Величайшие математические задачи Стюарт Иэн
Сценарий Ся учитывает и эффект пращи. Четыре планеты равной массы образуют две тесные пары, которые обращаются вокруг общих центров масс в двух параллельных плоскостях. Эти «ракетки», состоящие каждая из двух тел, играют в звездный теннис пятым, более легким телом, которое носится туда-сюда между ними по траектории, перпендикулярной плоскостям. Система устроена так, что всякий раз, когда этот «теннисный мячик» проходит мимо пары планет, эффект пращи ускоряет его и одновременно отталкивает пару планет прочь вдоль линии, соединяющей обе пары. Таким образом, «теннисный корт» с каждым ударом немного удлиняется, а игроки расходятся дальше. Энергия и импульс сохраняются в равновесии, поскольку две планеты, нанося «удар», придвигаются чуть ближе друг к другу и чуть ускоряют движение вокруг центра масс. При правильных начальных условиях пары планет расходятся все быстрее, и скорость их расхождения растет так стремительно, что они улетают в бесконечность за конечное время. При этом и «теннисный мяч» колеблется между ними все быстрее и быстрее. В сценариях разбегания Гервера тоже используется эффект пращи.
Но приложим ли этот фокус с исчезновением к реальным небесным телам? Нет, если подходить к вопросу буквально. В этих сценариях важно, чтобы тела были материальыми точками. Для многих задач из небесной механики это достаточно разумное приближение, но не тогда, когда тела должны проходить на произвольно малых расстояниях друг от друга. Если бы тела конечных размеров действительно так делали, то рано или поздно они непременно столкнулись бы. Кроме того, релятивистские эффекты не позволили бы телам двигаться быстрее света и изменили бы закон гравитации. Во всяком случае начальные условия и дополнительное условие равенства некоторых масс в реальности, вероятно, никогда бы не выполнились. Тем не менее эти любопытные примеры показывают, что, хотя уравнения небесной механики, как правило, очень хорошо моделируют реальность, они могут иметь сложные сингулярности, которые не позволят решениям существовать в каждый момент времени. Не так давно ученые поняли, что в системе тройной звезды, где звезды движутся по сложным траекториям, эффект пращи может в какой-то момент выбросить одну из звезд наружу с большой скоростью. Так что вполне может оказаться, что галактику (а может, и межгалактическое пространство) бороздит несметное количество звезд-сирот — холодных, одиноких, нежеланных и невидимых, изгнанных братьями из своих систем.
Когда дифференциальное уравнение ведет себя так странно, что его решения через конечный промежуток времени лишаются всякого смысла, мы говорим, что возникает сингулярность. Описанная выше работа по задаче множества тел на самом деле посвящена различным типам сингулярности. В задаче тысячелетия, связанной с уравнением Навье — Стокса, спрашивается, могут ли сингулярности возникать в задачах с начальными условиями для жидкости, занимающей либо все пространство, либо плоский тор. Если сингулярность может сформироваться за конечное время, результатом, скорее всего, станет разрушение решения, разве что сингулярность разрешится позже сама собой, что представляется маловероятным.
Существует два основных подхода к этим вопросам. Можно попытаться доказать, что сингулярностей не возникает, а можно попытаться найти одну из них, подобрав подходящие начальные условия. В том и другом могут помочь численные решения: они могут предложить полезные общие свойства потоков, а могут дать кое-какие указания на возможную природу потенциальных сингулярностей. Однако в численных решениях потенциально теряется точность, поэтому к любым указаниям такого рода следует относиться с осторожностью и обосновывать их более строго.
В попытках доказать регулярность, т. е. отсутствие сингулярностей, ученые пытаются получить контроль над потоком при помощи целого ряда методов. Среди них сложные оценки величины тех или иных ключевых переменных или еще более абстрактные методики. Популярный подход предлагает воспользоваться так называемыми слабыми решениями, которые являются не потоками в точном смысле этого слова, а более общими математическими структурами с некоторыми свойствами потоков. Известно, к примеру, что набор сингулярностей любого слабого решения трехмерных уравнений Навье — Стокса всегда мал.
Уже исследованы многие сценарии, которые могли бы вести к сингулярностям. Так, в 1941 г. Андрей Колмогоров разработал стандартную на сегодня модель турбулентности в виде каскада бесконечно уменьшающихся вихрей. Он предположил, что на очень мелких масштабах все формы турбулентности выглядят исключительно похоже. Пропорции вихрей заданного размера, к примеру, подчиняются универсальному закону. В настоящее время известно, что по мере уменьшения вихри меняют форму, становятся длиннее и тоньше и образуют элементарные струйки. Из закона сохранения момента импульса следует, что завихренность — степень закрученности вихрей — должна возрастать. Этот процесс называется растягиванием вихрей, и именно такое поведение, в принципе, может привести к сингулярности: к примеру, если мельчайшие вихри растянулись бы и стали бесконечно длинными за конечное время, а завихренность в некоторых точках стала бы бесконечной.
На рис. 43 можно увидеть сильно увеличенное изображение турбулентного потока, смоделированного Пабло Мининни и его коллегами с использованием программы VAPOR — платформы визуализации и анализа для океана, атмосферы и солнечных исследований. На изображениях видна интенсивность завихренности: насколько быстро вращается жидкость. Они иллюстрируют формирование вихревых струек (видны как длинные тонкие структуры) и показывают, что элементарные струйки могут собираться в пучки и образовывать более крупные структуры. Программа позволяет проводить моделирование на кубической решетке более чем с тремя миллиардами узловых точек.
В статье, посвященной этой теме и размещенной на сайте Института Клэя, Чарльз Фефферман написал:
«Существует множество интереснейших задач и гипотез о поведении решений уравнений Эйлера и Навье — Стокса… Поскольку мы не знаем даже, существуют ли эти решения, наши представления о них находятся на очень примитивном уровне. Стандартные методы [из теории дифференциальных уравнений в частных производных] представляются недостаточными для решения этой задачи. Вместо этого нам, вероятно, требуются новые глубокие идеи».
Сложность потока на изображениях, подобных рис. 43, помогает представить себе трудности, с которыми, вероятно, столкнутся исследователи в поисках таких идей. Но математики не сдаются — они продолжают идти вперед, пытаясь отыскать простые принципы в видимой сложности.
13. Квантовая головоломка. Массовая щель
В нескольких километрах к северу от Женевы граница между Швейцарией и Францией делает резкий изгиб. На поверхности в этом месте видны лишь проселочные дороги и небольшие деревеньки. Но под землей, на глубине от 50 до 175 м, находится самый крупный на планете научный прибор. Это гигантский кольцевой туннель более 8 км в диаметре, соединенный с другим, меньшим (примерно вчетверо) туннелем. Большая его часть находится под территорией Франции, но две секции приходятся на Швейцарию. По туннелям проложено по паре труб, которые сходятся в четырех точках.
Это Большой адронный коллайдер стоимостью €7,5 млрд (около $9 млрд). С его помощью ученые ведут исследования на переднем крае физики элементарных частиц. Ключевой целью 10 000 ученых более чем из 100 стран, вместе работающих на этой экспериментальной установке, было найти бозон Хиггса или не найти его, если так устроена Вселенная. Частица эта нужна была, чтобы дополнить Стандартную модель элементарных частиц, согласно которой все во Вселенной состоит из элементарных частиц 17 разновидностей. В теории бозон Хиггса — то, что придает всем частицам массу.
В декабре 2011 г. два основных детектора Большого адронного коллайдера — ATLAS и CMS — независимо друг от друга обнаружили предварительные свидетельства существования бозона Хиггса с массой около 125 ГэВ (гигаэлектронвольт — единица, которую в физике элементарных частиц используют для обозначения равно массы и энергии, поскольку то и другое эквивалентно). А 4 июля 2012 г. ЦЕРН — Европейский центр ядерных исследований, управляющий Большим адронным коллайдером, — объявил заинтересованной аудитории ученых и научных журналистов, что Вселенная высказалась в пользу Хиггса. Обе группы собрали большое количество дополнительных данных, и вероятность того, что данные показали случайную флуктуацию, а не присутствие новой частицы с хиггсовскими характеристиками, составляет теперь менее одной двухмиллионной. Именно такую степень уверенности традиционно требуют в физике элементарных частиц, прежде чем открывать шампанское.
Только дальнейшие эксперименты позволят с уверенностью сказать, обладает ли новая частица всеми теми свойствами, которые теоретически должны быть у бозона Хиггса. К примеру, теория предсказывает, что спин бозона Хиггса должен быть равен нулю, а на момент объявления наблюдаемые данные указывали на значение 0 либо 2. Может также оказаться, что «настоящий» бозон Хиггса состоит из других, меньших частиц или что это всего лишь первая ласточка из нового семейства хиггсоподобных частиц. В итоге либо существующая модель элементарных частиц будет подтверждена и закреплена, либо мы получим новую информацию, которая со временем позволит нам разработать другую, лучшую теорию.
Последняя из семи задач тысячелетия тесно связана со Стандартной моделью и бозоном Хиггса. Это центральный вопрос квантовой теории поля — математической области, в рамках которой изучается физика элементарных частиц. Его еще называют гипотезой «щели» в спектре масс, и он устанавливает конкретный нижний предел для возможной массы элементарной частицы. Это лишь одна репрезентативная задача, выбранная из целой серии крупных нерешенных вопросов в этой новейшей области математической физики, и она связана как с вопросами из самых передовых разделов чистой математики, так и с давней мечтой физиков — теорией, которая объединила бы две важнейшие физические теории: общую теорию относительности и квантовую теорию поля.
В классической ньютоновой механике фундаментальными физическими понятиями являются пространство, время и масса. Пространство считается трехмерным и евклидовым, время — одномерная величина, не зависящая от пространства, а масса указывает на присутствие вещества. Массы изменяют свое положение в пространстве под действием различных сил, и скорость, с которой меняется их положение, измеряется относительно времени. Ньютонов закон движения описывает, как ускорение тела (скорость изменения его скорости, которая, в свою очередь, отражает скорость изменения его позиции) соотносится с его массой и приложенной к нему силой.
Классические теории пространства, времени и вещества поднялись на максимальную высоту в уравнениях электромагнетизма, предложенных Джеймсом Максвеллом. Эта элегантная система уравнений объединила две силы природы, которые раньше рассматривались исключительно по отдельности. Оказалось, что вместо отдельных явлений электричества и магнетизма существует единое электромагнитное поле. Это поле пронизывает все пространство, как если бы Вселенная была наполнена какой-то невидимой жидкостью. В каждой точке пространства мы можем измерить величину и направление этого поля, как будто эта жидкость течет по математическим законам. Конечно, для некоторых целей электромагнитное поле можно разбить на два компонента, два поля: электрическое и магнитное. Но переменное магнитное поле порождает электрическое поле, и наоборот, так что, когда дело доходит до динамики, оба они должны рассматриваться совместно, как единое более сложное поле.
Эта удобная и уютная картина физического мира, в котором фундаментальные физические концепции описывали предметы и явления, воспринимаемые с помощью человеческих органов чувств, резко изменилась в самом начале XX в. Именно тогда физики начали понимать, что на очень маленьких масштабах, слишком мелких для тогдашних микроскопов и вообще каких бы то ни было средств наблюдения, вещество выглядит совсем не так, как считалось прежде. Физики и химики начали принимать всерьез странную теорию, возникшую более 2000 лет назад и восходящую к философствованиям древнего грека Демокрита и индийских ученых. Идея заключалась в том, что, хотя мир, судя по всему, сделан из бесчисленного множества различных материалов, все вещество на самом деле построено из крохотных частичек — атомов. Слово «атом» по-гречески означает «неделимый».
Химики XIX в. нашли немало косвенных свидетельств существования атомов: элементы, соединяясь вместе и образуя более сложные молекулы, делают это в очень конкретных соотношениях, часто близких к целым числам. Джон Дальтон сформулировал свои наблюдения в виде закона кратных пропорций и предложил в качестве объяснения атомы. Если каждое химическое соединение состоит из фиксированного числа атомов разных видов, то такое соотношение появится автоматически. К примеру, нам сегодня известно, что каждая молекула двуокиси углерода состоит из двух атомов кислорода и одного атома углерода, так что атомы в этом веществе всегда будут присутствовать в отношении два к одному. Однако есть и сложности: разные атомы имеют разную массу, а многие элементы существуют в виде молекул, состоящих из нескольких атомов — к примеру, молекула кислорода состоит из двух атомов кислорода. И если вы не понимаете, что происходит, то решите, что атом кислорода вдвое массивнее, чем на самом деле. Кроме того, некоторые распространенные элементы на самом деле представляют собой смесь разных «изотопов» — атомных структур. К примеру, хлор существует в природе в виде смеси двух стабильных форм, известных как хлор-35 и хлор-37 в соотношении примерно 76 и 24 % соответственно. Так что наблюдаемый «атомный вес» хлора равен 35,45. Зарождающаяся атомная теория интерпретировала это как «атом хлора состоит из тридцати пяти с половиной атомов водорода». А это означало, что атом не является неделимым. Век XX уже начался, а большинство ученых по-прежнему считало, что принятие атомной теории — слишком решительный шаг, чтобы сделать его, основываясь на таких данных.
Некоторые ученые, в первую очередь Максвелл и Людвиг Больцман, продвинулись дальше других и были убеждены, что газы — это тонко распределенные наборы молекул и что молекулы получаются при соединении атомов. Большинство их коллег убедило, судя по всему, данное Эйнштейном объяснение броуновского движения — хаотичного движения крохотных частиц взвеси, видимых под микроскопом. Эйнштейн решил, что эти подергивания вызываются столкновениями с хаотично движущимися молекулами жидкости. Он также провел кое-какие численные расчеты, подтвердившие эту точку зрения. Жан Перрен в 1908 г. подтвердил эти предположения экспериментально. Возможность видеть действие предполагаемых неделимых частиц вещества и делать на основании увиденного численные предсказания оказалась для ученых гораздо более убедительной, чем философские рассуждения и занятная нумерология. В 1911 г. Амедео Авогадро[6] разобрался в проблеме изотопов, и существование атомов было признано окончательно.
Пока все это происходило, кое-кто из ученых начал понимать, что атомы вовсе не являются неделимыми. Они обладают структурой, и от них можно отбивать маленькие кусочки. В 1897 г. Джозеф Томсон, экспериментируя с катодными лучами, открыл, что атомы можно заставить испускать еще более мелкие частицы, электроны. И не только это: оказалось, что атомы разных элементов испускают одни и те же частицы. При помощи магнитного поля Томсон показал, что электроны несут отрицательный электрический заряд. Но атом электрически нейтрален, так что в нем должна быть какая-то часть, обладающая положительным зарядом. Обдумав это, Томсон предложил модель атома, известную как «пудинг с изюмом»: атом похож на положительно заряженный пудинг с отрицательно заряженными электронами-изюминками внутри. Но в 1909 г. Эрнест Резерфорд, один из бывших студентов Томсона, провел эксперимент и продемонстрировал, что большая часть массы атома сосредоточена возле его центра. Пудинги такими не бывают.
Как можно экспериментально прозондировать такую крохотную область пространства? Представьте себе участок земли, на котором могут быть здания и другие сооружения, а может и не быть ничего. Вам не позволяется входить на эту территорию, к тому же вокруг темно, хоть глаз выколи, и ничего не видно. Однако у вас есть винтовка и неограниченный запас патронов. Вы можете стрелять наугад в направлении участка и отслеживать направление, в котором пули из него вылетают. Если участок напоминает пудинг с изюмом, то большая часть пуль пролетит насквозь по прямой. Если вам придется время от времени уворачиваться от пуль, срикошетивших прямо на вас, то можно будет сделать вывод, что впереди находится что-то довольно твердое. Наблюдая за тем, как часто пули вылетают с участка под тем или иным углом, вы сможете оценить размеры твердого объекта.
Пулями Резерфорда стали альфа-частицы — ядра атомов гелия, а участком земли для него служила тончайшая золотая фольга. Работа Томсона показала, что электроны-изюминки обладают очень малой массой, так что почти вся масса атома должна была приходиться на сам пудинг. Если бы в пудинге не было уплотнений, то большая часть альфа-частиц должна была бы пролетать насквозь. Лишь некоторые частицы могли отклоняться от своего пути, и то ненамного. Вместо этого оказаось, что небольшая, но заметная часть альфа-частиц отклонялась на достаточно большие углы, что явно не соответствовало картине пудинга. Резерфорд предложил другую метафору, которой мы часто пользуемся и сегодня, несмотря на существование более современных моделей. Речь идет о планетарной модели атома. Атом подобен Солнечной системе, предположил Резерфорд: в нем есть громадное центральное ядро, «солнце» системы, а вокруг ядра, подобно планетам, обращаются электроны. Поэтому атом, как и Солнечная система, по большей части представляет собой пустое пространство.
Резерфорд пошел дальше и нашел доказательства того, что ядро состоит из двух различных типов частиц: протонов, несущих положительный заряд, и нейтронов с нулевым зарядом. Массы тех и других очень близки и примерно в 1800 раз превосходят массу электрона. Таким образом, атомы не только не являются неделимыми, но и состоят из еще более мелких субатомных частиц. Эта теория объясняет целочисленную нумерологию химических элементов: оказывается, подсчитывается не что-нибудь, а количество протонов и нейтронов. Кроме того, она объясняет изотопы: добавление или удаление нескольких нейтронов изменяет массу атома, но сохраняет его суммарный нулевой заряд и число электронов, равное числу протонов. Химические свойства атома определяются в основном его электронами. К примеру, хлор-35 содержит 17 протонов, 17 электронов и 18 нейтронов; хлор-37 17 протонов, 17 электронов и 20 нейтронов. Атомная масса 35,45 возникает потому, что природный хлор представляет собой неравную смесь этих двух изотопов.
В начале XX в. появилась и новая теория, применимая к веществу в масштабе субатомных частиц. Она получила название «квантовая механика», и после ее появления физика принципиально изменилась и уже никогда не будет прежней. Квантовая механика предсказала множество новых явлений, которые затем удалось пронаблюдать в лаборатории, и существование новых элементарных частиц. Она также помогла понять прежде не поддававшиеся объяснению явления. Наконец, она изменила наши представления о Вселенной, поскольку классический ее образ, несмотря на великолепную согласованность со всеми предыдущими наблюдениями, оказался неверен. Человеческие органы чувств плохо приспособлены для восприятия реальности на фундаментальном уровне.
В классической физике вещество состоит из частиц, а свет представляет собой волну. В квантовой механике свет тоже частица, фотон; и наоборот, вещество (к примеру, электроны) может иногда вести себя как волна. Прежнее четкое деление на волны и частицы не то чтобы размывается, а вовсе исчезает, сменяясь корпускулярно-волновым дуализмом. Если воспринимать все буквально, планетарная модель атома работала не слишком хорошо, поэтому вскоре появился новый образ. Электроны не обращаются вокруг ядра, как планеты вокруг Солнца, а образуют размытое облако с центром в ядре — облако вероятностей, а не чего-то конкретного. Плотность облака в некоторой точке соответствует вероятности обнаружить в данной точке электрон.
Итак, помимо протонов, нейтронов и электронов физики знали еще одну субатомную частицу — фотон. Вскоре появились и другие. Кажущееся нарушение закона сохранения энергии побудило Вольфганга Паули предложить коллегам исправить положение — постулировать существование нейтрино, невидимой и практически необнаружимой новой частицы, которая объяснила бы утечку энергии. Необнаружимость частицы, однако, оказалась неполной, что позволило в 1956 г. подтвердить ее существование. После этого как будто распахнулись шлюзы. Пионы, мюоны, каоны посыпались как из рога изобилия (последние были открыты в результате наблюдения космических лучей). Появилась новая дисциплина — физика элементарных частиц, и первым ее рабочим инструментом стал метод Резерфорда, позволявший проводить зондирование на тех невероятно малых масштабах, о которых шла речь: чтобы выяснить, как устроен тот или иной объект, нужно бомбардировать его разными «снарядами» и смотреть на результат. Началось строительство и использование все более масштабных ускорителей частиц — по существу, орудий, стреляющих теми самыми пробными снарядами. Стэнфордский линейный ускоритель имел длину 3 км. Чтобы не строить ускорителей длиной в целый континент, их стали изгибать и замыкать в круг, чтобы частицы могли беспрерывно двигаться по ним, одновременно набирая колоссальные скорости. Это серьезно усложнило технологию, поскольку частицы при движении по кругу излучают энергию, но с этим научились справляться.
Первым результатом этих трудов стал растущий каталог элементарных вроде бы частиц. Энрико Ферми так выразил свое разочарование: «Если бы я мог запомнить названия всех этих частиц, я был бы ботаником». Однако время от времени в квантовой теории появлялись новые идеи, и список вновь менялся: предлагались очередные мельчайшие частицы, чтобы объединить уже наблюдавшиеся структуры.
Вначале квантовая механика описывала отдельные волноподобные или частицеподобные явления, но никто не мог вразумительно описать квантово-механический аналог поля. Однако игнорировать этот пробел было невозможно, потому что частицы, описываемые квантовой механикой, могут взаимодействовать и взаимодействуют с полями, которые на тот момент квантовой механикой не описывались. Представьте, что кто-то захотел бы выяснить, как движутся планеты Солнечной системы, притом что ньютоновы законы движения (описывающие, как движутся массы под действием сил) были бы известны, а вот его же закон тяготения (объясняющий, что представляют собой эти силы) — нет.
Но помимо частиц была и другая причина стремиться прояснить вопрос с полями. Благодаря корпускулярно-волновому дуализму то и другое теснейшим образом связано. По существу, частица — это скомканный кусочек поля, а поле — это море плотно упакованных частиц. Эти две концепции неразделимы. К несчастью, разработанные к тому моменту методы были основаны на том, что частицы похожи на крохотные точки, и никак не распространялись на поля. Невозможно просто согнать множество частиц в одно место и назвать то, что получилось, полем, потому что частицы взаимодействуют друг с другом.
Представьте толпу людей… к примеру, в поле. Может быть, они собрались там послушать рок-концерт. Если посмотреть из пролетающего вертолета, толпа людей похожа на жидкость, хлюпающую в поле — часто буквально, как, к примеру, на фестивале в Гластонбери: известно, что поле там превращается в море грязи. Внизу, на земле, становится ясно, что на самом деле жидкость — это бурлящая масса отдельных частиц: людей. Или, возможно, тесных небольших групп людей, таких как несколько гуляющих вместе друзей, которые представляют собой неделимую единицу, или как группа незнакомых людей, объединенных общей целью — к примеру, походом в бар. Но невозможно точно смоделировать толпу, просто сложив воедино поведение отдельных людей (то, как они вели бы себя в одиночестве). Направляясь к бару, одна группа преграждает путь другой, группы сталкиваются и перемешиваются. Разработка эффективной квантовой теории поля напоминает моделирование поведения толпы, в которой роль людей выполняют локализованные квантовые волновые функции.
К концу 1920-х гг. физики убедились (в частности, при помощи подобных рассуждений), что, как бы трудна ни была задача, квантовую механику придется расширять, чтобы она могла описывать не только частицы, но и поля. Естественной отправной точкой для этого стало электромагнитное поле. Необходимо было каким-то образом квантовать и электрический, и магнитный его компоненты, т. е. переписать его характеристики на языке квантовой механики. Но тут возникали сложности. Математический аппарат квантовой механики был незнаком и к тому же выглядел крайне нефизически. То, что можно было увидеть и измерить, уже не выражалось добрыми старыми числами, а соответствовало операторам гильбертова пространства: математическим правилам, разработанным для работы с волнами. Эти операторы нарушали обычные постулаты классической механики. При перемножении двух чисел результат не зависит от их порядка; к примеру, 2 3 и 3 2 — это одно и то же. Это свойство сложения, известное как коммутативность, нарушается для многх пар операторов — примерно так же, как надеть сначала носки, а затем ботинки, не то же самое, что сначала надеть ботинки, а затем носки. Числа — существа пассивные, а вот операторы — активны. Действие, которое вы произведете первым, подготавливает сцену для дальнейших событий.
Коммутативность — очень приятное математическое свойство. Его отсутствие раздражает и мешает, поэтому, в частности, квантование поля оказалось такой хитрой задачей. Тем не менее она решаема. Электромагнитное поле удалось квантовать в несколько этапов. Начался этот процесс с теории электрона Дирака (1928 г.), а завершили его Синъитиро Томонага, Джулиан Швингер, Ричард Фейнман и Фримен Дайсон в конце 1940-х — начале 1950-х гг. Получившаяся в результате теория стала называться квантовой электродинамикой.
Точка зрения, использованная при разработке этой теории, давала подходы к методу, который мог бы применяться и более широко. В основе его лежала идея, восходившая непосредственно к Ньютону. Пытаясь решить уравнения, связанные с законом Ньютона, ученые открыли несколько полезных общих принципов, известных как законы сохранения. Дело в том, что при движении системы массивных тел некоторые величины остаются неизменными. Самая известная из них — энергия, которая бывает двух видов: кинетическая и потенциальная. Кинетическая энергия определяется тем, насколько быстро движется тело, а потенциальная — представляет собой работу, проделанную определенными силами. Когда камень падает со скалы, он как бы обменивает потенциальную энергию, связанную с тяготением, на кинетическую. Говоря обычным языком, он падает и ускоряется. Кроме этого, сохраняются такие величины, как импульс, равный произведению массы на скорость, и момент импульса, связанный со скоростью вращения тела. Сохраняющиеся величины связывают различные переменные, используемые для описания системы, и таким образом уменьшают их число. Это очень полезно при решении уравнений, как мы уже видели в главе 8, где речь шла о задаче двух тел.
К началу XX в. ученые разобрались в том, откуда взялись законы сохранения. Эмми Нетер доказала, что каждая сохраняющаяся величина соответствует непрерывной группе симметрий в уравнениях. Симметрия — это математическое преобразование, при котором уравнения не меняются. Все симметрии образуют группу с операцией «провести одно преобразование, затем другое». Непрерывная группа — это группа симметрий, определенная единственным действительным числом. К примеру, вращение вокруг заданной оси есть симметрия, и угол вращения может задаваться любым действительным числом, поэтому вращения — на все возможные углы — вокруг заданной оси образуют непрерывную группу. Из сохраняющихся величин с этой симметрией связан момент импульса, или вращательный момент. Точно так же сохранение импульса связано с непрерывной группой перемещений в заданном направлении. А как насчет энергии? Ее сохранение связанно с временными симметриями — уравнения неизменны в любой момент времени.
Попытавшись унифицировать фундаментальные силы природы, физики убедились, что ключ к единой теории — именно симметрии. Первым такая унификация удалась Максвеллу, который соединил электричество и магнетизм в единое электромагнитное поле. Максвелл сделал это без привлечения симметрии, но вскоре стало ясно, что в его уравнениях присутствует особый вид симметрии, которого прежде никто не замечал: калибровочная симметрия. Создавалось впечатление, что она может стать стратегическим рычагом, при помощи которого ученым удастся открыть путь к более общим квантовым теориям поля.
Вращение и перенос — глобальные симметрии: они равно применимы в любой точке пространства и времени. Вращение вокруг определенной оси поворачивает на один и тот же угол каждую точку пространства. Не таковы калибровочные симметрии: это местные симметрии, они могут меняться от одной точки пространства к другой. В случае электромагнетизма местные симметрии — это смена фазы. Колебания электромагнитного поля в определенной точке обладают амплитудой (это размах колебаний) и фазой (это момент, в который колеблющаяся величина достигает своего максимума). Если взять решение уравнений поля Максвелла и в каждой точке поменять фазу, то получится другое решение (если, конечно, вы внесете в описание поля соответствующее компенсирующее изменение, включающее местный электромагнитный заряд).
Калибровочные симметрии ввел в обращение Герман Вейль в безуспешной попытке добиться дальнейшей унификации электромагнетизма и общей теории относительности, т. е. электромагнитных и гравитационных сил. Название появилось в результате недопонимания: он считал, что правильная местная симметрия должна означать изменение пространственного масштаба, т. е. «калибровку». Из этой идеи ничего не получилось, но логика квантовой механики заставила Владимира Фока и Фрица Лондона предложить другой тип местной симметрии. Квантовая механика формулируется с использованием не только действительных, но и комплексных чисел, и каждая квантовая волновая функция имеет комплексную фазу. Значимые местные симметрии вращают фазу на любой угол на комплексной плоскости. В принципе, эта группа симметрий включает в себя все вращения, но в комплексных координатах все они представляют собой «унитарные трансформации» (U) в пространстве с одним комплексным измерением (1), поэтому группа, сформированная этими симметриями, обозначается как U(1). Формальные обозначения здесь не просто математическая игра: они позволили физикам записать, а затем и решить уравнения для заряженных квантовых частиц, движущихся в электромагнитном поле. Именно благодаря этому Томонага, Швингер, Фейнман и Дайсон разработали первую релятивистскую квантовополевую теорию электромагнитных взаимодействий: квантовую электродинамику. Симметрия калибровочной группы U(1) играла в их работах фундаментальную роль.
Следующий шаг, объединивший квантовую электродинамику с теорией слабого ядерного взаимодействия, сделали в 1960-е гг. Абдус Салам, Шелдон Глэшоу, Стивен Вайнберг и другие ученые. К электромагнитному полю с его калибровочной симметрией U(1) они добавили поля, связанные с четырьмя элементарными частицами — так называемыми бозонами W+, W0, W— и B0. Калибровочные симметрии такого поля, по существу, вращают комбинации этих частиц, порождая другие их комбинации; эти симметрии образуют другую группу, получившую обозначение U(2) — унитарные (U) трансформации в двумерном комплексном пространстве (2), являющиеся также специальными (S) — простое формальное условие. Иными словами, полная калибровочная группа — это U(1) SU(2), где знак указывает на то, что две группы действуют независимо на двух разных полях. Результат, получивший название теории электрослабых взаимодействий, потребовал введения сложного математического новшества. Группа U(1) в квантовой электродинамике коммутативна: два проведенных последовательно симметричных преобразования дают один и тот же результат, в каком бы порядке они ни проводились. Это свойство сильно упрощает всю математику, но для группы SU(2) не работает. Так впервые была применена некоммутативная калибровочная теория.
Сильное ядерное взаимодействие вступает в игру при рассмотрении внутренней структуры таких частиц, как протоны и нейтроны. Толчком к большому прорыву в этой области послужила интересная математическая закономерность, наблюдаемая в одном конкретном классе частиц, известных как адроны. Эта закономерность, известная как «восьмеричный путь», вдохновила ученых на создание теории квантовой хромодинамики. Теория постулировала существование скрытых частиц, названных кварками, и использовала их в качестве базовых компонент для целого зоопарка адронов.
Согласно Стандартной модели, все во Вселенной состоит из 16 по-настоящему элементарных частиц, существование которых подтверждено экспериментами на ускорителях. Плюс 17-я частица, поисками которой в настоящее время занят Большой адронный коллайдер. Из частиц, известных еще Резерфорду, ранг элементарных сохранили только две: электрон и фотон. Протон и нейтрон, напротив, состоят из кварков. Это название пустил в оборот Марри Гелл-Ман, позаимствова его из романа Джеймса Джойса «Поминки по Финнегану». Гелл-Ман хотел, чтобы слово quark произносилось как «корк», однако фраза из романа Джойса, в которой оно встречается: «Три кварка для мастера Марка!» — подразумевает, что слово quark должно рифмоваться с именем Марк. Тем не менее Гелл-Ман нашел способ обосновать свое намерение. Сегодня в английском языке распространены оба варианта произношения.
В Стандартной модели предполагается существование шести кварков, объединенных попарно. Названия кварков довольно забавны: верхний/нижний, очарованный/странный, истинный/прелестный. Кроме того, модель предусматривает шесть лептонов, тоже парных: электрон, мюон и таон (который чаще называют по старинке тау-частицей) и соответствующие им нейтрино. Все эти 12 частиц называют фермионами — в честь Энрико Ферми. Частицы удерживаются вместе силами четырех типов: это гравитация, электромагнетизм, сильное и слабое ядерные взаимодействия. Оставив в стороне гравитацию, которую до сих пор не удалось полностью согласовать с квантовой картиной мира, получаем три силы. В физике элементарных частиц действие сил осуществляется посредством обмена частицами, которые их «переносят» или «передают». Традиционная аналогия — теннисисты, которых удерживает в пределах площадки их обоюдное внимание к мячу. Фотон переносит электромагнитное взаимодействие, Z— и W-бозоны переносят слабое ядерное взаимодействие, а посредством глюона передается сильное ядерное взаимодействие. Технически глюон переносит «цветное» взаимодействие, или взаимодействие между кварками, удерживающее их вместе, и, соответственно, сильное взаимодействие, которое мы наблюдаем в результате. Протон состоит из двух верхних кварков и одного нижнего; нейтрон — из двух нижних и одного верхнего. В каждой из этих частиц именно глюоны удерживают кварки на месте. Четыре перечисленных переносчика взаимодействий обобщенно называют бозонами, в честь Шатьендраната Бозе. Разница между фермионами и бозонами очень существенна: у них разные статистические свойства. На рис. 44 слева можно увидеть итоговый каталог предположительно элементарных частиц. На рис. 44 справа показано, как собрать протон и нейтрон из кварков.
Бозон Хиггса завершает картину и объясняет, почему остальные 16 частиц Стандартной модели обладают ненулевыми массами. Он назван в честь Питера Хиггса — одного из тех физиков, которым принадлежала первоначальная идея. Кроме него, в работе над теорией, связанной с бозоном Хиггса, участвовали Филип Андерсон, Франсуа Энглер, Роберт Браут, Джеральд Гуральник, Карл Хаген и Томас Киббл. Бозон Хиггса — это воплощенное в частице гипотетическое квантовое поле — поле Хиггса — с необычным, но очень важным свойством: в вакууме оно не равно нулю. Это поле действует на остальные 16 частиц модели, заставляя их вести себя так, будто они обладают массой.
В 1993 г. Дэвид Миллер, отвечая на вызов британского министра науки Уильяма Уолдгрейва, предложил замечательную аналогию. Представьте себе многолюдную вечеринку. Гости равномерно распределены по залу, и тут входит почетный гость (отставной премьер-министр). Сразу же вокруг него собирается толпа народу. Гость движется по залу, кто-то из других гостей присоединяется к группе, кто-то отходит. Толпа сопровождающих придает почетному гостю дополнительную массу, ему теперь трудно остановиться. Это и есть механизм Хиггса. А теперь представьте, что по залу неожиданно разносится какой-то слух, и люди собираются послушать новости. Эта группа — бозон Хиггса. Миллер тогда добавил: «Может оказаться, что механизм Хиггса и поле Хиггса пронизывают всю Вселенную, а бозона Хиггса не существует. Следующее поколение коллайдеров прояснит этот вопрос». Судя по всему, вопрос с бозоном Хиггса действительно прояснился, а вот поле Хиггса требует дополнительных исследований.
Квантовая хромодинамика — это еще одна калибровочная теория, на этот раз с калибровочной группой SU(3). Как можно понять из обозначения, на этот раз преобразование действует на трехмерном комплексном пространстве. Из этого выводится унификация электромагнетизма, слабого и сильного взаимодействий. Предполагается, что существует три квантовых поля, по одному на каждое взаимодействие, с калибровочными группами U(1), SU(2) и SU(3) соответственно. Комбинация всех трех полей дает Стандартную модель с калибровочной группой U(1) SU(2) SU(3). Строго говоря, симметрии SU(2) и SU(3) приблизительны; считается, что они становятся точными при очень высоких энергиях. Поэтому их действие на частицы, составляющие ткань нашего мира, соответствует нарушенным симметриям — следам структуры, которые сохраняются в идеальной, полностью симметричной системе, подвергнувшейся небольшим возмущениям.
Все три группы содержат непрерывные семейства симметрий: одно семейство U(1), три — SU(2) и восемь — SU(3). Со всеми ними связаны различные сохраняющиеся величины. Симметрии ньютоновой механики, как обычно, обеспечивают сохранение энергии, импульса и момента импульса. Калибровочные симметрии U(1) SU(2) SU(3) свидетельствуют о сохранении различных «квантовых чисел», характеризующих частицы. Квантовые числа аналогичны таким величинам, как спин и заряд, но в отношении к кваркам. Здесь можно услышать такие названия, как цветовой заряд, изоспин или гиперзаряд. Наконец, в связи с U(1) сохраняются еще кое-какие величины: речь идет о квантовых числах шести лептонов, таких как электронное число, мюонное число и тау-число. В результате всего этого получается, что симметрии уравнений Стандартной модели объясняют через теорему Нетер все существенные физические переменные элементарных частиц.
Для нашей истории важны общая стратегия и результат. Чтобы унифицировать физические теории, нужно отыскать и унифицировать их симметрии. Затем нужно придумать подходящую теорию, в которой фигурировала бы объединенная группа симметрий. Я не говорю, что это простой и прямолинейный процесс, — технически это очень сложно. Но до сих пор квантовая теория поля развивалась именно так, и только одно из четырех фундаментальных физических взаимодействий — гравитация — пока выпадает из общей картины.
Теорема Нетер не только объясняет основные физические переменные, связанные с элементарными частицами, — именно так были открыты многие базовые симметрии. Исходя из квантовых чисел, которые удалось установить путем наблюдений или логических рассуждений, физики пытались выяснить, какими симметриями в этом случае должна обладать модель. Затем они составляли подходящие уравнения с этими симметриями и убеждались, что эти уравнения достаточно точно отражают реальность. В данный момент последний этап требует подбора величин 19 параметров — чисел, которые необходимо подставить в уравнения для получения количественных результатов. Девять из девятнадцати — это массы конкретных частиц: всех шести кварков, а также электрона, мюона и тау-частицы. Остальные параметры более технические: например, углы смешивания и фазовые связи. Семнадцать параметров известны из экспериментов, но два — все еще нет: они описывают до сих пор гипотетическое поле Хиггса. Однако сегодня есть все шансы измерить их, поскольку физики знают, где их искать.
Уравнения, которые используются в этих теориях, относятся к общему классу калибровочных теорий поля, известных как теория Янга — Миллса. В 1954 г. Янг Чжэньнин и Роберт Миллс попытались разработать калибровочные теории для объяснения сильного взаимодействия и связанных с ним частиц. Первые попытки закончились неудачей: после квантования поля выяснилось, что массы частиц при этом должны быть нулевыми. В 1960 г. Джеффри Голдстоун, Ёитиро Намбу и Джованни Йона-Лазинио нашли способ обойти эту проблему: они начали с теории, предсказывавшей безмассовые частицы, но затем модифицировали ее, постулировав нарушение некоторых симметрий. Иными словами, слегка изменили уравнения, введя в них новые асимметричные условия. Когда при помощи той же идеи модифицировали теорию Янга — Миллса, то получившиеся уравнения очень хорошо легли и в электромагнитную теорию, и в квантовую хромодинамику.
Янг и Миллс предположили, что калибровочная группа является специальной унитарной групой. К частицам применимы группы SU(2) и SU(3), специальные унитарные группы для двух или трех комплексных измерений, но вообще-то этот математический аппарат работает для любого числа измерений. Их теория в лоб атакует сложную, но неизбежную математическую проблему. В одном отношении электромагнитное поле отличается обманчивой простотой: его калибровочные симметрии коммутативны. В отличие от большинства квантовых операторов фазы можно менять в любом порядке. Но физики-то работали с квантовой теорией поля для субатомных частиц. Там калибровочная группа не коммутативна, что очень затрудняет квантование уравнений.
Добиться успеха Янгу и Миллсу помогло схематическое представление взаимодействий частиц, предложенное Ричардом Фейнманом. Любое квантовое состояние может быть представлено как суперпозиция бесчисленных взаимодействий частиц. К примеру, даже в вакууме есть пары частиц и античастиц, которые на мгновение возникают из небытия и тут же исчезают вновь. Простое столкновение двух частиц порождает умопомрачительный танец, в котором промежуточные частицы появляются и исчезают, мечутся взад и вперед, расщепляются и сливаются. Спасает лишь сочетание двух подходов. Уравнения поля для каждой конкретной фейнмановской диаграммы можно проквантовать, а затем сложить все отдельные вклады и представить себе полный эффект взаимодействия. Более того, самые сложные диаграммы встречаются редко и потому их вклад в общую сумму невелик. Тем не менее здесь есть серьезная проблема. Сумма, если рассматривать ее буквально, бесконечна. Янг и Миллс нашли способ перенормировать расчет таким образом, чтобы исключить бесконечное число слагаемых, которые, по идее, не должны много значить. Осталась конечная сумма, и ее величина очень точно соответствовала реальности. При первом знакомстве эта методика казалась почти непостижимой, но сегодня в ней многое прояснилось.
В 1970-е гг. к делу подключились математики. Майкл Атья обобщил теорию Янга — Миллса на большой класс калибровочных групп. Математика и физика начали подпитываться друг от друга. Работа Эдварда Уиттена и Натана Зайберга над топологическими квантовыми теориями поля породила концепцию суперсимметрии, в которой каждая известная частица имеет «суперсимметричного» партнера: электрону соответствует селектрон, кваркам — скварки. Это предположение упростило математику и позволило сделать кое-какие физические предсказания. Однако никому еще не удалось наблюдать хотя бы одну из этих новых частиц, а некоторые из них, вероятно, уже должны были появиться в экспериментах на Большом адронном коллайдере. В математической ценности этих идей никто не сомневается, а вот их непосредственное значение в физике пока под вопросом. Тем не менее они помогли многое прояснить в теории Янга — Миллса.
Квантовая теория поля — один из наиболее динамично развивающихся передовых рубежей математической физики, поэтому Институт Клэя захотел включить в группу задач тысячелетия что-нибудь из этой области. Выбрали проблему массовой щели. Речь в ней идет о важном математическом вопросе из физики элементарных частиц. Применение полей типа Янга — Миллса для описания элементарных частиц в терминах сильного ядерного взаимодействия сильно зависит от особого квантового свойства, известного как массовая щель. В теории относительности частица, летящая со скоростью света, приобретает бесконечную массу, если только ее масса покоя не равна нулю. Щель в спектре масс позволяет квантовым частицам иметь конечную ненулевую массу, несмотря на то что связанные с ними классические волны движутся со скоростью света. Если массовая щель существует, то любое состояние, не являющееся вакуумом, обладает энергией, превышающей энергию вакуума по крайней мере на некоторую фиксированную величину. Иными словами, существует ненулевой нижний предел массы частицы.
Эксперименты подтверждают существование массовой щели, и компьютерное моделирование уравнений тоже говорит в пользу этой гипотезы. Однако мы не можем считать, что модель соответствует реальности, а затем использовать данные экспериментов (т. е. реальность) для проверки математических свойств модели, потому что в этом случае логика зацикливается. Необходимо теоретическое доказательство. Ключевым шагом здесь стало бы строгое доказательство того, что квантовые версии теории Янга — Миллса существуют. В классическом (неквантовом) ее варианте ученые уже довольно хорошо разобрались, но квантовый аналог осложняется проблемой перенормировки — теми самыми бесконечностями, избавляться от которых приходится при помощи математических уловок.
Один многообещающий подход начинается с того, что непрерывное пространство превращают в дискретную пространственную решетку и записывают для решетки уравнение, аналогичное уравнению Янга — Миллса. Затем главное — показать, что по мере того, как решетка становится все мельче, постепенно приближаясь к сплошной среде, этот аналог сходится к четко определенному математическому объекту. На основании физической интуиции можно сделать вывод о некоторых необходимых его свойствах, и если бы эти свойства удалось установить строго, то можно было бы доказать и существование подходящей квантовой теории Янга — Миллса. Гипотеза о массовой щели требует более детальных представлений о том, как решетчатые теории аппроксимируют эту гипотетическую теорию Янга — Миллса. Так что существование этой теории и гипотеза массовой щели тесно взаимосвязаны.
На этом этапе все и застопорилось. В 2004 г. Майкл Дуглас составил отчет о состоянии проблемы, в котором написал: «Насколько мне известно, в последние годы в этом вопросе не было никаких прорывов. В частности, хотя в области теорий поля для низких размерностей достигнут некоторый прогресс, мне неизвестно, о каком бы то ни было существенном прогрессе в строительстве математически строгой квантовой теории Янга — Миллса». Судя по всему, это утверждение справедливо до сих пор.
В некоторых смежных задачах, однако, наблюдался более впечатляющий прогресс, и не исключено, что это поможет пролить свет и на интересующий нас вопрос. Частные случаи квантовой теории поля, известные как двумерные сигма-модели, разрешимы легче, и для одной такой модели гипотеза массовой щели уже доказана. Суперсимметричные квантовые теории поля, в которых фигурируют гипотетические суперпартнеры обычных элементарных частиц, отличаются некоторыми математическими свойствами, которые по существу, делают перенормировку ненужной. Физики, такие как Эдвард Уиттен, продвигаются к решению соответствующих задач в суперсимметричном случае. Можно надеяться, что некоторые из разработанных ими методик, возможно, подскажут новые пути решения первоначальной задачи. Но каковы бы ни были физические следствия и как бы ни разрешился в конце концов вопрос существования массовой щели, наработки, уже сделанные в этой области, безусловно, обогатили математику новыми важными понятиями и инструментами.
14. Диофантовы мечты. Гипотеза Берча — Свиннертон-Дайера
В главе 7 мы уже встречались с «Арифметикой» Диофанта, и я упоминал о том, что 6 из 13 ее книг дошли до нас в греческих копиях. Примерно в 400 г. н. э., когда древнегреческая цивилизация уже давно находилась в упадке, лидерство в математической науке захватили Аравия, Китай и Индия. Арабские ученые перевели классические греческие работы, и сегодня мы знаем многие из них лишь по этим переводам. Именно в арабском мире развивались идеи Диофанта. Четыре арабские рукописи, найденные в 1968 г., могут быть переводами неизвестных до сих пор книг «Арифметики».
В какой-то момент в конце X в. персидский математик аль-Караджи задал вопрос, который, вполне возможно, приходил в голову и самому Диофанту: какие целые числа могут возникать в качестве одинаковой разности между тремя рациональными квадратами, образующими арифметическую последовательность? К примеру, целые квадраты 1,25 и 49 имеют общую разность 24. Иными словами, 1 + 24 = 25 и 25 + 24 = 49. Аль-Караджи жил примерно между 953 и 1029 гг., и он, в принципе, мог иметь доступ к списку «Арифметики», однако первый известный перевод сделал Абу-л-Вафа в 998 г. Леонард Диксон, автор краткой истории теории чисел в трех томах, предположил, что эта задача могла возникнуть незадолго до 972 г. в арабской рукописи неизвестного автора.
На алгебраическом языке задача звучит так: для каких целых d существует рациональное число x такое, что x — d, x и x + d являются полными квадратами? Ее можно сформулировать и иначе, хотя эквивалентность формулировок неочевидна: какие целые числа могут представлять собой площадь прямоугольного треугольника с рациональными сторонами? Иными словами, если a, b и c рациональны и a + b = c, то какие целые значения возможны для величины ab/2? Целые числа, удовлетворяющие этим эквивалентным условиям, называют конгруэнтными. Термин не имеет отношения к остальным случаям использования слова «конгруэнтный» в математике, и современного читателя это может несколько сбивать с толку. Его происхождение объясняется ниже.
Некоторые числа не являются конгруэнтными: к примеру, можно доказать, что 1, 2, 3 и 4 неконгруэнтны. С другой стороны, 5, 6 и 7, напротив, конгруэнтны. В самом деле, площадь треугольника со сторонами 3, 4, 5 равна 3 4/2 = 6, что доказывает конгруэнтность числа 6. Чтобы доказать конгруэнтность числа 7, заметим, что треугольник со сторонами (24/5), (35/12) и (337/60) также прямоугольный и его площадь равна 7. К числу 5 я вернусь чуть позже. Рассматривая числа поочередно, одно за другим, мы получим длинный список конгруэнтных чисел, но вряд ли прольем много света на их природу. Никакое количество конкретных примеров не докажет, что какое-то конкретное целое число не является конгруэнтным. Несколько сотен лет никто не мог сказать, конгруэнтно число 1 или нет.
Сегодня мы знаем, что эта задача далеко выходит за рамки всего, что Диофант хотя бы в принципе мог решить. Более того, этот обманчиво простой вопрос полностью не разрешен до сих пор. Максимум, что нам удалось получить, — характеризация конгруэнтных чисел, открытая Джеральдом Таннеллом в 1983 г. Идея Таннелла позволяет получить алгоритм для определения, может ли данное целое число возникать в соответствующих ситуациях при помощи расчета его представлений в виде двух различных комбинаций квадратов. При небольшой изобретательности этот расчет годится для достаточно больших целых чисел. Эта характеризация имеет всего один серьезный недостаток: никто еще не доказал, что она верна. Ее адекватность зависит от решения одной из задач тысячелетия — гипотезы Берча — Свиннертон-Дайера. Эта гипотеза предлагает критерий, при котором эллиптическая кривая имеет конечное число рациональных точек. Мы уже встречали эти диофантовы уравнения в главе 6 (гипотеза Морделла) и главе 7 (Великая теорема Ферма). В этой главе мы еще раз увидим, какую выдающуюся роль они играют в теории чисел.
Самая ранняя из европейских работ, посвященных этим вопросам, принадлежит перу Леонардо Пизанского. Нам Леонардо по прозвищу Фибоначчи известен прежде всего благодаря последовательности странных чисел, которую он, судя по всему, изобрел. Числа эти возникали в ходе решения арифметической задачи о размножении каких-то невероятных кроликов. Вот числа Фибоначчи:
0 1 1 2 3 5 8 13 21 34 55 89…
В этом ряду каждое число после двух первых представляет собой сумму двух предыдущих чисел. Отцом Леонардо был таможенный чиновник по имени Боначчо, и знаменитое прозвище означает «сын Боначчо». У нас нет никаких данных о том, что это прозвище использовалось при жизни Леонардо. Считается, что его придумал французский математик Гийом Либри в XIX в. Как бы то ни было, числа Фибоначчи широко известны и обладают множеством поразительных свойств. Они даже фигурируют в крипто-конспирологическом триллере Дэна Брауна «Код да Винчи».
Леонардо представил свои числа Фибоначчи в учебнике по арифметике «Книга счета» (Liber Abbaci), написанном в 1202 г. Основной целью учебника было привлечь внимание европейцев к придуманной арабами новой форме записи чисел, в основе которой лежали десять цифр от 0 до 9, и продемонстрировать ее универсальность. Сама идея десятичной записи уже достигла Европы через текст аль-Хорезми 825 г., названный в латинском переводе «Об индийском счете» (Algoritmi de Numero Indorum), но книга Леонардо стала первой из тех, что были написаны именно для того, чтобы способствовать внедрению десятичной системы в Европе. Значительная часть книги посвящена практической арифметике, в первую очередь операциям по обмену денег. Кроме этого, Леонардо написал еще одну книгу. Она не так известна, хотя во многих отношениях является непосредственным преемником диофантовой «Арифметики». Называется она «Книга квадратов» (Liber Quadratorum).
Подобно Диофанту, Леонардо представлял общие методики через конкретные примеры. Один из них основывался на вопросе аль-Караджи. В 1225 г. Пизу посетил император Фридрих II. Он был наслышан о Леонардо и его математических занятиях и, судя по всему, решил, что будет забавно объявить математический турнир и посмотреть на него в деле. В то время подобные публичные состязания были обычным делом. Участники задавали друг другу вопросы. В команду императора входили Джованни из Палермо и магистр Теодор. В команду Леонардо входил только сам Леонардо. Команда императора попросила Леонардо найти такой квадрат, который остался бы квадратом, если вычесть из него или прибавить к нему 5. Как обычно, все числа должны были быть рациональными. Иными словами, соперники хотели, чтобы Леонардо доказал, что 5 — число конгруэнтное, отыскав конкретное рациональное число x, для которого x 5, x и x + 5 являются квадратами.
Эту задачу ни в коем случае нельзя назвать простой — самое краткое ее решение таково:
В этом случае
Леонардо нашел решение и включил его в «Книгу квадратов». Он получил ответ при помощи общей формулы, связанной с формулой Евклида/Диофанта для пифагоровых троек. Из нее Леонардо получил три целых квадрата с общей разностью 720, а именно: 31, 41 и 49. Затем он разделил их на 12 = 144, чтобы получить три квадрата с общей разностью 720/144, что равняется 5{38}. В терминах пифагоровых троек можно взять треугольник со сторонами 9, 40 и 41 и площадью 180 и разделить на 36. Получим треугольник со сторонами 20/3, 3/2, 41/6. Площадь его равняется 5.
Именно у Леонардо мы находим латинское слово congruum для обозначения набора из трех квадратов в арифметической прогрессии. Позже Эйлер пользовался словом congruere, «сходятся». Первые десять конгруэнтных чисел и соответствующие простейшие пифагоровы тройки приведены в табл. 3. Никаких простых закономерностей здесь не видно.
Таблица 3. Первые десять конгруэнтных чисел и соответствующие им пифагоровы тройки
Первоначальным прогрессом в этом вопросе мы обязаны в первую очередь арабским математикам, показавшим, что числа 5, 6, 14, 15, 21, 30, 34, 65, 70, 110, 154 и 190, а также еще 18 больших чисел, являются конгруэнтными. Леонардо, Анджело Дженокки (1855) и Андре Жерарден (1915 г.) добавили к этим числам 7, 22, 41, 69, 77 и еще 43 числа, не превосходящих 1000. Леонардо в 1225 г. объявил, что число 1 не конгруэнтно, но не привел никаких доказательств. В 1569 г. Ферма доказал это. К 1915 г. все конгруэнтные числа меньше 100 были определены, но проблема плохо поддавалась решению, и еще в 1980 г. статус многих чисел меньше 1000 оставался неопределенным. О сложности проблемы можно судить по тому, как Л. Бастьен открыл конгруэнтность числа 101. Стороны соответствующего прямоугольного треугольника равны:
Он нашел эти числа в 1914 г. вручную. К 1986 г., когда считать благодаря компьютерам стало проще, Г. Крамарц нашел все конгруэнтные числа до 2000.
В какой-то момент было замечено, что другое, но связанное с этой задачей уравнение y = x — dx имеет решение x, y в целых числах тогда итолько тогда, когда d конгруэнтно{39}. В одном направлении это наблюдение очевидно: правая часть уравнения представляет собой произведение x, x — d и x + d, а если все сомножители являются квадратами, то квадратом является и произведение. Обратное утверждение получить также несложно. Такая формулировка задачи сразу переводит ее в богатые и процветающие владения теории чисел. Для любого заданного d это уравнение задает y, равный кубическому многочлену от x, и таким образом определяет эллиптическую кривую. Так что проблема конгруэнтных чисел — частный случай вопроса, ответить на который мечтают многие специалисты по теории чисел: при каких условиях эллиптическая кривая содержит хотя бы одну рациональную точку? Вопрос этот далеко не очевиден, даже для только что упомянутого частного случая эллиптической кривой. К примеру, 157 — число конгруэнтное, но гипотенуза простейшего прямоугольного треугольника с такой площадью равна
Прежде чем продолжить, мы позаимствуем у Леонардо его уловку — ту самую, что помогла перейти от 720 к 5, — и применим ее в самом общем виде. Умножив любое конгруэнтное число d на квадрат n целого n, мы получим также конгруэнтное число. Чтобы убедиться в этом, достаточно взять любую рациональную пифагорову тройку, соответствующую треугольнику с площадью d, и умножить стороны на n. Площадь треугольника увеличится в n раз. То же произойдет и при делении на n; площадь уменьшится в n раз. Результат этого процесса будет целым только в том случае, если площадь делится нацело на квадрат целого числа (т. е. имеет квадратный делитель), так что при поиске конгруэнтных чисел достаточно работать только с числами, не имеющими такого делителя. Приведем первые несколько чисел, не имеющие квадратного делителя:
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19.
Теперь можно сформулировать критерий Таннелла. Нечетное число d, не имеющее квадратных делителей, конгруэнтно тогда и только тогда, когда число (положительных или отрицательных) целых решений x, y, z уравнения
2x + y + 8z = d
точно вдвое превосходит число решений уравнения
2x + y + 32z = d.
Четное число d, не имеющее квадратных делителей, конгруэнтно тогда и только тогда, когда
8x + 2y + 16z = d
точно вдвое превосходит число решений уравнения
8x + 2y + 64z = d.
Эти результаты куда полезнее, чем может показаться на первый взгляд. Поскольку все коэффициенты уравнения положительны, x, y и z по модулю не могут превосходить некие числа, кратные корню квадратному из d. Из этого следует, что число решений конечно и их можно найти систематическим поиском с применением некоторых полезных уловок. Приведем полный расчет нескольких примеров с небольшими d:
• Если d = 1, то единственными решениями первого уравнения являются x = 0, y = ±1, z = 0. То же относится и ко второму уравнению. Так что оба уравнения имеют по два решения, и, следовательно, критерий не выполняется.
• Если d = 2, то единственными решениями первого уравнения являются x = ±1, y = 0, z = 0. То же относится и ко второму уравнению. Так что оба уравнения имеют по два решения, и, следовательно, критерий не выполняется.
• Если d = 3, то единственными решениями первого уравнения являются x = ±1, y = ±1, z = 0. То же относится и ко второму уравнению. Так что оба уравнения имеют по четыре решения, и, следовательно, критерий не выполняется.
• Если d = 5 или 7, то первое уравнение не имеет решений. То же относится и ко второму уравнению. Поскольку дважды нуль равняется нулю, критерий выполняется.
• Если d = 6, то мы должны использовать критерий для четных чисел. Здесь опять же оба уравнения не имеют решений, и критерий выполняется.
Эти простые расчеты показывают, что 1, 2, 3, 4 (= 2 1) не являются конгруэнтными, а 5, 6 и 7 — являются. Анализ несложно продолжить, и в 2009 г. команда математиков применила тест Таннелла ко всем числам до триллиона, обнаружив при этом ровно 3 148 379 694 конгруэнтных числа. Исследователи проверили результат, повторив все расчеты дважды на разных компьютерах с использованием разных алгоритмов и программ, написанных двумя независимыми группами программистов. Билл Харт и Гонсало Торнариа пользовались компьютером Selmer в Уорикском университете. Марк Уоткинс, Дэвид Харви и Роберт Брэдшоу работали с компьютером Sage в Вашингтонском университете.
Однако во всех этих расчетах есть пробел. Таннелл доказал, что, если число d конгруэнтно, оно должно удовлетворять его критерию. Таким образом, если критерий не выполняется, число не конгруэнтно. Однако он не сумел доказать обратного: если число удовлетворяет его критерию, то оно обязательно конгруэнтно. Именно это необходимо нам, чтобы сделать вывод о конгруэнтности чисел 5, 6 и 7. В данных конкретных случаях мы можем найти подходящие пифагоровы тройки, но в общем случае это нам не поможет. Таннелл сумел показать, что обратное утверждение, о котором идет речь, непосредственно следует из гипотезы Берча — Свиннертон-Дайера, но она тоже пока не доказана.
Гипотезу Берча — Свиннертон-Дайера, как и несколько других задач тысячелетия, сложно даже сформулировать. (А вы думали, что можно получить миллион долларов, сделав что-нибудь простое?) Однако настойчивость всегда окупается, ведь в процессе работы мы осознаем глубину и оцениваем давние исторические традиции теории чисел. Если вы внимательно посмотрите на название гипотезы, то заметите, что одно тире в нем длиннее другого. Дело в том, что эту гипотезу выдвинули не математики Берч, Свиннертон и Дайер, а Брайан Берч и Питер Свиннертон-Дайер. Ее полная формально-математическая формулировка сложна для непосвященных, но речь в ней идет о фундаментальном вопросе диофантовых уравнений — алгебраических уравнений, решения которых ищутся в целых или рациональных числах. Вопрос этот предельно прост: при каких условиях эти уравнения имеют решения?
В главе 6, где речь шла о гипотезе Морделла, и в главе 7, посвященной Великой теореме Ферма, мы встретились с одним из чудеснейших инструментов математики — эллиптическими кривыми. Морделл в свое время высказал, как тогда казалось, случайную догадку, предположив, что число рациональных решений алгебраического уравнения с двумя переменными зависит от топологии соответствующей комплексной кривой. Если род равен 0 — кривая топологически представляет собой сферу, — решения задаются формулой. Если род равен 1 — кривая топологически представляет собой тор, т. е. является эллиптической кривой, — то все рациональные решения могут быть построены из подходящего конечного списка путем приложения структуры группы. Если род равен 2 или больше — кривая топологически представляет собой тор с g отверстиями, где g 2, — то число решений конечно. Как мы уже видели, Фальтингс доказал эту замечательную теорему в 1983 г.
Рациональные решения уравнений эллиптических кривых обладают одним поразительным свойством: благодаря геометрической конструкции, показанной на рис. 28 в главе 6, они образуют группу. Получившаяся структура называется группой Морделла — Вейля, и специалисты по теории чисел очень хотели бы иметь возможность вычислять ее. Для этого нужно найти систему генераторов: рациональных решений, из которых при помощи оператора группы могут быть получены все остальные Если это не удается, то хотелось бы по меньшей мере определить основные характеристики группы, хотя бы ее величину. Здесь, однако, многое еще непонятно. Иногда группа бесконечна и порождает бесконечно много рациональных решений, иногда конечна, и тогда число рациональных решений тоже конечно. Было бы полезно иметь возможность определить, к какой категории относится конкретный случай. Но что нам по-настоящему хотелось бы знать, так это абстрактную структуру группы.
Доказательство Морделла, что конечный список генерирует все решения, говорит о том, что группа должна состоять из конечной группы и решетчатой группы. Решетчатая группа включает в себя все списки целых чисел конкретной конечной длины. Если длина чисел, к примеру, три, то группа состоит из всех списков (m1, m2, m3) целых чисел, и эти списки складываются очевидным образом:
(m1, m2, m3) + (n1, n2, n3) = (m1 + n1, m2 + n2, m3 + n3).
Длина списка называется рангом группы (и геометрически представляет собой размерность решетки). Если ранг группы 0, группа конечна. Если ранг не равен нулю, группа бесконечна. Поэтому, чтобы понять, сколько существует решений, нам необязательно знать полную структуру группы. Достаточно знать ее ранг. Именно об этом говорит гипотеза Берча — Свиннертон-Дайера.
В 1960-е гг., когда компьютеры только-только входили в нашу жизнь, одна из первых таких машин появилась в Кембриджском университете. Называлась она EDSAC, что означало «электронно-счетная машина с запоминающим устройством на линиях задержки». Название показывает, как гордились создатели этой машины устройством ее памяти, посылавшей звуковые волны по трубкам с ртутью и затем направлявшей их вновь к началу. Размером этот компьютер был с большой грузовик. Я хорошо помню, как в 1963 г. мне устроили экскурсию по нему. Цепи компьютера были сделаны на основе тысяч ключей — электронных ламп. Вдоль всех стен стояли широкие стеллажи с запасными лампами, которые то и дело надо было менять — так часто они сгорали.
Питера Свиннертон-Дайера эллиптические кривые интересовали с диофантовой стороны: в первую очередь ему хотелось понять, сколько существовало бы решений, если заменить кривую ее аналогом на конечном поле с простым числом p элементов. Иными словами, ему хотелось изучить применявшуюся Гауссом уловку с работой «по модулю p». При помощи компьютера он вычислял эти числа для большого числа простых и искал среди них интересные закономерности.
Постепенно у него появились определенные подозрения. Его научный консультант Джон Кассельс испытывал сильные сомнения, но по мере появления все новых и новых данных он тоже поверил, что в этой идее что-то есть. Компьютерные эксперименты, проведенные Свиннертон-Дайером, указывали вот на что. У специалистов по теории чисел есть стандартный метод записи любого уравнения в целых числах по определенному модулю — вспомните модулярную арифметику или «арифметику часов» по модулю 12 в главе 2. Поскольку все законы алгебры приложимы в этом варианте арифметики, любое решение первоначального уравнения становится и решением «урезанного» уравнения по этому модулю. Все задействованные числа образуют конечный список — к примеру, для арифметики часов в этом списке всего 12 чисел, — поэтому все решения можно найти методом проб и ошибок. В частности, для каждого заданного модуля можно подсчитать, сколько существует решений. Кроме того, решения по каждому модулю накладывают определенные ограничения на решения первоначального уравнения и иногда даже помогают доказать, что такие решения существуют. Поэтому у специалистов по теории чисел выработался рефлекс рассматривать варианты любого уравнения по разным модулям, и простые числа особенно полезны в качестве таковых.
Таким образом, чтобы выяснить что-нибудь полезное об эллиптической кривой, можно рассмотреть все простые числа до определенного предела. Для каждого простого числа можно определить, сколько точек лежит на кривой по модулю этого числа. Берч заметил, что компьютерные эксперименты Свиннертон-Дайера показывают интересную закономерность, если разделить число таких точек на простое число, по модулю которого все рассматривалось. Затем следует перемножить результаты такого деления для всех простых чисел до заданного предела включительно и отложить результаты для последовательных простых чисел на логарифмической бумаге. Интересно, что все данные ложатся недалеко от прямой линии, крутизна которой представляет собой ранг данной эллиптической кривой. Это позволяло предложить гипотетическую формулу для числа решений, связанных с любым простым модулем{40}.
Источник этой формулы, однако, не теория чисел: в ней задействован комплексный анализ, очень любимый в XIX в. и, по счастливому стечению обстоятельств, гораздо более элегантный, чем старомодный действительный анализ. В главе 9, посвященной гипотезе Римана, мы видели, как анализ вытягивает свои щупальца во всех направлениях и проникает в близкие и не очень области математики. Особенно удивительные и мощные связи возникли у него с теорией чисел. Формула Свиннертон-Дайера позволила выдвинуть более подробную гипотезу о типе комплексной функции (я упоминал ее в главе 9), известной как L-функция Дирихле. Эта функция аналогична для эллиптических кривых известной дзета-функции Римана. Эти два математика, очевидно, пытались обогнать время — ведь тогда не было даже наверняка известно, что у каждой эллиптической кривой есть L-функция Дирихле. Это было достаточно произвольное предположение, в пользу которого почти не было данных, но чем дальше шло развитие, тем правдоподобнее казалось это предположение. Это был не прыжок в неведомое, а изумительно точное и дальновидное проявление утонченной математической интуиции. Вместо того чтобы подняться на плечах гигантов, как чаще всего бывает в науке, Берч и Свиннертон-Дайер поднялись на собственных плечах — они были способны самостоятельно держаться в воздухе.
Основной инструмент комплексного анализа — выражение функции в виде степенного ряда, похожего на многочлен, но содержащего бесконечно много слагаемых с все более и более высокими степенями переменной, которую в этой области традиционно обозначают s. Чтобы выяснить, что функция делает около какой-то конкретной точки, скажем, 1, следует использовать степени (s 1). Гипотеза Берча — Свиннертон-Дайера утверждает, что если разложение L-функции Дирихле в степенной ряд возле 1 выглядит как
L (C, s) = c (s — 1)r + слагаемые более высоких степеней,
где c — ненулевая константа, то ранг кривой равен r, и наоборот. На языке комплексного анализа это утверждение принимает вид: L (C, s) имеет в точке s = 1 нуль r-го порядка.
Главное здесь — не точное выражение, о котором идет речь; главное — то, что для любой заданной эллиптической кривой существует аналитическая формула с использованием соответствующей комплексной функции, при помощи которой можно точно узнать, сколько езависимых рациональных решений необходимо найти, чтобы определить их все.
Возможно, простейший способ продемонстрировать, что гипотеза Берча — Свиннертон-Дайера имеет смысл и значение, — это упомянуть о том, что максимальный известный ранг равен 28. Иными словами, существует эллиптическая кривая с набором из 29 рациональных решений, позволяющим получить все остальные рациональные решения. Более того, меньшего набора рациональных решений, который позволял бы это сделать, не существует. Хотя известно, что кривые такого ранга существуют, конкретных примеров до сих пор не найдено. Максимальный ранг, для которого имеется конкретный пример, равен 18. Соответствующую кривую нашел в 2006 г. Ноам Элкис, и выглядит она так:
y + xy = x 26175960092705884096311701787701203903556438969515x + 51069381476131486489742177100373772089779103253890567848326.
Я привел нестандартный вид «y = кубический многочлен от x», но данную запись можно привести к стандартному виду за счет дополнительного увеличения коэффициентов. Считается, что ранг может быть сколь угодно большим, но это до сих пор не доказано. Если судить по уже имеющимся данным, ранг не может быть больше некоего фиксированного числа.
Большая часть утверждений, которые мы можем доказать, относится к кривым рангов 0 и 1. Если ранг равен 0, то существует конечное число рациональных решений. Если ранг равен 1, то одно конкретное решение позволяет получить почти все остальные, за исключением, возможно, конечного числа решений. Эти два случая включают все эллиптические кривые вида y = x + px, где p — простое число вида 8k + 5 (такое, как 13, 29, 37 и т. д.). Предполагается, что в этих случаях ранг всегда равен 1, что подразумевает существование бесконечного числа рациональных решений. Эндрю Бремнер и Кассельс доказали верность этого утверждения для всех простых чисел соответствующего вида до 1000. Оказалось, что, даже если ранг известен и мал, найти решения, позволяющие получить почти все остальные, может быть очень трудно. Они выяснили, что для p = 877 простейшим решением такого рода является рациональное число
Доказано огромное число теорем, имеющих отношение к гипотезе Берча — Свиннертон-Дайера (обычно с очень серьезными формальными ограничениями), но это пока мало помогло в продвижении к полному решению этой задачи. В 1976 г. Коутс и Уайлс обнаружили первые указания на то, что эта гипотеза может быть верна. Они доказали, что один частный случай эллиптической кривой имеет ранг 0, если L-функция Дирихле не обращается в нуль в точке 1. Для такой эллиптической кривой число решений связанного с ней диофантова уравнения конечно, возможно, равно нулю, и определить это можно по соответствующей L-функции. После этого момента удалось сделать несколько технических шагов, по-прежнему ограниченных в основном рангами 0 и 1. В 1990 г. Виктор Колывагин доказал, что гипотеза Берча — Свиннертон-Дайера верна для рангов 0 и 1.
Более детальные гипотезы, требующие серьезной компьютерной поддержки, соотносят константу c в гипотезе Берча — Свиннертон-Дайера с различными концепциями теории чисел. Существуют аналогичные гипотезы — впрочем, столь же загадочные, — для алгебраических числовых полей. Известно также, что большинство (в точном смысле) эллиптических кривых имеет ранг 0 или 1. В 2010 г. Манджул Бхаргава и Арул Шанкар объявили, что им удалось доказать: средний ранг эллиптической кривой не превосходит 7/16. Если это доказательство и доказательство некоторых других недавно опубликованных теорем будут признаны математическим сообществом, то получится, что гипотеза Берча — Свиннертон-Дайера верна для ненулевой доли всех эллиптических кривых. Однако речь пока идет о простейших кривых, не представляющих, по существу, кривые более сложной структуры, ранга 2 и более. Они пока остаются для нас загадкой.
15. Комплексные циклы. Гипотеза Ходжа
Некоторые области математики вполне можно соотнести с тем, с чем мы встречаемся в повседневной жизни. Уравнение Навье — Стокса невозможно встретить на кухне, но мы все понимаем, что такое жидкости, и представляем, как они текут. Другие области можно соотнести с эзотерическими вопросами переднего края науки: так, чтобы разобраться в квантовой теории поля, нужна хотя бы докторская степень в области математической физики, но аналогии с электричеством и магнетизмом или такие хоть сколько-то представимые образы, как волны вероятности, позволяют кое-что понять. Третьи можно объяснить при помощи картинок, и хороший пример тому — гипотеза Пуанкаре. Но некоторые области математики не поддаются ни одному из перечисленных способов и никак не позволяют сделать сложные абстрактные понятия доступными.
Гипотеза Ходжа, сформулированная в 1950 г. шотландским геометром Уильямом Ходжем, — одна из таких задач. Проблемы здесь возникают не из-за доказательства, поскольку его просто нет. Все дело в утверждении. Вот так примерно эта задача сформулирована на сайте Института Клэя:
«На любом невырожденном проективном комплексном алгебраическом многообразии любой класс Ходжа представляет собой рациональную линейную комбинацию классов алгебраических циклов».
На первый взгляд в этой формулировке понятны, пожалуй, только предлоги и такие слова, как «любой». Остальное понятно, как отдельные слова: «многообразие», «класс», «рациональный», «цикл». Но образы, порождаемые этими словами, — виды в живой природе, школа, разум без эмоций, какой-то повторяющийся процесс — явно относятся не к тому, что имел в виду Институт Клэя. Остальное еще более очевидный жаргон. Но не просто жаргон ради жаргона — не сложные слова, за которыми прячется профессиональная лексика. Точнее, это простые слова для обозначения сложных вещей. В обычном языке нет готовых названий для подобных концепций, так что часть приходится заимствовать в других областях, а часть изобретать заново.
Если говорить о хорошем, то здесь у нас появляются немалые возможности. Можно сказать, что гипотеза Ходжа лучше представляет реальную математику XX и XXI вв., чем любая другая из рассмотренных в этой книге тем. Подойдя к ней надлежащим образом, мы сможем получить представление о том, насколько концептуально продвинута на самом деле современная передовая математика. В сравнении со школьной математикой она как Эверест в сравнении с кучкой земли, оставленной кротом.
Но, может быть, это всего лишь пустое сотрясание воздуха, претенциозная чепуха, которой занимаются отшельники в башнях из слоновой кости? Если ни один нормальный человек не в состоянии понять, о чем идет речь, зачем впустую переводить деньги налогоплательщиков на тех, кто думает о подобных вещах? Однако давайте взглянем на это с другой стороны. Предположим, любой человек мог бы понять все, о чем думают математики. Неужели тогда вы с удовольствием отдали бы математикам деньги налогоплательщиков? Разве им платят не за профессиональные знания? Если бы все было настолько просто и понятно, что разобраться в этом мог бы любой, зачем вообще надо было бы готовить математиков? А если бы каждый умел налаживать центральное отопление и сваривать трубы, для чего были бы нужны водопроводчики?
Я не могу сказать вам, как именно могла бы быть с пользой применена гипотеза Ходжа. Но я могу объяснить, насколько важное место она занимает в математике. Современная математика — единый организм, так что значительное продвижение в любой из основных областей со временем принесет вполне материальный доход, измеряемый в долларах и центах. Может быть, сегодня мы не найдем на своей кухне ни одного прибора, сделанного на основе этой гипотезы, но завтра — кто знает? Тесно связанные с ней математические концепции уже доказывают свою полезность в различных областях науки — от квантовой физки и теории струн до робототехники.
Иногда новые математические идеи получают практическое применение почти сразу. Иногда этот процесс занимает не одно столетие. Быть может, в последнем случае лучше было бы подождать, пока возникнет нужда в этих идеях, а затем ударными темпами провести их разработку? Быть может, все математические задачи, не имеющие немедленного и очевидного применения, следует откладывать в дальний ящик на будущее? Однако если бы мы так поступали, то всегда отставали бы от жизни, поскольку математики уже несколько сотен лет играют в догонялки с прикладной наукой. Да и не всегда можно точно сказать, какая идея необходима в данный момент. Как вы думаете, понравилось бы вам, если бы никто даже не задумался о производстве кирпичей, пока вы не пригласили бы рабочих для строительства дома? Чем оригинальнее математическая концепция, тем более маловероятно, что она родится в результате ударной разработки.
Куда разумнее было бы позволить математической науке развиваться по собственным законам и не ждать от нее немедленной пользы. Не пытайтесь выбирать лучшее, позвольте ей расти свободно. Математики стоят недорого: им, в отличие от физиков-экспериментаторов, не нужно дорогостоящее оборудование (на Большой адронный коллайдер уже потрачено €7,5 млрд, и расходы растут). Кроме того, в качестве компенсации математики обучают студентов. И вряд ли было бы разумно не разрешить некоторым из них работать над гипотезой Ходжа, если эта проблема их захватила.
Я планирую разобрать приведенную формулировку гипотезы Ходжа слово за словом. Простейшая из встречающихся в ней концепций — «алгебраическое многообразие». Это естественное следствие декартова подхода, когда тот при помощи координатной сетки связал геометрию с алгеброй (см. главу 3). При этом крохотный набор инструментов-кривых, введенный Евклидом и его последователями, — прямая, окружность, эллипс, парабола, гипербола — превратился в бездонный рог изобилия. Прямая линия — основа евклидовой геометрии — представляет собой совокупность точек, удовлетворяющих соответствующему алгебраическому уравнению: к примеру, y = 3x + 1. Замените тройку и единицу на другие числа — и получите другие прямые линии. Окружности нуждаются в квадратных уравнениях — как и эллипсы, параболы и гиперболы. В принципе, все, что можно определить геометрически, можно интерпретировать и иначе — алгебраически, — и наоборот. Так что, система координат делает геометрию ненужной? Или, может быть, она делает ненужной алгебру? Зачем пользоваться двумя инструментами, если оба они делают одно и то же?
У меня в гараже в ящике с инструментами есть и молоток, и клещи. Дело молотка — забивать в дерево гвозди. Дело клещей — вытаскивать их оттуда. Хотя, в принципе, гвозди можно забить и клещами, а у молотка с обратной стороны есть раздвоенный конец, предназначенный специально для выдергивания гвоздей. Зачем же мне оба инструмента? Затем, что одни вещи лучше делать молотком, а другие — клещами. Так же обстоит дело с алгеброй и геометрией: одни подходы более естественно реализуются при помощи геометрии, другие — при помощи алгебры. Главное — связь между ними. Если алгебраическое мышление буксует, переключайтесь на геометрию.
Координатная геометрия предлагает новую свободу выдумывать кривые. Просто напишите уравнение — и смотрите на его решения. Если ваше уравнение не слишком глупое, вроде x = x, должна получиться кривая. (Решениями уравнения x = x является вся координатная плоскость.) К примеру, я мог бы записать уравнение x + y = 3xy, решения которого можно увидеть на рис. 45. Эта кривая — декартов лист, и вы не найдете ее у Евклида. Ассортимент новых кривых, которые может выдумывать каждый, буквально бесконечен.
Математики всегда стремятся к обобщениям — это рефлекс, он включается автоматически. Стоит кому-нибудь натолкнуться на интересную идею, и тут же все задаются вопросом: возможно ли что-нибудь подобное в более общем случае? Идея Декарта, в частности, имеет по крайней мере три серьезных варианта обобщения, или модификации, и все они необходимы для понимании гипотезы Ходжа.
Во-первых, что происходит, если мы работаем с пространствами, отличными от плоскости? Трехмерное евклидово пространство имеет три координаты (x, y, z) вместо двух. В пространстве одно уравнение, как правило, определяет поверхность, а два уравнения — кривую, по которой поверхности пересекаются. Три уравнения, как правило, определяют точку. (Говоря «как правило», я имею в виду, что бывают и исключения, но они очень необычны и удовлетворяют особым условиям. Что-то подобное мы видели на плоскости в случае того самого «глупого» уравнения x = x.)
Здесь мы опять же можем придумывать новые уравнения и тем самым определять новые поверхности или кривые, которых нет у Евклида. В XIX в. это было модным занятием. Можно было даже опубликовать статью про новую поверхность, если у вас было что сказать о ней — что-нибудь по-настоящему интересное. В качестве типичного примера можно вспомнить поверхность, представленную Куммером в 1864 г., с уравнением
На рис. 46 представлен соответствующий график. Самое интересное в нем — 16 «двойных точек», где поверхность напоминает поверхности двух конусов, соединенных вершина к вершине. Как раз 16 — максимально возможное число таких точек для поверхности четвертого порядка, т. е. поверхности, описываемой уравнением четвертой степени. Это обстоятельство показалось достаточно интересным для публикации.
К XIX в. математики успели познать пьянящие радости пространств высоких измерений. Нет нужды останавливаться на трех координатах; почему не попробовать четыре, пять, шесть… миллион? И это не пустопорожние рассуждения. Это алгебра множества уравнений с множеством переменных, а они всплывают то и дело в самых разных точках математического ландшафта. К примеру, они упоминались в главе 5 (гипотеза Кеплера) и главе 8 (задача трех тел). Не идет речь и о пустых искусственных обобщениях: возможность размышлять о подобных вещах не только алгебраически, но и геометрически — мощный инструмент, который нет смысла ограничивать двумя или тремя измерениями просто потому, что только в таких пространствах мы можем рисовать картинки и строить модели.
Слово «измерение» может казаться внушительным и загадочным, но в данном контексте его значение вполне прозрачно: сколько вам нужно координат. К примеру, в четырехмерном пространстве четыре координаты (x, y, z, w), и в математическом смысле этого достаточно для определения. В четырех измерениях единственное уравнение обычно определяет трехмерную «гиперповерхность», два уравнения — поверхность (два измерения), три уравнения — кривую (одно измерение), а четыре — точку (нуль измерений). Каждое новое уравнение расправляется с одним измерением, т. е. с одной переменной. Так что мы можем предсказать, что в пространстве 17 измерений 11 уравнений определяют шестимерный объект, за исключением редких (и легко опознаваемых) случаев, когда некоторые из уравнений избыточны.
Объект, определенный таким образом, называется алгебраическим многообразием. В русском языке слово «многообразие» употребляется и в топологии, и в дифференциальной геометрии (топологии пополам с дифференциальным исчислением), и в алгебраической геометрии. В некоторых других языках традиционно существует два различных термина (в частности, в английском языке используются слова manifold и variety){41}. Конечно, алгебраическое многообразие можно было бы называть «многомерным пространством, определенным системой алгебраических уравнений», но вы сами, вероятно, понимаете, почему так никто не говорит.
Второй многообещающий способ обобщить представления координатной геометрии состоит в том, чтобы разрешить комплексные координаты. Припомним, кстати, что в системе комплексных чисел существует число нового типа i, квадрат которого равен 1. Зачем усложнять все на свете таким странным образом? Затем, что алгебраическе уравнения на множестве комплексных чисел ведут себя гораздо лучше. На множестве действительных чисел квадратное уравнение может иметь два решения или ни одного. (Оно может также иметь одно решение, но в определенном — и весьма разумном — смысле лучше считать, что одно решение повторяется дважды.) На множестве комплексных чисел квадратное уравнение всегда имеет два решения (опять же если корректно учитывать повторяющиеся решения). В некоторых случаях такое свойство может оказаться очень полезным. Можно сказать: «Решаем уравнение для седьмой переменной» — и быть уверенным, что такое решение действительно существует.
Тем не менее, хотя в этом отношении все очень удобно, некоторые свойства комплексной алгебраической геометрии без привычки воспринимаются довольно тяжело. Если говорить о действительных переменных, то там прямая может пересекать окружность в двух точках, касаться ее или проходить в стороне и не иметь с ней общих точек. В случае комплексных переменных третья возможность исчезает. Но если привыкнуть к изменениям, то окажется, что комплексные алгебраические многообразия ведут себя куда лучше, чем действительные. Иногда действительные переменные необходимы, но в большинстве случаев в комплексном контексте работать удобнее. Во всяком случае нам теперь известно, что представляет собой комплексное алгебраическое многообразие.
Как насчет слова «проективное»? Это третье обобщение, и для него требуется несколько иное представление о пространстве. Проективная геометрия выросла из интереса, который живописцы эпохи Возрождения питали к законам перспективы, и в ней отсутствует особое поведение параллельных прямых. В евклидовой геометрии две прямые либо пересекаются, либо параллельны, и тогда они не встретятся никогда, сколько их ни продолжай. А теперь вообразите себя стоящим с кистью в руке перед мольбертом на бесконечной плоскости. Все готово, палитра ждет, а перед вами две параллельные прямые уходят к закатному горизонту, как два бесконечных идеально прямых железнодорожных рельса. Что вы видите и, соответственно, что появится на вашем холсте? Вовсе не две линии, которые никак не могут сойтись. Вы увидите, как линии постепенно сближаются и на горизонте сходятся в точку.
Какой части плоскости соответствует горизонт? Той части, где встречаются параллельные линии. Но такого места нет. Горизонт на вашей картине представляет собой границу изображения плоскости. Если с окружающим миром все в порядке, то горизонт должен быть изображением границы плоскости. Но у плоскости нет границ. Она продолжается бесконечно. Все это слегка сбивает с толку, как будто часть евклидовой плоскости куда-то пропала. «Проектируя» плоскость (ту самую, с рельсами) на другую плоскость (ваш холст на мольберте), вы получаете на картине линию — горизонт, — которая не является проекцией никакой линии на изображаемой плоскости.
Существует способ избавиться от этой загадочной аномалии: добавить к евклидовой плоскости так называемую линию бесконечности, представляющую отсутствующий горизонт. После этого все сильно упрощается. Две прямые всегда встречаются в точке; прежнее представление о параллельных прямых соответствует случаю, когда две прямые встречаются в бесконечности. Эту идею после надлежащего осмысления можно совершенно разумно перевести на язык математики. Результат такого перевода и называется проективной геометрией. Это очень элегантный предмет, и математики XVIII и XIX вв. его обожали. Со временем оказалось, что сказать им по этому вопросу больше нечего — все уже сказано, и в таком состоянии эта область пребывала до тех пор, пока математики XX в. не решили обобщить алгебраическую геометрию на многомерные пространства и использовать комплексные числа. В этот момент стало ясно, что с тем же успехом можно довести дело до логического конца и вместо действительных решений систем алгебраических уравнений в евклидовом пространстве изучать комплексные решения в проективном пространстве.
Позвольте мне суммировать сказанное. Проективное комплексное алгебраическое многообразие похоже на кривую, определенную алгебраическим уравнением, за исключением того, что:
• число уравнений и переменных может быть любым по нашему желанию (алгебраическое многообразие);
• переменные могут быть комплексными, а не действительными (комплексность);
• переменные могут принимать бесконечные значения разумным образом (проективность).
Добавим здесь же, что несложно разобраться и с еще одним термином из формулировки: с невырожденностью. Это слово означает, что многообразие является гладким и не имеет острых гребней или мест, где его форма сложнее, чем просто гладкий кусок пространства. Поверхность Куммера, например, имеет сингулярности в 16 двойных точках. Разумеется, нам нужно еще объяснить, что означает «гладкость», когда переменные комплексны и некоторые из них могут быть бесконечными, но на это есть рутинные общепринятые методики.
Вот мы и добрались почти до середины формулировки гипотезы Ходжа. Мы уже знаем, о чем идет речь, но пока не понимаем, как, по мнению Ходжа, эта штука должна себя вести. Теперь нам нужно разобраться с самыми глубокими и в то же время формальными аспектами: алгебраическими циклами, классами и особенно классами Ходжа. Однако самую суть я могу раскрыть прямо сейчас. Все это технические средства, помогающие получить частичный ответ на фундаментальнейший вопрос о нашей обобщенной кривой: какой она формы? Оставшаяся часть формулировки — «рациональная линейная комбинация» — говорит о том, как в соответствии с общими надеждами следует ответить на этот вопрос.
Смотрите, как далеко мы продвинулись. Мы уже понимаем, что примерно представляет собой гипотеза Ходжа. Она говорит о том, что форму любой обобщенной поверхности, задаваемой некими уравнениями, можно определить при помощи каких-то алгебраических манипуляций с вещами, известными как циклы. Я мог бы сказать об этом в самом начале главы, но тогда эта формулировка вряд ли объяснила бы много больше, чем официальная. Теперь же, когда мы знаем, что такое многообразие, все понемногу проясняется.
Кроме того, все начинает сильно напоминать топологию. «Определение формы путем алгебраических вычислений» поразительно похоже на идеи Пуанкаре об алгебраических инвариантах топологических пространств. Так что следующий шаг потребует обсуждения алгебраической топологии. В активе Пуанкаре значится открытие трех важных типов инвариантов, определенных в терминах трех концепций: гомотопии, гомологии и когомологии. Нас в данном случае интересует когомология — и конечно (кто бы мог подумать!), именно ее объяснить труднее всего.
Я думаю, пора приступать.
В трехмерном пространстве с действительными координатами пересечением сферы и плоскости (если они, конечно, вообще пересекаются) является окружность. Сфера — это алгебраическое многообразие; окружность — тоже алгебраическое многообразие и притом входит в состав сферы. Мы называем это подмногообразием. В более общем случае, если взять уравнения (с большим числом переменных, комплексные, проективные), определяющие некое многообразие, и добавить к ним еще несколько уравнений, то некоторые решения — те, что не удовлетворяют новым уравнениям, — как правило, теряются. Чем больше у нас уравнений, тем меньше становится многообразие. Расширенная система уравнений определяет некоторую часть первоначального многообразия, и эта часть сама по себе тоже является многообразием — это подмногообразие.
При подсчете количества решений полиномиального уравнения иногда бывает удобно учесть одну и ту же точку несколько раз. Можно сказать, что совокупность решений состоит из множества точек, за каждой из которых мы «закрепляем» число, соответствующее его кратности. Можно, к примеру, иметь решения 0, 1 и 2 с кратностью 3, 7 и 4 соответственно. Многочлен в этом случае будет x3(x 1)7(x 2)4, если вам это интересно. Каждая из трех точек x = 0, 1 или 2 является (достаточно тривиальным) подмногообразием множества комплексных чисел. Поэтому решения этого полиномиального уравнения можно описать как список изтрех подмногообразий с прикрепленным к каждому из них целым числом (вроде этикетки).
Алгебраический цикл выглядит примерно так же. Вместо отдельных точек мы можем использовать любой конечный список подмногообразий, присоединив к каждому из них числовую метку, не обязательно целую. Меткой может быть отрицательное целое число, рациональное число, действительное или даже комплексное число. По разным причинам в гипотезе Ходжа в качестве меток используются рациональные числа, о чем свидетельствует формулировка «рациональная линейная комбинация». К примеру, в качестве первоначального многообразия может выступать единичная сфера в 11-мерном пространстве; тогда список, о котором идет речь, мог бы выглядеть так:
• семимерная гиперсфера (задаваемая такими-то уравнениями) с меткой 22/7;
• тор (задаваемый такими-то уравнениями) с меткой 4/5;
• кривая (задаваемая такими-то уравнениями) с меткой 413/6.
Не пытайтесь это представить или, если очень захочется, нарисуйте картинку в стиле комикса: три бесформенные кляксы с надписями. Каждая такая картинка, каждый список представляет один алгебраический цикл.
К чему устраивать такой шум и изобретать подобные абстракции? К тому, что они отражают самые существенные аспекты первоначального алгебраического многообразия. Специалисты по алгебраической геометрии заимствуют методы у топологов.
В главе 10, где речь шла о гипотезе Пуанкаре, мы говорили о муравье, вселенной которого является поверхность. Как может муравей определить форму своей вселенной, если он не в состоянии отойти в сторонку и посмотреть? В частности, как он сможет отличить сферу от тора? Представленное в той главе решение предусматривало использование замкнутых кривых — топологических автобусных маршрутов. Муравей перемещает эти петли по всей поверхности, выясняет, что происходит, если поставить их одну за другой — концом к началу, и вычисляет алгебраический инвариант пространства, известный как его фундаментальная группа. Слово «инвариант» означает, что топологически эквивалентные пространства имеют одну и ту же фундаментальную группу. Если группы различны, то различны и пространства. Именно этот инвариант привел Пуанкаре к его гипотезе. Однако бедному муравью непросто проверить все возможные в его вселенной маршруты, и это замечание отражает реальные математические тонкости в расчетах фундаментальных групп. Существует и более практичный инвариант, Пуанкаре его тоже исследовал. Процесс перемещения петель по поверхности называется гомотопией; альтернативный вариант называется похоже, но иначе — гомологией.
Я покажу вам простейший, самый конкретный вариант гомологии. Топологи быстро развили этот вариант, оптимизировали и обобщили его, превратив в мощнейшую математическую машину, которая получила название «гомологическая алгебра». Этот простой вариант позволит вам лишь слегка почувствовать, как все это работает, но ведь нам ничего больше и не нужно.
Муравей начинает с того, что обследует свою вселенную и составляет карту. Подобно любому профессиональному топографу, он покрывает вселенную сетью треугольников. Главное при этом — чтобы ни в одном треугольнике не оказалось дырки в поверхности. Проще всего обеспечить это, вставляя каждый треугольник в виде резиновой заплатки, как при ремонте велосипедной камеры. При этом каждый треугольник будет иметь хорошо определенную внутренность, топологически эквивалентную внутренности любого обычного треугольника на плоскости. Топологи называют такую треугольную заплатку топологическим диском, поскольку она эквивалентна кругу. Чтобы убедиться в этом, взгляните на рис. 36 в главе 10, где треугольник постепенно модифицируется в круг. Подобную заплатку невозможно поставить поверх отверстия, потому что отверстие создает туннель, связывающий внутреннюю часть треугольника с его внешней частью. Чтобы перекрыть отверстие, заплатке придется выйти за пределы поверхности, а муравью запрещено делать это.
Итак, муравей провел триангуляцию своей вселенной. Условие про заплатку гарантирует, что, имея полный список треугольников и зная, какой треугольник с какими граничит, можно восстановить топологию поверхности, т. е. ее форму в смысле топологической эквивалентности. Если бы можно было поехать в «Икею» и купить Универсальный муравьиный набор надлежащим образом промаркированных треугольников, то мы могли бы, склеив аккуратно сторону А со стороной АА, сторону В со стороной ВВ и т. д., построить соответствующую поверхность. Сам муравей заперт на этой поверхности и потому не может построить ее модель, но он может быть уверен, что в принципе его карта содержит всю необходимую для построения информацию. Чтобы извлечь эту информацию, муравью придется проводить вычисления. При этом ему придется рассматривать уже не бесконечное число возможных петель, но все же достаточно большое их число: все замкнутые петли, проходящие вдоль ребер выбранной им сетки.
В гомотопии мы задаемся вопросом, можно ли сжать данную петлю непрерывно в точку. В гомологии мы задаемся другим вопросом: образует ли данная петля границу топологического диска? Иными словами, можно ли взять одну или несколько треугольных заплаток вместе таким образом, чтобы в сумме получился участок без отверстий с замкнутой границей?
На рис. 47 слева показана часть триангуляционной сети сферы — замкнутая петля и топологический диск, границей которого она является. Применив подходящие методики, можно доказать, что любая петля в триангуляционной сети сферы является такой границей: треугольные заплатки, а в более общем случае топологические диски, — это детекторы отверстий, а интуитивно понятно, что в сфере отверстий нет. Однако в торе отверстие имеется и в самом деле некоторые петли на торе не являются границами таких областей. На рис. 47 справа показана такая петля, проходящая сквозь центральное отверстие. Иными словами: просмотрев список петель и проверив, какие из них являются границами непрерывных областей, муравей может отличить сферическую вселенную от тороидальной.
Если наш муравей столь же умен, как Пуанкаре и другие топологи того времени, он сможет превратить эту идею в элегантный топологический инвариант — гомологическую группу своей поверхности. Базовая идея заключается в том, чтобы «сложить» две петли, нарисовав их обе. Однако то, что получилось, не является петлей, поэтому нам придется вернуться и начать заново. Более того, вернуться нам придется в самое начало, в те дни, когда мы только начинали свое знакомство с алгеброй. Моя учительница математики для начала поведала нам, что можно сложить количество яблок в одной кучке с количеством яблок в другой и получить общее количество яблок. Но нельзя сложить яблоки с апельсинами — разве что если хотите узнать общее число фруктов.
Сказанное верно в арифметике, хотя даже там приходится быть внимательным, чтобы не сосчитать одно и то же яблоко дважды, а в алгебре это уже неверно. Там вы можете складывать яблоки с апельсинами, не смешивая их. Более того, в высшей математике принято складывать вещи, которые никто в здравом уме и выдумывать-то не стал бы, не то что складывать. Свобода заниматься подобными вещами оказывается поразительно полезной и важной, и придумавшие их математики вовсе не были сумасшедшими, по крайней мере в этом отношении.
Для понимания некоторых идей, связанных с гипотезой Ходжа, мы должны иметь возможность складывать яблоки и апельсины, не записывая их все в обычные фрукты. Делать это на самом деле несложно. Сложно признать, что в этом занятии есть какой-то смысл. Многим из нас доводилось встречаться с подобными концептуальными блоками. Моя учительница рассказывала классу, что буквами обозначаются неизвестные числа, причем разные неизвестные числа обозначаются разными буквами. Если у вас есть a яблок и еще a яблок, то общее число яблок будет a + a = 2a. И это верно, сколько бы в реальности ни было яблок. Если вы возьмете 3a яблок и прибавите к ним еще 2a яблок, то всего получится 5a, сколько бы в реальности ни было яблок. Сам символ, как и то, что он представляет, вовсе не имеет значеия: если бы вместо 3a яблок у вас было 3b апельсинов, к которым вы прибавляли бы 2b апельсинов, то результат был бы 5b{42}. Но что произойдет, если у вас будет 3a яблок и 2b апельсинов? Что будет, если сложить 3a и 2b?
3a + 2b.
Вот и все. Эту сумму невозможно упростить и превратить в 5 чего-нибудь: по крайней мере нельзя без некоторых манипуляций с новой категорией — фруктами — и каких-то новых уравнений. Это лучшее, что можно получить: удовлетворитесь этим. Однако, начав с этого, вы вскоре сможете производить такие действия, как:
(3a + 2b) + (5a — b) = 8a + b
без всяких дополнительных рассуждений. И без новых видов фруктов.
Есть, правда, кое-какие оговорки. Я уже отметил, что при складывании яблока и яблока два яблока получится только в том случае, если первое яблоко не идентично второму. То же можно сказать и о более сложных комбинациях яблок и апельсинов. В алгебре считается, что для целей сложения все яблоки, о которых идет речь, различны между собой. Вообще-то принять такое условие часто имеет смысл даже в тех случаях, когда два яблока — или что мы там складываем — на самом деле могут оказаться идентичными. Одно яблоко плюс еще раз то же самое яблоко будет яблоко с кратностью два.
Привыкнув к этой идее, вы сможете пользоваться ею везде. Одна свинья плюс та же свинья получается свинья с кратностью два: свинья + свинья = 2 свиньи, что бы ни скрывалось на самом деле под словом «свинья». Свинья плюс корова будет свинья + корова. Треугольник плюс три круга будет треугольник + три круга. Суперпуперсфера плюс три гиперэллиптических квазикучи будет
суперпуперсфера + три гиперэллиптических квазикучи,
что бы все эти специальные термины ни означали (в данном случае ничего).
Можно даже разрешить отрицательные числа и говорить о вычитании 11 коров из трех свиней: 3 свиньи — 11 коров. Я понятия не имею, что представляют собой минус 11 коров, но я могу быть уверен, что если я прибавлю к ним шесть коров, то получу минус пять коров{43}. Это формальная игра с символами, и никакая реалистичная интерпретация здесь не требуется, не нужна или — зачастую — невозможна. Можно разрешить действительные числа: свиней минус 2 коров. Комплексные числа. Любые сколь угодно причудливые числа, которые взбредут в голову математику. Этой идее можно придать чуть больше лоска и респектабельности, если рассматривать числа как бирки, навешенные свиньям и коровам. Тогда свиней минус 2 коров можно рассматривать как свинью с биркой рядом с коровой с биркой — 2. Арифметика здесь применяется к биркам, а не к животным.
В гипотезе Ходжа тоже фигурирует подобная конструкция с дополнительными рюшечками и украшениями. Вместо животных в ней используются кривые, поверхности и их многомерные аналоги. Может показаться странным, но в результате получается не просто абстрактная чепуха, а глубокая связь между топологией, алгеброй, геометрией и анализом.
Чтобы привести в порядок математический аппарат гомологии, нам потребуется складывать петли, но не так, как мы делали это в фундаментальной группе, а так, как учила меня в свое время учительница. Мы будем просто записывать петли и ставить знак «+» между ними. Чтобы это имело смысл, мы будем работать не с отдельными петлями, а с конечными их наборами. Мы обозначим каждую петлю целым числом, которое будет соответствовать частоте встречаемости этой петли, и назовем такой набор циклом. Теперь наш муравей получает возможность складывать циклы. Для этого он должен объединить петли и сложить значения соответствующих маркеров. Результатом будет новый цикл. Возможно, рассказывая в главе 10 о путешествиях муравья, мне следовало взять мотоциклы, а не автобусы.
Когда мы занимались строительством фундаментальной группы, где «сложение» означает соединение петель концом к концу, там была одна техническая проблема. Добавление тривиальной петли к любой другой давало в результате не совсем ту же самую петлю, так что нулевая петля вела себя неправильно. Сложение прямой и обратной петель давало не совсем нулевую петлю, так что инверсия тоже работала некорректно. Чтобы решить эту проблему, решено было считать петли одинаковыми, если одну из них можно плавно преобразовать во вторую.
Для гомологии это вообще не проблема. Существует нулевой цикл (все маркеры нулевые), и для каждого цикла существует обратный к нему цикл (чтобы получить его, достаточно поменять знак у маркера цикла), поэтому мы имеем группу. Проблема в том, что это не та группа. Она ничего не говорит нам о топологии пространства. Чтобы разобраться в этом, мы воспользуемся аналогичной уловкой и более свободным подходом к тому, что считать нулем. Муравей режет пространство на треугольные заплатки, и граница каждой заплатки топологически достаточно тривиальна: ее можно свести в точку, просто сужая со всех сторон к середине. Таким образом, все граничные циклы должны быть эквивалентны нулевому циклу. Этот логический ход немного напоминает переход от обычных чисел к значениям по модулю (скажем, по модулю 12); мы делаем вид, что число 12 не имеет значения, и его можно назвать нулем. Здесь мы переводим циклы в плоскость гомологии, делая вид, что любые граничные циклы значения не имеют.
Следствия такой позиции очень серьезны. Теперь на алгебру циклов влияет топология пространства. Группа циклов по модулю границ является полезным топологическим инвариантом — гомологической группой поверхности. На первый взгляд этот инвариант зависит от того, какой вариант триангуляции выберет муравей, но если говорить об эйлеровой характеристике, то различные варианты триангуляции одной и той же поверхности приводят к одной и той же гомологической группе. Таким образом, муравей придумал алгебраический инвариант, при помощи которого можно различать поверхности. Искать его — довольно трудоемкое занятие, но хорошие инварианты невозможно получить без труда. Данный инвариант настолько эффективен, что с его помощью можно отличить не только сферу от тора, но тор с двумя отверстиями от тора с пятью отверстиями или с любым другим их количеством.
Гомология может показаться слишком сложной, но именно она положила начало целой серии топологических инвариантов. Кроме того, она основана на простых геометрических идеях: петлях, границах, объединении наборов, арифметических действиях с маркерами. Учитывая, что бедный муравей заперт на своей поверхности, просто поразительно, что он может узнать кое-что о своей вселенной при помощи разделения поверхности на треугольные кусочки, составления карты и некоторых алгебраических операций.
Можно естественным образом распространить гомологию на высшие измерения. Трехмерный аналог треугольника — тетраэдр; у него четыре вершины, шесть ребер, четыре треугольные грани и одна трехмерная «грань», его внутренность. В более общем случае в n измерениях можно определить n-мерный тетраэдр, или симплекс, с n + 1 вершинами, попарно соединенными всеми возможными ребрами. Они, в свою очередь, образуют треугольники, которые собираются в тетраэдры и т. д. Теперь несложно определить циклы, границы и гомологию и опять же можно состряпать группу путем добавления (гомологических классов) циклов. Фактически мы получаем целую серию групп: одну для нульмерных циклов (точек), одну для одномерных циклов (отрезков), одну для двумерных циклов (треугольников) и т. д. до полной размерности пространства. Это нулевая, первая, вторая и т. д. гомоогические группы пространства. Грубо говоря, они уточняют представление об отверстиях различных размерностей в пространстве: существуют ли они, сколько их и как они соотносятся друг с другом?
Это и есть гомология, и этого нам почти достаточно для понимания того, что говорит гипотеза Ходжа. Однако что нам на самом деле нужно, так это близкая к ней концепция когомологии. В 1893 г. Пуанкаре обратил внимание на любопытное совпадение в гомологии любого многообразия: список гомологических групп с начала и с конца читается одинаково. Для многообразия размерности 5, скажем, нулевая гомологическая группа совпадает с пятой, первая — с четвертой, а вторая — с третьей. Он понял, что это не может быть простым совпадением, и объяснил его двойственностью триангуляции, с которой мы уже встречались в главе 4 в связи с картами. Это второй вариант триангуляции, где каждый треугольник заменяется вершиной, каждая сторона, общая для двух треугольников, — ребром, соединяющим две вершины, а каждая точка — треугольником, как на рис. 9 в главе 4. Обратите внимание на то, что измерения появляются здесь в обратном порядке: двумерные треугольники превращаются в нульмерные точки, и наоборот; одномерные ребра остаются одномерными, потому что 1 находится в середине.
Оказывается, полезно различать два списка, хотя инварианты они выдают одни и те же. Когда все это обобщается и облекается в формальные термины, триангуляция исчезает, и дуальная триангуляция тоже теряет смысл. Остаются только две серии топологических инвариантов, именуемых гомологическими и когомологическими группами. Вообще, каждое понятие в гомологии имеет двойника, название которого обычно образуется от названия понятия путем добавления приставки «ко-». Таким образом, вместо циклов мы получаем коциклы, а вместо заявления о том, что два цикла гомологичны, говорим, что два коцикла когомологичны. Классы, о которых идет речь в гипотезе Ходжа, — это классы когомологий, которые представляют собой наборы когомологичных коциклов.
Гомология и когомология не сообщают нам всего, что мы хотели бы знать о форме топологического пространства, — различные пространства могут обладать идентичными гомологией и когомологией, — но дают немало полезной информации, а также обеспечивают системные рамки для его расчета и использования.
Алгебраическое многообразие — будь оно действительным или комплексным, проективным или нет — представляет собой топологическое пространство. Поэтому оно имеет форму. Чтобы выяснить об этой форме что-нибудь полезное, мы рассматриваем многообразие как топологи и вычисляем его гомологическую и когомологическую группы. Но естественными ингредиентами алгебраической геометрии являются не геометрические объекты вроде триангуляционных сеток и циклов, а вещи, которые проще всего описываются алгебраическими уравнениями. Вернитесь немного назад и взгляните еще раз на уравнение поверхности Куммера. Как это соотносится с триангуляцией? В формуле нет ничего, что указывало бы на треугольники.
Может быть, нам нужно начать сначала. Вместо треугольников нам следовало бы использовать естественный строительный материал для многообразий — подмногообразия, определенные дополнительными ограничивающими уравнениями. Теперь нам придется переопределять циклы: вместо набора треугольников с целыми ярлыками мы воспользуемся набором подмногообразий с такими ярлыками, которые лучше всего подойдут в данном случае. По различным причинам — по большей части потому, что, если использовать целые ярлыки, гипотеза Ходжа неверна, — разумным выбором будут рациональные числа. Вопрос Ходжа сводится к следующему: содержит ли новое определение гомологии и когомологии всю ту же информацию, что и топологическое определение? Если гипотеза верна, то алгебраический цикл — не менее острый инструмент топологии, чем когомологический резец. Если она неверна, то алгебраический цикл — всего лишь твердый тупой предмет.
Вот только… прошу прощения, я немного переборщил. Гипотеза утверждает, что достаточно воспользоваться определенным типом алгебраического цикла — того, что обитает в классе Ходжа. Чтобы объяснить это, нам потребуется еще один ингредиент в уже и без того густой смеси: анализ. Одной из важнейших концепций анализа является дифференциальное уравнение, которое представляет собой условие, наложенное на скорости изменения переменных (см. главу 8). Почти вся математическая физика XVIII, XIX и XX вв. моделирует реальность при помощи дифференциальных уравнений. По существу, это верно даже для XXI в. В 1930-е гг. эта идея привела Ходжа к целой группе новых методик. Сегодня все это называется теорией Ходжа. Она естественным образом связана с множеством других мощных методов в объединенной области анализа и топологии.
Идея Ходжа заключалась в том, чтобы использовать дифференциальное уравнение для распределения классов когомологий по типам. Каждый из них обладает дополнительной структурой, которую можно успешно применять при решении топологических задач. Определяются они при помощи дифференциального уравнения, появившегося впервые в конце XVIII в. в работе Пьера-Симона де Лапласа и известного, соответственно, как уравнение Лапласа. Основные работы Лапласа были посвящены небесной механике, движению и форме планет и их спутников, комет и звезд. В 1783 г. он работал над определением точной формы Земли. К тому времени уже было известно, что Земля — не сфера, что она сплющена у полюсов и представляет собой приплюснутый сфероид — как если сесть сверху на пляжный мяч. Но даже такое описание не отражает деталей. Лаплас нашел способ рассчитать форму Земли с любой заданной точностью на основании физической величины, представляющей гравитационное поле планеты: это не само поле, но его гравитационный потенциал. Это мера энергии, содержащейся в гравитационном поле, численная величина, определяемая в каждой точке пространства. Тяготение действует в том направлении, в котором потенциал уменьшается с максимальной скоростью, а абсолютное значение силы соответствует скорости уменьшения.
Гравитационный потенциал удовлетворяет уравнению Лапласа: грубо говоря, это означает, что в отсутствии вещества, т. е. в вакууме, среднее значение потенциала по очень маленькой сфере равно его значению в центре сферы. Это своего рода демократия: ваша ценность получается путем усреднения ценностей ваших соседей. Любое решение уравнения Лапласа называется гармонической функцией. Ходжа среди классов когомологий интересуют те, что имеют особые отношения с гармоническими функциями. Теория Ходжа и изучение этих типов помогли открыть глубокую и чудесную область математики: отношения между топологией пространства и специальным дифференциальным уравнением на этом пространстве.
Вот мы и у цели. Гипотеза Ходжа постулирует глубокую и мощную связь между тремя столпами современной математики: алгеброй, топологией и анализом. Возьмем любое многообразие. Чтобы разобраться в его форме (это топология с выходом на когомологические классы), выбираем частные случаи таких классов (анализ с выходом на классы Ходжа через дифференциальные уравнения). Эти частные случаи коголомологических классов могут быть реализованы с использованием подмногообразий (алгебра: добавьте несколько уравнений и внимательно посмотрите на алгебраические циклы). Иными словами, чтобы ответить на топологический вопрос («Какой формы эта штука?») для многообразия, следует перевести его в плоскость анализа, а затем решить средствами алгебры.
Почему это так важно? Гипотеза Ходжа — это предложение добавить в инструментарий специалиста по алгебраической геометрии два новых инструмента: топологические инварианты и уравнение Лапласа. В самом деле, если разобраться, то в этой гипотезе речь не идет о какой-то математической теореме: речь о новых инструментах. Если гипотеза верна, эти инструменты обретают новое значение и становятся потенциальным средством поиска ответов на бесчисленное количество вопросов. Разумеется, гипотеза может оказаться и ошибочной. Было бы обидно, но, если возможности наших инструментов ограничены, лучше знать об этом заранее, чем то и дело натыкаться на проблемы в самый неподходящий момент.
Теперь, когда мы оценили природу гипотезы Ходжа, можно посмотреть, какие у нас есть свидетельства в ее пользу. Что нам известно? Чрезвычайно мало.
В 1924 г., еще до того, как Ходж выдвинул свою гипотезу, Соломон Левшец доказал теорему, которая сводится к гипотезе Ходжа для второй (или двумерной) группы когомологий любого многообразия. При помощи рутинных методов алгебраической топологии можно показать, что из этого следует гипотеза Ходжа для размерностей 1, 2 и 3. Для многообразий более высоких размерностей известно лишь несколько частных случаев гипотезы Ходжа.
Первоначально Ходж сформулировал свою гипотезу в терминах целых маркеров (или индексов). В 1961 г. Майкл Атья и Фридрих Хирцебрух доказали, что для высших измерений эта версия гипотезы неверна. Поэтому сегодня мы формулируем гипотезу Ходжа с использованием рациональных коэффициентов: для этой версии у нас есть некоторое количество обнадеживающих данных. Самое сильное свидетельство в ее пользу состоит в том, что одно из наиболее глубоких ее следствий — еще более технически сложная теорема, известная как теорема об «алгебраичности локусов Ходжа», уже доказана без опоры на гипотезу Ходжа. Эдуардо Каттани, Пьер Делинь и Арольдо Каплан нашли соответствующее доказательство в 1995 г.
Наконец, в теории чисел имеется симпатичная гипотеза, аналогичная гипотезе Ходжа и получившая название гипотезы Тейта в честь Джона Тейта. Она связывает алгебраическую геометрию с теорией Галуа — совокупностью идей, доказывающих, что у полиномиальных уравнений пятой степени не существует явных решений, выражаемых формулой. Формулировка гипотезы Тейта достаточно сложна: в ней фигурирует еще один вариант когомологии. Есть причины надеяться, что гипотеза Тейта верна, хотя она не доказана. Но по крайней мере можно сказать, что у гипотезы Ходжа есть разумный родич, хотя как подступиться хоть к той, хоть к другой гипотезе, пока совершенно неясно.
Гипотеза Ходжа — одно из тех математических утверждений, которые почти нечем ни подтвердить, ни опровергнуть и у которых свидетельства и в ту и другую сторону не слишком убедительны. К тому же существует опасность, что гипотеза может оказаться попросту неверной. Возможно, существует многообразие с миллионом измерений, опровергающее гипотезу Ходжа по причинам, которые сводятся к серии неструктурированных расчетов, настолько сложных, что никто и никогда не сможет их провести. Если это так, то гипотеза Ходжа может оказаться ошибочной по совершенно глупой причине — просто так получилось, — но доказать это практически невозможно. Я знаю несколько специалистов по алгебраической геометрии, которые считают именно так. В этом случае обещанному миллиону долларов в обозримом будущем ничего не грозит.
16. Куда дальше?
Предсказывать очень трудно, особенно будущее. По легенде, так любили говорить знаменитый физик и нобелевский лауреат Нильс Бор и знаменитый бейсболист и спортивный менеджер Йоги Берра{44}. Правда, Берра, как утверждают, еще говорил так: «Имейте в виду, я никогда не говорил большей части того, что говорил».
Артур Кларк, знаменитый своими научно-фантастическими романами и фильмом «Космическая одиссея — 2001», был, помимо всего прочего, футурологом: он писал книги о будущем техники и общества. В его книге «Очертания будущего» (Profiles of the Future), написанной в 1962 г., среди прочих предсказаний можно найти следующие:
• к 1970 г. — расшифровка языка китов и дельфинов;
• к 1990 г. — создание термоядерного реактора;
• к 1990 г. — обнаружение гравитационных волн;
• к 2000 г. — колонизация планет.
Ничего подобного пока не произошло. Но, с другой стороны, у него были и удачные предсказания:
• к 1980 г. — приземление на другие планеты (хотя он, возможно, имел в виду высадку человека);
• к 1970 г. — машины-переводчики (слегка преждевременно, но сегодня машинный перевод существует в Интернете);
• к 1990 г. — индивидуальное радио (примерно эту роль сегодня исполняют мобильные телефоны).
Он также предсказывал, что к 2000 г. у нас будет глобальная библиотека, и сегодня это предсказание ближе к истине, чем можно было подумать еще несколько лет назад (это тоже одна из функций Интернета). С развитием облачных вычислений мы, возможно, когда-нибудь все станем пользователями одного и того же гигантского компьютера. При этом Кларк упустил из виду некоторые важнейшие тенденции, такие как расцвет компьютеров и генная инженерия, хотя ее-то он как раз предсказал, но на 2030 г. Учитывая спорные суммарные результаты предсказаний Кларка, со своей стороны я бы не рискнул предсказывать будущее великих математических задач сколько-нибудь подробно. Однако могу высказать кое-какие квалифицированные догадки, не сомневаясь, однако, что большинство из них окажутся в результате ошибочными.
Во введении я упоминал список Гильберта из 23 крупных проблем, озвученный в 1900 г. В большинстве своем они уже решены, и может показаться, что смелый призыв ученого «Мы должны знать, и мы будем знать» оправдался. Однако Гильберт сказал также: «В математике ни о чем нельзя утверждать, что мы никогда этого не узнаем». Курт Гедель расправился с этой идеей, доказав свою теорему о неполноте: некоторые математические задачи могут не иметь решения в рамках обычной логической математики. Их решение не просто невозможно, как извлечение квадратуры круга — они могут быть неразрешимы в том смысле, что для них не существует ни доказательства, ни опровержения. Вероятно, именно такая судьба ждет некоторые из сегодняшних великих задач математики. Но я был бы удивлен, если бы в их число вошла гипотеза Римана, и поражен, если бы кто-то смог доказать ее неразрешимость. С другой стороны, проблема P/NP-алгоритмов вполне может оказаться неразрешимой или подпадать под какое-то другое формальное ограничение вида «это не может быть сделано, потому что…». Есть в этой задаче что-то, знаете ли, эдакое…
Подозреваю, что к концу XXI в. у нас все-таки будут доказательства гипотезы Римана, гипотезы Берча — Свиннертон-Дайера и гипотезы массовой щели, а также опровержение гипотезы Ходжа и регулярности решений уравнения Навье — Стокса в трех измерениях. Мне кажется, что задача P/NP-алгоритмов пока останется нерешенной, но падет где-нибудь в XXII в. Хотя понятно, что кто-нибудь завтра же опровергнет гипотезу Римана, а через неделю докажет, что P не совпадает с NP.