Математика. Считаем уверенно Соболева Александра
Материалы: заранее подготовленные карточки с заданиями, грамоты или сертификаты.
Количество играющих: 2 человека и больше.
Возраст играющих: от 8 лет и старше.
Правила игры: ведущий сообщает игрокам, что сейчас состоится заседание ученых-математиков, на котором им предстоит доказывать различные математические постулаты и правила. Каждому участнику раздаются карточки с одинаковым количеством заданий для доказательства. (Подбор заданий осуществляется в соответствии с возрастом и уровнем знаний игроков.) Перед тем как дети приступят, ведущий объясняет, как необходимо строить доказательство, например:
– докажи, что число 23 – двузначное.
Доказательство: у всех двузначных чисел два разряда: разряд десятков и разряд единиц. В числе 23 два разряда, а именно 2 десятка и 3 единицы. Следовательно, число 23 – двузначное.
По истечении времени, которое будет отведено на выполнение доказательств, в режиме «круглого стола» начинается обсуждение заданий. Сначала высказывается отвечающий, потом принимаются поправки и замечания других «ученых». Ведущий («профессор математических наук») ведет протокол заседания и записывает всем игрокам баллы (от 1 до 5 баллов за ответ). В конце игры подсчи-тываются баллы, и ведущий выдает детям сертификаты ученых-математиков.
Задания:
– докажи, что число 759 является трехзначным;
– докажи, что число 12 является четным;
– докажи, что число 27 является нечетным;
– докажи, что число 35 не делится на 2;
– докажи, что число 74 делится на 2;
– докажи, что число 44 не делится на 3;
– докажи, что число 93 делится на 3;
– докажи, что число 87 не делится на 5;
– докажи, что число 65 делится на 5;
– докажи, что геометрическая фигура с тремя сторонами является треугольником;
– докажи, что геометрическая фигура с четырьмя углами является квадратом.
Вы можете сами составлять задания по аналогии, а также включать материал из учебников по математике, актуальный для возраста игроков.
Спраутс (Побеги)
Игра изобретена математиком Дж. Конуэй, развивает прогностическую функцию мышления и функцию контроля.
Материалы: игровое поле с 16 точками, расположенными квадратом: по 4 с каждой стороны (как на рис. 19), два цветных карандаша или фломастера.
Количество играющих: 2 человека.
Возраст играющих: от 8 лет и старше.
Правила игры: два игрока ходят по очереди.
Рис. 19. Игровое поле для игры «Спраутс»
Правила ходов:
– за один ход можно соединить две точки прямой или кривой линией, на которой ставится новая точка (цветом, выбранным для каждого игрока);
– линия может соединять как соседние точки, так и точки, расположенные далеко друг от друга;
– линии не могут пересекаться;
– в точке может сходиться не более трех линий;
– играют только точки, изначально намеченные на игральном поле (точки, которые будут ставить игроки на линиях, соединять нельзя);
– выигрывает тот, кто сделает последний ход.
Заключение
Итак, кто говорил, что ваши дети не способны к математике?
Думаем, что после того, как поиграли с ними во все описанные нами игры, никто такого уже не скажет. Мы занимались именно развитием математического мышления, а не самой математикой.
Теперь вы научили детей мыслить, и мыслить с удовольствием, потому что именно любовь к предмету и способности к нему дает игровая форма обучения.
Все положительные изменения в успеваемости детей объясняются полимодальностью воздействия игр. В ходе занятий повысились произвольное внимание и контроль, восприятие, внимание и память, улучшилась мелкая моторика рук, сформировались зрительно-пространственные функции и логическое мышление, что не только позитивно повлияло на преодоление разных механизмов математического мышления, но должно было положительно повлиять и на успеваемость по всем предметам, поведение и желание учиться.
Поэтому если вашему ребенку не дается один из школьных предметов, необходимо, прежде всего выявить причины, мешающие ему его освоить, и убедить ребенка, что трудности, стоящие на пути, вполне преодолимы, а также заинтересовать ребенка и пробудить в нем желание «считать и решать».
В заключение хотелось бы вам процитировать рекомендацию, которую всегда дает родителям, психологам и учителям научный руководитель нашего Центра, профессор Жанна Марковна Глозман. На вопрос «Что делать с ребенком?» она всегда говорит: «Хвалите!». А когда ей объясняют, что хвалить не за что, она лукаво произносит: «Ищите!». И не было случая, чтобы этот уникальный рецепт не принес результата!
Не забудьте о том, что у ребенка создался уже школьный негативизм к предмету, и от того, какой будет обстановка, в которой вы занимаетесь, зависит его успех. Попытайтесь наладить с ним контакт, занимайтесь в спокойной, доброжелательной обстановке, и успех обеспечен! Не забывайте подкреплять достижения ребенка словами:
Неужели ты это сам придумал?!
Ты на совесть потрудился!
Я тобой горжусь!
Приятно посмотреть на твою работу!
Видишь, какие у тебя замечательные способности!
Посмотри, ты же сам справился!
Это трудное задание, но ты его выполнил отлично!
Ты сделал это лучше других!
Я бы так здорово не смогла!
Всегда ваши А. Соболева и Е. Печак
Литература
Ахутина Т. В., Обухова Л. Ф., Обухова О. Б. Трудности усвоения начального курса математики в форме квазиисследовательской деятельности // Психологическая наука и образование. 2001, № 1.
Ахутина Т. В., Пылаева Н. М. Преодоление трудностей учения: нейропсихологический подход. – СПб.: Питер, 2008.
Бочарова А. Г., Горева Т. М., Окунь В. Я. 500 замечательных игр. – М., 1999.
Выготский Л. С. Игра и ее роль в психическом развитии ребенка // Вопросы психологии. 1966. № 6. С. 48–57.
Гельденштейн Л. Э., Мадышева Е. Л. Коллекция развивающих игр. – Ростов-на-Дону: «Феникс», 2005.
Глозман Ж. М. Нейропсихология детского возраста. – М.: Академия, 2009.
Игровые методы коррекции трудностей обучения в школе / Под ред. Ж. М. Глозман. – М.: В. Секачев, ТЦ Сфера, 2006.
Куцакова Л. В., Губарева Ю. Н. 1000 увлекательных игр и заданий для детей 5–8 лет. – М.: «Астрель», 2003.
Лурия А. Р. Высшие корковые функции человека и их нарушения при локальных поражениях мозга. – М.: Изд-во Моск. Ун-та, 1969.
Математика от трех до шести / Сост. З. А. Михайлова, Э. Н. Иоффе. – СПб.: «Акцидент», 1996.
Семаго Н. Я. Методика формирования пространственных представлений у детей дошкольного и младшего школьного возраста. – М.: Айрис-пресс, 2007.
Сунцова А., Курдюкова С. Учимся ориентироваться в пространстве. Рабочая тетрадь. – СПб.: Питер, 2008.
Соболева А. Е., Кондратьева Н. Н. Русский язык с улыбкой. Игровые упражнения для предупреждения и преодоления дисграфии. – M.: Творческий Центр Сфера, 2007.
Соболева А. Е., Емельянова Е. Н. Русский язык. Пишем грамотно. – М.: Эксмо, 2009.
Соболева А. Е., Емельянова Е. Н. Школьные перегрузки. Как помочь своему ребенку – М.: Изд-во Питер, 2009.
Соболева А. Е., Емельянова Е. Н. Решаем школьные проблемы. Советы нейропсихолога. – М.: Изд-во Питер, 2009.
Тихомирова Л. Ф. Логика. Дети 7-10 лет. – Ярославль: Академия развития, 2001.
1000 заданий для умников и умниц. – М.: АСТ ПРЕСС КНИГА, 2006.
Приложения
Приложение 1
«Шестью два – двенадцать, два козла бранятся» или Как быстро выучить таблицу умножения
«Единожды един – един, единожды два – два…»
Фонвизин Д. И. «Недоросль»
Вспомните последнюю страницу тетради в клеточку и ту самую таблицу, над которой льют исторические слезы школьники с «Арифметики Магницкого» до наших дней. Итак, вот она перед нами, САМА ТАБЛИЦА УМНОЖЕНИЯ, несчастье школьников начальных классов! Интереса не представляет никакого. Смотрится скучно и нудно. Даже веселые плакаты с героями «мультиков» не помогают преодолевать тоску перед объемом скучных цифро-сочетаний, которые надо вызубрить. Но учить надо.
А все сложности надо преодолевать быстренько, на раз-два-три. Как будто перетащил велосипед через размытую дождем глиняную дорожку и покатился дальше легко и весело. Прошлое препятствие становится твоей гордостью, достижением и совсем не таким уж трудным-то делом.
Вот один из эффективных способов выучивания таблицы умножения.
В первую очередь, надо показать ребенку, что таблица умножения не так уж велика, как ему кажется. Для этого, записав ее на доске, сначала рекомендуем вам вычеркнуть первый столбик (1x0=0; 1x1=1, 1x2=2), который, как мы помним, знал даже Митрофанушка.
Затем уберите столбик, где умножается на 10, объяснив, что это то же самое, но с «ноликом» на конце. Количество столбиков уменьшилось с 10 до 8. Уже хорошо!
Убедите ребенка, что из оставшихся примеров он тоже многое знает.
Умножение на 2 знаешь? – Стираем!
Пятью-пять знаешь? Шестью-шесть знаешь? Стираем!
Дважды два? Дважды три? – Стираем!
Девятью один это все равно, что один на девять, правильно? – Стираем!
И все, что умножается на единицу, стираем, и на двойку – тоже стираем. Во всех рядах. Потому что мы это знаем.
Оставшиеся примеры (а их окажется гораздо меньше, чем думаете вы и ребенок) учим следующим способом:
• сначала ребенок внимательно смотрит на таблицу умножения, пытаясь запомнить ее зрительно;
• затем вы очень медленно читаете ребенку таблицу умножения, а он, закрыв глаза, пытается ее «нарисовать на доске», причем цветными мелками: результат должен быть «написан цветным мелком»;
• даем ребенку еще раз самому, вполголоса, прочитать весь оставшийся ряд;
• на настоящей доске стираем результаты – пусть ребенок постарается написать их сам, и опишите вместе с ним то, что он не успел вспомнить. Все действия выполняются тем цветом «мелка», которым он рисовал «во внутреннем взоре»;
• теперь стираем произведения, оставляем только результаты. Пусть ребенок постарается написать множители. Проговаривайте и рассуждайте с ним вместе и вслух.
Вы уже почти выучили таблицу, не так ли? Немного примеров осталось, мы даже догадываемся, каких:
7x8=56
6x9=54
7x9=63
9x8=72
И еще, может, пара-тройка других.
Откуда мы знаем, что именно ребенок не запомнил? Читаем мысли на расстоянии!
Так вот, оставшиеся примеры умножения надо запомнить следующим образом: сочинить на них стихи. Но свои, собственные. И чем глупее и смешнее будет, тем лучше.
Например: семью восемь – пятьдесят шесть, сено покосим – начинаем есть.
Или: семью девять – шестьдесят три, съешь пельмени – щеки утри.
Но – повторяем – это должно быть вашим совместным творчеством – родителей и детей, учителя и класса, и тогда результат обеспечен!
Детям, испытывающим трудности в стихотворчестве, мы можем предложить уникальную счетную машинку, сделанную из… собственных пальцев. Но работает она только тогда, когда надо умножить на 9. Ну и хорошо! Именно этот ряд, как показывает практика, особенно труден для запоминания.
Внимание! НЕ проходите мимо! Уникальная счетная машинка, которая всегда с ВАМИ! Может работать шпаргалкой! Продается бесплатно!
Положите обе руки рядом на стол и вытяните пальцы.
Каждый палец слева направо будет означать соответствующее порядковое число: первый слева – 1, второй слева – 2, третий – 3, четвертый – 4 и т. д. до десятого, который будет обозначать число 10 (мизинец правой руки).
Для того, чтобы умножить число первого ряда на 9, вам надо только, не отрывая рук от стола, приподнять вверх тот палец, который обозначает множимое. Тогда число остальных пальцев, лежащих налево от поднятого пальца, будет числом десятков произведения, а число пальцев направо – числом единиц.
Пример. Умножить 7 на 9. Кладем руки на стол, поднимаем 7-й палец (указательный правой руки). Налево от указательного пальца лежат шесть пальцев, направо – 3. Результат умножения – 63.
Приложение 2
Математика – это прикольно! (математические игры и фокусы)
До великих открытий никогда не додумался бы рассудительный, медлительный и трусливый ум.
Дж. Пристли
А теперь, когда у вашего ученика все хорошо с математикой, давайте вместе с ним радостно посмотрим на ту фотографию Эйнштейна, ту самую, где гениальный ученый кому-то показывает язык.
Кому?
Ученые-историки, в большинстве своем, представляющие именно тот слой бывших учеников, которому не особенно давался курс школьной математики, поддерживают ту версию, что эта выходка великого математика обращена к тем, кто прежде ставил ему двойки. Мы не призываем наших новоиспеченных математиков следовать, в данном случае, примеру Эйнштейна, так как у автора теории относительности есть и другие весьма важные открытия, достойные подражания. Мы предлагаем вам не останавливаться на достигнутом. Теперь, когда ребенок с готовностью осваивает казавшуюся еще недавно совершенно недоступной математику, надо повести его к новым вершинам!
Но мы туда не пойдем, а полетим. Для этого «приладим крылья».
Записывайте рецепт изготовления.
Берем имеющуюся уже успешность по предмету, добавляем (в равных долях) интерес, воображение, постоянную привычку к работе мысли и потребность в умении находить нестандартные решения.
В результате получатся надежно поднимающие крылья креативного мышления, которые позволят перенестись в любое неизведанное измерение. Они дадут возможность перемещаться по пространству, времени, расстоянию и дадут способность не только изучать данные правила, но и самому находить закономерности и делать новые открытия.
Это касается не только математики и даже не школьных предметов. Речь идет об общих способностях человека, о том, что пригодится в повседневной жизни, в построении будущего. Залог успехов человека – в привычке постоянно думать, критически оценивать информацию, находить решение поставленной задачи, преодолевать трудности, рассматривать и сравнивать различные варианты и, самое основное, получать от этого удовольствие.
Согласитесь, жизнь часто подбрасывает нам ситуации, требующие от нас принятия нестандартных решений, способности проанализировать имеющиеся варианты, просчитать ситуацию наперед.
Можно взять и сопоставить даже две бытовые ситуации.
Предположим, мужчина хочет уехать на рыбалку. А жена, как и положено – категорически против.
Как поступят мужчины с нетворческим мышлением? Муж – «авторитет» настоит на своем, хлопнет дверью и уйдет. Муж – «подкаблучник» останется дома.
А муж с креативным мышлением?
О! Да жена отправит его сама, куда ему хочется, потому что он заранее купил ей программу в косметическом салоне или билеты в театр, чтобы она смогла встретиться и пообщаться с давней подругой.
Поняли, чем отличается творческое мышление?
Навыки творческого, креативного мышления настолько тесно сплетают логику и воображение, что позволяют человеку и в быту, и в работе, и в творчестве «подняться» над проблемой, представить ее со стороны, мысленно увидеть ее возможное развитие.
А средством для развития творческого мышления рекомендуем выбрать математику. Почему именно математику?
Потому что дети всегда любят заниматься тем, что, во-первых, у них получается, а, во-вторых, тем, что интересно. Или, как они говорят, «прикольно».
А так как на данном этапе математика уже дается нашему школьнику легко, она послужит для нас мостиком к последующим упражнениям, направленным на развитие творческого мышления. Этими заданиями ребенок непременно захочет поделиться со сверстниками, и надеемся, его энтузиазм, его отношение к обучению как к сложной, но увлекательной игре, передастся и другим, а коллективное сотрудничество детей всегда во много раз преумножает успехи. Предлагаемые ниже игры, упражнения, фокусы собраны нами из опыта разных поколений учеников и учителей, родителей, детей. В них мы вспоминаем игры и «наколки», которые мы использовали в своем детстве, а, заметьте, что соавторы этой книги принадлежат к двум разным поколениям. Мы проиграли эти игры и задания с детьми сегодняшнего поколения, продемонстрировали им математические фокусы и можем смело сказать – сегодняшние дети такие же, как и дети предыдущих поколений! Они также искренне не понимают, как «получился фокус», также восхищаются неожиданностью решения нестандартных задач и также рады, если додумываются до ответа сами! Поверьте, это новое, «компьютерное» поколение тоже умеет соревноваться побеждать соперников и очень радуется, когда им удается удивить сверстников.
Как сказки, пословицы и поговорки, эти нестандартные задачки, предлагаемые нами, не имеют определенного авторства и своим происхождением уходят глубоко в прошлое. Мы только несколько изменили сюжеты самих задач, чтобы адаптировать их для современного восприятия. Арсенал подобных заданий в исторической практике педагогики весьма велик. Нами были выбраны самые эффектные и самые простые игры, фокусы и упражнения, чтобы выработать у ребенка «вкус» к подобным занятиям.
Советуем родителям, педагогам и психологам при выполнении каждого задания размышлять вместе с ребенком вслух и вместе достигать результата. Постепенно внешнее речевое опосредствованное мышление сформулирует и упорядочит внутреннее мышление, создаст привычку думать, рассуждать, докапываться до истины.
Начнем с самых простых и старых, как мир, задач: про кошек, которые сидят на своем хвосте уже не менее, чем третий век подряд, и про яблоки в корзине.
А вы их можете решить?
Нестандартные задачки
В четырех углах комнаты сидит по одной кошке. Против каждой кошки сидит по три кошки, и на хвосте у каждой кошке сидит по три кошки. Сколько в комнате кошек?
Ответ: Четыре кошки.
В корзине пять яблок. Как разделить эти яблоки между пятью детьми так, чтобы каждому ребенку досталось по одному яблоку и одно осталось в корзине?
Ответ: Пятому ребенку дать яблоко вместе с корзиной.
Завелась в лесу ленивая белка. Все белки собирают для запасов орехи, грибы, ягоды, а она сидит и думает: «Как бы мне без дела богатой сделаться?». Тут откуда ни возьмись Лиса Патрикеевна со своими советами: «Что ж, если хочешь, я тебе подскажу, как без дела разбогатеть, – говорит она. – И работа невелика. Видишь дуб высокий? Так вот, как добежишь до его вершины – у тебя станет вдвое больше орешков, чем есть. Еще раз поднимешься – еще вдвое больше орешков, чем было перед этим. Только вот какой уговор: за такое счастье каждый раз, спустившись, отдавай мне по 24 орешка». Взбежала белка по стволу вверх-вниз один раз и видит – действительно, не подвела Патрикеевна, орешков стало вдвое больше. Кинула она лисе 24 орешка и пробежала по дереву вверх-вниз и второй раз. И опять нашла вдвое большее количество орешков, и опять отдала лисе 24 штуки. И в третий раз пробежалась белка по стволу. И опять орешков оказалось вдвое больше, но только их оказалось ровно 24 штуки. А именно столько, сколько лисе следовало отдать по уговору. И осталась белка без единого орешка. Видно, понимать надо, чьих советов слушаться, а чьих – нет. И все-таки, догадайтесь, сколько же у Белки было сначала орехов?
Ответ. Решение этой задачи лучше всего начинать с конца, приняв во внимание то, что после третьего подъема у Белки осталось 24 орешка, которые она должна отдать. Если после последнего перехода у Белки оказалось 24 орешка, то до него у нее было 12 орешков. Но они получились после того, когда Белка отдала 24 орешка, значит, всего у нее было 36 орешков. Следовательно, второй подъем она начала с 18 орешками, которые получились у нее после того, как она в первый раз поднялась по дереву и отдала 24 орешка. Значит, после первого перехода у нее было 18+24=42 орешка. Отсюда ясно, что вначале Белка имела 21 орешек.
В 12 часов ночи идет дождь. Догадайтесь: можно ли ожидать, что через 72 часа будет солнечная погода?
Ответ: Через 72 часа никак не может быть солнечной погоды. Так как будет 12 часов ночи.
Группе туристов надо было переправиться на другой берег реки. Им предложили помощь двое мальчиков, сидевших в маленькой рыболовной лодке. Но лодка была так мала, что могла выдержать или одного туриста, или двух мальчиков. Однако один из туристов сообразил, и вся группа переправилась на другой берег именно на этой лодке. Как им это удалось?
Ответ. Мальчики переехали реку. Один их них остался на другом берегу, а второй пригнал лодку туристам и вылез. В лодку сел турист и переправился на другой берег. Мальчик, оставшийся там, пригнал опять лодку туристам, взял первого мальчика, отвез на другой берег и снова доставил лодку туристам, после чего вылез, в нее сел второй турист… И так далее, пока все туристы не переправились через реку.
Скорый поезд вышел из Парижа в Лондон и шел без остановок со скоростью 70 километров в час. Навстречу ему из Лондона шел также без остановок поезд со скоростью 50 километров в час. На каком расстоянии будут эти поезда за один час до встречи?
Ответ. Где бы оба поезда ни встретились, за один час до их встречи они будут друг от друга на расстоянии 120 км (50+70).
Возьмите 12 спичек и выложите из них следующее «равенство»:
VI–IV=IX
Равенство, как вы видите, неверно, так как получается, что 6–4=9. Переложите одну спичу так, чтобы получилось правильное равенство.
Ответ.
Первое решение:
VI+IV=X
Второе решение:
V+IV=IX
На столе лежат 3 спички. Сделайте из трех – четыре. Ломать спички нельзя.
Ответ:
III=3; IV=4
У мальчика столько же сестер, сколько братьев, а у его сестры вдвое меньше сестер, чем братьев. Сколько в семье братьев и сестер?
Ответ: 4 брата и три сестры.
В доме 6 этажей. Скажите, во сколько раз путь по лестнице на шестой этаж длиннее, чем путь по той же лестнице на третий этаж, если пролеты имеют по одинаковому числу ступенек?
Ответ: в 2,5 раза.
Математические фокусы интересны тем, что, усвоив только содержание, можно с неизменным успехом демонстрировать их своим ученикам. В процессе демонстрации дети младшего школьного возраста будут дополнительно повторять в уме математические действия. Более старшим детям можно предложить вывести «доказательства» фокуса самостоятельно, в виде домашнего задания. Но самое основное в нем – это то, что ребенок всегда хочет «разоблачить» механизмы фокуса, что можно сделать совместно как арифметическим, так и алгебраическим путем. Ребята очень любят фокусы, и, если в конце каждого игрового занятий вы будете показывать новый фокус, который, мы надеемся, вы сумеете остроумно обыграть, у ребенка появится дополнительная мотивация к занятию.
Ну что же – крэц, пэц, огурэц?
Фокус 1. Задумайте число. Отнимите 1. Остаток умножьте на 2. Скажите результат, и я отгадаю задуманное число.
Способ угадывания. Прибавьте к результату 2, а сумму разделите на 3. Частное – задуманное число.
Пример. Задумано 18; 18-1=17; 17x2=34; 34+18=52. Угадываем 52+2=54; 54:3=18.
Доказательство. Задуманное число обозначим буквой х. Выполняем требуемые действия: х-1, 2(х-1), 2(х-1) = х.
Результат: 2х-2+х=3х-2.
Прибавляя 2, получаем 3х, а разделив на 3, получаем задуманное число х.
Фокус 2. Предложите ребенку задумать какое-либо число. Затем заставьте его несколько раз поочередно умножать и делить это число на различные, произвольно назначаемые вами числа. Результат действий пусть вам не сообщает.
После нескольких умножений и делений предложите ребенку разделить полученный результат на то число, которое он задумал, затем прибавить к последнему частному задуманное число и сказать вам результат. По этому результату вы отгадываете задуманное число.
Способ угадывания. Вам надо также задумать произвольное число (например, 1) и проделывать все те же действия, которые вы предлагаете ребенку. Тогда в частном у вас получится то же самое число, что и у задумавшего. После этого угадывающему надо вычесть из сообщенного результата свой результат. Разность и будет искомым числом.
Пример. Задумано число 7. Умножено на 12. Результат (84) разделен на 2. Полученное число (42) умножено на 5. Результат (210) разделен на 3. Получилось 70, а после деления на задуманное число и прибавления задуманного числа – 17.
Одновременно вы «про себя» задумали число 1. Умножаете на 12, получается 12. Делите на 2, получается 6. Умножаете на 5, получается 30, делите на 3, получаете 10. Вычитаете 17–10, получаете искомое число 7.
После того, как вы «докажете» фокус на буквах, обозначив задуманное ребенком число, например буквой А, а задуманное вами число – буквой Б, станет абсолютно ясным, что матрица действительна для любого задуманного числа.
Фокус 3. Напишите на листочке бумаги какое-либо число от 1 до 50 и спрячьте.
Пусть каждый участник фокуса напишет любое число больше 50, но меньше 100 и, не показывая вам, произведет с ним следующие действия:
• прибавит к своему числу 99-х, где х – число, написанное вами на листочке бумаги (эту разность вы в уме подсчитайте и назовите участникам конкурса только готовый результат);
• зачеркнет в получившейся сумме крайнюю левую цифру и эту же цифру прибавит к оставшемуся числу;
• получившееся число вычтет из числа, первоначально им написанного.
В результате у всех участников получится одно и то же число, которое было вами предварительно спрятано.
Пример. Число, написанное и спрятанное вами, – 18. Число, написанное одним из участников, – 64. Предлагаете прибавить к нему 99–18=81. Получается 64+81=145.
Цифра 1 зачеркивается и прибавляется к оставшемуся числу: 45+1=46. Разность между задуманным числом (64) и полученным (46) как раз и дает спрятанное вами число 18.
Доказательство. Обозначим буквой х число, написанное вами, буквой у – число, написанное участником фокуса. Первое действие, выполненное участником, приводит к числу у+99-х, так как, условно, х – не более 50, а у – в пределах от 51 до 100, то у+99-х не меньше 100 и не больше 199, то есть непременно трехзначное число, цифра сотен которого 1. Зачеркнуть в таком числе 1 – это значит, уменьшить его на 100, поэтому 2 действие, выполненное участником, приводит к числу у+99-х-100+1=у-х. Последнее действие у-(у-х)=х приводит к числу х, что и требовалось доказать.
Фокус 4. Дайте ребенку две монеты: одну с четным числом, например, 2 рубля, вторую – с нечетным (например, 5 рублей). Пусть он, не показывая вам, одну монету возьмет в правую руку, а вторую в левую. Вы можете угадать, в какой руке у него какая монета.
Способ угадывания. Предложите ему утроить число рублей, содержащихся в монете, зажатой в правой руке, и удвоить число рублей, зажатых в левой руке. Полученные результаты пусть сложит, а вам назовет только образовавшуюся сумму. Если названная сумма четная, то в правой руке 2 рубля, если нечетная, то в левой руке 2 рубля.
Доказательство: Пусть монета с четным числом в правой руке. А монета с нечетным числом – в левой. Тогда утроенное четное число останется числом четным, и удвоенное нечетное будет тоже четным, а сумма четных чисел тоже обязательно четная.
Теперь пусть нечетная монета лежит в правой руке, а четная – в левой. Тогда утроенное нечетное число останется нечетным, удвоенное четное – четным, и их сумма даст нечетное число.
Разнообразить фокус можно, предлагая умножать содержимое правой руки на любое нечетное число, а содержание левой – на любое четное число.
Фокус 5. Достаньте кости любого домино, можно и детского, с картинками. Незаметно спрячьте одну кость, но не дубль. Предложите остальным игрокам выложить все кости в виде правильной цепочки, и заранее назовите те цифры и картинки, которые будут крайними. Ведь это будут числа или картинки, содержащиеся в квадратах спрятанной вами кости домино. Фокус не требует доказательств.
Приложение 3
Как играть с ребенком
Осознавая важность процесса игры для ребенка, учитывайте некоторые особенности детской психологии.
1. Малыши любят играть в то, что они хорошо знают, в то, что у них получается. Не раздражайтесь от того, что ваш ребенок миллион раз повторяет в игре один и тот же сюжет или не может оторваться от давно надоевшего вам «Звездного моста». А если приносите новую игру, сначала объясните ему что к чему (возможно, это придется сделать не один раз). Пока правила непонятны, сам процесс вряд ли увлечет маленького игрока.
2. Рядом с играющим ребенком обязательно должен быть умный взрослый. На каком-то этапе вы составите ему компанию, а на каком-то должны отойти в сторону. Не навязывайте годовалому малышу свои правила – вы уверены, что пирамидку надо собирать, а он считает, что все эти колесики и кубики для того, чтобы их грызть и катать. Ваша настойчивость только оттолкнет его от игры. А вот пяти-, шестилетке не грех и объяснить замысловатые правила какой-нибудь дворовой игры. Очень забавно выглядят некоторые папы, так увлекшиеся советами сыну по поводу сборки конструктора, что о самом сыне и забыли. Папы выглядят забавно, а вот детей это часто доводит до слез. «Я хотел сам!» – рыдает сын, а моделька-то уже склеена папой. Помощь нужна, но в разумных пределах и в тактичной форме.
3. Не переусердствуйте с конструктором типа «Лего». Конечно, это вещь совсем неплохая, но не единственная, приносящая пользу. В поисках полезных игр походите по специализированным магазинам, обратитесь в детские центры. Совсем не обязательно иметь много игр. Умный родитель из одной настольной игры выдумает еще десяток: сегодня поиграли по правилам, предложенным авторами, а завтра придумали свои. А можно придумать и свою игру, нарисовать поле, склеить кубик и фишки. Такая игра может стать памятью о летнем путешествии семьи или отразит «этапы роста» бабушки, юбилей которой вы собираетесь отмечать. Больше выдумки, больше творчества! Вас самих, и бабушку в том числе, от такой игры за уши не оторвешь!
4. Научите ребенка достойно принимать поражение в игре. В коллективе не любят детей, готовых любой ценой получить победу. Если ребенок играет со взрослым, который, конечно же, интеллектуально сильнее, то старший совсем не обязан каждый раз «поддаваться» сопернику. Привыкнув к «поддавкам», ребенок будет ждать их от любого противника. К тому же, если победа дается легко, ребенок начинает верить, что так же легко будет в жизни и все остальное. Вы можете гарантировать, что жизнь у него сложится по «упрощенным правилам»?