Заболевания и травмы периферической нервной системы Живолупов Сергей
Примерно с третьего дня начинается сегментарный распад миелина. Прогрессирующее уменьшение объема миелиновой оболочки и аксона в проксимальных отрезках нервных образований прослеживается на протяжении 300 дней после аксонотомии.
В более поздние сроки после травмы изменения в нервах зависят от ретроградных нарушений в соответствующих нейронах в случае их апоптоза или некроза, а в начинающихся от них волокнах развивается валлеровская дегенерация.
Вместе с тем закономерности возникновения и развития аксональной атрофии с вторичной сегментарной демиелинизацией в проксимальных участках травмированного нерва изучены мало. В равной мере это касается влияния перерезки нерва на развитие эндоневральной фиброзной ткани.
В противоположность закономерному течению валлеровской дегенерации, изменения в проксимальном отрезке нерва носят неравномерный и непостоянный характер. Известно, что эти изменения еще больше, чем при валлеровской дегенерации, зависят от объема аксональной травмы, уровня повреждения, возраста, кровоснабжения сегмента и т. д.
После дегенерации нервных волокон синтез фасцикулярного коллагена увеличивается не только на уровне повреждения нерва, но и на протяжении всего его дистального и, в меньшей степени, проксимального отрезка. При этом содержание фиброзной ткани в пересеченном нерве за 10 недель увеличивается в 3 раза больше, чем в размозженном, хотя в обоих случаях валлеровская дегенерация бывает полной.
T. F. Eather и M. Follock (1987) считают, что реакция соединительной ткани, с одной стороны, не препятствует регенерации аксонов в ранние сроки после повреждения нерва, а с другой – ограничивается сопутствующей регенерацией при непосредственном участии шванновских клеток. Кроме того, дегенеративно-регенеративные процессы в нервных образованиях после аксонотмезиса тесно взаимосвязаны с денервационными изменениями соответствующих мышц посредством действия нейротрофических факторов.
Вышеуказанные структурные изменения поврежденных нервных стволов проявляются преимущественно полным блоком невральной проводимости возбуждения с исчезновением М-ответа, потенциала действия нерва и ВПСМ.
При повреждениях ПНС по типу частичного аксонального перерыва (аксонотмезис) развиваются аксональная атрофия части интактных осевых цилиндров в дистальном и проксимальном отделах нервного ствола и валлеровская дегенерация прерванных нервных волокон на фоне мультифокальной демиелинизации и отека осевых цилиндров, уменьшения содержания ацетилхолина и холинэстеразы, повышения активности кислой фосфатазы и других ферментов. При этом варианте травмы важной особенностью является наличие множественных кровоизлияний не только на уровне аксонотмезиса, но и в близлежащих сегментах нервного ствола за счет нарушения целостности внутриневральной сосудистой сети. Это, в свою очередь, ведет к фиброзному перерождению тканей нерва.
Однако возникновению дегенеративных процессов в периферических нервных структурах предшествует выраженное нарушение микрогемодинамики и циркуляции тканевой жидкости в пострадавшем сегменте конечности, что приводит к снижению уровня обменных процессов, развитию отека и ишемии.
При электрофизиологических исследованиях проводниковых свойств поврежденных нервных стволов обнаружено наличие частичного блока невральной проводимости возбуждения преимущественно по двигательным волокнам (отсутствие М-ответа) с сохранением, как правило, замедленной сенсорной проводимости.
Одной из наиболее часто встречающихся форм реакции нерва или сплетения на травмирующее воздействие малой интенсивности (например, компрессионно-ишемические невропатии) является функциональный блок невральной проводимости возбуждения при сохранности непрерывности аксона.
Установлено, что главной (хотя и не единственной) причиной развития паралича при неврапраксии является локальная демиелинизация, причем для развития блока неврального проведения достаточно нарушения целостности миелина в пара- и интернодальной областях; при этом мембрана аксона может оставаться интактной. Двигательные волокна наиболее богаты миелином и поэтому страдают в первую очередь. Этим, в частности, объясняется тот факт, что при огнестрельных ранениях мягких тканей конечностей с повреждением нервных стволов очень часто нарушается функция нейромоторного аппарата и незначительно расстраивается глубокая чувствительность.
При компрессионно-ишемических невропатиях и плексопатиях наблюдаются быстро обратимые изменения в нервных волокнах по типу многоочаговой демиелинизации из-за преходящей ишемии и медленно прогрессирующие структурные изменения (аксональная атрофия) вследствие длительного сдавления и нарушения аксонального транспорта.
Аксональная атрофия проявляется, во-первых, в постепенно нарастающем уменьшении поперечного сечения аксонов приблизительно до 60 % и, во-вторых, в изменении архитектоники миелиновой оболочки в виде потери нормальной цилиндрической формы с нерегулярным закручиванием миелина и исчезновением циркулярности на поперечных срезах.
Необходимо отметить, что аксональная атрофия при компрессионно-ишемических невропатиях и плексопатиях развивается дистально по отношению к месту компрессии, в то время как при перерезке нерва этот процесс наблюдается также в проксимальных отрезках нервного ствола.
Хроническая компрессия нерва «низким» давлением приводит к развитию преимущественно ишемического повреждения нерва, существенной особенностью которого является наличие валлеровского перерождения или даже ишемического некроза в поврежденных нервах. Поэтому «утренние», жгутовые, турникетные параличи и «туннельные невропатии» относят к группе компрессионно-ишемических невропатий вследствие единого патогенеза возникающих расстройств.
По данным электрофизиологических исследований, блокада невральной проводимости возбуждения при компрессионно-ишемических невропатиях проявляется только в зоне повреждения, нервные волокна выше и ниже этой зоны, как правило, реагируют на электрическую и магнитную стимуляцию.
Аксональная атрофия проявляется в снижении скорости проведения возбуждения по двигательным и чувствительным волокнам поврежденных нервных стволов в дистальных отделах в среднем на 40 – 50 % и в уменьшении амплитуды М-ответа денервированных мышц на электростимуляцию соответствующего нерва. F. G. Alvine и M. E. Schurrer (1987) обнаружили также нарушение проводниковых свойств одноименных нервов на контралатеральной стороне.
Считается, что периферический нерв более устойчив к ишемическому повреждению, чем спинной или головной мозг, причем, вопервых, двигательные и чувствительные волокна по-разному переносят ишемию, а во-вторых, с возрастом эта резистентность повышается.
Данное обстоятельство объясняется хорошей васкуляризацией нервов и сплетений (собственной сетью, а также сосудистыми стволами от окружающих тканей) и уникальной способностью внутриневральных обменных процессов переключаться на анаэробный гликолиз.
Так, G. Parry (1985) показал, что экспериментальная ишемия нерва с острым уменьшением эндоневрального кровотока на 25 % и менее не вызывала нарушений невральной проводимости возбуждения или морфологических изменений осевых цилиндров.
Таким образом, применение сравнительного подхода в изучении травматических невропатий и плексопатий, безусловно, интересно для исследования механизмов повреждающего действия механических факторов на ПНС. Результаты его использования могут предоставить материал для совершенствования лечебной помощи пострадавшим во время ведения боевых действий или ликвидации последствий природных (техногенных) катастроф, а также для определения механизмов пластичности различных отделов нервной системы в условиях деафферентации.
2.1.3. Реактивные изменения нервной системы при травматических невропатиях и плексопатиях
Факт широкого участия различных отделов нервной системы в многоступенчатой реакции организма на механическую травму нерва или сплетения на сегодняшний день не вызывает сомнений. Однако значимость реактивных изменений нервной системы в формировании и развитии травматических невропатий и плексопатий до сих пор не имеет достаточно убедительной оценки, поскольку нет единого толкования природы этих процессов.
Отсутствует четкое представление о том, являются ли реактивные изменения нервной системы результатом аксонального повреждения и разрыва связей с органами-мишенями или индикатором активации функциональных систем ЦНС, направленной на восстановление исходного состояния периферического компонента нейромоторного аппарата: нерв – мышца – кожа.
Для лучшего понимания закономерностей развития ретроградных реактивных изменений нервной системы при травматических невропатиях и плексопатиях весь комплекс возникающих процессов целесообразно рассматривать по уровневому принципу.
Вслед за повреждением нерва или сплетения ретроградные изменения, возникающие одновременно, обнаружены в проксимальном отрезке поврежденных нервных волокон, в «родительском» нейроне и в других нейронах, находящихся с ним в синаптической связи.
Ретроградные реакции поврежденных нервных волокон подробно рассмотрены выше. Аксонотомия, как правило, приводит к изменению структуры и функции «родительской» клетки: изменяются размеры тела клетки, ядра и ядрышка, возникает распыление нисслевских (хроматофильных) глыбок. Ассоциированные изменения включают отек клетки, фрагментацию аппарата Гольджи, вакуолизацию цитоплазмы и смещение ядра к периферии клетки.
Отек клетки наблюдается в течение первой недели после травмы и частично объясняется увеличением содержания органических веществ в клетке. Через десять дней после аксонотомии атрофические процессы в клетке уменьшают ее объем до 40 % от первоначального. Конечным результатом внутриклеточных дегенеративных изменений может быть либо некроз нейрона, либо его полное восстановление, либо резидуальный дефект, ограничивающий регенераторную эффективность данной структурной единицы.
Гистологический паттерн реактивных изменений «родительского» нейрона отражает внутриклеточные посттравматические биохимические изменения, главной особенностью которых является хроматолиз, как наиболее чувствительный морфологический индикатор регрессивных изменений, наступающих в течение 24 ч после аксонотомии и достигающих максимума к 18-му дню после травмы.
Нормализация содержания нуклеопротеинов в травмированных нейронах наблюдается в подавляющем большинстве случаев между 18-ми и 30-ми сутками после повреждения. Восстановительный процесс продолжается от 3 до 6 месяцев в зависимости от степени выраженности ретроградных изменений.
Наряду с хроматолизом обнаружено прогрессивное увеличение числа митохондрий, активности кислой фосфатазы, увеличение обмена креатинфосфата, уменьшение активности щелочной фосфатазы, АТФазы в течение первых нескольких дней после аксонотомии. Остается неясным, почему хроматолиз возникает в некоторых клетках и отсутствует в остальных клетках той же функциональной группы, а скорость хроматолиза и восстановления нейронов одной функциональной группы значительно варьируется.
Отличительными особенностями ретроградных нейрональных изменений являются их крайняя индивидуальность и зависимость от возраста пострадавшего. Так, экспериментальными исследованиями установлено, что нейроны дегенерируют более быстро и полно у молодых, чем у взрослых особей. Кроме того, обнаружено, что чем большая сила травмирующего воздействия приложена к аксону, тем интенсивнее ретроградные изменения. Ретроградные изменения более выражены в случае разрыва аксонов, нежели их перерезки или сдавления.
Также установлено, что ретроградные нейрональные изменения тем выраженнее, чем ближе к телу клетки произошла травма нервных волокон, что связано с количеством аксоплазмы, «ампутированной» от клетки.
Количественная оценка числа нейронов, погибающих в результате невротомии, показала, что в спинальных ганглиях гибнет около 50 %, а в передних рогах – от 6 до 83 % нейронов.
По данным M. Wells, U. Vaidya (1989), 75 % нейронов погибают после невротомии и 85 % выживают после компрессионного повреждения лицевого и подъязычного нервов. При этом ретроградные изменения более быстро и ярко протекают в чувствительных нейронах (особенно в малых клетках спинномозговых ганглиев), нежели в двигательных.
При этом не верифицируется вид гибели нейронов: программированная (апоптоз) или патологическая клеточная смерть (некроз), хотя прекращение жизнедеятельности клетки при апоптозе и некрозе имеет морфологические различия.
Так, для апоптоза характерны уменьшение размера клетки, конденсация цитоплазмы и внутриклеточных органелл, фрагментация клетки на апоптозные тельца, появление выпячиваний. В свою очередь, при некрозе вследствие нарушения барьерной функции наблюдаются вакуолизация, резкое набухание клеток, завершающееся лизисом.
Однако современный уровень знаний о молекулярных механизмах гибели нейрона явно недостаточен для понимания всех аспектов патогенеза травматических невропатий и плексопатий. Весьма вероятно, что в повреждении нейронов при травмах нервов и сплетений принимают участие два стандартных механизма – окислительный стресс и эксайтотоксичность, запускающие развитие некроза или апоптоза. Существенное влияние на возникновение и развитие реактивных изменений в нервной системе при травматических невропатиях и плексопатиях оказывает целый ряд белков и пептидов, которые модулируют ретроградные изменения, обеспечивают их взаимодействие и интеграцию вследствие участия во внутриклеточных биохимических процессах, а также через цАМФ как вторичный мессенджер.
Наиболее изученный из них – фактор роста нерва – синтезируется в тканях-мишенях (мышцы, кожа и другие), шванновских клетках, астроцитах, пирамидальных нейронах гиппокампа, нейронах коры и стриатума. ФРН осуществляет трофическую поддержку зрелых нейронов и модулирует процессы биосинтеза различных пептидов. Ретроградные изменения могут распространяться выше «родительского» нейрона, и даже на контралатеральную сторону вследствие транссинаптических эффектов в связанных с ним нейронах.
M. Devоr и P. D. Wall (1978) считают, что центральный эффект невротомии включает также появление реактивных нейроглиальных клеток в соответствующих сегментах спинного мозга и формирование новых рецептивных полей за счет синаптической реорганизации нейрональных «ансамблей».
Кроме этого на значительном протяжении ЦНС наблюдается трансганглионарная дегенерация, причем наибольшие ее проявления выявлены ипсилатерально в медиальной части I – IV пластинок на уровне заднего рога LII– LVI, а также в пучках Голля и Бурдаха (тонкий пучок и клиновидный пучок) как на стороне травмы, так и на противоположной стороне. Гибель чувствительных нейронов и трансганглионарная дегенерация может быть общим феноменом, отражающим существенную перестройку афферентного звена двигательной системы.
Электрофизиологически центральные эффекты невротомии проявляются в снижении вызванных потенциалов соответствующих задних корешков на поврежденной и интактной стороне, а также в уменьшении амплитуды вызванных потенциалов спинного и головного мозга на электрическую стимуляцию проксимального отрезка нервного ствола.
Ретроградные изменения имеют свои особенности при разных степенях повреждения ПНС. По данным J. Ochoa [et al.] (1972), L. B. Dahlin [et al.] (1987), компрессия нерва приводит к ярко выраженным расстройствам в чувствительных нейронах межпозвоночных ганглиев в виде:
а) изменений конфигурации тел нейронов;
б) эксцентрического расположения и уменьшения объема ядра;
в) дисперсии нисслевского (базофильного) вещества.
Кроме того, локальная компрессия нерва повышает уязвимость ганглионарных нейронов к последующим сдавлениям в других участках нервного ствола. Морфологические изменения чувствительных нейронов регрессируют в течение нескольких месяцев после компрессионной или компрессионно-ишемической травмы нерва, в то время как при перерезке нервного ствола реактивные изменения нейронов сохраняются на протяжении 1 года и более.
Таким образом, ретроградные изменения нервной системы при травмах нервов и сплетений, во-первых, протекают с разной интенсивностью в двигательной и чувствительной сферах; во-вторых, определяются характером и уровнем повреждения аксонов; в-третьих, развиваются многоступенчато и связаны с периферическими дегенеративными процессами; в-четвертых, имеют черты саморегулирующегося биологического процесса; в-пятых, часто сопровождаются массовой гибелью чувствительных и двигательных нейронов; в-шестых, подвержены модуляции нейротрофическими факторами.
Все вышеперечисленное позволяет предположить наличие в структуре нейромоторного аппарата специальной функциональной подсистемы, осуществляющей координацию и интеграцию реактивных изменений нервной системы после аксональной травмы для восстановления работоспособности исполнительного механизма других функциональных систем.
2.2. Патогенез заболеваний периферической нервной системы
Несмотря на широкий диапазон этиологических факторов, вызывающих различные клинические формы поражения ПНС, количество их патоморфологических паттернов весьма ограничено. Морфологической основой различных заболеваний ПНС являются: валлеровское перерождение; аксональная атрофия и дегенерация; сегментарная демиелинизация и первичные поражения тел нервных клеток.
Хотя валлеровское перерождение является главным патоморфологическим паттерном травматических невропатий и плексопатий, мультифокальная ишемия ствола нерва при системных васкулитах способна вызвать фокальное повреждение аксона с последующим дистальным валлеровским перерождением. При приобретенных полиневропатиях валлеровская дегенерация обнаруживается лишь в дистальных частях аксона.
Аксональная атрофия и дегенерация (аксонопатия) возникают при нарушении метаболизма в нейроне, в частности, при нарушении выработки энергии в митохондриях и угнетении антероградного аксонального транспорта. Проявляется в начальной стадии дегенерацией преимущественно дистальной части аксона (уменьшение числа нейрофиламентов), причем миелиновая оболочка разрушается одновременно с аксоном. Реактивная пролиферация леммоцитов всегда более вялая и замедленная, чем при валлеровском перерождении. Восстановление происходит медленно путем регенерации аксонов и часто бывает неполным.
При сегментарной демиелинизации (миелинопатии) первично поражается миелин или леммоциты, что приводит к фокальному разрушению миелиновой оболочки, в то время как аксоны остаются сохранными. Демиелинизация обычно начинается с паранодальной области с последующим распространением на весь сегмент или несколько смежных. В результате возникает блокада невральной проводимости. Ремиелинизация начинается после пролиферации леммоцитов и может продолжаться несколько недель. Однако восстановленная миелиновая оболочка, как правило, тоньше исходной, поэтому скорость проведения по нервам не всегда возвращается к норме даже после полного клинического восстановления. Примером миелинопатии могут служить синдром Гийена – Барре и дифтерийная полиневропатия.
При нейронопатиях патологические изменения первично возникают в телах клеток передних рогов (моторные нейронопатии) или спинальных ганглиев (сенсорные нейронопатии) и вызывают вторичную дегенерацию миелиновой оболочки и аксонов. Патогномоничным признаком нейронопатий является плохое восстановление утраченных функций. Моторная нейронопатия наблюдается при паранеопластических процессах, синдроме Шегрена, а сенсорная – при опоясывающем герпесе.
Множественная мононевропатия характеризуется одновременным или последовательным поражением нервных стволов. Множественная мононевропатия часто взаимосвязана с поражением vasa nervorum и невральной ишемией (васкулиты, диффузные заболевания соединительной ткани или диабетическая микроангиопатия), компрессией нервов (гипотиреоз, акромегалия или наследственная невропатия с врожденной склонностью к параличам от сдавления, нейрофиброматоз), инфильтрацией нервов (саркоидоз, амилоидоз, лимфогранулематоз, миеломная болезнь), аутоиммунным процессом (мультифокальная двигательная невропатия с блоками проведения). Вариантами множественной невропатии являются множественная краниальная невропатия и многоуровневая радикулопатия (в том числе при менингорадикулитах).
Полиневропатия характеризуется синхронным диффузным поражением нервных волокон периферических нервов. В отличие от мононевропатий и большинства видов множественной невропатии, при полиневропатиях часто возникает избирательное поражение нервных волокон. Избирательное поражение наиболее длинных нервных волокон, характерное для большинства видов полиневропатий, приводит к развитию двигательных, чувствительных и вегетативных нарушений в дистальных отделах конечностей, а избирательное поражение чувствительных волокон проявляется сенситивной атаксией. К полиневропатиям относятся полирадикулопатии и полирадикулоневропатии.
При анализе клинических симптомов полиневропатии целесообразно использовать данные по функциональной характеристике тонких и толстых волокон, составляющих периферический нерв. Все двигательные волокна представлены толстыми миелинизированными волокнами. Такими же волокнами проводится проприоцептивная и вибрационная чувствительность.
Волокна, передающие болевую и температурную чувствительность, относятся к немиелинизированным и тонким миелинизированным; вегетативные волокна – к тонким немиелинизированным, тогда как передача тактильной чувствительности обеспечивается толстыми и тонкими волокнами. Поражение тонких волокон может привести к избирательной потере болевой и температурной чувствительности, жгучей боли и дизестезии при отсутствии парезов и при нормальных сухожильных рефлексах.
Поражение толстых нервных волокон вызывает мышечную слабость, арефлексию, сенситивную атаксию и легкое нарушение поверхностной чувствительности. Вовлечение всех волокон приводит к смешанной (сенсомоторной и вегетативной) полиневропатии. Однако эти взаимоотношения характера поражения нервных волокон и клинической картины не являются абсолютными. Поэтому, несмотря на исчерпывающее обследование, примерно у 1/3 больных с синдромом полиневропатии этиологию заболевания установить не удается.
Несмотря на большой практический опыт, накопленный в диагностике и лечении заболеваний ПНС, дифференциальная диагностика полиневропатий и множественных невропатий по этиопатогенетическому признаку представляет значительные трудности, поскольку в настоящее время изучен патогенез лишь некоторых клинических форм. Поэтому для постановки окончательного диагноза специалисты чаще используют типовые клинические маркеры (характер течения заболевания, мозаика развития неврологических расстройств). Острое начало характерно для инфекционно-аллергических (воспалительных), аутоиммунных и токсических форм патологии ПНС. Медленно прогрессирующее течение (годы) указывает на наследственное или, реже, метаболическое происхождение заболевания, причем существуют клинические формы, развивающиеся в течение всей жизни. Большинство же токсических, метаболических и системных болезней ПНС развиваются подостро в течение нескольких недель или месяцев.
Проявления некоторых неврологических заболеваний могут напоминать периферическую невропатию. В таких случаях требуется проведение синдромальной дифференциальной диагностики. Например, при постепенном прогрессировании и проксимальном распределении мышечной слабости требуется разграничивать ПНП и проксимальные варианты прогрессирующей спинальной амиотрофии. Острый полимиозит может «имитировать» синдром Гийена – Барре. Некоторые формы ПНП часто приходится дифференцировать от дистальной миопатии. Прогрессирующие спинальные мышечные атрофии нередко требуют дифференциальной диагностики с моторными аксонопатиями, а спинная сухотка – с сенсорной полиневропатией и т. д.
При установлении синдромального диагноза ПНП этиологию заболевания удается выявить далеко не всегда даже при самом тщательном обследовании в специализированных клиниках, и она остается неизвестной примерно в 25 – 40 % случаев.
Таким образом, создание современной классификации заболеваний ПНС на основе системного подхода с учетом этиологического, патогенетического, патоморфологического и клинического факторов является актуальной проблемой современной неврологии, поскольку имеет не только научную, но и большую практическую значимость.
2.2.1. Патогенез диабетической полиневропатии
Патогенез большинства форм полиневропатий до конца не изучен. Однако на том или ином этапе развития этих патологических состояний, вне зависимости от того, являются они результатом токсических, сосудистых, воспалительных, аутоиммунных, первичнодегенеративных или других процессов, поражаются как миелиновая оболочка, так и аксоны нервов. Демиелинизация и аксональная дегенерация приводят к нарушению проведения возбуждения по нерву. Центральными механизмами любой формы полиневропатии выступают нарушения энергетического обмена, играющего первостепенную роль в жизнедеятельности тканей (особенно нервной), и усиление свободнорадикального окисления.
Нервная ткань и, в частности, периферические нервные волокна характеризуются высоким уровнем энергетического метаболизма, основным механизмом которого служит аэробное окисление глюкозы в цикле трикарбонатных кислот, или так называемом цикле Кребса.
Цикл Кребса имеет два «узких места», замедление реакций в которых приводит к остановке деятельности всего цикла. Эти «узкие места» связаны с функционированием двух дегидрогеназных комплексов (пируват- и -глутаматдегидрогеназного), центральную роль в деятельности которых играют два кофермента – -липоевая кислота и тиаминпирофосфат. Их дефицит закономерно приводит к патологическим изменениям в нервных клетках, а большое число различных неврологических заболеваний и синдромов, включая и полиневропатии, сопряжено с истощением запасов этих факторов. Патогенез ПНП – результат сложного взаимодействия многочисленных метаболических, средовых и генетических факторов (схема 2.2). Анализ данных литературы позволяет сформулировать пять основных патогенетических концепций развития ДПН: