металлургии и бальзамировании.

* * *

Бальзамирование возникло первым. В пространстве этого знания родословную химической науки можно отследить вплоть до Чатал-Гуюка, поскольку жители его хоть покойников и не бальзамировали, культуру отношения к смерти все же развили и за своими покойниками ухаживать начали. Во времена древнего Египта возросшее беспокойство о судьбе усопших привело к изобретению мумификации. Считалось, что успешная мумификация – залог счастливой загробной жизни; еще бы – ни единого недовольного клиента с жалобами. Следовательно, возник спрос на бальзамирующие вещества. Родилась новая индустрия, стремившаяся, перефразируя девиз компании «Дюпон», к лучшим вещам для лучшей загробной жизни – благодаря химии.

Миру всегда хватало мечтателей, и среди них были счастливые личности, воплотившие свою мечту, – или, по крайней мере, жившие стремлением к ней. Эти вторые необязательно признаны за талант или ученость, но неизбежно выделяются трудолюбием. Должно быть, египетские предприниматели и новаторы стремились разбогатеть, совершенствуя процесс бальзамирования, ибо вкладывали в эти попытки много времени и стараний. Со временем, путем многочисленных проб и ошибок, египетские бальзамировщики постепенно научились применять действенные сочетания солей натрия, смолы, мирру и другие консерванты, с помощью которых можно было успешно предотвращать разложение трупов, и все эти открытия были сделаны без всякого знания происходящих химических процессов и причин распада человеческого тела.

Поскольку бальзамирование было ремеслом, а не наукой, с его открытиями обращались не как с теориями древних эйнштейнов, а, скорее, как с рецептами «Бейглы Братьев Айнстайн»[236]: их тщательно стерегли. А поскольку бальзамирование связано с покойниками и загробным миром, практиковавшие это искусство считались колдунами и чародеями. Со временем развились и другие скрытные профессии, копившие знания о минералах, маслах, вытяжках из цветов, растительных плодов и кореньев, о стекле и металлах. Здесь, в прото-химии, практикуемой людьми торговыми, – истоки таинственной и мистической культуры алхимии.

Умельцы в этих областях вместе собрали обширный массив особого, но разрозненного опыта. Этот пестрый набор ноу-хау наконец начал объединяться, когда Александр Великий основал в 331 году до н. э. в устье Нила египетскую столицу Александрию.

Александрия была роскошным городом, с изящными зданиями и улицами в сотню футов шириной. Через несколько десятилетий после основания греческий царь Египта Птолемей II возвел культурную жемчужину города – Мусейон. Мусейон, в отличие от современных музеев, не выставлял экспонаты, а предоставлял убежище сотне ученых и книжников, получавших государственные стипендии, бесплатное жилье и питавшихся с кухни Мусейона. Этот храм науки был оборудован исполинской библиотекой на полмиллиона свитков, обсерваторией, анатомическими лабораториями, садами, зоопарком и другими исследовательскими удобствами. Здесь размещался достославный центр постижения, живой, действующий памятник человеческому стремлению знать. То был первый в мире исследовательский институт, сыгравший ту же роль, что и позднее – европейские университеты, хотя, как ни печально, ему суждено было погибнуть в огне, в III веке н. э.

Александрия вскоре стала культурной Меккой, а всего за пару столетий – величайшим и знаменитейшим городом на белом свете. Здесь разнообразные теории материи и перемен в ней пересеклись с египетским химическим знанием. Эта встреча идей все изменила.

До вторжения греков египетское знание о свойствах веществ веками было исключительно практическим. Однако греческая физика предложила египетскому знанию теоретическую базу и контекст. В особенности Аристотелева теория материи объясняла, как вещества меняются и взаимодействуют. Теория Аристотеля, конечно, была заблуждением, однако вдохновила объединенный подход к науке о веществе.

Особенно влиятельной оказалась одна сторона Аристотелевой теории – его представление о преобразовании веществ. Возьмем процесс кипения. Аристотель считал, что у элемента воды есть два ключевых свойства: она влажная и холодная. Элемент воздух же он охарактеризовал как влажный и горячий. Кипение, на его взгляд, – это процесс, в котором элемент огонь преобразует холод в тепло и таким образом превращает воду в воздух. Египтяне, унюхав возможность заработать на этом представлении, превзошли самих себя и предположили: если воду можно превратить в воздух, можно ли какой-нибудь не очень ценный материал превратить в золото? Примерно как моя дочь Оливия, которая в ответ на сообщение, что можно получить доллар от зубной феи, если оставить зуб под подушкой, тут же уточнила: «А сколько мне причтется за обрезки ногтей?»

Египтяне заметили, что золото, подобно Аристотелевым главным элементам, имеет некоторые ключевые свойства: это металл, мягкий, желтый. Золото само по себе всеми этими качествами располагает, однако они в разных сочетаниях встречаются у многих веществ. Можно ли найти способ, как передавать между веществами их свойства? В особенности, если кипение – процесс, в котором применение огня позволяет изменить физические свойства воды и превратить ее в воздух, вероятно, существует похожий процесс, посредством которого можно трансмутировать сочетание металлических, мягких и желтых веществ в золото.

В результате таких рассуждений к 200 году до н. э. из первых намеков[237] на подлинное химическое знание, смешанных с представлениями из греческой философии и старой прото-химией бальзамирования, металлургии и других практических умений, родился объединенный подход к исследованию химических изменений. Так родилась алхимия, ее главной целью стало производство золота, а позднее – «эликсира жизни», дарующего вечную молодость.

Историки спорят, когда именно прорезалась наука химия, но химия – не люцерна, и потому дата ее прорезывания – скорее вопрос личного мнения, нежели точный факт. Одно, впрочем, бесспорно: алхимия служила полезному делу – и химия, когда бы ни достигла своего современного вида, есть наука, выросшая из искусств и мистицизма этого древнего предмета.

* * *

Первый рывок от алхимической волшбы к научным методам произошел благодаря одному из довольно странных персонажей в истории человеческой мысли. Родившегося в деревушке на территории современной Швейцарии двадцатиоднолетнего Теофраста Бомбаста фон Гогенгейма [Хоэнхайма] (1493–1541) отец отправил изучать металлургию и алхимию, но тот решил учиться медицине и занялся этой профессией. Тогда же, еще до тридцати, он взял себе имя Парацельс, что означает «превзошедший Цельса», римского врача I века н. э. Поскольку труды Цельса были в XVI веке очень популярны, Парацельс, сменив прозвище, сумел из человека по имени Бомбаст сделаться тем, кто это качество воплощает[238]. Но дело не только в напыщенности: Парацельс шумно презирал бытовавший в те времена подход к медицине. Ученый продемонстрировал свое презрение довольно картинно: на традиционных студенческих посиделках летом у костра Парацельс швырнул в огонь, вместе с несколькими горстями серы, медицинские труды почтенного греческого врача Галена.

Неприязнь Парацельса к Галену была того же рода, что и у Галилея и Ньютона – к Аристотелю: его труды обесценились наблюдениями и опытом позднейших практиков. Парацельс, в частности, считал, что традиционное представление о болезни как о неравновесии загадочных телесных жидкостей под названием «гуморы» не выдерживает проверки временем. Сам он был убежден, что болезни возникают из-за внешних агентов, а с ними нужно разбираться, пользуя больного подобающими лекарствами.

Парацельс, изображенный на копии XVII века с утраченного оригинала фламандского художника Квинтена Матсейса (1466–1529)

Именно поиск этих самых «подобающих лекарств» и привел Парацельса к попытке трансформировать алхимию. Попытка принесла щедрые плоды, среди них – открытие новых веществ, в том числе солей металлов и минеральных кислот, но Парацельс желал оставить поиск золота и сосредоточиться на цели поважнее – создать вещества, какие есть в лаборатории человеческого тела и могут лечить те или иные заболевания. Что не менее важно, Парацельс стремился реформировать алхимические методы, в те времена – неточные и небрежные. Парацельс сам был не только книгочеем, но и знатоком торговли, и потому придумал для обновленной алхимии свежее название. Заместив арабский префикс «ал» (определенный артикль) на греческое слово, означающее «медицина» – иатро, он составил слово «иатрохимия»[239]. Не слишком удобное для произношения, вероятно, поэтому оно вскоре усохло до краткого «химия».

Соображения Парацельса позднее повлияют и на великого Исаака Ньютона, и на его соперника Лейбница, и оба они помогут двинуть алхимию к новому ее образу – науке химии. Но хотя Парацельс и был пылким борцом за собственный новый подход к науке, действенность его личных уговоров оказалась подпорчена качествами его характера. Он бывал изрядно неприятен – под словом «неприятен» я подразумеваю «вел себя, как буйнопомешанный».

Парацельс не носил бороды, был довольно женоподобен и не интересовался сексом, однако если бы в Олимпийских играх давали золотые медали в кутеже, Парацельс выиграл бы платину. Большую часть времени он пил, и один его современник отмечал, что жил Парацельс «как свинья». Продвижением себя самого он тоже занимался не слишком деликатно и склонен был бросаться заявлениями типа: «Все университеты и все старые писаки, вместе взятые, таланта имеют меньше, чем моя задница»[240]. А еще ему нравилось бесить влиятельные круги, временами – просто так. К примеру, когда его назначили лектором в Университете Базеля, он явился на первую лекцию в кожаном лабораторном фартуке, а не в положенной академической мантии, говорил на швейцарском немецком, а не на приличествующей латыни, а после объявления, что сейчас он продемонстрирует величайшую тайну медицины, показал всем судок с фекалиями.

Подобные выходки привели к тому же результату, какой случился бы и ныне: он оттолкнул своих врачебных и ученых коллег, однако стал популярен среди студентов. И все же, когда Парацельс говорил, люди слушали, поскольку многие его лекарства и впрямь помогали. Например, обнаружив, что опиаты гораздо лучше растворимы в спирте, чем в воде, он создал опийный раствор, который назвал «лауданумом», оказавшийся очень действенным против боли.

Однако лучшим двигателем идей Парацельса оказалась, похоже, экономика. Возможности новых химических снадобий от болезней увеличивали доход, общественное положение и популярность аптек, что создало спрос на знания в этой области. Расплодились учебники и медицинские занятия, и они, в полном согласии с желанием Парацельса, стали и точнее, и унифицированнее – благодаря переходу понятийного и методического аппарата алхимии на язык химии. К началу 1600-х годов, хоть многие по-прежнему и практиковали старую алхимию, новый Парацельсов стиль алхимии – химия – тоже набирал популярности.

Страницы: «« 123456 »»

Читать бесплатно другие книги:

«Сказки и Рождественские истории в лицах» – это сборник произведений для детей 5-12 лет, их родителе...
В книге рассказывается история, основанная на реальных событиях, об агентстве знакомств, которое осу...
В сборнике представлены стихотворения из разных циклов. Это вторая книга автора. В стихотворениях ра...
Все, что она хотела — это найти равновесие в своей жизни. Точку опоры, которая поможет ей принять вс...
Проклятый остров считается самым опасным местом в океане, поэтому морской бог допускает туда лишь из...
В книге рассказывается об интересных особенностях монументального декора на фасадах жилых и обществе...