Здоровый и больной мозг человека Бехтерева Наталья

– В основном из воды. Но в том числе и из клеток.

– Возможно ли такое, как в фантастических рассказах: в мозг вживляются чипы и даже компьютеры, и возможно ли записывать информацию в мозг?

– Это трудная история. Когда мы начали работать с вживленными электродами, в мире было к этому очень полярное отношение. В том числе говорилось, что все это очень страшно. Тогда думали, что можно вводить информацию в мозг. Но, пока не расшифрован код мысли, пока мы точно не знаем, как формируется конкретная мысль, ввести такую штуку можно, только она ничего существенного не даст, потому что нет языка, на котором этот чип будет общаться с мозгом.

– Наталья Петровна, ведь можно пойти не цифровым путем, а аналоговым. Взять сигнал одного мозга, желающего что-то, и записать его в другой мозг. Будет ли мозг реагировать на такой сигнал?

– Мы взяли сигнал из одного мозга. О чем мы взяли сигнал, совершенно непонятно. Например, мы взяли сигнал из того места, которое отвечает за творческую деятельность. Но вы не можете взять сигнал, рассказывающий непосредственно о конкретной деятельности. То есть вы эту конкретную деятельность пока не расшифровали. Вы не можете ее изъять оттуда. Вы можете только электрической стимуляцией активировать участок мозга. Делается вот что. Берется энцефалограмма и в соответствии с собственными ритмами и ритмами другого человека вводится электрическая стимуляция. Здесь можно изменить настрой человека, но это без того, чтобы этот человек понял, что именно другой человек думает.

– Как мозг развивается и какие преграды есть для развития способностей мозга человека?

– Если вы ничего особенного не будете делать с ребенком, но если он живет в человеческой среде, то мозг будет развиваться. Если же вы будете специально развивать ребенка, мозг будет развиваться лучше. Можно ли сделать человека гениальным? Можно обеспечить человека очень большим запасом знаний, сделать очень эрудированным, а гениальным – нет. Гениальным надо родиться. Это, с моей точки зрения, особая генетика и особое развитие. Очень быстрое. Были случаи, когда дети были вне человеческого общества, и, я должна с грустью сказать, в нечеловеческих условиях. Такое бывает чаще, чем случаи, как с Маугли. Через какой-то период времени, к какому-то возрасту человек не может стать человеком. Получается так, что уже речь невозможна. После какого возраста человек не может стать человеком? Называют двенадцать лет и более ранние сроки. Ну, вероятно, кому как повезет. И еще зависит от того, каков был этот период. Обычно, если человек живет в нечеловеческих условиях, в первую очередь его очень плохо кормят. И если не дают ему определенное количество белков, то мозг может очень пострадать.

– Что такое сновидение? Правда ли что сновидение видится в последнюю фазу перед тем, как проснуться? Вредно ли во сне осознание, что это сон?

– Я просто не знаю, вредно ли осознание, что это сон. Я знаю, что бывает такая штука. Очень хочется проснуться. И очень трудно проснуться от кошмара. Просто если сон сам по себе очень неприятный, конечно, это неприятно. И важно попытаться понять почему. Иногда неприятный сон – это отражение непорядка во внутренних органах. А правда ли что это в последние секунды? Ну, что значит – в последние секунды? У сна есть цикл. И в определенные фазы цикла считается, что бывает больше сновидений или вообще не бывает (так называемый быстрый сон).

– Правда ли, что мозг работает по принципу «есть сигнал – нет сигнала»?

– Смотря, в каком смысле. Бывает так, что человек лежит в полной тишине, лишенный всякого рода раздражителей, и все-таки думает.

– Почему болит голова?

– Это серьезный вопрос. Дело в том, что головная боль – это очень неприятная штука и с ней очень трудно бороться. Голова болит чаще всего не от того, что переутомлен мозг, а от неудобной позы, от того, что сосуды не в очень хорошем порядке. Надо искать каждый раз отдельную причину. Есть такие головные боли, с которыми практически почти не справиться. Вернее, сейчас есть препараты, которые подавляют эти головные боли и не подавляют умственные способности, но они довольно-таки ядовиты, много принимать нельзя.

– Как легче сосредоточиться? Как можно судить о мозге по виду, без воздействия на него?

– А как вы предполагаете судить о мозге по виду? А вот как можно сосредоточиться – все-таки лучше не очень переутомляться перед тем, когда вам надо сосредоточиться. Сосредоточение – это довольно большая работа. Спокойное бодрствование – это очень большая работа передних отделов мозга. Так что лучше сосредоточиться после небольшого отдыха.

– Зависит ли любовь от мозга?

– Еще как зависит. Любовь, с точки зрения мозга, – это что-то похожее на невроз, что-то имеющее и анатомическую, и биохимическую основу. А отсюда вполне существовали и могут существовать приворотные и отворотные зелья. Это химия.

– Как вы относитесь к гипотезе об основополагающем значении развития мозга в младенчестве для умственных способностей человека?

– Об этом я уже говорила, что в младенчестве лучше развивать мозг, чем пускать это дело на самотек. Правда, делать это надо в зависимости от состояния ребенка. Хорошо чередовать физическую нагрузку и умственную. Надо научить мозг быстро переключаться.

Тут надо сказать две вещи, про которые забыли. Сейчас папы и мамы, как правило, не мучают гостей стихами своих детей. Раньше бывало так. Стоило гостям собраться, как родители говорят: «Вы знаете, наш ребенок выучил новый стишок. Послушайте его». И выходил ребенок. Иногда путался, иногда не путался. Гости аплодировали, а уже потом бежали к столу. Потом это как-то ушло. И ушло совсем. И ребенка не стали учить стихам, и, в общем, повредили ему память. Это тренировка самого тонкого механизма памяти – считывания. Этот вид памяти тренируется при заучивании не только стихов. Вот второе, что, в общем, ушло совсем. Сейчас из школ почти изгоняют математику. Вот уж пострадает тогда мозг как следует! Потому что, несмотря на то что есть счеты, компьютеры, калькуляторы, нужно, чтобы мозг сам тоже тренировался. Нужно, чтобы человек умел считать в уме, чтобы много запоминал. Между прочим, мозг любит работать в легком режиме. Бывает, ставят диагноз энцефалопатия. С ребенком что-то происходит, а вот что – не ясно. Звучит довольно страшно. Поэтому с каждым ребенком надо разбираться, искать ему специалистов. Вообще, родители очень ответственны за своих детей: и за то, как они их воспитывают, и как их лечат. Главное – не перелечить.

– Что такое амнезия? Чем это можно объяснить?

– Амнезия – это потеря памяти. Она бывает разная. Дело в том, что сейчас по телевидению описаны случаи, что ходят люди по нашей земле и ничего о себе не помнят. Можно ли такую штуку вызвать? Думаю, что какой-то химией можно. Вообще говоря, некоторые алкоголики допивались до того, что у них полностью страдал какой-нибудь вид памяти. И ответственны за это были особые образования в мозгу.

В связи с этим вопросом Ж. И. Алферов рассказал такую историю:

Известный украинский физик и академик Браудэ довольно-таки недавно получил не очень сильный инсульт, и с течением времени двигательные функции у него восстановились практически полностью. Но осталась невосстановленной речь, она была очень сильно заторможена. Потом, спустя какое-то время, он попал в автомобильную катастрофу и получил сильное сотрясение мозга. К нему полностью вернулась нормальная человеческая речь, и благодаря вот этой катастрофе он полностью оправился от тяжелого инсульта.

– Жорес Иванович, я вас очень люблю и очень ценю, но должна сказать, что это не способ лечения. Вы знаете, примерно такое же воздействие оказывает электрошок мозга. Электрошоком лечат шизофрению. Правда, не всегда успешно. Но на самом деле это страшная штука. А вылечился академик Браудэ вот почему. Бывает, даже ребенок очень долго не может начать говорить, не говоря уже о людях с травмированным мозгом. При травме бывает, что речевые центры не повреждаются, но они по той или иной причине не функционирует. При этом люди могут заговорить и вот воспользуются случаем, заговорят в такой экстремальной ситуации.

Детектор ошибок.

История, настоящее, перспективы

Лекция, прочитанная на 12-м конгрессе

Международной организации по психофизиологии. Салоники, 2004 г.

Н. П. Бехтерева, Н. В. Шемякина, М. Г. Старченко, С. Г. Данько, С. В. Медведев

Конец ХХ и начало XXI века без какого бы то ни было преувеличения могут быть охарактеризованы как «золотой период», и прежде всего – в плане изучения структурно-функциональной организации мозга. В этой, несомненно, важнейшей задаче в познании мозга и мозга человека в частности к настоящему времени получено множество принципиально новых сведений. На современном методическом уровне, созданном новыми технологиями и модернизацией так называемых старых, строятся все более близкие к реальности представления об организации мозга, и могут быть заново осмыслены сейчас почти «древние» теории локализационизма и холизма.

Однако действительное понимание того, как работает мозг, прежде всего – мозг человека, невозможно без проникновения в собственно механизмы мозга, в механизмы того, как мозг использует это свое огромное структурно-функциональное богатство. В открытии общих механизмов мозга, несомненно, центральная роль принадлежит таким корифеям прошлого, как И. М. Сеченов, И. П. Павлов, В. М. Бехтерев. Здесь имеются в виду ставшие уже классическими приложения рефлекторной теории к работе мозга и создание представлений об условных рефлексах, об анатомо-физиологической сущности сочетательных рефлексов.

Современные представления об общих механизмах работы мозга невозможно представить себе и без открытий активирующих систем (Moruzzi, Magoun, 1949). Многочисленные исследования вопроса внесли ряд корректив в первоначальные построения, однако основная идея этого важного мозгового механизма полностью прошла проверку временем. Представления об осуществлении деятельности мозга на основе меченых линий (Е. Н. Соколов, 1979), способствующие пониманию реализации целого ряда функций у низших животных и относительно простых функций у высших, были дополнены в плане понимания механизма осуществления высших функций концепцией о мозговой структурно-функциональной системе с жесткими и гибкими звеньями. Эта концепция создала новый подход для понимания базовых механизмов высших психических функций. Были также выдвинуты и подтверждены представления о защитных механизмах мозга и ряд других, открывающих возможности понимания механизмов не только здорового, но и больного мозга (Бехтерева, 1966, 1980).

Однако то, что мы сегодня знаем о механизмах мозга, все еще несопоставимо с огромным массивом данных о его структурнофункциональной организации. В связи с этим в понимании механизмов реализации деятельности здорового и больного мозга следует подчеркнуть важность изучения явления (феномена) детекции ошибок, открытого нами в 1968 году (N. P. Bechtereva, V. B. Gretchin, 1968) и являющегося сейчас предметом огромного числа работ.

История вопроса

В конце 1960-х годов в клинико-физиологических исследованиях у тех больных, которым по лечебно-диагностическим необходимостям вживляли долгосрочные электроды, многоплановый контроль за безопасностью пациентов обеспечивался регистрацией всех возможных физиологических показателей жизнедеятельности мозга в покое и при проведении различных, в том числе психологических, проб. Именно в этих исследованиях и было обнаружено, что физиологическая активность мозга в одних различных его зонах могла практически не изменяться или меняться невоспроизводимо (недостоверно), в других – меняться воспроизводимо, причем независимо от качества реализации психологического теста, в третьих – меняться также воспроизводимо, но различно избирательно, в зависимости от того, правильно или ошибочно выполнен психологический тест. Кроме того, было показано (Bechtereva, Grechin, 1968), что в нескольких зонах мозга физиологическая активность менялась воспроизводимо только при ошибочных выполнениях тестов (рис. 1, 2).

Феномен был описан нами в 1968 году, а «внутрилабораторное» название его «детектор ошибок» было введено нами в научную литературу в 1971 году (Н. П. Бехтерева, 1971, 1974, 1978).

Рис. 1. Различная воспроизводимая динамика наличного кислорода во время правильного (нижняя кривая) и неправильного (верхняя кривая) выполнения психологического задания.

I – выполнение задания; II – удерживание в памяти; III – ответ

Рис. 2. Динамика наличного кислорода во время правильного и неправильного выполнения заданий. А – воспроизводимые изменения наличного кислорода во время правильного выполнения тестовых заданий и отсутствие воспроизводимых изменений во время ошибочного выполнения. В – отсутствие воспроизводимых изменений наличного кислорода во время правильного выполнения заданий и наличие воспроизводимых изменений во время ошибочного выполнения заданий: I– выполнение задания; II—удержание в памяти; III – ответ

Этим термином мы обозначили нейронные популяции, избирательно или исключительно реагирующие на ошибочное выполнение психологического теста. Реакция такого рода была обозначена нами как детекция ошибок, а сам феномен – как отражение активности детектора ошибок. Детекция ошибок была зарегистрирована на основе воспроизводимых перестроек динамики наличного кислорода (напряжения кислорода) и позднее импульсной активности нейронных популяций в подкорковых структурах (n. caudatus, globus pallidus, c. medianum th, n. ventrolateralis th), а затем и в коре (Поле Бродманна 1–4, 7, 40).

Пациенты не всегда осознавали ошибочность ответа. Достаточно тонкий физиологический показатель – динамика импульсной активности нейронных популяций, которую мы начали исследовать позднее, – позволил нам наблюдать воспроизводимые изменения частоты разрядов в различные фазы ошибочного выполнения пробы.

Существенная разница динамики импульсной активности нейронов на предъявление различных, и в том числе намеренно искаженных, вербальных проб была зарегистрирована в области ВА 46/10 (Abdullaev, Bechtereva, 1993), хотя именно в этом случае можно было думать и об отражении в наблюдаемой реакции значения семантической составляющей проб.

В соответствии с полученными нами данными хочу отметить возможные перспективы развития новых работ, в частности, Ojemann (2003), Ojemann и коллег (2004). Эти авторы получили «элегантные» результаты при прямой регистрации нейронной активности у пациентов с височной эпилепсией во время операции. Были зарегистрированы различные реакции, отражающие правильное и неправильное выполнение психологического задания.

На основе множественности обнаружения таких зон в мозгу нами было высказано предположение о системном характере процесса, о существовании мозговой системы детекции ошибок. Общие изменения биоэлектрической активности мозга, развивающиеся соотносимо по времени с детекцией ошибок, легли в основу предположения, и в дальнейшем – концепции о возможной связи детекции ошибок с процессами оптимизации функционального состояния мозга (Bechtereva, Gretchin, 1968; Bechtereva, 1978, 1984, 1987, 1988, 1997; Bechtereva, Kropotov, 1986; Bechtereva et al., 1990, 1991, 2004).

Некоторые из этих работ опубликованы сравнительно недавно, однако методологически приведенные выше находки относятся к фазе первого прорыва ХХ века в изучении мозга человека (Н. П. Бехтерева, 1997). Как известно, эта фаза определялась возможностями лечебно-диагностического, прямого, точечного контакта с мозгом человека, возможностями получения многих точных сведений о различных состояниях и свойствах отдельных зон мозга.

Настоящее

Технологическая революция 80–90-х годов ХХ века, развивающаяся и сейчас, определила второй прорыв в возможностях изучения мозга, получение сведений уже о структурнофункциональной организации всего мозга.

Новые технологии, как и модернизация уже существующих, вносят свой вклад в исследование мозговых механизмов, в частности, мозгового механизма детекции ошибок. В последние декады ХХ и первые годы ХХI века феномен детекции ошибок стал одной из центральных тем для изучения в науке о мозге.

Исследования феномена детекции ошибок в последние годы наиболее интенсивно проводятся в США (Badgaiyan, Posner, 1998; Scheffers et al., 1996; Carter et al., 1999; Hajcak, Simons, 2002; Gehring et al., 1993; Gehring and Knight, 2000; Mathalon et al., 2003 и многие другие) и Германии (Falkenstein et al., 1997, 2001а, б; Johannes et al., 2001; Muller et al., 2003; Ullsperger, Von Cramon, 2001, и многие другие). Пока еще отдельные работы проведены в лабораториях Англии (Rubia et al., 2003), Ирландии (Garavan et al., 2002, 2003), Японии (Hiroaki Masaki et al., 2001), Канаде (Alain et al., 2000), Франции (Vidal et al., 2000).

Методически характерным для этих исследований является проведение их исключительно с помощью методики вызванных потенциалов (ВП).

Массивность и прицельность работ по изучению детектора ошибок с помощью метода вызванных потенциалов, в том числе и в сочетании с магниторезонансной томографией, принесла много важнейших сведений о пространственной и временной организации детектора ошибок. Современная техника (имеется в виду метод построения диполей) позволила говорить о наибольшем постоянстве реакции детекции ошибок в передних отделах цингулярной извилины (АСС), а по некоторым данным – и в задних отделах цингулярной извилины.

Большое количество работ, проведенных в сходных, а зачастую и идентичных условиях, обнаружило много общего, особенно в отношении существования самого феномена, но все же не привело к полной однозначности результатов, а использование разных психологических методик, естественно, усугубило их разнообразие (табл. 1, 2).

По тому количеству накапливаемой информации, которое происходит в указанной проблеме, «взрыв» интереса к явлению детекции ошибок едва ли можно переоценить. Он принес чрезвычайно ценные и важные данные для выяснения пространственных и временных проявлений феномена.

Таблица 1

Примеры зон, связанных с реакциями на выполнение ошибочных действий

Таблица 2

Примеры латентностей реакций на ошибки

В некоторых работах показана возможность вовлечения зон передней поясной извилины (ACC) в детекцию ошибок (феномены ERN – error related negativity, Ne – error negativity, Pe – error positivity), но также и в процессы правильного выполнения заданий (CRN – correct related negativity), как описано у Ullsperger and von Cramon (2001).

Процитированные выше исследования делают акцент на связи детекции ошибок с зонами передней поясной извилины. При этом другие зоны мозга обычно упоминаются, но без обсуждения их роли для феномена детекции ошибок, вероятно, поэтому и не подчеркивается системная природа механизма детекции ошибок в мозгу.

В использованной нами литературе мы не обнаружили данных о прямой регистрации электрической активности от зон поясной извилины в ситуации детекции ошибок.

В связи с клинической целесообразностью в Институте мозга человека РАН проводился сравнительный анализ средних амплитуд целостной ЭКоГ непосредственно с передних областей цингулярной извилины (АСС) справа и слева, а также с внутренней капсулы у больной Б. с болезнью Жиль де ла Туретта. С целью воздействовать на такие проявления болезни, как тики, гиперкинезы, спонтанные вокализации, больной ввели долгосрочные электроды (нейрохирург А. И. Холявин, стереотаксическое наведение – А. Д. Аничков) в передние области цингулярных извилин и внутреннюю капсулу. Для этой больной нами был сделан анализ параметров ЭкоГ в ответ на правильное и неправильное слуховое предъявление известных пословиц и поговорок (пословицы предварительно были записаны на диктофон). Целесообразность проведения данной когнитивной пробы была связана с оценкой состояния пациента, того, как электрические стимуляции указанных структур влияют на когнитивную деятельность, какова чувствительность указанных структур к стимуляции и каково влияние точечных лизисов. Исследование проводилось следующим образом. Пациент получал инструкцию: внимательно прослушать пословицу или поговорку и после (не раньше!) специального звукового сигнала дать ответ «Да» (если пословица была прочитана правильно) или «Нет» (если пословица была прочитана неправильно и содержала смысловую ошибку).

В одной серии предъявлялось 30 пословиц, 15 из которых содержали ошибки, а 15 произносились без ошибок. Одновременно производилась запись непрерывной ЭкоГ. Анализу подвергались отрезки времени от начала предъявления пословицы до звукового сигнала.

Как уже упоминалось, регистрация ЭКоГ осуществлялась от электродов, расположенных в области цингулярных извилин и внутренней капсулы (для цингулярной извилины ПБ 24 слева и справа – определяли по атласу Талейрака). Были обнаружены различия реакций ЭКоГ на правильное и неправильное слуховое предъявление общеизвестных пословиц в указанных зонах (табл. 3).

Результаты приведены без разбиения ЭкоГ на диапазоны, эквивалентные диапазонам ЭЭГ. Сравнение средних амплитуд ЭкоГ для анализируемых структур производилось с помощью Wilсохon matched paires est (при p<0,05).

Как видно из таблицы, до стимуляции зон цингулярной извилины средняя амплитуда ЭКоГ на правильное предъявление общеизвестных пословиц была меньше в зонах левой поясной извилины, зонах левой и правой внутренней капсулы. В зонах правой цингулярной извилины средние амплитуды на правильное и неправильное слуховое предъявление общеизвестных пословиц достоверно не отличались. После стимуляции зон левой цингулярной извилины принципиальных различий с тем, что наблюдалось до электрической стимуляции, не возникло (см. табл. 3).

Таблица 3

Результаты сравнения средних амплитуд целостной ЭКоГ при опознавании правильного и неправильного звучания общеизвестных пословиц

После электрической стимуляции зон правой цингулярной извилины в зонах левой цингулярной извилины и внутренней капсулы, а также правой внутренней капсулы значения средних амплитуд на правильное предъявление общеизвестных пословиц стали достоверно больше, чем на неправильное предъявление пословиц (знак эффекта поменялся на противоположный). В самой же правой цингулярной извилине различия остались статистически недостоверными (рис. 3).

Таким образом, прямая регистрация активности цингулярной извилины подтвердила наличие избирательной реакции на ошибочное выполнение пробы, то есть четкое наличие феномена детекции ошибок в данной зоне. Более того, данные, связанные с электрической стимуляцией, продемонстрировали и возможность функциональных перестроек, таких как подавление детекции ошибок, выявленное после точечной стимуляции передних отделов правой цингулярной извилины.

Рис. 3. Обозначение зон поясной извилины, в которых наблюдались различия в мощности ЭкоГ во время правильного и неправильного звучания общеизвестных пословиц и поговорок (до и после лечебных электрических стимуляций)

В продолжение наших ранних исследований детекции ошибок в Институте мозга человека развиваются прикладные и фундаментальные исследования вопроса. К практическому применению сведений о данном мозговом механизме позволили перейти уточненные данные о преимущественной локализации в мозгу зон детекции ошибок и представления о возможности функционального преобразования гиперактивного детектора ошибок в детерминатор ошибок, независимо от ситуации, сигнализирующей об ошибке (Медведев и др., 2003). В Институте выполнено более 350 стереотаксических операций двусторонней цингулотомии с помощью точечной криодеструкции (нейрохирург С. В. Можаев, стереотаксическое наведение А. Д. Аничков) у больных с обсессивно-компульсивным синдромом при наркоманиях. Положительный эффект наблюдался более чем в 60 %. Отсутствие психических дефектов после операций в этом случае косвенно свидетельствует в пользу выдвинутого нами ранее принципа системной мозговой организации детекции ошибок.

В последние годы результаты применения точечного разрушения передних отделов цингулярной извилины, осуществляющиеся на основе концепции о роли гиперактивности детектора ошибок в патофизиологии обсцессивно-компульсивного синдрома и некоторых других психических заболеваний, были опубликованы Devinsky и сотр. (1995), Swick and Turken (2002)., Ulsperger et al., 2002; Laurens и сотр. (2003), Ursu и сотр. (2003), Muller и сотр. (2003).

Надо сказать, что, несмотря на известную «сфокусированность» работ по исследованию детекции ошибок на электрофизиологическом выражении феномена и акцентированию его приоритетной пространственной привязанности к АСС, в подавляющем большинстве работ подчеркивается важнейшее значение данного мозгового механизма в реализации поведения (Garavan и сотр., 2002; Kerns и сотр., 2004).

Условия обнаружения детекции ошибок в наших и других исследованиях свидетельствовали о том, что функциональной сущностью детекции ошибок является рассогласование с возможным планом действий, релевантной матрицей памяти. В этой трактовке феномен детекции ошибок теснейшим образом сближается с феноменом рассогласования (так называемым «Mismatch Negativity» феноменом), описанным и подробно изученным в лаборатории R. Naatannen (см.: Naatanen, 2003).

Возможности и перспективы

Дальнейшая расшифровка физиологической сущности и роли механизма детекции ошибок в мозговой деятельности рассматривается нами как приоритетная задача фундаментальной науки в проблеме «Мозг Человека». Широкое, многоплановое дальнейшее изучение потенциала феномена детекции ошибок («его прав и обязанностей») как общего механизма мозга оказалось возможным, прежде всего, в связи с многочисленностью убедительных свидетельств реальности и надежности проявления феномена. Важно подчеркнуть, что именно приведенные выше свидетельства его реальности позволили изучать влияние этого важнейшего мозгового фактора в условиях, закономерно вызывающих его к жизни, но уже без обязательной одновременной регистрации нейрофизиологического выражения его местных проявлений. Это, как вполне понятно, позволило существенно расширить методические условия работы.

Именно таким образом и было предпринято нами изучение возможного влияния детекции ошибок в вербальном творчестве. Исследование и уточнение роли детектора ошибок в творческом процессе представляет особый интерес, так как по условиям его обнаружения предполагалось, что сигнализация «отхода от известного» должна играть отрицательную, угнетающую роль в деятельности, где важнейшим является фактор новизны (Bechtereva, 1978).

В развитие многолетнего изучения мозговой организации мыслительной деятельности в Институте мозга человека в последние годы (Bechtereva et al., 2004) проведено полиметодическое исследование мозговой организации наиболее сложного ее вида – деятельности творческой. На основе анализа ЭЭГ показано достоверное наличие местных и общих перестроек мозговой активности при реализации соответствующих вербальных психологических тестов. С помощью позитронно-эмиссионной томографии (ПЭТ) в теменно-височной области левого полушария обнаружены зоны, имеющие приоритетное значение для вербального творчества (ПБ 39, 40).

Одновременно обнаружено множество мозговых зон, «обслуживающих» вербальное творчество, то есть описана в основных чертах мозговая структурно-функциональная система организации вербального творчества, что позволило поставить задачу изучения собственно его мозговых механизмов. Исследования, о которых речь пойдет ниже, соединяют две приоритетные линии наших работ – мозгового механизма детекции ошибок и мозговой организации творческой деятельности. В связи с нашими априорными представлениями (см. выше) о том, что активация детекции (детектора) ошибок противостоит творческому процессу, ограничивает выход за рамки (матрицу) уже известного, нами было предпринято психофизиологическое исследование материального (мозгового) выражения этого угнетающего влияния детектора ошибок на вербальное творчество. При такой постановке вопроса мы получали реальную возможность в дополнение к ранее проведенным работам исследовать разные проявленияактивности детектора ошибок, и в частности свойственную некоторым мозговым механизмам и зависящую от конкретной ситуации поливалентность (в данном случае – положительную роль как сигнала об ошибке, отрицательную – как поддерживающего психопатологические проявления при наркоманиях, ограничительную роль в творческом процессе и т. д.).

При дальнейшем изучении детектора ошибок, по-видимому, имеет смысл не забывать о поливалентности многих мозговых механизмов и a priori исключать еще одну его возможную роль в поведенческом контроле и, в частности, в обеспечении нетривиальности и плодотворности творчества. Именно здесь, однако, в экспериментальном решении этой частной задачи, как вполне понятно, могут встретиться значительные методические трудности, прежде всего, в конструировании адекватных психологических тестов.

Исследования мозговых механизмов влияния активации детекции ошибок в вербальном творчестве проводились на группе здоровых испытуемых (25 человек: 14 девушек, 11 мужчин, средний возраст – 23 года). ЭЭГ регистрировалось с поверхности головы испытуемых от 19 отведений, расположенных согласно международной системе 10–20 % в момент выполнения специально разработанных заданий.

Тест состоял из двух пар заданий. В основном тестовом задании (творческое, Тв) испытуемым предъявлялись общеизвестные пословицы и поговорки с отсутствующим последним словом; требовалось вместо пропущенного слова придумать вариант окончания пословицы, возможно более радикально меняющий ее смысл. Контрольное задание (К) в целом было аналогично основному; отличалось требованием вспомнить и назвать недостающее в пословице слово. В тест входили еще два задания, такие же задания, что и в случаях Тв и К, однако тексты пословиц и поговорок в этих заданиях были написаны с орфографическими ошибками (характер ошибок – переставленные буквы или замена одной буквы на другую, т. е. длина слов не изменялась), что предполагало обязательную активацию детектора ошибок (соответственно задания ТвД и КД). Волонтерам требовалось не только выполнить инструкцию к заданиям Тв или К, но и определить количество орфографических ошибок в написании текстов пословиц или поговорок (одна, две, ноль).

В этом исследовании были проанализированы изменения локальной мощности ЭЭГ в различных диапазонах. Статистический анализ данных был осуществлен при использовании дисперсионного анализа ANOVAдиапазонсостояниезона по плану персональных сравнений (within-subject design). Для иллюстрации различий в отдельных зонах мы использовали post-hoc-анализ с применением LSD критерия Фишера (p<0,05). Достоверные различия были выявлены в ЭЭГ не только для сравнения Тв–К, но и в контрасте ТвД–К. Достоверные различия были представлены в основном в бета-2 (18,5–30 Гц)– и гамма (31–40Гц)-диапазонах ЭЭГ (рис. 4).

Рис. 4. Изменения мощности ЭЭГ при выполнении творческих заданий «в» и «без» условий внешнего вовлечения в процесс детекции ошибок (p <0,05). Тв – творческое задание; К – задание на воспроизведение из долговременной памяти; ТвД – творческое задание при внешней активации детекции ошибок; КД – задание на воспроизведение из долговременной памяти при внешней активации процесса детекции ошибок треугольник, направленный вверх/вниз, – мощность ЭЭГ была больше/меньше в первом задании из двух сравниваемых

ЭЭГ испытуемых, зарегистрированные в условиях инициации творческой деятельности при корректном предъявлении текстов, характеризовались синхронизацией в гамма-диапазоне практически по всей поверхности коры и синхронизацией в бета2-диапазоне в ассоциативных зонах коры. Активация детектора ошибок (в задании ТвД) привела к исчезновению этого эффекта (сравнения ТвД–К, ТвД–Тв). Корреляты детекции ошибок при сопутствующем решении творческой задачи (сравнение ТвД– Тв) характеризовались локальной десинхронизацией в гаммадиапазоне ЭЭГ в большинстве зон коры. Похожие, но более слабые эффекты были получены в бета-2-диапазоне.

Одно из будущих направлений наших исследований – это разделение эффектов направленного внимания и, собственно, детекции ошибок. Наши начальные результаты выглядят весьма многообещающими, однако они требуют дальнейшего анализа для более детального обсуждения

В заключение следует отметить, что мы ни в коем случае не стараемся умалить важность возможного прогресса в исследованиях негативности, связанной с совершением человеком ошибочных действий (ERN), или других, связанных с событием феноменов в проблеме детекции ошибок. Однако исследование сущности детекции ошибок как общемозгового механизма с применением полиметодического подхода имеет много преимуществ. Мы рассматриваем наши последние результаты как многообещающий шаг в исследованиях роли детекции ошибок в различных видах мыслительной деятельности человека и надеемся на возможность подтверждения гипотезы о детекции ошибок как одном из общемозговых контролирующих механизмов.

Литература

Бехтерева Н. П. Некоторые принципиальные вопросы изучения нейрофизиологических основ психических явлений у человека. – В сб.: Глубокие структуры мозга в норме и патологии / Под ред. Н. П. Бехтеревой. Л.: 1966. С. 18–21.

Бехтерева Н. П. Нейрофизиологические аспекты психической деятельности человека. М.; Л., Медицина, 1971.

Соколов Е. Н. Концептуальная рефлекторная дуга / В кн.: Гагрские беседы. Том VII. Нейрофизиологические основы памяти. Ред. Т. Ониани. Тбилиси: Мецниереба, 1979, С.104–

117.

Abdullaev Y. G., Bechtereva N. P. Neuronal correlate of the higher order semantic code in human prefrontal cortex in language tasks // Int.

J. Psychophysiol. 1993. 14, 167–177.

Alain C., McNeely H. E., He Y., Christensen B. K., Wes R. Neurophysiological evidence of error-monitoring deficits in patients with schizophrenia // Cereb. 2002 Сortex 12, 840–846.

Badgaiyan R. D., Posner M. I. Mapping the cingulate cortex in response selection and monitoring // NeuroImage. 1998. Vol. 7.

P. 255–260.

Bechtereva N. Р. On the Human Brain. XX Century and its Last Decade in Human Brainscience. Notabene Publishers, St. Petersburg. 1997.

Bechtereva N. P. Neurophysiological Aspects of Human Mental Activity. Oxford University Press. 1978.

Bechtereva N. P. Bioelectrical correlates of protective brain mechanisms // J. Neuropathol. Psychiat. 1980a. Vol. 30. P. 1127–1133 (in Russian).

Bechtereva N. P. Some general physiological principles of the human brain functioning // Int. J. Psychophysiol. 1987. Vol. 5. P. 235–

251.

Bechtereva N. P. Higher brain function, brain organization / In: Adelman, G., Smith, B.H. (Eds.), Encyclopedia of Neuroscience, 3rd edition. 2004.

Bechtereva N. P., Gretchin V. B. Physiological foundations of mental activity // Int. Rev. Neurobiol. 1968. Vol. 11. Academic Press, N. Y.

P. 239–246.

Bechtereva N. P., Korotkov A. D., Pakhomov S. V., Roudas M. S., Starchenko M. G., Medvedev S. V. PET study of brain maintenance of verbal creative activity // Int. J. Psychophysiol. 2004. Vol. 53.

P. 11–20.

Bechtereva N. P., Kropotov Yu. D. Neuronal organization of error detection mechanisms. Paper Presented at the 3rd World Congress of the International Organization of Psychophysiology. 1986.

Bechtereva N. P., Kropotov Yu. D., Ponomarev V. A., Etlinger S. C. In search of cerebral error detectors // Int. J. Psychophysiol. 1990. 8, 261–273.

Bechtereva N. P., Medvedev S. V., Abdullaev Y. G. Neuronal correlate of mental error detection in the brain cortex // Biomed. 1991. Sci. 2, 301–305.

Carter C. S., Botvinick M. M., Cohen J. D. The contribution of the anterior cingulate cortex to executive processes in cognition // Rev. Neurosci. 1999. Vol. 10, P. 49–57.

Carter C. S., Braver T. S., Barch D. M., Botvinick M. M., Noll D., Cohen J. D. Anterior cingulate cortex, error detection, and the online monitoring of performance. 1998. Science 280, 747–749.

Dehaene S., Posner M. I., Tucker D. M. Localization of a neural system for error detection and compensation // Psychol. 1994. Sci. 5, 303–305.

Devinsky O., Morrell M. J., Vogt B. A. Contributions of anterior cingulate cortex to behaviour // Brain. 1995. 118, 279– 306.

Falkenstein M., Hielscher H., Dziobek I., Schwarzenau P., Hoormann J., Sunderman B., Hohnsbein J.Action monitoring, error detection, and the basal ganglia: an ERP study // NeuroReport. 2001a. 12, 157–

161.

Falkenstein M., Hoorman J., Hohnsbein J. Event-related potential components related to errors // Z. Exp. Psychol. 1997. 44, 117–

138.

Falkenstein M., Hoorman J., Hohnsbein J. Changes of error-related ERPs with age // Exp. Brain Res. 2001b. 138, 258–262.

Falkenstein M., Hoormann J., Christ S., Hohnsbein J. ERP components on reaction errors and their functional significance: a tutorial // Biol. Psychol. 2000. 51, 87–107.

Garavan H., Ross T. J. Kaufman J., Stein E. A. A midline dissociation between error-processing and response-conflict monitoring. NeuroImage. 2003. 20, 1132–1139.

Garavan H., Ross T. J., Murphy K., Roche R. A., Stein E. A. Dis-sociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction // NeuroImage. 2002. 17. 1820– 1829.

Gehring W. J., Fencsik D. E. Functions of the medial frontal cortex in the processing of conflict and errors // J. Neurosci. 2001. 21, 9430–9437.

Gehring W. J., Knight R. T. Prefrontal – cingulate interactions in action monitoring // Nat. Neurosci. 2000. 3, 516–520.

Hajcak G., McDonald N., Simons R. F. Anxiety and error-related brain activity // Biolog. Psychol. 2003. 64, 77–90.

Hajcak G., Simons R. F. Error-related brain activity in obsessive– compulsive undergraduates // Psychiatry Res. 2002. 110, 63–72.

Johannes S., Wieringa B.M., Nager W., Rada D., Dengler R., Em-rich H. M., Munte T. F., Dietrich D. R. Discrepant target detection and action monitoring in obsessive – compulsive disorder. // Psychiatry Res. 2001. 108, 101–110.

Kerns J., Cohen J. D., MacDonald A. W., Cho R. Y., Stenger V. A., Carter C. S. Anterior cingulate, conflict monitoring and adjustments in control. 2004. Science 303, 1023–1026.

Laurens K. R., Ngan E. T., Bates A. T., Kiehl K. A., Liddle P. F. Rostral anterior cingulate cortex dysfunction during error processing in schizophrenia // Brain. 2003. 126, 610– 622.

Masaki H., Tanaka H., Takasawa N., Yamazaki K. Error-related brain potentials elicited by vocal errors // NeuroReport. 2001. 12, 1851–1855.

Mathalon D. H., Whitfield S. L., Ford J. M. Anatomy of an error: ERP and fMRI // Biolog. Psychol. 2003. 64, 119–141.

Medvedev S. V., Anichkov A. D., Polyakov Yu. I. Physiological mechanisms of the effectiveness of bilateral stereotactic cingulotomy against strong psychological dependence in drug addicts // Hum. Physiol. 2003. 29, 492–497.

Moruzzi G., Magoun H. W. Brain stem reticular formation and activation of the EEG. Electroencephalogr // Clin. Neurophysiol. 1949. 1, 455– 73.

Muller S. V., Johannes S., Wieringa B., Weber A., Muller-Vahl K., Matzke M., Kolbe H., Dengler R., Munte T. F. Disturbed monitoring and response inhibition in patients with Gilles de la Tourette syndrome and co-morbid obsessive compulsive disorder // Behav. Neurol. 2003. 14, 29–37.

Naatanen R. Mismatch negativity: clinical research and possible applications // Int. J. Psychophysiol. 2003. Vol. 48.

P. 179–188.

Ojemann, G. A. The neurobiology of language and verbal memory: observatins from awake neurosurger // Int. J. Psychophysiol. 2003. 48, 141–146.

Ojemann G. A., Schoenfield-McNeill J., Corina D. Different neurons in different regions of human temporal lobe distinguish correct from incorrect identification or memory // Neuropsychologia. 2004. 42, 1383–1393.

Rubia K., Smith A. B., Bramme M. J., Taylor E. Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection // NeuroImage. 2003. 20, 351–358.

Scheffers M. K., Coles M. G., Bernstein P., Gehring W. J., Donchin E. Event-related processing: an analysis of incorrect responses to go and no-go stimuli // Psychophysiology. 1996. 33. 42–53.

Swick D., Turken A. U. Dissociation betwee n conflict detection and error monitoring in the human anterior cingulate cortex // Proc. Natl. Acad. Sci. USA. 2002. 99, 16354–16359.

Ullsperger M., von Cramon D. Y. Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs // NeuroImage. 2001. 14, 1387–1401.

Ullsperger M., von Cramon D. Y. Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging // J. Neurosci. 2003.23, 4308–4314.

Ullsperger M., von Cramon D. Y., Muller N. G. Interactions of focal cortical lesions with error processing evidence from event-related brain potentials // Neuropsychology. 2002. 16. 548–561.

Страницы: «« 12345678

Читать бесплатно другие книги:

В этой книге впервые дается характеристика всех видов гороскопов и нумерологических систем. Даны схе...
Роксолана, попавшая в гарем могущественного султана Османской империи Сулеймана I Великолепного, пле...
Казалось бы, разные люди, разные преступления, разные события действуют в романе и между ними нет ни...
Терзаемый призраками прошлого, Рис Сент-Мор отправился на войну, втайне надеясь сложить там голову, ...
Трое мальчишек и две девочки познакомились в детском саду маленького провинциального городка, поклял...
Роман Фад, финалист третьего сезона «Битвы экстрасенсов», один из самых популярных участников телепр...