Вселенная внутри нас: что общего у камней, планет и людей Шубин Нил
Ни одна популяция не защищена от происходящих на планете изменений, особенно таких, как резкое изменение климата, запечатленное в полярных льдах. Натуфийцы пережили этот период резких климатических изменений (около тринадцати тысяч лет назад): на высоких широтах господствовали ледники, а на низких установился холодный и сухой климат. Скорее всего, в таких условиях обычной пищи — дикорастущих злаков — людям перестало хватать. Безусловно, натуфийцы и их современники сильно пострадали от этих глобальных перемен. Но как им и сменившим их культурам удалось выжить?
При раскопках поселений натуфийцев около одиннадцати тысяч лет были найдены спелые зерна, характерные для одомашненных растений. Но если в поселениях натуфийцев плодовые косточки и зерна находят редко, то в более поздних поселениях они встречаются регулярно. Находки таких семян указывают на земледельческий образ жизни, а ступки и пестики свидетельствуют о том, что люди употребляли зерно в пищу. Человек теперь не зависел от миграции животных. С развитием земледелия и возникновением постоянных поселений, как у представителей натуфийской культуры, начали складываться институты и культура, характерные для более развитого общества.
Дороти Гэррод искала в земле следы древних цивилизаций. А мой коллега из Чикаго Джонатан К. Притчард изучает ДНК, пытаясь отыскать закономерности в ее структуре и последовательности. Сравнивая ДНК современных людей, он может рассказать, являются ли различия между нами игрой случая или результатом естественного отбора. Если какой-либо ген обеспечивает хозяину преимущество в выживании и воспроизводстве, он должен оставить в ДНК определенный след. Джонатан умеет выделять такие сигналы с помощью разработанных им статистических методов. При прочих равных условиях, если ген находился под влиянием естественного отбора, то он должен чаще встречаться в человеческой популяции и отличаться меньшей вариабельностью, чем при случайной (нейтральной) эволюции.
Джонатан нашел в человеческой ДНК последовательности, несущие на себе следы естественного отбора. Это гены, которые тем или иным образом повлияли на выживание и воспроизводство наших далеких предков. Эти гены для биологов сродни Святому Граалю: они могут рассказать, какие признаки являются существенными для вида. Некоторые из этих генов связаны с пигментацией кожи. При расселении людей по планете некоторым популяциям пришлось переселяться в регионы с другим уровнем освещенности, и это перемещение сопровождалось изменением генов пигментации. В результате люди с более светлой кожей живут дальше от экватора, чем люди с более темной кожей.
Другие гены отражают изменение нашего рациона. В некоторых популяциях люди обзавелись генами, способствующими усваиванию молока, углеводов и спирта. Эта способность связана с наличием в организме ферментов, расщепляющих определенные химические связи в молекулах. В последние десять тысяч лет эти гены стали особенно важны. Способность переваривать молоко — следствие одомашнивания коров. Расщепление спирта связано с использованием продуктов брожения. Оба признака отражают переход людей к земледельческому, оседлому образу жизни.
Последствия вращения планеты и былых холодов можно найти повсеместно: в песчинках на берегу моря, в валунах на склонах холмов и даже в нашей собственной ДНК, которая, как и туннели Кэмп-Сенчури, остается свидетелем изменений климата и культуры.
Глава 10
Матери изобретений
Около восьми миллионов лет назад континенты, моря и океаны уже приобрели такие очертания, что и ученики младших классов смогли бы их узнать. Планета выглядела на современный лад, за одним исключением: на ней не было двуногих существ с крупным мозгом.
О том, что ситуация изменилась, можно судить по палеонтологическим находкам возрастом около семи миллионов лет, обнаруженным на территории Чада и Кении. Группа французских ученых, исследовавших прибрежную часть древних озерных отложений, отыскала большой фрагмент черепа, отличавшегося удивительным смешением черт. Тяжелыми надбровными дугами и маленьким объемом черепной коробки он напоминал череп шимпанзе, но размер лица был слишком мал для обезьяны: эти черты очень напоминали человеческие. Другие свидетельства были найдены в более молодых отложениях в Кении. Были обнаружены фрагменты бедренных костей и других костей ног, и они были прямыми, что означало, что их обладатель ходил на задних ногах. Что-то произошло — на планете жили и, может быть, даже передвигались на двух ногах высшие приматы совершенно нового типа.
Эти существа, безусловно, не отдавали себе отчета в том, что Земля у них под ногами менялась. Африканский континент начинал раскалываться. Сдвиги внутри Земли привели к расщеплению земной коры, открытию рифта и разделению континента в направлении с севера к югу. Этот разрыв сначала был небольшим, но постепенно удлинялся и протянулся от Египта до Мозамбика. По мере развития процесса эти рифты (как те, что мы исследовали в Гренландии) образовали выпуклости и впадины на поверхности Земли, ставшие горами и долинами.
Почти все окаменелости, рассказывающие о нашей истории в период от шести до двух миллионов лет назад, были найдены в той или иной части этой рифтовой системы. Находки свидетельствуют, что хождение на двух ногах (бипедализм) — один из древнейших человеческих признаков, зачатки которого были уже у наших далеких предков, чьи остатки найдены в Чаде и Кении. Было обнаружено несколько видов существ с небольшими лицами, сравнительно небольшими клыками и широкими задними коренными зубами, а также крупным мозгом. Все эти человеческие признаки появлялись постепенно. Около 1,9 миллиона лет назад родичи человека существовали уже и вне Африки. Судя по строению их костей, они могли ходить и даже бегать на большие расстояния. Примерно двести тысяч лет назад на Земле появились первые представители нашего вида — Homo sapiens.
О климате тех лет мы узнаем благодаря анализу пыли, ила и костей. Пыль в осадочных породах говорит об уровне влажности и направлении и скорости ветра. Ил со дна моря позволяет установить направление подводных течений и количество воды из Нила, вытекавшей в море (этот параметр отражает количество дождей). Осадки на дне крупных рифтовых озер характеризуют изменения уровня воды. По присутствию или отсутствию костей антилоп можно судить о том, была ли данная территория покрыта лесом или саванной. Присутствие костей бегемотов говорит о том, что здесь было влажно. Даже длина шей ископаемых жирафов может о многом рассказать: по ней можно судить о высоте местной растительности. Если вы умеете смотреть, чуть ли не любой объект может служить термометром, барометром или даже анемометром.
Содержание пыли в африканских осадочных породах то увеличивалось, то уменьшалось. Антилопы распространились повсюду, а вот бегемоты и жирафы жили только в определенных местах. При смене теплого и влажного климата на холодный и сухой густые леса уступили место редколесьям с большим количеством травы. Но, несмотря на эту основную тенденцию в изменении климата, в отдельные короткие промежутки времени в окружающей среде происходили резкие перемены и в одну, и в другую сторону.
Любой житель города, лежащего вблизи горного массива, знает, что горы сильно влияют на климат. Появление африканского рифта оказало дополнительное влияние на погоду: горы задерживали влагу и влияли на формирование дождевых облаков. В Африке появились регионы, где шли ливневые дожди, и регионы с более сухим, прохладным климатом.
Географические и климатические изменения в Африке связаны с глобальными переменами. От двух до трех миллионов лет назад началась череда ледниковых периодов. Расширение ледников способствовало снижению уровня моря, что, в свою очередь, привело к изменению океанических течений и воздушных потоков. Результатом было постепенное превращение Восточной Африки из страны лесов в гигантское пастбище.
Эта цепная реакция коснулась и наших древних предков. Способность передвигаться на двух ногах, появившаяся у них от семи до четырех миллионов лет назад в районах вроде Чада, Эфиопии и Кении, при жизни в открытых саваннах оказалась особенно важной: они смогли преодолевать большие расстояния, а их руки освободились для изготовления орудий.
Характерные для того времени быстрые климатические сдвиги, вызванные изменением орбиты планеты и другими, пока неизвестными причинами, требовали от животных быстрой адаптации. Отличительной особенностью существ с крупным мозгом как раз является способность к обучению и адаптации. В этом вихре (по геологической временной шкале) перемен реализовались такие функции, как изготовление все новых типов каменных орудий, сбор моллюсков, охота, наскальная живопись, захоронение умерших, использование огня, приготовление пищи и натуфийское земледельческое общество.
Связь найдена
В начале 80-х годов моего коллегу из отделения статистики Чикагского университета Стивена Стиглера попросили принять участие в подготовке сборника, посвященного памяти Роберта Мертона, одного из выдающихся социологов нашего времени. За время своей долгой научной деятельности Мертон значительно изменил наше понимание того, как рождаются великие идеи и делаются открытия. В 1957 году Мертон обратил внимание научного сообщества на странную закономерность: очень часто идеи, которые в нашем представлении ассоциируются с каким-то одним человеком, на самом деле выдвинуты кем-то другим. Более того, великие прорывы и открытия в науке часто совершаются одновременно несколькими людьми, работающими в разных местах.
После путешествия на «Бигле» Чарльз Дарвин изложил принципы естественного отбора в виде огромного труда. Когда труд был почти завершен, он узнал, что Альфред Рассел Уоллес самостоятельно пришел к той же идее, когда за несколько лет до того болел малярией в Индонезии. Люди тысячелетиями размышляли о связи человека с животными, и вот практически одновременно двое ученых совершенно независимо друг от друга открыли фундаментальные принципы, лежащие в основе всего живого. Готфрид Лейбниц и Исаак Ньютон практически одновременно создали систему интегрального и дифференциального исчисления. Элайша Грей и Александр Грэм Белл в одном и том же году изобрели телефон. Список можно продолжать. Многие великие идеи приходили к разным людям практически одновременно.
Очень многие молодые ученые постоянно опасаются подобной ситуации. Что чувствует каждый из них, когда обнаруживает нечто действительно стоящее? Это не всегда ощущение победы. Впереди карьера. Их должны признать другие ученые. Поэтому их главная мысль в такой ситуации: «А кто еще мог это обнаружить?»
Зная множество подобных примеров, Стиглер сформулировал закон. Говоря кратко, он объявил, что, называя какое-то открытие или закон именем некоего человека (закон Гука, физика Ньютона, теория Дарвина), люди должны помнить о том, что «ни одно научное открытие не названо именем его первооткрывателя». Стив Стиглер назвал свой закон законом Стиглера, чтобы отдать дань его первооткрывателю Мертону и его последователям, выросшим на работах истинного первооткрывателя, отца социологической науки Фрэнсиса Бэкона. Само признание многократности открытий тоже приходило к людям неоднократно.
Богатая история открытий — не линейный путь от одного человека к следующему, а продукт социальной среды с бесчисленными предшествовавшими эпизодами и, в результате, многими «авторами». Часто сам изобретатель или первооткрыватель играет менее важную роль, чем среда, которая подготовила открытие, чем то, что, так сказать, «витает в воздухе». Чтобы открытие совершилось, необходимы определенные условия и возможности его развития и внедрения. Понимая важность исторического момента, Бэкон в XVI веке произнес знаменитое: «Время есть величайший из новаторов».
Наши тела и гены состоят из наслоений биологических изобретений, накопившихся за миллиарды лет. Поэтому и в биологическом мире, как и в мире технологий, присутствует множественность. Например, способность дышать воздухом возникала у рыб несколько раз, как и плавники, позволяющие рыбам передвигаться по дну и по суше. Легкие и эквивалентные им органы есть у многих пресноводных видов: некоторые дышат с помощью дыхательного мешка, другие обзавелись дополнительной сетью сосудов в других частях тела. Некоторые рыбы, такие как жабовидные рыбы, илистые прыгуны и эполетовые акулы, умеют ходить. Некоторые рыбы даже лазают по деревьям. Но множественность проявляется не только у рыб. Абсолютно все виды живых существ, включая нас, в той или иной форме подтверждают это наблюдение. Закон Стиглера применим к органам не в меньшей степени, чем к теоремам и приборам.
Изменения нашего тела происходили не в вакууме, и в этом процессе лучшим изобретателем тоже оказалось время. Человек не мог появиться в девонский период 375 миллионов лет назад, как не мог «айпэд» быть изобретен в XVIII столетии. Чтобы ноги, ступни или кремниевые микросхемы появились в современном виде, необходимо было множество их предшественников.
В случае биологических изобретений «в воздухе витает» состояние самого воздуха и его взаимосвязь с камнями, водой и разнообразными формами жизни. Способность передвигаться на двух ногах, которая сыграла столь важную роль в развитии нашего вида, смогла развиться лишь благодаря изменениям, произошедшим у рыб, червей и других организмов. Плавники превратились в ноги тогда, когда животные перешли от жизни в воде к жизни на суше. Заглянем на 380 миллионов лет назад, когда средоточием жизни были реки и океаны. Здесь плавали большие и малые рыбы. Рыбы поедали рыб. Крупные хищные рыбы свыше четырех метров длиной плавали рядом с более мелкими, зато бронированными, созданиями. Да и суша в это время уже не была необитаемой. Сначала здесь расселились растения и разнообразные беспозвоночные животные. Здесь были леса и кишащие всевозможными существами заросли кустарников. Первая рыба, вышедшая на сушу, попала в уже обитаемую среду, где было вдоволь еды и совсем не было хищников. У этих древних рыб были причины перебраться на сушу. И любые изобретения, позволявшие им укрыться от обитавших в воде крупных хищников и воспользоваться прелестями жизни на суше, были явным преимуществом.
Растения помогли нашим древнейшим предкам выбраться на сушу. Корневая система растений способствует образованию почвы, а следовательно, и прочных берегов водоемов, в которых обитали рыбы. Появление наземных растений, осуществляющих фотосинтез, привело к повышению уровня кислорода в атмосфере. История ног человека восходит не только к плавникам рыб, но и к деревьям, кустам и цветам.
Но рыбы, ноги и растения — фрагменты лишь одной истории о развитии нашего тела. Происхождение любой ткани, клетки или гена есть продукт взаимодействия планеты и живущих на ней существ. Если бы не было водорослей и континентального дрейфа, не существовало бы клеточного механизма для формирования не только ног, но и всех других частей нашего тела. Эти процессы начались миллиарды лет назад: и нарушение баланса между веществом и антивеществом после Большого взрыва, и влияние Солнечной системы на движение земной коры — все это сыграло свою роль в том, что мы с вами явились на свет. Нашими предшественниками была не только длинная череда животных предков, но и многие планетарные и космические события, с которыми мы и наша история связаны с самого начала.
Американский философ Уильям Джемс часто повторял, что религиозный опыт возникает из ощущения себя во Вселенной как дома. С телами, состоящими из частиц, возникших при зарождении небесных тел, и органами, созданными совместными усилиями планет, гор и океанов, нам трудно не чувствовать себя дома повсюду.
Прошлое как пролог
Наша команда проследила путь древних рифтовых долин, протянувшихся от восточного побережья Гренландии до подножия Атласских гор в Марокко. Горы северо-запада Африки сложены из эродированного песчаника и сланца, как и те, что мы видели в Арктике: замените белых медведей на коз, а ледники на маленькие деревни — и вы окажетесь в знакомой обстановке. Таков был план исследований: наш успех в Гренландии позволил нам выбрать новые места для поиска древних млекопитающих и их мелких окаменевших зубов.
Когда мы с Фаришем спустились в многообещающую долину из пыльного красного песчаника, наше внимание привлек ослиный крик: где-то поблизости были местные крестьяне. Обычно мы встречались с пастухами или маленькими детьми. Их любопытство и врожденная способность смеяться без видимой причины оживляли многие неудачные дни поисков окаменелостей.
Однако приближающийся звук сменился видом двух стариков, чьи светящиеся глаза и широкие улыбки никак не соответствовали согнутым старческим фигурам. Ослики были меньше седоков, а у седоков были беззубые улыбки, сморщенные от солнца лица и скрюченные от долгой и тяжелой работы ладони и ступни.
Эти люди хотели нам что-то сообщить, и мы, не владевшие языком берберов, попытались объясниться с ними на обычном в таких случаях языке жестов и гримас. Было ясно, что у них имелась для нас какая-то важная информация, но мы, хоть плачь, не могли понять ровным счетом ничего. В конце концов в полном отчаянии один из мужчин достал из складок одежды и передал мне пожелтевший, истертый лист бумаги. Это оказалось удостоверение личности, выданное ему двадцать лет назад, когда он работал с французскими палеонтологами. Теперь ему хотелось поведать нам об этом. Фариш изучил потертую бумагу и в изумлении покачал головой: «Да эти люди младше меня!» Фариш, подтянутый пятидесятилетний мужчина, выглядел лет на сорок младше наших новых знакомых.
События на планете оставили след на лицах, суставах и телах этих берберов. Культура, технология и экономика опосредуют и направляют наши взаимоотношения с Землей. Чтобы понять это, не нужно ехать в Марокко: достаточно проехать пару кварталов в Манхэттене или Чикаго, и вы увидите невероятные различия в продолжительности жизни, грамотности, детской смертности, распространенности диабета, ожирения, сердечно-сосудистых заболеваний и различных видов рака.
В прошлом разнообразие условий на планете определяло наиболее важные различия между нашими предками — будь то рыбы, пресмыкающиеся или люди. Но потом равновесие сдвинулось, и корни этого изменения можно обнаружить в африканских отложениях возрастом около трех миллионов лет.
Первые каменные орудия были изобретены для того, чтобы разделывать туши. С тех пор мы придумали инструменты для выполнения миллионов разных функций — от производства продуктов питания до подводного плавания. Обмен информацией между людьми тоже постоянно приобретает новые формы: сначала алфавит, потом телефон, теперь цифровые технологии. Наша история — история изобретений, медицины и техники, позволяющих нам воплотить в реальность наши идеи и расширить физические возможности.
Эти идеи и технологии открывают перед нами новые способы защиты от переменчивых условий планеты. Уже во времена натуфийцев сообщества земледельцев отчасти избавились от зависимости от миграции животных. Одежда защищает нас от перемен погоды. Приборы и инструменты помогают выйти далеко за пределы наших физических возможностей. Мы даже создали машины, позволяющие выходить из гравитационного поля планеты и воспринимать сигналы от других небесных тел.
Созидательная активность человека и его физиологические возможности — разные группы инструментов в оркестре: у каждой своя партия, но вместе они создают единое произведение. Переход от сыроедения к потреблению приготовленной пищи запечатлен в строении нашего пищеварительного аппарата и в генах. Появление земледелия отражено в структуре ДНК. Наши технологические и культурные достижения влияют на нашу биологическую природу. Но все эти культурные изменения были, в первую очередь, обусловлены нашими физическими возможностями: крупным мозгом, ловкими руками, органами речи. Биология и культура — инь и ян человеческого существования.
Не нарушаем ли мы сейчас то равновесие, которое было частью нас с самого начала нашей жизни в саваннах, лесах и пещерах? Что бы мы обнаружили, если бы перенеслись во времени на тысячу или миллион лет назад: какие факторы определяли тогда быстроту бега, продолжительность жизни и познавательные способности человека?
Некоторое представление об этом можно получить из бейсбольной статистики. Мы достигли такого уровня развития во всех отношениях, что при оценке физических возможностей человека, например, способности выбить хоумран, следует разделять тех, кто использует современные технические достижения, и тех, кто их не использует. Медикаменты могут настолько сильно изменять физические и умственные способности человека, что, вполне возможно, вскоре соответствующую классификацию придется применять и при вручении Нобелевских премий. С момента возникновения человеческой цивилизации прошло около одиннадцати тысячелетий. Можете себе представить, на что будут способны люди еще через одиннадцать тысяч лет, если учесть постоянно возрастающую скорость изменений в нашей жизни.
Анализируя влияние технологии на нашу жизнь, можно задать вопрос: а что если дарвиновская эволюция больше не определяет порядок вещей? Не привели ли миллионы лет человеческой эволюции к отчуждению человека от планеты и от самого процесса эволюции?
Биологи используют множество методов, чтобы переводить идеи Дарвина и его последователей в математическую форму. И это не пустая затея: числа и уравнения позволяют нам сделать то, что хорошо умеет делать наука, а именно: формулировать предсказания. Одних только фраз типа «выживает наиболее приспособленный» недостаточно. Для предсказания эволюционных изменений нужны количественные данные, отражающие признаки вида, их передачу из поколения в поколение, а также их влияние на успешность развития живых существ в их среде обитания. При описании эволюционного процесса эти данные, особенно «успешность», необходимо определить как можно точнее. Так, под успешностью подразумевается численность жизнеспособного потомства данного существа за всю его жизнь в конкретных условиях среды. Если в каком-то месте красные птицы оставляют больше жизнеспособного потомства, чем зеленые, и окраска птиц сильно зависит от генов (является наследственным), то при прочих равных условиях под действием естественного отбора с течением времени красных птиц будет становиться больше. Естественный отбор не прекращается никогда, и если выполняются определенные условия, его результат неизбежен и предсказуем.
Применить такой подход к анализу эволюции современных людей трудно, потому что необходимые количественные показатели не всегда удается определить с достаточной точностью. В идеале следовало бы провести исследование на очень большой выборке людей, позволяющей проследить историю целых семей и передачу в них наследственных признаков. Самые полные базы данных, отражающие различные признаки, удается составить в ходе проведения широких клинических исследований, направленных на изучение состояния здоровья населения за длительные промежутки времени. Например, в знаменитом исследовании распространения сердечно-сосудистых заболеваний в городе Фремингэм, Массачусетс, которое началось в 1948 году и продолжается до сих пор, было опрошено около четырнадцати тысяч человек. Учитывалось протекание родов, количество детей, множество разных признаков и причины смерти. В других исследованиях проводили анализ заболеваний сосудов, состояния репродуктивной системы и психологических факторов. Наиболее обширные базы данных существуют в странах с обязательной регистрацией актов гражданского состояния. Например, в Дании собрана информация о восьми миллионах человек и отражено множество параметров — от фертильности до семейного анамнеза.
Биолог Стивен Стирнс и его коллеги проанализировали эти данные и пришли к простому заключению. Между людьми, проживающими в разных частях планеты, существуют очень большие различия. В развитых странах, жители которых имеют доступ к медицинской помощи, нормально питаются и пользуются чудесами современной техники, основным фактором, влияющим на эволюционный процесс, является деторождение: сколько люди хотят иметь детей, и в каком возрасте они их производят на свет. В развивающихся странах ситуация иная: на передачу генетических признаков влияет смертность, особенно детская. В одном мире успешность эволюции определяется возрастом родителей при рождении ребенка, в другом успешность прямо связана с выживаемостью. Пути эволюционного развития человеческих популяций зависят от социально-экономических, культурных и технологических факторов.
В прошлом долгосрочная успешность рода определялась возможностью наследственной передачи генов и признаков и часто зависела от внешних условий. Главным источником информации, передаваемой из поколения в поколение, была ДНК. Теперь ситуация не столь очевидна. Американский ученый Норман Борлоуг и его жена имели троих детей, пятерых внуков и шестерых правнуков. Можно взглянуть на их семейное древо и проанализировать передачу генетических признаков. А если мы перенесемся в будущее, то сможем оценить успешность передачи биологических признаков: цвета волос, способности сворачивать язык трубочкой, предрасположенности к заболеваниям, и так далее. Но в какой степени подобные признаки влияют на будущее нашего вида? Возможно, гораздо важнее другое. Борлоуг не только передал гены своим биологическим детям, но его также считают отцом «зеленой революции». Благодаря его усилиям удалось значительно повысить урожайность кукурузы и пшеницы и устойчивость растений к заболеваниям. Он спас и улучшил жизнь миллионов людей на планете. Его идеи живут в других людях, его гений изменил планету. Успешность нашего вида, оценивается ли она по количеству жизней, спасенных благодаря прорыву в медицине и сельском хозяйстве, или по количеству судеб, измененных благодаря великим книгам, философии или музыке, зависит от плодовитости нашего мозга.
Подобно шестидесятилетнему человеку, наша Земля преодолела три четверти своего жизненного пути. Земле примерно 4,57 миллиарда лет, и законы физики небесных тел говорят о том, что еще через миллиард лет Солнце расширится до такой степени, что жить на нашей планете станет невозможно. Если оглянуться назад, можно сказать, что после возникновения планеты на ней достаточно быстро зародилась жизнь — всего через несколько сотен миллионов лет. Примерно через два с половиной миллиарда лет появились многоклеточные существа. Затем последовательно возникали головы, руки, сознание — все быстрее и быстрее. В соответствии с законом Мура об удвоении мощности процессоров каждые два года, биологический мир тоже развивается с ускорением: большая часть срока жизни планеты истекла, когда появилось существо с крупным мозгом и начало изготавливать каменные орудия… и всего за какие-то тысячи лет возникли интернет, методы клонирования генов и схемы геоинженерного переустройства атмосферы планеты. Планетарные и биологические изменения привели к революционному моменту, когда идеи и изобретения начали изменять наши тела, саму планету и наши с ней взаимоотношения. До того как появился наш вид, триллионам клеток водорослей понадобились миллиарды лет, чтобы переделать планету, а теперь изменения направляются идеями, передающимися со скоростью света.
Благодаря генетическому наследию наш вид способен к освоению широких просторов Вселенной, изучению истории длиной 13,7 миллиарда лет и осознанию наших глубоких связей с планетами, галактиками, живыми существами. Есть что-то почти волшебное в мысли о том, что наши тела, мозг и идеи уходят корнями в земную кору, воды океанов и атомы в составе небесных тел. Звезды в небе и окаменелости в земле — это маяки, посылающие нам сигналы о том, что, несмотря на всё ускоряющийся темп развития человечества, мы представляем собой всего лишь новую ниточку в старых связях, древних как сами небеса.
Примечания и дополнительная литература
Существуют прекрасные книги об истории Вселенной, нашей планеты и жизни, написанные для широкой публики. Со времен сочинения Карлом Саганом книги «Космос» (Sagan, Carl Cosmos. New York: Ballantine Books, 1985) прошло несколько десятилетий, но она по-прежнему остается одним из наиболее понятных и запоминающихся произведений о Вселенной и нашей с ней связи. Свой взгляд на историю Вселенной, начиная с Большого взрыва и заканчивая образованием нашей планеты, изложили многие ученые. Я советую, например, ознакомиться со следующими книгами: Krauss, L. Atom: A Single Oxygen Atom’s Journey from the Big Bang to Life on Earth… and Beyond. Boston: Back Bay Books, 2002; DeGrasse Tyson, Neil, and Donald Goldsmith Origins: Fourteen Billion Years of Cosmic Evolution. New York: Norton, 2005. Ричард Форти со свойственной ему элегантностью описывает историю планеты в книге: Fortey, R. Earth: An Intimate History. New York: Knopf, 2002. В этом же списке и другие произведения об истории планеты и о происходящих на ней процессах: Flannery, Tim Here on Earth: A Natural History of the Planet. New York: Atlantic Monthly Press, 2011; Novacek, Michael Terra: Our 100-Million-Year-Old Ecosystem — and the Threats That Now Put It at Risk. New York: Farrar, Straus and Giroux, 2007; Stager, Curt Deep Future: The Next 100,000 Years of Life on Earth. New York: Thomas Dunne Books, 2011. Рекомендую следующие труды по истории жизни на Земле для широкого круга читателей:
Dawkins, Richard Ancestor’s Tale: A Pilgri to the Dawn of Evolution. New York: Mariner Books, 2005; Knoll, Andrew Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Princeton, N. J.: Princeton University Press, 2004; Switek, Brian Written in Stone: Evolution, the Fossil Record, and Our Place in Nature. New York: Bellevue Literary Press, 2010.
Поиск окаменелостей на основании предсказаний эволюционной теории и исторической геологии предполагает использование данных стратиграфии, седиментологии и структурной геологии. Если говорить кратко, то стратиграфия занимается изучением относительного геологического возраста и взаимосвязи горных пород. Седиментология рассматривает условия образования осадочных горных пород, таких как песчаники, сланцы и алевриты, в которых время от времени встречаются окаменелости, интересующие палеонтологов вроде меня. Возникли ли горные породы в результате отложения осадков в озерах, реках или океанах или были образованы в результате других геологических процессов? Структурная геология пытается определить суть и причины перемещений и изменений горных пород со времен их образования миллионы лет назад до сегодняшнего дня. Литература по этой теме очень обширна. Чтобы понять суть без какой-либо предварительной подготовки, советую ознакомиться с книгой: Bjornerud, Marcia Reading the Rocks: The Autobiography of the Earth. New York: Basic Books, 2005. Упомянутая выше книга Форти также относится к данной категории. Также посоветую замечательную книгу Уолтера Алвареса: Alvarez, Walter The Mountains of St. Francis: Discovering the Geological Events That Shaped the Earth. New York: Norton, 2008.
Билл Эймерал предположил возможность обнаружения окаменелостей в триасовых отложениях Гренландии в сборнике Shell Oil Guide to the Permian and Triassic of the World. Из горы макулатуры была извлечена статья Perch-Nielsen, K., et al. Revision of Triassic Stratigraphy of the Scoresby Land and Jameson Land Region, East Greenland // Meddelelser om Gr nland 193 (1974): 94–141. Эта статья привела Билла, Чака и Фариша к элегантным работам датского специалиста по седиментологии Ларса Клемменсена: Clemmensen, L. B. Triassic Lithostratigraphy of East Greenland Between Scoresby Sund and Kejser Franz Josephs Fjord. Gr nlands geologiske unders gelse, 1980; Clemmensen, L. B. Triassic Rift Sedimentation and Palaeogeography of Central East Greenland // Geological Survey of Greenland, Bulletin, no. 136 (1980): 5–72. Эти работы стали для нас своего рода Розеттским камнем, поскольку показали возможность существования окаменелостей в этих отложениях и их сходство с отложениями Северной Америки (которые, в свою очередь, описаны в статье Olsen, P. E. Stratigraphic Record of the Early Mesozoic Breakup of Pangea in the Laurasia-Gondwana Rift System // Annual Reviews of Earth and Planetary Science 25 [1997]: 337–401). Это был ключевой момент в нашей подготовительной работе.
Чтобы понять запечатленное в камнях прошлое, нужны практические знания (как подобрать еду и обувь, как научиться искать и находить) и направляющие идеи. Важность первых отметил еще Наполеон: «Армия марширует, пока полон желудок». У вас может быть лучшее в мире оборудование, но если с провиантом проблемы, очень скоро дела пойдут вкривь и вкось. Когда команда нормально питается, люди могут вытерпеть превратности погоды, тоску и монотонность, с которыми сопряжены поиски окаменелостей. Долгий день в холоде и сырости, не увенчавшийся никакими достижениями, может быть вознагражден хорошим ужином. Перед отправлением в Арктику мы насушили овощей и фруктов, чтобы обогатить рацион дополнительными вкусами и запахами. Зайдите ко мне в лабораторию в апреле, перед началом полевого сезона, и вы сможете увидеть и понюхать киви, клубнику и помидоры Сан-Марцано, подсыхающие в сушильных шкафах. В поле мы даже выпекаем хлеб, поскольку запах поднимающегося хлеба не только помогает продать дом, как гласит пословица, но и поднимает настроение угрюмой команды. В поле для нас этот хлеб подобен лучшему французскому багету. К сожалению, это наше произведение по плотности больше напоминает строительный материал, чем съедобную субстанцию, и дома таким хлебом, ясное дело, питаться нельзя.
В первый сезон, в 1988 году, мы мало об этом думали. Наша пища состояла из готовых сушеных продуктов в разноцветных упаковках и с такими затейливыми названиями, как скалопини из телятины, курица в соусе марсала и тетраццини с индейкой. Через две недели пребывания в экспедиции мы поняли, что все эти блюда одинаковы на вкус. Тоскливым подтверждением нашей догадки стал список ингредиентов: все блюда состояли приблизительно из одних и тех же составляющих и различались лишь цветом упаковки и формой макарон. Эта новость мало нас обрадовала. Мы сдабривали однообразную пищу острым соусом и специями, что мало изменяло ее вкус. В тот год в экспедиции я довольно сильно похудел.
Наши рецепты приготовления сушеных блюд можно найти на сайте: http://tiktaalik.uchicago.edu. Эта пища годится для ужина после долгого перехода по тундре или лазанья по скалам, требует минимум энергии и воды, может быть адаптирована для каждого — от строгого вегетарианца до большого любителя мясного — и мало весит. В принципе, такая еда пригодна даже для приема гостей (которых вы больше не собираетесь к себе приглашать).
В качестве популярного вступления в геологическую историю востока Северной Америки я предлагаю книгу Чета и Морин Раймо: Raymo, Chet, and Maureen E. Raymo Written in Stone. Hensonville, N. Y.: Black Dome Press, 2007. Историю о динозавре, обнаруженном в опорах моста, можно прочесть у Эдвина Колберта: Colbert, Edwin H. Men and Dinosaurs. New York: E. P. Dutton, 1968.
Открытия, сделанные нами в Гренландии, описаны в следующих статьях: Jenkins Jr., F. A., et al. A Late Triassic Continental Fauna from the Fleming Fjord Formation, Jameson Land, East Greenland / In: The Nonmarine Triassic. Lucas, S. G., and M. Morales, eds. Albuquerque: New Mexico Museum of Natural History and Science, 1993, 74; Jenkins Jr., F. A., et al. A New Record of Late Triassic Mammals from the Fleming Fjord Formation, Jameson Land, East Greenland / In: The Nonmarine Triassic. Lucas, S. G., and M. Morales, eds. Albuquerque: New Mexico Museum of Natural History and Science, 1993, 94. Наиболее важные из найденных нами окаменелостей млекопитающих описаны в статье Jenkins Jr., F. A., et al. Haramiyids and Triassic Mammalian Evolution // Nature 385 (1997): 715–718.
Общую информацию о происхождении млекопитающих и о связи маленького зуба с эволюционным древом нашего вида можно найти в следующих работах: Kielan-Jaworowska, Z., Cifelli, R. L., and Z.-X. Luo Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure. New York: Columbia University Press, 2004; Luo, Z.-X. Commentary on Mammalian Dental Evolutionary Development // Nature 465 (2010): 669.
Информацию об относительном содержании различных атомов в организме человека я почерпнул из главы 1 книги Роберта Стернера и Джеймса Элсера: Sterner, Robert W., and James J. Elser Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, N. J.: Princeton University Press, 2002. Конечно, это не истинная химическая формула, поскольку наше тело состоит не из одинаковых молекул, как кристаллик соли, а из множества молекул разных типов.
Представление о древе жизни, объединяющем всех ныне живущих и вымерших существ, является одним из следствий теории Дарвина. Это древо позволяет делать специфические и проверяемые предсказания и формулировать гипотезы. Основы этих методов изложены в книге Докинза: Dawkins, Richard Ancestor’s Tale: A Pilgri to the Dawn of Evolution. New York: Mariner Books, 2005. Если вас интересует мнение более узких специалистов, советую прочесть статью:
Wiley, E. O., et al. The Complete Cladist: A Primer of Phylogenetic Procedures / Special publication № 19. Lawrence: University of Kansas, Museum of Natural History, 1991. Чтобы полнее окунуться в атмосферу этой науки и познакомиться с разными мнениями, обратитесь к научным журналам в области кладистики и системной биологии.
История Генриетты Ливитт описана в статье: Pickering, E. C. Periods of 25 Variable Stars in the Small Magellanic Cloud // Harvard College Observatory Circular 173 (1912): 1–3. Работе Ливитт и других женщин в обсерватории посвящены также книги: Byers, Nina, and Gary Williams, eds. Out of Shadows: Contributions of Twentieth-Century Women to Physics. New York: Cambridge University Press, 2006; Hamblin, J. D. Science in the Early Twentieth Century: An Encyclopedia. Santa Barbara, Calif.: ABC–CLIO, 2005, 181–184.
Обсуждение Большого взрыва и его последствий можно найти в книгах: Krauss, L. Atom: A Single Oxygen Atom’s Journey from the Big Bang to Life on Earth… and Beyond. Boston: Back Bay Books, 2002; De-Grasse Tyson, Neil, and Donald Goldsmith Origins: Fourteen Billion Years of Cosmic Evolution. New York: Norton, 2005; Singh, Simon Big Bang: The Origin of the Universe. New York: Harper Collins, 2005; Weinberg, Steven The First Three Minutes. New York: Basic Books, 1993.
Испытание устройства Ivy Mike описано в книге: Rhodes, Richard Dark Sun: The Making of the Hydrogen Bomb. New York: Simon & Schuster, 1995.
Со времен небулярной гипотезы Сведенборга, Канта и Лапласа происхождение планет Солнечной системы оставалось темой активных исследований и жарких споров. Основные вопросы обсуждаются в книге: DeGrasse Tyson, Neil, and Donald Goldsmith Origins: Fourteen Billion Years of Cosmic Evolution. New York: Norton, 2005. О процессе образования Земли можно прочесть в статье: Canup, R. M. Accretion of the Earth // Philosophical Transactions of the Royal Society A 366 (2008): 4061–4075. Тем, кто математически подготовлен и хочет самостоятельно погрузиться в изучение оригинальных статей, советую обратиться к основному научному журналу в этой области — Icarus: The International Journal of Solar System Studies — официальному изданию отделения планетарных наук Американского астрономического общества.
Гарри Максуин замечательно написал о Солнечной системе, метеоритах и космохимии. Особенно советую прочесть книгу: McSween, Harry Stardust to Planets: A Geological Tour of the Solar System. New York: St. Martin’s Press, 1993. Рекомендую также замечательный обзор по динамике образования Солнечной системы: Beatty, J. Kelly, Petersen, Carolyn C., and Andrew Chaikin The New Solar System. 4th ed. Cambridge, Mass.: Sky Publishing, 1999.
Проблемы космохимии включают в себя изучение химического состава метеоритов, лунных камней и других материалов внеземного происхождения. В специальном выпуске журнала Proceedings of the National Academy of Sciences (PNAS) от 29 ноября 2011 года вы найдете несколько великолепных статей на эту тему. Особенно рекомендую ознакомиться с первой: MacPherson, G., and M. H. Thiemens Cosmochemistry: Understanding the Solar System Through Analysis of Extraterrestrial Materials // PNAS 108 (2011): 19130–34.
Изучение возраста Земли само имеет богатую историю. Рекомендую вам книгу, вышедшую несколько десятилетий назад, но все еще являющуюся великолепным источником информации об истории и методах изучения возраста Земли: Dalrymple, G. Brent The Age of the Earth.
Stanford, Calif.: Stanford University Press, 1991. Рекомендую также обзор того же автора: Dalrymple, G. Brent The Age of the Earth in the Twentieth Century: A Problem (Mostly) Solved / In: The Age of the Earth: From 4004 BC to AD 2002. Geological Society, London, Special Publication № 190. Lewis, C. L. E., and S. J. Knell, eds. London: Geological Society, 2001, 205–221. В этом специальном выпуске собрано множество замечательных статей об изучении возраста Земли, истории этой науки и ее методах.
Циркон может многое рассказать о происхождении Земли. Познакомьтесь, например, со статьей: Valley, J. W., Peck, W. H., and
E. M. King Zircons Are Forever // Outcrop — University of Wisconsin-Madison Geology Alumni Newsletter (1999), 34–35. Более подготовленным читателям предлагаю статью: Wilde et al., S. A. Evidence from Detrital Zircons for the Existence of Continental Crust and Oceans on the Earth 4.4 Gyr Ago // Nature 409 (2001): 175–178. Описание и значение самых старых горных пород Земли вы найдете в книге: Van Kranendonk, Martin, Smithies, R. Hugh, and Vickie C. Bennett, eds. Earth’s Oldest Rocks. Boston: Elsevier, 2007. В этом издании собрано огромное количество информации, подготовленной специалистами и для специалистов.
Описывая возраст пород, геологи оперируют понятиями относительного и абсолютного времени. Этой теме посвящена книга: Macdougall, Doug Nature’s Clocks: How Scientists Measure the Age of Almost Everything. Berkeley: University of California Press, 2008. Относительное время описывает связь между различными геологическими пластами: обычно поверхностные пласты младше тех, что залегают глубже. Ситуация осложняется, когда пласты подвергаются последующим преобразованиям. Понимание истории таких отложений основано на расшифровке разломов, перемещений и сдвигов отдельных пластов.
Расчет абсолютного возраста горных пород и минералов основан на анализе радиоактивного распада. Некоторые атомы отличаются неустойчивой конфигурацией электронов, нейтронов и протонов, что заставляет их терять или приобретать некоторые компоненты. Если это происходит, масса атома может меняться, и атомы переходят в новую форму. Важно, что эти превращения происходят с постоянной скоростью, характеризующейся таким физическим параметром, как время полураспада. Время полураспада атома — это время, за которое половина образца распадается с образованием дочерних элементов. Если известно количество исходного и дочерних элементов, а также время полураспада, можно рассчитать, как долго продолжался распад исходных атомов. В этом смысле особый интерес для геологов представляют атомы урана-238, аргона-39, углерода-14 и некоторые другие. Для каждого вида исследований лучше подходит определенный атом: для анализа более старых пород используют атомы с более низкой скоростью распада, для более молодых — атомы с более высокой скоростью распада. Уран-238 отличается большим периодом полураспада, и поэтому с его помощью изучают самые ранние события истории Земли. Углерод-14 распадается так быстро, что его можно применять лишь для анализа недавних событий вроде появления и развития человеческого общества.
Особенно информативным может быть определение изотопов (вариантов атомов с разной массой) урана и свинца в цирконе, как в горном хребте Джек-Хиллс. Уран-238 с периодом полураспада четыре с половиной миллиарда лет превращается в стабильный свинец-206. Отсчет начался в тот момент, когда уран включился в состав циркона при его образовании. Стал накапливаться свинец-206. Если изучить этот циркон сейчас и сделать логичное предположение, что весь свинец-206 в его составе образовался в результате распада урана, можно рассчитать возраст циркона.
О временных рамках основных событий в истории Солнечной системы и Земли говорится в статье: Albarede, F. Volatile Accretion History of the Terrestrial Planets and Dynamic Implications // Nature 461 (2009): 1227–1233.
Было выдвинуто множество гипотез, объясняющих происхождение воды на нашей планете. Долгое время считалось, что основным источником воды были ледяные кометы. Однако эта версия была поставлена под сомнение, когда с помощью спутника удалось взять пробы льда с приблизившейся к Земле кометы Хейла — Боппа. Оказалось, что вода на комете имеет другой изотопный состав, чем вода в земных океанах. Однако позднее была взята проба льда с кометы Хартли-2, и оказалось, что эта вода по составу гораздо ближе к земной. Теперь существует несколько гипотез об источнике земной воды, причем они не являются взаимоисключающими: это могли быть кометы, астероиды и даже компоненты самой Земли, подвергшиеся сдавливанию и конденсации. Подробнее об этом можете узнать из обзоров: De Leeuw, N. H., et al. Where on Earth Has Our Water Come From? // Chemical Communications 46 (2010): 8923–8925; Drake, M. J., and H. Campins Origin of Water in the Terrestrial Planets // Proceedings of the International Astronomical Union 1, № S229 (2006): 381–394. Обнаружение воды на комете Хартли-2 из пояса Койпера описано в статье: Hartogh, P., et al. Ocean-Like Water in the Jupiter-Family Comet 103P/Hartley 2 // Nature 478 (2011): 218–220. О воде в полярных кратерах на Меркурии можно узнать на сайте НАСА: http://www.nasa.gov/mission_pages/messenger/multimedia/ messenger_ orbit_i20120322_3.html.
Об образовании планет Солнечной системы и их взаимоотношениях говорится в статье: Canup, R. M. Origin of Terrestrial Planets and the Earth-Moon System // Physics Today, April 2004, 56–62.
В последние годы были опубликованы результаты многочисленных исследований, касающихся происхождения Луны. См. например:
Canup, R. M. Formation of the Moon // Annual Review of Astronomy and Astrophysics 42 (2004): 441–475; Canup, R. M., and K. Righter, eds. Origin of the Earth and Moon. Tucson: University of Arizona Press, 2000; Canup, R. M. Origin of Terrestrial Planets and the Earth-Moon System // Physics Today, April 2004, 56–62.
О развитии способов измерения времени можно прочесть в работах Энтони Авени, в частности в книге: Aveni, Anthony Empires of Time: Calendars, Clocks, and Cultures. Boulder: University of Colorado Press, 2002.
Идея о том, что внутренние часы повсеместно распространены в природных объектах, подробно обсуждается в книге: Macdougall, Doug Nature’s Clocks: How Scientists Measure the Age of Almost Everything. Berkeley: University of California Press, 2008.
Советую превосходную книгу Роберта Левайна о часах, времени и нашем восприятии времени: Levine, Robert A Geography of Time:
On Tempo, Culture, and the Pace of Life. New York: Basic Books, 1998.
Мишель Сифр свой опыт пребывания в пещере описал в книге: Siffre, Michel Beyond Time. New York: McGraw-Hill, 1964[6].
Жизнь в науке Курта Рихтера описана в его биографии, опубликованной Академией наук США: Biographical Memoirs, vol. 65. Washington, D. C.: National Academy Press, 1994.
История Сеймура Бензера и открытие молекулярных основ циркадных ритмов описаны в замечательной книге: Weiner, Jonathan Time, Love, and Memory: A Great Biologist and His Quest for the Origins of Behavior. New York: Vintage, 2000.
Если вы хотите больше узнать о биологических часах, советую начать с легкой и забавной книги: Palmer, John D. The Living Clock. Oxford: Oxford University Press, 2002. Некоторые оригинальные статьи перечислены ниже.
Обнаружение в лаборатории Бензера мутантных животных с нарушенным биологическим ритмом описано в статье: Konopka, R. J., and S. Benzer Clock Mutants of Drosophila melanogaster // PNAS 68 (1971): 2112–2116. Ген, ответственный за это нарушение, был клонирован и исследован в лабораториях Джеффри Холла (Jeffrey Hall; Университет им. Брандейса), Майкла Росбаша (Michael Rosbash; Университет им. Брандейса) и Майкла Янга (Michael Young; Институт им. Рокфеллера). Описанию мутантных организмов с нарушенным биологическим ритмом посвящено несколько статей, в том числе: Sun, Z. S., et al. RIGUI, a Putative Mammalian Ortholog of the Drosophila Period Gene // Cell 90 (1997): 1003–1011; Tei, H., et al. Circadian Oscillation of a Mammalian Homologue of the Drosophila Period Gene // Nature 389 (1997): 512–516; Young, M. W., and S. A. Kay Time Zones: A Comparative Genetics of Circadian Clocks // Nature Reviews Genetics 2 (2001): 702–715; Yu, W., and P. E. Hardin Circadian Oscillators of Drosophila and Mammals // Journal of Cell Science 119 (2006): 4793–4795; Hamilton, E. E., and S. A. Kay SnapShot: Circadian Clock Proteins // Cell 135 (2008); Lee, K., Loros, J. J., and J. C. Dunlap Interconnected Feedback Loops in the Neurospora Circadian System // Science 289 (2000): 107–110; Tauber, E., et al. Clock Gene Evolution and Functional Divergence // Journal of Biological Rhythms 19 (2004): 445–458; Bell-Pedersen, D., et al. Circadian Rhythms from Multiple Oscillators: Lessons from Diverse Organisms // Nature Reviews Genetics 6 (2005): 544–556.
Циркадные ритмы и их эволюция обсуждаются во многих превосходных научных обзорах и книгах. В качестве вступления рекомендую следующие статьи: Dunlap, J. Molecular Basis for Circadian Clocks // Cell 96 (1999): 271–290; Rosbash, M. Implications of Multiple Circadian Clock Origins // PLoS Biology 7 (2009): 17–25; Panda, S., Hogenesch, J. B. and S. A. Kay Circadian Rhythms from Flies to Human // Nature 417 (2002): 329–335.
Сходство механизмов сна у разных организмов подробно обсуждается в статьях: Cirelli, C. The Genetic and Molecular Regulation of Sleep: From Fruit Flies to Humans // Nature Reviews Neuroscience 10 (2009): 549–560; Panda, S., Hogenesch, J. B. and S. A. Kay Circadian Rhythms from Flies to Human // Nature 417 (2002): 329–335.
Об использовании раковин для определения длительности суток в разные геологические эпохи я прочел в статье: Zhenyu, Z., et al. The Periodic Growth Increments of Biological Shells and the Orbital Parameters of Earth — Moon System // Environmental Geology 51 (2006): 1271–1277. Об эволюции циркадных ритмов говорится в работе: Paranjpe, D. A., and V. K. Sharma Evolution of Temporal Order in Living Organisms // Journal of Circadian Rhythms 3 (2005): 7–17.
Общую информацию о медицине сна можно почерпнуть из книги:
Kryger, Meir H., Roth, Thomas, and William C. Dement Principles and Practice of Sleep Medicine. Philadelphia: Saunders, 2005. Также советую ознакомиться с коротким, но содержательным обзором о связи циркадных ритмов и клинических состояний: Barnard, A. R., and P. M. Nolan When Clocks Go Bad: Neurobehavioural Consequences of Disrupted Circadian Timing // PLoS Genetics 4 (2008).
Связь между репликацией ДНК, циркадным ритмом и раком обсуждается в статьях: Mitra, S. Does Evening Sun Increase the Risk of Skin Cancer? // PNAS 108, no. 47 (2011): 18857–18858; Gaddameedhi, S., et al. Control of Skin Cancer by the Circadian Rhythm // PNAS 108 (2011): 18790–18895; Sahar, S., and P. Sassone-Corsi Metabolism and Cancer: The Circadian Clock Connection // Nature Reviews Cancer 9 (2009): 886–896.
Подробнее о надгробных плитах из Индианы можно узнать из статьи: Kvale, E., et al. The Art, History, and Geoscience of Hindostan Whetstone Gravestones in Indiana // Journal of Geoscience Education 48 (2000): 337–342. О горных породах — ритмитах, из которых сделаны эти плиты, можно узнать из книги: Flemming, B. W., and A. Bartholom Tidal Signatures in Modern and Ancient Sediments. Oxford: Blackwell Science, 1995.
Открытие древнейших живых существ и жизнь Баргхорна описаны в биографической статье, опубликованной Академией наук США в сборнике: Biographical Memoirs, vol. 87. Washington, D. C.: National Academy Press, 2005.
Яркое описание открытия первых живых организмов было сделано одним из учеников Баргхорна, впоследствии также знаменитым ученым — Уильямом Шопфом: Schopf, J. William Cradle of Life. Princeton, N. J.: Princeton University Press, 2001. Также советую прекрасную книгу: Brasier, Martin Darwin’s Lost World: The Hidden History of Animal Life. Oxford: Oxford University Press, 2009. Опознать в окаменелостях ранние формы жизни достаточно сложно, и этот вопрос часто вызывает дискуссии, как между Шопфом и Брейзиром. Обзор этой темы и изложение мнения одной из сторон вы сможете найти в статье: Brasier, M. D., et al. Earth’s Oldest (c. 3.5Ga) Fossils and the «Early Eden Hypothesis»: Questioning the Evidence // Origins of Life and Evolution of the Biosphere 34 (2004): 257–260. В то время, когда была написана эта книга, самыми ранними формами жизни считались либо те, что описаны Шопфом в его книге, либо те, что найдены Брейзиром и описаны в статье: Wacey, D., et al. Microfossils of Sulphur-Metabolizing Cells in 3.4-Billion-Year-Old Rocks of Western Australia // Nature Geoscience (2011).
Рассуждения Галилея о размерах предметов и силе тяготения можно прочесть в переводе Стиллмана Дрейка с комментариями Стивена Джея Гулда, Альберта Эйнштейна и Дж. Л. Хейлброна: Dialogue Concerning the Two Chief World Systems: Ptolemaic and Copernican. New York: Modern Library, 2001.
Рассказ о Левенгуке взят из книги: Dobell, C., ed. Antony van Leeuwenhoek and His «Little Animals». New York: Dover, 1960. Описание микроскопов приводится в книге: Stong, Clair L. The «Scientific American» Book of Projects for the Amateur Scientist. New York: Simon & Schuster, 1960.
Роль водорослей в повышении концентрации кислорода в атмосфере обсуждается в книге: Knoll, Andrew Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Princeton, N. J.: Princeton University Press, 2004. Значение кислорода для эволюции и истории жизни обсуждается в двух других полезных книгах: Nick, Lane Oxygen: The Molecule That Made the World. Oxford: Oxford University Press, 2003; Ward, Peter D. Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere. Washington, D. C.: Joseph Henry Press, 2006. Об изменении содержания кислорода в атмосфере в более поздние геологические эпохи можно узнать из статьи: Berner, R. A., et al. Phanerozoic Atmospheric Oxygen // Annual Review of Earth and Planetary Sciences 31 (2003): 105–134.
Теперь считается, что увеличение концентрации кислорода в атмосфере было не однократным событием, а результатом нескольких событий, происходивших на протяжении сотен миллионов лет. Вот некоторые статьи на эту тему: Kump, L. R. The Rise of Atmospheric Oxygen // Nature 451 (2007): 277–278; Bekker, A., et al. Dating the Rise of Atmospheric Oxygen // Nature 427 (2004): 117–120; Holland, H. The Oxygenation of the Atmosphere and Oceans // Philosophical Transactions of the Royal Society B 361 (2006): 903–915.
Как и подобает столь важному явлению, как увеличение содержания кислорода в атмосфере, этот вопрос является дискуссионным. Приведенная в данной книге гипотеза о причинах увеличения содержания кислорода обсуждается в статье: Kump, L. R., and M. E. Barley Increased Subaerial Volcanism and the Rise of Atmospheric Oxygen 2.5 Billion Years Ago // Nature 448 (2007): 1033–1037.
История о том, как Дарлингтон и Барбур бросали лягушек, была частью фольклора Музея сравнительной зоологии в период моего обучения в университете 80-х годах. Эта история, а также случай с крокодилом приводятся в воспоминаниях о Филипе Дарлингтоне, написанных его коллегой по Гарварду Э. О. Уилсоном: Biographical Memoirs, vol. 60. Washington, D. C.: National Academy Press, 1991.
Эссе Дж. Б. С. Холдейна (Haldane, J. B. S. On Being the Right Size) было напечатано в 1926 году. Его можно прочитать на сайте: http:// www.physlink.com/Education/essay_haldane.cfm.
Изучением связи между размерами тела и другими биологическими функциями занимается раздел науки, называемый аллометрией. Литература по этой теме достаточно обширна, но несколько обзоров позволят быстро продвинуться в освоении данного вопроса. Кроме работы Холдейна советую ознакомиться со статьей Стивена Джея Гулда, которую он написал, будучи еще студентом. Даже спустя сорок лет эта работа не потеряла значения: Gould, Stephen Jay Allometry and Size in Ontogeny and Phylogeny // Biological Reviews of the Cambridge Philosophical Society 41 (1966): 587–638. История вопроса изложена в статье: Gayon, J. History of the Concept of Allometry // American Zoologist 40 (2000): 748–758. См. также хорошую книгу с многочисленными ссылками: Calder, William A. Size, Function, and Life History. Mineola, N. Y.: Dover, 1996. Известный биолог Джон Боннер написал выдающийся труд о значении размера тела, предназначенный для широкого круга читателей: Bonner, John Tyler Why Size Matters: From Bacteria to Blue Whales. Rev. ed. Princeton, N. J.: Princeton University Press, 2011.
Сложность передвижения в воде для мелких существ описана в статье: Purcell, E. M. Life at Low Reynolds Number // American Journal of Physics 45 (1977): 3–11. Размышления Вента о влиянии размера нашего тела на способности отражены в статье: Went, F. W. The Size of Man // American Scientist 56 (1968): 400–413.
Идеи Престона Клауда изложены им для широкой аудитории: Cloud, Preston Cosmos, Earth, and Man: A Short History of the Universe. New Haven, Conn.: Yale University Press, 1980. В биографии Клауда, изданной Национальной академией наук США, описана его научная деятельность и упоминаются приведенные мною случаи из его жизни: Biographical Memoirs, vol. 67. Washington, D. C.: National Academy Press, 1995.
Общий обзор с большим количеством ссылок о факторах, определяющих размер тела у дрозофил: Oldham, S., et al. Genetic Control of Size in Drosophila // Philosophical Transactions of the Royal Society B 355 (2000): 945–952.
О генах, контролирующих размер тела, и об их сходстве у дрозофил и людей см.: Dong, J., et al. Elucidation of a Universal Size-Control Mechanism in Drosophila and Mammals // Cell 130 (2007): 1120–1133.
Негативная сторона больших размеров тела, особенно у обитателей богатой кислородом среды, подчеркивается в статьях: Zeng, Q., and Hong, W. The Emerging Role of the Hippo Pathway in Cell Contact Inhibition, Organ Size Control, and Cancer Development in Mammals // Cancer Cell 13 (2008): 188–192; Pan, D. The Hippo Signaling Pathway in Development and Cancer // Developmental Cell 19, no. 4 (2010): 491–505; Badouel, C. Garg, A. and H. McNeill Herding Hippos: Regulating Growth in Flies and Man // Current Opinion in Cell Biology 21, no. 6 (2009): 837–843.
Теория движения тектонических плит стала результатом работы многих ученых. Вот несколько замечательных книг о возникновении и истории развития теории континентального дрейфа и движения тектонических плит: Oreskes, N., and H. E. Le Grand, eds. Plate Tectonics: An Insider’s History of the Modern Theory of the Earth. Boulder, Colo.: Westview Press, 2003; Oreskes, Naomi The Rejection of Continental Drift: Theory and Method in American Earth Science. New York: Oxford University Press, 1999; Lawrence, David M. Upheaval from the Abyss: Ocean Floor Mapping and the Earth Science Revolution. New Brunswick, N. J.: Rutgers University Press, 2002.
История жизни Эдуарда Зюсса и его высказывания взяты из некролога, составленного знаменитым американским палеонтологом Чарльзом Шукертом (Science, June 26, 1914, 933–935).
Жизнь, работа и вклад в науку Альфреда Вегенера обсуждаются в книге: McCoy, R. M. Ending in Ice. Oxford: Oxford University Press, 2006.
Запись выступления Мэри Тарп, в котором она рассказывает о своей работе, можно найти на сайте: http://www.aip.org/history/ohilist/22896_1.html.
Одна из классических работ, описывающих накопление данных в поддержку теории континентального дрейфа: Uyeda, Seiya The New View of the Earth. San Francisco: W. H. Freeman, 1978. Хотя эта короткая книга написана более тридцати лет назад, она является прекрасным дополнением и разъяснением материала данной главы. Еще одна книга, с которой стоит ознакомиться: Kearey, Philip, and Frederick J. Vine Global Tectonics. London: Blackwell Science, 1996.
Процитирована следующая статья Фредерика Вайна: Vine, F. J., and D. H. Matthews Magnetic Anomalies over Oceanic Ridges // Nature 199 (1963): 947–949.
Краткую биографию Джона Т. Уилсона можно найти на сайте: http:// gsahist.org/gsat/gt01sept24_25.htm. Тем, кто желает глубже понять материал главы, советую следующие статьи: Wilson, J. T. A Revolution in Earth Science // Geotimes 13 (1968): 10–16; Wilson, J. T. Did the Atlantic Close and Then Reopen? // Nature 211 (1966): 676–681. Увидеть Уилсона, разъясняющего свою теорию, и подробнее узнать об его подходе мож но здесь: http://www.youtube.com/watch?v=OmrXy65O6fY, http:// www.youtube.com/watch?v=fdSwEFyurDY.
О связи между биологией млекопитающих (наличие плаценты, размеры тела и метаболизм) и тектоническими изменениями я узнал из работы Пола Фолковски и его коллег: Falkowski, P., et al. The Rise of Oxygen over the Past 205 Million Years and the Evolution of Large Placental Mammals // Science 309 (2005): 2202–2204. О других аспектах влияния кислорода на историю жизни и процессы на Земле можно узнать из книги: Ward, Peter D. Out of Thin Air: Dinosaurs, Birds, and Earth’s Ancient Atmosphere. Washington, D. C.: Joseph Henry Press, 2006 и статьи: Berner, R. A., et al. Phanerozoic Atmospheric Oxygen // Annual Review of Earth and Planetary Sciences 31 (2003): 105–134.
Об Уильяме Смите читайте в книге: Winchester, Simon Map That Changed the World. New York: Viking, 2001. Идеи Джона Филлипса и его работа описаны в книге: Morrell, Jack John Phillips and the Business of Victorian Science. London: Ashgate, 2005. Чтобы узнать о работах Филлипса из первоисточника, можете посмотреть его Treatise on Geology. Surrey: Ashgate Media, 2001.
Об идеях и трудах Кювье можно прочесть в книге: Rudwick, M. J. S. Georges Cuvier, Fossil Bones, and Geological Catastrophes: New Translations and Interpretations of the Primary Texts. Chicago: University of Chicago Press, 1999.
Концепция вымирания и история ее возникновения изложены во многих книгах и статьях, предназначенных для широкого круга читателей. См. например: Alvarez, Walter T. Rex and the Crater of Doom. New York: Vintage, 1999; Sepkoski, David, and Michael Ruse, eds. The Paleobiological Revolution. Chicago: University of Chicago Press, 2009; Rud-wick, M. J. S. The Meaning of Fossils: Episodes in the History of Paleontology. Chicago: University of Chicago Press, 1985.
О работе Нормана Ньюэлла можно узнать из некролога, напечатанного в Journal of Paleontology 80 (2006): 607–608. См. также его статьи об исчезновении видов: Crises in the History of Life // Scientific American 208 (1963): 76–92; Mass Extinctions at the End of the Cretaceous Period // Science 149 (1965): 922–924.
Пятидесятитомные «Основы палеонтологии беспозвоночных» (Treatise on Invertebrate Paleontology) по-прежнему можно найти в Палеонтологическом институте Канзаса (http://paleo.ku.edu/ pdf/brochure.pdf).
Ньюэлл был одним из тех, кто во всеуслышание заявлял о реальности массовых вымираний. Другим активным сторонником этой идеи был Отто Шиндевольф. Вы можете познакомиться с его статьей: Ursachen der grossen erdgeschichtlichen Faunenschnitte // Neues Jahrbuch f r Geologie und Pala ntologie. Monatshefte (1954): 457–465.
Гипотеза столкновения с астероидом для объяснения событий конца мелового периода обсуждается в книге: Alvarez, Walter T. Rex and the Crater of Doom. New York: Vintage, 1999. Рекомендую также статью: Alvarez, L. W., et al. Extraterrestrial Cause for the Cretaceous-Tertiary Boundary Extinction // Science 208 (1980): 1095–1108.
Другие случаи массового исчезновения животных, выявленные в результате анализа окаменелостей, кажется, не были спровоцированы столкновением небесных тел. Подробное обсуждение этих событий можно найти в следующих работах: Benton, M. J. When Life Nearly Died: The Greatest Mass Extinction of All Time. New York: Thames & Hudson, 2003; Erwin, D. H. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. Princeton, N. J.: Princeton University Press, 2008; McGhee, G. R. The Late Devonian Mass Extinction. New York: Columbia University Press, 1996; Raup, D. M. The Nemesis Affair: A Story of the Death of Dinosaurs and the Ways of Science. New York: Norton, 1999; Ward, P. D. Rivers in Time. New York: Columbia University Press, 2002.
О встрече в Вудсхоуле рассказано в сборнике Paleobiological Revolution под редакцией Сепкоски и Рьюза.
База данных Сепкоски: Sepkoski Jr., J. John A Compendium of Fossil Marine Animal Genera // Bulletins of American Paleontology, 364 (Ithaca, N. Y.: Paleontological Research Institution, 2002), http://strata.geology.wisc.edu/jack/.
В этой базе отражены многие тенденции развитии жизни в океанах. Подробнее об этих тенденциях можно узнать из следующих работ: Sepkoski Jr., J. J. Patterns of Phanerozoic Extinction: A Perspective from Global Data Bases / In: Global Events and Event Stratigraphy. Walliser, O. H., ed. Berlin: Springer, 1996, 35–51; Raup, D. M., and J. J. Sepkoski Jr. Mass Extinctions in the Marine Fossil Record // Science 215 (1995): 1501–1503; Raup, D. M., and J. J. Sepkoski Jr. Periodicity of Extinctions in the Geologic Past // PNAS 81 (1984): 801–805.
Работы Дэвида Яблонски стали предметом обсуждения в замечательной статье Дэвида Куаммена The Weeds Shall Inherit the Earth (Independent, November 22, 1998, 30–39). Оригинальные статьи Яблонски, использованные в этой статье: Jablonski, D. Heritability at the Species Level: Analysis of Geographic Ranges of Cretaceous Mollusks // Science 238 (1987): 360–363; Jablonski, D., and G. Hunt Larval Ecology, Geographic Range, and Species Survivorship in Cretaceous Mollusks: Organismic vs. Species-Level Explanations // American Naturalist 168 (2006): 556–564; Jablonski, D. Extinction and the Spatial Dynamics of Biodiversity // PNAS 105, no. S1 (2008): 11528–11535; Jablonski, D. Lessons from the Past: Evolutionary Impacts of Mass Extinctions // PNAS 98 (2001): 5393–5398.
Вот одна из новейших работ, посвященных корреляции между ростом разнообразия млекопитающих и экологическим вакуумом, возникшим после массового вымирания в конце мелового периода: Meredith, R. W., et al. Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on Mammal Diversification // Science 334 (2010): 521–524.
Знаменитый полет Пола Таджа над Арктикой описан в статье Unearthing a Fossil Forest в журнале «Тайм» от 22 сентября 1986 года. Среди оригинальных работ по данной теме можно назвать следующие: Basinger,
J. F. Early Tertiary Floristics and Paleoclimate in the Very High Latitudes // American Journal of Botany 76, no. S6 (1989): 158; Basinger, J. F. The Fossil Forests of the Buchanan Lake Formation (Early Tertiary), Axel Heiberg Island, Canadian Arctic Archipelago: Preliminary Floristics and Paleoclimate/ In: Tertiary Fossil Forests of the Geodetic Hills, Axel Heiberg Island, Arctic Archipelago // Geological Survey of Canada Bulletin no. 403. Christie,
R. L., and N. J. McMillan, eds. Ottawa: Geological Survey of Canada, 1991, 39–65; Greenwood, D. R., and J. F. Basinger The Paleoecology of High-Latitude Eocene Swamp Forests from Axel Heiberg Island, Canadian High Arctic // Review of Palaeobotany and Palynology 81, no. 1 (1994): 83–97; Greenwood, D. R., and J. F. Basinger Stratigraphy and Floristics of Eocene Swamp Forests from Axel Heiberg Island, Canadian Arctic Archipelago // Canadian Journal of Earth Sciences 30, no. 9 (1992): 1914–1923; Lepage, B. A., and J. F. Basinger Early Tertiary Larix from the Buchanan Lake Formation, Canadian Arctic Archipelago, and a Consideration of the Phytogeography of the Genus / In: Tertiary Fossil Forests of the Geodetic Hills, Axel Heiberg Island, Arctic Archipelago // Geological Survey of Canada Bulletin no. 403. Christie, R. L., and N. J. McMillan, eds. Ottawa: Geological Survey of Canada, 1991, 67–82.
Открытие Колберта в Антарктиде также обсуждалось в прессе. См., например, статью New Life for Gondwanaland в журнале Time от 22 марта 1968 года. Услышать рассказ самого Колберта о его работе в Антарктиде можно здесь: http://www.youtube.com/ watch?v=UNe5SGkQP7Q. Обнаружение листрозавров в Антарктиде описано в статье: Colbert, E. Lystrosaurus from Antarctica // American Museum Novitates 2535 (1974): 1–44.
Парадокс «слабого Солнца» (заключающийся в том, что изменение температуры на Земле не коррелирует с изменением температуры Солнца) впервые был поднят в статье: Sagan, C., and G. Mullen Earth and Mars: Evolution of Atmospheres and Surface Temperatures // Science 177 (1972): 52–56.
Классические работы об углероде, атмосфере и климате, включая труды Аррениуса 1896 года, собраны и прокомментированы в книге: Archer, D. and R. Pierrehumbert, eds. The Warming Papers Hoboken, N. J.: Wiley — Blackwell, 2011.
Знаменитая статья BLaG: Berner, R. A., Lasaga, A. C. and R. M. Garrels The Carbonate-Silicate Geochemical Cycle and Its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years // American Journal of Science 283 (1983): 451–473. Вот одна из важных предшествовавших ей работ (в науке таких предшественников обычно бывает много): Walker, J. C. G., Hays, P. B., and J. F. Kasting A Negative Feedback Mechanism for the Long-Term Stabilization of Earth’s Surface Temperature // Journal of Geophysical Research 86 (1981): 9776–9782. Усовершенствованная модель: Berner, R. A., and Z. Kothavala Geocarb III: A Revised Model of Atmospheric CO2 over Phanerozoic Time // American Journal of Science 301 (2001): 182–204.
Морин Раймо и ее соавторы открыли дебаты по данной теме, опубликовав следующие статьи: Raymo, M. E., Ruddiman, W. F., and P. N. Froelich Influence of Late Cenozoic Mountain Building on Ocean Geochemical Cycles // Geology 16 (1988): 649–653; Raymo, M. E., and W. F. Ruddiman Tectonic Forcing of Late Cenozoic Climate // Nature 359 (1992): 117–122; Raymo, M. E. The Himalayas, Organic Carbon Burial, and Climate in the Miocene // Paleoceanography 9 (1994): 399–404. Эта идея имеет очень глубокие корни и отчасти опирается на работы Чемберлена: Chamberlin, T. C. An Attempt to Frame a Working Hypothesis of the Cause of Glacial Periods on an Atmospheric Basis // Journal of Geology 7 (1899): 545–584, 667–685, 751–787. Полезно также ознакомиться с комментариями Раймо в статье: Raymo, M. E. Geochemical Evidence Supporting T.C. Chamberlin’s Theory of Glaciation // Geology 19 (1991): 344–347. В качестве общего обзора по теме рекомендую книгу: Ruddiman, W. F., ed. Tectonic Uplift and Climate Change. New York: Plenum Press, 1997. Полезна и следующая статья: Zachos, J. C., and L. R. Kump Carbon Cycle Feedbacks and the Initiation of Antarctic Glaciation in the Earliest Oligocene // Global and Planetary Change 47 (2005): 51–66. Среди новых работ, в которых совершается попытка соединить доказательства разного рода, могу назвать статью: Garzione, C. Surface Uplift of Tibet and Cenozoic Global Cooling // Geology 36 (2008): 1003–1004. Геохимические аспекты гипотезы Раймо обсуждаются в статье: McCauley, S. E., and D. DePaolo The Marine 87Sr/86Sr and d18O Records, Himalayan Alkalinity Fluxes and Cenozoic Climate Models / In: Ruddiman, W. F., ed. Tectonic Uplift and Climate Change. New York: Plenum Press, 1997, 428–465.
Классическая работа об изменении уровня углекислого газа со временем: Berner, R. A. Atmospheric Carbon Dioxide Levels over Phanerozoic Time // Science 249, no. 4975 (1990): 1382–1386.
Сорок пять миллионов лет назад закончился жаркий период, названный палеоцен-эоценовым температурным максимумом. Изучением растительности того времени, уровня углекислого газа и других факторов занимались многие ученые. В качестве введения в данную проблему советую следующие работы: McInerney, F. A., and S. L. Wing
The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future // Annual Review of Earth and Planetary Sciences 39 (2011): 489–516; Sluija, A., et al. Subtropical Arctic Ocean Temperatures During the Palaeocene/Eocene Thermal Maximum // Nature 441 (2006): 610–613; Zachos, J. C., et al. A Transient Rise in Tropical Sea Surface Temperature During the Paleocene-Eocene Thermal Maximum // Science 302 (2003): 1151–1154; Kennett, J. P., and L. D. Stott Abrupt Deep-Sea Warming, Palaeoceanographic Changes, and Benthic Extinctions at the End of the Palaeocene // Nature 353 (1991): 225–229; Wing, S. L., et al. Coordinated Sedimentary and Biotic Change During the Paleocene-Eocene Thermal Maximum in the Bighorn Basin, Wyoming, USA / Conference Programme and Abstracts: CBEP 2009, Climatic and Biotic Events of the Paleogene, 12–15 January 2009, Wellington, New Zealand. Strong, C. P., Crouch, Erica M. and C. J. Hollis, eds. Lower Hutt, N. Z.: Institute of Geological and Nuclear Sciences, 2009, 156–162.
О влиянии новых океанических течений на климат Антарктиды см. статью: Kennett, J. P. Cenozoic Evolution of Antarctic Glaciation, the Circum-Antarctic Ocean, and Their Impact on Global Paleoceanography // Journal of Geophysical Research 82 (1977): 3843–3860. Время похолодания в Антарктиде и его связь с океаническими течениями обсуждаются в статье: Anderson, J., et al. Progressive Cenozoic Cooling and the Demise of Antarctica’s Last Refugium // PNAS 108 (2011): 11356–11360.
Статьи Домини о цветовом зрении и рационе питания приматов: Dominy, N., and P. W. Lucas Ecological Importance of Trichromatic Vision to Primates // Nature 410 (2001): 363–366; Dominy, N. Fruits, Fingers, and Fermentation: The Sensory Cues Available to Foraging Primates // Integrative and Comparative Biology 44 (2004): 295–303; Dominy, N., and P. W. Lucas Significance of Color, Calories, and Climate to the Visual Ecology of Catarrhines // American Journal of Primatology 62 (2004): 189–207.
Переносной аналитический набор, разработанный Домини с коллегами, описан в статье: Lucas, P. W., et al. Field Kit to Characterize Physical, Chemical, and Spatial Aspects of Potential Primate Foods // Folia Primatologica 72, no. 1 (2001): 11–25.
История проекта Iceworm и Кэмп-Сенчури описана в статье: Weiss, E. D. Cold War Under the Ice: The Army’s Bid for a Long— Range Nuclear Role, 1959–1963 // Journal of Cold War Studies 3, no. 3 (Fall 2001): 31–58.
Изучение причин наступления ледниковых периодов и следов климатических изменений, запечатленных в толще льда, описано в нескольких замечательных научных книгах: Imbrie, J., and K. P. Imbrie Ice Ages: Solving the Mystery. Cambridge, Mass.: Harvard University Press, 1986; Alley, R. B. The Two-Mile Time Machine: Ice Cores, Abrupt Climate Change, and Our Future. Princeton, N. J.: Princeton University Press, 2002; Macdougall, D. Frozen Earth: The Once and Future Story of Ice Ages. Berkeley: University of California Press, 2006. Все эти три труда обладают лучшими качествами научной литературы: они авторитетны, интересны и содержат обширный список литературы по теме. Тщательное изучение кернов льда, описанное в книге Two-Mile Time Machine, позволило обнаружить ряд климатических циклов и событий в океанах, каждое из которых получило собственное название: цикл Дансгора — Эшгера, цикл Бонда, события Гейнриха и циклы Макейела. В соответствии с изменениями ледников, океанических течений и ветров климат может изменяться в широких пределах. Мы не имеем пока полного представления о связи этих глобальных процессов.
О влиянии ледниковых периодов на историю человечества рассказывает книга: Fagan, B. The Little Ice Age: How Climate Made History, 1300–1850. New York: Basic Books, 2001. А вот замечательный рассказ о том, как ледниковые периоды изменили пейзаж планеты: Pielou, E. C. After the Ice Age: The Return of Life to Glaciated North America. Chicago, University of Chicago Press, 1991.
Работы Либби и Юри обсуждаются в замечательной книге: Macdougall, Doug Nature’s Clocks: How Scientists Measure the Age of Almost Everything. Berkeley: University of California Press, 2008.
О Дороти Гэррод можно прочесть в статье: Smith, P. J. Dorothy Garrod as the First Woman Professor at Cambridge University // Antiquity 74 (2000): 131–136.
Роль климатических изменений и натуфийской культуры в появлении земледелия продолжает оставаться предметом научных споров. Классическая точка зрения изложена в статьях: Bar-Yosef, O. The Natufian Culture in the Levant, Threshold to the Origins of Agriculture // Evolutionary Anthropology 6, no. 5 (1998): 159–177; Bar-Yosef, O., and
A. Belfer-Cohen The Origins of Sedentism and Farming Communities in the Levant // Journal of World Prehistory 3 (1989): 447–498. Другие мнения на этот счет, включая противоположные, обсуждаются в статье: Balter, M. The Tangled Roots of Agriculture // Science 327 (2010): 404–406.
О влиянии рациона питания на геном человека и особенно о роли перехода к земледелию говорится в книге: Wells, S. Pandora’s Seed: The Unforeseen Cost of Civilization. New York: Random House, 2010. Знаменитая статья о действии отбора на человеческий геном: Voight, B. F., Kudaravalli, S., Wen, X. and J. K. Pritchard A Map of Recent Positive Selection in the Human Genome // PLoS Biology 4, no. 3 (2006). Я также советую статью: Sabetiet, P., al. Genome-wide Detection and Characterization of Positive Selection in Human Populations // Nature (2007): 913–988; Wilson, D. J., et al. A Population Genetics-Phylogenetic Approach to Inferring Natural Selection in Coding Sequences // PLoS Genetics 7, no. 12 (2011).
Роль климатических изменений в происхождении и ранней эволюции человека и его ближайших родственников обсуждалась на конференции на эту тему: Understanding Climate’s Influence on Human Evolution. Washington, D. C.: National Academies Press, 2010. В этом сборнике множество работ об изучении климата. Советую также ознакомиться со статьей: Cerling, T. E., et al. Woody Cover and Hominin Environments in the Past 6 Million Years // Nature 476 (2011): 51–56.
Обнаруженные в Чаде окаменелые остатки гоминид описаны в статье: Brunet, M. A New Hominid from the Upper Miocene of Chad, Central Africa // Nature 418 (2002): 145–151; Brunet, M., et al. New Material of the Earliest Hominid from the Upper Miocene of Chad // Nature 434 (2005): 752–755. Новейшие данные о прямохождении предков человека, обитавших в Кении, представлены в статье: Richmond, B., et al. Orrorin tugenensis Femoral Morphology and the Evolution of Hominin Bipedalism // Science 319, no. 5870 (2008): 1662–1665. Общую информацию об ископаемых предках человека можно найти в следующих книгах: Gibbons, A. The First Human. New York: Doubleday, 2006; Johanson, D. C., and K. Wong Lucy’s Legacy: The Quest for Human Origins. New York: Harmony Books, 2009.
Идеи Роберта Мертона об авторстве изобретений отразились в статьях: Merton, R. K. Singletons and Multiples in Scientific Discovery: A Chapter in the Sociology of Science // Proceedings of the American Philosophical Society 105, no. 5 (1961): 470–486; Merton, R. K. Priorities in Scientific Discovery: A Chapter in the Sociology of Science // American Sociological Review 22, no. 6 (1957): 635–659.
О законе Стиглера можно прочитать в работе: Stigler, S. Stigler’s Law of Eponymy / In: Science and Social Structure: A Festschrift for Robert K. Merton. Gieryn, T. F., ed. New York: New York Academy of Sciences, 1980, 147–158.
О влиянии растений на развитие жизни на планете можно узнать из книг: Beerling, D. The Emerald Planet: How Plants Changed Earth’s History. Oxford: Oxford University Press, 2007; Burger, W. C. Flowers: How They Changed the World. Amherst, N. Y.: Prometheus Books, 2006.
Статья Стивена Стирнса о действии отбора на современных людей: Stearns, S. C., et al. Measuring Selection in Contemporary Human Populations // Nature Reviews Genetics 11 (2010): 611–622.
Благодарности
Мое желание проникнуть в мир науки проистекло от просмотра телепередач о полетах кораблей «Аполлон», от походов по музеям естественной истории и от чтения книг таких писателей, как Карл Саган и Джейкоб Броновский. Пока я рос, мои родители Сеймур и Глория Шубин поддерживали все мои сиюминутные увлечения — от коллекционирования камней и черепков до изучения телескопов и метеоритов — и не задавали никаких вопросов. Они поощряли мое любопытство, позволив ему перерасти в любопытство ученого.
Каллиопи Монойос, выполнившая иллюстрации в данной книге, обладает всеми теми качествами, которых вы ждете от иллюстратора научных книг: она является специалистом в области естественных наук, обладает острым и критическим взглядом и способностью к творчеству. Она помогла мне передать сложные идеи в виде простых образов. Мне повезло, что она работала последние одиннадцать лет в нашей лаборатории. Теперь она открыла собственную студию. С ее работами можно ознакомиться на сайтах: www.kalliopimonoyios.com и blogs.scientificamerican.com/symbiartic.
Мне повезло участвовать в экспедициях с такими замечательными людьми, как Фариш А. Дженкинс-младший, Билл Эймерал, Пол Олсен, Тед Дешлер, Джейсон Доунс, Чак Шафф. Один из приятных аспектов работы над книгой заключался в возвращении в памяти к тем замечательным моментам, которые мы пережили вместе во время экспедиций в Гренландию, Марокко, Канаду и на остров Элсмир.
Я благодарю всех бывших и нынешних сотрудников моей лаборатории, помогавших мне и терпевших меня в процессе работы над книгой: Рэнди Дана, Маркуса Дэвиса, Адама Франссена, Надю Фребиш, Эндрю Джерка, Эндрю Жиллиса, Кристиана Каммерера, Жюстин Лемберг, Капи Монойос, Джойс Пьеретти, Игоря Шнейдера, Беки Ширман, Наталию Тафт и Джона Вестланда.
За советы, комментарии и ответы на вопросы я благодарю Билла Эймерала, Джеймса Баллока, Робина Кенапа, Шона Кэрролла, Майкла Коатеса, Анну Ди Ренцо, Джона Флинна, Дэвида Гозала, Лэнса Гранде, Дэвида Яблонски, Сьюзен Кидуэлл, Энди Нолла, Майкла Лабербера, Дэна Либермана, Дэниеля Марголиша, Пола Олсена, Кевина Райтера, Каллума Росса, Дэвида Роули, Пола Серено, Майкла Тернера, Марка Вебстера и Майка Юнга. Елена Скози-Лейлонд помогала мне проверять информацию во время летних каникул в Чикагском университете. Фред Сиесла терпеливо отвечал на вопросы о происхождении планеты, когда по утрам мы вели в детский сад дочерей. Нэт Домини поделился со мной воспоминаниями о своей работе в Уганде. Лоуренс Краусс любезно согласился рассказать о Большом взрыве и образовании звезд, чем спас меня от неприятных ошибок. Сеймур Шубин, Майкл Сейдл, Каллиопи Монойос, Эндрю Джерк, Джойс Пьеретти и Джон Вестланд прочли и прокомментировали рукопись книги. Я очень благодарен им. За оставшиеся в тексте ошибки ответственность несу я.
Некоторые затронутые в книге вопросы возникли в ходе моего общения со студентами. Студенты-первокурсники из Университета Монтаны, Университета Пенсильвании и колледжа Скидмор — не только благодарные, но и очень заинтересованные слушатели, вопросы которых вдохновляли меня во время работы над книгой. То же относится и к учащимся многих школ, включая школу им. Эдлая Э. Стивенсона, школу Доунерс-Гроув-Норт, школу им. Фрэнсиса У. Паркера и экспериментальную школу при Чикагском университете. Некоторые из изложенных в книге идей я также обсуждал со студентами на факультативе в Чикагском университете.
Постоянную поддержку в работе мне оказывали мои агенты Катинка Мэтсон, Джон Брокман, Макс Брокман и Рассел Вейнбергер. Дэн Франк и Марти Эшер образовали мощную редакторскую группу, помогая мне довести до конца работу над текстом. Джилл Верильо и Эллен Фельдман при помощи Ингрид Стернер, Терезы Гардштейн и Дженны Баньини, приложив героические усилия, подготовили рукопись к изданию. Мне было очень приятно работать со всей группой из издательства «Пантеон».
Моя жена Мишель выдерживала мои исчезновения из дому по выходным и бесконечные рассуждения о «компьютерах Гарварда», Мэри Тарп и цирконе. Она прочла бесчисленные варианты всех глав, включая те, что в итоге оказались в корзине. Ее терпение, ум и любовь позволили мне осуществить задуманное. Мишель и наши дети Ханна и Натаниэль — мои глубокие связи с Вселенной, которым я не устаю радоваться каждый день.
Иллюстрации
Все рисунки, не перечисленные ниже, выполнила Каллиопи Монойос.
18 Члены гренландской экспедиции. Фотографии предоставлены Биллом Эймералом. Печатается с разрешения.
32 «Живые компьютеры Гарварда» (1913). Фотография предоставлена Гарвардской обсерваторией. Печатается с разрешения.
51 Фотография Беты Живописца предоставлена Европейской южной обсерваторией. Печатается согласно лицензии: http://creativecommons.org/licenses/by/3.0.
63 Фотография каньона Зайон выполнена Джорджем Александром Грантом для Службы национальных парков (не является объектом авторского права). Фотография кратера Виктория на Марсе — НАСА, Лаборатория реактивного движения Калифорнийского технологического института, Корнелльский университет. Изображение не является объектом авторского права. 87 Портрет Сеймура Бензера предоставлен архивом Калифорнийского технологического института. Печатается с разрешения.
95 Фотографии надгробных памятников с кладбища в Хиндостане предоставлены Геологическим обществом штата Индиана. Печатаются с разрешения.
99 Портрет Элсо Баргхорна предоставлен архивом Гарвардского университета. Печатается с разрешения.
105 Портрет Антони ван Левенгука кисти Яна Верколье. Изображение не является объектом авторского права. Изображение микроскопа Левенгука предоставлено Майклом Дэвидсоном из Университета Флориды. Печатается с разрешения.
106 Портрет Галилео Галилея работы Доменико Крести по прозвищу Пассиньяно. Не является объектом авторского права. Рисунок Галилея (1638). Изображение не является объектом авторского права.
111 Портрет Престона Клауда любезно предоставлен Отделом особых коллекций Библиотеки им. Дэвидсона, Калифорнийский университет в Санта-Барбаре. Печатается с разрешения.
121 Фотография отпечатка листа Glossopteris предоставлена Шведским музеем естественной истории. Фотограф Ивонн Арремо. Печатается с разрешения.
123 Портрет Альфреда Вегенера предоставлен Институтом им. Альфреда Вегенера в Германии. Печатается с разрешения.
126 Портрет Гарри Гесса предоставлен факультетом геологии и геофизики Принстонского университета. Печатается с разрешения.
128 Фотография Брюса Хейзена и Мэри Тарп из архива Мэри Тарп, предоставлена Фионой Шиано-Якопина. Печатается с разрешения.
130 Карта Брюса Хейзена и Мэри Тарп. Выполнена Генрихом Беранном. Печатается с разрешения.
136 Портрет Джона Т. Уилсона предоставлен Научным центром Онтарио (www.ontariosciencecentre.ca). Печатается с разрешения.
144 Скалы Новой Шотландии. Фотографии автора.
146 Уильям Смит. Портрет Хьюго Фуро. Не является объектом авторского права. Фотография Джона Филипса (1907). Не является объектом авторского права. Карта Смита (1815). Изображение не является объектом авторского права.
166 Фотография ископаемого леса (автор — Лин Энглин) предоставлена Геологической службой Канады и воспроизводится с разрешения Министерства природных ресурсов Канады (2011). Фотография окаменелой древесины взята из статьи: Kaelin et al. Comparison of Vitrified and Unvitrified Eocene Woody Tissues by TMAH Thermochemolysis — Implications for the Early Stages of the Formation of Vitrinite // Geochemical Transactions 7 (2006): 9. Печатается согласно лицензии: http://creativecommons.org/licenses/by/2.0.
185 Фотографии Кэмп-Сенчури из статьи Kovacs, A. Camp Century Revisited: A Pictorial View 1969 // Cold Regions Research and Engineering Laboratory Special Report 150 (July 1970): 44, 49. Изображение не является объектом авторского права.
188 Фотография Луи Агассиса (ок. 1860 г.). Изображение не является объектом авторского права.
191 Портрет Джеймса Кролла (автор неизвестен), опубликованый в журнале Popular Science Monthly 51 (August 1897): 445. Изображение не является объектом авторского права.
193 Портрет Милутина Миланковича работы Павла (Паи) Йовановича (1859–1957). Изображение не является объектом авторского права.
205 Фотография Дороти Гэррод предоставлена г-жой Кеннеди Шоу и ее дочерью г-жой Каролиной Беркитт. Фотография принадлежит Памеле Джейн Смит и воспроизводится с ее разрешения.
Предметно-именной указатель
Австралия 118
и континентальный дрейф 122, 123, 137, 167, 176
хребет Джек-Хиллс 54, 56, 229
Агассис, Жан Луи Родольф 186–190, 191, 201