Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства Млодинов Леонард

Дарвин предполагал, что, если его теория верна, он обнаружит большее видовое многообразие в местах с сильным соперничеством за ограниченные ресурсы и искал свидетельства, подтверждающие или опровергающие это предположение. Такой способ мышления был характерен для дарвиновского новаторского подхода к эволюции: другие натуралисты искали подтверждения эволюции во временном развитии фамильных древ, соединяющих окаменелые останки жизни и жизнь нынешнюю, а Дарвин – в распределении видов и взаимоотношениях между ними в настоящем времени.

Чтобы разобраться с природными данными, Дарвину потребовалось общаться с другими естествоиспытателями. Даже пребывая в физическом уединении, он призвал на помощь многих и, подобно Ньютону, зависел от почтовой службы – в особенности от новой и дешевой программы «почта за пенни», помогшей ему выстроить беспрецедентную сеть натуралистов, селекционеров и других корреспондентов, поставлявших ему данные о мутациях и наследственности. Такие вот обмены на расстоянии позволили Дарвину сверить свои соображения с практическим опытом, не подвергая насмешкам подлинную цель его работы. Переписка также позволила ему постепенно вычленить тех своих коллег, кто мог бы отнестись к его взглядам с пониманием – и позднее поделиться с этой избранной группой оригинальными воззрениями.

В 1856 году Дарвин в подробностях доверил свою теорию узкому кругу друзей. В этот круг вошли Чарлз Лайель [Лайэлл], выдающийся геолог того времени, и биолог Томас Г. Гексли [Х. Хаксли], ведущий сравнительный анатом мирового значения. Эти доверенные люди, в особенности Лайель, поддержали замысел об издании – пока кто-нибудь его не опередил. Дарвину к тому времени исполнилось сорок семь, над своей теорией он трудился восемнадцать лет.

В мае 1856 года Дарвин взялся за техническое изложение, адресованное коллегам. Он решил назвать его «Естественный отбор». К марту 1858-го книга была готова на две трети и насчитывала 250 000 слов. В июне того же года Дарвин получил по почте рукопись и сопроводительное письмо от одного знакомого, трудившегося на Дальнем Востоке, – Алфреда Рассела Уоллеса.

Уоллес знал, что Дарвин работает над теорией эволюции, и надеялся, что тот согласится передать Лайелю рукопись работы, в которой описывались соображения по теории естественного отбора, к которым Уоллес пришел независимо от Дарвина. Как и теория Дарвина, Уоллесовы предположения родились из взглядов Мальтуса о перенаселении.

Дарвин запаниковал. Худшее, о чем предостерегали его друзья, того и гляди воплотится: другой натуралист воспроизвел важнейший аспект его работы.

Ньютон, услышав заявления о чьей-то проделанной работе, похожей на его, делался противным, но Дарвин был другим человеком. Он в сложившейся ситуации маялся и, получалось, оказался в безвыходном положении. Можно было похоронить свою работу, можно было ринуться ее печатать, но оба варианта представлялись безнравственными. Или же помочь Уоллесу напечататься и отказаться от притязаний на работу всей своей жизни.

18 июня 1858 года Дарвин отправил Лайелю рукопись и сопроводил ее письмом:

[Уоллес] нынче прислал мне приложенное и попросил передать вам. На мой взгляд, это достойно прочтения. Ваши предупреждения воплотились с лихвой – что меня опередят… Никогда не видывал я такого поразительного совпадения; даже будь у Уоллеса набросок моей рукописи 1842 года, он не смог бы сделать конспекта лучше! Даже его понятия вполне годятся в заголовки моим главам. Пожалуйста, верните мне [рукопись], хоть он и не говорит, что желает издания, но я, конечно, должен немедля написать ему и предложить разослать по любым журналам. Что ж, вся моя самобытность, какой ни была бы, окажется сокрушена, хотя книга моя, если есть в ней какая-то ценность, от этого не пострадает, поскольку весь труд посвящен применению теории. Надеюсь, вам понравится набросок Уоллеса, и я смогу передать ему ваши слова[316].

* * *

Как оказалось, вопрос о том, кому припишут заслуги создания теории, упирался в замечание Дарвина о ценности его книги, заключенной в прикладных подробностях. Уоллес не только не произвел исчерпывающего исследования свидетельств в пользу естественного отбора, в отличие от Дарвина, – он не смог и повторить Дарвинов доскональный анализ, как вариации могут достигать такого масштаба, чтобы порождать новые виды, а не просто «разновидности», которые мы ныне именуем подвидами.

Лайель ответил компромиссом: он и еще один близкий друг Дарвина, ботаник Джозеф Дальтон Гукер [Долтон Хукер], зачитают и работу Уоллеса, и тезисы воззрений Дарвина на заседании почтенного Линнеевского общества в Лондоне, и оба текста будут одновременно изданы в «Трудах» Общества. Дарвин маялся со своей работой, и по времени все складывалось неудачнее некуда. Сам он страдал все теми же своими хворями, недавно скончался его старый друг биолог Роберт Броун [Браун], а к тому же его десятый, младший сын Чарлз Уоринг Дарвин, всего одиннадцати месяцев отроду, тяжко болел скарлатиной.

Дарвин предоставил Лайелю и Гукеру действовать на их усмотрение, и 1 июля 1858 года секретарь Линнеевского Лондонского общества зачитал работы Дарвина и Уоллеса перед тридцатью одним ученым коллегой. Чтения не вызвали ни освистания, ни аплодисментов, а лишь каменное молчание. Далее последовали чтения еще шести других ученых работ, и, если кто-нибудь в аудитории еще бодрствовал при чтении первых пяти, он, вероятно, дотерпел и до последнего – пространного труда, посвященного растительности Анголы.

Ни Уоллеса, ни Дарвина на заседании не было. Уоллес все еще находился на Дальнем Востоке и о происходящем в Лондоне не знал. Когда его впоследствии уведомили, он великодушно согласился, что решение было справедливым, и в будущем всегда относился к Дарвину с уважением и даже сердечностью. Дарвин в то время хворал и потому до заседания не добрался бы в любом случае, но вышло так, что они с женой Эммой, пока шло заседание, хоронили на приходском кладбище своего второго почившего ребенка, Чарлза Уоринга.

Представлением Линнеевскому обществу, через двадцать лет тяжкого труда сбора и подкрепления теории, Дарвин наконец явил ее публике. Немедленный отклик получился, мягко говоря, более чем невыразительный. Никто из присутствовавших не уловил значимости услышанного – лучше всего это подтверждает комментарий президента Общества Томаса Белла, пожаловавшегося[317] на выходе из зала заседаний, как он это сформулирует позднее, что тот год «не был отмечен ни одним из тех поразительных открытий, какие сразу перевернут, так сказать, [нашу] область науки».

После представления в Линнеевском обществе Дарвин взялся за дело споро. Менее чем за год он переработал «Естественный отбор» в свой шедевр – «Происхождение видов». Книга вышла короче и ориентировалась на широкую публику. Он завершил рукопись в апреле 1859 года. К тому времени он совершенно умаялся и был, по его словам, «слаб, как дитя»[318].

Ни на миг не забывая о необходимости питать общественное мнение так, чтобы оно склонилось в его пользу, Дарвин договорился со своим издателем Мюрреем раздарить великое множество экземпляров книги, и лично отправил многим респондентам самоуничижительные письма. Однако в самой книге Дарвин постарался допустить как можно меньше теологических противоречий. Он рассуждал, что правящий миром закон природы выше сомнительных чудес, однако все еще веровал в далекое божество и в «Происхождении видов» сделал все, чтобы создать впечатление, будто его теория – не шаг к атеизму. Напротив, он надеялся показать, что природа находится на службе у некого отсроченного блага живых существ – что она ведет биологические виды к прогрессу, к умственному и физическому «совершенству» в соответствии с замыслом благого творца.

«Есть величие в таком мировоззрении… – писал он, – изначально жизнь вдохнули в немногие формы – или же в одну. а покуда, в соответствии с незыблемым законом тяготения, вращалась эта планета, от столь простого начала развились и продолжают развиваться безмерные множества форм – прекраснейших, чудеснейших»[319].

Дарвин в 1830-х, 1850-х и 1870-х годах

* * *

Совсем не молчанием встретила публика «Происхождение видов». Старый наставник Дарвина по Кембриджу профессор Седжвик писал, к примеру: «Я прочитал вашу работу с болью, нежели с удовольствием… некоторые части читал я совершенно в печали, поскольку считаю их глубоко ложными и сокрушительно лукавыми»[320].

И все же «Происхождение видов» – сильная и подкрепленная доказательствами теория да во времена помягче, и потому такого негодования, как «Пережитки», она не вызвала. За десять лет после публикации споры между учеными в основном затихли, а к смерти Дарвина, еще десятью годами позже, эволюционная теория сделалась практически повсеместно принятой и главенствующей темой викторианской мысли.

Дарвин уже был почтенным ученым, однако с изданием этой книги стал, подобно Ньютону после «Принципов», фигурой публичной. Его осыпали международным признанием и наградами. Он получил престижную Медаль Копли от Королевского общества; ему предложили звание почетного доктора и Оксфорд, и Кембридж; король Пруссии наградил его Орденом за Заслуги; его выбрали членом-корреспондентом и Императорской академии наук в Санкт-Петербурге, и Французской академии наук; он стал почетным членом Московского Императорского общества натуралистов, а также Южноамериканского миссионерского общества Церкви Англии.

Подобно Ньютонову, влияние Дарвина распространилось гораздо шире его научных теорий, и научная мысль сменила направление даже в областях, совершенно не связанных с живой природой. Как писало одно сообщество историков, «дарвинизм во всем сделался синонимом натурализма, материализма, или же эволюционной философии. Он поддерживает состязательность и сотрудничество, освобождение и соподчинение, прогресс и пессимизм, войну и мир. Его политика может быть либеральной, социалистской или же консервативной, а религия – атеизм или же ортодоксия»[321].

С точки зрения науки, впрочем, работа Дарвина, как и Ньютона, лишь началась. Его теория предлагала фундаментальный принцип, по которому меняются со временем признаки видов, отзываясь на воздействие окружающей среды, но ученые-современники по-прежнему блуждали впотьмах – не понимали механики наследственности.

Волею судеб, как раз когда работа Дарвина была представлена Линнеевскому обществу, у Грегора Менделя (1822–1884)[322], ученого и послушника монастыря в Брно (ныне территория Чешской Республики), полным ходом шла восьмилетняя программа экспериментов, с помощью которых можно было бы предположить механизм наследования – по крайней мере, умозрительно. Мендель допустил, что простые особенности определяются двумя генами – по одному от каждого родителя. Но труды Менделя добирались к известности медленно, и Дарвин о них так никогда и не узнал.

В любом случае, понимание материального воплощения механизмов Менделя потребовало достижений физики XX века, особенно квантовой теории и ее плодов – например, рентгеновского дифрактометра, электронного микроскопа и транзисторов, на основе которых получилось создать цифровой компьютер. Эти технологии постепенно явили нам устройство молекулы ДНК и генома и позволили изучать генетику на молекулярном уровне, и с тех пор ученые наконец начали осознавать, что вообще к чему в наследственности и эволюции.

Но и это, тем не менее, лишь начало. Биология стремится понять жизнь во всех ее слоях, до самого основания структур и биохимических реакций внутри клетки, то есть свойства жизни, кои суть прямейший результат генетической информации, которая в нас заложена. Великая цель, не больше, не меньше, – воссоздание жизни, но она, несомненно, как и единая теория всего для физиков, – в далеком будущем. Но как бы хорошо мы ни понимали механизмы жизни, главный организующий принцип биологии – теория эволюции – возможно, навсегда останется озарением XIX века.

Сам Дарвин не был идеально приспособленной особью, но все же дожил до преклонных лет. В поздние годы его хронические болезни слегка отпустили его, хотя развилась непреходящая усталость. Тем не менее, он трудился до самого конца и издал свою последнюю работу «Образование растительного слоя земли деятельностью дождевых червей»[323] в 1881 году. В тот же год Дарвина после физических нагрузок начали мучить боли в груди, а ближе к Рождеству у него случился сердечный приступ. Следующей весной, 18 апреля, произошел второй приступ, и Дарвина едва вернули в чувства. Он пробормотал, что умирать не боится, и через несколько часов, около четырех утра следующего дня, скончался. Ему было семьдесят три. В одном из своих последних писем, адресованных Уоллесу, он сообщил: «У меня для счастья и удовлетворения есть все, но жизнь сделалась очень утомительной»[324].

Часть III

За пределами человеческих чувств

Сейчас настало изумительное время: все, что мы почитали знанием, лопнуло, точно мыльный пузырь.

Том Стоппард, «Аркадия», 1993[325]

Глава 10

Пределы человеческого опыта

Два миллиона лет назад мы, люди, совершили первый новаторский прорыв – поняли, как превращать камень в режущий инструмент. То был наш первый опыт приспособления природы под свои нужды, и практически нет второго открытия за всю историю, равного по величию озарения или приведшего бы к более масштабным переменам в нашей жизни. Но сто лет назад все же было сделано открытие, равное по мощи и значимости. Как и применение камня, оно касалось кое-чего столь же вездесущего, такого, что было у нас прямо перед глазами, хоть и незримо для них, от начала времен. Я говорю об атоме – и о диковинных квантовых законах, которые им правят.

Теория атома, очевидно, – ключ к пониманию химии, но прозрения, сопровождавшие изучение атомного мира, перевернули и физику с биологией. Ученые, постигнув устройство атома и взявшись разбираться в его законах, обрели видение, преобразившее общество, и пролили свет на предметы в диапазоне от фундаментальных сил и частиц природы до структуры ДНК и биохимии жизни, попутно породив новые технологические приемы, придавшие форму современной жизни.

Принято говорить о технологической революции, компьютерной революции, информационной революции и ядерном веке, однако в конечном счете все сводится к одному: превращению атома в инструмент. Ныне наша способность манипулировать атомами такова, что нам доступно что угодно – от телевидения до оптоволоконных кабелей, проводящих сигнал к телеэкрану, от телефонов до компьютеров, от интернет-технологий до приборов МРТ. Мы применяем наше знание атома даже в освещении: наши флуоресцентные лампы, к примеру, испускают свет, потому что электроны в атомах переходят в возбужденное состояние под действием электрического тока, а затем совершают «квантовый скачок» к более низким энергетическим состояниям. В наши дни даже самые будничные приспособления – духовки, часы, термостаты – содержат комплектующие, которые удалось создать лишь благодаря пониманию квантовой природы атома.

Великая революция, приведшая нас к пониманию устройства атома и квантовых законов атомного мира, произошла в начале ХХ века. За годы до этого было замечено: то, что мы сегодня именуем «классической физикой» (физикой, основанной на Ньютоновых законах движения, а не на квантовых), не может объяснить явление, именуемое «излучением абсолютно черного тела», которое, как нам теперь известно, можно растолковать, только зная квантовые свойства атома. Эта отдельная немощь теории Ньютона в глаза бросилась не сразу. Наоборот – считалось, что физики просто не понимают, как именно применить Ньютонову физику к этой задаче, а когда поймут, излучение абсолютно черного тела станет ясно в пределах классической теории. Но физики постепенно открыли и другие атомные явления, которые тоже не получалось объяснить с позиций Ньютоновой физики, и в конце концов стало ясно, что от большей части Ньютоновых взглядов придется отказаться – так же, как перед этим вышло с Аристотелем.

Квантовая революция – это двадцать лет борьбы. То, что этот переворот осуществился всего за пару десятилетий, а не за века и эпохи, – заслуга несопоставимо большего числа ученых, трудившихся над решением этой задачи, а не показатель того, что это новое мировоззрение было так просто принять. Вообще-то новая философия, лежащая в основании квантовой теории, – кое-где до сих пор тема оживленных дискуссий. Ибо картина мира, возникшая за те двадцать лет, – ересь для всех, кто, подобно Эйнштейну, презирает роль случайности в исходе событий или верит в обычные законы причины и следствия.

* * *

Заковыристой темой причинности в квантовой вселенной не занимались вплоть до самого конца квантовой революции, и до этого мы еще доберемся. Но был и другой вопрос – из тех, что одновременно и философские, и практические, – он издавна сбивал с толку: атомы слишком малы[326], их не разглядеть и даже не измерить по одиночке – ученые до второй половины ХХ века даже «фотокарточку» молекулы-то не видали. И потому в веке XIX-м любая экспериментальная работа, связанная с атомами, сводилась лишь к описанию явлений, обусловленных поведением колоссального количества этих малюсеньких невидимых предметов. Имеет ли смысл вообще считать незримые предметы существующими в действительности?

Вопреки работе Дальтона, посвященной атому, мало кто из ученых так думал. Даже химики, применявшие понятие атома из-за того, что с ним делались понятнее явления, которые можно было наблюдать и измерять, склонны были рассматривать его просто как рабочую гипотезу: химические реакции протекают так, будто при этом происходит перетасовывание атомов, входящих в состав веществ. Другие считали атомы понятием скорее философским, нежели научным, и стремились отказаться от него вообще. Немецкий химик Вильгельм Фридрих Оствальд говорил: атомы – «гипотетические фигуры, не ведущие ни к каким доказуемым заключениям»[327].

Нерешительность эта объяснима: пути науки и философии за века разошлись в точности на том, должны ли представления о природе быть поддержаны экспериментом и наблюдением. Настаивая на проверяемости как критерии принятия какой бы то ни было гипотезы, ученые смогли отрясти старые убеждения либо как не проверяемые, либо, как случилось со многими теориями Аристотеля, неверными. Их место заняли математические законы, позволявшие получать точные количественные прогнозы исходов наблюдаемых процессов.

Существование атомов впрямую доказать было нельзя, однако гипотеза об их существовании приводила-таки к проверяемым на практике законам, и законы эти, как подтвердилось, верны – к примеру, представление об атоме можно применять при выводе математической взаимосвязи между температурой и давлением в газах. Что же об этом атоме думать вообще? Вот каков был мета-вопрос эпохи. Ответ оставался неясным, а потому большую часть XIX века атом существовал себе призрачным духом за плечами у физиков, неуловимостью, шептавшей им в уши тайны природы.

Вопрос об атоме получил в конце концов ответ настолько мощный, что ныне вопроса-то никакого и нет: мы знаем, что, если науке потребен прогресс, ей придется переместить фокус внимания за пределы прямого чувственного опыта. В начале XXI века наше принятие незримого мира зашло настолько далеко, что от открытия знаменитой «частицы Хиггса» [Хиггза] никто и не поморщился, хотя никто не только в глаза никакой частицы Хиггса не видывал, но и не наблюдал осязаемых результатов взаимодействия частиц Хиггса с каким-нибудь прибором, который мог бы сделать их зримыми косвенно, как флуоресцентный экран делает «зримыми» электроны, когда светится от их ударов.

Подтверждение существования частиц Хиггса – сугубо математическое, оно выводится из определенных численных экспериментальных данных. Эти данные, характеризующие радиоактивное излучение, были сняты с обломков более трехсот триллионов столкновений протонов друг с другом, а затем проанализированы статистически намного позднее самих событий с применением двух сотен вычислительных центров в трех десятках стран. Именно это имеет в виду физик, когда говорит: «Мы видели частицу Хиггса».

Физические лаборатории, где изучают элементарные частицы, в 1926 году и в наши дни (расположение кольца ускорителя протяженностью в семнадцать миль, заглубленного на несколько сот футов под землю, показано белой окружностью)

Подобное «наблюдение» Хиггсовых и других субатомных частиц сделало прежде незримый атом больше похожим на целую непустую вселенную, и в каждой капле воды – миллиарды миллиардов таких вселенных, крошечных миров не просто для нас незримых, а отделенных на несколько порядков от непосредственного наблюдения. Бросьте пытаться объяснить теорию бозона Хиггса физику XIX века – замучаетесь растолковывать, что вы имеете в виду, говоря, что «видели» бозон.

Новый способ наблюдения, не связанный с человеческим чувственным опытом, предъявил ученым новые требования. Наука Ньютона основывалась на том, что по силам воспринять органами чувств, ну, может, при помощи микроскопа или телескопа, но все же к прибору приставляли человеческое око. Наука ХХ века осталась приверженной наблюдению, но приняла куда более широкое определение «зрения» – оно теперь включило в себя и косвенные статистические данные вроде тех, из каких сделали вывод о существовании частиц Хиггса. Из-за этого нового отношения к значению слова «видеть» физикам ХХ века пришлось развить умозрительные представления, соответствующие теориям, которые опираются на авангардные понятия вроде кванта, – понятия куда более далекие от границ человеческого опыта и укорененные в абстрактной математике.

Новый подход к занятиям физикой проявился в разделении труда между физиками. Усиливающаяся роль причудливой математики в физической теории, с одной стороны, и нарастание технической сложности экспериментов – с другой, расширили разрыв между формальными специальностями экспериментальной и теоретической физики. Примерно в то же время визуальные искусства развивались в похожем режиме: наметился раскол между традиционными художниками и пионерами кубизма и абстракционизма – Сезанном, Браком, Пикассо и Кандинским, которые, как и новые поборники квантовой теории, тоже «видели» мир принципиально иначе.

В музыке и литературе новый дух тоже ставил под сомнение косные нормы негибкой Европы XIX века. Стравинский и Шёнберг проверяли на прочность убеждения о традиционном западном звучании и ритме; Джойс и Вулф, а также их коллеги с континента, экспериментировали с новыми формами нарратива. В 1910 году философ, психолог и просветитель Джон Дьюи написал, что критическое мышление зачастую включает «готовность выдержать состояние умственной сумятицы и непокоя»[328]. Это верно не только в отношении критической мысли, но применимо и к любым творческим дерзаниям. В искусстве ли, в науке ли – никому из новаторов легко не было.

* * *

В изображенной мною картине науки начала ХХ века – множество преимуществ понимания задним числом. Физики, изучавшие атом в конце XIX века, не осознавали, что их ждет впереди. Более того – взгляд назад совершенно потрясает: вопреки бомбе с часовым механизмом – атому – у них на пороге, те физики воспринимали свой предмет изучения как более или менее устоявшийся и рекомендовали своим студентам сторониться физики, поскольку ничего увлекательного в ней не осталось.

Декан физфака в Гарварде, к примеру, был знаменит тем, что распугивал потенциальных студентов предупреждениями, что, дескать, все важное в физике уже открыли. За океаном глава физического факультета Университета Мюнхена в 1875 году предостерегал абитуриентов: в области родной ему дисциплины ловить нечего, поскольку «физика – русло познания, которое того и гляди переполнится»[329]. По своей предсказательной силе этот совет был под стать объявлению проектировщика «Титаника», что корабль «создан настолько совершенно, насколько это вообще под силу человеческому уму».

Один из тех, кто получил такой вот дурацкий совет на физфаке в Мюнхене – Макс Планк (1858–1947)[330]. Тощий, почти костлявый молодой человек, даже в свои юные годы в очках и с большими залысинами, Планк излучал не соответствующую своему возрасту серьезность. Родился он в немецком Киле, был потомком долгой череды пасторов, книжников и законников и идеально совпадал с шаблоном физика XIX века: трудолюбивый, прилежный и, по его же словам, «не склонный к сомнительным приключениям»[331]. Таких слов не очень-то ждешь от человека, чья работа в один прекрасный день опровергнет Ньютона, однако Планк не собирался затевать революцию. Какое там – он много лет не поддерживал движения, порожденного его же открытием.

Пусть и не склонный к приключениям, Планк все-таки начал карьеру с рискованного шага – пренебрег советом главы факультета и записался в физики. На изучение этой дисциплины его вдохновил школьный учитель, заражавший страстью «постигать гармонию, что властвует меж строгостью математики и разнообразием естественных законов»[332], а Планк верил в себя достаточно, чтобы своей страсти следовать. Много лет спустя он сказал одному своему студенту: «Мой девиз таков: обдумывай каждый шаг тщательно и, если уверен, что готов за него отвечать, – ничто не должно тебя останавливать»[333]. В этом утверждении нет лихости рекламной кампании «Найки» с их девизом «Делай и всё», нет и удалых заявлений, которые мы привыкли слышать от звезд спорта, но Планк, по-своему негромко и благопристойно, предъявил ту же внутреннюю силу.

Определившись в физики, Планк взялся выбирать тему своей докторской диссертации. И в этом он тоже предпринял смелый и важный шаг. Он выбрал термодинамику – физику тепла. В те поры это была довольно туманная область науки, но именно она вдохновила Планка еще в школе, и он вновь решился не отступать от своих интересов и не браться за просто модные темы.

Лишь горстка ученых того времени приняла представление об атоме и начала понимать механизм, лежащий в основе термодинамики, как статистический результат движения отдельных атомов. К примеру, если в замкнутом пространстве комнаты висит облачко дыа, термодинамика подсказывает нам, что погодя оно займет больший, а не меньший объем. Этим процессом определяется нечто, называемое физиками «стрелой времени»: будущее есть направление во времени, в котором дым занимает все больший объем, прошлое – направление, в котором дым сгущается. Такое положение дел удивительно: законы движения, примененные к каждому отдельному атому дыма (и воздуха) никак не указывают, в каком направлении во времени расположено будущее, а в каком – прошлое. Но явление это можно объяснить[334], применив статистический анализ движения совокупности атомов: «стрела времени» проступает лишь при наблюдении кумулятивного действия многих атомов.

Планку такие доводы не нравились. Он считал атом фантазией, а потому целью своей диссертации поставил получение конкретных проверяемых результатов, то есть следствий принципов термодинамики, не применяя понятие атома, по сути – вообще безо всяких допущений о внутренней структуре вещества. «Вопреки большому успеху теории атома, – писал он, – от нее рано или поздно придется отказаться в пользу допущения непрерывности материи»[335].

Кем-кем, а ясновидящим Планк не был. Не от теории атома рано или поздно пришлось отказаться, а от сопротивления ей. Более того, под конец его работу можно считать свидетельством в пользу, а не против существования атома.

Поскольку мою фамилию произносить непросто, столики в ресторанах я частенько бронирую на имя Макса Планка. Опознают его крайне редко, но однажды меня все-таки спросили, не родственник ли я «мужику, который изобрел квантовую теорию». Я ответил: «Я и есть он». Метрдотель, едва за двадцать, не поверил. Сказал, что я слишком молод. «Квантовую теорию изобрели где-то в 1960-х, – возразил он, – еще во время Второй мировой войны, в рамках Манхэттенского проекта».

Беседа наша не продолжилась, но я бы поболтал с ним не про его смутные представления о мировой истории, а о путанице в отношении того, что в физике означает «изобрести теорию». Слово «изобрести» означает создать нечто доселе не существовавшее. Открыть же, напротив, означает осознать нечто прежде не известное. Можно воспринимать теории и так, и эдак – как математические конструкции, которые ученые изобретают для описания мира, или же как выражение законов природы, существующих независимо от нас и открываемых учеными.

В некотором смысле это метафизический вопрос: до какой степени должны мы принимать картины, рисуемые нашими теориями, как буквальную действительность (которую мы открываем), или же считать их просто моделями (которые мы изобретаем) – моделями мира, который можно в той же мере смоделировать и иначе, если, скажем, за это берутся люди (или пришельцы), думающие не так, как мы? Но, если отставить философию, у различия между изобретением и открытием есть еще одна грань, процессная: открытия мы совершаем в результате исследования, часто – случайно, а изобретения – плод спланированного проектирования, и случай играет в изобретении меньшую роль, нежели пробы и ошибки.

Эйнштейн, разумеется, знал, чем собрался заниматься, выдвинув теорию относительности, – и сделал это, а потому теорию относительности можно считать изобретением. Но квантовая теория – другая история. На пути, ведшем к разработке квантовой теории, куда чаще случалось такое, в отношении чего правильнее было бы говорить «открыл» или даже «наткнулся», нежели «изобрел», и (многие) первооткрыватели, включая и самого Планка, зачастую натыкались на полную противоположность того, на что надеялись и рассчитывали: вообразим, что Эдисон взялся изобретать искусственный свет, а изобрел бы искусственную темноту. Более того, им – в том числе и Планку – было уготовано не целиком понимать значение собственных трудов и протестовать против толкований, предложенных другими.

В своей диссертации 1879 года по термодинамике Планк не преуспел ни в подтверждении, ни в опровержении существования атома. Хуже того – диссертация оказалась для него бесплодной и профессионально. Его преподаватели в Мюнхене ее не поняли, Густав Кирхгоф [Кирххоф], берлинский эксперт в этой области физики, счел ее заблуждением, а двое других отцов-основателей дисциплины, Герман фон Гельмгольц [Херманн фон Хельмхольц] и Рудольф Клаузиус, отказались ее читать. Планк, не получив ответы на свои два письма, поехал в Бонн лично и заявился к Клаузиусу домой, но профессор не пожелал его принять. К сожалению, термодинамикой, кроме этих двух физиков, по словам одного коллеги Планка, «никто совершенно не интересовался»[336].

Недостаток интереса Планка не беспокоил, но все же привел к нескольким унылым годам, которые он провел в доме у родителей и проработал в университете внештатным лектором, как в свое время Менделеев.

Когда бы я ни заговаривал об этом, на меня всегда смотрят с изумлением. Люди почему-то считают, что на подобную любовь к своему искусству способны лишь художники и лишь они могут пойти на любые жертвы, жить на убогих чердаках или того хуже – с родителями, лишь бы только продолжать работать; в физиках такой страсти не усматривают. В аспирантуре, впрочем, я знавал двоих учащихся, которые столкнулись с таким же поражением, что и Планк. Один, увы, попытался наложить на себя руки. Второй убедил физфак Гарварда выделить ему для работы стол в людной приемной, без всякой оплаты. (Через год они его наняли.) Третий студент, с которым я не был знаком, вылетел из вуза несколькими годами ранее и с тех пор рассылал дорогие его сердцу (и глубоко ошибочные) собственные теории разным сотрудникам факультета, на него не обращали внимания, и тогда он решил явиться лично и уболтать их – прихватив с собой нож. Его поймала охрана, и больше он не показывался. В мифологии физики нет сказов об одиноких недооцененных физиках, отрезавших себе ухо, но за мои три года в аспирантуре Беркли все же произошли эти три истории, и каждая напитана страстью к физике.

Планк, подобно моему безработному другу-аспиранту, оказавшемуся в итоге в Гарварде, за свой «волонтерский» период трудов ухитрился проделать вполне достойное исследование и наконец нашел оплачиваемую работу. На это ушло пять лет. И вот, исключительно благодаря упорству, удаче и, как говорят, вмешательству отца он смог получить профессорскую ставку в Университете Киля. Через четыре года после этого его труд произведет достаточно сильное впечатление, и его пригласят в Университет Берлина, где в 1892 году он получит звание полного профессора, а это сделает его членом небольшого круга элиты термодинамики. Но то было лишь начало.

* * *

В Берлине Планк посвятил весь свой исследовательский задор постижению термодинамики в контексте, который не обязывал «прибегать» к понятию атома, – то есть, вещества считались «бесконечно делимыми», а не состоящими из дискретных частей. Вопрос, можно ли добиться такого понимания, был, по его мнению, главным вопросом физики, наставника у Планка в академическом мире не имелось, и отговорить его – во всяком случае, впрямую – было некому. Что хорошо, потому что ход мысли Планка был настолько далек от основного русла физики, что летом 1900 года, всего за несколько месяцев до того, как Планк объявит о своем сотрясающем мироздание открытии, официальный историк на международном съезде физиков в Париже выразил мнение, что, помимо Планка, есть не более трех человек на всем белом свете, кто считает, что этим вопросом вообще стоит заниматься. За двадцать один год с защиты диссертации Планком мало что, судя по всему, изменилось.

В науке, как и во всех других областях знания, навалом заурядных людей, задающих заурядные вопросы, и многие неплохо устраиваются в жизни. Но наиболее преуспевающие исследователи обычно – из тех, кто задает странные вопросы, такие, которые никто не обдумывал или не счел интересными. На беду этим людям, их считали и будут считать чудаками, эксцентриками или даже психами – пока не придет время считать их гениями.

Макс Планк, ок. 1930 года

Разумеется, ученый, спрашивающий: «Покоится ли Вселенная на спине исполинского лося?» – тоже оригинальный мыслитель, как тот, видимо, кто пришел на факультет с ножом. И потому, глядя на сообщество вольнодумцев, стоит быть разборчивым, и в этом-то состоит трудность: людей, чьи соображения диковинны и только, поди отличи от тех, чьи мысли не только диковинны, но и истинны. Или же диковинны, но приведут, пусть и нескоро, пусть через множество ошибочных шагов, к чему-то истинному. Планк был оригинальным мыслителем и задавал вопросы, которые не казались интересными даже его коллегам-физикам. Но именно они, как выяснилось, были теми вопросами, на которые не могла ответить классическая физика.

Химики XVIII века обнаружили, что изучение газов – своего рода Розеттский камень, ключ к пониманию важных научных принципов. Планк искал свой Розеттский камень в излучении абсолютно черного тела – термодинамическом явлении, которое обнаружил и поименовал Густав Кирхгоф в 1860 году. Ныне излучение абсолютно черного тела – понятие, физикам знакомое: это разновидность электромагнитного излучения, испускаемого телом, которое, буквально, черное и находится при определенной температуре.

Понятие «электромагнитное излучение» кажется сложным – или даже опасным, вроде атаки дронов на лагеря Аль-Каиды. Однако оно описывает целое семейство волн – к примеру, радиоизлучение, а также видимый и ультрафиолетовый свет, рентгеновские лучи и гамма-радиацию, и у них всех, если их приручить, есть множество практических применений; некоторые несут смерть, но все без исключения – часть мира, который мы привыкли воспринимать как данность.

Во дни Кирхгофа понятие об электромагнитном излучении все еще оставалось новым и загадочным. Теория, описывающая это излучение в контексте Ньютоновых законов, родилась у шотландского физика Джеймса Клерка Максвелла [Джеймза Кларка Максуэлла]. Максвелл и до сих пор герой физики, в студгородках футболки дипломников нередко украшает его лик и выведенные им уравнения. Причина подобного обожания такова: в 1860-х годах он добился величайшего объединения в истории физики – объяснил электрические и магнитные взаимодействия как проявления одного и того же явления, электромагнитного поля, и показал, что свет и другие разновидности излучения суть электромагнитные волны. Нащупать связи между разными явлениями, как это удалось Максвеллу, для физика – пожалуй, самое восхитительное деяние в человеческой жизни.

Надежда и греза Ньютона – что рано или поздно возникнет такой вот Максвелл, ибо Ньютон знал, что его теория неполна. Он сформулировал законы движения, объясняющие, как тела откликаются на приложенную к ним силу, но, чтобы применять эти законы, нужно было дополнить их отдельными законами сил – законами, описывающими любую силу, воздействующую на рассматриваемое тело. Ньютон вывел законы одной разновидности силы – гравитации, но знал, что должны существовать и другие.

За века после Ньютона еще две силы природы постепенно явили себя физике: электричество и магнетизм. Создав количественную теорию этих сил, Максвелл в некотором смысле довершил Ньютонову (то есть «классическую») программу: вдобавок к классическим законам движения ученые разжились теориями всех сил, явленных нам в повседневном опыте. (За ХХ век мы откроем еще и так называемые сильные и слабые взаимодействия, чьи эффекты нам в быту не видны – они имеют место в крохотных пространствах внутри атомного ядра.)

Прежде, применяя закон всемирного тяготения вместе с законами движения Ньютона, ученые могли описывать лишь гравитационные явления – орбиты планет и траектории движения снарядов. Теперь же, применяя теорию Максвелла об электрических и магнитных полях в сочетании с Ньютоновыми законами движения, физики смогли анализировать широчайший спектр явлений, в том числе излучение и его воздействие на материю. По сути, физики сочли, что, располагая и Максвелловой теорией, они смогут в принципе объяснить любое природное явление, наблюдаемое вокруг: отсюда и буйный оптимизм физики в конце XIX века.

Ньютон писал, что есть «определенные силы, коими частицы тел, по каким-либо причинам доселе неведомые, либо взаимно направлены друг на друга и образуют устойчивые фигуры, либо отталкиваются взаимно и удаляются друг от друга»[337]. Это, по его мнению, есть причина «локальных движений, кои из-за малости движущихся частиц не могут быть уловлены… [но] если кому-то удастся открыть их все, я бы почти готов был сказать, что этот человек увидит всю природу тел как на ладони»[338]. Открытия физиков в электромагнетизме воплотили мечту ученых понимать силы, действующие между мельчайшими частицами предметов – атомами, – но грезе Ньютона о том, что его теория сможет объяснить свойства материальных тел, не суждено было воплотиться. Почему? Потому что, хоть физики и открыли законы действия электрических и магнитных сил, применение этих законов к атомам показывало, что Ньютоновы законы движения недействительны.

Хотя никто в те времена не осознавал этого, недостатки Ньютоновой физики проступали особенно ярко именно в явлении, которое взялся изучать Планк, а именно – в излучении абсолютно черного тела. Физики, применяя Ньютоновы законы к расчету количества разночастотного излучения черного материала, получали бессмысленный результат: черное тело может испускать высокочастотное излучение бесконечной мощности.

Будь эти расчеты верны, из модели излучения абсолютно черного тела следовало бы, что, сидя у растопленного камина или открывая дверцу разогретой духовки, вы бы не только нежились в тепле низкочастотного инфракрасного излучения или же приятном чуть более высокочастотном красноватом видимом свете, но и подвергались бомбардировке опасными высокочастотными ультрафиолетовыми, рентгеновскими и гамма-лучами. А в те поры только-только изобретенная электрическая лампочка была бы не полезным инструментом искусственного освещения, а, из-за излучения, возникающего от высоких температур накаливания, оружием массового уничтожения.

Когда Планк начал работать в этой области физики, все знали, что расчеты излучения абсолютно черного тела неверны, но никто не понимал, почему. Пока большинство интересовавшихся этой задачей физиков чесали в затылке, немногие сосредоточились на сочинении частных математических формул для описания экспериментальных данных. Из этих формул удавалось вывести интенсивность излучения абсолютно черного тела для отдельных частот и при определенной температуре, но все равно выходило описательно, и получить можно было лишь заданные необходимые результаты, не выведенные из теоретического понимания. Да и не для всех частот результаты получались верными.

В 1897 году Планк принялся работать над заковыристой задачей – точным описанием излучения абсолютно черного тела. Как и другие, он не ожидал, что эта задача подразумевает неправоту Ньютоновой физики, – он, скорее, предполагал, что физическое описание материала абсолютно черного тела должно содержать глубинную ошибку. Прошло несколько лет, но Планк ничего не добился.

Наконец он решил работать в обратном направлении и, подобно физикам-прикладникам, попросту нащупать подходящее уравнение. Он сосредоточился на двух частных формулах – одна была точным описанием низкочастотного, а вторая – высокочастотного излучения абсолютно черного тела. После многих проб и ошибок он смог «сшить» их воедино в некую собственную формулу для частного случая – изящное математическое выражение, которое он состряпал попросту чтобы объединить отвечающие действительности свойства двух исходных.

Может показаться, что, если многие годы возиться с задачей, в конце концов заслужишь право сделать важное открытие – микроволновку там или на худой конец новый метод изготовления воздушной кукурузы. Планк же остался лишь с математическим выражением, которое, по неведомым причинам, вроде бы работало прилично, хотя Планку не хватало данных, чтобы хорошенько проверить предсказательные способности полученного уравнения.

Планк обнародовал свое уравнение 19 октября 1900 года на заседании Берлинского физического общества. Не успело заседание окончиться, как физик-экспериментатор по имени Генрих [Хайнрих] Рубенс бросился домой и принялся запихивать в уравнение Планка всякие данные – проверить действенность полученной формулы на обильном экспериментальном материале. То, что он обнаружил, потрясло его: уравнение Планка оказалось куда точнее любых его мыслимых посягательств на истину.

Рубенс так воодушевился, что провозился почти всю ночь, дотошно проверяя математику Планкова уравнения применительно к разным частотам и сравнивая теоретические результаты со своими экспериментальными записями. На следующее утро он помчался в гости к Планку – сообщить поразительную весть: результаты согласовывались до ужаса точно – для всех частот. Уравнение Планка выполнялось слишком точно и потому не могло быть частным случаем. Это наверняка что-то значит. Незадача вот в чем: ни Планк, ни кто другой не понимали, что. Уравнение казалось волшебством – судя по всему, в нем, «выведенном» методом тыка, сокрыты глубокие и таинственные принципы.

* * *

Планк взялся трудиться над теорией излучения абсолютно черного тела с целью объяснить его, не прибегая к понятию атома. В некотором смысле ему это удалось. Однако уравнение у него получилось практически с кондачка, и он все же хотел ответить на вопрос, почему оно оказалось действенным. Успех его явно воодушевил, а вот неведение – обескуражило.

Планк со всегдашним своим терпением обратился – быть может, попросту от отчаяния, – к великому поборнику атома австрийскому физику Людвигу Больцману (1844–1906). Тот не одно десятилетие добивался строго противоположного от целей Планка – что атомы следует воспринимать всерьез – и достиг значительных успехов, развив методы, ныне именуемые статистической физикой (хотя убедить людей в важности своей работы ему удалось плохо).

Готовность Планка, пусть и неохотная, обратиться к исследованиям Больцмана – акт, достойный отдельного почтения: проповедник физики без атома ищет интеллектуального прибежища в работах поборника теории, которой он всегда противился. Такая открытость к взглядам, противоречащим собственным убеждениям, есть метод, каким наука и должна делаться, и именно поэтому Эйнштейн позднее относился к Планку с большим почтением, – но обычно наука так не делается. Разумеется, так не делается и много чего в человеческих начинаниях в целом. К примеру, во времена развития интернета, смартфонов и других новых способов общения, подобно физикам, не желавшим принимать теории атома или кванта, почтенные компании вроде «Блокбастер Видео», звукозаписывающие студии, ключевые книготорговые сети, заслуженные магазины медиапродуктов сопротивлялись и не желали принимать новый образ жизни и ведения дел. И потому их обскакали люди и компании помоложе, с большей умственной гибкостью – «Нетфликс», «Ю-Тьюб» и «Амазон». Сам Планк сказал о науке то, что, по сути, применимо к любому революционно новому взгляду: «Новая научная истина не торжествует убеждением оппонентов и вынуждением их узреть свет, а, скорее, побеждает она оттого, что оппоненты постепенно вымирают, а новое поколение растет, уже зная о новой истине»[339].

Изучая работы Больцмана, Планк заметил: в своем статистическом описании австриец счел необходимым применить математическую уловку – он обращался с энергией так, будто она поступает дискретными дозами, как, скажем, яйца, но не мука, которую можно делить на бесконечно малые порции. То есть яиц может быть лишь целое число – одно, или два, или двести, а муки можно взять 2,7182818 унций – или сколько захочешь. По крайней мере, так думает повар, хотя муку на самом деле нельзя разделить на бесконечно малые порции, поскольку она состоит из дискретных частей – мелких отдельных крупинок, и их видно под микроскопом.

Больцманова уловка – всего лишь метод расчета; под конец выкладок он всегда устремлял размер дозы к нулю, то есть энергия все же поступает в любом количестве, а не дискретными порциями. К своему великому изумлению Планк обнаружил, что, применяя методы Больцмана к задаче абсолютно черного тела, он мог вывести свое уравнение, но лишь пропустив последний шаг и позволив подачу энергии лишь дозированно, как яйца, множеством определенных крошечных порций. Шеф-повар Планк назвал эту крошечную порцию квантом – от латинского «сколько».

Таково, если вкратце, происхождение представления о кванте. Квантовая теория возникла не из неутомимых попыток ученых, доводивших некий глубинный принцип до логической завершенности, и не из желания открыть новую философию физики, а от человека, который, подобно шеф-повару, впервые заглянул в микроскоп и к своему изумлению обнаружил, что мука все-таки подобна яйцам – она состоит из отдельных частиц, и добавлять ее можно лишь мерами из множества этих крохотных порций.

Планк обнаружил, что размер порции, или квант, у разных частот света разный, и в видимом диапазоне это соответствует разным оттенкам цвета. В частности, Планк обнаружил, что квант световой энергии равен частоте, умноженной на коэффициент пропорциональности, который Планк назвал h, – сегодня мы именуем его постоянной Планка. Соверши Планк последний шаг вслед за Больцманом и, по сути, приравняй h к нулю, энергия получилась бы бесконечно делимой. Но не сделав этого и зафиксировав h после подстановки в уравнение экспериментальных данных, Планк установил – по крайней мере, применительно к излучению абсолютно черного тела, – что энергия поступает крошечными, неделимыми порциями и не может принимать какие попало значения.

Что же означала его теория? Планк понятия не имел. В некотором смысле ему удалось лишь создать таинственную теорию для объяснения таинственной догадки. И все же на декабрьском собрании Берлинского физического общества Планк объявил о своем «открытии». Ныне мы считаем это объявление рождением квантовой теории, и, конечно, эта теория заработает Планку Нобелевскую премию 1918 года и в конце концов перевернет физику вверх дном. Но тогда об этом никто, включая Планка, не догадывался.

Людвиг Больцман, ок. 1900 года

Большинству физиков казалось, что Планковское долгое исследование излучения абсолютно черного тела сделало его теорию еще более смутной и таинственной, да и вообще – что от нее толку? Сам Планк, однако, из своего опыта извлек кое-что важное. Он наконец «понял» излучение абсолютно черного тела, применив картинку, в которой черный материал оказывался состоящим из крошечных осцилляторов, вроде пружинок, которые он впоследствии стал считать атомами или молекулами – то есть наконец пришел к выводу, что атомы существуют. И все-таки ни сам он, ни кто бы то ни было еще из его современников не осознавал, что описанные Планком кванты могут быть фундаментальной характеристикой природы.

Кое-кто из современников Планка подумывал, что когда-нибудь найдется путь к уравнению Планка для абсолютно черного тела, который не потребует понятия кванта. Другие полагали, что квантовый мир однажды будет объяснен не как фундаментальный принцип природы, а как результат некой пока неведомой особенности материалов, совершенно согласуемой с известной тогда физикой – к примеру, будничное механическое свойство, вытекающее из внутреннего устройства атомов или способа их взаимодействия. А некоторые физики попросту отмели работу Планка как бессмыслицу – невзирая на ее соответствие экспериментальным данным.

Критикуя Планка, один знаменитый физик – сэр Джеймс Джинс [Джеймз Джинз], трудившийся над этой же задачей, но, в отличие от Планка, не смогший вывести уравнение, писал: «Разумеется, я осведомлен, что закон Планка хорошо согласуется с экспериментом… тогда как мое уравнение, полученное [из варианта Планка] присвоением h значения 0, никак не соответствует экспериментальным данным. Это не отменяет моей убежденности, что h = 0 – единственное значение, которое эта переменная может иметь»[340]. Ага, экая докука эти экспериментальные данные – ну их совсем. Или же, как писал Роберт Фрост в 1914-м: «Зачем, ей-ей, от веры отходить / Лишь потому, что правды в ней уж нет?»[341]

Вот итог: за вычетом раздражения Джеймса Джинса, работа Планка мало кого тронула. Считали физики его работу бессмысленной или же думали, что у нее есть обыденное объяснение, – они попросту не воодушевились, подобно фанатам на рок-фестивале, где закон о запрете наркотиков доведен до исполнения. И поставки тех наркотиков не предвиделось еще какое-то время. За следующие пять лет никто не произведет ни единого исследования, посвященного развитию мыслей Планка, – ни он сам, ни кто угодно еще. Вплоть до 1905 года.

* * *

Как я уже говорил, когда Планк выдвинул квантовую гипотезу, никто не понял, что это фундаментальный закон природы. Но вскоре на поле вышел еще один игрок – с совершенно иным настроем. Во времена, когда Планк сделал свое объявление, он, еще никому не известный выпускник колледжа, сочтет работу, посвященную кванту, глубокой и даже тревожной. «Словно у нас из-под ног выдернули почву, и нигде вокруг никакой твердой опоры»[342], – писал он позднее.

Человек, принявший работу Планка о кванте и показавший миру ее ценность известен не за это, а, наоборот, за то, что принял впоследствии противоположную позицию и, в традиции Джинса, не согласился с неким представлением невзирая на множество результатов наблюдения, кои вроде бы доказывали, что представление это – верно. Речь об Альберте Эйнштейне (1879–1955).

Эйнштейну было двадцать пять, он еще не защитил докторскую диссертацию, но за квантовую гипотезу Планка схватился. К пятидесяти годам, однако, он уже возражал самому себе. Причины сменить точку зрения о квантовой теории у Эйнштейна были скорее философские или метафизические, а не научные. Соображения, высказанные им в двадцать пять, касались «всего-то» нового понимания света как энергии, состоящей из частиц-квантов. Квантовые представления, возникшие у него и затем им же опровергнутые, напротив, – фундаментально новый метод восприятия действительности.

По мере развития квантовой теории стало ясно: принимая ее, необходимо принять и новый взгляд на смысл порождения одним событием другого. Новое квантовое мировоззрение – куда больший отрыв от нашего интуитивного Ньютонова взгляда на мир, нежели механический Ньютонов взгляд – от целеполагательного перспективного взгляда Аристотеля, и Эйнштейн, стремясь пересмотреть физику, сойдет в могилу, не приняв радикального пересмотра метафизики, обусловленного его же трудами.

Ко времени моего знакомства с квантовой теорией, всего через пару десятков лет после смерти Эйнштейна, я, разумеется, уже был обучен современным формулировкам – и всем радикальным взглядам, которые не нравились Эйнштейну. В колледже нам их преподносили как скучные, хоть и странные аспекты хорошо разработанной и проверенной теории. Иногда обсуждаемая «квантовая странность» – например, возможность чего-нибудь быть в двух местах одновременно – в мое время уже считалась давно установленным фактом. Бывало, из него произрастали увлекательные питейные дискуссии, однако не то чтоб мы, студенты, по этому поводу ночей не спали. И все же Эйнштейн был одним из моих героев, и потому меня донимало, почему ему было так трудно принять воззрения, которые у меня в голове уложились без всякого сопротивления. Понятно, что я – не Эйнштейн, но все-таки чего же я не учитывал?

И вот возился я с этим вопросом, а отец меж тем рассказал мне историю. Дело было в предвоенной Польше, и он с друзьями как-то раз наткнулся на оленя, лежавшего на дороге – его сбила машина или грузовик. Еды в те поры не хватало, и они забрали оленя домой и съели его. Отец сказал, что ничего плохого в поедании сбитого на дороге животного они не усмотрели, а для американцев вроде меня это отвратительно, потому что нас воспитали так к этому относиться. Я осознал: для того, чтобы обнаружить вопросы, к которым у людей трудное отношение, нет нужды обращаться к глубинным загадкам мироздания или сильным нравственным убеждениям. Такие вопросы – повсюду, и большинство их просто связано с тем, что люди склонны продолжать верить в то, во что они верили всегда.

Метафизические следствия квантовой теории были Эйнштейновым вариантом сбитого животного. Эйнштейн вырос в традиционных представлениях о причинах и результатах, и ему, конечно, невыносим был взгляд, у которого столь глубоко иные следствия. Но, родись он на восемьдесят лет позже и учись со мной в одном классе, он бы вырос на странности квантовой теории и, вероятно, смотрел на нее столь же невозмутимо, как я и все остальные учащиеся. К тому времени эта странность стала в интеллектуальной среде общепринятой, и, хотя осознать новизну квантового мира можно, в отсутствие эксперимента, опровергающего этот мир, никто лишний раз над этой странностью и не задумается.

* * *

Хотя Эйнштейн позднее станет отстаивать ключевые аспекты Ньютонова мировоззрения, традиционным мыслителем он не был никогда – и никогда не отвешивал незаслуженных поклонов светилам. Более того, это желание мыслить иначе и сомневаться в авторитетах было в нем столь выражено, что он еще подростком влипал в неприятности, когда учился в мюнхенской гимназии – это такой немецкий эквивалент средней школы. В его пятнадцать лет один учитель поставил ему на вид, что юноша Эйнштейн ввек ничего не добьется, а затем его либо насильно, либо «вежливо поощряя», выгоняли из школы, поскольку он выказывал учителям неуважение и считался скверным влиянием для других учеников. Позднее он назвал гимназию «машиной образования», имея в виду, что она не полезную работу производит, а портит воздух удушающими мысль загрязнениями.

Табель успеваемости Эйнштейна из швейцарской школы. Оценки выставлялись по шестибалльной шкале, шесть – высший балл

К счастью для физики, желание Эйнштейна понимать Вселенную превозмогло его неприязнь к формальному образованию, и потому, вылетев из средней школы, он подал документы в Швейцарский федеральный технологический институт в Цюрихе. Вступительный экзамен провалил, но после краткого исправительного срока в швейцарской средней школе все же поступил в Институт в 1896 году. Понравилось ему там не больше, чем в гимназии, на многие лекции он не ходил, но все же исхитрился вуз окончить – зубрежкой перед экзаменами, по записям, взятым у собрата-студента, с которым Эйнштейн успел подружиться. Марсель Гроссман, как позднее писал Эйнштейн, был «безукоризненным студентом, а я – безалаберным мечтателем. Он ладил с учителями и все понимал, я же был парией, неудовлетворенным и недолюбленным»[343]. Знакомство с Гроссманом оказалось не просто удачей в учебных делах Эйнштейна – Гроссман позднее станет математиком и обучит Эйнштейна причудливой геометрии, необходимой теории относительности для ее завершенности.

Степень, полученная Эйнштейном в институте, его путь к успеху не упростила. Более того, один из его преподавателей озлобленно написал ему скверную рекомендацию. Во всяком случае отчасти поэтому Эйнштейн, доучившись в Цюрихе, не смог найти обычную работу – а хотел он университетскую ставку физика или математика, и занялся частным преподаванием с двумя мальчишками-гимназистами.

Вскоре после начала работы в этой должности Эйнштейн предложил своему нанимателю забрать мальчиков из школы совсем – чтобы избежать ее разрушительного влияния. Образовательную систему он осуждал за чрезмерную сосредоточенность на подготовке учащихся к экзаменам и удушение всякой подлинной любознательности и творчества. Поди ж ты: примерно век спустя идефиксом официальной американской образовательной системы стал план обучения, ориентированный на способность учеников запоминать факты и сдавать экзамены – программа президента Джорджа У. Буша «Ни одного ребенка в отстающих». Всем понятно, что Буш – не Эйнштейн, но, очевидно, по части заставлять людей принять ту или иную точку зрения Эйнштейн не был Бушем: его наниматель, выслушав заявление о роковом влиянии гимназии, Эйнштейна уволил.

Отец Эйнштейна писал о тяготах отпрыска: «Мой сын совершенно не рад положению дел с работой. День ото дня он все более ощущает, что карьера идет прахом… и прибывает в нем осознание, что он нам, людям с малыми средствами, обуза»[344]. Письмо это было отправлено лейпцигскому физику Вильгельму Фридриху Оствальду, которому Альберт предоставил копию своей первой статьи, приложив ее к прошению о работе. Ни Альберт, ни его отец ответа не получили. Через десять лет Оствальд первым выдвинет Эйнштейна на Нобелевскую премию. Но в 1901 году его интеллект ни на кого не произвел впечатления достаточного, чтобы пригласить его на работу, хоть как-то отвечающую его способностям.

Профессиональная жизнь Эйнштейна наконец устоялась в 1902 году, когда отец Марселя Гроссмана представил его директору Швейцарского патентного бюро в Берне, и тот пригласил Эйнштейна сдать письменный экзамен. Всё в целом удалось, и директор предложил ему работу. Она состояла в чтении высокотехнической патентной документации и переводе ее на язык достаточно простой, чтобы начальство поглупее могло в ней разобраться. Тем же летом Эйнштейн приступил к своим обязанностям – на испытательном сроке.

Работа у Эйнштейна, похоже, спорилась, хотя, в 1904 году обратившись за повышением с должности эксперта третьего класса на должность эксперта второго класса, получил отказ. Тем временем его работа в физике, хоть и приносила Эйнштейну удовлетворение, оставалась непризнанной. Его первые две статьи[345], написанные в 1901 и 1902 годах, посвящались гипотезе универсальной силы, действующей между молекулами, и оказались, по его личному позднейшему мнению, бездарными. Далее последовали еще три статьи спорного качества, и они тоже не оказали на физику почти никакого влияния. Потом прошел еще один год, у Эйнштейна родился первый сын, но не родилось ни одной статьи по физике.

Хронический недостаток денег и кисшая карьера физика наверняка обескураживали, но Эйнштейну его работа нравилась – она виделась ему умственно стимулирующей, а к тому же, по его словам, «оставляла ему восемь часов безделья», которые он мог посвящать своей страсти и думать о физике. Он расширял свои часы исследований, проводимых на досуге, урывками возвращаясь к ним и на работе – и поспешно пряча бумаги с расчетами в стол, когда приближался кто-нибудь из коллег. Все эти усилия не пропали втуне – еще как не пропали: в 1905 году он опубликовал три отдельные революционные статьи, сделавшие его из эксперта третьего класса физиком первого.

Каждая из этих трех статей была достойна Нобелевской премии, хотя лишь одна в итоге принесла ему эту награду. В общем, можно понять, почему Нобелевский комитет не торопится выдавать много наград одному и тому же претенденту, но с годами эта организация, увы, прославится многими куда менее понятными промашками. Только среди физиков комитет проморгал наградить Арнольда Зоммерфельда, Лизу Мейтнер [Лизе Майтнер], Фримена Дайсона, Георгия Гамова, Роберта Дикке [Дика] и Джима Пиблcа [Пиблза][346].

Не дать премию Мейтнер – в особенности вопиющее упущение: тысячи лет женщинам почти нацело отказывали в высшем образовании и в возможностях трудиться на ниве понимания мира. Ситуация начала меняться лишь лет сто назад, и этому общественному сдвигу до завершения еще очень долго. Мейтнер, первопроходец науки, стала лишь второй дамой, получившей докторскую степень по физике в Университете Вены. Закончив учебу, она уговорила Макса Планка допустить ее к занятиям у него, хотя прежде он не позволял женщинам даже присутствовать у себя на лекциях. Она начала сотрудничать с юным берлинским химиком по имени Отто Ган [Хан]. Вместе они произвели множество научных прорывов, и важнейший из них – открытие ядерного распада. Увы: за эту работу Нобелевскую премию по химии в 1944 году Ган-то получил, а Мейтнер – нет[347].

* * *

В теоретической физике, среди прочего, пьянит вероятность, что какая-нибудь твоя мысль окажет мощное воздействие на то, как все мы думаем или даже как живем. Да, предмет требует многих лет на изучение и понимание, а также на постижение его методов и вопросов. Да, многие задачи, за которые берешься, как выясняется, нерешаемы. И да, большинство возникающих соображений оказываются чепухой, а в большинстве случаев приходится месяцами корпеть даже над малюсеньким шажком в гораздо более масштабном труде. Разумеется, если вы собрались быть физиком-теоретиком, вам пригодится упрямство и настойчивость – и способность упиваться даже маленькими открытиями, математическими мелочами, которые оказываются как по волшебству действенны и раскрывают вам тайны природы, о которых, пока ваша работа не будет опубликована, знаете лишь вы один. Но всегда есть и другая вероятность: вы можете удумать или же наткнуться на мысль столь мощную, что она окажется не маленькой тайной природы, а тем, что изменит взгляд на действительность не только у ваших коллег, но и, возможно, у всего человечества. Именно такого рода мысли возникли у Эйнштейна трижды – за один год работы в патентном бюро.

Из трех предложенных им потрясших мир теорий Эйнштейн более всего известен теорией относительности. Его работа в этой области перевернула наши представления о пространстве и времени и показала, что они близко связаны друг с другом, количественные измерения и того, и другого не абсолютны, а зависят от характеристик движения наблюдателя.

Закавыка, с которой взялся разбираться Эйнштейн, – парадокс, происходящий из Максвелловой теории электромагнетизма, предполагавшей, что все наблюдатели, измеряющие скорость света, придут к одному и тому же результату, независимо от их собственной скорости относительно источника света.

Чтобы понять, почему вышеприведенное утверждение противоречит нашему повседневному опыту, произведем простой мысленный эксперимент в духе Галилея. Вообразите торговца закусками на перроне железнодорожной станции и проносящийся мимо поезд. Если пассажир этого поезда бросит вперед мяч (или любой материальный предмет), он покажется торговцу летящим быстрее, чем брошенный торговцем – с той же силой. Это оттого, что, с точки зрения торговца, мяч в поезде движется со скоростью, которую ему придал пассажир поезда, плюс скорость самого поезда. А вот свет, зажженный вспышкой на поезде, согласно теории Максвелла, быстрее перемещаться не будет. И пассажиру, и торговцу на перроне покажется, что свет распространяется с одной и той же скоростью. Физику, желающему все свести к какому-нибудь закону, требуется объяснение этого явления.

Какой закон отличает свет от материи? Физики годами ломали голову над этим вопросом, и популярнее прочих был подход, рассматривавший к тому времени неведомую субстанцию, через которую распространяется свет. Но у Эйнштейна были иные соображения. Объяснение не прячется в некоем неизвестном свойстве распространения света, понял он, а в понимании скорости. Поскольку скорость есть расстояние, деленное на время, рассуждал Эйнштейн, утверждая, что скорость света неизменна, теория Максвелла сообщает нам, что при измерении расстояния и времени нельзя достичь единства мнений. Нет ни универсальных часов, ни универсальной линейки, как доказал Эйнштейн, – любые такие измерения зависят от движения наблюдателя, то есть необходимо, чтобы все наблюдатели измеряли одну и ту же скорость света. Каждый из нас наблюдает и измеряет нечто, соответствующее нашему личному взгляду, не более, а не действительность, насчет которой достигнуто всеобщее согласие. Вот что такое, по сути, Эйнштейнова специальная теория относительности.

Теория относительности потребовала не замены Ньютоновой теории, а, скорее, ее видоизменения: Ньютоновы законы движения необходимо было подправить и с удобством обустроить в новой модели Эйнштейновых времени и пространства, согласно которой результаты измерений зависят от скорости измеряющего. Для предметов и наблюдателей, движущихся сравнительно медленно относительно друг друга, теория Эйнштейна, по сути, эквивалентна Ньютоновой. И лишь когда рассматриваемые скорости приближаются к скорости света, эффекты относительности делаются заметными.

Поскольку необычные эффекты относительности проявляются лишь в чрезвычайных условиях, на нашу повседневную жизнь они влияют гораздо меньше, чем квантовая теория, объясняющая саму стабильность атомов, из которых мы состоим. Но никто в те времена не знал, до чего далеко идущими у квантовой теории окажутся следствия, а между тем теория относительности произвела на сообщество физиков эффект землетрясения: в Ньютоновом мировосприятии, формировавшем науку на протяжении двухсот с лишним лет, наметилась первая трещина.

Теория Ньютона основывалась на том, что объективная действительность у нас одна. Пространство и время образуют неизменную структуру – сцену, на которой разворачиваются события мира. Наблюдатели пусть наблюдают откуда угодно, двигаясь или нет, видеть они будут одну и ту же пьесу, подобно Богу, что глядит на нас извне. Относительность противоречила этой установке. Утверждая, что нет никакой единой пьесы, – то есть, применительно к нашей повседневной жизни, действительность, переживаемая нами, у каждого своя личная и зависит от того, где мы находимся и как движемся, – Эйнштейн взялся рушить Ньютонов мир так же, как Галилей взялся за снос Аристотелева.

Работы Эйнштейна оказали важное влияние на культуру физики: они придали смелости не одному поколению новых мыслителей и упростили им решение дерзать и возражать старым представлениям. К примеру, книга по теории относительности, которую Эйнштейн написал для школьников, вдохновила Вернера Гейзенберга [Хайзенберга], с которым мы скоро познакомимся, податься в физику, а подход Эйнштейна к относительности наделил Нильса Бора, с которым мы тоже вскоре встретимся, храбростью вообразить, что атом может подчиняться законам, радикально отличным от тех, что правят нашей повседневной жизнью.

Как ни странно, из всех великих физиков, принявших и понявших Эйнштейнову теорию относительности, менее всех впечатлился сам Эйнштейн. По его мнению, он призывал не отринуть Ньютонов взгляд на мир, а лишь слегка его подправить, и поправки эти очень мало сказывались на почти любых экспериментальных наблюдениях того времени, однако, что важно, исправляли недочет в логическом устройстве теории. Более того, математические изменения, необходимые для того, чтобы Ньютонова теория не противоречила теории относительности, внести было довольно просто. И потому, тогда как Эйнштейн позднее сочтет квантовую теорию концом Ньютоновой физики, по словам физика и биографа Абрахама Пайса, он «считал теорию относительности никакой не революцией»[348]. По Эйнштейну, работа по теории относительности – наименее значимая из его трудов 1905 года. Куда фундаментальнее, с его точки зрения, были две другие его статьи – об атоме и о кванте.

Работа Эйнштейна, посвященная кванту, анализировала явление броуновского движения, открытое старым другом Дарвина Робертом Броуном в 1827 году. «Движение», о котором идет речь, – загадочные, случайные блуждания крошечных частиц вроде зернышек пыльцы в воде. Эйнштейн считал это движение результатом высокочастотной бомбардировки плавающей частицы субмикроскопическими молекулами. Хотя отдельные столкновения недостаточны, чтобы спихнуть частицу с места, Эйнштейн доказал, что статистически количество и частота, с которой дергается наблюдаемая частица, могут быть объяснены тем, что очень редко, по чистой случайности, гораздо больше молекул ударяют частицу с какой-нибудь одной стороны и таким образом сообщают ей нужный для движения импульс.

Эта работа мгновенно стала сенсацией – и до того яркой, что даже заклятый враг понятия атома Оствальд после чтения работы Эйнштейна признал, что атомы существуют. Великий поборник представления об атоме Больцман, с другой стороны, по необъяснимым причинам не узнал ни о работе Эйнштейна, ни о перемене настроений, которая возникла в результате. Отчасти от отчаяния из-за отклика на его собственные работы он на следующий же год совершил самоубийство. Это тем более печально, потому что, благодаря статье Эйнштейна по броуновскому движению и той, что он написал в 1906 году, физики наконец согласились с подлинностью предметов, которые не могут ни потрогать, ни увидеть, – именно это без особого успеха проповедовал сам Больцман аж с 1860-х годов.

За три десятилетия ученые, применив новые уравнения, описывающие атом, подошли к возможности объяснять глубинные законы химии и, наконец, растолковать и доказать представления Дальтона и Менделеева. Взялись они и за работу над воплощением мечты Ньютона о постижении свойств материалов на основании анализа сил, что действуют между частицами, составляющими их, то есть атомами. К 1950-м годам ученые продвинутся еще дальше и применят знание атома к более глубокому пониманию биологии. А во второй половине ХХ века теория атома проложит путь технологической, компьютерной и информационной революциям. Начавшись с анализа движения частицы пыльцы, новое знание превратится в инструмент, который преобразит современный мир.

Законы, на которых зиждутся все перечисленные практические начинания, и уравнения, описывающие свойства атома, не могли бы, тем не менее, возникнуть из классической физики Ньютона – и даже из поправленной «релятивистской» формы его не могли бы. Описание атома требовало новых законов природы – квантовых, и именно квант стал предметом второй революционной статьи Эйнштейна в 1905 году.

В той статье под названием «Об одной эвристической точке зрения, касающейся возникновения и превращения света»[349] Эйнштейн взял представления Планка и вывел из них глубокие физические принципы. Эйнштейн осознавал, что, как и теория относительности, квантовая теория – вызов Ньютону. Но тогда квантовая теория еще никак не намекала ни на масштаб этого вызова, ни на ошеломляющие философские последствия, которые возникнут при дальнейшем ее развитии, и потому Эйнштейн не понимал, во что он вдохнул жизнь.

Поскольку «точка зрения», которую Эйнштейн представил в своей работе, предполагала обращение со светом как с квантовой частицей, а не как с волной, то есть не в соответствии с успешнейшей теорией Максвелла, к статье отнеслись не так, как к другим его переворотным работам 1905 года. Еще точнее: физическому сообществу на принятие этой статьи потребовался десяток лет. Чувства самого Эйнштейна по этому поводу наглядно иллюстрирует письмо, написанное им другу в 1905 году[350], до отправки всех трех статей. О своей работе по относительности Эйнштейн заметил, что часть ее «тебя заинтересует». Меж тем работу по квантовым воззрениям он назвал «очень революционной». И, конечно, именно она оказала наиболее мощное влияние, и, в частности, за нее Эйнштейн получил в 1921 году Нобелевскую премию.

* * *

Эйнштейн неслучайно принялся за квантовую теорию там, где Планк ее бросил. Как и Планк, Эйнштейн начал свою карьеру в тех же застойных водах – в термодинамике, и трудился над вопросами, связанными с ролью атомов. Но в отличие от Планка Эйнштейн был для современной физики человеком посторонним. И в отношении атома у Эйнштейна с Планком были диаметрально противоположные цели: Планк своей диссертацией стремился выпихнуть понятие атома из физики, а Эйнштейн говорил, что задача его первых статей, написанных между 1901 и 1904 годами, – «найти факты, гарантирующие как можно точнее существование атомов определенных конечных размеров»[351], и в 1905 году в своем революционном исследовании обусловленности броуновского движения случайными перемещениями атомов он этой цели наконец достиг.

Но хотя Эйнштейн и помог физикам окончательно принять понятие атома, в своей работе, посвященной квантовой теории Планка, Эйнштейн ввел новую «атомоподобную» теорию света, которую физикам оказалось еще труднее усвоить. Изучив исследования абсолютно черного тела, проделанные Планком, Эйнштейн пришел к своей собственной теории. Не удовлетворившись рассуждениями Планка, он разработал собственные математические приемы понимания этого явления. И хотя пришел он к тому же заключению – что излучение абсолютно черного тела можно объяснить лишь в понятиях кванта, – в его объяснении содержалось важнейшее, пусть и чисто техническое с виду, отличие: Планк допустил, что дискретный характер энергии излучения происходит от особенностей осцилляции атомов и молекул абсолютно черного тела, происходящей при излучении, а Эйнштейн счел дискретную природу неотъемлемым свойством самого излучения.

Эйнштейн рассматривал излучение абсолютно черного тела как доказательство радикально нового закона природы: вся электромагнитная энергия передается конечными «пакетами», а излучение состоит из частиц, подобных атомам света. Именно благодаря этому прозрению Эйнштейн первым осознал, что квантовый принцип – революционен, что он – фундаментальная сторона нашего мира, а не просто удобный частный математический прием, примененный для объяснения излучения абсолютно черного тела. Он назвал частицы излучения световыми квантами, а в 1926 году его световые кванты получат свое современное имя – фотоны.

Брось Эйнштейн это дело на полпути, его теория фотонов стала бы лишь очередной моделью, выдуманной, как Планкова, для объяснения излучения абсолютно черного тела. Но, если представление о фотоне в самом деле фундаментально, оно должно прояснить природу и других явлений, а не только того, ради которого его измыслили. Эйнштейн обнаружил одно такое явление – фотоэлектрический эффект.

Фотоэлектрический эффект – явление, при котором свет, направленный на металл, вызывает электронную эмиссию. Испускаемые электроны можно зарегистрировать в виде электрического тока и применять в разных приборах. Это явление сыграет ключевую роль в развитии телевизионной техники и по-прежнему применяется в приспособлениях типа детекторов дыма и сенсоров, не дающих дверям лифта закрыться, когда вы в него входите. В последнем случае луч света пересекает вход в лифт и падает на фотоэлектрический рецептор на противоположной стороне, при этом генерируется электрический ток; заходя в лифт, вы разрываете собой луч света и, соответственно, ток перестает генерироваться, а производители лифтов устроили все так, что, когда ток прекращает течь, двери не закрываются.

Что свет, направленный на металлы, может генерировать электрический ток, обнаружил в 1887 году немецкий физик Генрих Герц [Хайнрих Херц] – он первым осознанно произвел и засек электромагнитные волны от электрических разрядов, и именно в честь него названа единица частоты, герц. Но Герц не мог объяснить фотоэлектрический эффект, поскольку электроны тогда еще не открыли. Это случилось в лаборатории британского физика Дж. Дж. Томсона в 1897 году – через три года после смерти Герца в возрасте тридцати шести лет от редкого заболевания, при котором воспаляются кровеносные сосуды.

Существование электрона предложило простое объяснение фотоэлектрического эффекта: волна света ударяется о металл, происходит возбуждение электронов металла, и они вылетают вовне и являют себя в виде искр, излучения и тока. Вдохновленные работой Томсона физики принялись изучать этот эффект в подробностях. Но продолжительные и трудные эксперименты постепенно выявили особенности фотоэлектрического эффекта, не отвечавшие теоретической картине.

К примеру, если увеличить интенсивность светового луча, электронов с металлической поверхности срывается больше, но на энергии их это увеличение не сказывается. А это противоречит предсказанию классической физики: чем интенсивнее свет, тем больше в нем энергии, а значит при ее поглощении электроны должны вылетать быстрее, с большей энергией.

Эйнштейн размышлял над этой загадкой несколько лет и в 1905 году наконец внес квантовую поправку: полученные данные можно объяснить, если свет состоит из фотонов. Картина фотоэлектрического эффекта, предложенная Эйнштейном, такова: каждый квант света, попадающий на металл, передает свою энергию некоему конкретному электрону. Энергия, которую несет каждый фотон, пропорциональна его частоте, или «цвету», света, и, если фотон доносит достаточно энергии, он вышибет электрон с поверхности металла. Свет более высокой частоты состоит из фотонов с большей энергией. Однако, если увеличить лишь интенсивность света (а не частоту), в потоке света будет больше фотонов, но у них не будет больше энергии. В результате свет большей интенсивности выбьет из металла больше электронов, но энергия этих электронов будет та же – и именно это наблюдается в эксперименте.

Предположение, что свет состоит из фотонов – частиц – противоречило Максвелловой премного любимой всеми теории электромагнетизма, которая постановляла, что свет – волна. Эйнштейн выдвинул догадку – и не ошибся, – что классические «максвелловские» волновые свойства света могут возникать, когда оптическое наблюдение за светом предполагает воздействие громадного количества фотонов, что в обычных обстоятельствах и происходит.

Лампочка в сотню ватт, к примеру, испускает примерно миллиард фотонов в одну миллиардную секунды. Квантовая же природа света проявляется, когда исследованию подвергается свет низкой интенсивности – или же, как в случае кое-каких явлений, например, фотоэлектрического эффекта, чей механизм связан с дискретностью природы фотонов. Но рассуждений Эйнштейна оказалось недостаточно, чтобы убедить остальных принять его радикальные взгляды, и встретили их со значительным и почти поголовным скептицизмом.

Особенно мне люб один комментарий на работу Эйнштейна – рекомендация 1913 года[352], написанная совместно Планком и еще несколькими ведущими физиками по случаю принятия Эйнштейна в почтенную Прусскую академию наук: «В общем, можно сказать, что это далеко не самая значимая задача, на кои так богата современная физика, в которую Эйнштейн и заметного вклада не внес. То, что он иногда промахивается мимо цели в своих рассуждениях, как, например, в гипотезе световых квантов, не следует ставить ему в упрек, ибо невозможно предложить по-настоящему новое воззрение, даже в самых точных науках, если временами не рисковать».

* * *

Как ни парадоксально, именно один из первых противников фотонной теории Роберт Милликен позднее произвел точные замеры, подтвердившие закон Эйнштейна, который описывает энергию эмитированных фотоэлектронов, – и получил за эти усилия Нобелевскую премию 1923 года (а также и за измерение заряда электрона). Эйнштейн получил Нобелевскую премию в 1921-м с такой формулировкой: «Альберту Эйнштейну за служение теоретической физике и особенно за открытие закона фотоэлектрического эффекта»[353].

Альберт Эйнштейн, 1921 год

Нобелевский комитет решил признать уравнение Эйнштейна, зато не удостоил вниманием интеллектуальную революцию, благодаря которой ему удалось его вывести. Никто не помянул ни световые фотоны, ни Эйнштейнов вклад в квантовую теорию. Абрахам Пайс назвал это «исторической недооцененностью, но также и точным отражением единства мнений физического сообщества»[354].

Сомнения в фотоне и в квантовой теории в целом окончательно разрешатся до конца десятилетия – благодаря созданию формальной теории «квантовой механики», которые потеснят Ньютоновы законы движения с их места фундаментальных принципов, управляющих движением предметов и их откликом на приложенные к ним силы. Когда эта теория наконец возникла, Эйнштейн признал ее успех, однако теперь сам восстал против кванта.

Отказываясь принять квантовую теорию как окончательную, Эйнштейн никогда не уставал верить, что она будет рано или поздно замещена еще более фундаментальной теорией, которая восстановит традиционные представления о причине и следствии. В 1905 году он опубликовал три статьи, и каждая изменила ход жизни физики, однако остаток своих дней безуспешно пытался добиться другого результата – повернуть вспять то, что сам начал. В 1951 году, в одном из последних писем своему другу Микеле Бессо, Эйнштейн признал, что потерпел поражение. «Пятьдесят лет размышлений, – писал он, – нисколько не приблизили меня к ответу на вопрос “Что есть световой квант?”»[355].

Глава 11

Царство незримого

Заработав себе докторскую степень, я получил место младшего научного сотрудника в Калтехе и взялся искать себе тему для дальнейших трудов, чтобы не вылететь из науки и не занять более доходную позицию официанта в факультетском клубе. Как-то раз после одного семинара я разговорился с физиком Ричардом Фейнманом о теории под названием струнная. Фейнман, которому в те поры перевалило за шестьдесят, среди своих коллег-физиков был, вероятно, самым почитаемым на свете. Ныне многие (хотя отнюдь не все) считают теорию струн главным кандидатом на единую теорию всех сил природы, святой грааль теоретической физики. Но в те времена о ней мало кто слышал, а из них, в свою очередь, ею мало кто увлекался – включая Фейнмана. Он как раз брюзжал по поводу теории струн, когда в разговор вмешался гость нашего факультета, прибывший из университета в Монреале: «Мне кажется, не стоит отвращать молодых людей от исследования новых теорий лишь потому, что они не приняты светилами физики»[356], – сказал он Фейнману.

Отвергал ли Фейнман теорию струн, потому что она казалась ему слишком большим отрывом от его устоявшейся системы верований, и он не мог пересмотреть свои взгляды? Или он сделал бы те же выводы о недостатках этой теории, даже если б она не размежевывалась с предыдущими теориями столь категорически? Этого мы не знаем, но Фейнман ответил гостю, что он не отсоветовал мне работать над чем бы то ни было новым, а просто мне следует быть осторожным, иначе, если дело не выгорит, я впустую потрачу уйму времени. Гость возразил: «Ну, я со своей теорией возился двадцать лет», – и пустился объяснять ее, в изнурительнейших подробностях. Когда он договорил, Фейнман повернулся ко мне и заметил, прямо в присутствии человека, который только что с гордостью изложил свою теорию: «Именно это я и имел в виду под впустую потраченным временем».

Передний край научных исследований укрыт туманом, и любой деятельный ученый неизбежно приложит зряшные усилия, следуя неинтересным тупиковым путям. Но одна черта, отличающая успешного физика, – чутье (или удача) при выборе задач, которые окажутся одновременно и познавательными, и решаемыми.

Я сравнивал страсть физиков с пылом художников, но мне всегда казалось, что у художников перед физиками есть большое преимущество: в искусстве, сколько бы ваши коллеги и критики ни говорили, что ваша работа – фуфло, никто не сможет этого доказать. Но не в физике. В физике утешать может лишь то, что вам пришла в голову «красивая мысль», пусть она и оказалась ошибочной. И потому в физике, как и в любом поле новаторства, приходится блюсти непростое равновесие: выбирать задачи с осторожностью, но с ней не перебарщивать, иначе никогда не родится ничего нового. Именно поэтому так ценна в науке система пожизненных ставок – она обеспечивает безопасность падения, а это необходимо для поддержки творчества.

Если вглядеться в прошлое, может показаться, что Эйнштейнова увлекательная теория фотонов – световых квантов, – должна была немедленно подпитать уйму новых исследований юной квантовой теории. Но современникам Эйнштейна еще предстояло познакомиться со множеством доказательств существования фотона, хватало им и поводов для скептицизма, а работа над фотонной теорией требовала большого интеллектуального авантюризма и смелости.

Даже юные физики, обычно самые неудержимые, пусть речь идет о задаче, которая может не выгореть или, более того, вызвать насмешки, и чье мировоззрение все еще пластично, проходили мимо и темами своих докторских диссертаций и дальнейших трудов выбирали что угодно, только не Эйнштенову чокнутую фотонную теорию.

Без всякого развития прошло почти десять лет. Эйнштейну перевалило за тридцать, он стал довольно взрослым теоретиком-новатором и много времени посвящал другой революционной теме: расширению, или обобщению, своей специальной теории относительности, предъявленной в 1905 году, – чтобы она охватывала и силу тяготения. (Специальная теория относительности – модификация Ньютоновых законов движения, общая теория относительности заместила Ньютонов закон всемирного тяготения, однако потребовала от Эйнштейна скорректировать специальную теорию относительности.) Невнимание Эйнштейна к фотонной теории подтолкнуло Роберта Милликена написать: «Вопреки… с виду полному успеху Эйнштейнова уравнения [для фотоэлектрического эффекта], физическая теория [фотона], кою это уравнение и описывает, до того непригодна, что даже сам Эйнштейн, насколько я понимаю, за нее не держится»[357].

Милликен заблуждался. Эйнштейн не отказался от фотона, однако, поскольку внимание ученого было занято другим, вполне понятно, почему Милликену так показалось. И все же ни фотон, ни квантовая теория, которую он породил, не умерли. Напротив, они вскоре станут звездами – благодаря Нильсу Бору (1885–1962), двадцати-с-чем-то-летнему молодому человеку, который ни укоренился в убеждениях, ни имел достаточно опыта, чтобы отказаться от риска потратить время и бросить вызов нашим представлениям о законах, правящих миром.

* * *

Когда Нильс Бор учился в школе[358], ему рассказывали, как греки придумали натурфилософию, и что уравнения Исаака Ньютона, описывавшие отклик физических тел на воздействие силы тяготения, – первый громадный шаг к пониманию устройства мира, поскольку благодаря им ученые могут производить количественные оценки движения падающих и движущихся по орбите тел. Бора учили и тому, что незадолго до его рождения Максвелл добавил к трудам Ньютона теорию, как предметы взаимодействуют с электрическими и магнитными полями и генерируют их, – и таким образом довел мировоззрение Ньютона до его вершины.

Физики во времена юности Бора, казалось, располагали теорией и сил, и движения, включавшей в себя все взаимодействия, какие есть в природе и известные на ту пору. Бор, однако, не ведал вот чего: на рубеже веков, когда сам он поступил в Университет Копенгагена и принялся за свою научную работу, почти через двести лет все более поразительных успехов мировоззрение Ньютона готово было того и гляди рухнуть.

Как мы уже убедились, ньютонианство оказалось под сомнением, поскольку новая теория Максвелла хоть поначалу и позволила расширить Ньютоновы законы движения на множество других явлений, позднее оказалось, что излучение абсолютно черного тела и фотоэлектрический эффект, например, не укладываются в предсказания Ньютоновой (классической) физики. Однако прорывы в развитии теории, осуществленные Эйнштейном и Планком, стали возможны лишь благодаря техническим нововведениям, позволившим экспериментаторам исследовать физические процессы с участием атома. И именно этот поворот событий вдохновил Бора, поскольку он питал большое почтение – и располагал изрядным даром – к экспериментальной работе.

Годы, посвященные Бором его диссертации, несомненно, увлекательны – особенно тем, кому интересна экспериментальная физика. В те годы технические новшества вроде вакуумированных стеклянных трубок со встроенным в них источником тока – предшественников электронно-лучевых трубок, сиречь экранов старых телевизоров, привели ко множеству важных открытий. Например: открытие Вильгельмом Рентгеном [Вильхельмом Рёнтгеном] лучей, названных его именем (1895); открытие Томсоном электрона (1897); осознание физиком новозеландского происхождения Эрнестом Резерфордом [Разерфордом], что атомы некоторых химических элементов вроде урана или тория испускают загадочное излучение (1899–1903). Резерфорд (1871–1937) описал даже не одного, а целых трех обитателей этого зверинца загадочных лучей – альфа-, бета– и гамма-излучение. По его рассуждению, эти три излучения – ошметки, образующиеся после того, как атомы одного элемента самопроизвольно распадаются и образуют атомы другого элемента.

Открытия Томсона и Резерфорда оказались особенно сродни откровению, поскольку описывали атом и его составляющие, кои, как выяснилось, при помощи законов Ньютона ни описать, ни даже вместить в систему классической физики не получается. И потому эти новые наблюдения, как впоследствии станет ясно, потребовали совершенно нового подхода к физике.

И все же, пусть и теоретические, и экспериментальные успехи того времени кружили голову, первоначальный отклик физического сообщества на большую часть этих успехов свелся к следующему: примем охолонин и сделаем вид, что ничего этого на самом деле не происходит. И потому отмахнулись не только от кванта Планка и фотона Эйнштейна, но и от этих революционных экспериментов.

Эрнест Резерфорд

До 1905 года считавшие атом метафизической чепухой относились к разговорам об электронах, предполагаемых составляющих атома, примерно так же серьезно, как атеист относится к дискуссиям о том, мужчина Бог или женщина. Удивительнее же вот что: тем, кто все-таки верил в существование атомов, электроны не понравились – потому что электрон считался «частью» атома, а атом, по определению, – штука неделимая. До того фантасмагорическим казался электрон Томсона[359], что один знаменитый физик сказал ему, что принял все это за «розыгрыш».

Так же и с предположением Резерфорда о том, что атом одного элемента может распасться до атома другого, – все решили, что оно исходит от человека, отрастившего себе длинную бороду и облачившегося в мантию алхимика. В 1941 году ученые узнали[360], как превратить ртуть в золото – прямо-таки мечта алхимика, – бомбардируя ртуть нейтронами в ядерном реакторе. Но в 1903-м коллегам Резерфорда принять смелые заявления о трансмутации не хватило авантюрности. (При этом, как ни странно, на возню со светящимися радиоактивными цацками, которые им выдал Резерфорд, им авантюрности достало, и они тем самым получили дозу облучения от процесса, который, как они считали, и не происходит вовсе.)

Шквал диковинных статей с результатами исследований и в теоретической, и в экспериментальной физике казался многим, вероятно, примерно тем же, чем нам ныне – обилие литературы по социопсихологии, в которых исследователи регулярно объявляют об открытиях вроде: «Люди, которые едят виноград, чаще попадают в аварии на дороге». Но на самом деле, хоть выводы физиков и выглядели несусветными, они оказались верны. И постепенно накопленные экспериментальные данные, подкрепленные теоретическими доводами Эйнштейна, вынудили физиков принять существование и атома, и его составных частей.

За работу, приведшую к открытию электрона, Томсон получил Нобелевскую премию по физике 1906 года, а Резерфорд – по химии, в 1908 году, за работы, благодаря которым стало ясно, что алхимики в мантиях все же кое-что смекали.

Вот какова была сцена физических исследований 1909 года, на которую взошел Нильс Бор. Он был на пять лет младше Эйнштейна, однако этот разрыв оказался достаточно велик, чтобы Бор попал в другое поколение – в то, которое выходило на поле физики, уже приняв и атом, и электрон, хотя на фотон это доверие все еще не распространялось.

Темой докторской диссертации Бор выбрал анализ и критику теоретических выкладок Томсона. Завершив работу, Бор успешно обратился за грантом, который позволил бы ему трудиться в Кембридже и получать отзывы великого ученого. Обсуждение идей – ключевое свойство науки, и потому обращение Бора к Томсону с критикой, конечно, не равносильно замечанию студента, адресованному Пикассо, дескать, у лиц на ваших картинах перебор углов, – но все же что-то близкое к тому. И Томсон, разумеется, не рвался одарять критика-выскочку вниманием. Бор пробыл рядом почти год, но Томсон так и не обсудил с ним его диссертацию – он ее даже не читал.

Невнимание Томсона оказалось тем самым несчастьем, что помогло счастью: маясь в Кембридже из-за провалившегося плана задействовать Томсона, Бор встретил Резерфорда, заехавшего с визитом. Резерфорд сам работал под началом Томсона в свои молодые годы, но ко времени встречи с Бором уже был ведущим физиком-экспериментатором и директором центра изучения радиации в Университете Манчестера. Резерфорду, в отличие от Томсона, соображения Бора понравились, и он пригласил его к себе в лабораторию на работу.

Резерфорд с Бором составляли странный тандем. Резерфорд – человек-гора, энергичный, широкий и высокий, с сильным лицом и до того раскатистым, громовым голосом, что насылал помехи на чувствительное оборудование. Бор – утонченный и гораздо более мягкий, и на вид, и по натуре, с вислыми щеками, тихим голосом и легким дефектом речи. Резерфорд говорил с густым новозеландским акцентом, Бор – на бедном датском английском. Резерфорд, когда ему перечили, выслушивал с интересом, после чего завершал разговор, не удостаивая собеседника отпором. Бор упивался интеллектуальными стычками и творчески мыслил, лишь когда мог постоянно обмениваться с кем-нибудь мнениями и спорить.

Работа в паре с Резерфордом стала для Бора счастливой передышкой: хотя Бор отправился в Манчестер, думая, что сможет проводить эксперименты с атомом, прибыв туда, он очертя голову набросился на теоретическую модель атома, основанную на Резерфордовых экспериментальных данных, с которой сам Резерфорд и возился. Именно благодаря теоретической работе, которую он проделал по «атому Резерфорда», Бор смог оживить дремавшую квантовую идею и завершить за Эйнштейна работу, посвященную фотону: это Бор поместил представление о фотоне на карту наших знаний – навсегда.

* * *

Когда Бор прибыл в Манчестер, Резерфорд занимался экспериментами, призванными изучить распределение заряда внутри атома. Он решил разобраться с этим вопросом, анализируя особенности воздействия заряженных частиц, если ими стрелять, как пулями, по атому. Он взял альфа-частицы, которые сам же и открыл; мы теперь знаем, что это просто положительно заряженные ядра гелия.

Резерфорд еще не составил свою модель атома, однако допускал, что атом довольно прилично описывается другой моделью – Томсоновой. Протон и атомное ядро еще пока не открыли[361], и в модели Томсона атом состоял из рассеянной жидкости положительного заряда, в которой плавало множество электронов, компенсирующих этот положительный заряд. Поскольку масса электронов очень мала, Резерфорд думал, что, подобно марблам на пути пушечного ядра, они в движении массивных альфа-частиц мало что изменят. А вот гораздо более тяжелую жидкость положительного заряда и то, как она распределена, имело смысл изучать.

Аппарат Резерфорда был прост. Луч альфа-частиц испускало радиоактивное вещество вроде радия, и этот луч направляли на тоненькую золотую фольгу. Позади фольги размещался маленький экран. Альфа-частицы проходили сквозь фольгу и ударялись в экран, от чего получались крошечные почти невидимые вспышки света. Сидя перед экраном с лупой можно, несколько напрягшись, засечь место вспышки и определить, насколько отклонилась альфа-частица при соударении с атомами фольги.

Хотя Резерфорд уже прославился на весь мир, его работа и рабочее пространство были далеки от шикарных. Лаборатория – сырой мрачный подвал, по полу и потолку проложены трубы. Потолок так низок, что цепляешься головой, а пол такой неровный, что можно было налететь на трубу в полу еще до того, как утихнет боль от удара головой. Самому Резерфорду для проведения замеров терпения не хватало, и как-то раз пару минут попытавшись половить вспышки, он выругался и бросил это дело. Его ассистент, немец Ганс Гейгер [Ханс Хайгер], напротив, был богом однообразной деятельности. Ирония истории: позднее он перечеркнет ценность этой своей добродетели, изобретя счетчик имени себя самого.

Резерфорд предполагал, что тяжелые, положительно заряженные альфа-частицы по большей части будут пролетать сквозь фольгу в зазорах между атомами золота слишком далеко от них, и потому искривление траектории будет незаметно. Однако некоторые, рассуждал он, все же пролетят сквозь один или даже несколько атомов и потому отклонятся – самую малость от прямой, из-за отталкивания их рассеянного положительного заряда. Эксперимент в целом, несомненно, прояснит устройство атома, но скорее благодаря чистой удаче, нежели в соответствии с тем, как Резерфорд его замыслил.

Поначалу все данные, собранные Гейгером, соответствовали ожиданиям Резерфорда и совпадали с моделью Томсона. Но однажды в 1909 году Гейгер предложил «небольшое исследование» юному студенту Эрнесту Марсдену – просто чтоб пороху нюхнул. Резерфорд, сидя на занятиях по теории вероятностей на математическом факультете, подумал, что есть небольшая вероятность отклонения альфа-частиц на некий больший угол, нежели позволял зарегистрировать Резерфордов прибор. И он предложил Гейгеру поручить Марсдену провести модифицированный эксперимент и проверить эту возможность.

Марсден принялся искать частицы, отклонявшиеся в полете от прямой сильнее, чем до него искал Гейгер, – даже с таким большим углом отклонения, что, окажись это правдой, нарушило бы всё, что Резерфорд «знал» об устройстве атома. Задача, по мнению Резерфорда, почти точно равнялась колоссальной потере времени. Иными словами, отличная для студиозуса задачка.

Марсден прилежно следил, как альфа-частицы одна за другой пролетали сквозь фольгу в полном соответствии с ожиданиями, без всяких резких отклонений. И тут случилось нечто практически невообразимое: на экране, расположенном сильно в стороне, возникла вспышка. В конце концов из многих тысяч альфа-частиц, которые пронаблюдал Марсден, лишь горстка отклонилась под большими углами, а парочка отлетела назад, почти как бумеранг. Этого было достаточно.

Услыхав эти новости, Резерфорд сказал, что это «едва ли не самое невероятное событие в моей жизни. Это почти так же невероятно, как стрелять 15-дюймовыми снарядами по бумажной салфетке и получать их рикошетом назад»[362]. Такой отзыв объясняется вот чем: вся его математика говорила ему, что должно быть в золотой фольге нечто немыслимо крошечное и мощное, чтобы возникали, пусть и редко, столь сильные отклонения в траектории. Вот так Резерфорд не прояснил модель Томсона – он установил, что модель Томсона ошибочна.

Эксперимент Резерфорда с золотой фольгой

Перед проведением эксперимента Марсденом весь этот проект казался несуразным – вроде той деятельности, от которой меня отговаривал Фейнман. Однако в течение века, последовавшего за этим экспериментом, его возносили как гениальный. И, разумеется, без него вряд ли возник бы «атом Бора», а это значит, что и непротиворечивая теория кванта возникла бы – если бы вообще возникла – на много лет позже. Что, в свою очередь, сильно повлияло бы на наш так называемый технический прогресс. Уж точно отсрочилась бы разработка атомной бомбы, а значит, ее не сбросили бы на Японию и тем спасли жизни многим-многим невинным японским гражданам, но, возможно, это стоило бы жизней многих-многих солдат, которые сгинули бы при вторжении союзников. Отложились бы многие другие изобретения – транзистор, например, а без него не началась бы компьютерная эра. Трудно в точности оценить все последствия, если бы тот единственный, с виду бессмысленный студенческий эксперимент не состоялся, но можно с уверенностью говорить, что мир сегодня выглядел бы несколько иначе. И вновь мы видим тонкую грань между странноватым чокнутым проектом и новаторской мыслью, которая меняет всё.

В дальнейшем Резерфорд курировал много других экспериментов, в которых Гейгер и Марсден пронаблюдали более миллиона вспышек. На собранных данных он составил свою теорию устройства атома, отличную от Томсоновой, но она все еще описывала электроны как обращающиеся по концентрическим орбитам тела, однако положительный заряд более не был рассеян, а наоборот – собран в крошечном центре атома. Гейгер с Марсденом, впрочем, вскоре каждый пошли своей дорогой[363]. Во время Первой мировой войны они воевали на противоположных сторонах, а во Второй мировой применяли свои знания против друг друга: Марсден трудился над новой технологией радара, а Гейгер, поддерживая нацистов, участвовал в разработке немецкой атомной бомбы.

Атом Резерфорда – модель, которой нас учат в средней школе: электроны вращаются вокруг ядра, как планеты – вокруг Солнца. Как и многие научные представления, это, если свести его к повседневным похожим примерам вроде школьного, смотрится неприхотливо, однако подлинная гениальность этой модели – именно в «технических» затейливостях, утерянных при усушке и утруске, неизбежных при составлении простых схем. Интуитивная картинка – вещь полезная, однако любую мысль в физике делают жизненной математические следствия. И потому физик должен быть не просто мечтателем, но и техником.

Предсказанное отклонение альфа-частиц: по Томсону (слева) и по Резерфорду (справа)

Резерфорду-мечтателю эксперимент подсказал, что львиная доля массы атома и весь его положительный заряд должны быть сосредоточены в центре его, в невероятно крошечном шарике заряженной материи, настолько плотной, что одна чашка ее будет весить в сто раз больше Эвереста[364]. (То, что ни вы, ни я и близко не такие тяжелые, – подтверждение факта, что ядро есть малюсенькая точка в центре атома, который в основном – пустое пространство.) Позднее Резерфорд назовет эту центральную часть атома ядром.

Резерфорд-техник одолел сложные математические расчеты и обнаружил: если картина, которую он себе представляет, действительно верна, в экспериментах должно было получаться именно то, что наблюдала его команда. Большинство быстрых и тяжелых альфа-частиц пролетит сквозь золотую фольгу, мимо крохотных атомных центров, и в результате траектория их полета изменится лишь слегка. Меж тем некоторые, пролетающие вблизи ядер, столкнутся с сильным полем и претерпят значительное отклонение от прямого маршрута. Мощь этого силового поля – прямо-таки из научной фантастики, как для нас – силовые поля из фильмов. Но пусть мы не имеем возможности генерировать поля такой силы в макромире, они существуют внутри атома.

Важный нюанс открытия Резерфорда: положительный заряд ядра сосредоточен в его центре, а не распределен равномерно по объему. Его представление, будто электроны вращаются вокруг ядра подобно планетам вокруг Солнца, напротив, было совершенно ошибочным – и он это понимал.

Во-первых, аналогия с Солнечной системой не учитывает взаимодействия между планетами этой системы, – как не учитывает она и взаимодействия между разными электронами внутри атома. Эти взаимодействия совсем не одинаковы. Планеты, у которых солидная масса, но никакого общего электрического заряда, взаимодействуют гравитационно; электроны, у которых есть заряд, а масса мала, взаимодействуют электромагнитно. Сила тяготения чрезвычайно слаба, и потому притяжение планет друг к другу настолько мало, что для многих практических целей им можно пренебречь; электроны же воздействуют друг на друга мощнейшим электромагнитным отталкиванием, которое быстро нарушило бы аккуратненькие круговые орбиты.

Во-вторых – и это вопиющая нестыковка, – и планеты, и электроны, двигайся они по кругу, испускали бы волны энергии: планеты – гравитационной, электроны – электромагнитной. Опять-таки, сила тяготения очень слаба, и за миллиарды лет существования нашей Солнечной системы планеты потеряли ну, может, несколько процентов своей энергии. (На самом деле об этом эффекте и не догадывались, пока в 1916 году его не предсказала теория тяготения Эйнштейна.) Электронное же взаимодействие настолько сильно, что, согласно теории Максвелла, движущиеся по орбите электроны Резерфорда испустят всю свою энергию и плюхнутся на ядро примерно за одну стомиллионную секунды. Иными словами, если бы модель Резерфорда была верна, Вселенной в известном нам виде не существовало бы.

Вот она, расчетная оценка, какая запросто может потопить любую теорию: объявление о том, что Вселенной не существует. Так отчего же тогда относиться к такой теории серьезно?

Здесь возникает еще одна важная особенность развития науки: большинство теорий – не потрясающие новости планетарного масштаба, а, скорее, частные модели, нацеленные на описание конкретной ситуации. И потому, даже если в них есть недочеты, и сам автор модели знает, что не во всех случаях она работает, польза от нее все равно может быть.

В случае с атомом Резерфорда физики, занятые изучением атома, оценили, что эта модель дает точные прогнозы устройства ядра, и постановили, что дальнейшие эксперименты проявят, каких ключевых фактов не достает, чтобы разобраться, как во всё это встроены электроны и почему атом стабилен. Неочевидно было другое: атому требовалось не просто объяснение похитрее – нужно было революционное объяснение. Бледный и скромный Нильс Бор, однако, смотрел на все иначе. Юному Бору атом Резерфорда и его противоречия виделись стогом сена, в котором притаилась золотая иголка. И он был исполнен решимости ее найти.

* * *

Бор задался вопросом: если атом не испускает волн энергии, как того требует классическая теория (по крайней мере, согласно модели Резерфорда), может ли так быть, что атом не подчиняется классическим законам? Следуя этому рассуждению, Бор обратился к работе Эйнштейна о фотоэлектрическом эффекте. Он задумался, что может получиться, если включить атом в представление о кванте. То есть а что если атом, как световые кванты Эйнштейна, может иметь энергию лишь определенного значения? Эта мысль привела его к пересмотру модели Резерфорда и созданию того, что впоследствии станет называться Боровской моделью атома.

Бор применил этот подход к простейшему атому – атому водорода, состоящему из одного электрона, обращающегося вокруг ядра, которое представляет собой одинокий протон. Трудность этого предприятия[365] можно проиллюстрировать фактом, что в те поры такое простое устройство атома водорода не было очевидным: из серии экспериментов, проведенных Томсоном, Бору пришлось сделать вывод, что у водорода всего один электрон.

Ньютонова физика дает расчетную оценку, что электрон может обращаться по орбите вокруг ядра (которое в случае водорода – просто протон) на любом расстоянии, если скорость и энергия его имеют подходящие значения, определяемые этим расстоянием. Чем меньше расстояние от электрона до протона, тем ниже должна быть энергия атома. Однако предположим, в духе Эйнштейна, что собираемся воспротивиться теории Ньютона, введя новый закон, повелевающий атому – по некой неведомой пока причине – иметь не какое попало значение энергии, а лишь взятое из дискретного набора возможностей. Поскольку радиус орбиты определяется энергией, это ограничение на допустимые значения энергии означает ограничение возможных значений радиусов орбит, по которым может перемещаться электрон. Сделав такое допущение, мы говорим, что энергия атома и радиусы электронных орбит квантуются.

Бор постановил: если свойства атома квантуются, электрон не может непрерывно съезжать по спирали к ядру и терять энергию, как велит классическая Ньютонова теория, – электрон может терять энергию только «порциями», переходя с одной разрешенной орбиты на другую. Боровская модель подразумевает, что электрон в атоме, возбуждающемся при поступлении энергии извне – например, от фотона, – переходит на одну из более удаленных от ядра и более энергетически насыщенных орбит. А всякий раз, когда происходит скачок на орбиту поближе к ядру, с энергией пониже, испускается квант света – фотон, а его частота соответствует разнице в энергиях между двумя орбитами.

Теперь предположим, что, опять-таки по доселе неведомой причине, есть самая близкая к ядру допустимая орбита – с самой низкой энергией, которую Бор назвал «основным уровнем». В этом случае, когда электрон достигает этого состояния, он более не может терять энергию и потому не падает на ядро, как предсказывала модель Резерфорда. Бор предположил, что похожая, но, быть может, более сложная схема применима и к другим химическим элементам, в чьих атомах много электронов: он считал квантование ключом к устойчивости Резерфордова атома, а следовательно – и всей материи во Вселенной.

Страницы: «« 123456 »»

Читать бесплатно другие книги:

«Сказки и Рождественские истории в лицах» – это сборник произведений для детей 5-12 лет, их родителе...
В книге рассказывается история, основанная на реальных событиях, об агентстве знакомств, которое осу...
В сборнике представлены стихотворения из разных циклов. Это вторая книга автора. В стихотворениях ра...
Все, что она хотела — это найти равновесие в своей жизни. Точку опоры, которая поможет ей принять вс...
Проклятый остров считается самым опасным местом в океане, поэтому морской бог допускает туда лишь из...
В книге рассказывается об интересных особенностях монументального декора на фасадах жилых и обществе...