(Не)совершенная случайность. Как случай управляет нашей жизнью Млодинов Леонард
Как я уже говорил, такой ход рассуждений применим не только к играм, будь они спортивными или азартными. К примеру, соперничают две компании или же два сотрудника одной компании, причем соперничество проходит почти на равных. Одержавший верх и потерпевший поражение могут выявляться раз в квартал или раз в год, однако чтобы получить точный ответ на вопрос, какая компания или какой сотрудник сильнее, путем простого сравнения — кто кого — нужно сравнивать десятилетиями, а то и столетиями. Например, если сотрудник А действительно сильнее и в скором времени продемонстрирует лучшие производственные показатели по сравнению с сотрудником В в 60 случаях из 100, в простых сравнениях из 5 исходов сотрудник послабее тем не менее одержит верх почти в одной трети случаев. Так что крайне ненадежно оценивать способности по краткосрочным результатам.
Во всех этих задачах подсчет достаточно прост и особых усилий не требует. Однако когда речь заходит о действительно больших числах, произвести подсчеты сложнее. К примеру, рассмотрим такую задачу. Вы занимаетесь приготовлениями к свадебному банкету на 100 человек, каждый из столиков рассчитан на 10 гостей. Вы не можете посадить двоюродного брата Рода с вашей подружкой Эми, потому что восемь лет назад они встречались, и Эми дала Роду отставку. С другой стороны, и Эми, и Летиция хотят сидеть рядом с другим вашим двоюродным братом, душкой Бобби, а вот тетю Рут надо от них отсадить, иначе потом все эти заигрывания еще лет пять будут предметом обсуждений на семейных сборищах. Итак, вы тщательно взвешиваете вероятности. Возьмем для начала первый столик. Сколькими способами можно из 100 гостей выбрать 10? Вопрос очень похож на следующие: сколько существует способов, чтобы разместить 10 инвестиционных пакетов между 100 инвестиционными фондами, или же распределить 10 атомов германия в 100 позициях кремниевого кристалла? Задача такого рода периодически всплывает в теории случайности, и не только в приложении к проблеме очков. Однако в случае с большими числами утомительно, а то и попросту невозможно подсчитывать вероятности, составляя из них список. Вот в чем истинное достижение Паскаля: общеприменимый и систематический подход к подсчету, позволяющий получить ответ путем расчетов по формуле или вывести его из табличных значений. Подход основан на любопытном расположении чисел — в форме треугольника.
Вычислительный метод, лежащий в основе работы Паскаля, в действительности был открыт китайским математиком Цзя Сянем около 1050 г., а опубликован другим китайским математиком, Чжу Шицзе, в 1303 г., и только после этого стал частью более великого — теории вероятностей Паскаля, который в конечном счете и стяжал лавры славы{75}. Однако предшествовавшие труды Паскаля не заботили. «Пусть не говорят, будто я ничего нового не сказал, — возражает в автобиографии Паскаль. — Новое в построении. Когда мы играем в теннис, мы оба ударяем по одному и тому же мячу, однако один из нас посылает его лучше другого»{76}. Данное ниже графическое изобретение называется «треугольником Паскаля». На рисунке я прервал треугольник — последний ряд у него 10, однако он может продолжаться до бесконечности. В действительности, нет ничего проще, поскольку за исключением 1 в вершине треугольника каждое число является суммой чисел рядом выше слева и справа (прибавьте 0, если в верхнем ряду справа или слева чисел нет).
Треугольник Паскаля
Треугольник Паскаля пригождается всякий раз, когда нужно выяснить количество способов, посредством которых находится некоторое число предметов из общего числа, равного выбираемому числу или превосходящее его. Вот как использовать треугольник при решении задачи о свадебном банкете. Чтобы найти число размещений гостей по 10 человек при их общем количестве в 100, начнем с того, что спустимся по треугольнику до ряда, обозначенного как 100. У треугольника, приведенного мной, такого ряда нет, он заканчивается рядом 10, однако предположим, что наш треугольник продолжен до ряда 100. Первое число в ряду 100 указывает на количество способов, которыми вы можете выбрать 0 гостей из группы в 100 человек. Способ тут, разумеется, один — вы просто-напросто никого не выбираете. Это верно для какого угодно количества гостей в группе, вот почему первое число в каждом ряду — 1. Второе число в ряду 100 обозначает количество способов, которыми можно выбрать 1 гостя из 100. Способов этих 100: можно выбрать гостя номер 1, либо гостя номер 2, ну и так далее. Подобный ход рассуждений применим к каждому ряду, таким образом, второе число в каждом ряду является просто-напросто числом этого самого ряда. Третье число в каждом ряду обозначает число разных вариантов распределения групп из 2 человек. И так далее. Искомое число — варианты распределения групп по 10 человек — таким образом одиннадцатое по счету в ряду. Даже если бы я продлил треугольник до 100 ряда, число оказалось бы слишком большим, чтобы поместиться на странице. И вообще, когда кто-либо из гостей на свадьбе жалуется, что его не туда посадили, можете объяснить, что вычисление всех возможных вариантов посадки заняло бы у вас слишком много времени: исходя из секунды на каждый вариант, пришлось бы потратить около 10 000 млрд лет. Недовольный гость, конечно же, решит, что вы попросту драматизируете.
Чтобы в самом деле воспользоваться треугольником Паскаля, сократим список гостей до 10 человек. Тогда нужный нам ряд как раз будет нижним, надписанный числом 10. Числа в этом ряду обозначают отдельные столики на 0, 1, 2 и так далее из группы в 10 человек. Эти числа вам уже знакомы из задачи про шестиклассников, которым дали контрольную работу — число вариантов неверных ответов ученика на все десять вопросов работы равно числу способов, посредством которых выбираются гости из группы в 10 человек. Такова одна из сильных сторон треугольника Паскаля: одни и те же математические вычисления применимы к разным ситуациям. В случае задачи, где «Янки» и «Смельчаки» боролись за победу в Мировой серии, мы производили утомительные подсчеты всех возможных ситуаций для 5 оставшихся игр. Теперь же узнать число способов, какими «Янки» могут выиграть 0, 1, 2, 3, 4 или 5 игр, можно прямо из ряда 5 треугольника:
Мы с первого взгляда видим, что шанс «Янки» выиграть 2 игры (10 способов) в два раза больше, чем шанс выиграть 1 игру (5 способов).
Стоит вам только познакомиться с данным методом вычислений, как вы заметите: треугольник Паскаля применим во многих случаях. Одно время моя знакомая работала в недавно созданной компании, занимавшейся компьютерными играми. Она рассказывала: начальник маркетингового отдела хотя и соглашался насчет того, что небольшие фокус-группы подходят «только для заключений относительно качества», тем не менее часто говорил о «поразительном» единодушии (4 против 2 или 5 против 1) между членами фокус-группы так, будто оно имело значение. Однако предположим, что в вашей фокус-группе 6 человек высказывают свое мнение о новинке, которую вы разрабатываете. Предположим, что в действительности новинка приходится по душе половине населения. Насколько точно данное предпочтение будет отражено в вашей фокус-группе? Теперь нужный нам ряд треугольника — ряд 6, представляющий число возможных подгрупп как 0, 1, 2, 3, 4, 5 или 6, членам которых ваша новинка может понравиться или не понравиться:
Мы видим, что мнения членов фокус-группы могут разделиться поровну, точно отражая мнение населения, в общем, 20 разными способами. Однако существуют также и 1+6+15+15+6+1=44 способа, которыми можно вычислить нерепрезентативное единодушие: либо «за», либо «против». Поэтому если вы не будете внимательны, шансы сбиться с пути равны 44 из 64, то есть двум третям. Этот пример вовсе не означает: если между членами группы достигнуто согласие, оно случайно. Но и значительным его считать тоже не стоит.
Анализ, произведенный Паскалем и Ферма, оказался первым серьезным шагом на пути к связной математической теории случайности. Последнее письмо из их знаменитой переписки датируется 27 октября 1654 г. Через несколько недель Паскаль испытал нечто, погрузившись на два часа в транс. Одни считают, что это был мистический опыт. Другие — что Паскаль в конце концов оторвался от планеты под названием Разум. Однако, как бы кто ни объяснял происшедшее, Паскаль после пережитого стал другим человеком. Это его преображение способствовало еще одному значительному вкладу в развитие идеи случайности.
В 1662 г., через несколько дней после смерти Паскаля, его слуга заметил, что один карман куртки господина подозрительно оттопыривается. Слуга распорол подкладку и нашел свернутые листы пергамента и бумаги. Видимо, последние восемь лет жизни Паскаль носил их с собой. На листах его рукой были нацарапаны отдельные слова и фразы, датированные 23 ноября 1654 г. Они представляли собой эмоциональное описание того самого состояния транса: Паскаль рассказывал, как Господь в течение двух часов наставлял его на путь истинный.
В итоге Паскаль перестал общаться почти со всеми своими друзьями, называя их «отвратительными привязанностями»{77}. Он продал свой экипаж, лошадей, мебель, библиотеку… все, оставил только Библию. Деньги раздал беднякам, оставив себе до того мало, что зачастую вынужден был просить милостыню или занимать, чтобы не умереть с голоду. Он носил на себе железный, с шипами на внутренней стороне пояс: когда он ловил себя на том, что испытывает счастье, затягивал пояс потуже. Паскаль бросил занятия математикой и наукой вообще. О своем юношеском увлечении геометрией он писал: «Я едва помню о существовании этой самой геометрии. Она видится мне до того бесполезной… вероятнее всего, я никогда больше не вспомню о ней»{78}.
Однако все это время Паскаль отнюдь не бездействовал. Испытав состояние транса, он в последующие годы записывал свои мысли о Боге, религии, жизни. Мысли эти позднее были опубликованы в книге под названием «Мысли о религии и других предметах» — труд до сих пор переиздается. И хотя Паскаль отрекся от математики, его взгляд на мирскую жизнь и есть математическое обоснование, во время которого он упражнялся в математической вероятности на примере вопросов о теологии — вклад такой же значительный, как и ранняя работа над задачей на тему очков.
Математическое в «Мыслях» изложено на двух листах манускрипта, исписанных с обеих сторон неровным почерком, с большим количеством исправлений. На этих страницах Паскаль подробно изложил анализ «за» и «против» моральных обязательств человека перед Богом, причем сделал это так, будто математикой поверял мудрость заключившего пари. Новаторство было в методе Паскаля, с помощью которого уравнивались «за» и «против» — в наше время это понятие называется математическим ожиданием.
Аргумент Паскаля был таким. Предположим, вы допускаете, что не знаете наверняка, существует Бог или нет, и таким образом шансы вероятности каждого предположения примерно равны — 50% и 50%. Каким образом вы можете взвесить шансы, чтобы решить, стоит или не стоит вести жизнь добродетельную? Если вы будете жить, соблюдая добродетельность, и если Бог существует, писал Паскаль, то ваш выигрыш — вечная жизнь — бесконечно велик. С другой стороны, если Бог не существует, ваш проигрыш, то есть невозможность возвращения на землю, невелик — можно снизить расходы на обряды, посты и всяческие ограничения. Чтобы сравнить возможные выгоды и потери, Паскаль предложил умножить вероятность каждого возможного исхода на его результат и все их сложить, приходя к среднему или же ожидаемому результату. При умножении пусть даже большой вероятности, что Бога нет, на небольшую ценность приза получается величина возможно и большая, но всегда конечная. При умножении любой конечной, даже очень маленькой, вероятности, что Бог окажет человеку милость за его добродетельное поведение, на бесконечно большую ценность приза получается бесконечно большая величина. Паскаль немало знал о бесконечности, чтобы осознавать: результат этих вычислений бесконечен, так что ожидаемый выигрыш от добродетельного поведения бесконечно положителен. Таким образом, Паскаль заключал: любой разумный человек будет следовать законам божьим. В наше время это утверждение известно как «пари Паскаля».
Ожидание — важное понятие не только в азартных играх, но и во всем, что связано с принятием решений. Зачастую «пари Паскаля» считают основой такого раздела математики как теория игр — количественное исследование стратегий оптимального решения в играх. Должен заметить, подобные размышления вызывают привыкание, поэтому я иногда захожу слишком далеко. «Сколько стоит этот парковочный счетчик?» — спрашиваю я у своего сына. Вывеска гласит: 25 центов. Это так, однако 1 раз в 20 или около того приездов я прихожу поздно и нахожу талон на 40 долларов, так что 25 центов на самом деле жестокая приманка, объясняю я, потому что моя реальная плата равна 2 долларам 25 центам. (Дополнительные 2 доллара выходят благодаря 1 из 20 шансов получить талон, умноженный на его стоимость в 40 долларов.) «А что ты скажешь насчет нашей подъездной аллеи? — спрашиваю я другого своего сына. — Ее можно назвать платной?». Дело в том, что мы прожили в нашем доме лет 5 или же 2400 раза отъезжали от дома по аллее задом, и 3 раза я задевал зеркалом за торчащий столб ограды, что каждый раз обходилось мне в 400 долларов. С таким же успехом можешь установить на столбе аппарат по сбору платы и каждый раз, выезжая задом, бросать 50 центов, отвечает мне сын. Он понимает, что такое ожидание. (А еще советует мне не везти их с братом в школу, пока я не выпью свою чашечку кофе.)
Если смотреть на мир через объектив математического ожидания, можно стать свидетелем удивительного. Например, недавняя лотерея, которую распространяли по почте, сулила выигрыш в 5 млн долларов{79}. Только и нужно было, что сделать ставку по почте. Делать ставки можно сколько угодно, только высылать их нужно каждую отдельно. Видимо, спонсоры ожидали что-то около 200 млн, потому что внизу мелкими буквами указывалось: шансы на выигрыш равны 1 из 200 млн. Стоит ли принимать участие в таких вот «бесплатных лотереях»? Умножая вероятность выигрышных разов на выигрыш, получаем, что каждая ставка равна 1 /40 доллара или 2,5 центам — это гораздо меньше, чем почтовые расходы при отправке. В действительности, больше всех в этой лотерее выигрывает почта, которая, при условии правильности предполагаемых показателей, должна получить почти 80 млн со всех почтовых отправлений.
А вот еще одна сумасшедшая игра. Предположим, администрация Калифорнии объявит населению штата следующее: все те, кто вложит доллар-другой, ничего не приобретут, однако один получит целое состояние, а еще один будет лишен жизни жестоким способом. Кто-нибудь решится сыграть в такую игру? Еще как решится! Называется эта игра «государственная лотерея». И хотя государство рекламирует игру совсем не так, как это только что сделал я, на самом деле именно так все и происходит. В каждой игре один счастливчик получает крупную сумму, а миллионы других участников ездят к продавцам билетов, и при этом некоторые погибают в автокатастрофах. Если обратиться к статистике государственной дорожной инспекции и прикинуть, как далеко приходится ездить за билетом каждому из участников, сколько каждый из участников покупает билетов и сколько людей оказываются жертвами типичных аварий на дорогах, получится, что допустимое число несчастных случаев равно примерно одной смерти на игру.
Администрация штата обычно не принимает в расчет доводы о возможных негативных последствиях лотерей. И это потому, что в большинстве своем они достаточно осведомлены о математическом ожидании, чтобы рассчитать: на каждый купленный билет ожидаемые выигрыши — общая сумма призовых денег, поделенная на число купленных билетов — меньше стоимости одного билета. Обычно получается недурная сумма, которая перекочевывает в государственные закрома. Однако в 1992 г. некоторые инвесторы в австралийском Мельбурне заметили, что в Вирджинской лотерее этот принцип нарушается{80}. По условиям игры необходимо выбрать 6 чисел из группы от 1 до 44. Если бы нам удалось настолько продлить треугольник Паскаля, мы бы увидели, что существует 7 059 052 способов выбрать 6 чисел из группы от 1 до 44. Лотерейный джекпот составлял 27 млн долларов, а если считать вместе со вторым, третьим и четвертым призами, то и все 27 918 561 доллар. Сообразительные инвесторы возразили: если купить один билет с каждой из возможных 7 059 052 числовых комбинаций, стоимость этих билетов будет равна сумме джекпота. Значит, каждый билет будет стоить около 27,9 млн долларов разделенные на 7 059 052, то есть около 3,95 долларов. А по какой цене администрация штата Вирджиния, при всей ее мудрости, продает билеты? Как обычно: по 1 доллару.
Австралийские инвесторы быстро нашли 2 500 мелких инвесторов в Австралии, Новой Зеландии, Европе и США, каждый из которых согласился вложить в среднем по 3 тыс. долларов. Если все рассчитано правильно, примерный доход от этих вложений — 10 800 долларов. Однако план содержал в себе кое-какие риски. Во-первых, так как не они одни покупали билеты, существовала вероятность, что другой, и даже не один, а несколько окажутся с выигрышным билетом, то есть, выигрыш придется делить. Лотерея проводилась уже 170 раз; в 120 случаях победителя не оказывалось, в 40 случаях оказывался один победитель и лишь в 10 случаях — два. Если подобная частотность точно отражала ситуацию с шансами, тогда следовало, что в 120 случаях из 170 инвесторы получили бы весь выигрыш, в 40 случаях из 170 у них оказалась бы только половина, а в 10 случаях из 170 — лишь треть. Подсчитывая ожидаемый выигрыш с помощью принципа математического ожидания Паскаля, они пришли к следующей цифре: (120/17027,9 млн долларов) + (40/17013,95 млн долларов) + (10/1706,975 млн долларов) = 23,4 млн долларов. А это 3,31 доллара за билет — неплохой доход с 1 доллара, даже после всех затрат.
Но существовала и другая опасность: кошмар службы логистики в связи с завершением выкупа всех билетов к окончанию срока розыгрыша. Могли потребоваться существенные незапланированные расходы, а значительную призовую сумму можно было так и не получить.
Члены инвестиционной группы тщательно подготовились. Они от руки, как того требуют правила, заполнили 1,4 млн билетов: каждый билет участвовал в пяти розыгрышах. В 125 торговых точках расставили выкупщиков и заручились поддержкой продуктовых магазинов, которые получали доход с каждого проданного билета. Схема была запущена за трое суток до завершения лотереи. Служащие магазинов работали посменно, чтобы успеть продать как можно больше билетов. В одном магазине за последние двое суток продали 75 тыс. билетов. Другой магазин, сетевой, принял банковских чеков на 2,4 млн билетов, распределил работу по печатанию билетов между своими торговыми точками и нанял курьеров, чтобы собрать их. И все-таки под конец группе не хватило времени: они купили всего 5 млн билетов из 7 059 052.
Прошло несколько дней с момента объявления выигрышного билета, но за выигрышем никто не явился. Выиграл консорциум инвесторов, однако им пришлось ждать в течение нескольких дней, чтобы удостовериться в этом. Затем, когда чиновникам от государственной лотереи стало известно, что выиграл консорциум, они стали уклоняться от выплаты призовых денег. Последовал целый месяц пререканий между юристами той и другой сторон, пока чиновники не признали: у них нет веских причин для отказа в выплате. В конце концов, инвесторы свой выигрыш получили.
Изучая понятие случайности, Паскаль обогатил науку своими идеями в отношении расчетов, а также понятием математического ожидания. Интересно, какие еще открытия совершил бы Паскаль, не брось он занятия математикой, не пошатнись его здоровье. Однако ничего больше не произошло. В июле 1662 г. Паскаль тяжело заболел. Врачи предписали традиционные для того времени средства: кровопускания, бесконечные очищения организма, клизмы, рвотные. На некоторое время ему стало лучше, но потом болезнь вернулась, а с ней и сильные головные боли, головокружения, судороги. Паскаль дал обет: если поправится, посвятит свою жизнь помощи бедным. Он попросил перевести его в клинику для неизлечимо больных — в случае своей скорой смерти он хотел быть среди них. Паскаль в самом деле умер — несколько дней спустя, в августе 1662 г. Ему было тридцать девять. Вскрытие показало, что причиной смерти было кровоизлияние в мозг. Кроме того, обнаружились патологические изменения в печени, желудке, кишках, чем и объяснялись болезни, терзавшие Паскаля всю жизнь.
Глава 5
ПРОТИВОСТОЯНИЕ ЗАКОНОВ БОЛЬШИХ И МАЛЫХ ЧИСЕЛ
В своих работах Кардано, Галилей и Паскаль предположили, что вероятности, соотносимые с задачами, за которые они взялись, уже известны. Например, Галилей предположил, что кость может с равным успехом упасть любой из шести сторон. Однако насколько «прочно» это знание? Возможно, кости герцога были сделаны таким образом, чтобы не отдавать предпочтение ни одной стороне, однако это не значит, что справедливость была на самом деле достигнута. Галилей мог проверить свое предположение путем наблюдений за бросками костей и последующей записи того, как часто кости падали той или иной стороной. Однако если бы он повторил эксперимент несколько раз, он, вполне возможно, обнаружил бы, что каждый раз результаты несколько разнятся, и даже небольшие отклонения могут оказаться значительными, в особенности, если иметь в виду ту крошечную разницу, которую его попросили объяснить. Чтобы ранняя работа из области теории случайности могла быть применена в реальном мире, необходимо задуматься над следующим вопросом: какова связь между неявными вероятностями и наблюдаемыми результатами? Когда мы говорим: шансы того, что кость упадет на 2, равны 1 из 6, что мы имеем в виду с практической точки зрения? Если это не значит, что при любой серии бросков кость упадет на 2 аккурат 1 раз из 6, то на чем тогда основывается наша уверенность, будто шансы бросить кость и получить 2 в самом деле равны 1 из 6? И что подразумевается, когда врач говорит: лекарство в 70% эффективно, в 1% случаев влечет за собой серьезные побочные эффекты? Или что при опросе выясняется: кандидата поддерживают 36% избирателей? Это непростые вопросы, они имеют отношение к самой сути понятия случайности, понятия, о котором математики до сих пор спорят.
Недавно, в один из теплых весенних дней, я ввязался в подобный спор, а моим оппонентом был статистик Моше, приехавший препдавать из Еврейского университета в Иерусалиме; за обедом в столовой Калифорнийского технологического института он сел напротив меня. Отправляя в рот одну за другой ложечки обезжиренного йогурта, Моше напирал на то, что по-настоящему случайных чисел не существует. «Таких в природе нет, — сказал он. — Ну да, они составляют таблицы, пишут компьютерные программы, но на самом деле сами себя обманывают. Никому еще не удалось изобрести метод получения случайных чисел лучший, нежели броски игральных костей, который как раз и не подходит».
Моше махнул пластмассовой ложечкой в мою сторону. Тема его не на шутку взволновала. Я чувствовал, что между его отношением к понятию случайности и его религиозными убеждениями существует связь. Моше — ортодоксальный еврей, а я знаю, что многие верующие люди с трудом могут представить, будто Господь допускает существование случайности. «Предположим, ты хочешь выстроить ряд N случайных чисел между 1 и 6, — говорит Моше. — Ты бросаешь кость N раз и записываешь ряд N чисел, которые выпадают. Как по-твоему, это ряд действительно случайных чисел?»
«А вот и нет, — продолжает он, — потому что никто не может сделать кость, которая была бы идеальна. Некоторые грани всегда будут выпадать чаще, а другие — реже. Может потребоваться 1 тыс., а то и 1 млн бросков, однако рано или поздно эго непременно обнаружится. Ты увидишь, что 4 выпадают чаще, чем 6, а может, реже. Любое искусственное устройство обязательно обнаружит в себе такой вот изъян, потому что людям совершенство недоступно». А вот Природе доступно, поэтому истинно случайные события происходят на атомарном уровне. В действительности, это не что иное, как основы квантовой теории, так что остаток обеденного перерыва мы провели в рассуждениях на тему квантовой оптики.
В наше время современнейшие квантовые генераторы, подбрасывая идеальную квантовую кость Природы, выдают по-настоящему случайные числа. В прошлом совершенство, необходимое для изучения случайности, было, конечно же, целью иллюзорной. Наиболее творчески к этому вопросу подошла нью-йоркская преступная группировка, орудовавшая в 1920 г{81}. Каждый день им нужны были случайные пятизначные числа для незаконной лотереи, и гангстеры издевались над властями, указывая последние пять цифр бюджета Министерства финансов. (На момент написания этих строк правительство США имеет долг в 8 995 800 515 946 долларов и 50 центов или 29 679 долларов 02 цента на человека, так что современные гангстеры могли бы брать последние пять цифр из суммы долга на душу населения!) Их так называемая казначейская лотерея запуталась в сетях не только криминальных законов, но и законов научных, поскольку согласно правилу, называемому «законом Бенфорда»[11], цифры, получаемые таким образом, являются не случайными, а скорее стремящимися к цифрам младшего разряда.
Закон Бенфорда был открыт вовсе не неким Бенфордом, а американским астрономом Шимоном Ньюкомбом. Примерно в 1881 г. Ньюкомб заметил, что страницы тетради с логарифмическими таблицами, на которых числа начинались с 1, гораздо сильнее захватаны и истрепаны, чем страницы, на которых числа начинались с 2 и так далее до 9 — те выглядели чистыми, как будто их вообще не открывали. Ньюкомб предположил: те страницы, которые больше всего истрепались, чаще всего и открывали, и на основании своих наблюдений заключил: те ученые, которые до него брали тетрадь, работали с данными, отражавшими подобное распределение цифр. Закон же был назван по фамилии Франка Бенфорда, который в 1938 г. заметил то же самое, что и Ньюкомб, когда просматривал логарифмические таблицы в научно-исследовательской лаборатории «Дженерал Электрик» в г. Скенектади, штат Нью-Йорк. Но ни Ньюкомб, ни Бенфорд не доказали справедливость закона. Это произошло только в 1995 г., и автор доказательства — Тед Хилл, математик из Технологического института Джорджии.
Согласно закону Бенфорда, все девять чисел встречаются совсем не с одинаковой частотой, число 1 встречается в качестве первой цифры в 30% случаев; число 2 — примерно в 18% и так далее, до цифры 9, которая в качестве первой встречается лишь в 5% случаев. Похожий закон, хотя и не столько четко сформулированный, применим к последующим цифрам. Закону Бенфорда подчиняются числа из многих областей, к примеру, из области финансов. В действительности, закон как нельзя лучше подходит для обработки большого массива финансовых показателей на предмет мошенничества.
В одном таком случае был замешан молодой предприниматель Кевин Лоуренс — он умудрился собрать 91 млн долларов на создание сети клубов здоровья, оборудованных по последнему слову техники{82}. Набив карманы наличными, Лоуренс развил бурную деятельность, нанял тучу исполнительных директоров и спустил деньги инвесторов так же быстро, как и собрал. И все бы ничего, за исключением одного: Лоуренс со своей когортой большую часть денег тратили не на развитие дела, а на личные нужды. А так как приобретение нескольких домов, двадцати личных яхт, сорока семи автомобилей (в числе которых пять «хаммеров», четыре «феррари», три спортивных «доджа», два шикарных «форда» и «ламборгини дьябло»), двух часов «Ролекс», браслета с бриллиантами в 21 карат, самурайского меча за 200 тыс. долларов и машины для коммерческого производства сладкой ваты едва ли можно было списать как деловые расходы, Лоуренс с дружками попытались увести деньги путем перечисления их по сложной банковской схеме со счета на счет как средства то одной подставной компании, то другой — все с целью создания видимости активно расширяющегося бизнеса. На их несчастье, заподозривший неладное бухгалтер-криминалист Даррелл Доррелл составил список из более чем 70 тыс. номеров (счета и переводы) и, опираясь на закон Бенфорда, сравнил, как распределяются цифры. А распределялись они вразрез с законом{83}. Это, конечно же, было только началом расследования, однако дальше история развивалась по известному сценарию, а развязка наступила за день до Дня благодарения 2003 г., когда Кевин Лоуренс, окруженный своими адвокатами и облаченный в светло-голубую тюремную робу, был приговорен к двадцати годам заключения без права досрочного освобождения. Налоговое управление США также изучило закон Бенфорда как способ обнаружения случаев налогового мошенничества. Один исследователь даже применил закон к данным налоговых поступлений от Билла Клинтона за тринадцать лет. Цифры распределились в соответствии с законом{84}.
По-видимому, ни нью-йоркские гангстеры, ни те, кто покупал их лотерейные билеты, не замечали в номерах этих самых билетов закономерностей. Но вздумай люди вроде Ньюкомба, Бенфорда или Хилла сыграть в эту лотерею, они могли бы воспользоваться законом Бенфорда и заключить выгодные пари — неплохая прибавка к зарплате ученого.
В 1947 г. ученым из «Рэнд Корпорейшн» понадобилась большая таблица случайных цифр для цели куда как более достойной: найти приблизительные решения определенных математических уравнений с применением способа, метко названного «методом Монте-Карло». Чтобы получить эти цифры, они решили прибегнуть к электронному порождению помех. Но можно ли назвать электронные помехи случайными? Вопрос не менее коварный, чем определение самой случайности.
В 1896 г. американский философ Чарльз Сандерс Пирс писал о том, что «правила и методики, по которым делается случайная выборка, должны быть таковы, чтобы при бесконечном повторении экспериментов в конечном итоге вероятность того или иного результата была равнозначна остальным вариантам при таком же количестве повторений»{85}. Это что касается статистического определения вероятности. Альтернативой ему служит субъективное толкование вероятности. При статистическом определении вероятности суждение выносится исходя из того, чем закончилась серия экспериментов, а при субъективном толковании — исходя из того, каким образом эта серия осуществляется. Согласно субъективному толкованию вероятности, число или ряд чисел считаются случайными, если мы не знаем или не можем предсказать ход процесса, в результате которого они появляются.
Разница между двумя определениями гораздо глубже, чем может показаться на первый взгляд. Например, в идеальном мире бросок игральной кости будет случайным по первому определению, но не по второму: вероятности выпадения любой стороны кости равны, но в идеальном мире мы можем воспользоваться точными данными о физических условиях и законах физики, чтобы определить перед каждым броском то, как именно выпадет кость. В полном несовершенства реальном мире бросок кости является случайным по второму определению, не по первому. Объясняется это тем, что, как указал Моше, из-за несовершенства мира кость не выпадет любой из сторон с равной частотностью. Мы же, в силу нашей ограниченности, не имеем предварительных данных о том, какая из сторон кости перед какой имеет преимущество.
Чтобы определить, является ли составленная ими таблица случайной, ученые из «Рэнд Корпорейшн» подвергли ее серии испытаний. При близком рассмотрении оказалось, что в их системе имеются искажения, прямо как у изначально неидеальной игральной кости Моше{86}. Ученые скорректировали таблицу, однако совсем избежать закономерностей так и не смогли. Как сказал Моше, совершенный хаос — это, по иронии судьбы, некое совершенство. И все же числа получились в достаточной степени случайными, чтобы оказаться полезными, и в 1955 г. компания опубликовала их под броским заголовком: «Миллион случайных цифр».
Во время своих изысканий ученые из «Рэнд Корпорейшн» столкнулись с проблемой рулеточного колеса, которая была обнаружена, если говорить абстрактно, почти столетие назад одним англичанином по имени Джозеф Джаггер{87}. Джаггер был инженером-механиком на текстильной фабрике в Йоркшире, так что обладал интуитивным чутьем в отношении всего, что касалось достоинств, а также недостатков оборудования. Однажды в 1873 г. этот инженер с развитой интуицией и изобретательным умом вместо текстиля задумался о деньгах. И задался вопросом: насколько совершенна работа рулеточных колес в казино Монте-Карло?
Колесо рулетки, изобретенное, как гласит легенда, Блезом Паскалем, в то время как он подумывал о создании вечного двигателя, представляет собой большую чашу с ячейками, которые по виду напоминают тонкие куски пирога. Когда колесо вращают, мраморный шарик прыгает вдоль обода чаши и в конце концов остается в одной из ячеек, которые пронумерованы от 1 до 36 и еще добавлен 0 (а также 00 в американской рулетке). Задача игрока проста — угадать, в какую из ячеек упадет в конечном итоге шарик. Существование колеса рулетки является достаточно ярким свидетельством тому, что настоящих экстрасенсов не существует. Ведь если в Монте-Карло вы ставите 1 доллар и угадываете номер ячейки, казино выплачивает вам 35 долларов (и кроме того возвращает вам 1 доллар). Если бы экстрасенсы существовали, вы бы запросто встретили их в подобных заведениях: они бы выходили оттуда, напевая и пританцовывая, и катили перед собой тележку с наличными, а не заводили бы в Интернете сайты, называя себя «Зельдой Всевидящей и Всезнающей», и не предлагали бы круглосуточные консультации в вопросах любви, конкурируя с 1,2 млн других сетевых экстрасенсов (если верить Гуглу). Мне будущее и в особенности прошлое представляется затянутым густым туманом. Однако я знаю одно: вздумай я сыграть в европейскую рулетку, мои шансы проиграть равны 36 из 37, а шансы выиграть — 1 из 37. Это значит, что с каждого 1 доллара, поставленного мной, казино получит (36/37 1 доллар) — (1/37 35 долларов). То есть, 1/37 доллара или же около 2,7 центов. В зависимости от состояния моего ума это можно назвать либо ценой за удовольствие лицезреть, как маленький мраморный шарик подскакивает на вращающемся блестящем колесе, либо ценой за вероятное озарение. По крайней мере, так оно должно быть.
Но вот так ли оно на самом деле? Только в том случае, если рулеточное колесо точнейшим образом уравновешено, подумал Джаггер. А уж он имел дело со столькими механизмами, что разделял точку зрения Моше. И готов был поспорить: колесо уравновешено вовсе не идеально. Так что он взял свои сбережения, поехал в Монте-Карло и нанял шесть помощников: по одному на каждое из шести рулеточных колес казино. Каждый день помощники наблюдали за колесами и в течение двенадцати часов — часы работы казино — записывали каждое число, которое выпадало. Каждый вечер Джаггер у себя в гостиничном номере анализировал данные. По прошествии шести дней он не обнаружил никаких отклонений у пяти рулеточных колес, зато у шестого девять чисел выпадали заметно чаще остальных. Таким образом, на седьмой день Джаггер пошел в казино и начал ставить на девять выигрышных номеров: 7, 8, 9, 17, 18, 22, 28, 29.
В тот вечер ко времени закрытия казино у Джаггера накопилось 70 тыс. долларов. Его выигрыши не остались незамеченными. Вокруг стола собрались другие игроки — делать ставки в надежде приобщиться к удаче, работники казино следили за Джаггером в оба, пытаясь разгадать его систему, а то и поймать на мошенничестве. К четвертому дню Джаггер выиграл уже 300 тыс. долларов, а управляющие казино отчаянно искали способ избавиться от таинственного игрока или хотя бы помешать ему. Тут кто-нибудь сразу представит себе дюжего парня из Бруклина. Но управляющие придумали кое-что получше.
На пятый день Джаггер начал проигрывать. Проигрыши, как и выигрыши, нельзя было заметить сразу. И до пятого дня, и после Джаггер когда выигрывал, когда проигрывал, однако теперь он проигрывал чаще, чем выигрывал, хотя раньше все было наоборот. При небольшой прибыли казино на то, чтобы опустошить карманы Джаггера, потребуется время, однако Джаггер, четыре дня кряду тянувший из казино деньги, не собирался снижать ставки. К тому времени, как отвернувшаяся от него фортуна заставила его остановиться, он потерял половину выигранного. Можно представить, до какой степени испортилось к тому времени его настроение, не говоря уже о настроении тех, кому он был обязан отрезвлением. И как только расчет мог вдруг подвести его?
В конце концов Джаггер сообразил, в чем дело. Проводя столько часов за рулеткой, он заметил крошечную царапину на рулеточном колесе. Однако на пятый день царапина исчезла. Может, управляющие любезно распорядились замазать ее, чтобы если уж и обанкротиться, то достойно? Джаггер так не думал, он решил проверить остальные колеса. И на одном из них обнаружил ту самую царапину. Управляющие казино догадались, что успех Джаггера связан именно с этим колесом, и на другой день попросту заменили его. Джаггер перешел к колесу с царапиной и снова стал выигрывать. Вскоре его выигрыш достиг чуть ли не полумиллиона.
На несчастье Джаггера, управляющие, наконец смекнувшие, в чем его удача, нашли-таки способ справиться с ним. Они решили передвигать ячейки каждый раз после закрытия, так что удачливыми каждый раз оказывались другие числа, неизвестные Джаггеру. Джаггер снова начал проигрывать и в конце концов бросил это дело. Завершив карьеру игрока, он покинул Монте-Карло с 325 тыс. долларов, что в пересчете на сегодняшний день равно примерно 5 млн долларов. Джаггер ушел с фабрики, вложив выигранное в недвижимость.
Может показаться, что расчет Джаггера был верным, однако это не так. Потому что даже на идеально отлаженном рулеточном колесе шарик не станет с равной частотой выпадать на номера 0, 1, 2, 3 и так далее. Можно подумать, циферки выстроились в очередь и терпеливо ждут, когда заявится какой-нибудь тюфяк, чтобы подыграть ему. Нет, одни числа выпадают в среднем чаще, чем другие. И даже после шести дней наблюдений оставалась вероятность того, что Джаггер ошибается. Обнаруженная им большая частотность для некоторых номеров могла возникать случайно и совсем не означала то, что Джаггер подумал. Значит, и Джаггер оказался перед вопросом, упомянутом нами в начале главы: какова связь между неявными вероятностями и наблюдаемыми результатами? Паскаль сделал свои открытия во времена научной революции, поэтому ответ на этот вопрос будет найден также в разгар революции, а этот раз в области математики — когда откроют численные методы.
В 1680 г. Вселенную вблизи нашей Солнечной системы прочертила комета, причем так близко, что крошечной частички солнечного света, который она отразила, хватило для того, чтобы комета отчетливо светилась в ночном небе. Впервые комета была замечена в ноябре; несколько месяцев она оставалась объектом пристального наблюдения, ее траекторию вычерчивали самым подробным образом. В 1687 г. Исаак Ньютон воспользуется этими данными в качестве примера действия закона обратных квадратов для силы тяготения. А одной ночью, когда на небе не было ни единого облачка, на крошечном клочке швейцарской земли под названием Базель другой ученый, которому предначертано было прославиться, тоже не отрывал от кометы взгляда. Этот юный богослов смотрел на яркий, дымчатый свет кометы и понял, что хочет заниматься не теологией, а математикой{88}. Решение это не только круто поменяло жизнь Якоба, но и определило сферу деятельности многочисленных представителей семейства Бернулли: в период между рождением Якоба и 1800 г., то есть 150 лет, почти половина родившихся представителей семейства Бернулли оказались людьми одаренными, восемь человек стали известными математиками, а трое (Якоб, его младший брат Иоганн, сын Иоганна Даниил) на сегодняшний момент считаются величайшими учеными.
В то время кометы в глазах теологов да и общества в целом выглядели знамениями божьего гнева, а уж если судить по этой комете, то Бог должно быть был зол как никогда — хвост кометы растянулся на полнеба. Один проповедник назвал комету «небесным предостережением Всемогущего и Святого Господа, начертанным и воздвигнутым перед слабыми и лишенными святости детьми человеческими». Она предвещает, продолжал проповедник, «значительные перемены в плане духовном или мирском» для страны или города{89}. Якоб Бернулли придерживался иного мнения. В 1681 г. он опубликовал брошюру под названием «Новый метод: как посредством некоторых основополагающих законов объяснить путь кометы или хвостатой звезды и предсказать ее появление».
В этом плане Бернулли на шесть лет опередил Ньютона. По крайней мере, опередил бы, если его теория оказалась бы верной. Но верной она не была, однако произнесенное во всеуслышание заявление о том, что кометы подчиняются законам природы, а не прихоти божьей, было довольно-таки смелым, особенно если помнить, что годом ранее — почти через пятьдесят лет после осуждения Галилея — профессор математики из Базельского университета, Питер Мегерлин, неоднократно подвергался нападкам богословов за то, что принял гелиоцентрическую систему Коперника — ему запретили преподавать ее в университете. Между учеными и богословами Базеля произошел раскол, Бернулли же целиком и полностью встал на сторону ученых.
Вскоре талант Бернулли был замечен научным сообществом, и когда в конце 1686 г. Мегерлин умер, его место профессора математики занял Бернулли. К тому времени Бернулли трудился над задачами, связанными с азартными играми. Наибольшее влияние на него оказал голландский ученый и в частности математик Христиан Гюйгенс, который не только усовершенствовал телескоп и первым разглядел кольца Сатурна, создал первые маятниковые часы (основываясь на идеях Галилея), способствовал развитию волновой теории света, но и, вдохновленный мыслями Паскаля и Ферма, написал учебник по вероятности.
Для Бернулли учебник Гюйгенса стал откровением. Что однако не помешало Бернулли увидеть ограниченность теории Гюйгенса. Она могла удовлетворять потребностям игроков в азартные игры, но оставалась бесполезной в других, более насущных сферах жизни. Как можно точно определить вероятность достоверности свидетельских показаний? Или вероятность того, кто — Карл I, король Англии, Шотландии и Ирландии, или Мария I, королева Шотландии — лучше всего играл в гольф? (Оба любили этот вид спорта.) Бернулли считал: чтобы стало возможным рациональное принятие решения, должен быть надежный, подкрепленный математически способ определения вероятностей. Его взгляд отражал культуру тех времен: ведение дел способом, согласующимся с вероятностными ожиданиями, считалось признаком человека здравомыслящего. Но, как считал Бернулли, не одна только субъективность ограничивала ту теорию случайности. По его мнению, теория не действовала в ситуациях незнания, где вероятности различных исходов могли быть определены в принципе, но не на практике. Именно это я и обсуждал с Моше, именно с этим и столкнулся Джаггер: каковы шансы того, что неидеальная кость выдаст 6? Каковы ваши шансы заразиться чумой? Какова вероятность того, что ваш нагрудный щит выдержит удар шпагой противника? Бернулли считал: и в субъективной, и в неопределенной ситуациях будет истинным «безумием» надеяться на некое предварительное знание, то есть знание априори относительно вероятностей, описанных в учебнике Гюйгенса{90}.
Бернулли видел ответ на вопрос таким же, каким позднее его увидит Джаггер: вместо того, чтобы зависеть от данных нам вероятностей, мы должны определить их сами, посредством наблюдений. Будучи математиком, Бернулли добивался точности мысли. Допустим, перед вами вращаются несколько рулеточных колес. Как точно сможете вы определить неявные вероятности и с какой долей уверенности? Об этом мы поговорим в следующей главе, однако это не те вопросы, на которые Бернулли смог ответить. Вместо них он нашел ответ на вопрос, тесно связанный с вышеупомянутыми: насколько четко неявные вероятности отражаются в реальных результатах? Бернулли принял за очевидное то, что мы вполне оправданно ожидаем: с увеличением числа попыток наблюдаемые периодичности с большей или меньшей точностью отразят неявные вероятности. Бернулли конечно же не был первым, кто так считал. Однако он стал первым, кто формально рассмотрел данную проблему, перевел идею в плоскость доказательства и выразил в количественной форме, задавая вопрос: сколько попыток необходимо и насколько уверенными мы можем быть? Он также стал одним из первых, кто оценил важность нового изобретения — математического анализа — при решении подобных задач.
Год, когда Бернулли назначили профессором Базельского университета, оказался важнейшим годом в истории математики: в этот год Готфрид Лейбниц опубликовал свой революционный труд, в котором изложил основы интегрального исчисления — дополнение к работе 1684 г. об исчислении дифференциальном. Ньютон напечатает собственную работу по данной теме в 1687 г., в своих «Математических началах натуральной философии» (часто сокращаемых до «Начал»). В этих прогрессивных работах будет содержаться ключ к работе Бернулли на тему теории случайности.
Ко времени своих публикаций и Лейбниц, и Ньютон уже не один год размышляли на данную тему, однако из их практически одновременных публикаций трудно было понять, кому принадлежит честь открытия. Великий математик Карл Пирсон (он еще встретится нам в главе 8) сказал: о репутации математиков «последующие поколения судят не по тому, что те сделали, а по тому, что современники приписали тем»{91}. Возможно, Ньютон и Лейбниц согласились бы с подобным утверждением. В любом случае ни один, ни другой не оказались на высоте, к тому же тот, кто настаивал на первенстве, был известен своей резкостью. В то время результат казался запутанным. Немцы и швейцарцы узнали о математическом анализе из труда Лейбница, а англичане и многие французы — из работы Ньютона. С точки зрения современности разница между обоими трудами невелика, однако в конце концов вклад Ньютона часто выделяется, потому как кажется: он в самом деле был первым, а в «Началах» применил свое изобретение для создания современной физики — таким образом «Начала» становятся величайшим научным трудом. Однако Лейбниц разработал более удачную систему обозначений, именно его символы зачастую используются в современном математическом анализе.
Понять было непросто как Ньютона, так и Лейбница. Помимо того, что «Начала» Ньютона называли величайшим научным трудом, их считали также и «одной из самых недоступных для понимания книг, которые когда-либо были написаны»{92}. А труд Лейбница, если верить биографам Якоба Бернулли, «вообще никто не понимал»; он отличался не только туманностью изложения, но и обилием опечаток. Иоганн, брат Якоба, сказал, что это «скорее загадка, нежели разъяснение»{93}. И в самом деле, работы эти оказались до того невнятными, что ученые высказывали предположение, будто и Лейбниц, и Ньютон намеренно затуманили смысл, чтобы отпугнуть всякого рода любителей. Однако такое таинственное свойство работ сыграло Якобу Бернулли только на руку, поскольку действительно способствовало отделению зерен от плевел, а интеллект Бернулли подпадал именно под первую категорию. Как только он расшифровал мысли Лейбница, в его распоряжении оказалось оружие, которым владела лишь горстка людей в целом мире, а уже с помощью этого оружия Бернулли мог запросто решить задачи, к которым другие не могли даже подступиться.
Набор основных понятий и для математического анализа, и для работы Бернулли заключается в последовательностях, рядах и пределах. Термин «последовательность» для математика значит практически то же самое, что и для любого другого: определенный порядок следования элементов, таких как точки или числа. Ряды — это не что иное, как сумма последовательностей чисел. Если создается впечатление, будто элементы последовательности ведут к чему-то — к определенной конечной точке или конкретному числу, — то в таком случае мы говорим о пределе последовательности.
Хотя математический анализ представляет собой очередное затруднение на пути к пониманию последовательностей, он, как и многие другие идеи, уже был известен древним грекам. В V в. до н. э. греческий философ Зенон с помощью любопытной последовательности сформулировал парадокс, над которым до сих пор любят поспорить студенты философского факультета, особенно после того, как пропустят по кружке-другой пива. Парадокс Зенона заключается в следующем. Предположим, ученик хочет подойти к двери, расстояние до которой — 1 метр. (В качестве единицы измерения мы берем метр, однако это для удобства; то же самое верно для мили и т. д.) Прежде, чем достигнуть двери, он должен достигнуть точки на полпути к ней. Однако для того, чтобы достигнуть точки на полпути, он прежде должен достигнуть точки на полпути к точке на полпути к двери — иными словами, точки на расстоянии одной четверти пути до двери. И так далее до бесконечности. То есть, чтобы дойти до конечного пункта, он должен пройти следующие последовательности расстояний: 1/2 метра, 1/4 метра, 1/8 метра и так далее. Зенон утверждал: так как последовательности выстраиваются до бесконечности, ученику придется идти бесконечное число конечных отрезков пути. Зенон высказался, что это займет у ученика бесконечное количество времени. И вывод Зенона: он никуда не придет.
В течение столетий кто только ни пытался разрешить это затруднение: от Аристотеля до Канта. Диоген, основатель школы киников, решил подойти к задаче с позиций эмпирических: он просто-напросто сделал несколько шагов и тем самым наглядно продемонстрировал, что дошел до пункта назначения. Тем из нас, кто не учился на факультете философии, подобное решение покажется вполне приемлемым. Однако для Зенона этого было бы недостаточно. Зенон сознавал противоречие между логическим доказательством и доказательством на уровне физических ощущений, вот только он, в отличие от Диогена, доверял именно логике. И застрял на этом вопросе не только Зенон. Даже Диогену пришлось признать, что его собственный ответ оставляет нас перед вопросом, приводящим в тупик (и, как оказалось, отличающимся глубиной): если доказательство, полученное с помощью наших органов чувств, верно, тогда что неверно в логических построениях Зенона?
Рассмотрим последовательность расстояний в парадоксе Зенона: 1/2 метра, 1/4 метра, 1/8 метра, 1/16 метра и так далее (градация все уменьшается). Эта последовательность обладает бесконечным числом ограничений, поэтому вычислить ее сумму путем простого сложения не получится. Однако можно заметить, что хотя число ограничений бесконечно, ограничения эти в своей последовательности все уменьшаются и уменьшаются. Может, существует конечное равновесие между бесконечным потоком ограничений и их бесконечно уменьшающимся размером? Этот вопрос как раз относится к тому самому типу вопросов, на которые возможно ответить, прибегнув к понятиям последовательностей, рядов и пределов. Чтобы увидеть его в действии, не нужно пытаться подсчитать, как далеко зайдет ученик после всей бесконечности Зеноновых интервалов, нужно каждый раз рассматривать по интервалу. Вот расстояния, которые прошел ученик после первых нескольких интервалов:
• После первого интервала: 1/2 метра
• После второго интервала: 1/2 метра + 1/4 метра = 3/4 метра
• После третьего интервала: 1/2 метра + 1/4 метра + 1/8 метра = 7/8 метра
• После четвертого интервала: 1/2 метра + 1/4 метра + 1/8 метра + 1/16 метра = 15/16 метра
Таково распределение чисел: 1/2 метра, 3/4 метра, 7/8 метра, 15/16 метра… Знаменатель — степень двойки, числитель на одну часть меньше знаменателя. Глядя на таким образом распределившиеся числа, можно вычислить: через 10 интервалов ученик пройдет 1 023/1 024 метра; через 20 интервалов — 1 048 575/1 048 576 метра и так далее. Из распределения чисел ясно, что Зенон прав — чем больше интервалов, тем больше получаемая сумма расстояний. Однако Зенон не прав, когда говорит, что сумма стремится к бесконечности. Наоборот, числа приближаются к 1; математики сказали бы, что 1 метр является пределом данной последовательности расстояний. Что имеет смысл, потому что хотя Зенон и раздробил путь ученика на бесконечное количество интервалов, он, в конце концов, должен пройти всего 1 метр.
Парадокс Зенона о количестве времени, которое потребуется на то, чтобы пройти путь, но никак не о расстоянии. Если ученик будет шагать в строгом соответствии с интервалами Зенона, ему, конечно же, придется попотеть (не говоря уже о том, что он должен будет совершать крошечные, меньше миллиметра шаги)! Однако если он станет передвигаться с постоянной скоростью, не соблюдая воображаемые Зеноновы интервалы — а почему бы и нет? — время, которое потребуется на преодоление каждого из интервалов, будет пропорционально расстоянию, пройденному за этот интервал, а поскольку в целом отрезок пути конечен, конечно и общее время и — к счастью для всех нас — движение все-таки возможно.
Хотя современная концепция пределов была разработана намного позже того времени, в котором жил Зенон, да и не только он, а и Бернулли — это произошло в XIX в.{94} — именно она составляет суть математического анализа, и именно таковы по сути своей попытки Якоба Бернулли исследовать связь между вероятностями и наблюдением. В частности, Бернулли изучил, что происходит в пределе сколь угодно большого числа многократных наблюдений. Подбросьте сбалансированную монету 10 раз: у вас может выпасть 7 орлов. Однако если вы подбросите монету сто тысяч миллиардов раз, у вас, скорее всего, получится половина на половину. В 1940-х гг. южноафриканский математик Джон Керрич решил проверить это на практике, подбрасывая монету множество раз, приближавшееся к ста тысячам миллиардов — на самом деле 10 тыс. — и записывая результат каждого броска{95}. Вы можете подумать: этот математик мог бы заняться чем-нибудь более полезным, однако он в то время был военнопленным — его угораздило оказаться в Копенгагене как раз тогда, когда немцы в апреле 1940 г. захватили Данию. Согласно полученным данным, после 100 бросков орлы получались только в 44%, однако к тому времени, когда было сделано 10 тыс. бросков, цифра оказалась гораздо ближе к половине: 50,67%. Как выразить этот феномен количественно? Ответ на этот вопрос дал Бернулли.
Согласно свидетельствам историка и философа Иэна Хэкинга, работа Бернулли «явилась для общественности ярким предвестником всего того, что нам известно о ней теперь; ее математическая глубина, широчайшее практическое применение, двойственность и приглашение к философским размышлениям. Вероятность проявилась во всей своей полноте». Если же привести более скромные слова Бернулли, то его исследование оказалось «не лишенным новизны и в то же время… невероятной практичности». Бернулли писал, что это стоило ему «огромных усилий»{96}. Он работал над своим трудом двадцать лет.
Важнейшим достижением за все двадцать лет непрерывной работы Якоб Бернулли считал «золотую теорему». Ее современные версии, разнящиеся техническими деталями, известны под разными названиями: теорема Бернулли, закон больших чисел, обычный закон больших чисел. Фраза «закон больших чисел» фигурирует потому, что, как мы уже говорили, теорема Бернулли связана со способом, с помощью которого результаты отражают неявные вероятности в процессе многократных наблюдений. Однако мы будем придерживаться терминологии Бернулли и станем называть его теорему «золотой теоремой», потому как будем иметь дело с ее первоначальной версией{97}.
Хотя Бернулли интересовало практическое применение, в некоторых его излюбленных примерах фигурирует предмет, в большинстве домов отсутствующий: заполненный разноцветными голышами сосуд. Согласно одной постановке задачи, Бернулли представил сосуд с 3 тыс. белых голышей и 2 тыс. черных, то есть в процентном соотношении как 60% и 40% соответственно. Вы наугад несколько раз вынимаете голыши из сосуда, но «с заменой», то есть перед тем, как вынуть следующий голыш, заменяете уже вынутый, чтобы сохранять соотношение 3 к 2. Таким образом, заранее известно, каковы шансы вынуть белый голыш: 3 из 5 или 60%. В связи с этим экспериментом основной вопрос Бернулли звучит так: насколько строго количество белых голышей будет держаться в рамках 60% и с какой вероятностью?
Пример с сосудом хорош тем, что те же самые математические выкладки, описывающие выемку голышей из сосуда, могут быть применены и в случае описания любых серий испытаний, в которых каждое испытание имеет два возможных исхода, при условии, если эти исходы случайны, а испытания не зависят друг от друга. В наше время подобную последовательность испытаний называют испытаниями по схеме Бернулли, а серию испытаний — процессом Бернулли. Когда случайное испытание имеет два возможных исхода, один часто в произвольной форме называют «удачным», а другой — «неудачным». Названия эти весьма условны и порой не имеют ничего общего с обыденными значениями слов — ну, скажем, если вам не терпится читать эту книгу дальше, она, мол, удачная, а если вы используете ее, чтобы не дать замерзнуть себе и своей любимой после того, как все поленья в камине выгорели, то неудачная. Подбрасывание монеты, решение голосовать за кандидата А или кандидата В, рождение мальчика или девочки, приобретение или отказ от приобретения той или иной вещи, излечение или невозможность излечения, даже жизнь или смерть — все это примеры испытаний по схеме Бернулли. Действия, имеющие своим результатом множественные исходы, также могут быть смоделированы по схеме Бернулли, если вопрос формулируется так, чтобы ответом на него было «да» или «нет», например: «Кость выпала стороной 4?» или «Остался ли вообще лед на Северном полюсе?» Таким образом, хотя Бернулли писал о голышах и сосудах, все его примеры в равной степени применимы к этим и многим другим аналогичным ситуациям.
И вот, разобравшись, возвращаемся к сосуду, 60% голышей в котором белые. Если вынуть из сосуда 100 голышей (положив им замену), можно обнаружить, что именно 60 из вынутых белые, но можно вынуть и 50, 59 белых голышей. Каковы шансы того, что из вынутых вами голышей белых будет от 58% до 62%? Каковы шансы того, что вы вынете белых голышей от 59% до 61%? Насколько вы можете быть уверены, если вместо 100 голышей вынете 1 тыс. или даже 1 миллион? Вы никогда не можете быть уверены на все 100%, но возможно ли вынуть достаточно голышей для того, чтобы шансы, скажем, того, что вы вынете белых голышей от 59,9% до 60,1%, стали равны 99,9999%? «Золотая теорема» Бернулли и применима как раз в таких случаях.
Чтобы воспользоваться ею, придется совершить два выбора. Во-первых, вы должны определить, какая погрешность является для вас приемлемой. Насколько должен быть близок к 60% ряд ваших испытаний? Вам нужно выбрать интервал, например, плюс или минус 1%, 2% или 0,00001%. Во-вторых, вы должны решить, какая неопределенность является для вас приемлемой. Вы не можете быть уверены на 100% в том, что испытание выдаст результаты, к которым вы стремитесь, но вы можете позаботиться о том, чтобы получать удовлетворительный результат в 99 случаях из 100 или 999 случаях из 1 тыс.
«Золотая теорема» сообщает о том, что всегда возможно вынуть достаточно голышей для того, чтобы быть почти уверенным в том, какой процент белых голышей из вынутых будет ближе всего к 60%, и это несмотря на то, насколько требовательны вы в своем определении этого «почти уверен» и «ближе всего». С помощью теоремы также выводится формула числа испытаний, которые «достаточны» в рамках приведенного выше определения.
Первая часть закона была достижением на понятийном уровне, именно она и осталась в современной версии теоремы. Что же до второй части — формулы Бернулли — то важно понять: хотя «золотая теорема» определяет число испытаний, достаточных для достижения уверенности и точности, она не говорит, что невозможно достичь этого при меньшем числе испытаний. Это не влияет на первую часть теоремы, для которой достаточно знать лишь то, что число определенных испытаний конечно. Однако Бернулли также намеревался использовать число, выведенное с помощью формулы, в практических целях. Возьмем числовой пример, который Бернулли придумал сам, хотя контекст я изменил. Предположим, 60% избирателей в Базеле поддерживают мэра. Скольких человек необходимо опросить, чтобы шансы обнаружить, что мэра поддерживают от 58% до 62%, равнялись 99,9%, то есть, чтобы получить результаты с точностью плюс-минус 2%? (Предположим, оставаясь в согласии с Бернулли, что опрошенные люди выбраны наугад, однако с заменой. Другими словами, возможно, что одного и того же человека вы опросите более одного раза.) Ответ — 25 550, во времена Бернулли почти все население Базеля. Тот факт, что число это невозможно, от Бернулли не ускользнул. Он также знал, что опытные игроки интуитивно угадывают свои шансы на удачу в новой игре, основываясь на выборке, гораздо меньшей, чем тысячи испытаний.
Одна из причин того, почему численная оценка Бернулли была так далека от оптимальной, заключается в следующем: его доказательство было основано на множественных аппроксимациях. Другой причиной было то, что в качестве стандарта достоверности он выбрал 99,9% — то есть, он предполагал, что получит неверный ответ (ответ, который отличается от верного более чем на 2%) менее чем в 1 случае из 1000. А это чересчур высокий стандарт. Бернулли назвал его моральной достоверностью, имея в виду степень достоверности, которой, по его мнению, должен обладать человек здравомыслящий, чтобы принять рациональное решение. В наше время мы отказались от понятия моральной достоверности в пользу того, о чем поговорим в последней главе — о статистической значимости — подразумевая, что ваш ответ будет неверным менее чем в 1 случае из 20. Возможно, это скорее к вопросу о том, насколько сильно поменялся мир с тех пор.
Пользуясь современными математическими методами, статистики продемонстрировали, что в опросе, подобном описанному мною, можно получить статистически значимые результаты с точностью плюс-минус 5%, опросив при этом всего 370 человек. Если же вы опрашиваете 1000, вы выходите на 90% шанс получить верный результат плюс-минус 2% (60% голосование за мэра Базеля). Однако, несмотря на некоторые свои недостатки, «золотая теорема» Бернулли явилась своеобразной точкой отсчета, потому что продемонстрировала, — по крайней мере, в принципе — что достаточно большая выборка почти наверняка отразит неявные настроения населения.
В реальном мире нам нечасто доводится наблюдать чьи-либо действия в количестве тысяч испытаний. Таким образом, если Бернулли требовался чрезмерно высокий стандарт достоверности, в реальных жизненных ситуациях мы часто совершаем ошибку прямо противоположную: предполагаем, что выборка или серия испытаний является репрезентативной, когда на самом деле она слишком малочисленна, чтобы быть надежной. Например, если во времена Бернулли вы опросили бы 5 жителей Базеля, подсчеты по примеру тех, о которых шла речь в главе 4, продемонстрировали бы: шансы того, что вы получите результат 60% (3 человека) поддержки мэра, равны всего 1 из 3.
Всего 1 из 3? Разве истинное процентное количество сторонников мэра не должно быть наиболее вероятным исходом в случае выборочного опроса голосующих? На самом деле 1 из 3 и есть самый вероятный исход: шансы найти 0, 1, 2, 4 или 5 сторонников ниже, чем шансы найти 3. Тем не менее 3 сторонника едва ли найдутся: существует так много нерепрезентативных возможностей, что их суммированные шансы становятся в два раза больше шансов того, что ваш опрос точно отражает настроение населения. Таким образом, при опросе 5 голосующих в 2 случаях из 3 вы получите «неверное» процентное количество. В действительности, примерно в 1 случае из 10 вы обнаружите, что все голосующие, которых вы опросили, соглашаются либо с тем, что мэр им симпатичен, либо с тем, что он им не симпатичен. Так что если вы отнеслись к выборке из 5 человек серьезно, вы наверняка либо сильно переоценили, либо сильно недооценили истинную популярность мэра у населения.
Превратное представление — или ошибочное интуитивное чутье — относительно того, что небольшая выборка точно отразит неявные вероятности, настолько распространено, что Канеман и Тверский дали ему название: закон малых чисел{98}. На самом деле закон малых чисел — вовсе не закон. Это ироничное название, описывающее ошибочную попытку применить закон больших чисел в том случае, когда на самом деле числа не являются большими.
Если применить не являющийся истинным закон малых чисел только к ситуациям с сосудами, последствия будут невелики, однако, как мы уже говорили, многие события в жизни подпадают под определение процесса Бернулли, так что интуиция часто приводит нас к неправильному истолкованию того, свидетелями чему мы являемся. Вот почему, как я уже писал в главе 1, когда на глазах у людей Шерри Лансинг и Марк Кантон более или менее успешно управляют бизнесом в течение нескольких лет подряд, напрашивается вывод: предшествующий опыт этих управленцев точно предсказывает качество их работы в последующие годы.
Давайте на основе этих идей рассмотрим пример, о котором я коротко упомянул в главе 4: ситуация, в которой две компании или два сотрудника, работающие в одной фирме, соперничают между собой, при этом практически ни в чем не уступая друг другу. Вспомните о генеральных директорах 500 крупнейших мировых компаний, вошедших в рейтинг журнала «Форчун». Предположим, что каждый из генеральных директоров, имея некоторые знания и умения, обладает определенной вероятностью успеха в каждом году (как бы при этом в их компаниях этот успех ни определяли). Простоты ради предположим, что для этих генеральных директоров удачные годы случаются с такой же периодичностью, что и в примерах с белыми голышами и сторонниками мэра: 60%. (В данном случае чуть большее или чуть меньшее значение числа не оказывает влияния на основную идею.) Означает ли это, что в пределах пятилетнего периода мы можем ожидать от генерального директора успехов в управлении компанией в течение именно трех лет?
Нет. Как показал предыдущий анализ, даже если генеральные директора все поголовно будут обладать стабильным показателем успеха в 60%, шансы, что в течение заданного пятилетнего периода деятельность конкретного генерального директора отразит это, равны всего 1 к 3! В приложении к 500 компаниям это означало бы, что за последние пять лет около 333 генеральных директоров продемонстрировали уровень деятельности, не отражавший их реальные способности Более того, следует ожидать, что совершенно случайно примерно 1 из 10 генеральных директоров продемонстрирует успех или же неудачу все пять лет подряд. О чем эго говорит? Надежнее судить о людях, основываясь на анализе их способностей, нежели на цифровых показателях. Или же, как выразился Бернулли, «не стоит оценивать людские деяния исходя из результатов»{99}.
Чтобы возражать против закона малых чисел, нужно обладать твердым характером. Потому как каждый может откинуться на спинку кресла и тыкать в итоговую строку отчета в качестве доказательства. Реальная же оценка знаний человека и его истинных навыков требует доверия, размышлений, верных суждений и, собственно, мужества. Сидя на собрании среди коллег, вы не можете вот так вот запросто встать и заявить: «Не увольняйте ее. Просто она оказалась не на том конце ряда Бернулли». И вряд ли вы завоюете друзей, если выскажетесь о самодовольном типе, умудрившемся продать «тойот» больше всех за всю историю существования автомобильных дилеров, в том духе, что, мол, «это все случайная флуктуация». Согласитесь, происходит такое нечасто. Успешные годы руководителей приписываются их исключительным способностям, объясняются дальновидностью. Когда же успеха не наблюдается, мы зачастую предполагаем, что неудачи точно отражают ту самую пропорцию, в которой таланты человека и его способности заполняют сосуд.
Еще одно ошибочное понятие, связанное с законом больших чисел, состоит в следующем: событие произойдет с большей или меньшей вероятностью по той причине, что за последнее время оно происходило или не происходило. Представление о том, что шансы на событие с постоянной вероятностью возрастают или снижаются в зависимости от того, имело ли событие место в недавнем прошлом, называется заблуждением игрока. Предположим, Керрич подбрасывает монету, выпадает 44 орла на 100 бросков, но ведь монета не будет стремиться к решкам, чтобы сравнять их с орлами. Вот что лежит в основе таких идей, как «удача отвернулась от нее» и «ему везет». Так не бывает. Если на то пошло, полоса везения долго не продлится, а вот полоса невезения, к сожалению, совсем не означает скорого возвращения удачи. И все же заблуждение игрока затрагивает гораздо больший круг людей, чем может показаться, даже если и не на уровне сознательном, то на подсознательном уж точно. Люди ждут, что неудача сменятся удачей, либо беспокоятся, что за везением обязательно последует невезение.
Помнится, несколько лет назад во время круиза я наблюдал за одним энергичным толстяком, который в поте лица совал и совал доллары в прорезь игрального автомата — машина едва успевала заглатывать банкноты. Его спутник заметил, что я смотрю на толстяка, и произнес всего два слова: «Ему везет». Хотя меня так и подмывало ответить, что вовсе даже ему и не везет, я пошел дальше. Сделав всего несколько шагов, я замер: вдруг замигали лампочки и что-то зазвенело, причем этот звон вовсе не походил на мелодичные трели, которые раздавались из автомата тех двоих. Затем я услышал звук быстро высыпающихся монет, которые, как мне показалось, сыпались не одну минуту — они резво вылетали из игрального автомата. Теперь я знаю, что современные игральные автоматы запрограммированы, выигрыш зависит от генератора случайных чисел, который и по закону, и по своим настройкам действительно должен генерировать, как трубят об этом в рекламе, случайные числа, так что каждый нажим на ручку игрального автомата не зависит от всех предыдущих. И все же… Скажу только, что заблуждение игрока — большая иллюзия.
Рукопись, в которой Бернулли изложил свою «золотую теорему», вдруг обрывается, хотя выше автор и обещает написать приложение, в котором будут примеры юридического и экономического характера. Похоже, «Бернулли вдруг бросил все, когда увидел число 25 550», написал историк статистики Стивен Штиглер{100}. На самом же деле рукопись Бернулли уже была в печати, когда в августе 1705 г. он умер «от бруцеллеза», дожив до пятидесяти лет. Издатели обратились к Иоганну Бернулли с просьбой закончить рукопись, но Иоганн сказался занятым. Это может выглядеть странным, однако странностей в семействе Бернулли хватало. Если бы пришлось выбрать из всех когда-либо живших математиков человека самого неприятного, можно было бы смело назвать Иоганна Бернулли. В исторических текстах его неоднократно изображали завистливым, тщеславным, обидчивым, упрямым, раздражительным, хвастливым, нечестным, да к тому же еще и изощренным лжецом. Он многого добился в математике, однако известен также и тем, что выгнал своего сына Даниила из Академии наук, когда тот получил награду, за которую боролся сам. А еще тем, что попытался украсть идеи как своего брата, так и Лейбница, что приписал работу по гидродинамике сына Даниила себе, после чего подделал дату публикации, дабы получилось так, будто его печатный труд вышел раньше.
К тому времени, как его попросили завершить труд умершего брата, он уже некоторое время работал в Базеле, переехав из Гронингенского университета в Нидерландах и занимая место профессора не математики, а древнегреческого. Якобу такие перемены в карьере брата показались подозрительными, особенно потому, что по его представлениям Иоганн древнегреческого не знал. Якоб написал Лейбницу о своих подозрениях: Иоганн якобы приехал в Базель, чтобы занять его, Якоба, место. Так оно и случилось: после смерти брата Иоганн получил его место.
Большую часть своей сознательной жизни Иоганн и Якоб не ладили. В своих математических публикациях и письмах они то и дело обменивались оскорбительными выпадами; по отзывам одного из математиков, их переписка «изобиловала такими выражениями, которыми обычно поносят конокрадов»{101}. Таким образом, когда возникла необходимость отредактировать рукопись Якоба посмертно, просьба эта спускалась все ниже и ниже по «цепи питания» и дошла до племянника Якоба, Николаса, сына другого брата, которого тоже звали Николасом. Николасу-младшему в то время исполнилось всего восемнадцать, однако он был одним из учеников Якоба. К сожалению, Николас не был уверен, что справится с задачей, возможно, отчасти потому, что знал о несогласии Лейбница с идеями дяди в отношении применения теории. Поэтому рукопись отлеживалась восемь лет. Наконец, в 1713 г. она была опубликована под названием «Ars conjectandi», или «Искусство предположений». Как и «Мысли» Паскаля, она до сих пор переиздается.
Якоб Бернулли продемонстрировал: с помощью математического анализа можно понять, как неявные вероятности, лежащие в основе естественных систем, отражаются в данных, которые эти системы производят. Что же до вопроса, на который Бернулли не ответил — вопроса о том, как выяснить, основываясь на полученных данных, неявные вероятности событий, — то ответ на него будет найден лишь спустя десятилетия.
Глава 6
ЛОЖНАЯ ПОЛОЖИТЕЛЬНОСТЬ И ПОЛОЖИТЕЛЬНАЯ ЛОЖНОСТЬ
Случай этот произошел в 1970-х: как-то на занятия к профессору, преподававшему психологию в Гарварде, пришел один странного вида студент средних лет. После первых лекций студент счел нужным объяснить, зачем он записался на курс{102}. В моей преподавательской практике были случаи, когда особо воспитанные студенты объясняли, почему бросают курс, однако ни один студент не потрудился сказать, почему он решил ходить ко мне. Наверно поэтому я в мечтах представляю, как студент подходит и говорит: «Меня очень заинтересовал ваш предмет, вы замечательно читаете лекции». Однако у того студента причины были иными. Ему нужна была помощь, так как с ним происходило нечто странное. Жена сказала ему то, о чем он в тот момент как раз думал; в результате она с ним разводится. Коллега по работе во время дружеской посиделки в баре вскользь упомянул о сокращении, и через два дня наш студент пополнил ряды безработных. Он признался: за последнее время с ним не раз и не два случались подобного рода несчастья и, как он назвал их, вызывающие тревогу совпадения.
Поначалу все эти происшествия лишь сбили его с толку. Затем он, как и большинство из нас на его месте, придумал себе некое объяснение с точки зрения общемирового порядка. Которое, однако, резко отличалась от всего того, что наверняка пришло бы в голову каждому из нас: он решил, что участвует в строго засекреченном научном эксперименте. Что эксперимент ставится большой группой ученых под началом известного психолога Б.Ф. Скиннера. И что когда эксперимент закончится, он, участник, прославится, и его назначат на высокий государственный пост. Вот почему, сказал студент, он записался на курс. Он хотел узнать: как, основываясь на множестве накопившихся к тому времени доказательств, проверить свое предположение.
Спустя некоторое время, когда курс лекций был прочитан, студент снова подошел к профессору. И сообщил, что эксперимент продолжается; он же теперь судится со своим бывшим работодателем, который нашел психиатра, готового засвидетельствовать паранойю бывшего работника.
Одной из навязчивых, по мнению психиатра, идей был якобы выдуманный священник из восемнадцатого века, на реальности существования которого настаивал бывший работник. В частности, психиатр высмеивал утверждение, будто этот священник, увлекаясь на досуге математикой, изобрел причудливую теорию вероятностей. Автор идеи утверждал, что священника звали Томас Байес. А теория его описывала следующее: каким образом можно оценить вероятность того, что некое событие произойдет, если произойдет некое другое событие. Каковы шансы того, что этот студент станет объектом скрытых наблюдений психологов? Следует признать, они невелики. Но что, если чья-то жена высказывает вслух тайные мысли мужа, а коллега за кружкой пива в непринужденной обстановке мимоходом предсказывает увольнение? Студент уверял, что теория Байеса демонстрировала, каким образом необходимо изменить первоначальные подсчеты в свете новых доказательств. И во время суда студент вывалил на судей мешанину из формул и вычислений, подкреплявших его гипотезу, делая вывод о том, что дополнительные доказательства подтверждают: в 999 999 из 1 000 000 его предположения о тайном эксперименте верны. Психиатр со стороны работодателя утверждал, что и священник с математическими наклонностями, и теория — плоды воспаленного воображения бывшего работника.
Студент попросил профессора помочь с опровержением этого утверждения. Профессор согласился. И у него были на то веские причины, потому как Томас Байес, родившийся в Лондоне в 1701 г., действительно был священником, имевшим приход в Танбридж-Уэлс. Байес умер в 1761 г и был похоронен на территории лондонского парка Банхилл-Филдс, в той же самой могиле, что и его отец Джошуа, также служитель церкви. Томас Байес в самом деле изобрел теорию «условных вероятностей», чтобы доказать, что теория вероятностей может распространяться не только на независимые события, но и на события, чьи исходы зависят друг от друга. Например, и вероятность того, что случайно выбранный человек окажется психически больным, и вероятность того, что случайно выбранный человек утверждает, будто жена читает его мысли, весьма низки, однако вероятность того, что человек психически болен, если он утверждает, будто жена читает его мысли, уже гораздо выше, как и вероятность того, что человек утверждает, будто жена читает его мысли, если при этом он психически болен. Как все эти вероятности связаны между собой? Ответ следует искать в области условных вероятностей.
Профессор дал показание под присягой: подтвердил реальное существование Байеса и его теории, хотя и не высказался в поддержку специфических и сомнительных вычислений, которые, как утверждал теперь уже бывший студент, доказывали его вменяемость. Жалость вызывает не сам шизофреник, человек уже немолодой, а команда врачей и юристов, которую сколотило обвинение. Печален тот факт, что некоторые люди больны шизофренией, но хотя лекарства и могут помочь в излечении болезни, они не в силах побороть невежество. Как мы дальше убедимся, неосведомленность об идеях Томаса Байеса лежит в основе многих серьезных ошибок, будто то медицинские диагнозы или судебные решения. Во время же обучения будущих врачей и юристов с невежеством этим редко когда борются.
И в наши дни мы выносим суждения согласно теории Байеса. В одном фильме рассказывается об адвокате, у которого была замечательная работа, очаровательная жена, идеальная семья. Он любил жену и дочь, но ощущал в своей жизни некую пустоту. Однажды вечером он возвращается на трамвае домой и замечает красивую женщину — она с задумчивым видом смотрит из окна танцевальной студии. Проезжая на следующий день и через день, он ищет ее взглядом, с каждым разом все больше подпадая под ее чары. Наконец в один из вечеров он поддается порыву: сходит с электрички и записывается на танцевальные занятия в студию, надеясь увидеть ту женщину. Однако когда видит ее вблизи, чарующий образ, который преследовал его в воображении, улетучивается. Тем не менее он увлекается, однако не той женщиной, а танцами.
Свое увлечение он скрывает и от семьи, и от коллег по работе, выдумывая разные предлоги, чтобы вечером ускользнуть из дому. Наконец жена узнает, что он вовсе не засиживается за работой допоздна, как он говорит. Она думает: вероятность того, что он лжет о сверхурочной работе, гораздо больше при условии, что у него любовная связь, нежели при условии, что никакой любовной связи нет. И приходит к выводу: он все-таки лжет. Однако жена ошибается не столько в своих выводах, сколько в рассуждениях: она путает вероятность того, что муж избегает ее, если у него связь, с вероятностью того, что у него связь, если он ее избегает.
Это довольно распространенная ошибка. Предположим, начальник стал отвечать на ваши электронные письма с запозданием. Многие сочтут это знаком скорого заката собственной карьеры, потому что если вашей карьере подходит конец, велика вероятность того, что босс перестает отвечать на ваши письма оперативно. Однако босс может запаздывать с ответом и потому, что занят или у него заболела мать. Так что вероятность того, что ваша карьера подходит к концу, если начальник отвечает на ваши письма не сразу, гораздо ниже, чем вероятность того, что ваш начальник станет отвечать на письма с задержкой, если вас ждет увольнение. Своей привлекательностью многие теории тайных сговоров обязаны неправильному пониманию вышеприведенных логических выкладок. То есть все дело в путанице: вероятность того, что ряд событий произойдет, если события эти являются результатом тайного сговора, путают с вероятностью того, что тайный сговор существует, если имеет место ряд событий.
На вероятность влияет тот факт, что событие произойдет, если или при условии, что произойдут другие события. В этом и заключается теория Байеса. Чтобы понять принцип ее действия, обратимся к другой задаче, которая имеет отношение к задаче о двух дочерях из главы 3. Предположим, что у двоюродной сестры двое детей. По условию задачи о двух дочерях вам известно, что один ребенок или оба — девочки, и вы пытаетесь вспомнить, как же оно на самом деле: одна девочка или две? Если в семье двое детей, какова вероятность (при условии, что один ребенок — девочка) того, что оба ребенка — девочки? В главе 3 мы не подходили к задаче с такой стороны, однако это «если» переводит задачу в плоскость условных вероятностей. Если бы это «если» отсутствовало, вероятность того, что оба ребенка — девочки, была бы равна 1 из 4 случаев, то есть 4 вариантов очередности рождения (мальчик, мальчик), (мальчик, девочка), (девочка, мальчик), (девочка, девочка). Однако дополнительные сведения о том, что в семье одна девочка точно есть, сводит вероятность к 1 из 3. И это потому, что если один из детей — девочка, для этой семьи существуют всего 3 возможных варианта — (мальчик, девочка), (девочка, мальчик), (девочка, девочка), и лишь 1 из 3 соответствует исходу, при котором оба ребенка — девочки. Возможно, это простейший способ понять идеи Байеса — все дело исключительно в подсчетах. Сначала надо обозначить пространство элементарных событий, то есть сделать список всех возможностей, а вместе с ними и их вероятностей, если они не равны (вообще-то способ хорош для решения любой запутанной задачи на тему вероятностей). Далее надо вычеркнуть те возможности, которые исключаются условиями (в данном случае условие: «хотя бы один ребенок — девочка»). В остатке: возможности и соответствующие им вероятности.
Возможно, все это покажется очевидным. Ничуть не усомнившись в своих силах, вы решите, что могли бы додуматься до этого и без помощи дражайшего преподобного Байеса, после чего дадите себе слово, что когда уединитесь в уборной в следующий раз, захватите почитать какую-нибудь другую книжку. Поэтому прежде чем мы продолжим, рассмотрим несколько измененную задачу про двух дочерей — ее решение может оказаться гораздо более неожиданным{103}.
Вариант таков. В семье двое детей; какова вероятность того, что если один из детей — девочка по имени Флорида, то и другой ребенок тоже девочка? Да, вам не показалось: я назвал девочку Флоридой. Может, вы и подумаете на имя, что оно выбрано наугад, на самом деле это не так — кроме того, что оно обозначает название штата, где полно кубинских иммигрантов, апельсинов и пожилых людей, которые меняют свое просторное жилье в северной части страны на радость обозревать пальмы и играть в бинго, это еще и настоящее имя. В самом деле, оно входит в 1 000 самых популярных женских имен за первые тридцать лет прошлого века в Америке. Я выбрал его совсем неспроста, потому что часть загадки заключается в вопросе: есть ли что-то в имени Флорида, что влияет на вероятность, и если есть, то что? Однако я забегаю вперед. Прежде чем мы продолжим, обдумайте такой вопрос: если брать задачу с девочкой по имени Флорида, остаются ли шансы на семью из двух девочек такими же: 1 из 3 (как в задаче с двумя дочерьми)?
Ответ отрицательный, и я вкратце объясню, почему. Тот факт, что одну из девочек зовут Флорида, меняет шансы на 1 из 2. Может, вам сложно представить такое, однако не стоит переживать по этому поводу. Ключ к пониманию случайности, да и вообще математики заключается не в том, чтобы решить любую задачу мгновенно на интуитивном уровне, а воспользоваться соответствующими средствами и вычислить ответ.
Те, кто сомневался в существовании Байеса, были правы в одном: Байес не опубликовал ни одного научного труда. О его жизни нам известно немного, возможно, он занимался математикой в свое удовольствие и не испытывал потребности в собеседниках. В этом отношении и в некоторых других они с Якобом Бернулли были полными противоположностями. Бернулли сопротивлялся изучению богословия, а Байес совмещал теологию и математику. Бернулли гнался за славой, а Байеса она совершенно не привлекала. И, наконец, теорема Бернулли решает следующий вопрос: сколько получится орлов, если планируется произвести много бросков идеальной монеты, в то время как Байес исследовал первоначальную цель Бернулли — вопрос о том, насколько можно быть уверенным в том, что монета идеальна, если выпадает определенное число орлов.
Существование теории, благодаря которой Байес нам и известен, обнаружилось 23 декабря 1763 г., когда другой священнослужитель и математик, Ричард Прайс, прочел в Королевском обществе, этой британской национальной академии наук, доклад по научной работе. Работа, названная Байесом «Эссе о решении проблем в теории случайных событий», была опубликована в «Philosophical Transactions» Королевского общества в 1764 г. Байес оставил работу Прайсу по завещанию, вместе со 100 фунтами. По свидетельству Прайса, этого «как я полагаю, священника из Ньюингтон Грин», как высказался о нем Байес, автор «Эссе» умер спустя четыре месяца после того, как написал завещание{104}.
Хотя Байес и упомянул Ричарда Прайса вскользь, мимоходом, на самом деле Прайс отнюдь не был никому не известным священником. Его знали как пропагандиста свободы вероисповедания, друга Бенджамина Франклина, человека, которому Адам Смит доверил критический обзор некоторых частей чернового варианта «Исследования о природе и причинах богатства народов». Кроме всего прочего, Ричард Прайс был известным математиком. В заслугу ему ставят также основание страховой статистики, история которой началась с того, что в 1765 г. трое служащих из страховой компании «Equitable Society» обратились к Прайсу за помощью. Спустя шесть лет Прайс опубликовал свою работу в виде книги под названием «Заметки о страховых выплатах». И хотя книга, своего рода Библия для экспертов-статистиков из страховых учреждений, прослужила вплоть до XIX в., Прайс по-видимому недооценил среднюю продолжительность жизни — из-за недостаточности сведений и ненадежного метода подсчетов. В результате неоправданно завышенные страховые взносы обогатили его приятелей из «Equitable Society». С другой стороны, незадачливое британское правительство, производившее свои ежегодные выплаты исходя из таблиц Прайса, потерпело убытки: к ожидаемому по табличным данным сроку пенсионеры по-прежнему оставались в добром здравии.
Как я уже говорил, Байес разработал условную вероятность в попытке ответить на тот же вопрос, который увлек Бернулли: как по известному факту события вычислить вероятность того, что оно было вызвано данной причиной? Если в процессе клинических испытаний лекарство помогло 45 пациентам из 60, каковы шансы того, что лекарство подействует и на следующего пациента? Если оно помогло 600 000 пациентов из 1 млн, шансы того, что оно подействует, приближаются к 60%. Однако к какому выводу вы придете, если будете исходить из испытаний меньшего масштаба? Байес задался и другим вопросом: если перед испытаниями у вас были основания верить в то, что лекарство эффективно лишь на 50%, насколько весомыми окажутся новые сведения для ваших дальнейших оценок? Наш жизненный опыт в основном выглядит следующим образом: мы наблюдаем сравнительно небольшую выборку исходов, а уже из этого выводим информацию и приходим к заключению относительно качеств, которые привели к подобным исходам. Как нам следует выводить информацию?
Байес задумал решить задачу через метафору{105}. Предположим, нам выдали квадратный стол и два мяча. Первый мяч мы катим по столу таким образом, чтобы имели место равные вероятности: мяч остановится в любой точке. Наша цель — определить, не глядя, где именно вдоль всей оси слева направо мяч остановился. При этом наше орудие — второй мяч, который мы поначалу тоже будем неоднократно катать по столу тем же самым образом, что и первый. С каждым разом специально поставленный для этого человек будет записывать, где именно, справа или слева от первого мяча, остановился второй мяч. В конце человек сообщит нам общее количество попыток, во время которых второй мяч останавливался в каждом из двух основных направлений. Первый мяч представляет собой то неизвестное, о чем мы хотели узнать, второй мяч представляет собой свидетельства, которые нам удалось собрать. Если второй мяч будет раз за разом останавливаться справа от первого мяча, можно быть в достаточной степени уверенным, что первый мяч останавливается в дальнем левом углу стола. Если он останавливается — не так последовательно, раз за разом — мы будем в меньшей степени уверенными в своем выводе или же предположим, что первый мяч находится в дальнем правом углу. Байес продемонстрировал, как, опираясь на сведения о втором мяче, определять точную вероятность того, что первый мяч находится в любой данной точке рядом с осью слева направо. И продемонстрировал, как при наличии дополнительных сведений можно пересмотреть первоначальные подсчеты. Согласно терминологии Байеса, первоначальные подсчеты называются априорной вероятностью, а новые предположения — апостериорной вероятностью.
Байес затеял эту игру по той простой причине, что она моделирует многие решения, которые мы принимаем в жизни. В примере с испытаниями лекарства положение первого мяча представляет собой истинную эффективность лекарства, а то, что говорится о втором мяче, представляет собой информацию о пациенте. Положение первого мяча может также обозначать интерес к фильму, качество изделия, умение водить машину, усердную работу, упрямство, талант, способность — да что угодно, что определяет успех либо неудачу того или иного предприятия. Сообщения о втором мяче в таком случае обозначали бы наши наблюдения либо полученные нами данные. Теория Байеса демонстрирует, как производить оценку и согласовывать ее при наличии новой информации.
В наше время байесовский анализ широко применяется и в науке, и на производстве. К примеру, в модели, с помощью которых рассчитываются страховые тарифы для автомобилей, заложена математическая функция, описывающая в единицах времени за рулем вероятность для вас лично попасть в аварию однажды, не один раз, ни одного раза. В нашем случае достаточно рассмотреть упрощенную модель, согласно которой все водители распределяются на две категории: высокого риска, к которой относятся водители, в среднем попадающие в одну аварию в год, и малого риска, к которой относятся водители, в среднем попадающие в менее чем одну аварию в год. Допустим, в момент обращения за страховкой вы предоставляете данные, согласно которым проездили без единой аварии аж двадцать лет, либо предоставляете данные, согласно которым за двадцать лет побывали в тридцати семи авариях. Страховая компания четко определит для себя, к какой категории вас отнести. Однако если вы сели за руль недавно, к какой категории вас отнести: малого риска (водитель не превышает скорость и не употребляет ни капли спиртного за рулем) или высокого риска (водитель гонит по шоссе, отхлебывая из уже полупустой бутылки вина)? У страховой компании нет на вас никаких данных — ни малейшего представления о «положении первого мяча», — поэтому вас могут отнести с равной априорной вероятностью и к той, и к другой категории, либо, на основании известных данных о начинающих водителях, сразу приписать к категории высокого риска, скажем, 1 к 3. В таком случае компания применит к вам смешанную оценку — одна треть высокого риска и две трети малого риска — и возьмет с вас одну треть платы, которую берет с водителей категории высокого риска, и две трети платы, которую берет с водителей категории малого риска. Далее после года наблюдений — то есть, после броска одного из вторых байесовских мячей, — компания будет располагать другими данными, чтобы переоценить модель, привести в соответствие ранее рассчитанные пропорции в одну треть и две трети и определить новую ставку. Если у вас не было ни одной аварии, соотношение малого риска и следовательно низкого тарифа возрастет; если у вас произошло две аварии, соотношение снизится. Точные размеры соответствия даются теорией Байеса. Таким же образом страховая компания может периодически приводить в соответствие свои оценки в последующие годы, отражая факт того, что у вас не было аварии или же вы дважды попали в аварию, когда ехали по улице с односторонним движением не в ту сторону, Да еще одной рукой прижимали к уху мобильный телефон, а в другой держали пончик. Вот почему страховые компании могут назначать скидки так называемым «примерным водителям»: отсутствие аварий повышает апостериорную вероятность того, что водитель входит в категорию малого риска.
Очевидно, что многие детали байесовской теории довольно сложны. Но как я уже говорил, во время анализа задачи про двух дочерей я использовал новые данные для «урезания» пространства элементарных событий и соответственной выверки вероятностей. В задаче с двумя дочерьми пространство элементарных событий изначально было таким: (мальчик, мальчик), (мальчик, девочка), (девочка, мальчик), (девочка, девочка), однако оно сокращается до следующих параметров: (мальчик, девочка), (девочка, мальчик), (девочка, девочка), если вы узнаете, что один из детей — девочка, что шансы на семью из двух девочек составляют 1 из 3. Попробуем применить эту несложную стратегию и посмотрим, что выйдет при условии, если вам станет известно следующее: один из детей — девочка по имени Флорида.
В задаче про девочку по имени Флорида нас интересует помимо пола детей еще и имя, поскольку речь о девочках. Наше первоначальное пространство элементарных событий должно включать в себя все вероятности, поэтому список содержит и пол, и имя. Обозначим девочку по имени Флорида как «девочка Ф», а девочку по имени не Флорида как «девочка не Ф». Обозначим пространство элементарных событий: (мальчик, мальчик), (мальчик, девочка Ф.), (мальчик, девочка не Ф.), (девочка Ф., мальчик), (девочка не Ф., мальчик), (девочка не Ф., девочка Ф.), (девочка Ф., девочка не Ф.), (девочка не Ф., девочка не Ф.), (девочка Ф., девочка Ф.).
Ну а теперь «урежем». Так как нам известно, что один из детей — девочка по имени Флорида, можно сократить пространство элементарных событий: (мальчик, девочка Ф.), (девочка Ф., мальчик), (девочка не Ф., девочка Ф.), (девочка Ф., девочка Ф.). Теперь видно, чем еще эта задача отличается от задачи про двух дочерей. Поскольку утверждения, что девочку зовут Флорида и девочку зовут не Флорида, нельзя назвать равновероятными, не являются таковыми и все элементы пространства элементарных событий.
В 1935, последнем году, за который Управление социальным обеспечением предоставило статистику в отношении имени, около 1 из 30 000 девочек были наречены именем Флорида{106}. Поскольку имя становилось все менее популярным, предположим, что сегодня вероятность появления девочки по имени Флорида равна 1 из 1 млн. Это значит следующее: если нам станет известно, что определенную из двух девочку зовут не Флорида, ничего страшного, однако если мы узнаем, что ее зовут Флорида, можно сказать, что мы попали в точку. Вероятность того, что обеих девочек назовут именем Флорида (даже если мы проигнорируем тот факт, что обычно родители избегают давать детям одинаковые имена), настолько мала, что можно спокойно ею пренебречь. Итак, вот что у нас остается: (мальчик, девочка Ф.), (девочка Ф., мальчик), (девочка не Ф., девочка Ф.), (девочка Ф., девочка не Ф.). Все эти события в весьма хорошем приближении равновозможны.
Поскольку 2 из 4, то есть половина элементов пространства элементарных событий являются семьями с двумя девочками, ответом не может быть 1 из 3 — как это было в задаче с двумя дочерьми, — ответом является 1 из 2. Все дело в дополнительной информации — осведомленности насчет имени девочки.
Если вы по-прежнему теряетесь в догадках, то можно представить себе следующее: в очень-очень большой комнате мы собираем 75 млн семей с двумя детьми, из которых хотя бы один ребенок — девочка. Как нам стало известно из задачи с двумя дочерьми, в комнате окажется около 25 млн семей с двумя девочками и 50 млн семей с одной девочкой (25 млн семей, в которых девочка является старшим ребенком, и столько же семей, в которых девочка является младшим ребенком). Далее «урезаем»: просим остаться в комнате только те семьи, в которых есть девочки по имени Флорида. Поскольку Флорида — 1 имя на 1 млн имен, останутся около 50 из 50 млн семей с одной девочкой. А из 25 млн семей с двумя девочками 50 тоже останутся: 25 потому, что их первый ребенок назван по имени Флорида, другие 25 потому, что их младшая дочь названа Флоридой. В этом примере всех девочек можно представить как лотерейные билеты; в таком случае девочки по имени Флорида станут выигрышными билетами. И хотя семей, в которых один из двух детей — девочка, в два раза больше, чем семей, в которых оба ребенка — девочки, семьи с двумя девочками обладают двумя лотерейными билетами, поэтому среди выигравших будет примерно одинаковое соотношение семей с одной девочкой и семей с двумя девочками.
В теории я расписал задачу про девочку по имени Флорида уж очень подробно, до такой степени, что иногда из-за этого моего пристрастия к деталям меня не приглашают на свои дружеские посиделки соседи. Но я поступил так не потому, что ожидал от вас того же самого, что и от своих соседей. Дело в том, что контекст прост, а аналогичный ход рассуждений прояснит многие ситуации, реальные для нашей повседневной жизни. Давайте поговорим о них.
Лично я наиболее яркими воспоминаниями, связанными с преподобным Байесом, обязан одной из пятниц 1989 г.: в тот день позвонил лечащий врач и сообщил, что жить мне осталось от силы лет десять, причем вероятность этого прогноза равна 999 из 1 000. Он еще прибавил: «Мне действительно очень жаль», как будто у него бывали пациенты, которым он говорил о своем сожалении, но на самом деле ничего подобного к ним не испытывал. Далее врач ответил на кое-какие вопросы относительно протекания болезни, после чего повесил трубку: видимо, торопился сообщить очередному пациенту крайне важную для того новость. Тяжело говорить, даже вспоминать о том, что я пережил за субботу и воскресенье, скажу только, что ни в какой Диснейленд я не поехал. Но раз мне был вынесен смертный приговор, почему я все еще жив, почему сижу и пишу об этом?
А началось все с того, что мы с женой решили застраховаться. В заявлении говорилось, что мы должны предоставить результаты анализа крови. Через неделю-две нам отказали в страховании. Крайне экономная страховая компания выслала нам два коротеньких извещения, которые были одинаковы, только текст в извещении на имя жены оказался на одно слово длиннее, чем текст в извещении на мое имя. В моем извещении говорилось, что компания отказывает мне в страховании на основании «результатов Вашего анализа крови». В извещении для моей жены говорилось, что компания не может застраховать ее жизнь на основании «результатов анализа крови Вашего мужа». Когда выяснилось, что в этом самом слове, «муж», и кроется разгадка того, почему добросердечные страховщики отказывают нам в страховании, я, действуя интуитивно, пошел к врачу и сдал анализ на ВИЧ. Результаты оказались положительными. И хотя я поначалу был слишком потрясен, чтобы поинтересоваться у врача о высказанной им вероятности, позднее мне стало известно, что он вычислил мой 1 из 1 000 шанс на жизнь из следующих статистических данных: лишь в 1 случае из 1 000 анализ на ВИЧ может дать положительный результат, пусть даже кровь при этом и не заражена вирусом СПИДа. Может показаться, что врач сказал то же самое, однако это не так. Врач перепутал вероятность того, что результаты моего анализа будут положительными, если я не являюсь ВИЧ-инфицированным, с вероятностью того, что я могу и не быть ВИЧ-инфицированным, даже если результаты моего анализа окажутся положительными.
Чтобы разобраться, где ошибся врач, прибегнем к методу Байеса. Первым делом очертим пространство элементарных событий. Можно включить в него всех, кто когда-либо сдавал анализы на ВИЧ, но мы получим более точные результаты, если примем во внимание некоторые дополнительные, имеющие непосредственное отношение к теме сведения обо мне: рассмотрим только гетеросексуальных, не принимающих наркотиков белых американцев мужского пола, которые сдавали анализы на ВИЧ. (Далее мы увидим, какое это имеет значение.)
Теперь, когда мы знаем, кого следует включить в пространство элементарных событий, распределим членов этого пространства по категориям. Вместо деления на мальчиков и девочек выберем деление на тех, кто у кого анализы оказались ВИЧ-положительными и кто ВИЧ-положителен (истинная положительность), тех, у кого анализы оказались положительными, но кто на самом деле не положителен (ложная положительность), тех, у кого анализы оказались ВИЧ-отрицательными и кто ВИЧ-отрицателен (истинная отрицательность), тех, у кого анализы оказались ВИЧ-отрицательными, но кто на самом деле ВИЧ-положителен (ложная отрицательность).
Наконец задаем вопрос: сколько людей в каждой из этих категорий? Предположим, мы рассматриваем изначально население из 10 000 человек. Пользуясь статистическими данными Центра по контролю и профилактике заболеваемости, подсчитаем, что в 1989 г. около 1 из 10 000 гетеросексуальных, не принимающих наркотиков белых американцев мужского пола, сдавших анализы, оказались ВИЧ-инфицированными{107}. Предположим, что в категории «ложная отрицательность» показатель равен 0, тогда около 1 человека из каждых 10 000 сдавших анализы окажется положительным из-за наличия инфекции. К тому же поскольку показатель «ложной отрицательности» равен, по словам врача, 1 из 1 000, наберется около 10 тех, кто не заражен ВИЧ, однако анализы которых тем не менее окажутся положительными. У остальных 9 989 человек из 10 000, составляющих пространство элементарных событий, результаты анализов окажутся отрицательными.
Теперь «урежем» пространство элементарных событий — включим в него только тех, результаты анализов которых оказались положительными. У нас останется 10 человек из категории «ложная положительность» и 1 человек из категории «истинная положительность». Другими словами, лишь 1 человек из 11, результаты анализов которых оказались положительными, действительно ВИЧ-инфицирован. Врач сказал мне: вероятность того, что в анализе ошибка — на самом же деле я был совершенно здоров, — равна 1 из 1 000. А на самом деле ему следовало сказать следующим образом: «Не волнуйтесь, шансы на то, что вы на самом деле не инфицированы, выше 10 из 11». В моем случае на результаты пробы для выявления скрытой формы заболевания повлияли определенные метки, которые присутствовали в моей крови, хотя вирус, ради которого и брали пробу, отсутствовал.
При оценке любого диагностического испытания важно знать, каков показатель «ложной положительности». Например, анализ, который выявляет 99% всех злокачественных опухолей, производит сильное впечатление, однако я с легкостью могу придумать анализ, который выявляет 100% всех злокачественных опухолей. Для этого мне только и надо что находить у каждого осматриваемого пациента опухоль. Статистический показатель, отличающий мой анализ от действительно полезного, заключается в следующем: в результате моего анализа показатель «ложной положительности» окажется высоким. Однако вышеприведенный пример демонстрирует: осведомленности о показателе «ложной положительности» недостаточно для того, чтобы определить, полезен анализ или не полезен. Необходимо также знать, как показатель «ложной положительности» соотносится с истинной распространенностью заболевания. Если заболевание обычное, положительный результат будет гораздо более убедительным. Чтобы увидеть, как истинная распространенность связана с положительными результатами анализа, предположим, что я гомосексуалист, и результаты анализа у меня положительные. Предположим, что в сообществе гомосексуалистов вероятность заражения среди тех, кто сдал анализы в 1989 г., была около 1%. Что значит: среди результатов 10 000 анализов мы должны обнаружить не 1 (как ранее), а 100 «истинно положительных» вместе с 10 «ложно положительными». Таким образом, в данном случае вероятность того, что положительный результат означал мою инфицированность, должна была равняться 10 из 11. Вот почему при оценке результатов неплохо выяснить: относитесь вы к группе повышенного риска или нет.
Теория Байеса говорит о следующем: вероятность того, что А произойдет, если произойдет В, обычно отличается от вероятности того, что В произойдет, если А произойдет{108}. Что не принимается во внимание и является частой ошибкой среди врачей. Например, во время исследований в Германии и США терапевтов попросили подсчитать вероятность того, что не обнаруживающая симптомов рака женщина в возрасте между 40 и 50, чья маммограмма показывает рак, на самом деле больна раком груди, если при этом в 7% случаев маммограммы диагностируют рак, когда на самом деле его нет{109}. Кроме того, врачам сообщили, что в реальности частота возникновения заболевания равна примерно 0,8% и что «ложно отрицательные» результаты равны примерно 10%. Принимая все вышесказанное во внимание, можно с помощью метода Байеса определить, что «положительная» маммограмма диагностирует рак лишь примерно в 9% всех случаев. Однако в немецкой группе треть врачей пришли к выводу, что вероятность равна примерно 90%, а срединное значение оказалось равно 70%. В американской группе у 95 из 100 врачей вероятность оказалась равна примерно 75%.
Подобная же ситуация складывается и с проверкой спортсменов на допинг. Цифры, на которые часто ссылаются, на самом деле не соответствуют действительности, являясь относительным числом ложно положительных заключений. И дают искаженное представление о вероятности того, что спортсмен виноват в приеме допинга. Например, Мэри Дэкер Слэни, бегунья мирового класса и чемпионка 1983 г. в забегах на 1 500 и 3 000 м, пыталась снова вернуться в спорт, когда на отборочных соревнованиях в Атланте в 1996 г. ее обвинили в приеме допинга — вещество попало в организм при употреблении тестостерона. После всевозможных обсуждений ассоциация (с 2001 г. официально именуемая Международной ассоциацией легкоатлетических федераций) вынесла решение: Слэни «была виновна в злоупотреблениях, связанных с приемом допинга», которое по сути дела поставило крест на ее спортивной карьере. Согласно некоторым свидетельским показаниям в деле Слэни, «относительное число ложно положительных заключений» применительно к анализу мочи спортсменки могло доходить до 1%. Видимо, поэтому многие легко согласились со следующим: вероятность вины спортсменки равна 99%. Однако мы уже убедились в том, что это неверно. Предположим, анализы сдали 1 000 спортсменов, 1 из 10 был признан виновным, а результаты анализа, выданные признанному виновным спортсмену, представляли собой 50% вероятность злоупотребления допингом. Далее из каждой 1 000 проверенных спортсменов 100 оказались бы виновными, а результаты анализов указали бы на 50 из этих 100. Тем временем из 900 невиновных спортсменов по результатам анализов выделились бы 9 человек. Таким образом, в действительности анализы на выявление допинга означали вовсе не то, что вероятность вины спортсменки равнялась 99%, скорее всего, цифра была: 50/59 = 84,7%. Другими словами, если иметь в виду свидетельства, у вас должна быть такая же степень уверенности в том, что Слэни виновна, как и в том, что если она подбросит кость, число 1 не выпадет. Это, конечно же, не исключает разумные основания для сомнения, но важно вот что: соответствующие заключения, основанные на масштабной проверке (90 000 спортсменов ежегодно сдают мочу на анализы), равносильны обвинению большого числа невиновных спортсменов{110}.
В сфере права такую ошибку перестановки двух элементов иногда называют «ошибкой обвинения», поскольку обвинитель часто прибегает к подобному типу ошибочного довода, подводя присяжных заседателей к обвинительному приговору подозреваемого, хотя доказательства и неубедительны. Например, рассмотрим имевшее место в Британии дело Салли Кларк{111}. Первый ребенок Кларк умер в возрасте 11 недель. Как было сказано, смерть ребенка наступила в результате синдрома внезапной смерти ребенка грудного возраста — этот диагноз ставится, когда ребенок умирает внезапно, а вскрытие не проясняет причины смерти. Кларк снова забеременела. Ее второй ребенок прожил 8 недель, а затем умер по той же причине — синдром внезапной смерти. После этого случая Кларк была арестована: ей предъявили обвинение в том, что она задушила обоих детей. Во время судебных слушаний обвинение вызвало в качестве эксперта педиатра, Роя Мидоу, который свидетельствовал: учитывая редкость синдрома, вероятность того, что оба ребенка умерли именно по этой причине, равны 73 млн к 1. Обвинитель не предъявил никакого другого существенного свидетельства против Кларк. Могло ли такое свидетельство эксперта оказаться достаточным для вынесения обвинительного приговора? Присяжные решили, что могло, и в ноябре 1999 г. Кларк посадили.
Мидоу подсчитал: вероятность того, что ребенок умрет от синдрома внезапной смерти, равна 1 из 8 543. Свою цифру — 73 млн к 1 — он получил путем умножения этих двух факторов, по одному на каждого ребенка. Однако согласно его подсчетам выходит, что смерти детей были независимы друг от друга — то есть, ни факторы окружающей среды, ни наследственность не играли роли, увеличивавшей риск заболевания второго ребенка синдромом, от которого умер первенец. В действительности, в статье, опубликованной в «Бритиш медикал джорнел» через несколько недель после суда, вероятность того, что оба ребенка умрут в результате синдрома внезапной смерти, была определена как 2,75 млн к 1{112}. Но даже эта цифра слишком велика.
Чтобы понять, почему так получилось, что Салли Кларк посадили, нужно разобраться в ошибке перестановки двух элементов: мы пытаемся выяснить не вероятность того, что двое детей умрут в результате синдрома, а вероятность того, что двое умерших детей действительно умерли в результате синдрома. Спустя два года после заключения Кларк в тюрьму, Королевское общество статистиков рассмотрело ее дело и в сообщении для печати заявило: в своем решении присяжные «допустили серьезную логическую ошибку, именуемую „ошибкой обвинения“. Присяжные должны рассмотреть два разных объяснения детских смертей: от синдрома или же в результате умышленного убийства. И два смертельных исхода от синдрома, и два убийства в равной степени маловероятны, однако одно из двух все же случилось. В данном случае значение имеет относительное правдоподобие смертей…, а вовсе не то, насколько маловероятно… {объяснение смертей синдромом внезапной смерти{113}}». Позднее математик подсчитал относительное правдоподобие того, что семья теряет двух детей в результате синдрома внезапной смерти или же умышленного убийства. И на основании имевшихся данных заключил: вероятность того, что двое младенцев умрут в результате синдрома, в 9 раз выше, нежели то, что они станут жертвами убийства{114}.
Семья Кларк подала на апелляцию, а в качестве экспертных свидетелей наняла собственных специалистов-статистиков. Апелляцию они проиграли, однако не сдались и решили добиваться врачебных разъяснений относительно причины смертей. В результате открылось, что патологоанатом, привлеченный обвинением, утаил тот факт, что второй ребенок на момент смерти страдал от бактериальной инфекции, каковая и могла вызвать летальный исход. Основываясь на данном обстоятельстве, судья отменил обвинительный приговор — Салли Кларк, просидевшая в заключении почти три с половиной года, была освобождена.
Известный адвокат и профессор юридического факультета в Гарварде Алан Дершовиц также с успехом воспользовался «ошибкой обвинения» во время защиты О. Дж. Симпсона, обвинявшегося в убийстве своей бывшей жены, Николь Браун Симпсон, и ее спутника. Судебный процесс с участием Симпсона, бывшей футбольной знаменитости, был одним из самых громких событий в прессе за 1994–95 гг. У полиции имелось достаточно улик, свидетельствовавших против Симпсона. Одну перчатку, испачканную в крови, они нашли у него дома, другую обнаружили на месте преступления. Пятна крови, совпадающей по группе с кровью Николь, были найдены на перчатках, в его машине, на носках в его спальне, а также на подъездной аллее у дома и в самом доме. Более того, образцы ДНК крови, обнаруженной на месте преступления, совпали с образцами ДНК крови Симпсона. Защита была бессильна, она разве что обвинила полицейское управление Лос-Анджелеса в расизме (О. Дж. Симпсон — афро-американец), а также нечестности и усомнилась в подлинности улик.
Обвинение решило напирать на склонность Симпсона к агрессии по отношению к Николь. Первые десять дней обвинители говорили о многочисленных случаях насилия и заявляли о том, что одно уже это является достаточным основанием, чтобы подозревать Симпсона в убийстве. Как они выразились, «начинается с пощечины, а заканчивается убийством»{115}. Защита воспользовалась этой стратегией, усмотрев в ней двойные стандарты — адвокаты указали на то, что обвинение две недели пыталось сбить присяжных с толку, а свидетельства о том, что Симпсон раньше бил Николь, ничего не значат. Вот доводы Дершовица: в США 4 млн женщин ежегодно терпят побои от своих мужей и парней, и однако согласно общей сводке ФБР по преступлениям, совершенным в 1992 г., убитыми оказались в общей сложности 1 432 женщины, то есть 1 женщина из каждых 2 500{116}. Следовательно, возразила защита, очень немногие мужчины, поколачивающие своих жен, способны убить их. Верно? Да. Убедительно? Да. Имеет ли отношение к делу? Нет. Нас интересует не вероятность того, что мужчина, который бьет жену, зайдет так далеко, что убьет ее (1 из 2 500), а скорее вероятность того, что избитая и убитая жена была убита именно тем, кто ее избивал. Согласно сводке по совершенным в США преступлениям в 1992, а также 1993 гг., вероятность, которую Дершовиц (или обвинение) должны были привести, звучала бы следующим образом: из всех избитых женщин, убитых в США в 1993 г., около 90% были убиты теми, кто их бил. Эти статистические данные во время судебного процесса обнародованы не были.
По мере того, как приближался час вынесения приговора, вдвое сократилось количество междугородних звонков, объем торгов на Нью-йоркской фондовой бирже упал на 40%, а около 100 млн человек включили телевизоры и радио, чтобы услышать: невиновен. Возможно, Дершовиц считал оправданной стратегию введения присяжных в заблуждение, потому как по его словам «клятва, произносимая в зале судебных заседаний — „говорить правду, всю правду и ничего, кроме правды“ касается только свидетелей. Адвокаты со стороны защиты, обвинения, а также судьи не дают этой клятвы… и конечно же, справедливо сказать, что в основе американской судебной системы лежит принцип — не говорить всю правду»{117}.
Хотя условная вероятность произвела среди идей о теории случайности революцию, Томас Байес не был революционером, его работа, пусть даже и опубликованная в престижном издании «Philosophical Transactions» в 1764 г., осталась незамеченной. Пока другой человек, французский математик Пьер-Симон де Лаплас, не привлек внимание ученых к идеям Байеса: так мир узнал, как неразличимые на первый взгляд вероятности могут быть вычислены благодаря очевидным исходам.
Возможно, вы помните: «золотая теорема» Бернулли позволяет вычислить еще до самого эксперимента с подбрасыванием монет степень уверенности в том, что получится определенный исход (при условии, что монета идеальна, без изъянов). Возможно, вы также помните: теорема эта не скажет вам уже после проведенного вами эксперимента с монетой степень вероятности того, что монета была идеальной. Точно так же, если вам известно: вероятность того, что старик восьмидесяти пяти лет доживет до девяноста, равна 50/50, «золотая теорема» подсказывает вероятность того, что половина из стариков восьмидесяти пяти лет в группе из 1 000 человек умрет в течение ближайших пяти лет. Однако если половина людей в группе умрет в течение ближайших пяти лет уже после того, как им исполнится восемьдесят пять, теорема не ответит на вопрос: насколько вероятно, что неявные шансы на выживание для людей из этой группы равны 50/50. Или такой пример. Если Форд знает, что у 1 из 100 его машин неисправна трансмиссия, при помощи «золотой теоремы» можно узнать вероятность того, что в партии из 1 000 машин 10 или более трансмиссий будут неисправными однако если Форд обнаружит 10 неисправных трансмиссий в выборке из 1 000 машин, данный факт не сообщит автомобильной компании вероятность того, что среднее арифметическое неисправных трансмиссий равно 1 из 100. В жизни наиболее частой из данных примеров оказывается вторая постановка задачи: вне ситуации связанной с азартными играми, мы обычно не обладаем теоретическими знаниями шансов, скорее нам приходится вычислять их, основываясь на серии наблюдений. Ученые тоже оказываются в подобном положении: обычно они не пытаются найти (располагая размером физической величины) вероятность того, что измерения получатся такими либо другими, а вместо этого стараются распознать истинный размер физической величины, опираясь на ряд измерений.
Я специально выделил это различие — ввиду его важности. Оно определяет существенную разницу между вероятностью и статистикой: первая имеет дело с прогнозами на основе определенных вероятностей; последняя связана с заключениями на основе вероятностей, выведенных посредством серии наблюдений.
Именно к ряду вопросов, связанных со статистикой, и обращался Лаплас. Он не знал о существовании теории Байеса и, следовательно, вынужден был придумать ее снова. Как только Лаплас сформулировал теорию, встал следующий вопрос: имеется ряд измерений; каково наилучшее предположение, какое можно сделать из истинного размера измеренной величины, и какова вероятность того, что это предположение будет «близко» к истинному размеру, какие бы требования вы ни предъявляли к степени этой «близости»?
Лаплас с головой ушел в исследования; работа, начатая в 1774 г., затянулась на сорок лет. Вообще Лаплас был человеком неплохим, не чуждым широких жестов, однако иной раз неосознанно заимствовал идеи из чужих работ и без устали рекламировал себя. Лаплас располагал гибкостью травы на ветру — легко прогибался, что позволяло ему во время своего эпохального труда не отвлекаться на происходившие вокруг бурные события. Еще до Французской революции Лаплас занял выгодную должность преподавателя в Военной академии, где ему посчастливилось принимать экзамен у способного шестнадцатилетнего юноши по имени Наполеон Бонапарт. В 1789 г., когда грянула революция, Лаплас некоторое время находился под подозрением, однако не в пример многим другим уцелел, заявив о своей «страстной ненависти к королевскому дому», и позднее был не раз награжден уже республиканским правительством. Далее, когда в 1804 г. Наполеон провозгласил себя императором, Лаплас туг же забыл о своих республиканских взглядах; в 1806 г. ему дали титул графа. Когда же к правлению вернулась династия Бурбонов, Лаплас раскритиковал Наполеона в своем труде «Аналитическая теория вероятностей» издания 1814 г., написав: «падение империй, притязавших на вселенское господство, могло бы быть предсказано с очень высокой долей вероятности человеком, сведущим в вычислениях вероятностей{118}». Предыдущее же издание, 1812 г., было посвящено «Наполеону Великому».
От гибкости Лапласа в политических вопросах только выиграла математика, поскольку анализ Лапласа оказался глубже и полнее, чем анализ Байеса. Имея в качестве основы работу Лапласа, мы в следующей главе оставим мир вероятности и познакомимся с миром статистики. Их область слияния является одной из самых важных во всех естественных науках — это колоколообразная кривая или же график нормального распределения. Кривая, а также сопутствующая ей новая теория измерения и станут темами следующей главы.
Глава 7
ИЗМЕРЕНИЕ И ЗАКОН РАСПРЕДЕЛЕНИЯ ОШИБОК
Не так давно мой сын Алексей, вернувшись из школы, сообщил об оценке по английскому, полученной им за последнее сочинение. Ему поставили 93 балла. Будь все как обычно, я бы поздравил его с высшей оценкой — A. Но поскольку в пределах A это невысокий балл, а я знаю, что он способен на большее, я бы не преминул добавить: оценка говорит о том, что если в следующий раз он приложит чуть больше усилий, то получит более высокий балл. Однако все было отнюдь не как обычно, и я счел 93 балла возмутительной недооценкой сочинения. Здесь вам, верно, подумалось, что предыдущие несколько предложений говорят больше обо мне, нежели об Алексее. Что ж, вы совершенно правы. На самом деле, вся эта история обо мне, потому что сочинение за Алексея написал я.
О да, позор на мою голову! В свою защиту должен сказать, что в более мирных обстоятельствах скорее дотянулся бы за Алексея пяткой до подбородка на его занятиях по кунг-фу, чем писал бы за него сочинение. Но дело в том, что Алексей подошел ко мне с просьбой взглянуть на его работу как обычно, поздно вечером, в день перед сдачей сочинения. И я пообещал взглянуть. Начав читать сочинение с экрана компьютера, я поначалу внес несколько незначительных изменений — ничего такого, на что стоило бы обратить внимание. Однако затем редактор во мне начал шаг за шагом переставлять и перефразировать то и это, а когда дошел до конца, оказалось, что Алексей уже спит крепким сном, а я по сути написал новое сочинение. На следующее утро, смущенно признавшись, что поленился сохранить файл под новым именем, я сказал ему, чтобы он просто сдал мой вариант.
Сын протянул мне проверенное сочинение, похвалив его весьма сдержанно. «Неплохо, — сказал он. — Оно, конечно, 93 балла — это скорее A с минусом, чем A, но было уже поздно, и если бы у тебя не слипались глаза, наверняка справился бы лучше». Не сказать, чтобы я был рад. Во-первых, мало приятного в том, что твой пятнадцатилетний сын говорит тебе те самые слова, которые ты прежде обращал к нему, и при этом они кажутся тебе совершенно пустыми. Но кроме того, как могло мое сочинение — труд человека, которого даже собственная мать считает профессиональным писателем, — не получить достойной оценки у школьного учителя английского? Понятное дело, я был не одинок. Уже потом мне рассказали о другом писателе, с которым приключилась точно такая же история, с той лишь разницей, что его дочь получила еще более низкую оценку — B. Тексты, выходившие из-под пера этого писателя с докторской степенью по английскому языку, вполне удовлетворяли даже столь взыскательные издания, как «Роллинг Стоун», «Эсквайр» и «Нью-Йорк Таймс», но только не учителя средней школы. Алексей попытался утешить меня, поведав еще одну историю. Как-то раз двое его друзей сдали одно и то же сочинение. Сын решил, что они сглупили, и их немедленно разоблачат. Однако перегруженная учительница не только не заметила удвоения, но и поставила за одно сочинение 90 баллов (A), а за другое — 79 (C). На первый взгляд, странно, но только если вам не доводилось, как мне, ночь напролет проверять здоровенную стопку работ, гоняя по кругу, чтобы ненароком не заснуть, музыку из «Стар Трек».
Числам всегда приписывается особый вес. Рассуждение, во всяком случае, неосознанно, строится примерно так: если учитель оценивает сочинение по сто-балльной шкале, эти незначительные различия и в самом деле что-то значат. Но если десять издателей сочли, что рукопись первого тома «Гарри Поттера» не заслуживает публикации, то каким образом бедная миссис Финнеган (на самом деле ее зовут не так) проводит тонкое различение между двумя школьными сочинениями, ставя за одно 92 балла, а за другое 93? Если мы допускаем, что качество сочинения в принципе поддается определению, то нам придется признать, что оценка — не описание качества сочинения, но его измерение, а измерение, как ничто другое, подвержено случайности. В случае с сочинением измерительный инструмент — учитель, а в выставляемых им оценках, как и в любом измерении, проявляются случайная дисперсия и ошибки.
Еще один вид измерения — голосование. В этом случае мы измеряем не столько количество людей, поддерживающих того или иного кандидата на момент выборов, сколько количество тех, кто не поленился прийти в избирательный участок и проголосовать. В этом измерении тоже множество источников случайной ошибки. Одни законные избиратели, приходя в участок, обнаруживают, что их имя не внесено в списки для голосования. Другие по ошибке голосуют не за того, за кого собирались. Конечно же, ошибки возникают и при подсчете голосов. Часть бюллетеней ошибочно признается недействительными или, напротив, действительными. Еще часть может быть утеряна. Как правило, даже все эти факторы в совокупности не могут повлиять на исход выборов. Однако в случае выборов, где у соперников шансы на победу приблизительно равны, они могут сыграть свою роль, и тогда голоса обычно подсчитываются не один, а несколько раз, как если бы второй или третий подсчет были меньше подвержены влиянию случайной ошибки, чем первый.
Например, в 2004 г. во время выборов губернатора штата Вашингтон победителем в конечном счете был объявлен кандидат от демократов, хотя при первом подсчете кандидат от республиканцев обходил его на 261 из приблизительно 3 млн голосов{119}. Поскольку результаты обоих кандидатов были столь близки друг к другу, по закону штата требовался повторный подсчет голосов. По результатам этого подсчета республиканец вновь обошел демократа, но только на 42 голоса. Неизвестно, счел ли кто-нибудь дурным предзнаменованием тот факт, что разница в 219 голосов между первым и вторым подсчетами в несколько раз превосходила новое значение перевеса в количестве голосов, но в итоге состоялся третий подсчет голосов, на сей раз полностью «вручную». Перевес в 42 голоса получался благодаря лишь одному голосу на каждые 70 000, а потому ручной пересчет голосов можно сопоставить с попыткой попросить 42 человек посчитать от 1 до 70 000 в надежде, что каждый сделает в среднем меньше 1 ошибки. Естественно, результат вновь изменился. На сей раз получился перевес в 10 голосов в пользу демократа. Впоследствии он вырос до 129 голосов, когда в подсчет было включено 700 вновь обнаруженных «утерянных бюллетеней».
Ни процесс подсчета голосов, ни сам процесс голосования нельзя назвать совершенным. Если, например, по причине ошибки в работе почтовой службы 1 из 100 потенциальных избирателей не получит извещения с адресом избирательного участка, а еще 1 на каждых 100 таких избирателей по этой причине не проголосует, то в вашингтонских выборах это вылилось бы в 300 избирателей, которые хотели бы проголосовать, но не получили такой возможности в силу ошибки правительства. Выборы, как и любое измерение, неточны, пересчеты тоже, поэтому когда кандидаты набирают близкое количество голосов, разумнее принять результаты выборов такими, какие они есть, или попросту подбросить монетку, а не тратить время на бесконечные пересчеты.
Вопрос неточности измерений приобрел особо важное значение в середине XVIII в., когда в центре внимания астрономов и математиков оказалась проблема согласования законов Ньютона и наблюдаемого движения Луны и планет. Один из способов получения единственного значения на основе целого ряда не совпадающих измерений — усреднение, или вычисление среднего значения. По всей видимости, первым эту процедуру использовал в оптических исследованиях молодой Исаак Ньютон{120}. Однако, как и в целом ряде других случаев, Ньютон опередил здесь свое время. В ту пору, да и в следующем веке, большинство ученых не занимались подсчетом среднего. Вместо этого они выбирали среди своих измерений «золотой стандарт» — значение, которое интуитивно признавали наиболее надежным среди своих результатов. Дело в том, что отклонения в измерениях они рассматривали не как неизбежный побочный продукт процесса измерения, но как свидетельство небрежности, у которой могли быть последствия, в том числе и этического характера. Они даже избегали публиковать результаты множественных измерений одного и того показателя, полагая, что это будет сочтено проявлением неаккуратности в работе и вызовет недоверие. Но к середине XVIII в. положение дел начало меняться. В наши дни рассчитать примерные орбиты небесных тел, представляющие собой набор эллипсов, приближенных по форме к окружности, может любой сообразительный старшеклассник, который при этом даже не подумает снять наушники с громыхающей в них музыкой. Однако же описать движение планет с большей точностью, учитывая не только силу притяжения Солнца, но также и притяжение других планет, а кроме того, отклонения в форме Луны и планет от совершенной сферы, непросто даже сейчас. Чтобы достигнуть этой цели, необходимо согласовать сложные и приближенные математические вычисления с неточностями наблюдений и измерений.
Но есть еще одна причина, по которой в конце XVIII в. оказалась востребована математическая теория измерения: в 1780-х гг. во Франции начала складываться новая область точной экспериментальной физики{121}. До этого времени в физике сосуществовали две не связанные друг с другом исследовательские традиции. С одной стороны, математики занимались изучением строгих следствий из ньютоновых теорий движения и тяготения. С другой стороны, те, кого принято именовать экспериментальными философами, проводили эмпирические исследования электричества, магнетизма, света и температур. Представителей экспериментальной философии, зачастую ученых-любителей, строгая научная методология занимала в значительно меньшей степени, нежели математически ориентированных исследователей, и потому возникло движение, направленное на то, чтобы реформировать и математизировать экспериментальную физику. И вновь ведущую роль здесь сыграл Пьер-Симон де Лаплас.
Лаплас заинтересовался физикой благодаря работам своего коллеги и соотечественника, французского ученого Антуана Лорана Лавуазье, которого считают отцом современной химии{122}. Лаплас и Лавуазье много лет работали вместе, однако Лавуазье в значительно меньшей степени преуспел в искусстве выживания в то беспокойное время. Чтобы заработать деньги на свои многочисленные опыты, ему пришлось стать членом привилегированной частной коллегии откупщиков, работавших под защитой государства. Я не представляю себе времен, когда человека, занимающегося сбором налогов, жаждали бы пригласить домой на чашечку горячего кофе с имбирными пряниками, но когда грянула Французская революция, должность эта оказалась особенно ненадежным прикрытием. В 1794 г. Лавуазье арестовали вместе со всеми членами коллегии и приговорили к смертной казни. Будучи человеком до конца преданным науке, Лавуазье попросил об отсрочке исполнения приговора, чтобы закончить некоторые опыты и опубликовать результаты. На что председатель трибунала дал знаменитый ответ: «Республике ученые не нужны». Отца современной химии безотлагательно обезглавили, а тело бросили в общую могилу. По легенде, он поручил своему ассистенту подсчитать количество слов, которые попытается выговорить его лишенная тела голова.
Работы Лапласа и Лавуазье, а также ряда других ученых, прежде всего Шарля-Огюстена де Кулона, проводившего опыты с электричеством и магнетизмом, преобразили экспериментальную физику. Кроме того, эти работы внесли вклад в развитие в 1790-х гг. новой метрической системы, пришедшей на смену множеству разрозненных и несопоставимых систем, тормозивших развитие науки и нередко служивших причиной споров между торговцами. Новую метрическую систему, разработанную группой ученых, сформированной по указу Людовика XVI, революционное правительство узаконило уже после падения Людовика. По иронии судьбы, Лавуазье был одним из членов этой группы.
Требования как астрономии, так и экспериментальной физики были таковы, что на долю математиков конца XVIII — начала XIX вв. выпали прежде всего осмысление и подсчет случайной ошибки. Их усилиями возникла новая область — математическая статистика, занимающаяся разработкой методов для интерпретации данных наблюдений и опытов. Специалисты в области статистики зачастую считают, что рост современной науки начался именно с этих разработок — с развития теории измерения. Однако статистические методы используются и для решения задач повседневной жизни: например, для оценки эффективности лекарственных препаратов или популярности политиков. Поэтому понимание правил осуществления статистических выводов важно не только для тех, кто занимается наукой, но и для каждого из нас.
Один из парадоксов нашей жизни заключается в том, что хотя измерения всегда несут в себе некоторую погрешность, когда речь заходит об измерениях, реже всего говорят именно о погрешности. Если въедливый полицейский докладывает судье, что его радиолокатор показал, будто бы вы ехали со скоростью 62 км в час в зоне, где допустимый предел скорости — 56, то штрафа вам не избежать, хотя в показаниях прибора возможны отклонения на несколько км в час{123}. И хотя большинство школьников (не говоря уже об их родителях) согласились бы даже спрыгнуть с крыши, если бы это увеличило балл на выпускном тесте по математике с 598 до 625, исследования, о которых вам расскажет редкий работник в области образования, показывают: достаточно высока вероятность получить лишних 30 баллов, если пройти тест еще разок-другой{124}. А иногда малозначащие различия попадают в выпуски новостей. Некоторое время тому назад в августе Статистическое управление министерства труда США сообщило, что безработица находится на уровне 4,7%. В июле управление сообщало о показателе 4,8%. Изменение показателя немедленно нашло отражение в газетных заголовках; к примеру, вот что напечатала на первой странице «Нью-Йорк Таймс»: «Количество рабочих мест и уровень заработной платы за прошлый месяц несколько выросли»{125}. Однако, как замечает Джин Эпштейн, редактор отдела экономики «Barron's», «из того, что изменилась цифра, совершенно не обязательно следует, что изменилось положение дел. Например, всякий раз, когда показатель безработицы изменяется на десятую долю процента… изменение это столь незначительно, что никоим образом нельзя утверждать, будто бы оно вообще имело место»{126}. Иными словами, если Статистическое управление измерит показатель безработицы в августе и повторит измерение через час, то лишь благодаря случайной ошибке второе измерение будет с высокой вероятностью отличаться от первого по меньшей мере на десятую долю процента. И что. неужели мы прочитаем в «Нью-Йорк Таймс»: «Количество рабочих мест и уровень заработной платы к двум часам пополудни несколько выросли»?
Погрешность измерения становится еще более серьезной проблемой, когда количественные показатели приписываются субъективно, как в случае с сочинением Алексея. Например, группа исследователей в Пенсильванском университете Клэрион собрала 120 курсовых работ и проверила их с таким тщанием, с каким работы вашего ребенка не будут проверяться никогда: каждую курсовую независимо друг от друга оценивали восемь сотрудников факультета. Итоговые оценки (по шкале от A до F) иногда различались на два и более деления шкалы. В среднем различие между ними составило около одного деления шкалы{127}. Поскольку будущее студентов очень часто зависит от подобного рода оценок, столь высокая погрешность — факт довольно печальный. Однако ее можно понять, если учесть, что взгляды и философия профессоров любого факультета в любом из университетов охватывают весь диапазон от Карла Маркса до Граучо Маркса. Можно ли подвергнуть этот фактор контролю? Например, дать экзаменаторам четкие критерии оценивания и потребовать следования этим критериям? Исследователь в университете штата Айова предъявил около 100 студенческих работ группе аспирантов, специалистов в области риторики и коммуникации, которых заранее обучил применению подобных критериев{128}. Каждую работу оценивали по шкале от 1 до 4 два независимых «экзаменатора». При сопоставлении оценок выяснилось, что мнения экзаменаторов совпали лишь примерно в половине случаев. Аналогичные результаты были получены в Техасском университете при анализе оценок за вступительное сочинение{129}. Даже почтенная Центральная приемная комиссия признается, что в случае двух экзаменаторов, согласно ее ожиданиям, «92% сочинений получат оценки, различающиеся в пределах ±1 балла по шестибалльной шкале для сочинений»{130}.
Еще одна область субъективных измерений, которым доверяют больше, чем следовало бы — оценка вин. В 1970-х гг. винный бизнес явно не переживал расцвета, а если и развивался, то преимущественно в сфере продаж дешевого столового вина. Однако в 1978 г. произошло событие, с которым часто связывают последующее стремительное развитие отрасли: некий юрист, Роберт М. Паркер-младший, объявил себя экспертом в области вин и решил, что вдобавок к своим публикуемым в прессе критическим обзорам будет давать винам количественную оценку по сто-балльной шкале. Со временем большинство изданий, печатавших материалы о винах, последовали его примеру. На сегодняшний день американцы ежегодно выкладывают за винную продукцию более 20 млрд долларов, однако же среди миллионов любителей спиртных напитков редко когда найдется простак, который согласится раскошелиться, не взглянув предварительно на рейтинг приглянувшегося ему вина. Поэтому, когда журнал «Вайн Спектейтор» выставил, скажем, аргентинскому каберне-совиньону «Валентин Бьянки» 2004 г. не 89, а 90 баллов, этот единственный балл привел к огромному увеличению объема продаж «Валентин Бьянки»{131}. В самом деле, заглянув в местную винную лавку, американец обнаружит, что вина, выставленные на распродажу со скидкой, как правило, получают оценки на один или несколько баллов ниже 90. Но какова вероятность того, что аргентинское каберне «Валентин Бьянки» 2004 г., удостоенное 90 баллов, не получило бы 89, если бы процесс оценивания был повторен, предположим, час спустя?
В увидевшей свет в 1890 г. книге «Принципы психологии» Уильям Джеймс выдвинул предположение: умение разбираться в винах может дойти до способности различить вкус старой мадеры из верхней и нижней части бутылки{132}. Во время дегустаций вин, на которых мне нередко доводилось бывать, я заметил, что если бородач слева от меня бормочет: «Прекрасный букет!», его поддерживает целый хор голосов. Но если оценивать предлагается самостоятельно и без обсуждений, то зачастую оказывается, что бородач написал «Прекрасный букет», его бритоголовый сосед нацарапал «Вообще никакого букета», а блондинка с перманентом пометила: «Интересный букет с оттенками петрушки и свеже-выдубленной кожи».
С теоретической точки зрения, есть множество оснований поставить под сомнение результаты оценивания вин. Для начала скажем, что вкусовые ощущения определяются сложным взаимодействием между вкусовыми и обонятельными стимулами. Строго говоря, любое вкусовое ощущение определяется пятью типами рецепторов, располагающихся на поверхности языка: рецепторами соленого, сладкого, кислого, горького и «мясного» (умами[12]). Последняя группа рецепторов соотносится с определенными аминокислотами (преобладающими, например, в соевом соусе). Но если бы этим все и ограничивалось, то вкус любой пищи — например, вашего любимого бифштекса, жареной картошки, праздничного яблочного пирога и изысканных спагетти по-болонски — можно было бы имитировать, используя лишь столовую соль, сахар, уксус, хинин и глутамат натрия. К счастью, этим дело не обходится, и на помощь приходит обоняние. Именно оно объясняет, почему, если взять два стакана с одинаковым раствором сахара и добавить в один из них клубничную эссенцию (не содержащую сахара), жидкость в этом стакане покажется вам слаще{133}. Вкус вина определяется воздействием от 600 до 800 изменчивых органических составляющих на рецепторы как языка, так и носа{134}. И что с этим делать — непонятно, ведь исследования показывают: даже профессиональные дегустаторы редко могут с уверенностью определить более 3–4 компонентов в смеси{135}.
На восприятие вкуса влияют и ожидания. В 1963 г. трое исследователей тайком добавили в белое вино немного красного пищевого красителя, что придало вину розоватый оттенок. После этого группу экспертов попросили оценить сладость этого вина по сравнению с неподкрашенным. Эксперты, сообразно своим ожиданиям, оценили подкрашенное розовое вино как более сладкое. Другая группа исследователей предъявляла два образца вина будущим виноделам. Это были совершенно одинаковые образцы белого вина, но в один была добавлена капля безвкусного красителя — виноградного антоциана, в результате чего вино стало выглядеть как красное. Ученики-виноделы также сообщили о различиях во вкусе вин в соответствии со своими ожиданиями{136}. А в 2008 г. группа добровольцев, которых попросили оценить пять бутылок вина, оценила бутылку с этикеткой «90 долларов» выше, чем бутылку с этикеткой «10 долларов», хотя хитрые ученые налили в обе бутылки одно и то же вино. Более того, во время этого опыта с помощью функционального магнитно-резонансного томографа регистрировалась активность мозга испытуемых. Обнаружилось, что зона мозга, активация которой обычно соотносится с переживанием удовольствия, действительно активируется в большей степени, когда испытуемые пьют вино, которое считают более дорогим{137}. Но прежде чем осудить этих горе-ценителей, примите к сведению следующий факт: когда исследователи выяснили у 30 любителей колы, предпочитают ли они «Пепси-колу» или «Кока-колу», а потом попросили проверить свои предпочтения, продегустировав оба напитка, стоящие бок о бок, 21 человек из 30 сообщили, что проверка подтвердила их выбор, хотя коварные исследователи налили «Кока-колу» в бутылки от «Пепси-колы», и наоборот{138}. Когда мы оцениваем или измеряем, наш мозг полагается отнюдь не только на непосредственно воспринимаемое, но использует и другие источники информации — например, ожидания.
Дегустаторов вин часто сбивает с толку и оборотная сторона ошибки ожидания — недостаток контекста. Поднося к носу корень хрена, вы едва ли перепутаете его с зубчиком чеснока, а запах чеснока не спутаете с запахом, скажем, стелек из ваших ношеных кроссовок. Но если вам приходится иметь дело с ароматом прозрачных жидкостей, оттолкнуться не от чего. В отсутствие контекста высока вероятность того, что ароматы будут перепутаны. Именно это случилось, когда исследователи предъявили экспертам набор из шестнадцати случайно отобранных запахов: эксперты неверно определили в среднем каждый четвертый запах{139}.
Имея все основания для скептицизма, ученые разработали методы прямой оценки различения вкусов экспертами. Один из таких методов — использование «треугольника вин». Это не собственно треугольник, скорее метафора: каждому эксперту предъявляется три сорта вина, два из которых идентичны. Задача состоит в том, чтобы выявить отличающийся от остальных сорт вина. В исследовании 1990 г. эксперты успешно справились с этой задачей только в 2/3 случаев, то есть на каждые три пробы приходилась одна, в которой эти гуру не могли отличить пино нуар, допустим, «с роскошным букетом земляники, сочной ежевики и малины», от пино «с выраженным ароматом сушеного чернослива, желтой черешни и бархатистой черной смородины»{140}. В том же исследовании группу экспертов попросили оценить ряд вин по 12 параметрам: таким, как содержание алкоголя, присутствие танинов, сладость и фруктовый запах. Эксперты существенно разошлись в своих оценках по 9 из 12 параметров. Наконец, когда их попросили подобрать вина, подходящие под описания, данные другими экспертами, испытуемые выполнили задачу правильно только в 70% случаев.
Сами дегустаторы в курсе всех этих трудностей. «Во многих планах… {система оценивания} лишена смысла», — говорит редактор журнала «Уайн энд спирит мэгэзин»{141}. А по мнению бывшего редактора «Уайн Энтузиаст», «чем глубже ты во все это погружаешься, тем больше понимаешь, насколько оно ошибочно и обманчиво»{142}. Тем не менее система оценивания процветает. Почему? Сами дегустаторы говорят, что когда они пытаются определить качество вина, используя систему звездочек или простейшие словесные ярлыки наподобие «хорошее», «плохое», «безобразное», их мнение звучит неубедительно. Но стоит перейти к использованию цифр, как покупатели начинают относиться к оценкам словно к божественному откровению. Как бы ни были сомнительны количественные оценки, именно они дают покупателям уверенность, что среди многообразия марок, производителей и урожаев им, словно в стоге сена, удастся отыскать золотую иголку (или хотя бы серебряную, если бюджет не позволяет).
Если качество вина (или сочинения) в самом деле может быть подвергнуто измерению в числовом выражении, то перед теорией измерения встает два вопроса. Во-первых, как получить это число на основе ряда отличающихся друг от друга измерений? Во-вторых, имея в виду, что число измерений ограничено, как вычислить вероятность того, что оценка верна? Рассмотрим эти вопросы, поскольку независимо от того, объективен или субъективен источник данных, теория измерения ставит себе целью найти на них ответы.
Ключ к пониманию измерения — постижение природы разброса данных, обусловленного случайной ошибкой. Предположим, мы попросили пятнадцать дегустаторов оценить некоторое вино, или же предложили оценить его несколько раз в разные дни одному и тому же дегустатору, или прибегли к обеим процедурам. Мы можем подвести итоги оценивания, используя усреднение полученных оценок. Однако важную информацию содержит не только среднее значение: если все пятнадцать дегустаторов выставляют оценку 90, это одно, а если они выставляют оценки 80, 81, 82, 87, 89, 89, 90, 90, 90, 91, 94, 97, 99 и 100 — это совсем другое. Среднее значение обоих наборов данных одно и то же, но они различаются разбросом данных относительно этого среднего. А поскольку распределение данных — важный источник информации, для его описания математики предложили количественную меру разброса. Эта мера называется выборочным стандартным отклонением. Кроме того, математики измеряют разброс посредством квадратичной меры, которую называют выборочной дисперсией.
Стандартное отклонение показывает, насколько данные по выборке близки к среднему — или, в практическом смысле, какова погрешность измерения. Если оно невысоко, все данные группируются вокруг среднего. Например, для случая, когда все дегустаторы поставили вину оценку 90, стандартное отклонение равно 0, указывая на то, что все измерения идентичны среднему значению. В случае же высокого стандартного отклонения данные разбросаны относительно среднего. Например, когда вино оценивается дегустаторами в диапазоне от 80 до 100, выборочное стандартное отклонение равно 6. Это означает, что на практике большинство оценок попадет в диапазон от 6 до +6 относительно среднего. В рассмотренном случае о вине можно с высокой степенью уверенности сказать, что его истинная оценка, скорее всего, относится к диапазону от 84 до 96.
Пытаясь понять значение своих измерений, ученые XVIII–XIX вв. сталкивались с теми же проблемами, что и скептически настроенные ценители хороших вин. Ибо если группа исследователей осуществляет ряд наблюдений и измерений, результаты почти всегда получаются разными. Один астроном мог столкнуться с неблагоприятными погодными условиями, другой — покачнуться из-за порыва ветра, третий, возможно, только что вернулся от Уильяма Джеймса, с которым вместе дегустировал мадеру. В 1838 г. математик и астроном Ф.В. Бессель выделил одиннадцать классов случайных ошибок, которые могут возникнуть в ходе любого наблюдения с использованием телескопа. Даже если один и тот же астроном осуществляет ряд повторных измерений, результаты могут различаться из-за таких факторов, как неустойчивая острота зрения и влияние температуры воздуха на аппаратуру. Поэтому астрономам пришлось разбираться, как на основе ряда несовпадающих измерений установить истинное положение небесного тела. Но из того, что ценители вин и ученые сталкиваются с одной и той же проблемой, совсем не обязательно следует, что для них годится одно и то же решение. Можно ли выделить универсальные характеристики случайной ошибки, или же ее природа зависит от контекста?
Одним из первых предположение о том, что для разных типов измерений характерны одни и те же особенности, выдвинул Даниил Бернулли, племянник Якоба Бернулли. В 1777 г. он уподобил случайную ошибку в астрономическом наблюдении отклонениям в траектории выпущенной из лука стрелы. В обоих случаях, рассуждал он, цель — истинное значение измеряемой переменной или же «яблочко» мишени — располагается где-то посреди, а наблюдаемые результаты группируются вокруг нее, причем большинство должны лежать в окрестностях цели, и лишь немногие выпадают за их пределы. Закон, который Бернулли предложил для описания этого распределения,оказался неверен, однако важно само понимание того, что распределение ошибок лучника может быть сходно с распределением ошибок в наблюдениях астрономов.
Идея о том, что распределение ошибок подчиняется некому универсальному закону, который называют законом случайного распределения ошибок, является основополагающей для теории измерения. И вот что примечательно: допущение состоит в том, что при условии удовлетворения определенных условий довольно общего характера установить истинное значение некоторой переменной на основе ряда измерений можно с использованием одного и того же математического аппарата. Если в дело вступает универсальный закон, то задача установления истинного положения небесного тела на основе ряда наблюдений астрономов приравнивается к задаче нахождения центра мишени на основе дырочек от стрел или определения «качества» вина на основе ряда экспертных оценок. Именно поэтому математическая статистика — последовательная и согласованная область, а не просто набор трюков: неважно, осуществляете ли вы ряд измерений для того, чтобы установить положение Юпитера в 4 часа утра на Рождество или средний вес булок с изюмом, выходящих с конвейера, распределение ошибок будет одним и тем же.
Однако отсюда не следует, что случайная ошибка — единственный вид ошибок, которые могут повлиять на измерение. Если половина дегустаторов предпочитает красное вино, а другая половина — белое, однако во всех остальных отношениях они сходятся в своих суждениях (и предельно последовательны в их вынесении), то оценка каждого конкретного вина не будет определяться законом случайного распределения ошибок: распределение получится резко двугорбым, причем причиной появления одного из пиков станут любители красного вина, а другого — любители белого. Но даже в тех случаях, когда применимость закона случайного распределения ошибок не столь очевидна (начиная от футбольного тотализатора{143} и заканчивая измерением коэффициента интеллекта), зачастую он все же оказывается применим. Много лет назад мне в руки попали несколько тысяч регистрационных карточек покупателей компьютерной программы, которую разработал для восьми- и девятилетних школьников мой приятель. Продажи шли не так хорошо, как ожидалось. Кто же покупал программу? После некоторых подсчетов я установил, что наибольшее число пользователей приходится на семилетних, указывая на нежелательное, но не то чтобы неожиданное расхождение. Но вот что самое удивительное: когда я построил гистограмму зависимости количества пользователей от возраста, взяв семь лет за среднее значение, я обнаружил, что построенный мною график принял крайне знакомую форму — форму закона случайного распределения ошибок.
Одно дело — подозревать, что лучники и астрономы, химики и маркетологи сталкиваются с одним и тем же законом распределения ошибок, и совсем другое — самому натолкнуться на частный случай этого закона. Подталкиваемые необходимостью анализировать данные астрономических наблюдений ученые, такие как Даниил Бернулли и Лаплас, постулировали в конце XVIII в. несколько вариантов закона, оказавшихся неверными. Однако выяснилось, что математическая функция, верно отражающая закон случайного распределения ошибок, — колоколообразная кривая — все это время была у них под носом. За много десятилетий до них она была открыта в Лондоне в контексте решения совсем иных задач.
Среди троих ученых, благодаря которым на колоколообразную кривую обратили внимание, реже всех воздается по заслугам именно ее первооткрывателю. Абрахам де Муавр совершил свое открытие в 1733 г., когда ему было за шестьдесят, однако до появления второго издания его книги «Об измерении случайности», вышедшего в свет пять лет спустя, об этом никто не знал. Де Муавр пришел к искомой форме кривой, когда пытался аппроксимировать числа, заполняющие треугольник Паскаля значительно дальше той строки, на которой оборвал его я, — сотнями и даже тысячами строк ниже. Когда Якоб Бернулли обосновывал свой вариант закона больших чисел, ему пришлось столкнуться с некоторыми свойствами чисел, появляющихся в этих строках. А числа действительно очень велики: например, одно из чисел в двухсотой строке треугольника Паскаля состоит из пятидесяти девяти цифр! Во времена Бернулли, да и вообще до тех пор, пока не появились компьютеры, эти числа было очень трудно высчитать. Именно поэтому, как я сказал, Бернулли обосновывал свой закон больших чисел, используя различные способы приближенного вычисления, что снижало практическую значимость результатов его работы. Де Муавр со своей кривой осуществил несравненно более точную аппроксимацию и потому значительно улучшил оценки Бернулли.
Как де Муавр осуществил свою аппроксимацию, становится понятно, если числа в ряду треугольника представить в виде высоты столбика на гистограмме — я поступил так с регистрационными карточками. Например, числа в третьей строке треугольника — 1, 2, 1. Тогда на гистограмме первый столбик будет высотой в одно деление, второй — вдвое выше, а третий — вновь высотой в одно деление. Рассмотрим теперь пять чисел в пятой строке: 1, 4, 6, 4, 1. На гистограмме будет пять столбиков, она вновь начнется с минимальной высоты, достигнет максимума в центре и продемонстрирует симметричное снижение. Если спуститься по треугольнику вниз, получатся гистограммы с огромным количеством столбиков, но поведение их будет тем же самым. Гистограммы для 10-й, 100-й и 1000-й строк треугольника Паскаля приведены ниже.
Столбцы в представленных выше гистограммах отображают относительную величину числа в 10-м, 100-м и 1000-м рядах треугольника Паскаля (см. выше). Числа по оси абсцисс — элементы строки треугольника, к которым относятся столбики. По традиции нумерация начинается с 0, а не с 1 (средняя и нижняя гистограммы обрезаны так, что элементы, столбики для которых имеют пренебрежимую высоту, на рисунке не представлены).
Если теперь провести кривые, соединяющие вершины столбиков на каждой из гистограмм, все они окажутся характерной формы, напоминающей колокол. А если несколько сгладить эти кривые, можно подобрать соответствующее им математическое выражение. Колоколообразная кривая — не просто визуализация чисел в треугольнике Паскаля: это инструмент, позволяющий получить точные и удобные в употреблении оценки значений чисел, появляющихся в расположенных ниже строках треугольника. В этом и состояло открытие де Муавра.
Сегодня колоколообразную кривую называют обычно нормальным распределением, а иногда — Гауссовой кривой (вскоре читатель узнает, откуда взялось это название). Нормальное распределение — не отдельная фиксированная кривая, но целое семейство кривых, определяемых двумя параметрами, задающими положение кривой и ее форму. Первый из них — расположение пика: в графиках выше это 5, 50 и 500 соответственно. Второй — степень разброса. Этот показатель, получивший свое современное наименование лишь в 1894 г., называется стандартным отклонением и представляет собой теоретический аналог понятия, о котором я уже упоминал — выборочного стандартного отклонения. Грубо говоря, это половина ширины кривой в той точке, где кривая достигает своей 60%-ной высоты. В наше время значение нормального распределения выходит далеко за пределы аппроксимации чисел в треугольнике Паскаля. Это самая распространенная форма распределения любого рода данных.
При описании распределения данных колоколообразная кривая демонстрирует, что в том случае, когда вы делаете много замеров, большинство их результатов будут примыкать к среднему значению, что отображается в виде пика. Симметрично снижаясь по обе стороны от пика, кривая показывает, как убывает число результатов замеров ниже и выше среднего, поначалу довольно резко, а потом не столь круто. Если данные распределены нормально, около 68% (т. е. приблизительно 2/3) результатов измерений попадают в пределы одного стандартного отклонения, около 95% — в пределы двух стандартных отклонений и 99,7% — в пределы трех стандартных отклонений.
Чтобы представить себе эту картину, взгляните на графики ниже. Квадратики соответствуют результатам угадывания 300 студентами исходов десятикратного подбрасывания монеты{144}. По оси абсцисс отложено количество верных угадываний — от 0 до 10. По оси ординат — количество студентов, продемонстрировавших соответствующее количество верных угадываний. Кривая имеет колоколообразную форму с пиком на уровне 5 верных угадываний: столько раз верно угадали исход подбрасывания 75 студентов. Двух третей максимальной высоты (соответствующее количество студентов — 51) кривая достигает посередине между 3 и 4 верными угадываниями слева и между 6 и 7 верными угадываниями справа. Колоколообразная кривая с таким стандартным отклонением типична для стохастических процессов вроде угадывания исходов подбрасывания монеты.
Угадывание исходов подбрасывания монет и подбор акций: сопоставительный анализ.
Кружочками на том же графике отображен еще один набор данных — успешность работы 300 менеджеров паевых инвестиционных фондов. Для этого набора данных по оси абсцисс отложено не количество верных угадываний исходов подбрасывания монеты, а количество лет (из 10), когда показатели успешности работы менеджера были выше группового среднего. Обратите внимание на сходство! Мы еще вернемся к нему в главе 9.
Чтобы понять связь между нормальным распределением и случайной ошибкой, можно рассмотреть процесс проведения выборочного опроса. Вспомним опрос относительно популярности мэра Базеля, который я упоминал в главе 5. В этом городе часть жителей одобряет деятельность мэра, а часть осуждает. Для простоты примем, что тех и других по 50%. Но, как мы видели, результаты опроса не обязательно будут полностью соответствовать этой пропорции 50/50. И в самом деле, если выборочно опросить N горожан, то вероятность, что любое произвольное их число поддержит мэра, пропорциональна числам в строке N треугольника Паскаля. А раз так, то, согласно работам де Муавра, если служба общественного мнения опросит большое число горожан, вероятность всех возможных результатов опроса можно будет описать с помощью кривой нормального распределения. Иными словами, около 95% случаев одобрения попадет в пределы 2 стандартных отклонений от истинного рейтинга мэра, 50%. Для описания этой погрешности службы общественного мнения используют понятие «допустимый предел погрешности». Сообщая средствам массовой информации, что предел погрешности опроса составляет ±5%, они имеют в виду, что если повторить опрос много раз подряд, 19 из 20 раз (т. е. в 95% случаев) результат его будет в пределах 5% от истинного значения измеряемой переменной. (И хотя службы общественного мнения редко на это указывают, в 1 случае из 20 результат опроса будет мало соответствовать действительности.) На практике размеру выборки в 100 человек соответствует такой допустимый предел погрешности, который никуда не годится. А вот для выборки в 1000 человек предел погрешности обычно составляет около 3%, что уже вполне пригодно для большинства целей.
Однако, проводя опрос любого рода, важно сознавать, что при любом повторении опроса результат хоть немного, но изменится. Например, если в действительности 40% зарегистрированных избирателей дают положительную оценку деятельности президента, шесть независимых опросов скорее покажут что-то вроде 37%, 39%, 39%, 40%, 42% и 42%, нежели сойдутся на показателе в 40%. (Эти шесть чисел — действительные результаты шести независимых опросов, призванных выявить количество граждан, которые положительно оценивали деятельность президента в первые две недели сентября 2006 года{145}.) Вот почему на практике на изменчивость данных в рамках допустимого предела погрешности не следует обращать внимания. Но даже если «Нью-Йорк Таймс» никогда и не вынесет на первую страницу заголовок «Количество рабочих мест и уровень заработной платы к двум часам пополудни несколько выросли», в публикациях, посвященных политическим опросам, подобного рода заголовки — не редкость. Например, после Национального партийного съезда республиканцев в 2004 г. «Си-эн-эн» разродилась выпуском новостей, озаглавленным так: «Похоже, рейтинг Буша несколько вырос»{146}. Эксперты «Си-эн-эн» пояснили, что «в результате проведения съезда рейтинг Буша увеличился на 2%… Если до съезда в его пользу склонялись 50% потенциальных избирателей, то сразу после съезда — 52%». Лишь позднее репортер оговорил, что предел погрешности для данного опроса составлял 3,5%, а это означает, что экстренный выпуск новостей по сути не имел смысла. Похоже, слово «похоже» на самом деле означало «непохоже».
Как правило, при проведении опросов предел погрешности выше 5% считается недопустимым, однако в повседневной жизни мы основываем свои суждения на значительно меньшем количестве наблюдений. Разве найдешь человека, который 100 лет играет в профессиональный баскетбол, вложил деньги в 100 многоквартирных жилых домов или основал 100 компаний, выпускающих шоколадное печенье? Так что, когда мы делаем выводы об успешности этих людей, мы берем за основу лишь незначительное число наблюдений. Следует ли футбольной команде раскошелиться на 50 млн долларов, чтобы заполучить игрока, чья игра была поистине чемпионской лишь в течение года? С какой вероятностью биржевой маклер, который в очередной раз просит у вас денег и говорит, что дело верное, вновь добьется успеха? Означает ли успех процветающего изобретателя такой игрушки, как морские обезьяны, что его новые изобретения — невидимые золотые рыбки и растворимые лягушки — скорее всего, станут пользоваться таким же спросом? (Кстати сказать, не стали{147}.) Сталкиваясь с успехом или с неудачей, мы имеем дело лишь с одним наблюдением, с одной из множества точек колоколообразной кривой, отображающей все наблюдавшиеся ранее возможности. И мы не знаем, что представляет собой это наблюдение — среднее или явный выброс, событие, в котором можно быть абсолютно уверенным, или редкий случай, который едва ли повторится. Так или иначе, мы должны иметь в виду, что точечное наблюдение — это не более чем точечное наблюдение, и прежде чем принимать его как факт, следует рассмотреть его в контексте соответствующего ему стандартного отклонения или разброса значений. Даже если некоторое вино получило оценку в 91 балл, эта оценка не имеет смысла, пока мы не узнаем, каков был бы разброс, если бы то же самое вино подверглось повторному оцениванию или если бы его стали оценивать другие люди. В качестве примера полезно вспомнить, как несколько лет назад «Путеводитель по хорошим австралийским винам» издательства «Penguin» и «Ежегодник австралийских вин», выпускаемый «On Wine», написали о рислинге «Митчелтон Блэквуд Парк» урожая 1999 г., причем «Путеводитель…» присвоил вину пять звездочек из пяти и назвал лучшим вином года по версии «Penguin», а «Ежегодник…» оценил ниже всех прочих вин, о которых писал в тот год, и счел худшим вином данной марки за последнее десятилетие{148}. Нормальное распределение не только помогает понять подобные разногласия, но и применяется в великом множестве областей науки и торговли: например, когда фармацевтическая компания решает, считать ли результаты клинических испытаний значимыми, производитель — отражает ли случайная выборка реальный процент деталей с браком, а закупщик — принять ли к действию результаты опроса.
Тот факт, что нормальное распределение описывает распределение ошибки измерения, открыл десятилетия спустя после выхода работы де Муавра человек, имя которого носит колоколообразная кривая, — немецкий математик Карл Фридрих Гаусс. Эта мысль — во всяком случае, в отношении астрономических измерений, — пришла Гауссу в голову, когда он работал над проблемой траекторий движения планет. Однако же «доказательство» Гаусса было, по его собственному позднейшему признанию, ошибочным{149}, а далеко идущие последствия этого открытия тоже не пришли ему на ум. Поэтому он, дабы не привлекать излишнего внимания, сунул обнаруженный закон в один из последних параграфов своей книги «Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям». Там бы она и сгинула, эта еще одна из многочисленных отвергнутых наукой идей о том, как должен выглядеть закон распределения ошибок.
Однако нормальное распределение вернул из небытия Лаплас, наткнувшийся на работу Гаусса в 1810 г., вскоре после того, как подал в Академию наук статью с доказательством так называемой центральной предельной теоремы, гласящей, что сумма большого количества независимых случайных величин имеет распределение, близкое к нормальному. Например, предположим, что вы выпекаете 100 буханок хлеба, каждый раз основываясь на рецепте, по которому должны получаться буханки весом в 1000 граммов. Но иногда вы случайно добавляете то чуть меньше, то чуть больше муки или молока, а иногда чуть меньше или чуть больше жидкости испаряется за время нахождения буханки в печи. В конечном счете в силу каждой из множества возможных причин вес буханки может вырасти или уменьшиться на несколько граммов, и в этом случае центральная предельная теорема утверждает, что итоговый вес буханок будет варьировать в соответствии с законом нормального распределения. Читая работу Гаусса, Лаплас сразу же понял, что может использовать его открытие в целях совершенствования собственной работы, а его собственная работа, в свою очередь, намного убедительнее, чем это удалось Гауссу, доказывает: нормальное распределение является отражением закона распределения ошибок. Лаплас немедленно опубликовал краткое продолжение статьи, посвященной центральной предельной теореме. В наши дни эта теорема и закон больших чисел — две наиболее важных наработки в рамках теории случайности.
Чтобы пояснить, каким образом центральная предельная теорема доказывает, что нормальное распределение адекватно отражает закон случайного распределения ошибки, вернемся к примеру Даниила Бернулли с лучником. Мне однажды довелось выступить в роли лучника во время вечера в приятном обществе с крепкими напитками и беседами не для детского уха: ко мне прибежал мой младший сын Николай, протянул мне лук и стрелу и начал упрашивать, чтобы я метким выстрелом сбил у него с головы яблоко. И хотя стрела была с мягким наконечником из губки, мне показалось разумным проанализировать свои возможные ошибки и оценить их вероятность. Естественно, больше всего меня беспокоили смещения по вертикали. Простая модель таких ошибок выглядит следующим образом: каждый случайный фактор (скажем, ошибка прицеливания, влияние воздушных потоков и т. п.) может с равной вероятностью сместить мой выстрел по вертикали либо вверх, либо вниз относительно мишени. Итоговая ошибка будет равна сумме всех этих ошибок. Если мне повезет, примерно половина из них сместит выстрел вверх, другая половина — вниз, и тогда я попаду точно в цель. А если мне (точнее, моему сыну) не повезет, то все ошибки подействуют в одном направлении, и в цель я не попаду, а попаду либо существенно ниже, либо существенно выше. Соответственно, мне хотелось знать, какова вероятность того, что ошибки нивелируют друг друга, или, напротив, их сумма достигнет максимального значения, или примет одно из промежуточных значений. Но это был в точности процесс Бернулли, как если бы я подбрасывал монеты и задавался при этом вопросом, с какой вероятностью у меня выпадет определенное число орлов. Ответ на этот вопрос дает треугольник Паскаля или, если попыток много, нормальное распределение. И ровно этому же посвящена центральная предельная теорема. (Кстати сказать, в итоге я не попал ни в яблоко, ни в сына, но зато сбил бокал превосходного каберне.)
К 1830-м гг. большинство ученых обрели уверенность в том, что любое измерение многосоставно, подвержено огромному числу источников отклонения, а следовательно, и закону распределения ошибок. Этот закон, наряду с центральной предельной теоремой, привел, таким образом, к новому, более глубокому пониманию получаемых данных и их отношения к физической реальности. В следующем веке эти за идеи ухватились ученые, занимающиеся исследованием человеческого общества. К своему удивлению, они обнаружили, что человеческое поведение и индивидуальные особенности нередко подчиняются тем же закономерностям, что и ошибка измерения. В связи с этим было решено расширить круг приложений закона распределения ошибок за пределы естествознания и применять его в новой науке о человеческих отношениях.
Глава 8
УПОРЯДОЧЕННЫЙ ХАОС
В середине 1960-х гг. во Франции некая девяностолетняя старушка, Жанна Кальмен, сильно нуждаясь в деньгах, заключила договор с сорокасемилетним адвокатом: завещала ему свою квартиру с условием пожизненной выплаты небольших ежемесячных пособий; когда же она освободит помещение, адвокат его займет{150}. Адвокат наверняка знал, что эта Жанна Кальмен уже прожила на десять лет больше среднего срока продолжительности жизни, высчитанного для Франции. Однако он мог не слышать о теории Байеса: важно не то, умрет ли старушка через десять лет или нет, а то, что ее средняя продолжительность жизни, исходя из уже прожитых девяноста лет, увеличивается на шесть лет{151}. Но вряд ли он думал о чем-то подобном, скорее верил: любая женщина, юной девушкой видевшая в отцовской лавке Винсента ван Гога, вскоре последует за этим самым ван Гогом на тот свет. (Любопытно, что художник показался ей человеком «неряшливым, плохо одетым и в целом неприятным».)
Прошло десять лет, и адвокат наверняка подыскал себе другое жилье, потому как старушка отпраздновала столетие в добром здравии. И хотя до собственной средней продолжительности жизни ей к тому моменту оставалось еще два года, она преспокойно дожила на денежки адвоката до ста десяти лет. К тому времени адвокату исполнилось шестьдесят семь. Однако прошло еще десять лет, прежде чем ожиданиям адвоката пришел конец, причем для него довольно неожиданный. В 1995 г. адвокат умер, а Жанна Кальмен продолжала здравствовать. И скончалась лишь 4 августа 1997 г. в возрасте ста двадцати двух лет. Разница между ее возрастом на момент смерти и возрастом адвоката на момент смерти составила сорок пять лет.
У каждого конкретного человека продолжительность жизни, да и сама жизнь, непредсказуемы, однако на основе исследовательских данных можно вывести некие закономерности. Предположим, вы двадцать лет за рулем без единой аварии. И вот одним прекрасным днем вы проводите свой отпуск в Квебеке, рядом с вами жена и ее родители, и вдруг теща кричит вам: «Осторожно, лось!». Вы бешено крутите баранку, врезаясь в придорожный знак, на котором написано ровным счетом то же самое. Вам это происшествие покажется чем-то необычным, прямо из ряда вон выходящим. Но недаром был установлен знак: из всей совокупности тех, кто за рулем, определенный процент водителей наверняка встретится с лосем. В действительности, составляющие статистическую совокупность люди, действующие при этом наугад, часто создают впечатление людей последовательных, с предсказуемым поведением, якобы осознанно преследующих определенные цели. Или же, как в 1784 г. писал Иммануил Кант, «каждый, сообразно своим личным наклонностям, преследует свою цель, зачастую в противовес другим; однако каждый человек и все люди вместе как будто придерживаются некой направляющей линии — идут к естественной, но неведомой каждому в отдельности цели; все приближаются к ней, хотя знай они об этой цели, все равно не придали бы ей большого значения»{152}.
К примеру, по данным Федеральной дорожной администрации США, в стране насчитывается около 200 млн. водителей{153}. А по последним данным Национального управления по безопасности дорожного движения, за год эти водители наездили в общей сложности около 2,86 трлн миль{154}. Это около 23 тыс. км на водителя. А теперь представьте, будто каждый водитель решит: неплохо бы повторить результат в следующем году. Сравним два метода, которыми может быть достигнута эта цель. Метод 1: правительство вводит карточную систему, используя один из сверхмощных компьютерных центров Национального научного фонда для определения дистанции пробега каждому из 200 млн водителей в соответствии с их потребностями, чтобы в итоге получилось в среднем 23 тыс. км. Метод 2: водителям рекомендуют особо не озадачиваться, ездить столько, сколько нужно — больше или меньше, — даже не задумываясь над тем, сколько они наездили в прошлом году. Если дядюшка Билли Боб, который раньше ходил на работу в винный магазинчик пешком, теперь накрутит около 160 тыс. км, продавая дробовики оптом в Западном Техасе — пожалуйста! И если тетушка Джейн из Манхэттена, чей пробег складывался в основном из кругов, которые она описывала в поисках парковочного места в те дни, когда убирались на улицах, вдруг выйдет замуж и переедет в Нью-Джерси, нас это ничуть не обеспокоит. Какой из методов окажется ближе к цели: 23 тыс. км на водителя? Метод 1 невозможно проверить, хотя наш небольшой опыт с карточками на бензин свидетельствует: скорее всего он окажется не особенно удачным. Метод 2 вообще-то и был применен: на следующий год водители ездили столько, сколько хотели, даже не пытаясь ограничивать себя какими-то рамками. И каков результат? Согласно данным Национального управления по безопасности дорожного движения, в тот год водители наездили в общей сложности 2,88 трлн миль, то есть 23 тыс. км на водителя — всего на 160 км больше запланированного. Более того, среди этих самых 200 млн водителей насчитали почти то же (с разницей в 200) число жертв аварий, что и за предыдущий год (42 815 против 42 643).
Мы связываем случайность с отсутствием упорядоченности. И все же, хотя и невозможно спрогнозировать, как повернутся жизни 200 млн водителей, в совокупности их поведение едва ли могло быть более упорядоченным. Те же закономерности можно обнаружить, если исследовать то, каким образом люди голосуют, покупают ценные бумаги, женятся или выходят замуж, пропадают, отправляют письма по не тому адресу или сидят в пробке по пути на встречу, на которую они с самого начала не хотели ехать. Или же если измерять длину ног, размер ступней, ширину ягодиц или пивных животиков. Когда в XIX в. ученые начали разбираться в ставшей доступной социологической информации, куда бы они ни посмотрели, всюду им виделась одна и та же картина: хаос жизни превращался в измеримые и предсказуемые структуры. Но поразили ученых вовсе не одни лишь закономерности. Их поразила природа варьирования. Они обнаружили, что очень часто социологические данные подчиняются принципу нормального распределения.
Тот факт, что вариации черт характера и поведения человека распределяются по типу распределения ошибок лучника, побудило некоторых ученых изучить цели, на которые направлены стрелы человеческого существования. И, что важнее всего, они попытались понять социальные и физические причины, которые иногда смещают цель. Таким образом, математическая статистика, с помощью которой ученые анализировали данные, очень пригодилась в совсем другой области: области изучения природы общества.
История статистического анализа информации, связанной с жизнью человека, началась еще в XI в., когда Вильгельм I Завоеватель учредил то, что по сути явилось первым бюро переписи населения. Править он начал в 1035 г., в возрасте семи лет, унаследовав отцу, норманнскому герцогу Вильгельму. Судя по прозвищу, Вильгельм предпочитал завоевывать; в 1066 г. он вторгся в Англию. К Рождеству Вильгельм сам себе преподнес подарок, провозгласив себя английским королем. Его скорая победа привела к небольшому затруднению: кого же именно он завоевал и, главное, какие налоги собирать с новых вассалов? Чтобы ответить на эти вопросы, Вильгельм отправил в разные части Англии посланцев: те должны были описать размеры каждого клочка земли, учесть все, что на нем производится, а также самого владельца{155}. Чтобы удостовериться в правильности записей, Вильгельм отправил вторую группу посланцев, которым предстояло проделать ту же самую работу. Поскольку при расчете налогов исходили не из численности населения, а из размеров земельных наделов и их использования, посланцы проделали воистину титанический труд, попытавшись сосчитать каждого быка, корову, свинью, однако не слишком старались, когда собирали сведения о тех, кто убирал за всеми этими животными. Даже если население сосчитали бы точно, особой пользы это не принесло бы. В средние века статистические данные о людях — продолжительность их жизни, болезни — считали недостойными внимания в свете традиционных христианских представлений о смерти. Согласно этим представлениям, не годилось делать смерть предметом размышлений, а в попытках исследовать законы, управляющие ею, усматривали кощунство. Неважно, от чего умер человек: от легочной инфекции, желудочного заболевания или камня, чья сила воздействия превысила прочность черепной коробки — жизнь и смерть подчинялись воле божьей. Спустя столетия подобный фатализм постепенно уступил место противоположному взгляду: изучая закономерности природы и общества, мы не бросаем вызов авторитету Бога, а скорее проникаемся методами его воздействия.
Взгляды сильно поменялись в XVI в., когда мэр Лондона распорядился еженедельно составлять бюллетени смертности с целью учета крещеных и погребенных по приходам. Десятилетиями эти бюллетени составлялись нерегулярно, но в 1603 г., когда чума особенно свирепствовала, городское управление распорядилось вести учет еженедельно. Теоретики на материке отнеслись к практике учета смертности презрительно, усмотрев в ней не имеющую никакой пользы причуду англичан. Но одному из этих чудаковатых англичан, лавочнику по имени Джон Граунт, учетные данные рассказали о многом{156}.
Граунта и его друга Уильяма Петти называют основателями статистики, которую те, кто занимается чистой математикой, иногда считают наукой примитивной. А все из-за того, что статистика интересуется вопросами бытовыми, практическими, и в этом смысле Граунт особенно подходит на роль отца-основателя. Потому как в противоположность некоторым любителям от науки, которые способствовали развитию теории вероятностей — врачу Кардано, юристу Ферма, священнику Байесу — Граунт был всего-навсего торговцем, продавал всякую мелочь вроде пуговиц, ниток, иголок, пригодную в домашнем хозяйстве. Однако Граунт не был заурядным торговцем пуговицами, он преуспевал, благодаря чему располагал свободным временем, которое тратил на занятия, не имевшие ничего общего с приспособлениями для скрепления лоскутов ткани. Также у него нашлось время и для того, чтобы свести знакомство с величайшими интеллектуалами того времени, в число которых входил и Петти.
Вывод, к которому Граунт пришел, изучив бюллетени смертности, связан с числом умерших от голода. В 1665 г. их оказалось 45 человек — примерно в два раза больше, чем тех, кого лишили жизни посредством казни. Для сравнения: 4 808 человек умерли от чахотки, 1 929 — от сыпного тифа и дифтерии, 2 614 — от зубных болезней и глистов и 68 596 — от чумы. Почему же, в то время как Лондон был буквально наводнен попрошайками, так мало людей умирало от недоедания? Граунт решил, что наверняка голодных подкармливают. И предложил, чтобы пищу голодающим давало государство, освобождая тем самым общество от затрат, а Лондон тем временем освободился бы от тех, кто попрошайничал или приставал к прохожим на улице, за плату навязывая свои услуги. Кроме того, Граунт размышлял над двумя основными теориями распространения чумы. Согласно одной теории, болезнь распространялась посредством зараженного воздуха; согласно другой, передавалась от человека к человеку. Граунт наблюдал за еженедельными сводками смертей и сделал вывод: изменения данных слишком существенны, чтобы считать их случайными, как он думал поначалу, считая правильной вторую теорию. С другой стороны, погода от недели к неделе неустойчива, и Граунт предположил, что изменения данных связаны с первой теорией. Впрочем, оказалось, что Лондон еще не был готов к бесплатным столовым для бедных, а лондонцы предпочитали избавляться от крыс, а не дурного воздуха. Однако великие открытия Граунта заключались в ином: статистика может способствовать постижению области знаний посредством изучения ее статистических данных.