Двигатели жизни. Как бактерии сделали наш мир обитаемым Фальковски Пол

© ООО Издательство «Питер», 2016

* * *

Моим родителям Эду и Хелен, моей жене и подруге Сари Раскин, а также нашим дочерям Саше и Мирит

Благодарности

Я обдумывал эту книгу уже довольно давно. Она была написана в несколько приемов на протяжении почти двухлетнего периода. Эта книга стала развитием моих идей, изложенных в курсе «История земных систем», который я ежегодно читаю в Ратгерском университете; однако я не хотел, чтобы она превратилась в еще один учебник. Мне хотелось обратиться к более широкой читательской аудитории и попытаться разъяснить, что мы знаем и (пожалуй, это еще важнее) чего мы не знаем о роли, которую сыграли микроорганизмы в процессе превращения Земли в обитаемую планету. Львиная доля работы была проделана, пока я находился в творческом отпуске в Рэдклиффском институте перспективных исследований при Гарвардском университете. Я чрезвычайно признателен людям, оказавшим мне гостеприимство в институте, а также моим университетским коллегам, взявшим на себя труд прочитать и прокомментировать первые несколько глав. В особенности хочу поблагодарить Рэя Джайявардхану (он же Рэй Джей) (Ray Jayawardhana), Тамару Шапиро (Tamar Schapiro), Бенни Шайло (Benny Shilo) и Алессандру Буонаньо (Alessandra Buonanno) за помощь, оказанную мне в начале работы.

Я в долгу перед моим другом и гарвардским коллегой Энди Ноллом (Andy Knoll) за поощрение и критику моих первых глав, а также за многочисленные обсуждения в тот период, когда я был в Кембридже, штат Массачусетс. Я благодарен моему покойному другу Тоширо Саино (Toshiro Saino), пригласившему меня прочесть курс лекций в Нагойском университете в 2006 году. После лекций в Японии мне почти сразу же удалось выстроить структуру этой книги. Разговоры со множеством людей за долгие годы помогли мне оформить мои идеи о роли микроорганизмов в возникновении жизни на нашей планете. Я благодарен Тому Фенчелу (Tom Fenchel) и Эду Делонгу (Ed Delong), сотрудничавшим со мной в работе над статьей, где описывалась роль микроорганизмов в поддержании биохимических циклов. Основные положения этой статьи оказались чрезвычайно важны при разработке нескольких глав этой книги. Покойная Линн Маргулис (Lynn Margulis) оказала мне большую поддержку; во время обеденных перерывов у нас было множество интересных разговоров о симбиозе. Благодаря Джо Киршвинку (Joe Kirschvink) и Минику Розингу (Minik Rosing) мне удалось понять, как много могут рассказать древние камни.

Множество людей чрезвычайно мне помогли, вычитывая главы книги и делая конструктивные замечания; в особенности я благодарен Сэму Элворти (Sam Elworthy), ходатайствовавшему за мою книгу, пока он работал в издательстве Принстонского университета, и моему редактору Элисон Калетт (Alison Kalett) за терпение и новые идеи, которые помогли улучшить книгу. Отдельно хочу поблагодарить мою жену Сари Раскин (Sari Ruskin) за ее чрезвычайно дельные замечания и поддержку. Мой давнишний друг Боб Кросс (Bob Kross) выдвинул много интересных предложений. Спасибо Форду Дулитлу (Ford Doolittle), Дэйву Джонстону (Dave Johnston), Дону Кэнфилду (Don Canfield), Полу Хоффману (Paul Hoffman) и Дугу Эрвину (Doug Erwin), указавшим мне на ключевые ошибки, которые иначе прошли бы незамеченными. Ник Лэйн (Nick Lane) был в высшей степени любезен в своих хвалебных отзывах о тех нескольких главах, которые я попросил его прокомментировать, и я получил большое удовольствие от обсуждения с ним основополагающих концепций моей книги. Множество моих студентов, постдоков и сотрудников на протяжении длительного времени помогали мне оформить мои мысли о роли микроорганизмов в эволюции жизни на Земле. Я признателен организациям, поддерживавшим мои исследования: NASA, Национальному научному фонду, Агуронскому институту и фонду Гордона и Бетти Мур. Благодарю Сари и двух наших дочек, Сашу и Мирит, за их понимание и терпение и прошу извинения за время, украденное у них, пока я работал над книгой. Я благодарю моих коллег по Ратгерскому университету, где я работал начиная с 1998 года. Никогда бы не подумал, что, будучи биофизиком и океанографом, я в один прекрасный день стану преподавать «Историю земных систем» на геологическом факультете. Однако более всего я благодарен моим родителям, которые не были учеными, однако с детства поощряли меня следовать в жизни за своей мечтой и предоставили мне интеллектуальные возможности и эмоциональную поддержку, которые так благотворно сказались на всей моей взрослой жизни.

Пролог

Жизнь представляет собой цепь взаимосвязанных исторических случайностей, непредвиденных поворотов и неожиданных возможностей. Я вырос в нью-йоркском муниципальном микрорайоне на окраине Гарлема. Когда мне было около девяти лет, моя мама подружилась с молодой парой из нашего дома. Это были аспиранты Колумбийского университета, они жили несколькими этажами ниже.

Билл Коэн и его жена Мириам изучали биологию, и в их квартире находились аквариумы с тропическими рыбами. Это была чудесная молодая чета, и моя мать, разумеется, надавала им множество советов, в которых они не нуждались. Детей у них еще не было, и вскоре после того как мама познакомила меня с ними, они пригласили меня к себе посмотреть на рыб. И я пропал!

Уже через несколько недель после нашего знакомства я получил от Билла и Мириам небольшой аквариум и принялся выращивать рыбок гуппи и зеленую водоросль нителлу, наблюдая за тем, как беременные самки дают жизнь новому потомству гуппи на ложе из водорослей. Я читал все книги о тропических рыбах, что мог достать. У меня развилась настоящая мания – мне хотелось узнать о них все, как и о рыбах вообще. Сам того не понимая, я ступил на путь, который сделал из меня биолога, – все благодаря случайному знакомству моей не в меру любопытной, словоохотливой матушки с парой молодых аспирантов, ехавших вместе с ней в лифте.

Время шло; я откладывал карманные деньги и то, что мне удавалось заработать, выполняя небольшие поручения, и покупал все более и более объемистые аквариумы и все более дорогостоящих экзотических рыб в легендарной Aquarium Stock Company, занимавшей целый квартал в Южном Манхэттене, между Уоррен-стрит и Мюррей-стрит. Это было место, где заядлые любители тропических рыб утоляли свою страсть.

Приблизительно в это же время мой отец купил мне небольшой микроскоп в Американском музее естественной истории, куда мы несколько лет ходили вместе едва ли не каждую субботу. Почти наверняка за микроскоп запросили больше, чем он стоил, и для моего отца это были большие деньги, однако я мечтал о нем уже давно; это был подарок ко дню рождения, который изменил мою жизнь. Я понимаю, что музеям необходимо получать деньги за микроскопы и тому подобное, но было бы гораздо лучше, если бы они могли просто раздавать их бесплатно всем детям, приходящим в музей.

Подарок отца позволил мне увидеть и исследовать невидимый, волшебный мир микроскопических организмов, что плавали у меня в аквариумах. Даже несмотря на то, что мой микроскоп был не самого высокого качества, он позволил мне прикоснуться к миру, о котором я не мог и мечтать. Сказать, что эти организмы были чудесными, – значит не сказать ничего.

Сотни часов я проводил, глядя в окуляр моего микроскопа в попытке постичь сюрреалистичный микроскопический мир, события в котором разворачивались у меня перед глазами, – мир, столь чуждый моему повседневному опыту. Я видел, как микроорганизмы поглощают частицы меньшего размера. Я видел, как делятся одноклеточные организмы. Я наблюдал, как одни организмы плавают, а другие передвигаются, «шагая» по предметному стеклу. Я не понимал, каким образом эти организмы перемещаются, как они питаются, как вообще живут.

Читая книги, взятые в местной публичной библиотеке на 125-й улице, я понемногу начал узнавать кое-что о мире микробов. Кроме того, в библиотеке еще имелась замечательная деревянная модель парусного судна. Она располагалась на внушительной лестнице, которая вела на второй этаж. Чтобы добраться до взрослого отделения, где хранились книги по науке, я должен был миновать парусник. И пока я шел от парусника к научным книжкам, я предавался мечтам о мирах за пределами Гарлема. Меня все больше увлекал процесс добывания сведений об экзотических местах Африки и Южной Америки, откуда были родом мои рыбы, а также распознавания различных микроорганизмов по рисункам в тех немногочисленных книжках по этому предмету, которые можно было найти в библиотеке.

С помощью моего микроскопа и книг из библиотеки я понемногу начинал понимать, как инфузории-туфельки передвигаются, используя свои реснички, и как амебы скользят над поверхностью мелкозернистого гравия, выстилавшего днища моих аквариумов. Я узнал, что некоторые организмы тянутся к свету, а другие избегают его, что одним организмам для существования необходимо освещение, а другим – добавление органического вещества. Я начал выращивать колонии микроорганизмов из образцов воды, взятых в озерах Центрального парка и из луж на Риверсайд-драйв. Я пытался «думать» как микроб, что для ребенка не так уж сложно, даже если это происходит только в воображении.

Когда рыбы в моих аквариумах начали размножаться, я смог изучать развитие их эмбрионов за прозрачными оболочками икринок. При помощи моего микроскопа я наблюдал различные формы водорослей, растущих на стенках аквариумов, и видел, как улитки соскребают и поглощают их. Переворачивая гравий и перекладывая камни на дне, я мог рассматривать на предметном стекле детрит (донные отложения), с трудом различая движения мельчайших микроорганизмов, которые все называли бактериями. В то время я еще не очень хорошо понимал, что представляют собой эти «бактерии» и какова их связь с аквариумными рыбами и растениями.

Моя мама, у которой была навязчивая идея относительно пищевых отравлений, постоянно предупреждала меня насчет «червячков» в моих аквариумах, из-за которых я могу заболеть, если буду пить эту воду. Я не очень хорошо понимал, что это за «червячки», но осознавал, что с ними шутки плохи. Мама заставляла меня мыть руки каждый раз после того, как я перекладывал в аквариумах камни или отбирал образцы.

Разумеется, мне бы и в голову не пришло пить воду, в которой живут мои рыбы, но почему я, в принципе, могу от этого заболеть, оставалось загадкой. Ведь самим рыбам «червячки» не приносили никакого вреда, хотя они и пили эту воду – во всяком случае, мне так казалось. Неужели я действительно заболею, если попью воды из аквариума? Я не отваживался проверить. Вода наливалась из крана в ванной, рядом с моей комнатой. Я пил эту воду каждый день. Однако если бы мне вздумалось налить рыбам воды прямо из-под крана, они бы умерли. Я знал, что рыбы не переносят содержащийся в водопроводной воде хлор и что они могут жить только в такой среде, где есть бактерии и другие микроорганизмы. В то же время сам я мог спокойно пить воду, содержащую хлор, но почти наверняка бы заболел, если бы попил воды из аквариума. Получается, что в моем мире хлорированную воду пить было можно, но мои рыбы могли от нее умереть, потому что в их мире хлор убивал «червячков»? Это казалось лишенным смысла.

Выходило так, что микроорганизмы могли быть и хорошими и плохими одновременно. Для меня в мои девять лет было непросто осознать этот кажущийся парадокс. Было очевидно, что «червячки», приводившие в такой ужас мою маму, играли важную роль в моих аквариумах. Понемногу я начинал понимать, что эти «червячки» и есть микробы. В то время еще не было известно, что у каждого из нас внутри живет огромное множество микробов и что они столь же важны для нашего существования, как микробы в аквариумах для жизни рыб.

Мир микробов все более очаровывал меня, я бы даже сказал – поглотил с головой. Я проводил бесчисленные часы, далеко за полночь, разглядывая в окуляр микроскопа образцы из моих аквариумов и слушая в наушниках моего детекторного радиоприемника, как «Кузен» Брюси Морроу ставит хиты шестидесятых на радио WABC.

На протяжении нескольких лет моя жизнь была полностью сосредоточена на аквариумах, микроскопе и живших в моих аквариумах микроорганизмах. Однако к тринадцатилетнему возрасту мои горизонты стали расширяться. Меня все больше интересовал другой невидимый мир – мир электромагнитного излучения. Правда, тогда я его так не называл. Кажется, я думал, что это просто радиоволны или что-то типа того. Каким образом изображения и звуки могли передаваться с далекой станции ко мне в квартиру? Для меня это был совершенно невероятный феномен.

В области электромеханики мои родители были абсолютными луддитами. От них нельзя было ждать какой-либо помощи в понимании принципа работы радио и тем более телевидения. Радио мы иногда слушали, но только классическую музыку (мои родители не одобряли ни джаз, ни рок-н-ролл). Телевизора у нас не было. Мой отец называл телевизоры «пожирателями времени» и считал, что для нормальной жизни они совершенно не нужны. Зато книг у нас в доме были буквально тысячи – и мой отец постоянно читал, читал и читал. Это с его подачи я пристрастился к чтению серьезной литературы. (Не знаю, если бы он дожил до появления Интернета, как бы он его назвал – вероятно, «предприятием по вымоганию времени» или как-нибудь в этом роде.) Тем не менее, хотя он и внушил мне глубокое уважение к литературе и печатному слову, получилось так, что, смотря телевизор в гостях у друзей, я все больше загорался желанием выяснить, каким образом можно передавать звуки и изображения на расстояние без проводов. В моей жизни звуки и изображения сыграли преобразующую роль. Я не мог себе представить, как их можно передавать в эфире так, чтобы они проигрывались на телевизоре, однако в принципе мог понять, как именно у Кузена Брюси получается проигрывать запись где-то в Мидтауне так, что я могу слушать ее на своем детекторном приемнике на расстоянии нескольких миль. Я твердо вознамерился выяснить, как работает эта магия.

Накупив дешевых деталей в маленьких магазинчиках на Кэнал-стрит, я соорудил детекторный радиоприемник. Самый сильный сигнал ловился на волне 770 AM – это было радио WABC. Фактически сигнал был настолько сильным, что оказался единственным сигналом, который я мог слушать на своем детекторном приемнике, использовавшем невероятно слабое электрическое поле, источником питания для которого служили радиоволны. Я мог прицепить зажим «крокодил» со своего приемника к батарее и бесплатно слушать музыку через маленькие наушники. «Кузен» Брюси был супер-диск-жокеем – перед каждой новой песней он выкрикивал несколько хвалебных фраз и объяснял, кто из музыкантов самый крутой. Это было просто отлично; Брюси был именно тем парнем, которого следовало слушать, вычищая аквариумы и перекладывая камни на дне.

Подрастая, я стал выполнять разные случайные работы неподалеку от дома, благодаря чему имел достаточно денег, чтобы покупать для своих аквариумов самые экзотические виды рыб. Одновременно я покупал подержанные или скидочные радиодетали в многочисленных лавочках на Кэнал-стрит. Я сделался страстным поклонником африканских цихлид, параллельно сооружая усилители, приемники и другую незамысловатую радиоаппаратуру. Я усвоил основы генетики, выращивая и продавая экзотических рыб Альфреду из Aquarium Stock Company. Я узнал, как замедляют электроны в резисторах и накапливают в конденсаторах, как работает электронная лампа, а также – конструируя радиоприемники и небольшие передатчики – каким образом передаются и принимаются невидимые радиоволны. Однако все это время в глубинах моего сознания хранился образ – модель парусника из библиотеки на 125-й улице. Это был мой маяк, указывавший путь к другому миру.

У меня ушло еще двадцать лет, прежде чем я по-настоящему осознал, каким образом организмы, которые мы не можем непосредственно воспринимать при помощи глаз, преобразовали нашу планету, создав глобальную электрическую схему жизни. Они делают свою работу молча, но их электрический контур – не метафора; это в самом деле двигатель жизни на Земле. Хотя их и нет в экспозиции Музея естественной истории, но именно они создали газы, благодаря которым я сейчас живу. Это они удаляют создаваемые мной отходы. Это они превратили крупинку пыли в галактическом пространстве в обитаемую планету.

На протяжении моей дальнейшей жизни мир в аквариумах, который я наблюдал благодаря купленному отцом микроскопу, становился для меня все более значимым, но я не мог в точности сказать почему. У меня ушло несколько десятилетий на то, чтобы понять, что смерть микроорганизмов и их разложение на усыпанных гравием днищах моих детских аквариумов представляли собой миниатюрные модели того, как органические соединения становятся топливом для машины, на которой я езжу. За время моей научной деятельности я начал понимать, что электрические схемы, которые я конструировал в детстве, были аналогами самой жизни – но они были незавершенными. Чего-то не хватало. Я понял, что не знаю ключевых механизмов функционирования клеток. Они-то не получают энергию из радиоволн; они берут энергию у более высокоэнергетических частиц света, излучаемых Солнцем. Что еще более загадочно – в отличие от радиоприемников, которые не развиваются из радиоикринок, чтобы стать взрослыми приемниками, клетки раз за разом объединяются и воспроизводятся. Воспроизводство клеток – одна из важнейших функций жизни.

Противоречие между воспроизводством и метаболизмом остается одной из самых трудных преград к пониманию того, как эволюционировала жизнь на Земле. Для этого требуется больше знаний об электрической схеме жизни. Мне далеко не сразу удалось соединить в своем мозгу пресловутые два мира. Честно говоря, я не уделял большого внимания невидимым мирам и в моем формальном обучении. Объединение схемы электрической циркуляции жизни с эволюцией организмов отнюдь не стояло в списке задач или приоритетов у моих школьных учителей или университетских преподавателей. Мне следовало обнаружить эти связи самостоятельно.

В старших классах школы, в которую я ходил, биология была дополнительным курсом и не включала в себя области, которые меня интересовали. В основном меня натаскивали по математике, физике и химии. Только став значительно старше, я осознал, что в книгах по биологии, которые мне давали читать в колледже, о микробах по большей части речь не шла – они рассматривались лишь как переносчики болезней (те же самые «червячки»). Разговоры об эволюции, когда они случались, почти всегда вращались вокруг животных и растений. Биологические статьи, которые требовалось читать, было не только невозможно достать – они были к тому же невыносимо скучны. Я не мог понять, как можно такой волнующий предмет, как изучение жизни, превратить в нечто настолько забитое никому не нужным научным жаргоном.

Тем не менее, будучи студентом нью-йоркского колледжа, обращающим внимание на окружающий мир, я вспомнил, как видел множество бабочек в парке рядом с моим домом – вдоль Риверсайд-драйв. Мне отчетливо припомнилась статья в National Geographic, где рассказывалось о миграции этих бабочек из какого-то отдаленного места в Мексике за тысячи миль на север, в Риверсайд-парк. Я мог лишь гадать, что им довелось пережить на своем пути к этому, казалось бы, никчемному клочку земли в Гарлеме. Было совершенно невозможно поверить, что столь хрупкие с виду создания могли выдержать переселение за несколько тысяч миль. Для меня они стали живой эмблемой жизненной силы. Подобно той мечте, что зародилась в моем юном сознании при виде модели парусника в библиотеке на 125-й улице, эти бабочки смогли выйти за границы своего обычного существования, чтобы открывать новые миры.

В колледже мы узнали, как отличать правый глаз коровы от левого, вызубрили названия костей человеческой руки, а также названия и формы различных цветов и фруктов. Большое внимание было уделено эволюции зубов и стадиям развития зародыша цыпленка. В результате неизбежно прививающийся, все менее вразумительный и большей частью ни на что не пригодный биологический лексикон стал для нас более важен, чем сам предмет изучения. К концу моего обучения в колледже практически все былое восхищение чудесами биологии, столь вдохновлявшее меня в детстве, как и следовало ожидать, оказалось перечеркнуто и уступило место формализованному языку и ритуализованной научной культуре. Наука – это философский культ, въевшийся в умы даже самых продвинутых ученых настолько глубоко, что ключевые вопросы, такие как: «Что такое жизнь? Когда она появилась? Как она устроена?», превратились в отдаленное воспоминание, если они вообще когда-либо задавались.

Вполне в духе армейских инструкторов по строевой подготовке многие из моих преподавателей всеми силами старались выкорчевать из моей головы эти и им подобные дерзкие вопросы. Восхищение или тем более радость от занятия биологией – да и вообще наукой, если на то пошло, – не имели никакого значения для жизни будущих медиков, которых из нас готовили. Если я собирался стать успешным солдатом в армии на службе биологических исследований, мне следовало владеть терминологией, знать факты и забыть об электрических схемах жизни и микробах. Я не виню моих профессоров, многие из которых руководствовались вполне благими намерениями. Такова была в те годы, а зачастую остается и по сей день, научная культура: найти «лучшее» и исключить «худшее». Проблема в том, как породить в молодых умах желание браться за самые сложные вопросы – а понимание происхождения жизни весьма сложный предмет. К несчастью, в процессе исключения «худшего» некоторые преподаватели зачастую систематически выпалывают из науки самые пытливые и творческие умы.

Лишь много позже, когда я принялся серьезно работать в настоящем природном аквариуме – океане, я начал размышлять о том, почему нет бабочек на Венере, и если бы они там были, то смогли бы мы об этом узнать? Я стал осознавать масштаб того, насколько все находится под контролем микроорганических процессов, которые делают Землю обитаемой для растений и животных, включая нас самих; я понял, что организмы, которые я в детстве наблюдал в микроскоп, связаны между собой невидимым, но вполне реальным электрическим контуром жизни. Именно этот контур позволяет нашей планете функционировать.

Эта книга представляет собой попытку исследовать и объяснить, как возникла эта глобальная электрическая схема, как она контролирует природное равновесие на Земле и как люди могут ее нарушить, подвергая себя потенциальной опасности. Начнем с того, что мы видим – а зачастую и не видим – в макроскопическом мире, том, в котором мы живем.

Глава 1. Незамеченные микроорганизмы

Несколько лет назад я получил возможность поработать на исследовательском судне на Черном море, у северного побережья Турции. Черное море – поразительный и уникальный водоем: ниже приблизительно 150-метровой отметки в нем нет кислорода. Задачей моей работы было изучить фотосинтезирующие бактерии в верхнем 150-метровом слое.

Фотосинтезирующие бактерии используют энергию солнечного света для строительства новых клеток. В любой части Мирового океана существуют микроскопические фотосинтезирующие организмы – фитопланктон, которые продуцируют кислород. Они являются предшественниками высших растений, но появились на Земле значительно раньше. Через несколько дней плавания инструмент, который моя исследовательская группа использовала для распознавания фитопланктона (особый тип флюорометра, который мы разработали уже много лет назад), зафиксировал странные сигналы, каких никто из нас прежде не видел. Сигнал исходил с довольно большой глубины – как раз из той части водной толщи, где никакого кислорода уже нет и освещенность очень низкая. В процессе дальнейшей работы я понял, что организмы, испускающие этот странный флюоресцентный сигнал, обитают в очень тонком слое воды – толщиной, возможно, не более метра. Это были фотосинтезирующие бактерии, но в отличие от фитопланктона, обитающего в верхней части водной толщи, они не могли продуцировать кислород. Эти бактерии были представителями древнейшей группы организмов, возникших в процессе эволюции задолго до фитопланктона. Они были реликтовыми представителями того времени, когда кислород еще не появился на нашей планете.

Работа на Черном море оказала глубочайшее влияние на мои представления об эволюции жизни на Земле. Отбирая образцы из все более глубоких слоев водной толщи, я мысленно возвращался вспять во времени, обнаруживая микроорганизмы, некогда населявшие все океаны, а сейчас ограниченные лишь очень малой частью своего прежнего местообитания. Организмами, испускавшими тот странный флюоресцентный сигнал, оказались фотосинтезирующие зеленые серные бактерии – облигатные анаэробы. При помощи энергии Солнца они расщепляют сероводород (H2S) и используют образовавшийся водород для производства органических соединений. Эти организмы могут жить при очень низком уровне освещенности, но не переносят даже весьма незначительного присутствия кислорода.

На протяжении нескольких последующих недель, курсируя по Черному морю с целью сбора образцов в различных его частях, мы наблюдали стаи дельфинов и рыб в верхних слоях воды, но ниже приблизительно 100-метровой отметки многоклеточные организмы отсутствовали. Животная жизнь не может долго существовать без кислорода, а здесь, на глубине, он исчезал. Бактерии преобразовали экосистему Черного моря: в верхнем 100-метровом слое они продуцировали кислород, но в более глубоких слоях, наоборот, поглощали его. Таким образом они сделали бассейн Черного моря своей уникальной экологической нишей.

Рис. 1. Теоретический график распределения кислорода и сероводорода (газа с запахом тухлых яиц) в верхнем 300-метровом слое Черного моря. В Мировом океане этот водоем является уникальным. В большинстве океанических и морских бассейнов кислород прослеживается вплоть до самого дна. Здесь же, чуть ниже отметки, куда проникает лишь 1 % солнечного света, приходящего на поверхность, существует очень тонкий слой фотосинтезирующих бактерий, которые при помощи солнечной энергии расщепляют сероводород, используя его для своего роста. Метаболизм этих организмов чрезвычайно древен; вероятно, он возник более трех миллиардов лет тому назад, когда концентрация кислорода на поверхности Земли была еще чрезвычайно низкой

Проведя в море почти месяц, я наконец вернулся в стамбульский порт, где принялся восхищаться турецкими коврами. Гора Арарат в северо-восточной части Турции славится своими ткаными коврами, на которых изображена история Ноева ковчега. Изготавливаемые в этом регионе килимы представляют собой богато украшенные гобелены с вытканным рисунком в виде пар жирафов, львов, обезьян, слонов, зебр и всевозможных других знакомых нам животных. Глядя, как торговцы разворачивают свой товар, и прихлебывая бесконечно предлагаемый ими сладкий чай, я принялся размышлять над тем, как история ковчега повлияла на формирование нашего искаженного представления о жизни на Земле. С одной стороны, это история о разрушении и воскресении. С другой – она повествует о том, как Бог поручил людям присматривать за природой. Ни в том, ни в другом случае микробы не упоминаются ни как создатели, ни как разрушители жизни.

Слово «эволюция» буквально означает «развертывание», но, глядя, как торговец разворачивает передо мной свои восхитительные ковры, я понял, что библейский рассказ о ковчеге не дает нам ключа к пониманию того, как эволюционировала жизнь. Вся ли существовавшая на Земле жизнь была сохранена Ноем? Возможно ли, что какие-то организмы не были взяты в ковчег? Хотя история ковчега глубоко укоренилась в западной культуре, она не может служить источником информации о происхождении жизни. Чтобы подступиться к пониманию происхождения жизни, нам необходима другая перспектива, основанная на науке, и в особенности на тех ее разделах, что касаются эволюции микроорганизмов.

Наука в большой степени является искусством находить в природе закономерности. Для этого требуется терпеливое наблюдение, но мы неизбежно подпадаем под влияние наших чувств. Человек – животное визуальное, и наше восприятие мира базируется главным образом на том, что мы видим. А то, что мы видим, определяется тем, какие инструменты у нас есть под рукой. История науки тесно связана с историей изобретения новых орудий, позволяющих видеть вещи в другой перспективе, однако парадоксальным образом изобретение новых инструментов зависит от того, что мы видим. Если мы не видим какой-либо вещи, мы, как правило, выпускаем ее из внимания. Так и микроорганизмы долгое время оставались вне поля зрения, в особенности в том, что касается их роли в истории эволюции.

Первые несколько глав современной истории эволюции жизни на Земле были написаны в основном в XIX столетии учеными, изучавшими ископаемые останки животных и растений – останки, которые они могли с легкостью видеть. Наблюдавшиеся ими природные закономерности не учитывали микроорганическую жизнь по двум простым причинам: горные породы не содержали заметных ископаемых останков микроорганизмов, а при наблюдении за живыми организмами нельзя было с легкостью различить закономерности микробиотической эволюции. Инструментов для обнаружения ископаемых микроорганизмов почти не существовало; да и в любом случае, даже если бы они и были, роль этих организмов в формировании эволюции Земли не могла быть оценена до тех пор, пока в последующие десятилетия не стали доступны другие, более совершенные инструменты. Закономерности эволюции, наблюдавшиеся для животных и растений, были исторически выведены из формы и размеров их останков, а также расположения этих останков в геологическом времени. Применительно к микроорганизмам такой подход далеко не настолько действен.

В целом то, что мы не замечали микроорганизмы – как в буквальном, так и в переносном смысле, – исказило наше представление об эволюции более чем на столетие, и включение микроорганизмов в нашу картину эволюции еще до конца не завершено. Наука – не просто искусство обнаружения закономерностей в природе (что само по себе достаточно трудно). Она требует умения находить закономерности, которые не видны невооруженным глазом.

Однако, прежде всего, давайте вкратце рассмотрим историю эволюции, какой она виделась в XIX столетии. Именно тогда были сформированы многие из наших нынешних научных концепций относительно жизни на Земле. Эти идеи во многом основывались на том, что можно было понять в рамках библейских историй о сотворении мира, включая историю о потопе и том, как Ной позаботился о Божьих созданиях, – историй, подобных тем, что были вытканы на турецких коврах.

В начале 1830-х годов дворянин-ученый Родерик Импи Мурчисон и харизматичный кембриджский профессор Адам Седжвик сообщили о находке окаменелых останков животных в толще земли в Уэльсе. Окаменелости были известны уже на протяжении нескольких веков, однако их значение не было до конца ясно. Многие понимали, что это отпечатки организмов, погибших очень давно, – однако насколько давно, никто не мог сказать; оставалось неясным и то, каким образом эти отпечатки сохранились.

Седжвик был одним из ведущих английских специалистов по окаменелостям, а одним из студентов, посещавших его лекции, был Чарльз Дарвин. Летом 1831 года Дарвин, которому на тот момент едва исполнилось двадцать два года, отправился вместе с Седжвиком на экскурсию в Северный Уэльс, чтобы своими глазами посмотреть на ископаемые останки. Эта поездка перевернула жизнь Дарвина навсегда. Он не только помогал Седжвику искать среди камней останки животных – при этом он также изучил основные принципы геологии, и эти способности к наблюдению не раз сослужили ему хорошую службу на протяжении его дальнейшей жизни.

Окаменелости, подобные тем, что были найдены Седжвиком и Мурчисоном в Англии и Уэльсе, встречались также и в других частях Европы, в результате чего начала получать распространение система классификации, основанная на рядах сходных ископаемых останков. Зачастую внешний вид ископаемых животных напоминал знакомых нам жителей океана – моллюсков, ракообразных или рыб; наружность других, однако, была невероятно причудливой – они не были похожи ни на каких обитателей современных океанов. Относительно значения этих ископаемых кипели бурные дискуссии, но в любом случае эти открытия недвусмысленно предполагали серию последовательных изменений внешнего вида животных в толщах, сформированных этими древними морскими отложениями, – от нижних слоев к слоям, залегающим выше. В то время уже в основном сформировалось представление о том, что горные породы, залегающие в разрезе более глубоко, образованы раньше, нежели вышележащие.

Обнаружение в толще горных пород ископаемых животных едва ли можно было назвать новостью. Вероятно, самое знаменитое из первых описаний ископаемых останков было сделано датским ученым Нильсом Стенсеном (Николасом Стено) в 1669 году. Он обнаружил среди горных пород в Италии объекты, весьма напоминавшие зубы акул, и задался вопросом, каким образом окаменелые останки, принадлежавшие некогда жившим организмам, могли так хорошо сохраниться. Стенсен, однако, принял во внимание то, каким образом ископаемые были расположены в толще горных пород. Отложения залегали слоями, и ученому пришла в голову мысль о том, что более древние слои должны залегать ниже более молодых. Это представление, названное впоследствии принципом суперпозиции, является одним из базовых законов седиментологии. Оно сильно повлияло на интерпретацию найденных окаменелостей Седжвиком более сотни лет спустя. Сам Стенсен в конце концов забросил науку и обратился в лоно Церкви, решив посвятить свою жизнь Богу. Его ранние работы, посвященные окаменелостям, были почти полностью забыты, а сам он продолжал верить в то, что жизнь на Земле зародилась так, как это описано в Книге Бытия.

На мой взгляд, логический вывод о том, что сохранившиеся в горных породах останки расположены в некоем соответствии с временной шкалой, был удивительным прозрением, однако его было не так легко обосновать, поскольку в то время еще не были доступны базовые геологические данные. В значительной мере задача выявления закономерностей в окаменелых останках дожидалась великого ума Чарльза Лайеля, одного из интеллектуальных наставников и близкого друга Дарвина. Лайель, шотландский адвокат, ставший натуралистом, часто именуется первооткрывателем нового научного направления, которое он назвал геологией. Подобно Стенсену, Лайель понял, что в залегании ископаемых останков есть логическая последовательность; однако в отличие от Стенсена он занялся истолкованием геологических процессов, таких как эрозия, вулканизм и землетрясения, чтобы с их помощью объяснить эту наблюденную им последовательность. Фактически именно его истолкование расположения ископаемых останков в толщах горных пород позднее побудило Дарвина задуматься над тем, как организмы изменяются с течением времени. Длившаяся всю жизнь дружба между Лайелем и Дарвином была легендарным примером научного сотрудничества.

Двадцать седьмого декабря 1831 года началось знаменитое путешествие Дарвина на экспедиционном судне королевского флота «Бигль» – десятипушечном бриге длиной в девяносто футов и с командой в семьдесят четыре человека на борту. В качестве спальни Дарвину отвели чрезвычайно тесную кают-компанию, где ему было позволено держать лишь очень немного книг. Он спал в гамаке в комнатке размером 9 на 11 футов с потолком на высоте 5 футов – там было темно и неуютно, к тому же ему приходилось делить помещение с другими. Среди прочих вещей, которые Дарвин взял с собой, был и первый том первого издания новой книги Лайеля «Принципы геологии», опубликованной в 1830 году, а также его личный экземпляр Библии короля Иакова. На судах, где мне приходится работать, я имею возможность ежедневно принимать горячий душ, и, хотя иногда я вынужден жить в тесной каюте вместе с другими людьми, на большинстве исследовательских судов имеется библиотека. Учитывая условия на «Бигле», возможно, не стоит особо удивляться тому, что Дарвин, ссылаясь на морскую болезнь, стремился при любой возможности сойти на берег и пешком покрывал значительные расстояния, чтобы встретить «Бигль» в следующем порту назначения.

Лайель взял на себя нелегкую задачу объяснить заинтересованной публике, как останки одинаковых живых организмов могли оказаться и в Альпах в Центральной Европе, и в холмах Шотландии, а также повсюду на Британских островах. Прежде всего надо было объяснить, как и когда эти останки образовались.

На протяжении столетий было выдвинуто несколько гипотез на этот счет. Одна из них, появившаяся еще в Средние века, гласила, что Бог создал камни похожими на знакомых нам животных, чтобы испытать веру своей паствы. Как бы абсурдно это ни звучало, такое представление до сих пор имеет множество приверженцев, особенно в некоторых областях Соединенных Штатов. Вторая идея заключалась в том, что в древности произошло извержение вулканов, вынесшее животных из океанов на сушу, где они погибли, в результате чего их скелеты оказались запечатлены в камне. Третья гипотеза гласила, что эти животные умерли после Великого потопа, когда уровень океана понизился. И действительно, идея о дилювиальном (то есть потопном) происхождении органических останков приходила в голову и самому Седжвику. Существовало и несколько других гипотез, которые Лайель перечисляет обстоятельно и с подробностями, как адвокат, представляющий дело в суде.

Лайель выдвинул революционную идею: останки морских животных оказались в скальных породах на суше потому, что много лет назад сами эти скалы находились под водой. С течением времени произошел их подъем, и они оказались на суше. Это предположение, проверенное множеством различных способов, оказалось действительно верным, хотя процессы, в результате которых стало возможным такое перемещение, были открыты лишь более чем через сто лет после смерти Лайеля. Одной из главных проблем, вставших перед Лайелем, было определение возраста Земли. Насколько давно было это «много лет назад»?

Возраст Земли был скрупулезно высчитан Джеймсом Ашером, архиепископом Армагским, в его книге Annales Veteris Testamenti, опубликованной в 1654 году. Практически каждый образованный британский гражданин того времени считал, что в ней дано наиболее точное определение времени сотворения мира. Основываясь на буквальной интерпретации Библии, Ашер определил, что Земля была образована вечером в воскресенье, предшествовавшее 23 октября 4004 года до н. э. по юлианскому календарю, то есть около 6000 лет тому назад.

Будучи юристом, Лайель поднаторел в ведении дискуссий, поэтому его забавляло то, как некоторые нелогичные, а порой и иррациональные идеи использовались, чтобы объяснить существование ископаемых животных и изменение их внешнего вида. Понимая могущество аргументированного спора, он писал: «…система схоластических диспутов, поощряемая в средневековых университетах, к несчастью, породила в людях привычку к неограниченным дебатам, так что они зачастую предпочитали защищать абсурдные и сумасбродные положения, поскольку это требовало большего мастерства; результатом и целью подобных интеллектуальных сражений была лишь победа, но не истина». Однако даже самый одаренный адвокат не может выиграть спор против записанного слова Божия.

Лайель понятия не имел, каковы могут быть законы эволюции и тем более как можно измерять геологическое время. Он решил, что теория Жана-Батиста Ламарка о том, что характерные черты приобретаются животными на протяжении жизни и затем каким-то образом передаются будущим поколениям, не хуже любой другой и в любом случае более разумна, чем большинство других. Фактически исследования Ламарка, посвященные видам животных (он был ведущим мировым авторитетом по животным, не имеющим хребта, то есть беспозвоночным), привели его к предположению о том, что организмы могут быть выстроены вдоль временной оси – от простейших к наиболее сложно устроенным. Это Ламарк выдвинул идею о том, что организмы каким-то образом изменяются с течением времени, то есть эволюционируют. Хотя сейчас его работы чаще всего подвергаются незаслуженным насмешкам или игнорируются в учебниках и на уроках биологии, в действительности именно Ламарк был интеллектуальным отцом науки, которую он назвал биологией.

Мысль о том, что ископаемые останки животных распределены в слоях горных пород вдоль временной оси, привела Дарвина к размышлениям о жизни на Земле в таких временных масштабах, какие он едва мог помыслить и практически не мог оценить. Если древнейшие останки находятся на глубине многих метров под другими, сколько времени могло уйти, чтобы сверху отложились такие толщи?

Дарвина приводили в чрезвычайное недоумение самые ранние отложения, обнаруженные Мурчисоном и Седжвиком. Он знал, что ниже слоев горных пород, содержащих останки животных, находятся слои, в которых останков нет, но не мог понять почему. Казалось, будто летопись органической жизни появляется из ниоткуда; эволюция организмов выглядела относительно быстрой. Однако насколько быстрой? И почему ни с того ни с сего в отложениях вдруг появляются останки рыб, в то время как в нижних слоях можно найти лишь организмы, похожие на беспозвоночных? А если посмотреть еще глубже: почему там вообще нет останков живых организмов? Все это походило на геологический эквивалент разворачивающегося турецкого ковра с изображением истории ковчега, однако здесь на половине или большей части ковра не было никаких животных. Дарвин должен был разъяснить эти вопросы сначала для самого себя, а затем для своих коллег. Чтобы найти на них ответы, ему было необходимо датировать горные породы, а для этого ему нужны были часы.

Седьмого сентября 1859 года впервые прозвонил колокол Биг Бен на часовой башне здания парламента. Эти куранты, отличающиеся тщательностью отделки и необычайной точностью, стали символом английского технического гения и мастерства на заре промышленной революции. Спустя два месяца после этого исторического события – 24 ноября, если быть точным, – Джон Мюррей III, почтенный лондонский издатель с Албемарл-стрит, выпустил в свет новую книгу Чарльза Дарвина «Происхождение видов путем естественного отбора, или Сохранение благоприятных рас в борьбе за жизнь».

В девятой главе «Происхождения видов» (более позднее сокращенное название книги) Дарвин делает попытку подсчитать время, требовавшееся вымершим животным для того, чтобы измениться, или эволюционировать, до состояния современных форм. Эта задача не была прямолинейной. Лайель и его предшественник шотландский врач Джеймс Хаттон предполагали, что возраст Земли бесконечно велик. Дарвин не мог знать, верна ли эта гипотеза, но он, несомненно, считал, что Земля старше 6000 лет. Чтобы получить более реалистичную датировку, он разработал довольно интересный, можно даже сказать совершенно новаторский подход к измерению геологического времени.

Часы Дарвина основывались на геологическом феномене – скорости выветривания осадочных пород, а именно того их вида, в котором содержались органические останки. Для наблюдений Дарвин избрал Вельд – хорошо изученный берег Кента, обрывающийся в море утесом, состоящим из меловых и песчаниковых отложений. Дарвин подсчитал, что это образование выветривается со скоростью приблизительно один дюйм за столетие, и, принимая во внимание размеры утеса в то время, определил, что «на денудацию Вельда должно было потребоваться 306 662 400 лет, или круглым счетом триста миллионов лет».

Дарвин не принял во внимание время, потребовавшееся на формирование самого утеса, но это была незначительная деталь. Более того, он не стал рассматривать и породы, залегавшие ниже Вельда, наличие которых лишь делало утес еще более древним, а возможно, и бесконечно древним, по Лайелю. Дарвиновская оценка возраста утеса, конечно же, была смелым умозаключением и в отсутствие других ограничений, несомненно, основывалась на рациональной, физически проверяемой концепции. Вывод был очевиден: Земля невероятно стара – гораздо, гораздо старше, чем по расчетам Ашера, и гораздо старше, чем большинство людей в то время могли себе представить. И если время возникновения жизни на Земле оставалось не определенным (оно не определено и по сей день), тот факт, что под вышележащими слоями существовали породы, не содержащие органических останков, свидетельствовал о том, что оценка Дарвином возраста Земли была еще довольно скромной.

Тем не менее миллионы лет – не тот возраст, который указан в Библии, и он, разумеется, не соответствовал тому, чему тогда учили в школах. Конечно, Дарвин понимал, что его оценка будет встречена скептически, но он и предполагать не мог, во что это выльется. Помимо того что Дарвин вступил в противоречие с освященными библейским авторитетом вычислениями, сделанными в XVII веке архиепископом Армагским, предложенный им возраст Земли подвергся нападкам его собрата-ученого, «Эйнштейна» тех дней, физика Уильяма Томсона, позднее ставшего лордом Кельвином. Томсон задался целью исправить датировку, базируясь на основных принципах физики.

Томсон доказывал, что возраст Земли может быть вычислен с достаточной точностью, если предположить, что планета вначале представляла собой расплавленную массу и впоследствии остывала. Взяв в расчет данные изменения температуры по мере углубления в земную кору, а также результаты собственных экспериментов по определению теплопроводности горных пород, он вывел уравнение, показывающее, насколько быстро Земля могла остыть до ее современного состояния. В 1862 году Томсон объявил, что Земле около ста миллионов лет, хотя признал, что эта цифра весьма неопределенна и что возраст может составлять от двадцати до четырехсот миллионов лет. Со временем он становился все более бескомпромиссным, утверждая, что возраст Земли должен быть ближе к двадцати миллионам лет. Этот вычисленный им промежуток времени казался слишком коротким, чтобы вместить в себя эволюцию жизни, как видел ее Дарвин. Томсон стал одним из жесточайших критиков новаторских идей Дарвина касательно эволюции – не потому, что не верил в эволюцию как таковую, но, скорее, потому, что, будучи физиком, не доверял вычислениям возраста Земли, основанным на таких ненадежных геологических показателях, как скорость выветривания. В конечном счете возражения Томсона заставили геологов разработать более совершенные модели для определения возраста Земли, но на это потребовалось еще почти столетие.

Если Дарвин был хотя бы отдаленно прав, то развитие жизни на Земле заняло очень, очень долгое время – гораздо больше, чем кто-либо предполагал. Однако как происходило это развитие? В наброске на тридцать шестой странице своей записной книжки «B» от 1837 года Дарвин изобразил генеалогическое древо жизни, в котором выразил радикальную идею о том, что организмы связаны между собой общими предками и что это родство может прослеживаться благодаря сходным чертам в их внешнем виде. Эта основополагающая концепция была идентична взглядам Ламарка, которые тот развивал более чем за пятьдесят лет до этого; однако у Дарвина было иное представление о том, как происходил этот процесс.

Изменения форм живых организмов были почти незаметными, а также, если судить по толщине слоев, разделяющих органические останки в геологическом разрезе, по-видимому, происходили очень медленно. Кроме того, чтобы это предположение было допустимым, некоторые организмы, появляющиеся на более ранних участках разреза, должны были вымереть, чтобы быть замененными новыми видами, иначе Земля оказалась бы переполненной все возрастающим числом видов животных и растительных организмов. Другими словами, после того как организм вымирал, он уже не мог появиться в более поздних слоях геологического разреза.

Дарвин понимал, что эта выдающаяся, революционная идея вызовет критику – так оно и случилось. Ископаемые останки явно принадлежали некогда существовавшим животным и растениям, но в горных породах нигде не встречались кости человека. Дарвин ясно осознавал значение «недостающего» человеческого звена – подобно встречающимся в геологической летописи животным, мы также должны были возникнуть в результате некоего процесса, позволяющего одним организмам развиваться в другие на протяжении некоторого неопределенного, но достаточно долгого времени.

Концепция генов и основные положения физического наследования признаков в то время были абсолютно не известны ни Дарвину, ни кому-либо другому. (Грегор Мендель опубликует свою работу по наследованию признаков лишь более чем через шесть лет после выхода в свет первого издания «Происхождения видов» – в 1866 году.) На самом деле, несмотря на путаницу в большинстве трудов по биологии, Дарвин, скорее всего, без особых затруднений принял основную концепцию Ламарка, которая заключалась в том, что организмы могут наследовать признаки благодаря окружающей среде. Главным вкладом самого Дарвина была идея о том, что во всех видах имеются естественные отклонения, которые могут наследоваться. Этим правилом постоянно пользовались заводчики собак и голубей; однако Дарвин предположил, что в природе отбор признаков происходит под влиянием среды, в которой обитают виды.

Рис. 2. Репродукция наброска Дарвина в записной книжке «B» (между 1837 и 1838 годами). Основная идея заключается в том, что ныне живущие виды произошли от вымерших, но также связаны с другими сохранившимися видами, образуя генеалогическое древо жизни. Этот набросок стал ядром теории происхождения видов с последовательными изменениями, ведущими к естественному отбору – основному эволюционному процессу по Дарвину. (Публикуется с разрешения издательства Кембриджского университета, с благодарностью в адрес Питера и Розмари Грант. © 2008, Комитет по изданию записных книжек Чарльза Дарвина.)

Отбор либо улучшает способность организма к воспроизведению, либо нет. Если улучшает, то в таком случае признаки, наиболее подходящие для конкретной среды обитания, передаются последующим поколениям. Концепция происхождения видов с отклонениями, сопровождающимися последующим отбором, занимает шесть глав «Происхождения видов». Это была одна из наиболее выдающихся научных идей, когда-либо выдвигавшихся; до сегодняшнего дня она остается ядром, объединяющим принципом биологии.

Книга «Происхождение видов» была снабжена единственной иллюстрацией, размещенной в конце, на которой было изображено гипотетическое происхождение таксонов. Этот рисунок представлял собой вольную переработку наброска из записной книжки «B». Как ни странно, на иллюстрации был показан не единый источник для всех таксонов, но множество источников, дающих начало новым видам. Концепция происхождения – в смысле начала всего живого – была у Дарвина на уме, но не обсуждалась в книге открыто.

Более десяти лет спустя после выхода в свет «Происхождения видов» в письме Джозефу Хукеру, датированном 1871 годом, Дарвин размышлял о том, как могла зародиться жизнь: «…если… предположить, что в одном из небольших теплых водоемов из всех содержащихся в нем производных аммиака и солей фосфорной кислоты под влиянием света, тепла, электричества и так далее возникло белковое соединение, готовое к дальнейшим более сложным превращениям, то в наши дни оно было бы немедленно поглощено или уничтожено. Однако до того, как появились живые существа, этого произойти не могло».

Через восемьдесят лет после того, как было высказано это замечание, молодой химик Стенли Миллер и его научный руководитель нобелевский лауреат Гарольд Юри действительно сумели создать аминокислоты (строительные «кирпичики» белков) в лаборатории Чикагского университета. Они использовали газообразный аммиак, метан, водород, а также воду и электрический разряд, имитировавший удар молнии. Этот эксперимент, результаты которого были опубликованы в 1953 году, дал повод надеяться, что понимание того, как зародилась жизнь на Земле, уже не за горами. Тем не менее между созданием химических компонентов живых организмов и созданием самих этих организмов лежит целая пропасть. Даже в самых простых организмах химические составляющие представляют собой подобие микроскопических механизмов, запускающих метаболические процессы и позволяющих клеткам делиться. До сих пор еще никому не удалось воспроизвести живой организм с нуля, хотя это и не означает, что такое невозможно.

Самыми простыми живыми организмами являются бактерии – организмы, о существовании которых Дарвин, несомненно, знал; однако он не был уверен в том, каким образом включить их в свою теорию. В самом деле, у Дарвина на «Бигле» был микроскоп (помимо Библии и книг по естественной истории, он взял с собой также два пистолета, дюжину сорочек, две книжки, по которым собирался учить испанский, и кошелек с деньгами). Однако из-за того что микроорганизмы не оставили в геологической летописи следов, ясно видимых невооруженным глазом, Дарвин не мог знать, что толщи, залегающие ниже слоев с различимыми органическими останками, относятся не к периоду в истории Земли, предшествовавшему зарождению жизни, но попросту ко времени, когда еще не было животных и растений. Даже если бы он сумел обнаружить ископаемые бактерии, ему почти наверняка не удалось бы уловить их связь с растениями или животными. Дарвин, как и практически любой ученый XIX столетия, был бы до глубины души удивлен, если бы узнал, что все растения и животные произошли от бактерий и это случилось на протяжении периода, длительность которого в XIX столетии представить было абсолютно невозможно – гораздо более трехсот миллионов лет. В самом деле, о микроорганизмах в Библии прямо ничего не говорится – разве что косвенно, при упоминании о таких заболеваниях, как чума. Нет никаких сомнений в том, что Ной не имел намерения брать их с собой в ковчег, и их изображений не встретишь на тканых турецких коврах с историей Великого потопа.

Несмотря на то что мы весьма продвинулись вперед за те 150 лет, что прошли со времени публикации «Происхождения видов», ученые до сих пор не могут определить, зародилась ли жизнь в маленьком теплом водоеме, глубоководном гидротермальном источнике или где-либо еще. Что могло положить ей начало? Как она развивалась? Как бактерии эволюционировали до растений и животных? Как получилось, что эти организмы так долго оставались незамеченными в нашем поиске истоков и развития жизни на Земле?

На эти вопросы так просто не ответишь, и многие аспекты до сих пор далеки от полного понимания, однако благодаря инструментам, разработанным на протяжении последнего столетия, нам удалось многое узнать. Если бы Дарвину в XIX веке довелось побывать на океанографическом исследовательском судне в Черном море, он, вероятно, заметил бы, что в толще воды ниже верхнего стометрового слоя животные не обитают, и заключил бы, что в глубинных слоях жизни нет. Однако, если бы он был микробиологом, наше представление о происхождении видов могло бы быть совершенно иным. Хотя бактерии в XIX веке были уже хорошо известны, потребовалось еще одно столетие, прежде чем они заняли свое место в наших представлениях об эволюции жизни на Земле. Мы упускали их из виду из-за предвзятости в наших наблюдениях. А ведь бактерии существовали на этой планете за миллиарды лет до того, как на ней появилось первое животное.

Так давайте же познакомимся с этими незаметными микроорганизмами и посмотрим, какую огромную роль они сыграли в том, чтобы эта планета могла функционировать. Без бактерий нас бы здесь не было.

Глава 2. Знакомьтесь: бактерии

Вероятно, один из величайших парадоксов в истории биологии заключается в том, что бактерии, являющиеся древнейшими самовоспроизводящимися организмами на Земле, были обнаружены едва ли не в последнюю очередь и по большей части игнорировались. Их открытие, как часто случается в науке, было связано с развитием новых технологий – в данном случае с изобретением микроскопа и затем генного секвенсора. Недостаток внимания к этим организмам происходит главным образом от нашей собственной предвзятости в наблюдениях: мы склонны не замечать того, чего не можем увидеть. Из-за этого мы смогли добиться величайших успехов в астрономии, наблюдая видимые объекты, удаленные от нас на расстояние сотен миллиардов миль, задолго до того, как сумели осознать роль микроорганизмов, живущих на нашей собственной планете. Давайте коротко рассмотрим историю открытия бактерий.

В XIV столетии в Европе изготавливались примитивные линзы (названные так по форме чечевичного зерна – lens по-латыни, имеющего двояковыпуклый профиль) для коррекции зрения. Тогда же бродячие артисты начали разрабатывать методы проецирования изображений на экран при помощи простейшей камеры-обскуры. Для камеры-обскуры линза не требуется – это ящик или даже небольшая комната с отверстием, пропускающим свет, благодаря чему на заднюю стенку ящика проецируется перевернутое изображение того, что находится снаружи. Внутри такого ящика можно проследить траекторию светового луча. Отслеживая траектории лучей и экспериментируя со стеклянными линзами, расположенными внутри ящика, мастера начали понимать, как изготавливать линзы.

К концу XVI века голландцы начали работать с итальянским стеклом, изготовленным в Венеции. В то время венецианское стекло стоило очень дорого, поскольку оно было наиболее прозрачным и высококачественным из всех возможных вариантов. С его помощью голландцы начали изготавливать линзы относительно высокого качества. В начале XVII столетия двое голландских мастеров, вставив вогнутую и выпуклую линзы внутрь трубы, сконструировали телескоп. Хотя этот инструмент представлял собой не более чем примитивную подзорную трубу с увеличением приблизительно в семь или восемь раз, это был огромный прорыв в технологии того времени. До сегодняшнего дня изготовители приборов используют те же самые основные формулы, разработанные пионерами в этой новой области знаний – оптике – благодаря прослеживанию траектории лучей света в темном ящике.

В 1609 году Галилео Галилей при помощи телескопа, сделанного в Италии по проекту голландского мастера, обнаружил, что спутники Юпитера обращаются вокруг этой планеты, а не вокруг Земли. Хотя инструмент Галилея имел всего лишь приблизительно двадцатикратное увеличение, этого было достаточно, чтобы позволить ученому разглядеть вблизи то, что люди уже могли наблюдать невооруженным взглядом: планеты, звезды и Луну. Его наблюдения поколебали доминирующую в то время птолемеевскую, или геоцентрическую, систему, ставившую Землю в центр Вселенной и утверждавшую, что Солнце и планеты вращаются вокруг Земли, а не наоборот. Однако Галилей открыл для нас нечто более фундаментальное, нежели просто наблюдение за звездами: он показал нам наше место, о котором мы не знали и которое делало нас менее значительными. Земля стала всего лишь одной из планет среди нескольких других, входящих в нашу Солнечную систему. Галилей прекрасно понимал, насколько важным является открытие им спутников, вращающихся вокруг Юпитера. Он изменил представление людей о нашей планете, нас самих и особых отношениях, связывающих нас со Вселенной (а отсюда и о том, что мы занимаем особое место в глазах Бога).

Хотя рассказов о Галилее и его телескопе существует предостаточно, менее известен тот факт, что он являлся также изобретателем микроскопа. К тому времени люди уже несколько лет знали, что, если просто повернуть телескоп с двумя линзами другим концом, можно увеличить объекты, находящиеся вблизи. Вы можете проделать это у себя дома, поглядев с обратной стороны в один из окуляров бинокля и держа какой-либо предмет, скажем кончик вашего пальца, близко к линзе с другой стороны. (Такое использование бинокля может стать великолепным подспорьем в экспедиции.)

Микроскоп Галилея, сконструированный приблизительно в 1619 году, был всего-навсего непреднамеренным дополнением к изобретению телескопа: Галилей перевернул оптическую схему телескопа и поместил ее в новый корпус. По размерам этот микроскоп был меньше своего предшественника телескопа; две линзы располагались в цилиндрическом футляре из дерева и кожи. Впрочем, у Галилея не возникло большого интереса к тому, что он увидел в своем перевернутом телескопе. По-видимому, он почти не делал попыток понять, а тем более интерпретировать представшие перед ним мельчайшие объекты. Фактически это имело для него настолько небольшое значение, что лишь в 1625 году он дал своему изобретению название microscopio. Можно увидеть иронию судьбы в том, что во время эпидемии чумы – бактериального заболевания, переносимого с укусами блох, – Галилей делал зарисовки блох, которых наблюдал под своим микроскопом. Впрочем, эти рисунки не получили большого распространения, и его инструмент продолжал бездействовать в Италии, используемый лишь изредка.

Различие между телескопом и микроскопом заключается не просто в конфигурации линз – оно состоит также в человеческом восприятии и ожидании того, что предполагается увидеть. Хотя недостаток восприятия может быть частично отнесен на счет нашего самомнения, мне кажется, что чаще всего причина заключается в том, что мы не ищем природные закономерности в местах, обычно недоступных для наших ограниченных чувств. Мы можем наблюдать удаленные объекты невооруженным глазом. Кометы, метеориты, планеты, спутники, звезды и даже сверхновые можно увидеть без телескопа, и поэтому, когда мы приближаем их для более внимательного рассмотрения при помощи такого инструмента, как телескоп, эти отдаленные объекты не кажутся нам такими уж загадочными – лишь в некоторой степени. А вот объекты, размеры которых значительно меньше толщины волоса (около десятой доли миллиметра), наши глаза не способны различить без увеличительного приспособления. В масштабах микроскопических структур нас можно считать практически слепыми. Мы видим невооруженным глазом Луну, но не клетки собственного тела. Мы видим звезды, но не видим молекулы. Мы видим далекие галактики, но не видим атомы. Если мы даже не осознаем, что мир микроорганизмов существует, с какой стати нам его искать?

Открытие микроскопического царства, подобно многим другим научным открытиям, было случайностью, которая изменила мир не менее кардинально, чем обнаруженные Галилеем спутники Юпитера. Для этого потребовалась не только настройка инструментов, но также и соответствующая настройка ума. Завеса была приподнята в 1665 году, когда Королевское научное общество опубликовало первый общедоступный научный труд под названием «Микрография» (с подзаголовком: «…или Некоторые физиологические описания мельчайших тел, сделанные при помощи увеличительных стекол, с последующими наблюдениями и изысканиями»). Автором книги был Роберт Гук – тридцатилетний горбун, вздорный, невротичный ипохондрик, являвшийся в то же время блестящим ученым-естествоиспытателем, энциклопедистом и одним из основателей Королевского общества.

Рис. 3. Рисунок Роберта Гука, изображающий тонкий срез пробкового материала. Гук дал мельчайшим пустотам, разделенным перегородками, название «клетки». Рисунок воспроизводится по книге Гука «Микрография», впервые опубликованной в сентябре 1665 года (© Королевское научное общество)

«Микрография» захватила воображение многих людей. Помимо пятидесяти семи превосходных гравюр по детальным иллюстрациям автора, а также подробного описания своего микроскопа, Гук предлагал вниманию читателей строение организма блохи (очевидно, в Англии их водилось не меньше, нежели в Италии), семени тимьяна, глаза муравья, внутреннее устройство губок, микроскопические грибы и мельчайшие «кирпичики», из которых состоят растения. Последние он смог наблюдать, отрезав тонкую пластинку пробки перочинным ножом, «заточенным до остроты лезвия бритвы». В этих тонких пробковых пластинках он нашел миниатюрные структуры, показавшиеся ему похожими на кельи, в которых жили монахи, ввиду чего Гук назвал эти микроскопические структуры «клетками»[1].

Исследуя другие растения, он обнаружил, что эти «клетки» распространены повсеместно – Гук описал их у нескольких других видов растений, включая фенхель, морковь, лопух и т. д. В конечном счете «Микрография» оказалась первым научным бестселлером. Сэмюель Пипс, купивший экземпляр книги вскоре после ее выхода в свет, записал в своем дневнике: «Перед сном я просидел до двух часов ночи в своей комнате, читая “Микроскопические наблюдения” мистера Гука – самую оригинальную книгу, какую мне только доводилось держать в руках». Второе издание «Микрографии» было отпечатано Королевским обществом через два года после того, как было распродано первое. С тех пор книга множество раз переиздавалась; она пользуется спросом и по сей день.

Наблюдения проводились Гуком при помощи относительно простого оптического микроскопа с двумя линзами. В то время мастера, изготавливающие инструменты, имели дело с телескопами и поэтому конструировали микроскопы с двумя линзами, весьма похожие на инструмент Галилея, поскольку определение траектории луча ясно показывало, что такие инструменты должны работать. Однако при этом возникала существенная непредвиденная проблема, которой не было в случае телескопов: в таких простых оптических микроскопах первая линза создавала многоцветное гало, которое затем увеличивалось второй линзой. В результате чем больше было увеличение, тем больше было искажение изображения объекта.

Микроскоп, которым пользовался Гук, был изготовлен Кристофером Коком, весьма искусным лондонским мастером. Это было любовно выполненное, затейливо украшенное изделие, стоившее небольшое состояние, однако оптика в нем оставляла желать лучшего. Такой микроскоп давал сильную оптическую аберрацию, которой тогдашние изготовители линз не могли избежать. Самый лучший инструмент, как бы любовно ни украшал его изготовитель, мог увеличить объект не более чем двадцатикратно; далее он становился почти бесполезен. И даже при столь небольшом увеличении изображение выходило нечетким, так что порой требовалась толика воображения, чтобы восстановить структуру наблюдаемого объекта. Тем не менее мастерские иллюстрации Гука имели в то время ошеломляющий эффект, и выход в свет «Микрографии» возбудил интерес к конструированию более совершенных линз.

В 1671 году, спустя целую жизнь после открытий Галилея и через тридцать шесть лет после его смерти, Антон ван Левенгук, голландский торговец тканями из Дельфта, сконструировал новый телескоп с гораздо более скромной отделкой, оптика которого была проще и, как ни странно, лучше – она допускала гораздо большее увеличение без искажений, характерных для более изощренных и дорогостоящих инструментов. Вместо двух линз Левенгук брал раскаленные стеклянные стержни, вытягивал их в нити и затем, вновь нагревая эти нити, формировал из них маленькие стеклянные сферы диаметром примерно от полутора до трех миллиметров. При изготовлении таких линз приходилось идти на компромисс: чем меньше линза, тем большее увеличение она может дать, однако вместе с тем меньше оказывается и поле наблюдения. Левенгук брал лучшее венецианское стекло и, очевидно, должен был каким-то образом полировать свои линзы – детали технологического процесса оставались секретом, который он так и не раскрыл.

Рис. 4. Изображение микроскопа, которым пользовался Роберт Гук, выполненное самим Гуком и опубликованное в «Микрографии». Этот микроскоп, состоявший из двух линз, удерживаемых в нужном положении затейливо украшенной трубкой, давал приблизительно двадцатикратное увеличение. Свет солнца или масляной лампы мог быть сфокусирован на образце при помощи сферической емкости с водой (© Королевское научное общество)

Левенгук за свою жизнь сконструировал около пятисот микроскопов, так что у него в любой момент имелось под рукой некоторое их количество, чтобы производить необходимые наблюдения. Сами инструменты были относительно просты.

Рис. 5. Изображение микроскопа, изобретенного и применявшегося Антоном ван Левенгуком. Одиночная сферическая линза располагалась в небольшом углублении между двумя пластинами. Образец закреплялся перед линзой при помощи небольшого винта, и наблюдатель, приблизив глаз к линзе, должен был держать микроскоп против света. Несмотря на свою простоту, микроскопы такого типа позволяли получить увеличение вплоть до четырехсоткратного в зависимости от качества и размера линзы

Одиночная сферическая линза помещалась в углублении между парой серебряных пластин. Образец закреплялся позади пластин, и его положение корректировалось винтовым механизмом. Наблюдатель приближал инструмент к своему глазу, держа его так, чтобы свет солнца или свечи освещал объект. Лучшие из таких инструментов позволяли получить приблизительно трехсоткратное увеличение, что почти соответствует мощности того микроскопа, который купил мне отец, когда мне было девять лет. С помощью таких инструментов можно наблюдать клетки крови и спермы животных, а также одноклеточные организмы, включая «анималькули»[2], наблюдавшиеся Левенгуком. Собственно, последние и были теми организмами, которые впоследствии станут называться микробами.

В октябре 1674 года Левенгук заболел и записал в своем дневнике (по-голландски): «Прошлой зимой, когда я чувствовал себя очень плохо и почти лишился вкуса, я рассмотрел внешний вид своего языка, весьма обложенного, в зеркале и рассудил, что потеря вкуса вызвана толстым слоем налета на моем языке». Затем он исследовал при помощи своего микроскопа бычий язык и обнаружил на нем «весьма тонкие остроконечные выросты», содержащие «очень маленькие шарики», – так он описал вкусовые сосочки. После этого он заинтересовался тем, как мы ощущаем вкус, и принялся исследовать водяные настои различных специй, включая черный перец.

В 1676 году Левенгук увидел, что перечная вода в бутыли, стоявшей на полке в его лаборатории на протяжении трех недель, помутнела. Рассматривая мутный осадок в один из своих микроскопов, он с удивлением обнаружил плавающие в воде мельчайшие организмы диаметром всего лишь от одного до двух микрон, что составляет приблизительно одну сотую диаметра человеческого волоса! Левенгук зарисовал эти клетки и записал:

«Я увидел огромное множество живых существ в одной капле воды, количеством не менее восьми или десяти тысяч, и в микроскопе они предстали перед моим взором столь же обыденными, каким песок выглядит для невооруженного глаза».

Рис. 6. Изображение анималькулей, то есть микробов, открытых Антоном ван Левенгуком. В XVII и XVIII веках считалось, что микробы являются микроскопическими животными, у которых имеются головы и желудки, а их потомство возникает в результате сексуального контакта между самцами и самками одного вида

Открытие анималькулей само по себе было непредвиденным. Это было все равно что наблюдать спутники Юпитера, но в отсутствие планеты, вокруг которой они вращаются. Оно указывало на неисчислимое множество невидимых организмов, присутствующих прямо здесь, на Земле. Левенгук не имел ни малейшего представления о том, что эти организмы представляют собой в действительности. Он считал их в буквальном смысле необычайно маленькими животными, у которых есть внутренние органы, такие как желудок и сердце, в точности как у больших животных, которых мы видим невооруженным глазом.

Поистине замечательно, что инструменты с одной линзой, сконструированные Левенгуком, позволяли ему увидеть организмы столь маленького размера, однако даже при помощи самых лучших линз того времени он не смог бы различить их внутреннее строение. Тем не менее Левенгук совершил нечто еще более кардинальное: вслед за открытием организмов в перечной воде он исследовал соскобы с собственной ротовой полости. Каково же было его изумление, когда он впервые обнаружил присутствие анималькулей на своих зубах и деснах! В этом Левенгук поистине опередил других естествоиспытателей – он первым открыл, что мы не единственные, кто обитает в наших телах. Мы являемся носителями анималькулей. И в самом деле, как будет показано позднее, мы и другие подобные нам животные даем прибежище огромным количествам простейших организмов и помогаем им распространяться по поверхности планеты посредством наших экскрементов и выделений. Левенгук заметил также, что, после того как он попил утром горячего кофе, анималькули в его ротовой полости погибли – это было первое наблюдение того факта, что при высокой температуре микробы погибают. Впоследствии Левенгук занялся описанием различных форм и относительных размеров микробов, обнаруженных им в собственной слюне и других водных средах. Его простая зарисовка позднее станет основой для систематизации микроорганизмов.

Когда Левенгук прислал для публикации в «Философских трудах», новом – и первом – научном журнале Королевского общества, свое письмо на семнадцати с половиной страницах, где описывал открытие анималькулей, оно было встречено с огромным скептицизмом. Даже Гук посчитал, что это какая-то ошибка; он послал в Дельфт английского викария и нескольких других достойных доверия наблюдателей, уполномоченных Королевским обществом, чтобы подтвердить отчеты Левенгука. Наблюдатели были поражены не менее, чем сам Гук и его лондонские коллеги. В 1677 году результаты наблюдений Левенгука, теперь удостоверенные комиссией, были опубликованы Королевским обществом (на английском языке – они были переведены с голландского при содействии Гука, выучившего этот язык специально для того, чтобы прочесть записи Левенгука). В 1780 году Левенгука избрали «иностранным членом» Королевского общества, однако он так и не побывал в Лондоне.

Левенгук обладал настоящим творческим даром. Он не имел формального высшего образования и не обучался ни в одном из университетов. Ему не были знакомы ни латынь, ни греческий – два языка, обязательные для всех образованных людей того времени; он писал исключительно по-голландски. Свои микроскопы Левенгук конструировал в качестве развлечения и многие из них раздал знакомым, но никогда не продавал. Двадцать шесть своих инструментов он завещал Королевскому обществу; все они впоследствии оказались «позаимствованы» членами этой достойной коллегии ученых, и с тех пор оригиналов больше не видели. Остальная часть его коллекции была распродана на вес серебра или других металлов, составлявших основу инструментов. За свои девяносто лет жизни Левенгук стал отцом пятерых детей, но лишь одна девочка, Мария, дожила до зрелого возраста, так что его научное наследие почти полностью погибло после его собственной смерти в 1723 году.

Хотя Левенгука часто называют отцом микробиологии, у него был соратник и посредник, приведший его к славе, – Гук. Подобно связи, возникшей на полтора столетия позднее между Лайелем и Дарвином, Гука и Левенгука объединял своего рода симбиоз. Два этих выдающихся человека сыграли решающую роль катализатора в неминуемом открытии невидимого мира. Что касается личных отношений, оба были чрезвычайно великодушны друг к другу вплоть до конца жизни.

Описание и перепись микробов, по всей видимости, поддерживали представление о спонтанном зарождении жизни (в перечном настое, ни больше ни меньше!) – якобы организмы могут возникать из неживых или неорганических источников без очевидной линии наследственности. Так, например, было общепринятым мнение о том, что черви могут зарождаться в мертвом мясе, а осы возникать из закопанных лосиных рогов. В спонтанное зарождение жизни верило большинство людей того времени. Левенгук отрицал это представление, но не мог доказать, что оно неверно. Роль микроорганизмов в биологическом функционировании живых существ практически игнорировалась, и прошло более 200 лет, прежде чем эти организмы вновь удостоились серьезного внимания. Как ни странно, но в то время как фундаментальные научные открытия XVII века – гравитация, световые волны, обращение планет вокруг звезд, а также невероятные вершины научной абстракции, достигнутые в математике, – порождали мощные волны дальнейших открытий в физике и химии, не менее фундаментальные открытия в биологии в целом тащились позади и признавались значительными лишь в связи с проблемами человеческого здоровья.

Ни у Гука, ни у Левенгука не было учеников, и, хотя «Микрография» с успехом распродавалась в 1665 году и еще несколько лет после этого, Левенгук своей книги так и не написал, а его заметки не вызвали особого интереса у читателей. Ни Левенгук, ни Гук не оставили биологических наследников, и в отличие от Галилея ни у одного из них не было и непосредственных наследников интеллектуальных. Интерес к перечной воде постепенно угасал. В XVIII столетии мир микробов снова стал невидимым миром, в то время как естествоиспытатели-натурфилософы обратились к вопросам эволюции растений и животных и последовательностей геологических структур, содержащих органические останки. Стоило ли покупать дорогостоящий и хрупкий микроскоп для того, чтобы стать ученым-любителем, когда для этого требовался лишь молоток, которым можно было отбивать образцы горных пород.

Возрождение в изучении микроорганизмов началось лишь в середине XIX века. Его поборником стал ныне почти позабытый герой – Фердинанд Юлиус Кон. Кон, еврейский мальчик-вундеркинд, родился в прусском городе Бреслау (ныне Вроцлав, Польша) в 1828 году. Рассказывают, что он выучился читать, когда ему еще не минуло двух лет, пошел в среднюю школу в семь и поступил в университет Бреслау в четырнадцать. Несмотря на то что он выполнил все требования для получения степени, университет Бреслау отказался признавать его выпускником из-за повсеместно распространенного в тогдашней Пруссии антисемитизма. Кон завершил свое обучение в Берлинском университете, получив докторскую степень по ботанике в возрасте девятнадцати лет, и в 1849 году вернулся в университет Бреслау. В том же году отец купил ему самый дорогой и лучший из доступных в то время инструментов – микроскоп работы Симона Плёссля. Такой микроскоп наверняка вызвал бы у меня чувство зависти. Плёссль был австрийским инструментальным мастером, который нашел способ скорректировать большинство оптических аберраций, присущих микроскопам и телескопам с несколькими линзами. Изобретенная им конструкция объектива используется и по сей день.

Интерес Кона к микробам еще больше возрос благодаря его собственным наблюдениям, сделанным с помощью отцовского подарка. В Берлинском университете его побуждали к изучению одноклеточных водорослей двое выдающихся профессоров: Иоганн Мюллер и Христиан Эренберг. Последний был одним из известнейших немецких ученых того времени. Именно он определил диатомовые водоросли – один из типов одноклеточных водорослей – в частицах пыли, собранных Дарвином на Азорских островах во время путешествия на «Бигле»; таким образом, впервые было обнаружено, что микроорганизмы могут переноситься в атмосфере на далекие расстояния при помощи ветра. Также именно Эренберг показал, что мел состоит из останков микроскопических организмов, и это наблюдение впоследствии подтолкнуло ученых к поискам ископаемых микроорганизмов в горных породах.

По мере того как энтузиазм Кона возрастал, а оптика в микроскопах совершенствовалась, его все больше начинали интересовать одноклеточные водоросли и бактерии – или, во всяком случае, то, что он считал бактериями. Получив традиционное биологическое образование того времени, он принялся за классификацию бактерий в их связи с другими организмами. Классификация организмов по отношению к прочим организмам – безопасный и самоочевидный путь для биолога, и он остается таковым по сей день. Кон ничего не писал о происхождении жизни или эволюции микроорганизмов, но именно он дал определение бактериям как одноклеточным организмам, лишенным хлорофилла – зеленого пигмента, характерного для одноклеточных водорослей и высших растений. Хотя Кон прекрасно знал, что большинство бактерий не принимают участия в процессе фотосинтеза, он отнес их к одноклеточным водорослям, то есть к растениям. В традициях того времени Кон попытался разделить микроорганизмы на типы, основываясь в первую очередь на их форме, – простая система, изобретенная Левенгуком более столетия тому назад, которая и до сих пор бывает иногда полезна в качестве общего руководства (впрочем, в двадцатом столетии ее роль заняла технология секвенирования молекул).

Вероятно, наиболее важным вкладом Кона было то, что он вновь открыл микробиологию как науку. Как в свое время Левенгук, он показал, что микробы окружают нас повсюду: они находятся в воде, почве и воздухе, в нашей ротовой полости и кишечнике, на наших руках, одежде и в пище. Однако в отличие от большинства своих современников Кон не ограничивался рассмотрением микробов как возбудителей человеческих заболеваний. Действительно, он работал над бактериальными заболеваниями растений и животных и, хотя пользовался гораздо меньшей популярностью, чем Пастер, обладал гораздо большей широтой взглядов. Он увидел в бактериях организмы, способствовавшие формированию химического круговорота Земли – планетарного метаболизма. На ранних этапах моего научного пути Кон служил для меня источником вдохновения. Это был удивительный человек, первопроходец в области микробиологии окружающей среды.

Рис. 7. Изображение различных форм микроорганизмов, описанных Фердинандом Коном в его трактате ber Bakterien: Die Kleinsten Lebenden Wesen, вышедшем в свет в 1875 году. Он охарактеризовал эти оргаизмы как связанные с одноклеточными водорослями и растениями и разделил их по форме на четыре категории: 1) сферобактерии (сферические бактерии); 2) микробактерии (короткие палочки); 3) десмобактерии (прямые нити); 4) спиробактерии (спиральные нити). Эта простая базовая система описательной классификации оказалась состоятельной и сохранилась до настоящего времени

Одним из нововведений, внесенных Коном в микробиологию, был способ изоляции отдельных штаммов, то есть генетически однородных вариаций видов микроорганизмов. Он разработал методику выращивания бактерий в жидкой среде с добавлением определенного питательного вещества, побуждавшего тот или иной штамм к быстрому росту. В 1876 году, два столетия спустя после того, как Левенгук описал открытые им микроорганизмы, Кона посетил немецкий сельский врач Роберт Кох, чтобы спросить совета по поводу своей работы с сибирской язвой. Кох выделил в почвенной вытяжке потенциальную бактерию сибирской язвы в стадии покоя и разработал новую методику для ее выращивания. Его подход отличался простотой, остроумием и уникальностью. В основе лежала изоляция микроорганизмов на поверхности геля, где могли развиваться колонии, выращенные из одной клетки. Основной принцип привел Коха к методике, заключавшейся в том, что питательные вещества растворялись в геле, полученном из морских водорослей (агар) в качестве среды для выращивания колоний. Эта смесь еще в виде разогретой жидкости распределялась по поверхности маленького плоского стеклянного блюдца с такой же крышкой – это приспособление изобрел ассистент Коха Юлиус Петри. Когда среда вместе с питательными веществами достигала комнатной температуры, она образовывала гель, по поверхности которого микроорганизмы распределялись при помощи зубочистки. Затем микроорганизмы образовывали колонии, после чего их можно было отбирать с поверхности геля и выращивать заново. Этот процесс повторялся до тех пор, пока не удавалось изолировать лишь один штамм бактерии. Использование агара и специальных чашек для выращивания бактерий сделало возможным выделение чистого штамма сибирской язвы. Поразительно, что Кох сам не заразился собственными культурами. Сегодня мы пришли бы в ужас, если бы какой-нибудь ученый-любитель принялся выращивать штаммы сибирской язвы в лаборатории у себя дома или в гараже.

Опираясь на методику очищения культур, разработанную им совместно с Петри, Кох выработал ряд постулатов, до нынешнего дня остающихся основой для идентификации инфекционных заболеваний. Они состоят в следующем: 1) микроорганизм должен всегда находиться в больных организмах и отсутствовать во всех здоровых; 2) микроорганизм должен быть выделен и выращен в чистой культуре; 3) очищенный микроорганизм должен быть способен при контакте инфицировать здоровый организм; 4) микроорганизм должен быть идентифицирован и выделен в контактировавшем организме. Применяя эти четыре условия, Кох экспериментально доказал, что бактерия сибирской язвы ответственна за соответствующее заболевание у коров. Это был первый случай, когда без тени сомнения было доказано, что заболевание вызывается микроорганизмами.

На Кона произвели чрезвычайное впечатление логика и скрупулезные методы Коха. Он опубликовал его статью в ботаническом журнале за 1886 год, и Кох, воодушевляемый Коном, принялся за дальнейшие исследования холеры и туберкулеза с целью показать, что они также являются бактериальными заболеваниями. В 1905 году Кох получил Нобелевскую премию, а его постулаты на десятилетие стали основополагающими догмами. Представление Коха о том, что микроорганизмы могут выделяться и выращиваться в виде культур, преобладало в микробиологическом сообществе вплоть до семидесятых годов XX столетия. Это была логичная идея, оказавшая большое влияние на идентификацию микроорганизмов в случаях заболеваний, однако упомянутые выше догматические постулаты совершенно непредумышленно оказали некоторое негативное влияние на исследования в области экологии и эволюции микроорганизмов.

На протяжении десятилетий микробиологи терпеливо выделяли виды микроорганизмов. Без сомнения, изучение индивидуальных организмов в изоляции помогло нам понять основные характеристики того, как тот или иной вид обеспечивает себе жизнь. Но такой подход также привел к предвзятости нашего понимания функционирования микробиотических сообществ. Это все равно что экстраполировать поведение африканских цихлид в моем аквариуме на их поведение в озерах, в их естественной среде обитания. Аквариум не является для них естественной средой. То же можно сказать и о чашке Петри или лабораторной пробирке с жидкой средой, где содержатся питательные вещества в концентрации, в тысячу раз превышающей ту, что существует в океане или озере. Тот факт, что ученые на самом деле не знали, как следует выращивать микроорганизмы, стал очевидным лишь во второй половине XX века, когда стало ясно, что микробы – социальные организмы, живущие в сложных сообществах. Социальную организацию микроорганизмов мы рассмотрим немного позже.

В 1977 году, через триста лет после того, как Левенгук сообщил о самом существовании микроорганизмов, Карл Вёзе и его коллега Джордж Фокс – оба биохимики и генетики из Иллинойского университета – сообщили о том, что все живые организмы могут быть разделены на три основные категории в зависимости от вида их внутриклеточных структур, называемых рибосомами. К тому моменту было широко известно, что рибосомы существуют у всех микроорганизмов, однако некоторые организмы не содержат внутри своих клеток структуры, покрытые оболочкой, в то время как у других такие структуры есть. Реферат статьи этих ученых, опубликованный в журнале «Труды Национальной академии наук США», состоял из одного предложения: «Филогенетический анализ, основанный на характеристиках последовательностей рибосомных РНК, показал, что все живые системы могут быть отнесены к одной из трех аборигенных линий происхождения: 1) эубактерии, включающие в себя все типичные бактерии; 2) архебактерии, к которым относятся метанообразующие бактерии; 3) уркариоты, не представленные в цитоплазменном компоненте эукариотических клеток».

Еще более важной оказалась очевидная взаимосвязь организмов друг с другом. Мало того что животные и растения представляют собой лишь маленькие отростки на древе жизни – как выяснилось, животные весьма тесно связаны с грибами. На первый взгляд не кажется очевидным, что какой-нибудь шампиньон приходится более близким родственником комару, слону или нам самим, нежели высшим растениям, однако это так и есть. В частности, Вёзе и его коллеги показали, что все живые организмы могут быть размещены на древе жизни в зависимости от истории формирования их механизма синтезирования белков.

Нам всем известны некоторые из белков – это вещество яичного белка, из них состоит наша кожа, наши волосы, наши ногти, волокна наших мышц. Они же являются ферментами – молекулами, превращающими то, что мы едим, в энергию и материал для наших тел. Без белков клетки не смогли бы выполнять никакую работу. А если клетка не может работать, она не может и воспроизводиться.

Ключевым компонентом в формировании белков являются рибосомы. Они представляют собой сложные наномеханизмы, состоящие из белков и рибонуклеиновых кислот, или РНК. Вёзе и Фокс секвенировали молекулы РНК в рибосомах и обнаружили, что в последовательности составляющих их элементов имеются тонкие, но существенные различия (они исследовали двенадцать видов живых организмов, куда входили пять видов бактерий, четыре вида метанпродуцирующих микроорганизмов, экземпляр дрожжей, маленькое растение – ряска, а также клетка из организма мыши). Ученые выяснили, что последовательности РНК в рибосомах бактерий имеют большее сходство друг с другом, чем с таковыми у дрожжей, ряски или мыши, и имеют также отчетливые различия с последовательностями у микроорганизмов с метановым метаболизмом. Эта работа продемонстрировала, что, несмотря на разделение живых существ на три надцарства, все они связаны друг с другом посредством последовательностей РНК в своих рибосомах.

Поскольку рибосомы имеются у всех организмов, Вёзе и его коллеги приняли как аксиому мнение о том, что все организмы на Земле являются потомками одного, ныне вымершего общего предка. В противном случае пришлось бы выдвинуть абсурднейшее и самое невероятное предположение, а именно, что рибосомы развились у миллионов видов независимо, создав весь спектр жизненных форм, которые мы наблюдаем сейчас. В сущности, Вёзе подтвердил идею Дарвина о том, что вся жизнь на Земле восходит к одному древнему прародителю. Информация, сохранившаяся в существующих ныне рибосомах, потенциально позволяет нам воссоздать взаимосвязи между всеми организмами. Изначальная эволюция наномеханизма, ставшего впоследствии рибосомой, пока остается неясной. Однако у бактерий и у нас мог быть лишь один общий предок, и этот предок не мог быть ничем иным, как микроорганизмом. Дарвин, Гук и Левенгук были бы, наверное, поражены до глубины души, узнав, что между всеми живыми существами может быть выстроена взаимосвязь на основе строения их внутреннего механизма, ответственного за выработку белков.

Рис. 8. Древо жизни по Карлу Вёзе и Джорджу Фоксу, где живые организмы соотносятся друг с другом на основании последовательностей рибосомальных РНК. Вёзе и Фокс открыли, что бактерии в действительности составляют два надсемейства ощутимо различающихся между собой организмов – бактерий и архей. Более того, животные и растения являются подгруппами в пределах более крупного семейства эукариотов. Подавляющее большинство организмов, составляющих это древо жизни, являются микроорганизмами В 1990 году, основываясь на последовательностях нуклеиновых кислот в рибосомах, над которыми он и его коллеги работали несколько лет, Карл Вёзе нарисовал универсальное филогенетическое древо жизни. Это древо имело фундаментальные отличия от того, каким оно представлялось Дарвину. Как выяснилось, жизнь на Земле сводится далеко не только к растениям и животным – она представляет собой нечто гораздо, гораздо большее, чем могли себе вообразить Левенгук, Гук или даже Дарвин. Подавляющее большинство живых существ на Земле – это микроорганизмы! И видов микроорганизмов существует гораздо больше, нежели видов всех растений и животных вместе взятых. Мы пока еще не знаем точного числа этих видов, но оно составляет несколько миллионов как минимум. Что мы можем сказать точно, так это то, что базовая структура древа жизни помогла нам понять, что вся ныне существующая на Земле жизнь произошла от одного вымершего микроорганизма.

Однако если у всех живых существ имелся общий микроскопический предок, то когда этот предок мог появиться на Земле?

Глава 3. Мир до начала времен

Через год после окончания докторантуры в Университете Британской Колумбии я поступил на работу в недавно образованный Отдел океанографических исследований при Брукхэвенской национальной лаборатории на Лонг-Айленде. Основными направлениями Брукхэвенской лаборатории являются физика и до некоторой степени химия. Несмотря на то что я не относился ни к физическому, ни к химическому отделу, на протяжении последующих двадцати трех лет я многому научился у моих коллег – физиков и химиков.

Физики ценят простоту. Они стремятся обнажить естественные феномены, раскрывая самое существенное. Одной из точек пересечения физики и химии является ядерная физика, оказавшаяся чрезвычайно полезной для понимания геологических процессов. Проведенные в начале XX столетия фундаментальные исследования в этой области, а в особенности открытие изотопов, сделанное физическим химиком Гарольдом Юри, способствовали проникновению в мир, существовавший до начала времен.

Химический элемент определяется числом положительно заряженных частиц – протонов – в ядре его атома. Изотоп содержит большее или меньшее число нейтронов по отношению к числу протонов. Нейтроны не имеют заряда; их функция состоит в том, чтобы «склеивать» ядра атомов, не давая протонам отталкивать друг друга. У каждого элемента существует несколько изотопов. Так, например, ядро углерода содержит шесть протонов. У наиболее распространенного изотопа углерода имеются шесть протонов и шесть нейтронов, ввиду чего его называют «углерод-12». Однако существует и изотоп углерода, содержащий шесть протонов и семь нейтронов (углерод-13), а также изотоп, содержащий шесть протонов и восемь нейтронов (углерод-14). Первый из них стабилен, то есть может существовать бесконечно долго. Второй радиоактивен, то есть один из его нейтронов постепенно распадается, превращаясь в протон, – так образуется азот-14, который также стабилен и существует бесконечно долго. Когда нейтрон в углероде-14, распадаясь, становится протоном, атом испускает отрицательно заряженную частицу – электрон, часто называемый также бета-частицей. Излучение бета-частиц может быть определено с большой точностью, и поэтому его можно использовать для определения содержания углерода-14 в изначальном веществе. Период полураспада углерода-14 равняется приблизительно 5700 годам, и, значит, примерно через 5700 лет половина атомов углерода-14 в популяции превращается в атомы азота-14. Радиоактивный распад углерода-14 потенциально позволяет датировать содержащие углерод материалы, такие как кости, зубы, дерево и т. п. Однако по прошествии десятков тысяч лет практически весь углерод-14 распадается, и сигнал уже слишком слаб, чтобы быть пригодным для датировки материалов. Уголь и нефть, образовавшиеся много миллионов лет назад, больше не содержат различимых следов углерода-14 – их возраст значительно превышает несколько периодов полураспада этого радиоактивного изотопа. Однако, к счастью, в естественной среде существуют и другие радиоактивные изотопы с периодом полураспада в сотни миллионов и даже миллиардов лет. Два таких вещества являются изотопами урана: это уран-238 и уран-235.

Эти два природных изотопа урана образовались внутри очень горячей, очень недолго просуществовавшей и затем взорвавшейся звезды – так называемой сверхновой, которая дала начало нашей Солнечной системе задолго до того, как наша звезда, Солнце, начала светиться. После того как наша Солнечная система сформировалась, эти изотопы урана оказались в составе метеоритов. Период полураспада урана-238 составляет 4,46 млрд лет, урана-235 – 704 млн лет. В конечном счете эти два изотопа, распадаясь, дают два различных, стабильных (то есть нерадиоактивных) изотопа свинца.

Изучение изотопов урана получило значительную поддержку со стороны национальных лабораторий Соединенных Штатов во время Второй мировой войны по очевидной причине: один из изотопов мог оказаться пригодным для создания атомной бомбы. Однако, как выяснилось, есть множество вариантов практического применения открытых изотопов урана и помимо производства оружия. Именно природная радиоактивность некоторых элементов, содержащихся в горных породах, позволяет нам датировать события ранней истории Земли, включая самые первые свидетельства микроорганической жизни.

В 1953 году тридцатиоднолетний химик Калифорнийского технологического института Клэр Паттерсон исследовал изотопы свинца в метеорите, найденном в каньоне Диабло – кратере в северной части Аризоны, образовавшемся около 50 тысяч лет тому назад в результате столкновения Земли с крупным метеоритом. Поскольку метеориты образовались на протяжении раннего периода формирования нашей Солнечной системы, возраст метеорита должен был приблизительно соответствовать времени возникновения на поверхности Земли застывшей коры.

Паттерсон послал образцы метеоритного вещества в Аргонскую национальную лабораторию для анализа на изотопы свинца, которые, как он знал, должны были образоваться после распада двух описанных изотопов урана. Основываясь на чрезвычайно тщательном анализе, он определил возраст Земли, который составил 4,55 млрд лет – датировка, прошедшая проверку дальнейшими научными исследованиями. Цифра в триста миллионов лет, выдвинутая Дарвином почти за столетие до того, как Паттерсон взялся исследовать изотопы свинца, оказалась заниженной более чем в десять раз!

Что же означает эта датировка, полученная на основе исследования изотопов свинца? Она свидетельствует о том, что более 4,55 млрд лет тому назад на нашей планете образовалась твердая кора. Однако если Земля настолько старше всего того, что когда-либо представлял себе Дарвин, то когда могла появиться на этой планете первая жизнь? Радиоактивный распад урана в метеоритах, подобных тому, который изучал Паттерсон, не чувствителен к изменению температуры, то есть метеорит мог подвергаться значительным нагреванию и охлаждению, а вычисленный возраст оставался бы при этом неизменным. Однако в отличие от метеоритов большинство горных пород на Земле перенесли один или несколько эпизодов изменений, поскольку земные недра раскалены. Этот жар образуется в результате радиоактивного распада урана и двух других элементов тория и калия. Высокая температура в недрах планеты, в свою очередь, является причиной вулканических извержений и землетрясений на ее поверхности. Этот процесс выносит на поверхность Земли новые материалы, одновременно погружая осадочные толщи на дне океанов в глубины планеты, где они вновь расплавляются. Чем дальше мы продвигаемся назад во времени, тем меньше можно найти сохранившихся с тех пор горных пород, поскольку большая часть древнейших пород превратилась в результате эрозии в осадочные толщи, погрузилась в недра Земли, была там расплавлена и преобразована в новейшие формации. Хотя этот процесс занимает сотни миллионов лет, лишь очень немногим породам удалось его избежать; но даже если некоторым это удалось и они не превратились полностью в осадочные породы, зачастую воздействие изменений температуры и давления, которым они подвергались, было достаточно велико, чтобы уничтожить следы любых имевшихся в них органических соединений. Есть некая ирония в том, что те самые элементы, которые позволяют нам реконструировать возраст Земли, уничтожают свидетельства жизни в древнейших горных породах, сохранившихся на поверхности планеты.

На Земле существует совсем немного мест, где можно найти очень старые породы, не подвергавшиеся воздействию экстремальных изменений температуры или других условий, сказавшемуся на их дальнейшем формировании. Древнейшие из таких пород найдены на юго-западе Гренландии, в формации Исуа – одном из интереснейших уголков Земли. Все породы здесь имеют возраст около 3,8 млрд лет, и их очень легко рассмотреть, поскольку они почти не скрыты растительностью. Несколько лет назад я провел там месяц в компании моего друга и коллеги Миника Розинга, изучавшего породы этой формации на протяжении десятилетий. В них трудно увидеть убедительные свидетельства древней жизни: здесь нет следов органических останков как таковых. Тем не менее в формации Исуа существует небольшая прожилка графита. Графит – это одна из твердых форм углерода. В XVI веке этот минерал высоко ценился, поскольку его использовали для изготовления литейных форм – например, для отливки пушечных ядер. И хотя мы можем не иметь представления о том, как делались пушечные ядра, мы все знаем, как выглядит графит: порошок этого минерала в смеси с глиной на протяжении двух прошедших столетий использовался для изготовления карандашных стержней. Графитовые прожилки формации Исуа образовались миллиарды лет тому назад в результате нагрева осадочных пород – пород, отложившихся на дне древнего океана.

Графит в формации Исуа имеет высокое содержание одного из двух стабильных углеродных изотопов – углерода-12. Такое обогащение углеродом-12 кажется любопытным, поскольку главной его причиной в органическом веществе являются процессы фотосинтеза. Все фотосинтезирующие организмы, такие как те бактерии, которых я изучал в Черном море, предпочитают использовать более легкий, стабильный изотоп углерода для строительства своих клеток. Не может ли высокое содержание углерода-12 в графите Исуа означать, что 3,8 млрд лет тому назад в океанах существовали фотосинтезирующие микроорганизмы? Не знаю, сумеем ли мы когда-либо выяснить это наверняка, поскольку горные породы этой области были слишком сильно изменены под воздействием высокой температуры и давления, чтобы по ним можно было заключить что-либо еще; однако существуют и другие, хотя и более молодые породы в других местах, не подвергшиеся столь значительным изменениям за прошедшие времена.

Две другие важные области, где находятся древние породы, расположены в Южной Африке и Западной Австралии. Возраст древнейших пород из этих двух регионов составляет вплоть до 3,6 млрд лет, и в некоторых из них имеются более отчетливые следы жизни в виде органических останков и измененного изотопного состава углерода. Одной из областей, где найдены органические останки, является формация Стрелли-Пул в Западной Австралии, содержащая свидетельства существования микроорганизмов в породах возрастом около 3,4 млрд лет. Хотя обнаружить останки микроорганизмов и удостовериться в их подлинности очень сложно, при гибели любого организма существует бесконечно малая вероятность того, что он оставит биохимический след в осадочной толще. В случае микроорганизмов лучше всего сохраняются следы липидов – жиров, из которых слагаются оболочки их клеток. Эти молекулярные ископаемые были найдены в породах, сформировавшихся за первые 2,7 млрд лет существования Земли. Очень трудно найти более древние породы, которые не были бы переплавлены или изменены и смогли бы благодаря этому сохранить хотя бы какие-то сложные органические соединения. К несчастью, ни рибосомы, ни какие-либо другие нуклеиновые кислоты, ни белки не сохранились в горных породах за прошедшие миллиарды лет – в противном случае наши представления об истории возникновения жизни на Земле были бы гораздо более полными. В более молодых образованиях существуют убедительные свидетельства микроорганической жизни. Уже в породах возрастом приблизительно 2,6 млрд лет имеются ясные, четкие органические останки микроорганизмов и вариации в составе изотопов углерода, азота и серы, являющиеся бесспорным свидетельством наличия в океанах того времени богатой микроорганической жизни.

Основываясь как на молекулярных (главным образом это молекулы – производные липидов), так и на органических останках, можно интерпретировать каменную летопись таким образом, что на протяжении первых 3,5 млрд лет земной истории – а это приблизительно 85 % всего времени, прошедшего с формирования планеты до настоящего момента, – вся жизнь была исключительно микроорганической и почти целиком ограничивалась океанами. Не было ни животных, ни наземных растений, ни настоящих почв, и в течение очень, очень долгого времени практически не было кислорода.

Однако можем ли мы что-либо сказать о том, как, собственно, эти древние микроорганизмы в то время функционировали? И дает ли нам это какие-либо сведения о появлении растений и животных спустя три миллиарда лет?

Аналогом древней микроорганической летописи является Черное море. Действительно, во многих отношениях глубоководные области современного Черного моря, по-видимому, дают прибежище многим типам организмов, сходным с теми, которые могли существовать в океанах около трех миллиардов лет тому назад.

Почему мы считаем, что Черное море является современным аналогом вымершего микроорганического мира?

В 1997 году Билл Райан и Уолтер Питман из Колумбийского университета предположили, что около 7500 лет тому назад, когда растаяли ледниковые щиты в Северном полушарии, воды Средиземного моря прорвались через пролив Босфор и затопили Черное море. Согласно гипотезе ученых, это произошло стремительно и, возможно, послужило истинным источником легенды о Ноевом ковчеге. В любом случае, было ли затопление Черного моря внезапным или более постепенным, как утверждают другие источники, в результате его теплые, очень соленые воды вторглись в бассейн через узкий мелководный пролив, разделяющий европейскую и азиатскую части современной Турции. Плотность этих соленых вод была больше плотности пресной воды, поступающей в бассейн из Дона, Днепра, Дуная и других рек, текущих с севера. Более плотная соленая вода опустилась в придонные области, в то время как относительно легкая пресная осталась наверху. Разница в плотности водных масс сделала практически невозможным выход придонных вод на поверхность, где они могли бы насытиться атмосферным кислородом. Вследствие этого органические соединения, производимые фотосинтезирующими организмами на поверхности, погружаясь в глубины, оказываются поглощены и респирированы микроорганизмами, истощившими весь запас кислорода в глубоководных слоях Черного моря. Фактически глубинные воды Черного моря лишены кислорода уже несколько тысяч лет; это единственный бассейн полузамкнутого типа, остающийся бескислородным так долго. Откуда мы это знаем?

В результате испытаний ядерного оружия в 1950-х и 1960-х годах образовалось большое количество углерода-14, который распространился во всей атмосфере. Некоторая часть этого углерода вошла в контакт с поверхностью океанических вод, и, поскольку водные массы с поверхности перемещались в глубины океанов и морей, можно было с большой точностью измерить и проследить радиоактивный распад изотопа, получив своего рода хронометр. Произведя обратные вычисления, чтобы вернуться к изначальному содержанию углерода-14 в атмосфере, океанографы смогли определить, насколько давно воды того или иного океанического бассейна вступали в контакт с атмосферой. На основании подобного анализа можно утверждать, что глубинные массы вод современного Черного моря в последний раз соприкасались с атмосферой около 1500 лет тому назад, и, хотя по геологическим меркам это не столь уж долгое время, его было достаточно, чтобы весь кислород, продуцированный ниже верхнего стометрового слоя, оказался очень быстро поглощен после того, как эти водные массы вновь погрузились в глубину. Водные массы глубинных слоев современного Черного моря оставались без кислорода на протяжении самое меньшее 8000 лет.

Хоть мы и не можем сказать, что микроорганизмы глубин Черного моря в буквальном смысле существуют миллиарды лет, они являются живыми ископаемыми в том смысле, что у них сохранились метаболические процессы – или, попросту говоря, внутренние механизмы, возникшие на самой заре земной истории. По существу, они донесли до наших дней метаболизм организмов, населявших Мировой океан миллиарды лет тому назад. Попытавшись разобраться в их метаболизме, мы можем получить представление о том, как происходили жизненные процессы в мире, исчезнувшем давно и навсегда. Однако это позволяет не только понять жизненные процессы, происходившие миллиарды лет тому назад, – мы можем и нечто большее: посредством изучения этих древних микроорганических механизмов мы также получаем возможность понять связи между микроорганизмами и всеми существующими растениями и животными, включая нас самих.

Давайте же заглянем «под капот», чтобы увидеть, как работают некоторые из механизмов, дающих жизнь этим невидимым созданиям. Попробуем исследовать, как микроорганизмам удалось создать в своих клетках эти механизмы, ставшие впоследствии двигателями жизни на Земле и ключом к обитаемости нашей планеты.

Глава 4. Маленькие двигатели жизни

Едва ли Роберт Гук мог предвидеть значимость сделанного им описания микроскопических клеток в тонком куске пробки, который он отрезал перочинным ножом. На протяжении более чем трех столетий, минувших с того времени, когда Гук впервые изобразил очертания структур клеток, ученые потратили много времени и усилий, чтобы понять, как же эти клетки – мельчайшая форма жизни, способная к самовоспроизведению, – функционируют. Эти усилия были направлены прежде всего на то, чтобы понять скрытые внутри клетки механизмы, позволяющие ей получать энергию, расти и размножаться. И хотя мы не знаем всех ответов, нам уже известно, что, как в кукле-матрешке, внутри отдельных контейнеров самих клеток имеются контейнеры меньшего размера, выполняющие каждый свою специфическую функцию. За неимением более простого термина я называю эти заключенные в клетках меньшие контейнеры наномеханизмами жизни. Это агрегаты, составленные главным образом из белков и нуклеиновых кислот и выполняющие необходимые функции во всех живых клетках. Я потратил немалую часть своей научной жизни, пытаясь понять, как они работают.

Понимание того, как работают эти наномеханизмы, имеет значение, поскольку их внутренняя работа позволяет нам увидеть, как основные процессы копируются и преобразуются в различных формах. Это аналогично тому, как если бы мы, взяв детали из магазина радиотоваров, собирали усилители, радиоприемники, телевизоры и любые другие устройства, какие можно придумать. В природе встречаются наномеханизмы самых разных типов. Как я уже говорил, одни из древнейших – рибосомы – возникли у предков современных микроорганизмов миллиарды лет тому назад. В пятой главе мы еще вернемся к этому первобытному миру древних микроорганизмов, но сначала давайте рассмотрим другие наномеханизмы и поймем, как они функционируют внутри клеток.

Попытка понять действие механизмов внутри живой клетки до какой-то степени аналогична попытке разобраться, как работает автомобиль, не имея представления о том, что находится под капотом. Мимо нас по улице проезжают машины, и мы понимаем, что внутри них имеются какие-то механизмы, позволяющие им двигаться. Мы можем остановить машину и вынуть ключ из зажигания – тогда машина больше не заведется. Если мы сумеем открыть капот, то, возможно, сможем разобрать находящийся там механизм и рассмотреть все его части – до последнего винтика, последней шайбы и прокладки. И если мы посмотрим еще внимательнее, то увидим, что все части собраны в исключительно точной последовательности; однако у нас нет никакой инструкции касательно того, как их собирать. Если мы не поймем, для чего какая часть предназначена, то никогда не сможем сообразить, как все эти приспособления позволяют машине ехать по дороге. Однако, рассматривая по отдельности поршень или аккумулятор, не говоря уже о компьютере, мы, вероятно, сможем получить какое-то представление о том, какую роль эта конкретная часть выполняет и каковы ее функции в общем механизме.

Параллель между попыткой понять принцип действия автомобиля и исследованием функционирования клетки, разумеется, весьма приблизительна. Клетки устроены гораздо сложнее, нежели автомобили. Автомобили не могут собирать сами себя, не воспроизводятся самостоятельно и, как ни жаль, не умеют сами себя чинить. Поэтому, наверное, не следует чересчур удивляться тому, что, хотя биологи и смогли разобрать клетку на части, чтобы посмотреть, как работают отдельные компоненты, им до сих пор так и не удалось заново собрать эти части с нуля и получить полностью работоспособный, самовоспроизводящийся организм. Нам предстоит еще долгий путь к пониманию того, что находится «под капотом» у клеток. Тем не менее на протяжении трехсот лет, прошедших с тех пор, как Гук описал базовую структуру клеток, мы далеко продвинулись вперед в распознавании многих ключевых элементов и уже начинаем догадываться, как работают эти внутриклеточные наномеханизмы. Это знание позволило нам увидеть закономерности в организации клеток на генеалогическом древе жизни. Собственно, оно дало нам возможность понять, что это вообще такое «жизнь». Однако перед тем как мы начнем детально разбирать «колесики и винтики», давайте вкратце рассмотрим, как эти элементы были обнаружены.

Идентификация отдельных элементов клетки началась в XIX веке благодаря усовершенствованию микроскопов, а также пытливому и терпеливому характеру биологов – как правило, достаточно зажиточных мужчин. В 1831 году шотландский ботаник Роберт Броун при внимательном исследовании под микроскопом выделил темное пятно в центре клетки орхидеи, а впоследствии и в пыльце. В статье, представленной им Линнеевскому обществу в Лондоне, ученый назвал эту структуру ядром (нуклеус); это была первая из идентифицированных внутриклеточных структур. В 1869 году Фридрих Мишер, швейцарский доктор, работавший в Германии, обнаружил, что найденные Броуном внутриклеточные структуры содержат любопытные молекулы, которые не являются белками, и назвал это новое вещество нуклеином. Почти столетием позже обнаружится, что эти молекулы несут информацию, необходимую для строительства новых клеток.

В последней четверти XIX и начале XX века изготовители инструментов принялись разрабатывать все более совершенные объективы и другие компоненты оптических микроскопов, позволившие ученым в буквальном смысле заглянуть внутрь крупных клеток. Еще большей наглядности удалось добиться при помощи разнообразных красителей и пигментов, избирательно окрашивавших те или иные компоненты клетки. Благодаря подобным усовершенствованиям ученые смогли прийти к довольно глубокому пониманию положения некоторых компонентов в эукариотических клетках, то есть клетках, содержащих ядро. Растения и животные по существу представляют собой организованные скопления эукариотических клеток.

Благодаря более совершенным объективам, красителям и микроскопам с еще большим увеличением в течение относительно короткого отрезка времени было сделано несколько открытий. В 1883 году еще один ботаник, немец Андреас Шимпер, обнаружил, что крахмал, окрашивающийся в присутствии йода в темно-бурый цвет, производится в растениях микроскопическими зелеными тельцами, которые он назвал хлоропластами. В 1890 году другой немец, Рихард Альтман, выяснил, что, судя по всему, в любых животных клетках присутствуют скопления маленьких частиц, которым он дал название биобласты – позднее они станут известны как митохондрии. Альтман обнаружил также, что «нуклеин» Мишера имеет кислотную природу, и переименовал это вещество в нуклеиновую кислоту. В 1897 году итальянский врач Камилло Гольджи описал еще одну структуру, получившую впоследствии название «аппарат Гольджи». Вначале ученые сочли, что эта структура является артефактом – побочным эффектом красителей, которые использовал Гольджи, и лишь в середине XX века было подтверждено, что она реально существует. Позднее было описано еще несколько крупных структур; это сделали очень терпеливые наблюдатели, работавшие с лучшими оптическими микроскопами того времени. Однако, как бы ни были хороши объективы, существуют физические ограничения того, что можно увидеть при помощи микроскопа, использующего видимый свет.

Структуры, размеры которых составляют меньше тысячной доли миллиметра (иначе говоря, микрометра), попросту очень трудно разглядеть в деталях при помощи видимого света. Диаметр человеческого волоса составляет около 100 микрометров, диаметр же большинства бактерий и других микроорганизмов – около 1–2 микрометров, а порой даже меньше. Чтобы разглядеть их невооруженным глазом, нужно выстроить в ряд около 100 таких клеток, и тогда их длина будет равна диаметру человеческого волоса. И поскольку эти микроорганизмы так малы, для нас практически невозможно различить находящиеся внутри них структуры. Есть ли там миниатюрные ядра? Митохондрии? Хлоропласты? Эта попытка визуализации внутриклеточных структур может напомнить выдвинутую ранее Левенгуком концепцию анималькулей, которых он представлял как микроскопических животных. На протяжении нескольких десятилетий научный прогресс в области изучения очень маленьких клеток или маленьких частей внутри крупных клеток оказался застопорен из-за ограничений в разрешении и увеличительной способности оптических микроскопов.

Прорыв в этом направлении произошел в 1930-х годах, когда два немецких физика, Макс Кнолль и его студент Эрнст Руска, разработали микроскоп нового типа, в котором использовались высокоэнергичные электроны – они ускорялись в вакууме и как лучи проецировались на образец, который либо поглощал их, либо пропускал, либо рассеивал. Получившееся изображение могло передавать структуры с разрешением в десятые доли микрометра, то есть с более чем в сто раз большим увеличением, чем то, какое было достижимо в оптических микроскопах. Открылся целый новый мир – мир, в котором мы впервые действительно получили возможность заглянуть клеткам «под капот».

Изучение клеток под электронным микроскопом тотчас же подтвердило существование ядер, аппаратов Гольджи, митохондрий и хлоропластов у эукариотических клеток. Однако, к удивлению ученых, оно также раскрыло, что у многих микроорганизмов эти структуры отсутствуют. Судя по всему, число матрешек среди микробов было ограничено. Организмы, внутри которых не были найдены такие автономные, заключенные в мембраны структуры, были объединены учеными в группу, получившую название прокариоты. Тем не менее детальное изучение внутреннего строения клеток открыло некоторые структуры, общие для всех клеток вне зависимости от того, имеется у них ядро или нет. Определенные элементы требовались всем.

Одними из таких универсальных элементов оказались рибосомы. Впервые они были обнаружены в 1955 году румынским биологом Джорджем Паладе, который работал в Рокфеллеровском институте (теперь университете) в Нью-Йорке. При помощи лучших из доступных в то время электронных микроскопов Паладе описал эти структуры в образцах клеток млекопитающих и птиц (и те и другие являются эукариотами). Рибосомы были похожи на очень маленькие ворсистые шарики, которые либо свободно плавали во внутриклеточной жидкости, либо группировались вдоль определенных внутренних мембран. Паладе обнаружил, что эти маленькие шарики содержат как белки, так и нуклеиновые кислоты, но роль этих крошечных компонентов клетки оставалась невыясненной еще более десяти лет. Было очевидно, однако, что та нуклеиновая кислота, которая находится в ядре, представляет собой ДНК, в то время как в рибосомах содержится рибонуклеиновая кислота – другой тип нуклеиновой кислоты с другим сахаром, рибозой, имеющей на один атом кислорода больше, чем дезоксирибоза, найденная в ДНК. Впоследствии эти маленькие шарики стали называть рибосомами, сложив вместе название «рибоза» и греческое слово «сома» (тело).

Рис. 9. Электронная микрофотография тонкого среза клетки зеленой водоросли. Этот организм является эукариотом (см. рис. 8) и, подобно всем эукариотам, содержит несколько внутриклеточных органоидов, ограниченных мембранами. В данной клетке такими органоидами являются хлоропласт (C), митохондрии (M), ядро (N) и аппарат Гольджи (G). (Оригинальная микрофотография, сделанная Майроном Ледбеттером и Полом Фальковски.)

Рис. 10. Схема строения рибозы и дезоксирибозы. Первая содержится в рибонуклеиновой кислоте (РНК), вторая – в дезоксирибонуклеиновой кислоте (ДНК)

Рибосомы – это микроскопические механизмы, которые забирают информацию у последовательности ДНК посредством молекулы-посредника. Такая молекула является зеркальной, или комплементарной, к гену, который представляет собой матрицу белковой последовательности. Комплементарная цепочка РНК называется информационной, или матричной РНК. Информация, содержащаяся в информационной РНК, сообщает рибосоме, какие аминокислоты и в каком именно порядке следует химически прикрепить друг к другу. Получающиеся в результате цепочки аминокислот и становятся теми самыми белками, которые необходимы клеткам, чтобы функционировать, восстанавливать себя и создавать новые клетки.

Поскольку все основные составляющие клеток либо являются белками, либо зависят от белков в своем формировании, можно сказать, что рибосомы – абсолютно необходимые компоненты в каждой клетке. Однако это чрезвычайно сложные механизмы. Их диаметр составляет всего лишь около 20–25 нанометров (нанометр – это 1/1000 доля микрометра, который в свою очередь составляет 1/1000 долю миллиметра), ввиду чего их очень трудно увидеть даже с помощью электронного микроскопа. Перед учеными встала дилемма: как можно исследовать одну из самых основных функций клетки – производство белков, не имея возможности видеть стоящие за этим механизмы? Однако именно здесь подоспели на помощь биохимики и физики.

Биохимики специализируются на описании отдельных компонентов клеток. Их основная методика заключается в том, чтобы вытащить из клетки те или иные части и посмотреть, как они работают. Начинают биохимики обычно с того, что разрушают клетки и разделяют получившийся материал на различные компоненты. Основным инструментом для такого разделения служит центрифуга, которая раскручивает материал на высокой скорости, так что его составляющие разделяются на фракции в соответствии со своей массой: чем тяжелее частица, тем дальше в центрифужной пробирке она окажется. При помощи такой высокоскоростной центрифуги Паладе сумел отделить те самые структуры, похожие на ворсистые шарики, которые он увидел в электронный микроскоп.

Рис. 11. Схема, иллюстрирующая функционирование рибосомы. Этот наномеханизм образует белки при помощи информационной матрицы, изначально закодированной в ДНК и перенесенной при помощи молекулы информационной РНК (иРНК). Молекула иРНК обеспечивает информацию о последовательности аминокислот, необходимой для образования конкретного белка; для каждого белка в клетке имеется собственная иРНК. Рибосома, также содержащая РНК, но образующая более крупную структуру из многих белков, «считывает» информацию с молекулы иРНК и при помощи третьей молекулы РНК с прикрепленной к ней определенной аминокислотой (транспортной РНК, тРНК) выстраивает белки, наращивая их по одной аминокислоте за раз. Белок появляется из рибосомы, чтобы занять надлежащее место внутри клетки

Однако вопрос оставался открытым: как, собственно, функционируют рибосомы? Сумев изолировать рибосомы, Паладе и его коллеги определили, что эти структуры состоят из белков и еще одного типа молекул РНК, отличного от информационной РНК. Вскоре было доказано, что эти крошечные шарики могут образовывать белки прямо в пробирке, если предоставить им необходимые компоненты. Однако даже самые лучшие электронные микроскопы не могли показать, что находится внутри изолированных Паладе рибосом. Для решения этой проблемы требовалось еще более мощное орудие распознавания.

В начале XX столетия, вскоре после открытия радиоактивности, физики обнаружили, что рентгеновские лучи, представляющие собой чрезвычайно высокоэнергетические частицы света, рассеиваются кристаллами строго определенным образом. Рентгеновское излучение гораздо более высокоэнергетичное, нежели электроны, и может отображать совсем крошечные структуры – вплоть до уровня отдельных атомов. Физики и химики сделали множество рентгеновских изображений кристаллов, слегка меняя их ориентацию, благодаря чему смогли определить расположение отдельных атомов внутри кристаллической решетки. Такой же подход впоследствии был применен для описания структуры сепарированных компонентов клетки, и вскоре после Второй мировой войны стало возможным определение расположения атомов в кристаллической решетке белков. Это была чрезвычайно скрупулезная работа: необходимо было получить и наложить друг на друга сотни рентгеновских изображений – все это в отсутствие компьютеров. При помощи обратного вычисления угла рассеяния рентгеновских лучей, прошедших через структуру, физики и химики могли судить о строении молекулы, даже если ее и нельзя было увидеть непосредственно с помощью микроскопа. Постепенно становились доступны компьютеры и рентгеновские источники повышенной мощности – такие, как синхротронные источники излучения, один из которых располагался через улицу напротив моего здания в Брукхэвенской национальной лаборатории, – и ученые описывали структуры все новых и новых белков. Эти описания содержатся в архиве химического факультета моего университета; любой человек, имеющий компьютер, может найти их в Сети.

Рис. 12. Электронная микрофотография, показывающая распределение рибосом (маленькие ворсистые шарики) вдоль системы мембран (эндоплазматическая сеть) в эукариотической клетке. На подобном изображении Джордж Паладе впервые идентифицировал рибосомы, чтобы впоследствии их изолировать

Рибосомы не состоят из одного-единственного белка и не сводятся исключительно к белкам; это гораздо более сложные структуры. Самые простые рибосомы, найденные в прокариотах, содержат, помимо молекул РНК, еще около шестидесяти белков, объединенных в две группы. Сначала считалось, что будет необдуманным пытаться кристаллизовать целую рибосому и тем более получить какую-либо полезную информацию об их структуре при помощи рентгеновского излучения. Тем не менее в конце 1980-х годов двум ученым это удалось. Один из них, Гарри Ноллер, был американцем, другая, Ада Йонат, была израильским биохимиком и работала в Германии и Израиле. Работа потребовала от них немало терпения, усердия и вдохновения, однако они смогли получить первые рентгеновские изображения рибосом.

В течение двух последующих десятилетий несколько групп ученых по всему миру занимались анализом структуры этих удивительных наномеханизмов. На основании тщательнейшего исследования множества рентгеновских изображений им удалось собрать по кусочкам информацию о том, как функционируют рибосомы. Этими учеными были: Ноллер из Калифорнийского университета в Санта-Крусе, Йонат из Вейсмановского института, Томас Стейц из Йельского университета и Венкатраман (Венки) Рамакришнан, сначала работавший в Брукхэвенской национальной лаборатории (мой бывший коллега), а затем перешедший в Кембриджский университет. Трое последних в 2009 году за свои усилия были удостоены Нобелевской премии по химии.

Два основных комплекса, составляющих рибосому, взаимодействуют приблизительно так же, как работает пара рычагов. Аминокислоты переносятся к рибосоме третьей молекулой РНК – транспортной РНК. По мере того как информационная РНК скармливается рибосоме наподобие макаронины, два этих белковых комплекса движутся взад и вперед, прикрепляя одну за другой необходимые аминокислоты, чтобы собрать молекулу белка. Таким образом эта белковая фабрика «штампует» информацию, заключенную в генах. Этот замысловатый механизм работает с невероятной скоростью – за секунду к формирующейся белковой цепочке добавляются от десяти до двадцати аминокислот.

Подобные «белковые фабрики», практически идентичные друг другу, существуют во всех живых клетках. Бывают небольшие отклонения в составе РНК внутри рибосом, однако такие отклонения принято считать нейтральными мутациями, которые постоянно встречаются в природе, – это случайности, возникающие бессистемно и не влияющие на результат процесса. Подобные нейтральные мутации мы можем видеть повсюду вокруг. Отпечатки пальцев каждого из нас несколько отличаются от отпечатков пальцев других людей: там, где у одних завитки, у других можно видеть дуги, гребни или петли. Эти узоры никак не коррелируют с нашей тактильной чувствительностью. Точно так же мутации рибосомальной РНК, как представляется, не влияют на скорость, с которой рибосома производит белок, – не существует суперрибосом и рибосом-аутсайдеров (во всяком случае, мы так не думаем). Фактически строение всех рибосом настолько схоже, что их едва можно различить; тем не менее между последовательностями нуклеиновых кислот в рибосомальной РНК существуют небольшие различия. Эти различия и позволили Карлу Вёзе и Джорджу Фоксу разделить прокариоты на две большие надгруппы – бактерии и археи, которые, в свою очередь, очень сильно отличаются от эукариотов. Однако если различия в последовательностях нуклеиновых кислот в рибосомальной РНК и позволяют нам проследить эволюционную историю всех живых организмов, различия в последовательностях РНК не оказывают влияния на базовую функцию рибосомы. Все клетки производят белки абсолютно одинаковым способом.

Тем не менее производство белков – не такая простая задача. Аминокислоты сами по себе не устанавливают химических связей друг с другом. Для того чтобы такая связь установилась, требуется энергия. Откуда же берется энергия для того, чтобы производить белки? Ее вырабатывает другой комплекс наномеханизмов, расположенный в других частях клетки. Начиная с этого момента мир внутри клетки становится еще более интригующим.

Основной энергетической валютой во всех клетках является молекула, называемая аденозинтрифосфат (АТФ), одиночная молекула нуклеиновой кислоты, присутствующая как в ДНК, так и в РНК и содержащая один из сахаров и три фосфатные группы, соединенные последовательно. Когда эта молекула используется в биохимической реакции, она расщепляется на аденозиндифосфат (АДФ) и одиночный фосфат. Расщепление АТФ сопровождается выделением химической энергии, которая используется для многих целей. Одной из важнейших функций АТФ у всех организмов, а в особенности у микроорганизмов, является участие в синтезе белков. Другая функция – подвижность. Еще одна состоит в прокачке ионов, таких как протоны, натрий, калий и хлориды, сквозь мембраны. Все эти и другие функции можно проследить на протяжении всей истории развития жизни на Земле. Вследствие такой повсеместной распространенности АТФ во всех возможных клетках возникает вопрос: как клетки производят АТФ?

Рис. 13. Основной валютой биологической энергии на протяжении всей истории развития жизни является аденозинтрифосфат (АТФ). При соединении АТФ с водой в ферментах одна фосфатная группа может быть оторвана от молекулы, в результате чего образуется аденозиндифосфат (АДФ) и неорганический фосфат. Такая реакция высвобождает энергию, которую все клетки используют для жизни

Открытие того, как производится в клетках основная часть АТФ, было чрезвычайно дискуссионным и, однако же, одним из важнейших в истории биологии. Много лет, с тех самых пор, как Пастер открыл, что микробы могут использовать глюкозу как источник энергии в анаэробных условиях, было известно, что АТФ может производиться в клетках посредством переноса фосфатной группы некоторых небольших молекул непосредственно к АДФ, формируя АТФ. Долгое время этот процесс, называемый субстратным фосфорилированием, считался единственным источником АТФ, однако числа никак не сходились. Если при отсутствии кислорода количество АТФ, произведенного микроорганизмами, зачастую было небольшим, при наличии кислорода производилось гораздо больше АТФ, чем можно было отнести на счет фосфорилирования субстрата. Должен был иметься еще какой-то источник АТФ.

В 1950-х годах несколько эксцентричный английский биохимик Питер Митчелл, в то время работавший в Кембриджском университете, задался вопросом о том, как ионы переносятся через мембраны. Мембраны выполняют функцию барьеров, препятствующих распространению электрически заряженных атомов или молекул растворимых веществ, известных как ионы. Митчелл знал, что в случае микроорганизмов АТФ может использоваться для транспортировки ионов и других молекул внутрь клеток и наружу из клеток через клеточную мембрану. Однако один из его аспирантов показал, что у бактерий приток сахаров в клетку сопровождается потоком ионов водорода (протонов) из клетки наружу. Оба потока – и сахаров, и протонов – зависели от АТФ. Митчелл подумал, что, если реакция способна происходить в одном направлении, она может сработать и в противоположном, то есть если предоставить клетке дополнительные протоны, это приведет к созданию АТФ вместо его поглощения. Покинув Кембридж, Митчелл принялся экспериментировать вне лаборатории, в небольшом поместье в Корнуолле, которое он незадолго перед этим отреставрировал. Здесь ему пришла в голову оригинальная идея.

К этому времени было известно не только то, что описанная семьдесят лет назад Альтманом структура – митохондрия – ответственна за производство больших количеств АТФ, но также что объем этого производства зависит от присутствия кислорода. Кислород при этом превращается в воду (H2O), а это означает, что к каждому атому кислорода добавляются два атома водорода (H).

Митчелл предположил, что на границе мембран внутри митохондрий действует сила, как-то связанная с концентрацией протонов в этом органоиде. Он обнаружил, что внутри митохондрии имеется сеть мембран и что с одной стороны этих мембран протонов больше, чем с другой. При перемещении протонов со стороны с большей концентрацией на противоположную и создается АТФ. Этот процесс, который Митчелл назвал хемиосмосом, требовал, чтобы внутримитохондриальные мембраны сохраняли свою целостность.

Рис. 14. Аденозинтрифосфат производится в клетках путем генерирования градиента электрического заряда на границе мембраны. У множества клеток в двух органоидах – митохондрии и хлоропласте – градиент заряда образуется благодаря разнице в концентрации протонов (ионов водорода), то есть на одной стороне мембраны протонов больше, чем на другой. По мере просачивания протонов через фактор сопряжения, встроенный в мембрану, может производиться АТФ (см. рис. 15)

Вскоре после того, как в 1961 году Митчелл опубликовал свою гипотезу, молодой исследователь из Корнелльского университета Андре Ягендорф показал, что аналогичный процесс существует в хлоропластах. Ягендорф изолировал хлоропласты из клеток листьев, после чего погрузил органоиды в кислотный раствор, держа их при этом в темноте. Хлоропласты не могли фотосинтезировать из-за отсутствия света, однако внутренняя среда органоидов стала кислой. Затем ученый, все так же в темноте, переместил хлоропласты в нейтральный раствор и показал, что вместе с потоком исходящих наружу протонов в них образуется АТФ. Понадобилось еще два десятилетия, чтобы открыть механизм этого процесса и принцип его действия, однако в 1978 году Митчелл был удостоен Нобелевской премии за свое открытие хемиосмотического процесса выработки энергии.

Фундаментальный принцип феномена, обнаруженного Митчеллом, состоит в том, что жизнь использует электрические градиенты для производства энергии, а энергию – для выработки электрических градиентов. Этот процесс аналогичен тому, как функционирует электрическая батарея. По сути, все организмы представляют собой аппараты по выработке электроэнергии – они работают благодаря перемещению ионов, какими являются и протоны, через мембрану и генерированию собственного электрического градиента. Источником протонов и электронов является водород – самый распространенный элемент во Вселенной. Для возникновения электрического градиента требуется мембрана, без которой не удалось бы достичь разницы в концентрации протонов или других ионов, а следовательно, не было бы и источника энергии для выработки АТФ. Открытие Митчелла помогло вымостить путь к пониманию того, как функционируют структуры, ответственные за выработку АТФ. Эти наномеханизмы называются факторами сопряжения.

Факторы сопряжения – это в буквальном смысле миниатюрные моторы, которые крутят мембраны. Они содержат стержень, представляющий собой группу белков, крутящих мембрану и физически вставленных в группу более крупных белков (головка), расположенную с одного конца стержня. Схематически все это напоминает микроскопическую карусель. Протоны с одной стороны мембраны прикрепляются и движутся вдоль стержня, чтобы пройти насквозь. При этом их поток физически поворачивает стержень против часовой стрелки, наподобие того как вращается мельничное колесо, когда через него течет вода. Поворачиваясь, стержень механически передвигает группу крупных белков (платформу карусели), которые связывают АДФ и фосфат. Платформа вибрирует, и приблизительно через каждые 120 градусов поворота стержня формируется новая молекула АТФ, которая выпускается в клетку для использования в других назначениях. Такой мотор может работать также и в обратном направлении: если в клетке избыток АТФ, он может перекачивать протоны (или другие ионы) через мембрану, причем АТФ преобразуется в АДФ и одиночный фосфат.

Эта базовая схема миниатюрного электромотора для производства АТФ очень древняя. Она возникла у микроорганизмов настолько давно, что мы с трудом можем воссоздать историю ее эволюции. Она встречается в природе повсюду: у всех животных она является ключевой составляющей мышц и нервов, она найдена в корнях и листьях растений, она обнаружена у микроорганизмов. Производство АТФ настолько важно для всех организмов и настолько сильно зависит от мембран, что всем организмам приходится поддерживать по разные стороны своих клеточных мембран электрический градиент. Помимо прочего, электрические градиенты играют существенную роль в транспортировке внутрь клетки необходимых питательных веществ и выводе из нее отходов жизнедеятельности. Однако электрические градиенты, производимые при работе фактора сопряжения в режиме «реверса», сопровождаются поглощением энергии.

Так или иначе, из того или иного источника, но биологические машины должны получать энергию из окружающей среды, чтобы генерировать внутриклеточную энергию, необходимую для создания электрических градиентов, – в противном случае жизнь очень быстро остановится. Энергия, дающая жизнь всему живому на Земле, в конечном счете берется от Солнца. Фотосинтез в процессе эволюции привел к возникновению наисложнейших биологических реакций в природе. Я посвятил основную часть своей научной деятельности пониманию того, как работает этот процесс. Суть этого процесса связана с еще одной группой наномеханизмов, найденной только у фотосинтезирующих организмов.

Рис. 15. Схема, показывающая основной механизм, посредством которого фактор сопряжения производит АТФ из потока протонов. Протоны проходят через стержень в мембране; по мере их продвижения стержень физически поворачивается, и «головка» наномеханизма, расположенная по другую сторону мембраны, вибрирует. Физическая осцилляция позволяет АДФ и неорганическому фосфату (см. рис. 13) прикрепиться к «головке», где они химически связываются, формируя АТФ

В фотосинтезирующих эукариотических клетках таких организмов, как водоросли и высшие растения, ответственные за этот процесс наномеханизмы обнаруживаются только в хлоропластах. Впрочем, впервые основная схема фотосинтетического процесса была открыта у бактерий, которые не расщепляют воду, но вместо этого утилизируют молекулярный водород. Независимо от того, что именно является основанием для процесса фотосинтеза, наномеханизмы, ответственные за превращение лучистой энергии в химическую, носят название реакционных центров. Как и факторы сопряжения, они состоят из групп белков, внедренных в мембраны. Эти белковые группы содержат пигменты, такие как хлорофилл, а также другие молекулы в определенных позициях, чтобы могла произойти фотобиологическая реакция. Эти белки составляют, говоря языком биохимиков, «каркас» для рабочих частей наномеханизма.

Процесс фотосинтеза в чем-то близок к волшебству. Свет поглощается, и создается химическая связь. Что делает волшебный наномеханизм, чтобы преобразовать энергию индивидуальных частиц света (фотонов) в сахар – вещество, которые мы, равно как и практически любой уважающий себя микроорганизм, станем использовать как источник энергии?

При фотосинтезе свет поглощается определенной молекулой – чаще всего это зеленый пигмент, хлорофилл. Поглощение света на определенных длинах волн (или в определенном цветовом спектре) специфическими молекулами хлорофилла приводит к химической реакции. Когда одна чрезвычайно специфическая молекула хлорофилла, встроенная в реакционный центр, поглощает энергию фотона, энергия световой частицы может оторвать от молекулы хлорофилла электрон. Приблизительно на миллиардную долю секунды молекула хлорофилла становится положительно заряженной. (Одно время у студентов были в ходу такие футболки с изображениями схематичных человечков. Один сообщал другому: «Я потерял электрон». Второй спрашивал: «Ты уверен?», а тот отвечал: «Положительно уверен!»)

В клетке не может существовать такого явления, как свободный электрон. После того как электрон высвобождается из молекулы, он должен куда-то деться. Одна возможность состоит в том, что он возвращается к той же молекуле, от которой оторвался, и это действительно происходит время от времени, но нечасто. Однако когда это все же происходит, реакционный центр испускает красный свет – в буквальном смысле начинает светиться. Но чаще всего энергии света оказывается достаточно, чтобы протолкнуть электрон к другой молекуле, которой он на самом деле не нужен, однако которая готова временно его принять. Как это работает?

Рис. 16. Схематическая иллюстрация реакционного центра в производящем кислород организме. Это единственный биологический наномеханизм, способный расщеплять воду. Он состоит из многих белков, и его основной функцией является расщепление при помощи энергии Солнца воды на кислород, ионы водорода и электроны. Эта структура встроена в мембрану, и ионы водорода, образующиеся при реакции расщепления воды, скапливаются по одну сторону мембраны. Они проходят через фактор сопряжения (см. рис. 15) для производства АТФ, чтобы в конечном счете встретиться с электроном по другую сторону мембраны

Давайте представим на мгновение, что вы – электрон, ждущий поезда на платформе метро в час пик. На станцию приходит поезд, но он уже битком набит другими электронами. И вам становится ясно, что, будучи электроном с отрицательным зарядом, вы вовсе не желаете находиться в одном вагоне с толпой других электронов, каждый из которых тоже несет отрицательный заряд. Весь поезд прямо-таки наполнен негативной энергией. Однако когда двери открываются, человек в униформе и в белых перчатках заталкивает вас в вагон (такое действительно происходит в некоторых городах в час пик). Этот человек исполняет ту же роль, что и частица света, – заталкивает вас в среду, в которой вы не хотите находиться, в которой уже находится много других электронов. Из-за всех этих втиснутых в вагоны электронов поезд оказывается чрезвычайно отрицательно заряженным, однако когда он по мере движения подходит к другим станциям, электроны начинают выпрыгивать, привлеченные более свободными пространствами, где электронов меньше. После этого они принимаются за работу в надежде найти места с более положительной энергией. То же самое, но в самом микроскопическом масштабе, случается и в реакционных центрах. Однако там происходит и нечто еще более любопытное.

Электрон, вытолкнутый в реакционном центре из молекулы хлорофилла частицей света, оставляет после себя «дыру», и молекула оказывается положительно заряженной. Чтобы заполнить пустоту, молекула хлорофилла забирает электрон у близлежащих молекул. В случае организмов, выделяющих кислород, таких как сине-зеленые водоросли, эукариотические водоросли и все высшие растения, эти электроны поступают от четверки атомов марганца, удерживаемых специальным приспособлением с одной стороны мембраны. После того как они пожертвовали хлорофиллу свои электроны, эти атомы марганца также нуждаются в заполнении своих электронных пустот. Непосредственно рядом с собой они находят воду и, один за другим, извлекают четыре электрона из двух молекул воды, используя по очереди энергию четырех толчков, полученных от фотонов. По мере того как вода теряет электроны, от нее отделяются и протоны, и в конце концов кислород остается сам по себе и пускается на поиск новых электронов. Кислород славится своим умением находить электроны в природе, и именно поэтому мы называем молекулу, желающую отнять электроны у другой молекулы, окислителем. В фотосинтетических реакционных центрах другого типа источником электронов может быть сероводород (газ с запахом тухлых яиц), еще где-то – одна из форм ионов железа или углеводы (CH2O). В любом случае в конечном счете все источники электронов расположены вне организма, а основным применением всех этих электронов является производство сахаров.

Каким бы ни был источник, электрон неизменно направляется по одному пути, а протон – по другому. Протон, заряженный положительно, тоже может быть использован для выполнения работы. Вначале он помещается по одну сторону мембраны. Мембрана препятствует ему просто перейти на другую сторону, и в конечном счете оказывается, что по одну сторону мембраны расположено гораздо больше положительно заряженных протонов, чем по другую. По существу, это напоминает миниатюрную электрическую батарею, которая может быть использована для производства АТФ. Однако как протоны могут выполнять двойную функцию – как они могут воссоединяться с электронами, чтобы производить водород, этот элемент, необходимый для производства органических соединений? Давайте посмотрим, как работает это микроскопическое устройство.

Вспомним, что реакционные центры встроены в мембраны и что мембраны являются барьерами для свободного движения протонов и других заряженных молекул. После того как из воды или сероводорода извлекаются электроны, протоны сосредотачиваются по одну сторону мембраны. Мембрана представляет собой сплошной лист, нечто наподобие хлеба-питы с протонами, вложенными в карман вместо начинки. Проработав на солнечном свету всего несколько минут, фотосинтетические реакционные центры могут отложить внутрь этого кармана в 1000 раз больше протонов, чем находится во внешней среде; это означает, что положительный заряд по одну сторону мембраны в 1000 раз мощнее, чем по другую. Эти протоны переходят на противоположную сторону мембраны через механизм фактора сопряжения, поворачивая мотор и вырабатывая АТФ. Этот процесс происходит в каждом фотосинтезирующем организме; он является основным биологическим источником существующей в природе электрической энергии.

Однако что же происходит с протонами после того, как они проходят через фактор сопряжения и оказываются по другую сторону мембраны? Они встречаются с электронами, одновременно связываясь с другой модифицированной нуклеиновой кислотой. Эта молекула носит неблагозвучное имя никотинамидадениндинуклеотидфосфат, или НАДФ. Когда к НАДФ добавляются протон и электрон, молекула восстанавливается до НАДФН. Функция НАДФН заключается в том, чтобы транспортировать водород внутри клетки с целью его использования для производства органических соединений. Этот процесс может показаться чрезмерно усложненным, однако если бы клетка вырабатывала водород в свободном виде, этот газ, молекулы которого физически очень малы, мог бы с легкостью покинуть клетку. Путем разделения двух составляющих водорода – электрона и протона – и затем воссоединения их в составе такой крупной молекулы, как НАДФ, клетка может удерживать водород при себе. В фотосинтезирующих организмах атомы водорода, прикрепленные к НАДФН, в конечном счете используются для преобразования углекислого газа (CO2) в сахара, которые большинство прочих живых существ на этой планете используют для того, чтобы получать энергию.

Хотя это потребовало немалого терпения и некоторого везения, однако кристаллическая структура реакционного центра фотосинтезирующей бактерии, не расщепляющей воду, наконец была исследована тремя немецкими биохимиками: Хартмутом Михелем, Иоганном Дайзенхофером и Робертом Хубером. Результаты их работы, опубликованные в 1985 году в английском журнале Nature, ясно показали, как ядро из трех белков в сердцевине реакционного центра удерживает бактериальный хлорофилл и другие молекулы, образуя действующий наномеханизм. В 1988 году ученые получили Нобелевскую премию по химии. Несколько лет спустя были описаны также и кристаллические структуры реакционных центров, расщепляющих воду; сначала это сделала еще одна группа немецких исследователей, а позднее – несколько ученых в других странах. Мы можем видеть отдельные части механизма, но, к несчастью, не можем наблюдать их за работой – пока. Рентгеноскопические анализы не показывают фильм о действии этих механизмов, они могут дать только отдельные кадры. Они запечатлевают механизм в одном конкретном состоянии, но не раскрывают его движение, то, как он функционирует. Однако хотя этот недостаток и препятствует полному пониманию того, как в точности действуют реакционные центры, мы уже прошли немалый путь к осознанию механизма использования световой энергии для расщепления воды и производства кислорода.

Реакционные центры – это нечто особенное: когда они работают, весь наномеханизм превращается в буквальном смысле в микроскопическое светомузыкальное представление. Вспомним, что энергия света проталкивает электрон, взятый у молекулы хлорофилла с донорской стороны белкового комплекса, на акцепторную сторону. В результате на миллиардную долю секунды положительно заряженная молекула и отрицательно заряженная молекула оказываются внутри белкового каркаса, и их разделяет всего лишь миллиардная доля метра. Положительный заряд притягивает отрицательный заряд. Под действием силы притяжения зарядов белковый каркас слегка проседает, и при этом возникает волна сжатия. Такая волна сжатия аналогична хлопку ладоней; каждый раз, когда реакционный центр передвигает электрон, он издает микроскопический хлопок – звук, который в буквальном смысле может быть услышан при помощи очень чувствительного микрофона. Этот феномен, называемый фотоакустическим эффектом, был обнаружен Александром Грэмом Беллом, изобретателем телефона. В 1880 году он использовал этот эффект для генерирования звуковых волн из света и построил специальный аппарат, фотофон, для передачи такого звука. Кто знал, что этот феномен может быть использован для того, чтобы слушать звуки механизмов фотосинтезирующих организмов, выталкивающих электроны? Вместе с моими коллегами и давними друзьями (Дэвидом Мозероллом из Рокфеллеровского университета, Цви Дубински из университета Бар-Илана и Максимом Горбуновым из моей лаборатории) мы разработали прибор для измерения звука, издаваемого фотосинтетическим аппаратом живой клетки. Проведенный нами анализ этих звуков показал, что приблизительно 50 % световой энергии преобразуется в реакционных центрах в электрическую.

Однако существует и другой сигнал, показывающий, как действуют фотосинтетические реакционные центры. Помимо прочего, эти реакционные центры меняют свои флюоресцентные характеристики. Под воздействием синего света хлорофилл испускает красное свечение в процессе флюоресценции. Мы можем наблюдать такое свечение в флюоресцентных красках, на собственных зубах или на модных сейчас футболках, когда нас освещают ультрафиолетовым светом. Однако в фотосинтезирующих организмах интенсивность флюоресцентного красного свечения возрастает, когда все большее число реакционных центров включаются в работу. Коротко говоря, когда водоросли или листья находятся в темноте и затем подвергаются освещению синим светом, интенсивность испускаемого красного флюоресцентного свечения возрастает с большой скоростью. Об этом феномене впервые сообщили в 1931 году двое немецких химиков, Ханс Каутский и А. Хирш, наблюдавшие этот эффект невооруженным глазом. На протяжении последующих семидесяти лет было показано, что этот феномен может использоваться как количественный показатель того, сколько работы производят реакционные центры. В связи с этим он на настоящий момент регулярно замеряется во всем мире при помощи чувствительной аппаратуры для изучения того, сколько солнечного света фотосинтезирующие организмы преобразуют в полезную энергию. Я также на протяжении многих лет своей научной деятельности применял этот метод для исследования эффективности фотосинтетического преобразования энергии в Мировом океане. Собственно говоря, инструменты именно такого типа – способные измерять флюоресцентное свечение – я и брал с собой на Черное море, чтобы изучать фотосинтетические реакции в океанах.

В природе существует множество других наномеханизмов, но в мои намерения не входит описывать их все. Будем надеяться, что этот короткий взгляд «под капот» позволил получить некоторое представление о ключевых компонентах, требующихся для того, чтобы клетки могли функционировать. Все клетки наделены аналогичными механизмами для синтеза белка. У всех клеток имеется некий базовый механизм преобразования энергии, основанный на синтезе АТФ посредством фактора сопряжения. Все клетки обладают неким механизмом для передачи электронов и протонов переносчику водорода и отъема их у него. Все клетки создают электрическое поле по разные стороны мембраны, которая либо производит, либо поглощает АТФ. И наконец, все клетки в конечном счете зависят от фотосинтезирующих организмов, преобразующих солнечную энергию для создания электрического поля, которое генерирует поток электронов и протонов, благодаря чему становится возможной вся жизнь на этой планете, включая и нас с вами.

Как мы видим, наномеханизмы, возникшие еще у первых микробов, обеспечивали функционирование клеток на протяжении всей истории жизни на Земле. Глядя на наследие древних микробиологических наномеханизмов в жизнедеятельности современных, живых клеток, можно поддаться впечатлению, будто микроорганизмы прошли через все эти геологические эпохи, ничуть не изменившись. Однако это совсем не так. Возвращаясь к микроорганизмам древнего мира, мы видим, что за прошедшее время они эволюционировали.

Первые фотосинтезирующие микроорганизмы были аноксигенными, то есть они не могли расщеплять воду. Должно было пройти несколько сотен миллионов лет, прежде чем микроорганизмы развили в себе эту способность. Вода – идеальный источник водорода на поверхности Земли, поскольку она распространена гораздо больше, нежели любой другой потенциальный донор электронов, однако на расщепление воды требуется много энергии. Ответственные за этот процесс наномеханизмы появились у прокариотов лишь единожды: у цианобактерий, или же сине-зеленых водорослей. Когда эти организмы в конце концов получили возможность расщеплять воду, они принялись производить новый газообразный продукт – кислород. И биологическая выработка кислорода навсегда изменила эволюционный путь жизни на Земле.

Страницы: 1234 »»

Читать бесплатно другие книги:

Дейзи Медоус – автор более ста книг для детей, среди которых серия Rainbow Magic – всемирный бестсел...
Он ушел па фронт добровольцем в 17 лет. Он прошел Великую Отечественную «от звонка до звонка». Он ви...
Гостил ли ты, дорогой читатель, в замечательном городке, где чудеса столь обыденны, что местные жите...
Мерзлота, мерзлота, мерзлота —Твой покой называется вечным,Мерзлота уже стала не та,Твой покой не уй...
Перед вами вторая часть «НеАстрологии». В этой книге нет астрологических понятий. Это не учебник, эт...
Второе издание, исправленное и упрощенное. Эта книга полезна тем, кто в силу своей работы должен быс...