Здоровый и больной мозг человека Бехтерева Наталья
Исследование динамики совпадений разрядов в зонах мозга в микроинтервалы времени проводилось по принципиальной схеме, предложенной Герштейном (Gerstein et al., 1978) и адаптированной Е. М. Кроль и С. В. Медведевым (1982). Осуществлялось исследование достоверного увеличения числа совпадений импульсной активности в различных популяциях, статистический анализ неслучайного числа совпадений в мозговых зонах, расположенных в области мозговых образований.
Основным психологическим тестом, используемым на данном этапе для исследования соотношений импульсной активности в различных зонах мозга, был так называемый корректурный тест. Перед больным на экране проецировалась таблица из 14 строчек колец с разрывами, имеющими 8 различных ориентации. В некоторые строчки были включены и полностью замкнутые кольца. Предлагалось считать кольца с определенной ориентацией разрыва или отыскивать замкнутое кольцо, которое, кстати, не обязательно присутствовало на слайде. Каждый вид пробы повторялся по 8 раз. Слайд предъявлялся несколько быстрее, чем можно было полностью просмотреть все строки таблицы (около 150 с). Такого рода монотонный длительный тест использовался с целью активации и дальнейшего поддержания в мозгу в активном состоянии определенной системы. Предполагалось, что в этих условиях взаимодействия между звеньями этой системы могут быть изучены наилучшим образом. Исследования С. В. Медведева и сотрудников (Бехтерева и др., 1984; Медведев, Белов, 1986) подтвердили эффективность данной методики и показали, что количество совпадений импульсных разрядов нейронов между дистантными звеньями системы в большей мере определялось характером выполняемой деятельности (рис. 27, 28). Было показано также, что существенное увеличение или, наоборот, уменьшение числа совпадений разрядов по отношению к фоновому уровню может наблюдаться в процессе реализации пробы между некоторыми мозговыми зонами в очень короткие интервалы времени, в том числе в интервалы длительностью 1–2 мс. Эти факты поставили задачу специального рассмотрения физиологических условий такого рода синхронизации разрядов, так как в этом случае трудно было понять эту синхронизацию без введения представлений о пейсмекерном механизме (см. выше представления о динамическом пейсмекере) или о возможности скоростного взаимодействия между дистантными зонами мозга.
Рис. 27. Динамика связанности между дистантно расположенными нейронными популяциями. I – нейронные участки мозговых структур; II – фон (отсутствие целенаправленной деятельности); III – корректурные пробы со счетом; IV – корректурные пробы со счетом, перемежающиеся сюжетом; V – корректурные пробы без счета. По оси абсцисс штрихами обозначены последовательные пробы; по оси ординат отложена величина квантили (для Р < 0.975). Калибровка по вертикали (длина штриха в колонке IV); квантиль равна 2.0. Сплошные вертикальные линии – корректурные пробы, штриховые – сюжетные пробы. Характеристики связей: T=1 с, =l мс
Рис. 28. Паттерны стабильной связанности нейронных популяций.
А—Д – больные, черными точками указаны исследованные популяции. Жирными линиями соединены стабильно связанные популяции
Эту последнюю возможность нельзя исключить полностью в связи с обнаруженным в специальных условиях наблюдения очень резким падением импеданса между двумя звеньями системы, в этих специальных условиях связанной с обеспечением движения (Бехтерева и др., 1980). В связи с трудностью исследования этого вопроса у человека, вероятно, следует организовать целенаправленное его изучение в эксперименте на животных, тем более что в данной ситуации совершенно не обязательно проводить исследования именно системы обеспечения мыслительных процессов.
В проведенных работах достаточно неожиданно для тех, кто конструировал тесты, было обнаружено, что длительное осуществление однообразной деятельности совсем не обязательно коррелирует с однообразием ситуация в мозгу. Было показано, что соотношения в системе обеспечения мыслительной деятельности перестраиваются независимо от длительности монотонного теста на протяжении 0.5–1 с. Иными словами, повышенная синхронизация разрядов нейронов, улавливаемая методом совпадений, наблюдается попеременно между различными активными зонами мозга. Высокая синхронизация активности нейронов в каждый данный микроинтервал времени может наблюдаться далеко не между всеми активными точками, что может быть проиллюстрировано рис. 29.
Следует подчеркнуть не только динамичность связей, но и возможность как бы независимых связей между парами нейронных популяций. Нетранзитивность связей была обнаружена независимо от расстояния между исследованными зонами. Кроме того, по аналогии с местными явлениями были обнаружены и связи разной степени жесткости. Таким образом, и в этом случае была обнаружена динамичность мозгового обеспечения мыслительной деятельности, в данном случае в форме динамической реорганизации системы на протяжении монотонной деятельности. Если в научном исследовании позволены образные выражения (а почему бы и нет?), создается впечатление, что мозг как бы «борется» против монотонности. Динамичность, которую мы наблюдали в местных процессах, является, по-видимому, важным общим принципом работы мозга.
Рис. 29. Схематическое представление элементов системы обеспечения монотонной деятельности (корректуры) с сохранением функциональной структуры действия.
Вверху – корректурные пробы со счетом, внизу – без счета. Характеристики связей: Т=1с, =1мс
Что же касается самого методического приема – исследования совпадений разрядов, то он оказался адекватным именно для изучения соотношений активности в небольшие интервалы времени, давал своего рода «мгновенные снимки» ситуации в системе обеспечения мыслительных процессов. При больших бинах (больше, чем 1–3 мс) перестройки, связанные с заданной деятельностью, не выявлялись (Бехтерева и др., 1984). Отсюда, по-видимому, для исследования взаимоотношения местных процессов в звеньях мозговых систем (активных при какой-то деятельности зонах мозга) целесообразно использовать не только один, но целый ряд приемов, в том числе и таких, которые не только позволяют выявить соотношение активности в различных зонах мозга, но и вскрыть различные механизмы организации системы.
Третий этап исследований может быть характеризован как попытка минимизации дефектов методов анализа, связанных с накоплением и таким образом усреднением данных, то есть как бы вновь, на новом витке спирали,попытаться использовать для изучения мозга приемы, более адекватные механизмам мозга. В этом плане предложен и используется компонентный анализ (Гоголицын, Пахомов, 1984, 1985), резервы которого, повидимому, еще не полностью раскрыты. Принцип метода – в первоначальном сохранении максимума информации о динамике местных перестроек в мозгу. Проводится количественное описание импульсной активности в рамках более гибких представлений о паттернах текущей частоты. Это достигается представлением физиологических мозговых событий по каждой пробе в виде диаграмм таким образом, что по оси абсцисс отложено время развития перестроек частоты (ее учащения или урежения), а по оси ординат – выраженность этих перестроек в форме амплитудного показателя (количество импульсов в бине).
Последовательное автоматизированное наложение на одно изображение (диаграмму) данных по множеству проб далее сопровождается выделением кластеров, то есть выделением областей максимумов сгущений точек (рис. 30). Сравнение получаемых с помощью данного приема результатов с ПСГ показало, что ПСГ, во-первых, действительно может отражать события, достаточно близкие к тому, что происходит в импульсной активности нейронов по ходу всего теста, во-вторых, может отражать их приблизительно и, наконец, за низкоамплитудной ПСГ могут скрываться существенные отклонения импульсной активности от фона, но различные по направленности, амплитуде и времени развития на разных фазах теста в каждой пробе (рис. 31). Применение компонентного анализа позволило, таким образом, продемонстрировать, из каких реальных физиологических событий, происходящих при однократных воздействиях стимула, складывается усредненная картина ПСГ.
Рис. 30. Схематическое изображение основных этапов компонентного анализа импульсной активности нейронов.
Импульсная активность регистрируется при выполнении психологических тестов, состоящих из однотипных проб. Исходным материалом для анализа являются кривые, описывающие изменения частоты разрядов нейронов в отдельных пробах. Каждая такая кривая с помощью специального алгоритма раскладывается на компоненты, то есть представляется в виде суммы колоколообразных пиков, характеризуемых латентностью, амплитудой и длительностью. Это позволяет получить компонентные представления реакций в отдельных пробах. Используя латентные периоды и амплитуды всех компонентов, можно построить диаграмму рассеяния, наглядно иллюстрирующую степень вариабельности реакций в отдельных пробах на протяжении теста.
Рис. 31. ПСГ и диаграммы рассеяния «латентный период—амплитуда» активности нейронных популяций в хвостатом ядре левого полушария (А), мозолистом теле левого полушария (Б) и премоторной коре правого полушария (В) в тесте на сравнение цифр по величине.
Под ПСГ на оси времени (цена деления – 1 с) черными прямоугольниками отмечены эпохи предъявления (стрелки вниз) символов (цифра, буква, цифра) и звучание ответа испытуемого (стрелка вверх). По оси ординат ПСГ – отклонение частоты разрядов (имп./бин) от среднего уровня в фоне. Бин ПСГ – 256 мс. F – средний уровень частоты разрядов (имп./бин) на протяжении фонового фрагмента (от начала пробы до момента предъявления первой цифры). К – число проб. ПСГ и диаграмма рассеяния построены в одинаковом масштабе.
Вторым важным направлением данного этапа исследований является сравнительная характеристика функциональных свойств различных мозговых зон. С этой целью анализ динамики импульсной активности ряда нейронных популяций подкорки и коры (чаще всего способом ПСГ) осуществляется при предъявлении больному не какого-то одного, а совокупности, батареи, тестов. В этом случае в полном соответствии с более ранними данными о полифункциональности нейронных популяций (Бехтерева, 1971) были обнаружены разные реакции импульсной активности нейронов коры и подкорковых зон мозга на психологические тесты с различием конкретных заданий в пробах (Кропотов, Пономарев, 1985). Так, на рис. 31 представлены ПСГ, построенные на основе анализа импульсной активности нейронных популяций, расположенных в различных зонах коры и подкорковых структур. Как видно из рис. 32, ПСГ могли различаться при разных психологических пробах очень значительно. На данном рисунке наибольшая изменчивость в зависимости от теста наблюдалась в отведениях одной из популяций бледного шара, вентролатерального ядра зрительного бугра и теменной коры (в области поля 40, по Бродману).
Рис. 32. Примеры ПСГ, вычисленных для различных нейронных популяций корковых и подкорковых структур, в тесте с предъявлением зрительных стимулов, вызывающих различные ответные реакции больных.
S1 – предъявление стимула, определяющего ответную реакцию; S2 – предъявление паттерна шахматной доски, служащего сигналом для ответной реакции. Реакции больного в ответ на предъявление стимулов следующие: буква П – игнорируется, буква Е – подсчитывается текущее число таких стимулов, цифры называются вслух, буква Н – больной нажимает кнопку. Стрелками указаны структуры, в которых регистрировалась импульсная активность. Зачернены участки ПСГ, соответствующие уровню значимости Р < 0.01
Аналогичное явление наблюдалось при предъявлении проб, адресуемых к разным сенсорным входам (зрительным и слуховым) и с речевым ответом или без речевого ответа (рис. 33).
Из приведенных данных можно с учетом динамичности нейронных коррелятов импульсной активности сделать следующие осторожные заключения. В нейронных популяциях, расположенных в области бледного шара, обнаружены реакции как активирующего, так и тормозного типа. Эти реакции были сходными и различными при разных психологических пробах. При этом селективность реакций тормозного типа, если они наблюдаются в отведениях из бледного шара и передних отделов лобной коры, невелика. В нейронных популяциях, расположенных в области вентролатерального ядра зрительного бугра, в области теменной коры, в отдельных популяциях бледного шара, обнаруживаются также реакции активирующего типа, однако они более или менее высокоселективны, различны при разных пробах.
Сравнение между собой реакций тормозного типа (см. выше) показывает, что урежение частоты импульсной активности, независимо от вида мыслительной деятельности, наблюдалось раньше в подкорке (бледный шар), чем в коре (передние отделы лобной коры).
Эти данные, однако, должны расцениваться пока как вероятность появления такого рода нейродинамики. Только длительные повторные исследования позволят уточнить, насколько именно вероятна та или другая из описанных ситуаций. И в то же время уже можно говорить о более или менее селективной реакции на психологические пробы в различных нейронных популяциях.
Рис. 33. Реакции нейронов мозга человека в ответ на предъявление зрительных и слуховых стимулов.
Профили реакции всех обследованных нейронных популяций (слева) и ПСГ, вычисленные для отдельных нейронных популяций подкорковых образований мозга в ответ на зрительное (верхний ряд), слуховое (средний ряд) предъявления цифр в отсутствие вербальной реакции и в случае, когда человек называет цифру вслух (нижний ряд). По оси ординат на профилях реакций – число нейронных популяций, в которых были обнаружены значимые (Р < 0.05) отличия частоты разряда в бине от средней фоновой частоты, на ПСГ – средняя частота разряда в бине; по оси абсцисс – время в бинах (бин – 100 мс). На гистограммах: S1 —предъявление информационного стимула (цифры); S2 – предъявление триггерного стимула, служащего сигналом для вербальной реакции испытуемого; R – название стимула. Остальные обозначения – как на рис. 32
Рис. 34. ПСГ импульсной активности нейронной популяции в хвостатом ядре левого полушария при выполнении серии тестов, связанных со сравнением слов, квазислов, рисунков известных и неизвестных объектов.
Схематическое изображение структуры пробы дано в середине нижней части рисунка. В любой пробе предъявляются два стимула, каждый из которых может быть рисунком известного (РИС) или неизвестного (кв РИС) объекта, словом (СЛ) или квазисловом (кв СЛ). В зависимости от даваемой перед началом теста инструкции испытуемый в каждой пробе отвечает «Да» или «Нет» с учетом особенностей предъявленных стимулов
Большую или меньшую селективность реакций нейронных популяций удалось наблюдать и при предъявлении совокупностей тестов с опознанием слов, сравнением слов и квазислов, слов с соответствующими и не соответствующими им изображениями, сравнением изображений, имеющих и не имеющих смыслового значения, и т. п. Иллюстрацией сказанного может служить рис. 34 (Гоголицын и др., 1987б).
Особую осторожность (опять с учетом динамичности нейронных коррелятов мышления) следует проявлять в этих исследованиях при оценке негативных эффектов – когда нет значимых изменений импульсной активности при психологических пробах. При наличии перестроек на основе одного-двух тестов правильнее говорить, что данная зона, являясь звеном системы, может более или менее постоянно участвовать в обеспечении данного вида деятельности. При отсутствии перестроек для того, чтобы сказать, что данная зона мозга не может участвовать в обеспечении реализуемой деятельности, безусловно, необходимы повторные исследования (особенно это относится к случаям с высокой селективностью реакций). С учетом этих положений, может быть, следует осторожнее относиться к данным, полученным в результате электрической стимуляции открытого мозга (Ojemann, 1983), на основе которых описывается высокая функциональная селективность в обеспечении мыслительных и преимущественно вербально-мнестических процессов.
Исследования импульсной активности нейронных популяций подтвердили многие механизмы мозга, показанные или предсказанные нами ранее. Эти работы безусловно явились и существенно новой ступенью в изучении различных мозговых механизмов. Это, в частности, относится к динамичности мозговых коррелятов мыслительной деятельности, которая была, во-первых, гораздо полнее изучена, доказана и, во-вторых, рассмотрена более полно в плане внутренних механизмов, определяющих динамичность нейрофизиологических коррелятов мыслительных процессов.
Ранее нами (Бехтерева и др. 1970) было показано, как могут изменяться свойства зоны мозга в зависимости от состояния различных видов биохимической медиации. Позднее В. А. Илюхиной (1977) была обнаружена зависимость свойств мозговых зон от уровня так называемого постоянного потенциала, наиболее стабильной составляющей СМФП – омега-потенциала (по: Илюхина, 1982б). При одновременном отведении и исследовании импульсной активности нейронных популяций менее стабильных СМФП была обнаружена зависимость функциональной характеристики зоны мозга и от этого показателя.
В исследованиях С. В. Медведева и сотрудников (Медведев, Белов, 1985, 1986; Медведев и др., 1987) регистрировалась динамика импульсной активности нейронов (ИАН) при одновременном отведении с той же точки мозга, с того же электрода (что определялось возможностями полиэлектронейрографа, – Данько, Каминский, 1982) СМФП в декасекундном диапазоне (тау-волн, по В. А. Илюхиной). Больному предъявлялись психологические пробы на обобщение зрительного стимула.
В зонах мозга, расположенных в области различных ядер таламуса, стриопаллидарной системы была обнаружена зависимость динамики ИАН по ходу реализации психологического теста от фазовых характеристик тау-волн в той же зоне (рис. 35). Особенно интересной была в этом случае тонкая модуляция функциональных свойств мозговых зон.
Как представлено в работах В. А. Илюхиной (1977, 1986), при изменениях наиболее стабильной составляющей СМФП наблюдались перестройки функциональных свойств зон мозга, которые можно было характеризовать типом «да–нет», то есть свойство либо исчезало, либо появлялось. При изменениях фазы тауволн могло наблюдаться уменьшение или увеличение изменений ИАН в различные фазы психологического теста. Так, например, в зоне, расположенной в области заднего вентроорального ядра таламуса, при реализации психологического теста на восходящей и частично нисходящей фазе тау-волны существенные изменения ИАН обнаруживались в фазе принятия решения. В той же зоне при реализации того же теста на нисходящей–восходящей (рис. 35) фазе тау-волны изменения частоты ИАН в фазу принятия решения отсутствовали.
При предъявлении в тесте двух абсолютно одинаковых сигналов, из которых только первый нес информационную нагрузку, а второй был в контексте теста незначим, на восходящей– нисходящей фазе тау-волны обнаруживалась реакция только на первый из двух сигналов. А при предъявлении их на нисходящей– восходящей фазе селективность реакции зоны мозга исчезала – зона реагировала одинаково на оба сигнала.
Рис. 35. Зависимость динамики импульсной активности нейронов от фазовых характеристик тау-волн тех же зон мозга при мыслительной деятельности.
А – результаты усреднения СМФП в декасекундном диапазоне по положительным (б, г, е) и отрицательным (а, в, д) группам знакового ключа; Б – ПСГ текущей частоты импульсной активности нейрона: а, б, д, е – смысловые группы; в, г – «пустышки»; а–г – регистрация в области заднего вентроорального ядра таламуса (V. о. р); д, е – регистрация в области заднего дорсоорального ядра таламуса (D. о, р). Вертикальными штриховыми линиями обозначены моменты предъявления I (S1), II (S2) стимулов и сигнала, разрешающего речевой ответ больному (SR)
Такого рода модулирующее влияние тау-волн обнаружено не во всех исследованных зонах и не во всех зонах с одинаковой выраженностью. Обнаруженная зависимость должна изучаться и, может быть, через некоторое время удастся уточнить, какова степень общности данного модулирующего механизма мозга. В данном случае именно выявление его в каких-то зонах мозга должно расцениваться как импульс к дальнейшему поиску, а не как отсутствие их и, следовательно, как повод к «закрытию проблемы».
Исследования нейрофизиологических механизмов мыслительной деятельности, несомненно, целесообразно продолжить, чтобы шаг за шагом получать все более полные характеристики вклада различных мозговых зон коры и глубоких структур мозга в обеспечение мыслительной деятельности. Одновременно важно дальнейшее выяснение механизмов мозга, их общего и частного значения. Мы очень ждем от работающих вместе с нами представителей точных наук методов исследования, все более адекватных тому, как мозг взрослого человека решает простые, сложные и сложнейшие задачи. Надо также надеяться, что в самом ближайшем будущем изучение местных и системных процессов в мозгу человека сольется в единое целое. Вместе с психологами физиологи должны попытаться понять мозговые механизмы не только мыслительной деятельности, обеспечивающей ежедневную жизнь человека, но и тех процессов, которые служат прорыву в неизвестное, то есть механизмы творчества. Однако какими бы интригующими ни были результаты будущего, они не явятся поводом для третьего издания данной книги. В задачи книги входило наряду с детализацией ряда данных прежде всего изложение общих подходов к изучению здорового и больного мозга и общих принципов его работы.
Глава шестая
Нейрофизиология памяти человека и общие механизмы его мозга
И все это может сделать одна только физиология, так как она одна держит в своих руках ключ к истинно научному анализу психических явлений.
И. М. Сеченов
Давно и широким фронтом ведется настойчивое многоплановое изучение проблемы памяти. Опыт показал, что достаточно полноценная расшифровка ее механизмов возможна лишь на основе интегративного подхода, но это не исключает отдельных, разных по значимости аналитическх этапов ее изучения.
Физиологическое изучение памяти базируется главным образом на исследовании тех изменений различных физиологических показателей в мозгу, которые происходят в ходе запоминания (обучения), динамики следовых явлений и отражения процесса считывания из долгосрочной памяти. Ценные данные о механизмах памяти у человека были получены, как известно, при клинико-анатомических сопоставлениях (Бехтерев, 1900, и многие другие), в процессе развития нейропсихологии (Лурия, 1977; Хомская, 1977) и при анализе результатов электрических воздействий на кору и различные глубокие образования мозга (Ojemann, 1978a; Смирнов, 1976). Физиологический аспект проблемы широко разрабатывается в экспериментальных исследованиях различных лабораторий, результаты которых обобщены в монографиях и сборниках (Talland, 1965; John, 1967; Механизмы модуляции памяти, 1976; Механизмы управления памятью, 1979; Вартанян, Пирогов, 1987; Механизмы памяти, 1987, и др.). Стройная биоэлектрическая гипотеза памяти предложена М. Н. Ливановым (1977).
Данные о физиологических коррелятах памяти получены не только в эксперименте на животных, но и в исследованиях, проводимых у человека (Гречин, 1975; Раева, Ливанов, 1975; Кропотов, Гречин, 1976; John, 1977; Кропотов, 1979а, и др.).
Интерес к проблеме памяти все возрастает. При этом совершенствование методики исследований, формулирование и разработка новых концепций о механизмах мозга будут способствовать изучению процессов памяти. Широкие запросы педагогики и клиники остро ставят задачу изыскания путей управления процессом памяти, его различными свойствами. Поток обрушивающихся на человека сведений все увеличивается, поэтому возникла необходимость создать способы запоминания иногда очень большого количества сведений одновременно. И. М. Сеченов писал: «Память – сила, которая лежит в основе всего психического развития. Не будь в самом деле этой силы психическое развитие было бы невозможностью» (Сеченов, 1952а, с. 99).
Изыскивая предпосылки для улучшения запоминания, надо одновременно искать и противоядие – способы улучшения выделения значимости информации (эта задача в общем виде рассматривается техническими специалистами как проблема сигнал – шум), а также пути дезактивации, если не полного «стирания» памяти. Одновременная постановка этих задач важна и для обучения здорового мозга, и для переобучения мозга больного человека путем коррекции матрицы памяти, поддерживающей устойчивое патологическое состояние.
Обнаружение и исследование динамики физиологических изменений в различные фазы памяти оказываются возможными потому, что процесс запоминания в ходе обучения чаще всего происходит не мгновенно, а имеет развертку во времени. В то же время литературные данные и наблюдавшиеся нами при электрической стимуляции мозга явления типа импринтинга (запечатления) свидетельствуют о том, что мгновенное запоминание, запечатление возможно не только на самых ранних этапах онтогенеза (Бехтерева, Смирнов, 1975). Биологически, по-видимому, для организма выгодно иметь разные формы памяти. Реализация основных, важнейших для сохранения вида процессов организма и человека, и животных определяется генетической памятью, не развивающейся, а скорее проявляющейся в онтогенезе. Индивидуально приобретенная память определяет лишь адекватные коррекции протекающих процессов.
Для осуществления функций, важнейших для сохранения индивида как представителя вида, используется механизм мгновенной памяти – запечатление.
И, наконец, все другие виды деятельности, определяющие жизнь индивида в меняющейся среде и особенно жизнь человека в специально человеческой среде, базируются на более или менее быстро, но, как правило, не мгновенно формирующейся памяти. Скорость ее формирования является функцией значимости события и, таким образом, соответствующей мотивации. Она зависит от эмоционально активных или эмоционально нейтральных активационных механизмов и, следовательно, от функционального фона мозга. Этот процесс связан с генетическими особенностями мозга и целым рядом других, не всегда легко учитываемых факторов.
Биологической выгодой не мгновенного запоминания в процессе обучения является, по-видимому, возможность «отбора на запись», фильтрации информации и, что очень важно, одновременно идущего ее упорядочивания. В случае психонервной памяти примером упорядочивания является соотнесение ее с различными смысловыми и другими полями со всеми вытекающими отсюда последствиями иерархии дальнейшего ассоциативного поиска.
Генетически у человека имеются высокосовершенные предпосылки к психонервной памяти, реализующиеся в процессе обучения, индивидуального и особенно социально обогащенного развития. Так, не только обучение смысловому значению слов, но и использование их как важнейших единиц мыслительной деятельности осуществляется в ходе индивидуального развития человека в условиях общения с особями данного биологического вида. Именно в процессе обучения идет формирование и накопление базиса долговременной психонервной памяти при одновременной тренировке ее последующего использования в форме считывания, перевода из долгосрочной памяти в оперативную.
Как указывалось выше, связь мыслительных операций с процессами памяти неразрывна. Выделение в исследованиях собственно мыслительных процессов или собственно процесса памяти всегда имеет искусственный характер и определяет скорее расстановку акцентов, чем их сущность. Действительно, уже простейшие умозаключения немыслимы без активации и использования соответствующего базиса долгосрочной памяти вербального и невербального типов. В то же самое время по ходу тех же и всех других процессов все время происходит не только пополнение базиса памяти, но и трансформация ассоциаций и их иерархии. В полном соответствии со сказанным данные, полученные в процессе изучения тонких нейрофизиологических коррелятов слов и мыслительных процессов (Бехтерева и др., 1977а), оказались существенными для понимания целого ряда закономерностей нейропсихологии, нейролингвистики, физиологии анализаторных систем, искусственного интеллекта и ряда других направлений научных исследований. Они вместе с данными электрических воздействий на мозг оказались важнейшими для комплексно решаемой научной проблемы – проблемы памяти.
В предыдущей главе рассматривались результаты исследования перестроек импульсной активности, соотносимых с восприятием, удержанием в памяти и воспроизведением слов и некоторыми мыслительными операциями. Было показано, что в процессе восприятия слов в импульсной активности нейронных популяций формируется паттерн, характеризующийся изменениями частоты и структуры импульсного потока, формы разрядов нейронов и их групп внутри нейронных популяций и между дистантно расположенными популяциями. Уже в этом паттерне при использовании в психологических тестах слов, имеющих смысловую общность, обнаруживались нейрофизиологические корреляты этой общности в виде характерных перестроек взаимодействия нейронных группировок. Далее были выявлены перестройки структуры импульсного потока в виде очень динамичных определенных последовательностей интервалов и мало динамичных, но менее определенных изменений интервалов между импульсами. Общие перестройки структуры импульсных потоков, появляющиеся в разных зонах мозга (см. выше), рассматривались нами как фактор, способствующий организации мозговой системы. Общие последовательности интервалов, обнаруженные в коррелятах слов, соотносимых по смыслу, отражали переведенный из латентной формы в активную системообразующий фактор долгосрочной памяти. Они явились биоэлектрическим выражением активации ассоциативных связей, образовавшихся в результате индивидуального опыта и хранимых в долгосрочной памяти.
При инструкции запомнить слово и произнести его по команде и относительно небольших изменениях интервала между заданием и ответом можно видеть настраивание мозга на тот интервал в форме появления вначале слабо выраженных, а затем вполне отчетливых перестроек импульсной активности в виде появления паттерна сигнала, являющегося «оригинальной копией» первого развернутого паттерна, названного управляющим (Бехтерева и др., 1975б). Термин «оригинальная копия» заимствован из искусства. Если он и не очень удачен, то отражает и сходство управляющего паттерна с первым, возникшим при восприятии слова, и отличие от него. Отличие формально характеризуется его соотносимостью с акустическими (а вероятно, и моторными) характеристиками ответа больного. По существу, различие определяется тем, что второй паттерн в тестах с предъявлениями известных слов является результатом активации долгосрочной памяти лица, выполняющего тест. Подчеркивание в этих случаях значения активации долгосрочной памяти основано на сопоставлении нейрофизиологической динамики в тестах на краткосрочную память с динамикой при выполнении мыслительных операций. Если в первом случае соотношения относительно просты: полный первичный паттерн–компрессированный паттерн (паттерны)–полный управляющий паттерн, соотносимые с одним и тем же словом, то при различных входном и выходном сигналах, где входной является лишь одной из детерминант выходного – ответа, видно, как мозг формирует ответ при наличии соответствующего базиса долгосрочной памяти. Влияние последнего на динамику паттерна-кода в импульсной активности нейронных популяций прослеживается при варьировании наиболее простых тестов – тестов на краткосрочную память. При этом обнаруживается, что выполнение тестов, формально составленных одинаково, но с использованием слов, встречающихся в речи с разной частотой, известных и неизвестных, может осуществляться на различной нейрофизиологической основе.
Действительно, и при предъявлении редко и часто встречающихся в речи известных слов, и при предъявлении неизвестных слов по команде «Повторите» корректно или ошибочно воспроизводится то, что было в задании. Однако после восприятия известных слов наблюдается указанная выше нейрофизиологическая динамика, а при удержании в памяти неизвестного слова возникший при его восприятии паттерн сохраняется в импульсной активности, хотя и в дискретной форме, до речевого ответа. Сохранение паттерна связано в данных конкретных тестах и с тем, что больному предлагалось запомнить предъявленные сигналы. Однако идентичность этого условия при различии характера предъявляемых сигналов и соответственно этому различие мозговой нейродинамики позволили нам предположить, что второй вариант (сохранение паттерна) связан с отсутствием тормозящих влияний базиса долгосрочной памяти при неопознании субъективно нового сигнала. Нейрофизиологическим механизмом стабильности паттерна могут быть явления, протекающие по типу не до конца еще прослеженного и изученного процесса так называемой реверберации (Lorente de No, 1938; Беритов, 1960). Отношение циркуляции возбуждения по замкнутым нейронным цепочкам, спустя некоторое время после окончания действия какого-либо стимула к процессу краткосрочной памяти, недавно получило прямое экспериментальное доказательство на животных при исследовании взаимодействий функционально связанных нейронов (Вартанян и др., 1986). Стабильность, сохранение паттерна создают предпосылки к оптимизации в этих условиях формирования соответствующего биохимического базиса долгосрочной памяти. Это объяснение почти напрашивается, и мы пока не можем предложить лучшего, хотя, естественно, можно было бы предположить, что дело не в отсутствии тормозящих влияний, а в самом факторе новизны, активации соответствующих детекторов. Но что такое, если вдуматься в физиологическую сторону вопроса, новизна?
Зависимость обнаруженных во время удержания теста нейродинамических явлений от базиса долгосрочной памяти подтверждается не только различием их при разной степени субъективной новизны задания. Подтверждением является также и перестройка второго варианта нейродинамики на первый при обучении обследуемого лица значению ранее неизвестных иностранных слов. Тогда, когда звучание слова становится привычным, а значение – известным, тогда, когда можно думать, что соответствующий базис долгосрочной памяти сформировался, паттерн начинает исчезать из долгосрочной памяти так же, как это наблюдается при предъявлении известных слов. Данные, сопоставимые с этими нашими наблюдениями, уже встречаются в литературе. Об отражении в электрических явлениях мозга предыдущего опыта, считываемого из долгосрочной памяти, пишут Джон (John, 1976), В. А. Илюхина (1977) и другие авторы. Это неудивительно, так как не только в реальных жизненных условиях, но и в специально ориентированных физиологических экспериментах четко прослеживается влияние долгосрочной памяти на поведение, оценку внешних сигналов (Фирсов, 1977; Чораян, 1978, и многие другие).
Анализ составляющих паттернов-кодов и выделение динамичных групповых последовательностей разрядов с определенными интервалами позволили получить в тестах на обобщение новые, более детальные данные об отражении в импульсной активности нейронных популяций процесса активации долгосрочной памяти. После восприятия первых двух-трех слов одного смыслового поля в импульсной активности нейронных популяций появляется сложный фрагмент паттерна, в который входят и групповые последовательности разрядов, характерные для уже предъявленных слов, и новые элементы, позднее обнаруживаемые в паттерне-коде обобщающего слова (Гоголицын, 1976б). Этот феномен рассматривается как отражение уже происшедшего, хотя, возможно, и не окончательного («может быть»?) обобщения по минимуму слов смыслового поля. В плане рассматриваемой проблемы памяти он свидетельствует об извлечении обобщающего слова (естественно, в данном случае – активации его биоэлектрического паттерна) из долгосрочной памяти.
На примере процесса формирования паттерна-кода обобщения еще раз подчеркивается значение биоэлектрического компонента паттерна. Слово-обобщение («мебель», «деревья», «цветы» и т. д.) В заданиях отсутствовало. Оно проявляется как результат активации соответствующей матрицы долгосрочной памяти. При этом оказывается, что в биоэлектрическое отражение активации этой матрицы долгосрочной памяти включены элементарные составляющие биоэлектрических паттернов-кодов слов, образующих смысловое ноле. Паттерн-код обобщающего слова воспроизводит отдельные элементы паттерна-кода обобщаемых слов в сочетании со своим, специфическим, паттерном. Это может рассматриваться как нейрофизиологическое свидетельство правомочности представления, что обобщение не есть простая выборка значимых элементов паттернов обобщаемых слов и их суммация, а есть появление нового качества.
Предъявление зрительного изображения (первая детерминация ассоциативного поиска), сопровождаемое определенным словесным заданием (вторая детерминация – ограничение ассоциативного поиска), привело, как указывалось в наших предыдущих исследованиях (Бехтерева и др., 1977а), к появлению в импульсной активности целого ряда различных паттернов-кодов слов, имеющих видовую и индивидуальную смысловую связь с детерминированным изображением и заданным мыслительным процессом. Продолжение на новом уровне этих исследований, на время приостановленных в пользу получения статистически достоверных результатов, даст возможность, по-видимому, представить объективные свидетельства характера и результатов ассоциативного поиска в процессе интеллектуально-мнестической деятельности, а также выявить, как, на основе какого количества и рода информации, переведенной из потенциальной формы в активную, из долгосрочной памяти в оперативную, принимается то или иное решение.
Такие исследования с учетом приведенных в предыдущей главе ограничений, и прежде всего динамичности, неустойчивости паттернов и их элементов перспективны для понимания механизмов и нейрофизиологической основы сложнейших нарушений психических функций. Важно подчеркнуть, что уже первые результаты этих исследований оказались интересными для развития проблемы памяти. В этом случае, так же как и в тестах на краткосрочную память, обнаруживались и развернутые, и компрессированные паттерны. В развернутой форме появлялись паттерны-коды, связанные с вербализацией задания и ответа. Подавляющее большинство паттернов-кодов остальных слов выявлялось в компрессированной форме. Эти данные рассматривались нами выше в плане оценки условий осуществления мыслительных операций. Если взглянуть на них в аспекте проблемы памяти, придется допустить, что, по крайней мере, большой массив вербальной памяти хранится именно в экономичной, компрессированной, а возможно, и в связанной, комплексной форме.
Появление развернутых паттернов-кодов в форме управляющих паттернов-кодов при восприятии слов в тестах на краткосрочную память дает основание думать, что развернутый сигнал и механизм развертки теснейшим образом связаны с опознанием сигнала и вербализацией ответа. В более общей форме можно думать, что механизм развертки является важнейшим в процессе обучения, а механизм компрессии – в развитии мыслительной деятельности. Так же как и компрессия паттерна, развертка для формирования ответа не может осуществляться без участия информационно-специфической долгосрочной памяти. И в то же время не исключено, что реализации развертки могут принимать участие и другие, менее пецифичные механизмы мозга.
Не участвуют ли в процессах компрессии и развертки паттерна эмоционально активные и эмоционально нейтральные активирующие и тормозные влияния, значение которых и в мыслительных процессах, и в механизмах памяти хотя и общеизвестно, но далеко еще не понято? Развитие эмоционально активной или эмоционально нейтральной реакции активации или торможения в нейронных популяциях прежде всего влияет на текущую частоту разрядов. Исследования в этом направлении проводятся. Возможно, что они могут привести к переоценке физиологической природы компрессированных паттернов. До сих пор компрессированные паттерны по-прежнему (с 1971 года) рассматриваются как редуцированная форма развернутых, сохраняющая их опорные элементы. Не отрицая такой точки зрения, стоит рассмотреть вопрос, не являются ли компрессированные паттерны хотя бы частично результатом истинной компрессии элементов паттерна, чем-то вроде отражения компрессии шкалы времени. Как известно, вопрос о возможности жизни мозга по разному времени ставился в наших предыдущих исследованиях (Бехтерева, 1971, 1974, 1978). Он находит также подтверждения в психологических исследованиях (Брехман, 1976). Однако, как вполне понятно, для рассмотрения конкретных вышеприведенных данных в таком аспекте оснований пока еще недостаточно.
Результаты изучения кодирования мыслительных процессов дают все основания предполагать наличие в глубоких структурах мозга не только энергетических, но и информационноспецифических звеньев системы обеспечения психической деятельности. Однако сила традиционных представлений в науке о мозге человека обусловила первоначально объяснение нейрофизиологических явлений, наблюдавшихся местно в подкорке, как отражение событий на корковом уровне. Так, предполагалось, что где бы в мозгу ни возникал характерный биоэлектрический кодовый паттерн, адресом долгосрочной памяти была кора больших полушарий (Бехтерева, 1974). Надо сказать, аналогичная трактовка явлений, развивающихся на подкорковом уровне при психической деятельности, и сейчас еще очень распространена, хотя, как показано в предыдущей главе, накапливается все больше данных в пользу роли по крайней мере ряда подкорковых структур в процессах высшей интегративной деятельности.
Изучение вопроса заставило нас отказаться от этой предвзятости и вносить коррекции в гипотезу о пространственных соотношениях интеллектуальных процессов с их базисом – долгосрочной памятью.
Далее эти представления были нами развиты в форме гипотезы о распределенном кодировании вербальных сигналов. Нейрофизиологическим выражением этого распределенного кодирования было наличие преимущественно различных групповых и лишь отдельных высокосходных последовательностей разрядов в различных зонах мозга.
По-видимому, даже при исключении избыточности местных элементов паттерна-кода полный мозговой паттерн-код слова представляет собой интегральную величину, результирующую паттернов-кодов в различных звеньях системы обеспечения психической деятельности. Здесь важно подчеркнуть: слова «интегральная» и «результирующая» отражают сегодняшнее знание того, что полный код не есть простая сумма паттернов-кодов в различных нейронных популяциях и одновременно неполное понимание нейрофизиологических процессов, протекающих при объединении не трех, четырех, пяти, а многих звеньев систем. Выше уже рассматривались предположительные варианты структурно-функциональной организации мозга в этом случае.
Нейрофизиологические исследования показывают, что количество звеньев системы очень велико, особенно с учетом наличия в ней не только жестких, обязательных, но и гибких звеньев. Это положение подтверждается практически в каждом нейрофизиологическом исследовании мозга человека при использовании самых разных показателей жизнедеятельности мозга (Кропотов, Гречин, 1976; Кропотов, Малышев, 1976; Методы клинической нейрофизиологии, 1977; Кропотов, 1979а; Медведев, Белов, 1986, и др.). Так, воспроизводимые изменения при пробах на оперативную память наблюдались В. Б. Гречиным в 72 % точек мозга из общего числа 1000 обследованных зон в пределах премоторной коры, ядер таламуса и стриопаллидарной системы и верхних отделов ствола. При этом до 18 % обследованных зон обнаружили в большей или меньшей степени свойства детекции ошибки (зоны в хвостатом ядре, срединном центре, подушке, переднем и латеральных ядрах таламуса и др.). Выше показано, что в исследованиях, проведенных Ю. Д. Кропотовым и сотрудниками (Бехтерева и др., 1985б), данные о детекции ошибок получили полное подтверждение и дальнейшее развитие. Паттерн-код, индивидуальный в каждой нейронной популяции, огромное количество звеньев системы, казалось бы, создают свой неповторимый мозговой код у каждого обследуемого лица, что формально согласуется с данными психологии об индивидуальных психологических различиях разных лиц. И не только психологии. Электрическая стимуляция мозга человека обнаруживает также много индивидуального в его организации и особенно в том, что касается высших функций (Ojemann, 1979). Однако калейдоскоп групповых последовательностей разрядов в нейронных популяциях состоит из кодовых элементарных последовательностей, общие элементы которых обнаруживаются (по-видимому, играя роль системообразующего фактора) в разных нейронных популяциях в паттернах одного слова и в одной и той же популяции в паттернах-кодах слов со смысловой общностью. Следует здесь еще раз подчеркнуть уже упоминавшиеся выше данные Н. Г. Шкуриной (1983, 1984) о возможности наблюдения не только динамичных, но и сравнительно стабильных перестроек структуры импульсного потока, хотя и о значительно меньшей определенностью конкретных интервалов между импульсными разрядами нейронов.
Исследования механизмов и нейрофизиологических коррелятов общности явлений в разных звеньях мозговой системы, дальнейший анализ и систематизация кодовых паттернов будут, по-видимому, способствовать выяснению видовых характеристик (принципов!) отражения словесных сигналов в мозгу разных людей.
Приведение этих данных в настоящей главе было необходимо для анализа или, точнее, пересмотра представлений о месте и способе хранения информации в долгосрочной памяти, о локализации так называемых энграмм памяти. Распределенность кода при значимости его элементов, обнаруженных, в частности, в подкорковых нейронных популяциях, позволяет выдвинуть гипотезу о распределенном характере матрицы долгосрочной вербальной памяти и о значении подкорковых образований для распределенного хранения.
Исследуя форму нейронных разрядов при проведении тестов на краткосрочную память с предъявлением часто и редко встречающихся в речи известных слов и незначимых триграмм, П. В. Бундзен (Бехтерева и др., 1973) показал зависимую от степени известности слова и таким образом от базиса долгосрочной памяти динамику стабилизировавшихся по форме разрядов. Стабилизация по форме была кратковременной и появлялась при восприятии слова и его воспроизведении в случае предъявления часто встречающихся в речи известных слов, обнаруживалась более продолжительно в импульсной активности при предъявлении редко встречающихся известных слов и наблюдалась на протяжении всего удержания в памяти, причем с тенденцией распространения по пространству (популяции). На основе экспериментальных исследований (Rosenthal, 1967; Ходоров, 1969; Machek, Pavlik, 1973; Вислобоков, 1974) можно предположить, что это явление отражает определенное состояние мембран нервных клеток, предположительно соотносимое с процессами, лежащими в основе активации или формирования базиса долгосрочной памяти. Обнаружение этих явлений в подкорковых структурах подтверждает вероятность представлений о распределенном, не только корковом, но и подкорковом расположении (хранении) матриц долгосрочной памяти.
Если позволить себе некоторое отступление и вспомнить статью Лешли «В поисках энграмм» (Lashley, 1966), то, вероятно, именно распределенностью памяти хотя бы частично можно объяснить сложности, которые встречались и будут встречаться на пути поиска энграмм. Нет оснований представлять себе память структурно отделенной от деятельности, хотя опыт клиникофизиолого-анатомических сопоставлений и показывает особую значимость ряда образований мозга для нормального протекания процессов памяти. Если стоять на позициях распределенного хранения долгосрочной памяти, можно рассмотреть под определенным углом зрения затянувшиеся споры об уровнях замыкания условного рефлекса и об идентичности, и, наоборот, о различиях понятий «условный рефлекс» и «временна
я связь». Формирование условного рефлекса основано на формировании соответствующего базиса долгосрочной памяти. С другой стороны, условный рефлекс есть форма выражения долгосрочной памяти. Долгосрочная память, не имеющая, по-видимому, строго определенного уровня формирования и хранения, а являющаяся функцией очень многих пространственно распределенных нервных клеток, и определяет нередко удивлявшую экспериментаторов возможность формирования пусть не классического условного рефлекса, а временно
й связи при филогенетическом или хирургически детерминированном неучастии высших отделов мозга. С другой стороны, условный рефлекс, формирующийся у высших животных и у человека, протекающий при участии коры больших полушарий, нельзя себе представлять как процесс, где матрица памяти, ответственная за замыкание условной связи, имеет строго определенный, только корковый уровень. Даже самый простой условный рефлекс, затрагивая по ходу предъявления индифферентного (условного!) и безусловного сигналов разные уровни мозга, оставляет в них иногда, по-видимому, неизгладимые следы. Этих следов при длительном повторении одного и того же условного рефлекса может становиться меньше за счет процесса оптимальной минимизации системы, обеспечивающего деятельность и находящегося в известной мере в конкурентных отношениях с процессом распределения (не распределенности!) хранения памяти. Это приводит к тому, что даже для тех организмов, для которых задаваемая условно-рефлекторная деятельность является адекватной по сложности, любой условно-рефлекторный процесс при упрочивании начинает базироваться на распределенной, но оптимально минимизированной матрице памяти.
Переходящие из статьи в статью, из монографии в монографию данные Пенфильда о возможности наблюдать развернутые картины прошлого опыта при электрической стимуляции некоторых зон коры и глубоких отделов височных долей мозга, позволившие ему выдвинуть представления о коре и этих зонах, в частности, как о хранилище прошлого опыта и соответственно – о более глубоком структурном уровне высшей интегративной деятельности в мозгу, тоже, по-видимому, могут быть рассмотрены и с иных позиций. Если матрица долгосрочной памяти распределена, то при стимуляции коры и других зон эпилептического мозга, характеризующегося в определенные фазы болезни сочетанием исключительной проводимости и разных по локализации доминантных эпилептогенных очагов, могла быть активирована вся матрица, в которой хранилась память этого прошлого опыта, где бы ни находились ее звенья, по принципу, аналогичному ассоциативному поиску при мыслительных операциях.
То, что феномен воспроизведения прошлого опыта наблюдался при операциях по поводу эпилепсии при электрической стимуляции не только височной коры, но и медиобазальных отделов височной доли, нередко заставляло считать уже эти структуры хранилищами памяти. Имея в активе большой опыт стимуляции мозга разных больных, подтвердивший распределенность памяти (Вартанян, 1976; Смирнов, 1976; John, 1976; Ojemann, 1977a, 1978a; Смирнов, Бородкин, 1979), результаты электрической стимуляции коры и глубоких отделов мозга во время операций по поводу эпилепсии, по-видимому, можно рассматривать следующим образом. Они свидетельствуют о том, что стимулируемая зона коры или глубоких отделов мозга – значимый элемент матрицы памяти индивидуального опыта. Эти результаты, особенно если учесть свойства эпилептического мозга, не свидетельствуют в пользу положения, что кора или медиобазальные структуры височной доли являются единственными кладовыми, центрами этой памяти.
Распределенность памяти должна, несомненно, учитываться не только при изучении мозгового обеспечения мыслительных, но и всех других процессов здорового и больного мозга. Так, участие коры головного мозга в обеспечении основных процессов жизнедеятельности здорового и больного организма, показанное в трудах К. М. Быкова (Быков, 1947; Быков, Курцин, 1960) и его сотрудников, свидетельствует о существовании значимого в норме, искусственно сформированного у здорового организма или созданного болезнью коркового звена системы, имеющей, как известно, множество преимущественно подкорковых звеньев. Местный эпилептогенный очаг при эпилепсии, являющейся болезнью всего мозга и, по-видимому, организма в целом, есть закрепившаяся реакция мозга на поражение, местный элемент распределенной матрицы долгосрочной памяти. Такая трактовка позволила предположить в комплексном лечении целенаправленное воздействие, предположительно дезинтегрирующее именно память, обеспечивающую устойчивость этой патологической реакции. Результаты такого вмешательства достаточно обнадеживающие. Эпилептогенный очаг на ЭЭГ при формальной аналогии с процессами на нейронном уровне может быть сопоставлен с устойчивым паттерном-кодом на предъявление неизвестного слова, где устойчивость паттерна служила фактором, способствующим формированию базиса долгосрочной памяти в мозгу •больных паркинсонизмом. Более того, длительно существующий или воспроизводящийся в той же зоне мозга эпилептогенный очаг является уже и биоэлектрическим коррелятом долгосрочной памяти. При эпилепсии местный эпилептогенный очаг на ЭЭГ не только сформировал «память» данной реакции, но и трудности ее забывания, перевода в латентную форму, причем динамика биоэлектрической активности в зоне эпилептогенного очага свидетельствует о разных ее состояниях.
При анализе динамики паттерна-кода, наблюдавшейся при предъявлении хорошо известных слов, быстрое исчезновение паттерна-кода было отнесено за счет тормозящего влияния долгосрочной памяти. Как указывалось, торможение (угнетение) местного эпилептогенеза было достигнуто за счет воздействия, имитирующего биоэлектрические проявления важнейшего компонента сложного многопланового процесса памяти – забывания, дезинтеграции, угнетения (торможения) местной памяти о болезни.
Аналогия между данными нейрофизиологии психической деятельности и результатами нейрофизиологического изучения больного мозга была названа «формальной». И действительно, внешне это выглядит именно так. Однако длительное полиметодическое изучение здорового и больного мозга человека заставляет думать не только о чертах различия, но и об общности многих, внешне разных проявлений здорового и больного мозга и о трансформациях механизмов, исходно присущих здоровому мозгу, в патологические проявления. Очень важно, в том числе и в практических целях, уловить в патологических проявлениях отзвуки механизмов здорового мозга. Это станет возможным при более глубоком проникновении в законы деятельности и здорового, и больного мозга.
Распределенный характер хранения памяти обнаруживается в самых различных наблюдениях. Однако вопрос о том, какова роль различных образований мозга в процессах памяти, очень сложен. В подавляющем большинстве случаев вопрос должен и может анализироваться в связи с характером деятельности, общим функциональным состоянием мозг и его индивидуальным формированием. Именно в соответствии с этим и могут рассматриваться результаты лечебной экстирпации и точечной электрической стимуляции некоторых зон мозга человека.
Хотя в последние годы опубликованы данные, позволяющие предположить, что после разрушения медиобазальных отделов височных долей внешне проявляющиеся нарушения памяти, как, например, невозможность фиксации текущего опыта, связаны более с нарушением считывания, основные положения, показанные в эксперименте в конце 30-х годов (феномен Клювера– Бюси) и подтвержденные в клинике, остаются в силе. Разрушение этих областей мозга как бы прекращает возможность научения, хотя и не снижает заметно интеллектуальных функций, связанных с использованием прошлого опыта. При двухстороннем разрушении медиобазальных отделов височных долей больной разговаривает вполне осмысленно, производит впечатление интеллектуально сохранного человека, но стоит ему отвернуться или просто отвлечься чем-либо, как он вновь здоровается с тем, с кем разговаривал несколько минут назад. Он не может выполнить простейшего задания, если оно связано с удержанием в памяти последовательности даже нескольких операций. С течением времени утраченные способности восстанавливаются незначительно или не восстанавливаются совсем. Наличие сходной картины при склерозе сосудов мозга не противоречит представлению о ведущей роли медиобазальных структур мозга в этих расстройствах. Общее нарушение мозгового кровоснабжения может особенно сильно отразиться именно на этих структурах, ибо их кровоснабжение и в норме достаточно скудно, а заболевание лишь усугубляет проявления этой недостаточности. Важность медиобазальных отделов височных долей для функций памяти, а следовательно, и мыслительных функций требует уточнения стороны преимущественного поражения медиобазальных отделов височных долей у больных эпилепсией при решении вопроса об операции. Свойство эпилептического мозга формировать так называемые зеркальные очаги эпилептогенеза, имеющие несомненное отношение не только к процессам передачи информации в мозгу, но и к функции памяти, при длительно текущей эпилепсии определяет не просто желательность, а прямую необходимость использования долгосрочных вживленных электродов для уточнения стороны первичного или преимущественного поражения. Исходно билатеральное поражение медиобазальных отделов височных долей, в принципе, возможно, но встречается достаточно редко. Тщательное клиническое обследование с учетом нейрофизиологических и биохимических данных позволит решить, какая из двух симметричных зон способна к реабилитации в случае экстирпации одной из них с лечебными целями. Однако эти вопросы уже далеко выходят за рамки собственно проблемы памяти и, кроме того, специально рассмотрены в книге Н. П. Бехтеревой с соавторами (1978) и ряде других работ.
Полиметодический подход к исследованию механизмов мозга, преимущества которого были рассмотрены нами специально в первой главе, несомненно, должен быть использован и при изучении механизмов памяти. Наряду с данными анализа физиологических показателей жизнедеятельности мозга важным компонентом комплексного метода его изучения является, как известно, исследование результатов точечной электрической стимуляции.
К настоящему времени в результате стимуляции мозга при одномоментных стереотаксических операциях и в процессе диагностики и лечения методом вживленных электродов накоплен уже значительный материал не только о структурно-функциональной организации мозга, но и в отношепии изменения краткосрочной памяти и процессов считывания из долгосрочной в зависимости от области и характера воздействия, более или менее жестко связанных с изменениями состояния и других функций мозга (Смирнов, 1976; Ojemann, 1977b, 1978a, и др.).
При электрической стимуляции гиппокампа или его извилины у больных эпилепсией наблюдались явления типа антеро– и ретроградной амнезии. Они продолжались от нескольких секунд до нескольких недель в зависимости от интенсивности и длительности стимуляции. Больной в эти секунды или недели может забыть то, что непосредственно предшествовало воздействию, и не запоминает текущих событий, долговременная же память не страдает, а непосредственное воспроизведение заданий иногда даже улучшается. Полиметодический подход к оценке физиологических коррелятов развивающихся нарушений памяти и появление их одновременно с признаками функционального выключения мозга (разряд после действия на ЭЭГ) объясняют сходством явлений, имевших место при экстирпации и некоторых видах стимуляции мозга, свидетельствуют о целесообразности отнесения наблюдавшихся дефектов памяти именно за счет выключения данных медиобазальных образований височной доли и лишний раз подчеркивают необходимость осторожности при физиологической оценке эффектов так называемого стимулирующего воздействия.
Преходящие, слабо выраженные изменения памяти наблюдались при стимуляции передних отделов поясной извилины (Whitty, Lewin, 1960; Fedio, Ommaya, 1970). Восприятие (запоминание) невербальных сигналов было затруднено при стимуляции правого мамиллоталамического тракта (Ojemann, 1971). Отсроченное непостоянное улучшение вербальной памяти имело место после лечебных электрических стимуляций коры мозжечка (Riklan et al., 1976). Эти изменения наблюдались одновременно с нормализацией эмоционально-мотивационного состояния больных и рассматривались как вторичные по отношению к данным эмоциональным сдвигам и подавлению активности эпилептогенного очага.
Специальное исследование памяти и внимания у больных эпилепсией предприняли в нашей лаборатории А. Н. Шандурина и Г. В. Калягина (1979) при электростимуляции гиппокампа, его извилины, септальных ядер свода, передней комиссуры, срединного центра, интраламинарных, вентролатеральных и передневентральных ядер таламуса, мезэнцефальной ретикулярной формации и некоторых зон неокортекса. Исследование показало, что под влиянием электростимуляции, независимо от точки приложения тока, наибольшей изменчивостью обладала вербальная и невербальная долговременная память, устойчивость и переключаемость внимания. При электростимуляции структур правого полушария несколько больше изменялась динамика объема кратковременной образной памяти, левого – объема кратковременной памяти на цифры. При этом правосторонние воздействия чаще вызывали динамику объема внимания, левосторонние – его устойчивости. Электростимуляция таламических ядер и мезэнцефальной ретикулярной формации вызывала обычно одновременное изменение кратковременной и долговременной вербальной и образной памяти, сочетавшееся с изменениями внимания. Изменения отдельных видов памяти, часто (но не всегда) не связанные с динамикой объема внимания, наблюдались при электрической стимуляции медиобазальных образований левой височной доли. При этом могли обнаруживаться одновременные изменения кратковременной и долговременной образной памяти, кратковременной зрительной вербальной памяти, в последнем случае при одновременном изменении объема внимания. Изменения и внимания, и памяти были различными при стимуляции медиобазальных структур височной доли и срединных структур мозга. При электростимуляции таламических и мезэнцефальных структур чаще изменялся объем внимания и слуховая кратковременная память, а при электростимуляции медиобазальных отделов височных долей – устойчивость и переключаемость внимания и вербальная и образная зрительная кратковременная память. В исследовании показано дифференцированное влияние электростимуляции различных образований медиобазальных отделов височной доли, в частности, гиппокампа и миндалины, на динамику мнестических функций разных модальностей.
Специально исследовалась динамика фаз мнестической функции при электростимуляции. Электростимуляция ядер таламуса чаще вызывала изменения объема кратковременной вербальной памяти, а при электростимуляции медиобазальных образований – изменения отсроченного воспроизведения заученного до воздействия вербального материала. Следует подчеркнуть, что детальное изучение изменений памяти при электростимуляциях вышеуказанных структур выявило и другие изменения памяти, в частности, в форме ее дезинтеграции. 30 % электрических стимуляций этих образований сопровождались изменениями речи в виде ускорения или замедления ее темпа, дизартрии, аномии и др., 20 % – изменениями «схемы тела».
Не детализируя специально этого вопроса, авторы указывают, что электростимуляция редкими импульсами (3–6 Гц), собственно стимулирующее воздействие на миндалину вызывали улучшение зрительной вербальной памяти при повышении показателей психической деятельности.
Изучение эффектов не только отдельной электростимуляции, но и результатов курса лечебных стимуляций неспецифических таламических ядер показало, что улучшение кратковременной и долговременной памяти отмечается наряду с общей нормализацией психических функций. Положительная динамика этих функций, в свою очередь, коррелировала с уменьшением проявлений эпилептогенеза. В работах Мильнер (Milner, 1970), А. Р. Лурия (1974), Н. К. Киященко с соавторами (1975) широко представлена гипотеза о модально неспецифических влияниях подкорковых структур мозга на память.
Данные А. Н. Шандуриной и Г. В. Калягиной (1979) свидетельствуют о модально-специфическом влиянии одних и модально-неспецифическом – других образований мозга на краткосрочную память. Так, слуховые виды краткосрочной памяти чаще изменяются при электростимуляции таламических и мезэнцефальных структур, зрительных, медиобазальных отделов височной доли. Изменения памяти при стимуляции гиппокампа были модальнонеспецифическими, и в то же время именно эта структура во многом определяла состояние функции памяти. Ключ к пониманию причин различия указанных выше результатов – в методике исследования. Как известно, многие исследователи в области нейропсихологии основываются в своих построениях на динамике психических функций при массивных поражениях мозга. Точечные электрические стимуляции, одномоментные или в виде целого курса лечебных стимуляций, позволяют получить значительно более тонкие данные о структурно-функциональной организации мозга и, в том числе о мозговой организации памяти. Изменения памяти при точечной электрической стимуляции глубоких структур мозга рассмотрены в ряде монографических работ. Значительные изменения краткосрочной памяти в этих условиях наблюдал В. М. Смирнов (1976). Им описаны сверхоптимальные состояния, при которых наряду с общей психической активацией может почти вдвое (!) увеличиваться объем краткосрочной памяти. Такого рода эффекты отмечены, в частности, при электрической стимуляции срединного центра зрительного бугра. В. М. Смирнов указывает также, что по количеству зон, точечная электрическая стимуляция которых вызывала изменения памяти, на первом месте стоят ядра таламуса – подушечное и заднелатеральное. Значительное количество точек, электростимуляция которых вела к изменению краткосрочной памяти, обнаружено в области вентролатерального ядра и срединного центра зрительного бугра и бледного шара, а также мезэнцефального отдела ствола. В. М. Смирнов подчеркивает, что эффекты электрической стимуляции этих зон мозга на краткосрочную память существенно зависели от общего функционального фона. В соответствии с этим они могли варьировать в случае повторной стимуляции той же зоны даже при использовании тех же характеристик тока или не проявляться совсем.
Для оценки физиологической сущности эффекта, развивающегося при электрической стимуляции различных зон мозга, важно было учитывать характеристики используемых электрических воздействий. Эта задача облегчалась тем, что в процессе диагностики и лечения методом вживленных электродов не только использовалась стимуляция короткими (1 мс) прямоугольными импульсами различной частоты, но и применялась точечная поляризация постоянным током до 1 мА, приводящая к временному местному угнетению функций мозга. Сравнительный анализ данных показал, что эффекты электрической стимуляции частотой 50 имп./с приближались к явлениям, характерным для микрополяризации. Следовательно, истинный эффект стимуляции по крайней мере ряда мозговых зон наблюдается только при воздействии редкими импульсами – 4, 8, 10 имп./с. Увеличение объема краткосрочной памяти при электрической стимуляции бледного шара и некоторых зон мезэнцефальных отделов ствола с частотой 50 имп./с дает, следовательно, основания полагать, что в пределах указанных образований мозга имеются зоны, в естественных условиях тормозящие эти процессы.
Многолетние исследования памяти при электрической стимуляции мозга отражены в трудах Оджеманна (Ojemann, Fedio, 1968; Ojemann, 1978а). В работах 1968 года он показывает, что электрическая стимуляция подушки зрительного бугра может привести к невозможности или ошибочности называния предмета при сохранности экспрессивной речи и забывании изображения, предъявленного непосредственно перед стимуляцией. Используя методику изучения вербальной памяти с одновременным отвлечением внимания, Оджеманн (Ojemann, 1978a) исследовал влияние электрической стимуляции вентролатерального ядра таламуса (у больных паркинсонизмом во время стереотаксических операций) и коры (во время краниотомии с целью иссечения эпилептогенных очагов у больных эпилепсией).
Электрическая стимуляция проводилась на фоне предъявления стимулов, помехи (отвлечения внимания) или в момент активации словесной командой долгосрочной памяти: предлагалось назвать предъявленный на слайде предмет. Статистически значимые различия краткосрочной вербальной памяти обнаружены при стимуляции левосторонних ядер зрительного бугра. Стимуляция вызывала уменьшение числа ошибок в ответе, если совпадала с заданием, и увеличение – если совпадала с ответом. Стимуляция во время отвлечения внимания на правильность ответа не влияла. Одновременно было отмечено, что стимуляция левого таламуса вызывает специфическую реакцию настораживания, которая фиксирует внимание на предъявляемой вербальной информации. Исследования долгосрочной памяти у больных после операции показали, что стимуляция левосторонних ядер зрительного бугра влияет не только на краткосрочную память, но и на долгосрочную.
Большой интерес представляет описанное Оджеманном уменьшение аномии, возникшей при стимуляции левого вентролатерального ядра у больного после инсульта за несколько лет до стереотаксической операции, а также предположение об участии левого вентролатерального таламуса в обеспечении смысловой памяти. При стимуляции медиальной центральной зоны левого вентролатерального ядра таламуса правильное называние предметов нарушалось, причем зона ядра, стимуляция которой приводила к нарушению данного вида долгосрочной памяти, была территориально меньше зоны, стимуляция которой влияла на краткосрочную память. Наряду с этими данными было показано влияние левого вентролатерального ядра на речевую функцию (Ojemann, Ward, 1971; Ojemann, 1977a). При этом области, стимуляция которых влияла на память и речь, перекрывали друг друга, имели и общие и различные зоны (заднелобная, теменная и височная кора у больных эпилепсией). Нарушения называния предметов возникли при стимуляции левой теменно-височной области. Изменения краткосрочной памяти выявлялись при стимуляции зоны теменной и височной коры, прилежащей к речевой области.
О возможности наблюдать изменения памяти при электрической стимуляции тех же зон мозга, которые использовались в качестве лечебных мишеней, пишет и Сем-Якобсен (Sem-Jacobsen, 1968). Он указывает, что в этих условиях возможны явления типа воспроизведения прошлого опыта (подобно тем, которые наблюдал Пенфильд) при стимуляции правой височной доли и области слева от третьего желудочка, передних и задних отделов лобных долей. Очень детально анализируя все эффекты стимуляции, Сем-Якобсен подчеркивает возможность одновременного наблюдения как изолированных реакций, так и их комплекса, в котором изменения памяти сочетались с изменениями речи, настроения, сознания, сердечно-сосудистыми и другими вегетативными реакциями. Эффекты в наблюдениях Сем-Якобсена были воспроизводимыми при повторных стимуляциях тех же зон.
Обобщая опыт исследования различных реакций мозга человека и животных во время точечных электрических стимуляций, Валенштейн (Valenstain, 1973) приходит к важному заключению в отношении, прежде всего, вызванных эмоционально-психических реакций. Видовое сходство анатомического строения мозга не является предпосылкой сходства реакций у разных больных при стимуляции одной и той же анатомической зоны. Что же касается эффектов стимуляции, которые могут расцениваться как связанные с нарушением, активацией или подавлением памяти, то они, по впечатлениям Валенштейна, не воспроизводятся жестко даже у одного и того же больного, а не только у разных больных. При этом Валенштейн рассматривает критически утверждения, по крайней мере, одной группы авторов – Пенфильда и его сотрудников, настаивавших на полной воспроизводимости картин прошлого опыта. Кстати, несмотря на то что по существу Валенштейн, повидимому, прав, его сомнения относительно этих эффектов могут быть проверены лишь в дальнейших исследованиях. Валенштейн полагает, что авторы, настаивавшие на их воспроизводимости, были под гипнозом представлений Зигмунда Фрейда, большая роль в которых отводится «подавленной памяти о прошлом».
Целенаправленный анализ данных, приводимых Валенштейном, Сем-Якобсеном, Пенфильдом и другими исследователями, показывает, что многие разночтения данных связаны с особенностями методических решений. Так, в работах Пенфильда полная воспроизводимость картин прошлого опыта при стимуляции одной и той же зоны мозга отмечалась при частых стимуляциях. После перерыва в стимуляциях эффект мог возникнуть, но быть отличным от предыдущих. Картина, извлекаемая из прошлого опыта, могла оказаться другой, чем после первых стимуляций. Такие же изменения эффектов во времени, но уже при стимуляции через вживленные электроды наблюдали Стивенс с соавторами (Stevens et al., 1969). Кстати, эту динамичность эффектов интересно и важно, по-видимому, в дальнейшем сопоставить с динамичностью биоэлектрических паттернов-кодов.
Изучение влияний на процессы памяти различных мозговых зон важно само по себе как раздел фундаментальных исследований мозга человека. Оно имеет несомненное значение не только для понимания нормальной психической деятельности и различных проявлений нарушений психонервной памяти в клинике, но и для понимания основы устойчивости патологических состояний при болезнях мозга. И уже сейчас эта проблема важна потому, что, изучая, как именно память влияет на самые различные процессы, можно и нужно разрабатывать на этой основе пути и приемы воздействий, включающих как основной или дополнительный элемент направленную модуляцию процессов памяти.
Что же иллюстрируют приведенные хотя и не полные, но полученные с помощью разных подходов, а отсюда репрезентативные данные о мозговой организации памяти человека? Прежде всего, несомненно, что, хотя существуют зоны мозга, имеющие очень тесную связь с процессами памяти, данные записи физиологических показателей мозга и его электрической стимуляции свидетельствуют об организации памяти по распределенному принципу. Самые разные структуры и зоны этих структур имеют отношение к памяти, причем то обстоятельство, что связь ряда образований мозга с памятью не выявлена, может зависеть и от методической стороны исследования, и от направленности интересов исследователей. Создается впечатление не просто о системном характере организации памяти, а о множестве систем, обеспечивающих различные виды и различные фазы памяти, имеющих общие для всех и различные для каждой из них звенья. Так, несомненно важное значение для памяти имеют медиобазальные отделы височной доли, причем, если отвлечься от того, что больной с двусторонним повреждением этих областей мозга при общении кажется интеллектуально сохранным, можно говорить об этих зонах мозга как важнейших для памяти. Но что значит – кажется интеллектуально сохранным? Это значит, прежде всего, что он владеет индивидуально сформированным и хранящимся в мозгу базисом памяти. Страдает при поражении медиобазальных отделов мозга перевод информации на долгосрочное хранение. Что же, долгосрочная память совсем не подвластна воздействиям? Весь опыт клиники диффузных и прежде всего сосудистых поражений мозга показывает, что и долгосрочная память может существенно нарушаться, или, точнее, нарушается возможность пользования всем этим богатством – считывания из долгосрочной памяти.
Наряду с этим, часто трудно дифференцируемым симптомокомплексом нарушений памяти, данные нейрофизиологических исследований представляют косвенные свидетельства местной активации долгосрочной памяти, почти позволяют «дотронуться» до нее, а воздействие путем электрической стимуляции на некоторые зоны мозга может ее избирательно нарушать. Пересмотр представлений о принципах хранения памяти в мозгу, введение концепции о распределенном ее хранении позволяют непредвзято оценить и эти данные. Стимуляция небольшой зоны в области зрительного бугра вызывает невозможность или ошибочность называния предметов. Долгосрочная память и обязательно механизм считывания из нее страдают. Следовательно, именно эти зоны можно отнести к образованиям мозга, являющимся очень важными для процессов долгосрочной памяти и по крайней мере пользования ею. Стимуляция конвекситальной коры приводила к считыванию из долгосрочной памяти картин прошлого опыта. Но, впрочем, именно эти факты нами уже обсуждались в самых разных аспектах. И далее, наряду с зонами мозга, влияющими на процессы памяти, независимо от ее модальности, описываются зоны, оказывающие на память и модально-специфическое влияние.
Стереотаксическая неврология еще только формируется. Ее дальнейшее развитие приведет, очевидно, по крайней мере к тому, что будут описаны достаточно полно не отдельные реакции, а спектры (синдромы!) реакций, развивающихся при точечных электрических воздействиях. Однако и сейчас не вызывает сомнений положение о том, что зоны, нейронно-глиальные популяции мозга, имеющие отношение к памяти, как правило, связаны – какими-то видами функций, хотя, по-видимому, есть зоны, при стимуляции которых влияние на память является доминирующим. Рассматривая все то, что приведено в настоящей книге, и то, что оставлено за ее пределами для сохранения логики изложения, для того чтобы за деревьями не потерять леса, невольно напрашивается мысль, что память не только очень общее свойство мозга, но и свойство всего мозга. Но для этого, демобилизующего дальнейший поиск вывода сейчас еще, к счастью, нет достаточных оснований (см. данные Ю. Д. Кропотова), а, судя по результатам изучения других базисных механизмов мозга, дело почти наверняка обстоит и не так сложно, и не так просто (рис. 36).
Рис. 36. Результаты статистической обработки тестов по запоминанию цифр у 40 больных паркинсонизмом.
Наверху – два типа динамики импеданса в двух различных структурах мозга (приведены характерные кривые). Внизу – два типа динамики мультиклеточной активности (постстимульные гистограммы). 1-й тип – изменения возникают в начале теста, 2-й тип – отсроченные изменения активности. В центре – на срезе мозга указаны структуры, в которых производились наблюдения. Цифры в знаменателе – общее число исследованных в данной структуре точек мозга, в числителе – число точек мозга, в которых наблюдались воспроизводимые изменения наблюдаемых физиологических процессов.
Что очень важно подчеркнуть сейчас? Кроме связи памяти со структурами мозга очень важным является усиление или ослабление этой связи в зависимости от местного и общего функционального состояния здорового и больного мозга. Процесс памяти, если и организованный в мозгу по полисистемному принципу, характеризуется наличием не только общих, ключевых звеньев для всех систем, но и звеньев более или менее жестких в каждой из систем. И хотя здесь, по-видимому, придется говорить о разных степенях жесткости, не исключено, что в основе положительных клинических эффектов разрушения, в частности, вентролатерального ядра при гиперкинезах (паркинсонизме) лежит не только выключение гиперактивного звена патологической системы и не только перерыв путей, но и выключение важного звена, влияющего на долгосрочную память! В то же время, если по крайней мере ряд звеньев системы (систем!) памяти жестко генетически структурно запрограммирован у человека как представителя вида, в мозгу каждого человека терриориальная организация зон, модулирующих память, индивидуальна, а также преимущественно связана (точнее сцеплена) с деятельностью. Так, вентролатеральное ядро зрительного бугра, стимуляция которого влияет и на краткосрочную, и на долгосрочную память, является важным, хотя и компенсируемым при разрушении (гибким?) звеном системы обеспечения движений, эмоций, некоторых видов психической деятельности и т. д. А данные этого рода, в свою очередь, подтверждают высказанное в предыдущей главе положение о местных функциональных перестройках структур, связанных с различными видами деятельности и одновременно с записью, хранением и считыванием памяти.
Было бы неправильным ставить память наравне с другими функциями мозга. Память является базисным механизмом, свойством мозга, и факт ее организации также, по-видимому, по системному принципу не должен как бы низводить ее на уровень других систем. Память – тот основополагающий механизм, который лежит в основе возможности проявления всех онтогенетически формирующихся видов деятельности и соответственно всех обеспечивающих их мозговых систем. И в то же время во всех или во многих звеньях этих мозговых систем присутствуют базисные фиксирующие механизмы, позволяющие формироваться не только системе обеспечения функций, но одновременно и поддерживающей ее матрице памяти. Индивидуальность зон мозга, влияющих на память, существует, но может быть несколько преувеличена. Она может быть связана с индивидуальностью в строении мозга, которая, как известно, приводит к тому, что самые точные стереотаксические расчеты не в состоянии обеспечить применительно к расположению конкретных нейронноглиальных популяций полную сравнимость расположения в мозгу электрода при одномоментных стереотаксических операциях и при использовании метода вживленных электродов. В соответствии с этим уже даже факт получения однотипных результатов при стимуляции предположительно одной и той же зоны мозга, скажем, у двух-трех из десяти больных может расцениваться в пользу наличия не только индивидуальных, но и видовых закономерностей. Однако и исследования по изучению эффектов электрической стимуляции, и исследования нейрофизиологического кодирования психических процессов в мозгу свидетельствуют о значимости индивидуального паттерна (здесь – в широком смысле слова), накладывающегося на видовую принципиальную структурно-функциональную организацию мозга. Если попытаться проанализировать соотношение видового (надвидового) и индивидуального в механизмах мозга, можно было бы построить схему-шкалу: от видового к индивидуально-видовому, от индивидуально-видового к видовому – надвидовому. На этой схеме-шкале к видовому должно быть отнесено само строение мозга, его жесткая структурно-функционально генетически детерминированная организация. Индивидуально-видовой является организация индивидуально формирующихся систем деятельности и нейрофизиологических кодов психической деятельности, а вновь видовыми и надвидовыми – многие, если не все, биохимические и молекулярно-биологические основы функционирования мозга. Значение среднего звена схемы очень велико. Оно лежит в основе индивидуальности, неповторимости индивидуальных возможностей каждого человека. Значение правого звена схемы не только в общем положении единства человека со всеми живыми организмами. Оно и в других, более частных, положениях. Так, например, если данные о строении человеческого мозга могут быть получены только при изучении человека, а эволюционный подход способствует пониманию происхождения особенностей, присущих мозгу этого высшего млекопитающего, если данные о мозговой организации обеспечения индивидуально формирующихся у человека функций и, особенно специально человеческих, возможно получить только при исследовании, проводимом у человека, – при сугубо вспомогательном значении эксперимента, то изучение биохимических и молекулярно-биологических механизмов мозга вполне осуществимо в эксперименте на животных, в том числе и на сравнительно низко организованных. Правда, не исключено, что при исследовании мозга человека будут вскрыты новые стороны вопроса. Именно в данной работе обязательного упоминания заслуживают надвидовые свойства специфических полипептидов, свойства, позволяющие переносить патологические процессы (мозговую память о них?) от человека к животным (Вартанян, Балабанов, 1978) и, может быть, в дальнейшем – корригировать патологическую матрицу памяти человека полипептидами животного происхождения. Приведенные данные о мозговой организации памяти, ее структурном соотношении с деятельностью здорового мозга, лежащем в основе формирования матриц памяти, имеют значение для понимания законов функционирования больного мозга, многоплановых соотношений памяти и болезни.
Хроническое заболевание мозга формирует свой, новый рисунок матрицы памяти, перестраивая не только матрицу в целом, но и меняя удельный вес разных ее звеньев, создавая на самой основе закрепления реакций в памяти важнейшие звенья матрицы патологической памяти. Вероятно, излишне напоминать, что речь здесь идет не только и не столько о психонервной памяти, сколько о памяти как о базисном механизме, явлении и процессе мозга. Болезнь, таким образом, влияет на процессы памяти. В больном мозгу в связи с болезненными утратами и избыточной активностью формируется по тем же принципам, что и в норме, распределенная матрица, поддерживающая устойчивое патологическое состояние, влияющая далее на болезнь также по тем же основным законам, как и память здорового организма влияет на его функции. Так, например, стойкий эпилептогенный очаг, сформировавшись под влиянием постоянного раздражения в эпилептическом мозгу, становится далее важнейшим звеном матрицы памяти, поддерживающей устойчивое патологическое состояние, определяющим в большей мере и общее функциональное состояние мозга, и психонервную память, и эмоционально-психическую деятельность. В лечении хронических болезней мозга приходится использовать приемы воздействия на исходную вредность, на болезненную избыточность и недостаточность активности разных систем и структур, на матрицу памяти и отдельные ее звенья. Способ активного преодоления устойчивого патологического состояния и поддерживающей его матрицы долгосрочной памяти с помощью лечебных точечных электрических стимуляций мозга, предложенный впервые в нашей лаборатории В. М. Смирновым (Смирнов, Сперанский, 1972), затем примененный в Мадриде Дельгадо (Delgado, 1973), был возведен в ранг программных проблем конгрессов по стереотаксической и функциональной нейрохирургии (1979, июль, Париж). Прием для «стирания» памяти о местном эпилептогенезе рассмотрен выше. Успешное лечение фантомно-болевого синдрома оказывается возможным воздействием не только на проводящие болевые импульсы пути, но и на память о болезни: речь идет о наблюдавшейся нами дезинтеграции фантомно-болевого синдрома при лечебной электрической стимуляции подушки таламуса – ядра, активного в отношении памяти и не имеющего прямого отношения к самой боли.
Таким образом, исследование механизмов памяти здорового и больного мозга, вскрыв некоторые общие закономерности, открыло новые перспективы модуляции памяти в интересах больного и больных, еще далеко не до конца используемые. В то же самое время результаты исследования памяти здорового и больного мозга выявили общность принципиальных механизмов здорового и больного мозга, показали возможность понимания механизмов болезни на основе изучения механизмов здорового и целенаправленного управления механизмами больного мозга.
Глава седьмая
Ближайшие перспективы в физиологии мозга человека на основе ее сегодняшних возможностей
Из неявных вещей одни неявны раз навсегда, другие – по природе, третьи – для известного момента.
Секст Эмпирик
В середине 30-х годов был заложен первый камень фундамента диагностики очаговых поражений мозга с помощью электроэнцефалографии. И хотя, по-видимому, электроэнцефалография и далее будет использоваться для локальной диагностики при эпилепсии, для оценки местного и общего функционального состояния мозга при других его заболеваниях, роль этого метода станет несколько иной. То, что было первоначально и наукой, и в большей мере – искусством, результатом личного, обычно не формализуемого и не всегда даже вербализуемого опыта исследователей, постепенно, с созданием совершенных приборов, становится доступным все большему кругу специалистов. С введением компьютерной томографии диагностика не только значительно уточняется, но и упрощается (Ghazy et al., 1978; Верещагин, 1980). Диагностика очаговых поражений мозга в будущем без этого метода, в том числе и при эпилепсии, будет по праву считаться несовершенной и, пожалуй, архаичной. Еще большие возможности диагностики не только так называемых органических, но и тех заболеваний, которые относятся к функциональным, где изменения в мозгу или частично обратимы, или компенсируемы, сулит использование ядерно-магниторезонансного и позитронно-эмиссионного томографов (Russell, Wolf, 1984; Ingvar, 1985). Что же, развитие техники, таким образом, лишает куска хлеба физиологов, исследующих мозг человека!?
Ничуть не бывало! Развитие техники освобождает физиологов от рутинной работы, вооружает их новыми общими и частными приемами анализа материала и позволяет сегодня решать задачи, сама постановка которых несколько десятилетий назад казалась фантастической. Так, например, благодаря научно-техническому прогрессу, обеспечившему возможности телеметрического наблюдения за больным и использования данных регистрации физиологических показателей, стало возможным выявить те условия возникновения припадка при эпилепсии, те состояния мозга, при которых события еще можно повернуть в желаемое русло, конкретно – не допустить развития припадка со всеми вытекающими из него тяжелыми последствиями для мозга и организма. Достижения в области клинической нейрофизиологии не исчерпываются этим примером. Он приведен только для того, чтобы показать, что научно-технический прогресс, как бы сужая какие-то области использования физиологических методов, не только расширяет другие, но и создает предпосылки к постановке и решению принципиально новых задач. Конкретное проявление научно-технического прогресса в физиологии человека – это и новая техника, и новые методы анализа физиологических данных, и ставшая привычной совместная работа физиологов, физиков, математиков. Комплексные лаборатории становятся рабочими коллективами на основе длительных рабочих контактов, причем время и силы, потраченные на выработку взаимопонимания при достаточно высоком профессиональном и творческом уровне сотрудничающих специалистов, как правило, с лихвой себя окупают, позволяя переходить на новые уровни исследования. Только в условиях рабочего содружества специалистов разного профиля оказалось возможным исследование так называемых местных и дистантных перестроек импульсной активности нейронных популяций мозга человека на разных этапах реализации психической деятельности и влияния долгосрочной памяти на протекание самых различных процессов в мозгу. Дело вновь за техникой: разработанный математический аппарат при достаточно совершенной усилительной технике позволит, по-видимому, извлечь дополнительную информацию из других электрических процессов мозга. Нетворческое содружество физиологов, физиков, математиков, инженеров не самоцель. Оно должно привести к созданию новых стандартизованных методов исследования, с помощью которых физиолог сможет осуществить исследование уже без постоянной посторонней помощи, хотя контакты с физиками и математиками будут для него полезными при решении новых проблем. Физики, математики и инженеры охотно идут в те области физиологии, где они являются полноправными творческими участниками исследований. Рабочее общение с физиологами обогатит не только физиологию. Познание законов работы мозга и, в частности, того, как менее двух килограммов живого вещества с легкостью решают задачи, лишь частично посильные самым совершенным машинам, послужит и развитию точных наук. Прежде всего это поможет созданию новых, более совершенных технических систем, искусственного интеллекта по образу и подобию естественного, но с выигрышем возможностей за счет быстродействия технических систем. Пожалуй, хотя сейчас самая совершенная ЭВМ и прошла от своего прообраза 30-х годов (Turing, 1936) довольно длинный путь, ей еще очень много немеренных верст осталось до мозга человека. Именно поэтому в области технических систем в выигрыше оказываются те специалисты, которые используют не только возможности своего мозга, но и механизмы, лежащие в основе его деятельности (Усов, 1976а, 1976б; Усов и др., 1977).
Механизмы живого мозга, как известно, не делятся на физические, физиологические, биохимические, молекулярно-биологические и т. д. Это исследователи, как правило, вынужденно изучают какой-то определенный аспект, поскольку в биологии аналитический подход все еще более разработан по сравнению с интегративным. Но, изучая одни проявления процесса, мы не только не видим его в целом, но нередко, именно в результате такого подхода, процесс непрерывный превращается в дискретный. Примером является изучение памяти. Примат физиологического подхода к изучению мозговых механизмов памяти до самого последнего времени был оправдан принципиально разными возможностями исследования процессов живого мозга методами физиологии и биохимии. Изучая то, что поддавалось исследованию, физиологи стремились окружать никогда не познаваемые полностью только физиологическими методами механизмы памяти все более тесным «физиологическим кольцом». С помощью физиологических методов удается исследовать процесс восприятия и более или менее короткий след от него: не процесс, а результат считывания из долгосрочной памяти в оперативную, по-видимому, нейрофизиологические корреляты забывания, а также, прямо или косвенно, влияние долгосрочной памяти на различные мозговые механизмы и процессы, в том числе и на психонервную память. Сама же долгосрочная память, ее субстрат и процесс формирования были лишь предметом изучения в специально ориентированных экспериментах, до последнего времени дававших значительно больше отрицательных, чем положительных, результатов. Надо сказать, что и сейчас изучение физиолого-биохимических механизмов памяти не всегда эффективно, несмотря на полученные данные о роли медиаторных систем (Бородкин, Крауз, 1978), пептидов, белков и других биологически активных веществ в ее процессах.
Сказанное относится, естественно, не только к памяти, но и к исследованию различных систем, функций и механизмов головного мозга. И в то же самое время наряду с методическими сложностями и вопросами, во многом сегодня уже решаемыми, нельзя не остановиться вкратце на идейном, проблемном аспекте физиологии здорового и больного мозга человека и главным образом на примере изучения нейрофизиологии психики. Сегодняшний день физиологии отличается от вчерашнего тем, что по многим линиям, в том числе и не намечаемым вчера, уже идет накопление результатов, их анализ, систематизация и обобщение. Получено много новых, в большой мере недостаточно интегрированных (часто даже противоречащих друг другу!) данных в области структурно-функциональной организации мозга. Есть результаты исследования физиологических процессов, позволяющих качественно и количественно оценивать функциональное состояние мозга. Началось и развивается изучение тончайших нейрофизиологических перестроек, тесно связанных с характером деятельности организма. Настало время – и это одна из важных задач завтрашнего дня – вплотную подойти к решению вопроса о механизмах взаимодействия различных зон мозга, звеньев мозговых систем в процессе обеспечения различных, и в том числе наиболее сложных, видов деятельности. Сегодня было бы неправомерно умолчать и о важности широкого изучения роли нейропептидов в обеспечении различных деятельностей мозга человека.
Здесь нет необходимости освещать состояние всех проблем физиологии здорового и больного мозга человека. Выбор проблем в данном случае определяется, прежде всего, их значением для данного научного направления. Вчера, сегодня и завтра, несомненно, важнейшим вопросом физиологии мозга являлась и является проблема соотношения структуры и функции в мозгу человека. Изучение этой проблемы осуществляетя сегодня в условиях непрямого, а также, что очень важно, прямого двустороннего контакта с мозгом человека.
Много лет назад при электрической стимуляции височной доли Пенфильд (а позднее и другие исследователи) наблюдал приведенный выше своеобразный феномен типа раздвоения личности с воспроизведением картин прошлого опыта. Возникновение этого эффекта относили за счет активации поверхности конвекситальной или медиобазальной области височной доли. Однако эти результаты, хотя и повторялись в ряде исследований, были и остались скорее уникальными наблюдениями, чем началом систематического изучения структурно-функциональной организации мозга и психических функций в частности. Так же редко, к счастью для врача и больных, наблюдается одномоментное, практически все еще трудно предсказуемое формирование стойких поведенческих реакций при электрической стимуляции отдельных зон в глубоких структурах мозга. (Следует попутно еще раз подчеркнуть, что сейчас также с помощью электрических стимуляций других зон мозга возможно их срочное торможение!)
Сегодня электрическая (диагностическая и лечебная) стимуляция мозга в связи с организацией исследований представляет материалы, которые ложатся в основу знания о том, какие структуры участвуют в мозговых системах обеспечения различных функций. Результаты изменения психических функций при электрической стимуляции мозга приведены выше. Например, изменения речи, в том числе и вполне сопоставимые, могут наблюдаться при стимуляции и коры, и подкорки, причем в подкорке – при стимуляции различных таламических зон и структур стриопаллидарной системы. Они могут отмечаться изолированно или, осторожнее, как основной феномен, или в связи с нарушениями памяти, сознания и другими реакциями. Трактовка этих данных в значительной мере еще субъективна. Так, на основании данных об остановке речи при стимуляции корковой области Оджеманн (Ojemann, 1979) пишет о роли коры как высшего образования для обеспечения речевой функции. Однако остановку речи Сем-Якобсен (Sem-Jacobsen, 1968) и В. М. Смирнов (1976) наблюдали при стимуляции таламических зон и других структур мозга. При стимуляции различных зон конвекситальной коры и таламических ядер показана возможность вызывания и сочетанных, и изолированных нарушений речи и речевой памяти. При стимуляции лобно-височной коры показано, что мозговое обеспечение разных языков – родного и иностранного – может осуществляться не только одними и теми же, но и разными зонами. Эти данные принципиально подтверждают то, что было показано нами ранее на основе анализа физиологических процессов подкорковых зон мозга (Гоголицын, 1976а, 1976б; Бехтерева и др., 1977а).
Результаты электрической стимуляции показывают, что мозговая структурная организация обеспечения речи и формирующихся на ее основе психических функций включает и общие, и различные зоны мозга. При этом данные, полученные в отношении тех же функций при стимуляции коры и подкорки, пока еще скорее сходны, чем отличны. Точечная электрическая стимуляция шаг за шагом пополняет сведения о структурно-функциональном обеспечении различных и в том числе психических функций. Однако было бы существенной методологической ошибкой полагать, что одна электрическая стимуляция, равно как и в общем виде один какой-либо метод, может представить полноценные сведения о физиологии мозга и, конечно, о структурной организации обеспечения психики. В изучении сложнейших проблем психофизиологии монометодический подход особенно противопоказан.
Данные электростимуляции существенно дополняются при сопоставлении с результатами многоканальной регистрации физиологических процессов мозга при выполнении функциональных проб.
Большая литература посвящена использованию с этой целью методов электроэнцефалографии и вызванных потенциалов в условиях непрямого контакта с мозгом, то есть при регистрации этих процессов с поверхности кожи черепа. «Взрыв» работ в этой области, показавшей типовые изменения ЭЭГ при условно-рефлекторных и психологических пробах, подчеркнул значение исследования взаимодействия биопотенциалов в разных зонах мозга для изучения межцентральных отношений. Сейчас число психофизиологических исследований, проводимых с помощью ЭЭГ, значительно уменьшилось и примат в этой проблеме в условиях непрямого контакта с мозгом отдается методу вызванных потенциалов. Исследования методом вызванных потенциалов показывают возможность оценки функционального состояния мозга, в том числе эмоционального состояния исследуемого лица, и позволяют выявлять в этих процессах отражение смысловой дифференцировки психологических тестов, а также объективно оценивать нейродинамику в зависимости от других характеристик задания. Отдавая должное и методу, и результатам, следует вновь подчеркнуть в этом случае ограничения монометодического подхода и, в частности, тогда, когда непрямой контакт с мозгом определяет одновременно свободу в выборе контингента обследуемых лиц и ограничения в тонкости получаемых результатов. Удачное выражение Прибрама – «языки мозга» – имеет не только привлекательную форму, но и глубокий внутренний смысл, далеко не полностью раскрытый в собственных работах автора.
Обобщение практически всех возможных данных регистрации физиологических процессов мозга при психологических тестах, в том числе во многих случаях при их одновременной многоканальной регистрации, показало, что значительно большее число зон мозга, чем это обнаруживается с помощью электрической стимуляции, воспроизводимо активируется при выполнении даже относительно простых видов психической деятельности.
Уже показаны общие принципы структурно-функционального обеспечения психической деятельности системой с жесткими и гибкими звеньями. При исследовании структурно-функционального и гибкими звеньями. При исследовании структурно-функционального обеспечения психической деятельности важно подчеркнуть, что звенья обеспечения этой деятельности есть и в коре, и в подкорке, причем на сегодня критерии оценки их как активационных или информационных не всегда совершенны. Структурно-функциональная организация обеспечения психической деятельности имеет типовые вариации, количественно наиболее полно представленные в работах по межполушарной асимметрии. И в то же самое время это обеспечение имеет значительные индивидуальные вариации, и – дополнительно – некоторые зоны мозга (гибкие звенья) могут включаться или не включаться в зависимости от функционального состояния структуры. Необходимо также учитывать, что в обеспечении психической деятельности всегда действуют две формально экстремальные тенденции: деятельность нестереотипная и деятельность относительно кратковременная протекают в условиях активации существенно большего числа зон, чем деятельность стандартизированная и длительно текущая. Иными словами, в физиологических исследованиях удается уловить тенденцию к минимизации территорий, участвующих в деятельности, для которой конкурирующим фактором явится новизна и динамичность деятельности.
Несомненно, важной в физиологии мозга человека является проблема того, какие физиологические перестройки отражают специфику реализуемой деятельности. Рассматривая ее, следует подчеркнуть, что, хотя в электрических и неэлектрических процессах мы чаще (или как правило) регистрируем следствие, а не причину, уже в отношении процессов, отражающихся на ЭЭГ, высказывалась и частично подтверждалась точка зрения об их управляющей роли по отношению к состоянию мозга. Наверное, в общем виде, по крайней мере в отношении электрических явлений, наиболее близким к действительности будет положение о том, что они отражают состояние мозга и оказывают на него влияние, то есть теснейшим образом связаны с динамикой этого состояния во времени и пространстве. Следовательно, в психофизиологии правомерно дальнейшее изучение тончайших нейрофизиологических коррелятов – кодов мозга. В данном случае, как и во всех предыдущих, термин «код» используется нами для обозначения нейрофизиологических коррелятов, наиболее тесно связанных с характером деятельности, а не только с функциональным состоянием мозга. Этот термин использован и для подчеркивания нового уровня изучения проблемы.
Отражение и передача сигналов в нервной системе осуществляются различными путями, причем целесообразно сегодня подчеркнуть неальтернативность различных форм кодирования. Так, изученными на простых организмах формами кодирования являются кодирование системой структур (меченые линии) и частотой импульсации. По-видимому, в представления о кодировании так называемыми мечеными линиями придется, хотят или не хотят того исследователи, придерживающиеся этой точки зрения на основе изучения наиболее простых организмов, у высокоорганизованных животных и человека включить не только генетически, но и онтогенетически сформированные, «обученные» центральные структуры, системы или центральные компоненты функциональных систем. На основе известной, не абсолютной, но все же имеющейся анатомической предопределенности, как показывают исследования, проведенные у разных лиц, звенья системы обеспечения психических функций статистически достоверно располагаются в определенных структурах. Зоны в пределах этих структур индивидуально варьируют, но аппарат не только жестких, но и гибких звеньев системы обеспечения психической деятельности, сформировавшись у данного лица, далее имеет свою достаточно определенную, привязанную к структуре географию. Кодирование частотой импульсных разрядов нервных клеток имеет существенное значение в обеспечении психической деятельности. Постстимульная гистограмма, позволяющая не только судить о связи структуры с функцией, но и обнаруживать тонко дифференцированные структурно-функциональные отношения, свидетельствует одновременно о достаточно характерных изменениях в ряде зон мозга частоты импульсации нейрона и нейронной популяции в зависимости от вида психической деятельности. Однако постстимульная гистограмма относится к тем распространенным приемам, где достоверность реакции определяется не в условиях однократного исследования, а статистической обработки, в частности накопления импульсации за 50–60 и более проб. В связи с этим важно подчеркнуть одно существенное, всем известное, но нередко как бы упускаемое положение: исследователь идет разными путями, но пользуется обычно накоплением сигнала для надежного выделения его на фоне шума. Мозг человека с легкостью проделывает эту операцию – опознает слово, расшифровывает фразы, не нуждаясь, как правило, в повторении ни элементов слова, ни всего слова, ни фразы. В исследовании этого вопроса очень перспективно оказывается применение метода разложения на компоненты – построения диаграмм рассеяния (Гоголицын, Пахомов, 1984,1985), позволяющих буквально «вскрыть» то, что кроется за постстимульной гистограммой.
Попытка исследования всего того, что происходит в коре и высших подкорковых структурах мозга в момент однократного предъявления словесных сигналов и психологических тестов на простые и более сложные (принятие решения) мыслительные операции, показывает, что имеет место: 1) активация определенных, хотя и различных в разных условиях, структур, то есть в известной мере сохраняется принцип меченых линий; 2) изменение частоты импульсных разрядов нейронов, то есть действует принцип частотного кодирования. Кроме этих двух факторов происходит: 3) перестройка структуры импульсного потока, по-видимому, отражающая прежде всего перестройку взаимодействия между нейронами рабочего ансамбля нейронов, и 4) перестройка взаимодействия звеньев мозговых систем обеспечения психических функций. Все эти процессы возможны при определенном общем (и местном) функциональном состоянии мозга. Различия групповых последовательностей разрядов в фоне и в момент теста характеризуются увеличением их количества, появлением сообществ этих последовательностей соответственно фазам теста в одной и, что очень важно, в нескольких зонах мозга, являющихся звеньями мозговых систем обеспечения психических функций.
В связи с этими данными важно, по-видимому, подчеркнуть, что проведенные исследования еще раз показали общность принципа работы и макро– и микроуровня мозга. Так же как и на макроуровне (система), на микроуровне (популяция, ансамбль) в процессе деятельности развиваются связанные со структурой пространственно-временные перестройки активности ее элементов. То, что мы наблюдаем в структурах высшей интеграции, есть в первую очередь проявление участия в деятельности уже онтогенетически обученного мозга, местные процессы в звеньях мозговых систем. Говоря о роли структуры, необходимо учитывать не только физиологические, но и все еще трудно доступные для динамического изучения биохимические и молекулярно-биологические изменения в ней.
Весь опыт наших и других исследований показывает, что в обеспечении психической деятельности проблема взаимодействия между различными зонами мозга должна рассматриваться как одна из тех, решение которых имеет значение и само по себе, и для правильной оценки всего запаса знаний о структурно-функциональной и тонкой нейрофизиологической организации мозга.
В идейном плане в этой проблеме есть уже некоторый актив. Так, выдвинуто представление о динамическом пейсмекере и возможной иерархической организации обеспечения психической деятельности (Бехтерева, 1980б). Предполагается, как указывалось выше, что описанные пространственно-временные перестройки взаимодействия между нейронами являются прежде всего местными феноменами, местными оперативными единицами, а взаимодействие между структурами осуществляется на другой основе.
В чем сложность проблемы? Исследования показывают, что если в обеспечении психической деятельности принимает участие и не весь мозг (а и такого рода гипотезы еще бытуют), то количество зон, включающихся во время решения даже относительно простых задач, все же очень велико. В этих условиях необходима не только передача сигнала, а динамическое взаимодействие различных зон мозга, в каждой из которых по отношению к другой и другим происходят местные, преимущественно различные и лишь частично сходные перестройки, причем в микроинтервалы времени. При этом следует учитывать, что при реализации психической деятельности, хотя она происходит на основе базиса памяти, все же по сравнению с другими видами деятельности, как правило, относительно менее используются стереотипные, трафаретные решения, в которых структурно-функциональная основа может быть достаточно строго заданной и реализация деятельности может идти на основе фиксированного анатомического пути (меченой линии). Если представить себе, что количество участвующих в сложной нестереотипной деятельности зон в мозгу может быть порядка (именно порядка!) 10 000, вся система очень динамична не только во времени, но и в пространстве, то вполне понятно, что с помощью всех известных в физиологии форм взаимодействия такая задача вряд ли может легко решаться. Не случайно некоторые исследователи ищут для объяснения такого взаимодействия и другие принципы, например «тоннельный эффект», срочное появление временных электрических контактов, подобно тому, что в отношении ганглиев наблюдал О. С. Сотников (1985), и т. п.
Традиционные физиологические пути изучения взаимодействия зон мозга известны. Исследование корреляций биоэлектрических процессов при реализации психической деятельности человека подтвердило значение фактора взаимодействия близлежащих и дистантно расположенных зон мозга. В настоящее время в технических решениях исследователей, прошедших через своего рода пик точности, наметились как будто некоторые уступки точности. Речь идет об одном из последних методических предложений Герштейна (Gerstein et al., 1978) о приеме исследования совпадения разрядов нейронов в разных зонах мозга в микроинтервале времени. Использование такого метода как будто дает интересные результаты. Так, в частности, была показана возможность выделять сигналы по смысловым характеристикам на основе пространственного фактора.
Накопление существенно новых данных в физиологии мозга человека, как указывалось, в значительной мере обусловлено возможностями прямого контакта с мозгом. Справедливости ради следует сказать, однако, что исследования живого мозга человека, несмотря на их огромный интерес, не всегда могут быть осуществлены из-за сложностей самого разного порядка. В связи с этим, несмотря на огромное количество различых нейрохирургических и в том числе стереотаксических операций (а их число в мире уже много десятков тысяч!), количество направленных психофизиологических исследований все еще относительно невелико. С другой стороны, отдельные физиологические исследования, проводимые у больного человека без учета медико-этических ограничений, подверглись справедливой критике и на сегодня прекращены. Речь идет об очень скрупулезных, тщательных исследованиях Сем-Якобсена, не сумевшего доказать, что его исследования вписывались в комплекс необходимых лечебно-диагностических мероприятий. Отсюда ясно, что и безусловно недостаточная, и неоправданно избыточная активность физиологов в изучении мозга человека равно обедняет в конечном счете и теорию физиологии мозга человека, и возможности расширения обоснованного лечения нервных и психических заболеваний.
Клинико-физиологические симбиозы должны не только расширяться, но и обязательно регламентироваться. Ни одно сколько-нибудь спорное по своим последствиям для больного вмешательство – а это, в частности, электрические воздействия и само введение дополнительных, не оправданных лечебно-диагностическими задачами электродов, – не должно проводиться в интересах Науки. И в то же самое время при перенесении центра тяжести физиологических исследований на соответствующую организацию работы (в частности, ее адекватную стандартизацию) и анализ данных видно, что эта область, безусловно, таит в себе поистине огромные перспективы. Следует подчеркнуть, что именно организация физиологических исследований позволила предложить существенно но вые, щадящие методы лечения длительно текущих болезней нервной системы. Это – точечная электрическая стимуляция, формирование так называемых артифициальных стабильных функциональных связей, применение воздействий, аналогичных собственным защитным механизмам мозга, предложение новых стереотаксических мишеней. Эти методы дают известные основания думать и о возможных новых перспективах в лечении психических болезней.
Исследование мозгового обеспечения психических функций уже сегодня и, безусловно, завтра – это не только прямой инструментальный контакт с мозгом, но и контакт с ним новых биологически активных веществ. Речь идет в данном случае прежде всего о нейропептидах и их возможной роли в физиологии психических явлений. Сближение представлений о нервных и гуморальных влияниях, наметившееся в конце 20-х годов работами Шарера (Scharer, 1928), показавшего секреторную активность гипоталамуса, сейчас является одной из наиболее горячих точек науки. Нейроэндокринология и ее производные научные ветви по праву выходят на передовые позиции не только в понимании механизмов мозга, но и в воздействии на них. Как видно из обзоров проблемы, представленных И. П. Ашмариным (1984), Р. Гюлемином (Guillemm, 1982), Д. Кригером (Krieger, 1983) и другими авторами, быстро накапливаются сведения о том, что гипоталамические гормоны могут влиять на поведение прямо, независимо от их гипофизотропного эффекта, причем такая же двойная роль показана в отношении некоторых пептидных гормонов гипофизарного и периферического происхождения. Пептиды, являющиеся нейрорегуляторами, модуляторами деятельности нервной системы, объединяются в класс нейропептидов. Их находят в синаптосомальных фракциях, они обнаруживаются в области рецепторов. Нейропептиды вовлечены в реализацию различных поведенческих процессов. Некоторые пептиды прямо и избирательно влияют на пищевое и сексуальное поведение. Другие нейропептиды действуют опосредованно, через базисные процессы, определяющие возможность реализации и характер протекания поведенческих реакций. Они влияют на способность воспринимать раздражители внешней среды, различные стороны памяти (консолидацию, удержание в памяти, считывание).
Нейрогормоны—нейропептиды—нейромедиаторы все более используются при изучении физиологии поведения. Эта цепочка может лечь в основу и нового этапа психофизиологии и прежде всего в изучение памяти, внимания и эмоций. Сегодня уже неправомерно рассматривать в общем виде и реализацию условных рефлексов без привлечения сведений о влиянии на эти процессы нейропептидов.
Уже получены результаты о возможности переноса устойчивого патологического состояния от пораженного животного к интактному, от человека – к животному (Вартанян, Балабанов, 1978). В процессе изучения механизмов памяти было получено много интересных фактов, причем некоторые из них опровергались последующими. Они связаны с именами Мак-Коннела (McConnell et al., 1959), Хидена (Hyden, 1959), Унгара (Ungar et al., 1972; Ungar, 1977), И. П. Ашмарина (1975, 1976), Ю. С. Бородкина (1976). Как известно, Унгар (Ungar et al., 1972) показал возможность переноса от одного животного к другому боязни темноты или, точнее, предрасположенности к ней. Он назвал вещество, обусловливающее это состояние, скотофобином, но не смог убедить многих коллег и в возможности переноса чувства боязни темноты, и в существовании скотофобина.
Применив новый методический подход, Г. А. Вартанян (см.: Вартанян, Пирогов, 1987) вновь показал возможность переноса состояния, переноса памяти о болезни предположительно с помощью видонеспецифических пептидов. Эти и другие работы привели к созданию представлений о химической асимметрии мозга. Интересно, что на этом новом витке спирали в развитии физиологии психического новую жизнь обретают слова И. М. Сеченова о возможности изучения психических процессов в эксперименте на животных. Молекулярно-биологический уровень или фаза – это возможность экспериментально-клинического развития физиологии мозга человека.
Развитие биохимии нервной системы увеличит возможности не только изучения какого-то конкретного процесса, но и обогатит знания о механизмах мозга в целом. Открывающиеся в перспективе возможности полного непрерывного физиологобиохимического исследования механизмов мозга неизбежно поставят перед нейрофизиологией новые вопросы и укажут новые пути решения многих ее нерешенных вопросов. Если сегодняшний уровень нейрофизиологии в значительной мере связан с хирургическими и фармакологическими доступами к мозгу, спектром методических подходов и возможностями технических решений, то завтрашний – это все более прочный контакт с биохимией и молекулярной биологией, естественно, при сохранении в силе всего достигнутого и достигаемого сегодня.
Эти перспективы вполне реальны, прежде всего, на основе так называемой неинвазивной техники, нередко противопоставляемой инвазивной (Ingvar, 1983). Ядерно-магниторезонансная и позитронно-эмиссионная томографии позволяют, особенно при их техническом совершенствовании, получать сведения о биохимических перестройках в мозгу в покое, при изменении физиологических состояний, при реализации различных видов деятельности, и в том числе деятельности мыслительной, и процессов памяти. Позитронно-эмиссионная томография, дающая, казалось бы, выигрыш в величине спектра исследуемой мозговой биохимической динамики, уступает ядерно-магниторезонансной томографии – и безусловно – инвазивной технике (и прежде всего – вживленным электродам) в отношении пространственного разрешения. Внедрение в клиническую практику и в возможности дальнейшего изучения мозга функциональной томографии открывает огромные дальнейшие возможности изучения живого мозга человека. Результаты этого этапа развития науки трудно переоценить. Однако следует подчеркнуть, что наиболее полноценные знания о механизмах мозга человека могут быть получены при интеграции физиологических и биохимических данных, результатов, достигнутых при использовании неинвазивных и инвазивных приемов.
Литература
Адрианов О. С. О роли различных систем мозга в организации церебральных функций // Проекционные и ассоциативные системы мозга. М.: Изд-во Ин-та мозга АМН СССР, 1977. С. 4–10.
Адрианов О. С. Структурные предпосылки функциональной межполушарной асимметрии мозга // Физиология человека. 1979. Т. 5. № 3. С. 510– 515.
Аладжалова П. А. Медленные электрические процессы в головном мозге. М.: Изд-во АН СССР, 1962. 240 с.
Альтман Я. А. Локализация звука. Нейрофизиологические механизмы. Л.: Наука, 1972.
Альтман Я. А. Некоторые аспекты использования сенсорной информации интегративными структурами мозга // Физиология человека. 1984. Т. 10. № 5. С. 753.
Альтман Я. А., Розенблюм А. С., Львова В. Г. Восприятие движущегося субъективного звукового образа больными с поражениями височных областей мозга // Физиология человека. 1979. Т. 5. № 1. С. 55–62.
Анисимов В. Е. Основы медицинской кибернетики. Воронеж: Изд-во Воронеж. ун-та, 1978.
Аничков А. Д. Стереотаксический аппарат для введения долгосрочных множественных внутримозговых электродов // Физиология человека. 1977. Т. 3. № 2. С. 372–375.
Аничков А. Д. А. с. 745515 (СССР). Стереотаксический аппарат НИИ экспериментальной медицины АМН СССР // Б. И. 1980. № 25. МКИ А61б. 19/00. Патент США № 4228799 от
21.10.80.
Аничков А. Д., Аннарауд Д. К., Ефименкова Н. А., Полонский Ю. 3., Усов В. В. Программное обеспечение стереотаксических операций // Кибернетический подход к биологическим системам. М.; Л., 1976. С. 47–53.
Аничков А. Д., Беляев В. В., Усов B. В. Конструкция множественных электродов и система их введения в головной мозг человека // Физиология человека. 1978. Т. 4. № 2. C. 371–374.
Аничков А. Д., Полонский Ю. 3. Определение пространственного положения основных внутримозговых ориентиров в стереотаксических операциях на головном мозге // Физиология человека. 1977. Т. 3. № 2. С. 379– 381.
Аничков А. Д., Полонский Ю. 3., Камбарова Д. К. Стереотаксическое наведение. Л.: Наука, 1985.
Аничков А. Д., Полонский Ю. 3., Усов В. В. А. с. 745505 (СССР). Способ наведения стереотаксического инструмента на целевую точку //Б. И. 1980. № 25. МКИ А616. 6/00. Патент США № 4230117 от 28.10.80.
Аничков С. В. Избирательное действие медиаторных средств. Л.: Медицина, 1974.
Аннарауд Д. К., Усов В. В. Алгоритмы стереотаксического ЭВМ атласа головного мозга // Физиология человека. 1976. Т. 2. № 3. С. 507–516.
Анохин П. К. Биология и нейрофизиология условного рефлекса. М.: Медицина, 1968.
Асратян Э. А. Очерки по высшей нервной деятельности. Ереван: Изд-во АН АрмССР, 1977.
Ашмарин И. П. Загадки и откровения биохимии памяти. Л.: Изд-во ЛГУ, 1975.
Ашмарин И. П. Перспективы практического применения и некоторые фундаментальные исследования малых регуляторных пептидов // Вопр. мед. химии. 1984. Т. 30. № 3. С. 2–7.
Ашмарин И. П., Гончарова В. П., Антипенко А. Е. Вероятные механизмы взаимного узнавания нейронов // Механизмы модуляции памяти. Л.: Наука, 1976. С. 136–143.
Балонов Л. Я., Бару А. В., Деглин В. Л. Идентификация синтезированных гласноподобных стимулов в условиях преходящей инактивации доминантного и недоминантного полушарий // Физиология человека. 1975. Т. I. № 3. С. 395–404.
Беляев В. В., Иванников 10. Г., Орлова А. И., Усов В. В. Применение ЭВМ при стереотаксических операциях на человеке // Кибернетика в клинической медицине. Л., 1964. С. 57–60.
Беляев В. В., Иванников Ю. Г., Усов В. В. Метод расчета стереотаксических координат в произвольной системе путем преобразования координат на электронной вычислительной машине // Вопр. нейрохир. 1965. № 4. С. 58–61.
Беляев В. В., Иванников Ю. Г., Усов В. В. Использование электронных вычислительных машин для расчета координат глубинных образований головного мозга при стереотаксических операциях на человеке // Вычислительная техника в физиологии и медицине. М.: Наука, 1968. С. 163–172.
Бериташвили И. С. Структура и функция коры большого мозга. М.: Наука, 1969.
Беритов И. С. О физиологическом значении нервных элементов коры большого мозга // Арх. анат., гистол. ж. эмбриол. 1960. Т. 39. № 8. С. 3–38.
Бернштейн И. А. О построении движений. М.: Медгиз, 1947.
(Бехтерев В. М.) Von Demonstrate ones Gehirns mit Zerstorung der vorden und inneren Theile der Hirnrinde beider Schlafenlappen // Neurol. Zbl. 1900. Bd 19. S. 990–991.
Бехтерева Н. П. Биопотенциалы больших полушарий головного мозга при супратенториальных опухолях. Л.: Медгиз, 1960.
Бехтерева Н. П. Динамика биоэлектрической активности в процессе темповой адаптации и при засыпании у больных с очаговыми заболеваниями головного мозга // Вопр. нейрохир. 1962. № 3. С. 1–6.
Бехтерева Н. П. Принципы и пути нейрофизиологического анализа подкорковых образований головного мозга человека // Современные проблемы физиологии и патологии нервной системы. Л., 1965. С. 274–291.
Бехтерева Н. П. Некоторые принципиальные вопросы изучения нейрофизиологических основ психических явлений человека // Глубокие структуры головного мозга человека в норме и патологии. М.; Л.: Наука, 1966. С. 18–21.
Бехтерева Н. П. Нейрофизиологические аспекты психической деятельности человека. Л.: Медицина, 1971.
Бехтерева Н. П. Нейрофизиологические аспекты психической деятельности человека. 2-е изд., перераб. и доп. Л.: Медицина, 1974.
Бехтерева Н. П. Предисловие // Смирнов В. М. Стереотаксическая неврология. Л.: Медицина, 1976а. С. 3–6.
Бехтерева Н. П. Роль индивидуально приобретенной памяти в механизмах нормальных и патологических реакций // Механизмы модуляции памяти. Л.: Наука, 1976б. С. 7–14.
Бехтерева Н. П. Биоэлектрическое выражение активации долгосрочной памяти и возможные механизмы этого процесса // Физиология человека. 1977. Т. 3. № 5. С. 763–773.
(Бехтерева Н. П.) Bechtereva N. Р. The neurophysiological aspects of human mental activity. Second edition. New York; Oxford: Univ. Press, 1978.
Бехтерева Н. П. Биоэлектрические корреляты защитных механизмов мозга // Журн. невропатол. и психиатр. 1980а. Т. 30. № 8. С. 1127–1133.
Бехтерева Н. П. Здоровый и больной мозг человека. Л.: Наука, 1980б.
Бехтерева Н. П., Бондарчук А. Н. Об оптимизации этапов хирургического лечения гиперкинезов // Вопр. нейрохир. 1968. № 3. С. 39–44.
Бехтерева Н. П., Бондарчук А. Н., Зонтов В. В. Болезнь Рейно (клиника, нейрофизиологические механизмы). Л.: Медгиз, 1965.
Бехтерева Н. П., Бондарчук А. Н., Смирнов В. М., Мелючева Л. А.Лечебные электростимуляции глубоких структур головного мозга // Вопр. нейрохир. 1972. № 1. С. 7–12.
(Бехтерева Н. П., Бондарчук А. Н., Смирнов В. М., Мелючева Л. А., Шандурина А. И.) Bechtereva N. Р., Вопdartchuk A. N., Smirnov V. М., Меlulcheva L. A., Shandurina A. N. Method of electrostimulation of the deep brain structures in treatment of some chronic disease // Conf. Neurol. 1975a. Vol. 37. P. 136–140.
Бехтерева Н. П., Бондарчук А. Н., Смирнов В. М., Трохачев А. И. Физиология и патофизиология глубоких структур мозга человека. М.; Л.: Медицина, 1967а.
Бехтерева Н. П., Бундзен П. В. Принципы организации нервного кода вербальной мнестической функции // Память и следовые процессы: Тезисы докладов III Всесоюзной конференции. Пущино, 1974а. С. 253–255.
Бехтерева Н. П., Бундзен П. В. Нейрофизиологическая организация психической деятельности // Нейрофизиологические механизмы психической деятельности человека. Л.: Наука, 1973б. С. 42–60.
(Бехтерева Н. П., Бундзен П. В.) Bechtereva N. P., Bundzen P. V. Neurophysiological mechanisms and code of higher brain function // Speech Communication Seminar. Stockholm, 1974в. Vol. 1–3.
P. 311–320.
Бехтерева Н. П., Бундзен П. В., Гоголицын Ю. Л. Мозговые коды психической деятельности. Л.: Наука, 1977а.
Бехтерева Н. П., Бундзен П. В., Гоголицын Ю. Л., Кяплуновский А. С, Малышев В. И. Принципы организации нервного кода индивидуально-психической деятельности // Физиология человека. 19756. Т. 1. № 1. С. 55–58.
Бехтерева Н. П., Бундзен П. В., Кайдел В. Д., Давид Э. Э. Принципы организации структуры пространственно-временного код краткосрочной вербальной памяти // Физиол. журн. СССР. 1973. Т. 59. С. 1785–1802.
Бехтерева Н. П., Бундзен П. В., Матвеев Ю. К., Каплуновский А. С. Функциональная реорганизация активности нейронных популяций мозга человека при кратковременной памяти // Физиол. журн. СССР. 1971. Т. 57. № 12. С. 1745–1761.
(Бехтерева Н. П., Бундзен П. В., Медведев С. В.) Bechtereva N. Р., Bundzen P. V., Medvedev S. V. Coding in the central nervous system // Proc. of the 28 Intern. Congr. of Physiol. Sci. Budapest, 1980. Vol. 14.
P. 10–11.
(Бехтерева Н. П., Гоголицын Ю. Л., Илюхина В. А., Пахомов С. В.) Bechtereva N. P., Gogolitsin Yu. L., Ilukhina V. A., Pakhomov S.
V. Dynamic neurophysiological correlates of mental processes // Intern.
J. Psychophysiol. 1983. Vol. 1. P. 49–63.