Здоровье по Дарвину: Почему мы болеем и как это связано с эволюцией Тейлор Джереми
Переводчик И. Евстигнеева
Руководитель проекта А. Василенко
Корректор Е. Аксёнова
Компьютерная верстка К. Свищёв
Дизайн обложки Ю. Буга
Использованы иллюстрации из фотобанка shutterstock.com
© 2015 by Jeremy Taylor
This edition published by arrangement with The Science Factory, Louisa Pritchard Associates and The Van Lear Agency LLC
© Издание на русском языке, перевод, оформление. ООО «Альпина Паблишер», 2016
Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).
Линусу и Барбаре
Введение
Почему люди не живут вечно? Почему мы не можем навсегда избавиться от болезней? Почему человечеству не удается победить рак? Такие на первый взгляд наивные вопросы постоянно задают ученым и популяризаторам науки в телевизионных шоу и на научно-популярных сайтах, но оттого эти вопросы не становятся менее интересными. Средняя продолжительность жизни быстро растет по всему миру и в некоторых странах уже превысила 80 лет. Недавнее исследование показало, что разница в уровне смертности между современными жителями развитых стран и первобытными охотниками-собирателями больше, чем между охотниками-собирателями и дикими шимпанзе. Значительная часть этого снижения смертности была достигнута всего за четыре последних поколения, притом что на земле в общей сложности жило примерно восемь тысяч поколений людей. Достаточно посмотреть на невероятный прогресс в таких областях, как фармакология, общественное здравоохранение, хирургия, иммунология и трансплантология, чтобы оценить масштабы успеха современной медицины.
Но такая оптимистичная статистика скрывает один вызывающий недоумение и беспокойство факт – а именно то, что сегодня мы наблюдаем не снижение, а, наоборот, рост заболеваемости. Распространение болезней, общая картина заболеваемости, постоянно меняется. Поэтому к перечисленным выше обманчиво наивным вопросам мы можем добавить следующие: «Почему сегодня так много людей страдает аутоиммунными заболеваниями, такими как ревматоидный артрит, рассеянный склероз, диабет 1-го типа и воспалительные заболевания кишечника? Почему многих преследуют аллергические заболевания, наподобие экземы и астмы? Почему в последнее время мы наблюдаем буквально эпидемию сердечно-сосудистых заболеваний? Почему нашему зрению все чаще угрожают пигментный ретинит и влажная макулярная дегенерация? Почему нас допекают боли в спине, межпозвоночные грыжи, смещение межпозвоночных дисков и гипермобильность тазобедренных суставов? Если аппендикс – бесполезный рудимент, почему он не исчез в процессе эволюции, что навсегда избавило бы нас от опасности развития аппендицита? Почему женщины так часто страдают бесплодием и преэклампсией? Почему так широко распространены психические заболевания? И почему многих из нас в старческом возрасте поджидают сумерки сознания – болезнь Альцгеймера?»
Традиционно в медицине человеческий организм было принято рассматривать как хорошо сконструированную машину, которая время от времени может ломаться. Эта машина нуждается в регулярном обслуживании, а также в периодическом ремонте, когда происходит какая-то поломка или сбой в работе. Студентов-медиков учат тому, что врач, по сути, – это высококвалифицированный механик, который умеет отремонтировать машину и обеспечить ее нормальное функционирование на протяжении как можно более длительного времени. Но тут есть одна загвоздка: человеческое тело – не машина. Это скопление живой материи, которое представляет собой продукт эволюции и естественного отбора, как и все живое на нашей планете, и между человеческим телом и любым творением инженерной и архитектурной мысли существуют фундаментальные различия.
Например, когда архитектору поручают разработать новое офисное здание, он первым делом задает вопрос: «Каким будет техническое задание?» Другими словами, какие основные требования предъявляются к этой конструкции? В числе параметров могут быть: высота здания, размещение лифтов (к примеру, с наружной стороны), обеспечение энергопотребления за счет солнечных панелей, соответствие окружающему архитектурному ансамблю, срок эксплуатации (не менее двухсот лет, скажем) и т. д. и т. п. Архитектор разрабатывает проект, который строго соответствует указанным требованиям. Если возникают какие-то проблемы, он возвращается к чертежной доске и переделывает проблемный компонент.
В эволюции мы сталкиваемся с «техническим заданием» совсем иной природы. При создании человеческого организма действуют критерии, в корне отличные от тех, которые можно встретить в мире архитектуры и технологии. Эволюцию вовсе не интересует наше здоровье, счастье или долголетие. Если говорить дарвиновским языком, ее интересует только максимизация репродуктивности индивидов. Это означает, что она продвигает только такие изменения в живых организмах, которые позволяют им адаптироваться к изменениям окружающей среды и размножаться. Если некое генетическое изменение у определенных представителей вида обеспечивает их репродуктивное преимущество, ответственные за него гены распространяются внутри популяции. Другими словами, эволюция озабочена бессмертием генов, но не бессмертием тел. Если она и позволяет индивидам выживать за пределами репродуктивного возраста, то оставляет им только такие качества и способности, которые повышают шансы на выживание генов, переданных ими детям и внукам. Кроме того, в отличие от любого хорошего архитектора эволюция слепа и неразумна. Она не разрабатывает никаких предварительных проектов и планов, она не способна заглядывать в будущее, видеть истинную причину проблемы и находить идеальное решение для ее устранения. Иначе говоря, когда какое-либо изменение окружающих условий требует соответствующего изменения конструкции или функции организма, эволюция не пытается решить проблему успешного выживания представителей данного вида путем фундаментального усовершенствования «проекта», а ищет самое быстрое и легкое решение.
Таким образом, уподобление человеческого организма машине глубоко ошибочно и не позволяет понять, почему мы так подвержены болезням и дегенерации. К счастью, в последнее время четверо пионеров эволюционной (или, как ее еще называют, дарвиновской) медицины – Рэндольф Несс, Стивен Стирнс, Диддахалли Говиндараджу и Питер Эллисон начали поход против этой инженерной аналогии, глубоко укоренившейся в нашей медицине. Во-первых, эти ученые утверждают, что, поскольку цель эволюции – репродуктивность, а не здоровье, наш организм изобилует неоптимальными компонентами и процессами, являющимися результатом неизбежных компромиссов и ограничений. Во-вторых, так как биологическая эволюция происходит гораздо медленнее, чем изменение условий жизни, многие современные болезни возникли из-за несоответствия наших организмов современной среде. А благодаря тому, что патогенные организмы способны эволюционировать гораздо быстрее, чем мы, в своей способности инфицировать нас они всегда идут на шаг впереди нашей иммунной системы. В-третьих, представление о том, что многие человеческие заболевания возникают в результате наследования нескольких дефектных генов, в большинстве случаев неверно. Как правило, болезнь – результат взаимодействия множества вариантов генов друг с другом и с факторами окружающей среды. Таким образом, заболевания – фактически неизбежный спутник нашей жизни и их весьма трудно предотвратить.
Эволюционная медицина позволяет взглянуть на человеческий организм под совершенно другим углом и зачастую дает нам довольно-таки неожиданное понимание болезней, которое идет вразрез с устоявшимися представлениями. Простой и наглядный пример – роль лихорадки при инфекциях. Когда мы заболеваем гриппом, у нас повышается температура, что мешает нам вести привычный образ жизни. Бльшая часть продающихся в аптеке безрецептурных препаратов направлена на то, чтобы облегчить симптомы лихорадки. Но, поскольку патогены предпочитают температуру ниже, чем температура человеческого тела, лихорадка в действительности является сложным, приобретенным в результате эволюции механизмом, призванным сделать среду внутри человеческого тела максимально неблагоприятной для болезнетворных микроорганизмов.
Питер Глукмен из Оклендского университета приводит более сложный пример. По его словам, эволюционная теория позволяет пролить свет на то, почему в течение последних десятилетий стремительно растет заболеваемость раком молочной железы и яичников и почему рак молочной железы сегодня стал одной из пяти ведущих причин смерти среди женщин в развитых странах мира. Установлено, говорит Глукмен, что такие факторы, как позднее наступление первой менструации, быстрое рождение первого ребенка, за которым следует относительно большое количество беременностей с длительными периодами лактации, и довольно ранняя менопауза, защищают женщин от рака молочной железы. Все это было характерно для женщин в эпоху палеолита. У современных женщин мы видим совершенно иную картину: раннее начало менструаций, длительный промежуток между первой менструацией и первой беременностью (что означает большое количество менструальных циклов); небольшое число детей и короткие периоды лактации, если таковые вообще имеются. На протяжении репродуктивного периода у современной женщины происходит около 500 овуляций, что является рекордным показателем по сравнению даже с недавним прошлым. Проблема в том, что каждая овуляция вызывает механическое повреждение клеток наружного слоя яичников, что в сочетании со значительными локальными колебаниями уровней половых гормонов повышает риск развития рака яичников. Именно поэтому, полагает Глукмен, использование оральных контрацептивов, сокращающее количество менструальных циклов у женщин, ведет к снижению этого риска. Точно так же незрелость тканей молочной железы у нерожавших женщин (полное созревание молочной железы достигается во время первой беременности) на фоне постоянной регенерации эпителиальных клеток груди, стимулируемой циклическими колебаниями секреции эстрогена и прогестерона, при отсутствии длительных периодов аменореи в результате нескольких беременностей, ведет к повышению риска развития рака молочной железы. А отсутствие или сокращение периода грудного вскармливания лишает женщин благотворного эффекта вымывания предраковых клеток вместе с грудным молоком.
Таким образом, современные женщины живут вразрез со своей репродуктивной биологией в результате значительного изменения репродуктивного поведения, связанного с использованием контрацепции и заместительной гормональной терапии, уменьшением количества детей или их отсутствием, сокращением периода лактации, ранним началом менструации и более поздним наступлением менопаузы. Все эти факторы способствуют увеличению длительности репродуктивного периода и, следовательно, более многочисленными менструальным циклам с более резкими колебаниями гормональных состояний – со всеми вытекающими отсюда последствиями. Но как мы можем объяснить существование мутаций генов, обуславливающих предрасположенность к раку, например таких, как BRCA1 и BRCA2? Некоторые мутации этих генов теряют свою способность подавлять развитие опухолей в эпителиальной ткани молочной железы. Хотя большинство женщин заболевают раком молочной железы в пожилом возрасте, отмечает Глукман, это заболевание относительно часто встречается и у более молодых. Логично было бы предположить, что специфические варианты этих генов, значительно повышающие риск развития рака молочной железы, должны были бы отсеиваться в ходе эволюции и встречаться в современных популяциях довольно редко. Но почему-то ничего подобного не произошло. Согласно Глукмену, это говорит о том, что данные мутации генов обеспечивают определенные преимущества в молодом возрасте, которые компенсируют их пагубное воздействие в более поздний период. Этот феномен называется антагонистической плейотропией и довольно часто обнаруживается в эволюционных моделях человеческих заболеваний. Недавнее исследование показало, что для носителей мутаций в генах BRCA1 и BRCA2 характерны и более высокая плодовитость, и более высокая пострепродуктивная смертность. Создается впечатление, будто эволюция заплатила за повышенную плодовитость в репродуктивный период повышенным риском смерти от рака молочной железы после наступления менопаузы.
Учитывая привлекательность и пользу объяснительной силы такого эволюционного мышления, вы можете подумать, что оно должно было бы занимать куда более значимое место в медицинской теории и практике. Почему же оно не укоренилось в медицине или же в какой-то момент впало в немилость? Глукмен объясняет это так: первые эволюционно настроенные мыслители, появившиеся в начале XIX века, происходили, как правило, из медицинской среды, однако в те времена эволюционное учение вступало в противоречие с религиозными догмами, поэтому оно сумело дать ростки лишь в наиболее либеральных частях Европы. К концу века эволюционная теория столкнулась с конкуренцией за интеллектуальное пространство со стороны новых наук, таких как физиология, так что даже самые ярые дарвинисты, наподобие «бульдога Дарвина» Томаса Гексли, считали, что эволюционное мышление совершенно нерелевантно с точки зрения тех проблем, с которыми приходится сталкиваться докторам. С тех пор медицина достигла впечатляющего прогресса в физиологии, гистологии и многих других -логиях, а также биохимии, и в этих сферах, надо признать, и впрямь не нашлось места для эволюции. Казалось, эволюция стала таким же бесполезным пережитком прошлого, как аппендикс.
Отчасти проблема заключается в том, что многие медицинские специалисты продолжают враждебно относиться к самой идее эволюции. Если вы хотите найти креационистов в университетском кампусе, шутит философ Майкл Рьюз, прямиком направляйтесь на медицинский факультет! Или же врачи считают понимание человеческих болезней, почерпнутое из эволюционной теории, бесполезным для своей повседневной практики, когда им приходится иметь дело с тяжело больными или умирающими пациентами, нуждающимися в немедленном лечении или хирургическом вмешательстве. Врачи живут в реальном мире человеческих страданий, а не в абстрактном мире эволюционных механизмов.
Еще одна проблема состоит в том, что, как только речь заходит о человеческой биологии и поведении, значительная часть эволюционной теории и ее языка, как кажется, вступает в противоречие с глубоко укоренившимися в нас представлениями о моральных, этических и эмоциональных нормах, определяющих человеческую природу. Я помню очень неприятный разговор, состоявшийся у меня на вечеринке с одной симпатичной собеседницей. Я всего-навсего попытался объяснить ей результаты исследований, которые показывают, что в хорошие времена матери кормят сыновей более питательным грудным молоком, чем дочерей, а в плохие – наоборот. Идея состоит в том, что существует определенный эволюционный механизм, который ограничивает родительскую заботу о сыновьях при неблагополучных условиях жизни, когда они могут вырасти на дне социальной пирамиды и быть непривлекательными как партнеры, что снижает вероятность рождения внуков. Моя знакомая сердито фыркнула, пожелала мне «получше разобраться с фактами и собственной головой» и отправилась на поиски более приятного собеседника. Ей показалась отвратительной и сексистской сама мысль о том, что приличная женщина может сознательно лишать младенца питательного грудного молока. Она не смогла провести различие между сознательным решением навредить ребенку в духе ужасающей практики женского инфантицида в сельских районах Индии и бессознательным физиологическим механизмом, направленным на повышение шансов на выживание родителских генов через сыновей или дочерей. Этот механизм реагирует на окружающие условия и соответствующим образом регулирует питание ребенка при грудном вскармливании без каких-либо осознанных намерений со стороны матери.
Эволюционный язык часто бывает настолько беспристрастен, что звучит откровенно оскорбительно. Разве приятно людям узнать о том, что соотношение полов может бессознательно регулироваться самими родителями в зависимости от их условий жизни; что частые ночные пробуждения и требование груди младенцем может быть приобретенным в процессе эволюции механизмом, призванным предотвратить овуляцию и беременность у матери, чтобы снизить вероятность конкуренции со стороны других детей. Легко ли человеку примириться с тем, что радужные картины – счастливая пара, занимающаяся любовью; женщина, вынашивающая младенца; мать, кормящая ребенка грудью, – на самом деле являются эволюционным полем битвы с участием конкурирующих между собой самца, самки и плода.
Каковы бы ни были причины, потребовался целый век, чтобы вернуть эволюцию на арену науки. Вышедшая в 1994 году книга Рэндольфа Несса и Джорджа Уильямса «Почему мы болеем? Новая теория дарвиновской медицины» (Why We Get Sick: The New Science of Darwinian Medicine) открыла шлюзы и повлекла за собой поток значимых работ со стороны таких ученых, как Питер Глукмен, Венда Треватан, Стивен Стирнс, Пол Эвальд и многих других. (Если вы хотите более подробно узнать, кто есть кто в области эволюционной медицины, загляните на веб-сайт издания Evolution and Medicine Review.) Эти авторы на богатом и конкретном практическом материале исследуют основные концепции эволюционной медицины, такие как компромиссы и несоответствия; однако я хочу избрать немного другой путь, на который меня натолкнула очень важная мысль, высказанная одним из отцов эволюционной медицины Рэндольфом Нессом.
Несс утверждает, что значение эволюционного учения для медицины состоит в том, что оно может непосредственно привести к изменениям в медицинской практике или даже к появлению новых методов лечения. Но его главная ценность заключается в способности объяснить, почему вещи являются такими, какие они есть. В этом смысле эволюционное учение в медицине подобно физике в инженерном деле. На самом деле самый известный афоризм Несса гласит: «Медицина без эволюции как инженерия без физики». Без физики и, в частности, без ньютоновской механики и доскональных знаний об электромагнитном спектре было бы невозможно построить космический аппарат «Розетта» и отправить его за 500 миллионов километров на встречу с кометой 67P / Чурюмова – Герасименко, а также успешно посадить на нее зонд «Филы», экипированный множеством инструментов для отбора проб. Подумайте, возможно ли добраться до сути сложнейшей иммунной системы человека и разработать действительно эффективные лекарства для лечения аллергии и аутоиммунных заболеваний без понимания того, как и по каким причинам развивалась эта система? Таким образом, утверждает Несс, эволюционная биология должна стать фундаментом и краеугольным камнем для медицины, как и для всей биологии. Я лично знаком с Рэнди Нессом вот уже более четверти века и восхищаюсь той настойчивостью, энергией и отточенностью аргументации, с которыми он пытается вернуть эволюционное учение в и без того перегруженные учебные планы медицинских факультетов. Недавно появились признаки, свидетельствующие, что ситуация меняется в его пользу. В своей книге я стараюсь облечь в плоть и кровь идею Несса, что эволюционное учение является «физикой» медицины. Моя книга не научный труд, рассказывающий о том, как при помощи эволюционного учения разрешить все проблемы современной медицины, и не основанное на эволюционной теории практическое руководство в стиле «исцели себя сам». Я постарался описать глубокую эволюционную предысторию некоторых человеческих болезней и объяснить, почему они вообще существуют – почему вещи таковы, каковы они есть. И я надеюсь, моя книга подарит читателям новый взгляд на эволюцию как на главную движущую силу в формировании нашего организма – пусть тот далеко не всегда оказывается идеальным и время от времени требует срочного медицинского «ремонта»!
Итак, в следующих главах я поставил перед собой несколько ключевых задач: во-первых, дать достаточно глубокий уровень понимания эволюционных факторов, лежащих в основе патогенеза ряда заболеваний; во-вторых, развеять некоторые мифы, например связанные с дискуссией о взаимосвязи между прямохождением и заболеваниями позвоночника, ног и суставов; в-третьих, рассказать о том, как понимание болезней с эволюционной точки зрения уже привело к появлению захватывающих новых идей касательно способов медицинского вмешательства для лечения слепоты, болезней сердца, аутоиммунных заболеваний, заболеваний репродуктивной системы, рака и болезни Альцгеймера. «Но каким образом заболевания сердца, рак или деменция могут быть результатом эволюционной адаптации?» – спросите вы. Разумеется, таковыми они не являются. Но я хочу показать, в чем состоит ценность эволюционного учения: оно дает нам в руки аналитический инструмент, позволяющий задавать фундаментальные вопросы, которые дают нам возможность составить гораздо более полное представление о болезни и найти новые, порой неожиданные ответы.
Например, когда мы смотрим на рентгеновский снимок коронарных артерий, трудно отделаться от мысли, что эти узкие сосуды, которые так подвержены сужению и закупорке, являются грубой «конструкторской» ошибкой эволюции. Мы забываем, что сердце – одна из самых мощных и плотных мышц в человеческом организме, которая нуждается в огромном количестве кислорода и питательных веществ. По иронии судьбы, чем плотнее делается сердечная мышца, тем менее проницаемой она становится для нормального кровоснабжения. Когда мы поймем, что коронарные артерии стали ответом эволюции на необходимость обеспечивать богатой кислородом кровью все более мощную и плотную сердечную мышцу у активных позвоночных животных наподобие нас с вами, мы сможем смириться с таким «инженерным решением». Аналогичным образом «техзадание» с требованием совместить прямохождение с рождением все более крупных детей заставило эволюцию пойти на компромисс в конструкции женского позвоночника и таза.
Мир наших предков был гораздо грязнее, чем наш с вами. Эволюция пошла хитрым путем: поскольку в доисторическую эпоху люди не умели уничтожать микроорганизмы, она помогла людям приспособиться и жить вместе с ними, а не вести постоянную борьбу. Она сумела избавить нас от тяжелых побочных издержек в виде самопричиненного вреда, наносимого организму постоянно бушующей иммунной системой, путем передачи ответственности за ее регулирование живущим внутри нас микробам, так что мы в конечном итоге стали к ним вполне толерантны. Эволюция не могла предвидеть мир, где личная и общественная гигиена, антибиотики и химические вещества убивают 99,9 процента всех бытовых микробов и настолько истощают микробную популяцию внутри нас, что наша иммунная система не достигает должного уровня зрелости или теряет способность должным образом регулироваться. Именно это и ничто иное привело к наблюдаемому сегодня резкому росту аллергических и аутоиммунных заболеваний – одной из новых эпидемий XXI века.
Пожалуй, нет более убедительного аргумента в пользу эволюционного подхода к медицине, чем нынешняя волна роста устойчивости к антибиотикам. Биологи уже давно предупреждали нас об этой опасности на основе того простого факта, что бактерии способны размножаться в пределах нескольких часов или даже минут (тогда как людям на это требуются десятилетия), поэтому могут эволюционировать с головокружительной скоростью. Но мы были глухи к их предостережениям и фактически пустили коту под хвост десятилетия упорного труда исследователей, необдуманно прописывая антибиотики людям при малейшем чихе и еще больше усугубляя ситуацию тем, что начали – и продолжаем – тоннами скармливать антибиотики домашнему скоту и другим животным. Сегодня мы стоим перед реальной опасностью оказаться совершенно безоружными перед полчищами высокопатогенных и резистентных к лекарствам микроорганизмов. Некоторые эксперты в области здравоохранения уже предрекают скорое возвращение к больничным палатам 1950-х годов с рядами широко расставленных кроватей, легионами вооруженных карболкой медсестер и распахнутыми окнами для проветривания помещения, в то время как правительства при помощи щедрых налоговых льгот пытаются соблазнить сопротивляющиеся фармацевтические компании возобновить поход против непобедимых микроорганизмов. А многие онкологи не желают усвоить тот урок, что раковые клетки во многом похожи на бактерии и, следовательно, также способны быстро эволюционировать, развивая устойчивость к химиотерапии. Хотя показатели выживаемости для многих форм рака постепенно улучшаются, частым следствием лечения становится развитие устойчивости опухоли к медикаментам, что угрожает пациентам летальным исходом.
Что касается репродукции, то очень трудно объяснить низкую плодовитость человека по сравнению с другими видами животных вкупе с высокой частотой самопроизвольных выкидышей и патологических состояний при беременности, таких как преэклампсия, без парадигмы эволюционной теории, принимающей во внимание конкурирующие интересы материнских и отцовских генов и эволюционное регулирование заботы матери о своем потомстве.
Существует, однако, один аспект в эволюционистском описании человеческого тела и его склонности к болезням, который вызывает у меня беспокойство. Я всегда стараюсь останавливаться на нем отдельно, поскольку считаю, что он уводит нас в сторону от дарвиновского подхода к эволюции человека (и эволюции в целом). Этот аспект связан с вековой битвой за сердца и умы между дарвинистами и сторонниками креационизма и теории разумного замысла. Как вы знаете, креационисты исходят из фундаментальной идеи, что Бог создал людей по своему образу и подобию. Дарвинисты опровергают это представление, утверждая, что человеческое тело изобилует неоптимальными компонентами и процессами, с которыми не мог бы смириться никакой божественный инженер. Многочисленные недостатки, говорят они, являются доказательством того, что человек есть творение рук эволюции, а не бога. Чтобы вкратце передать суть этого столетнего спора между эволюционистами и креационистами, позвольте рассказать мою версию одного бородатого анекдота:
Ежегодное собрание Американской медицинской ассоциации. Место проведения – город Чаттануга, штат Теннесси, расположенный в самом сердце Библейского пояса и известный своими религиозными умонастроениями. Группа врачей отдыхает в холле между заседаниями, наслаждаясь хорошими напитками. Постепенно разговор переходит к удивительной конструкции человеческого организма.
– Не может быть лучшего свидетельства того, что Бог приложил руку к созданию человека, чем человеческое колено, – заявляет хирург-ортопед. – Это самый сложный сустав в нашем теле. Три длинные кости ноги – бедренная кость, большеберцовая кость и малоберцовая кость – соединяются вместе в виде идеально продуманного механизма, который защищается коленной чашечкой и приводится в движение сложной системой сухожилий и связок, дополненной хрящевым амортизатором и заполненными жидкостью сумками, чтобы обеспечить плавность движений. Это настоящее чудо!
– Да, это чудо, – подхватывает нейрофизиолог. – Но я считаю, что именно человеческий мозг со всей его потрясающей сложностью позволяет в полной мере оценить дело рук Божьих. Только подумайте: 86 миллиардов нейронов, посылающих друг другу нервные импульсы со скоростью 420 километров в час внутри сети, образованной 125 триллионами синапсов! В настоящее время я работаю над компьютерным моделированием активности головного мозга, и, по нашим оценкам, нам требуется 300 миллиардов гигабайт компьютерной памяти, чтобы сохранить данные измерений всего за один год!
– Ну, не знаю, как там у вас, – вступает в разговор уролог, – но в том месте, где работаю я, дела обстоят иначе. Порой мне кажется, что всю эту систему соорудил какой-то сумасшедший сантехник. Как можно додуматься проложить семявыводящий проток по такому длинному и извилистому пути, да еще и заложить петлю вокруг мочевого пузыря?! А расположить предстательную железу на самом выходе из мочевого пузыря, чтобы та своей толщей плотно охватывала уретру?! Небольшое воспаление простаты – и на тебе: ты не можешь даже нормально помочиться! Не вижу я тут никакого божьего замысла – каким нужно быть идиотом, чтобы проложить канализационную трубу посреди спальни! Да, наша мочеполовая система – это чудо. Чудо эволюционного идиотизма!
Эволюционистская литература изобилует массой других примеров. Глотка, которая используется для дыхания и приема пищи, что значительно повышает риск асфиксии. Наличие такого рудиментарного органа, как аппендикс, который может воспаляться и вызывать аппендицит – заболевание, убивавшее тысячи людей до появления современной медицины. Плохой отток жидкости из придаточных пазух носа, вызванный тем, что мы стали прямоходящими, а наши лица сделались более плоскими: если раньше носовые пазухи выводили жидкость по направлению вперед, то теперь они вынуждены выбрасывать ее по направлению вверх. Еще один излюбленный пример эволюционистов – путь, по которому пролегает возвратный гортанный нерв у некоторых животных. Этот нерв соединяет гортань с головным мозгом, но по пути он опускается в грудную клетку и огибает дугу аорты, делая петлю (поэтому он и называется возвратным). Чем длиннее шея, тем длиннее нерв. У жирафов его длина может превышать шесть метров, притом что расстояние от гортани до мозга составляет всего несколько сантиметров. Неужели божественный перфекционист не убрал бы эту нелепую петлю и не направил бы нерв по самому короткому пути? Проблема с таким доказательством «от противного» состоит в том, что оно стремится представить эволюцию как бестолкового изобретателя, которому не хватает ума разработать продуманную и элегантную в своей простоте и функциональности конструкцию, поэтому он берет все, что попадается под руку, и сооружает чрезвычайно замысловатый и запутанный, но при этом весьма нефункциональный механизм в духе карикатур Руба Голдберга или Хита Робинсона. Например, Несс и один из самых известных эволюционистов в мире Ричард Докинз критикуют устройство человеческого глаза с его перевернутой сетчаткой и нелепым расположением фоторецепторов в глубине сетчатки – позади пролегающих по ее поверхности нервных волокон, несущих сигналы от рецепторов к мозгу. Это означает, что свет, вместо того чтобы свободно проходить к светочувствительным клеткам, должен продираться сквозь лес нервных волокон. Что за странное инженерное решение!
На мой взгляд, подобные аргументы с акцентом на «неразумности дизайна», которые обычно используются в споре с креационистами, притом что звучат весьма убедительно, оказывают эволюционному учению медвежью услугу. Вместо того чтобы подчеркивать уникальность эволюционной инженерной мысли, они представляют эволюцию как неэффективного «бестолкового умельца», нередко забывая напомнить о том, что придуманные эволюцией решения являются по-своему изысканными и функциональными. Да, поскольку эти решения искались вслепую, путем перебора в процессе мутаций и естественного отбора без какого-либо учета будущего, зачастую они являются довольно причудливыми и даже эксцентричными, особенно с точки зрения настоящих инженеров. Тем не менее наши тела не могут быть просто мешаниной всевозможных эволюционных нелепостей и ошибок. Будь это так, человеческий род давным-давно бы погиб на полях кровопролитных эволюционных сражений с другими видами. В этом смысле эволюция больше напоминает мне находчивого секретного агента Ангуса Макгайвера из телесериала «Секретный агент Макгайвер», который часто попадает в угрожающие жизни ситуации и придумывает из них выход при помощи простых предметов, таких как скотч или скрепки, а вовсе не врача-шарлатана Доктора Ника из мультсериала «Симпсоны» – как вы помните, этот невежда совершенно не знал анатомии и однажды пришил пациенту ногу вместо руки и руку вместо ноги!
Я сожалею, что эволюционисты часто не находят другого способа убедить нас в том, что человека создал не Бог, а эволюция, кроме как делая акцент на «неудачном решении». Возьмем, например, устройство глаза. Если бы некоторые эволюционисты копнули чуть глубже, они бы обнаружили весьма разумные причины, заставившие эволюцию сконструировать наш глаз так, а не иначе. Такое строение сетчатки, на первый взгляд представляющееся нелепым, на поверку оказывается в высшей степени красивым и эффективным решением, позволяющим обрабатывать огромные объемы зрительных сигналов. Я считаю, что аргументы о «неразумности дизайна» пора выбросить в мусорную корзину. В нашем случае – в разговоре об эволюционной медицине – такие аргументы не столько помогают, сколько мешают делу.
Найденные эволюцией решения часто гениальны, а не абсурдны. Но миллионы лет эволюции оставили на наших телах неизгладимые отпечатки, и не все они сегодня воспринимаются нами как положительные. Мы выжили и процветаем как вид, но наши тела изобилуют компромиссами, подчас фаустовского масштаба, на которые пришлось пойти эволюции; придуманными на скорую руку решениями; механизмами антагонистической плейотропии в духе «живи сейчас, плати потом», цель которых – помочь людям выжить в молодом и репродуктивном возрасте за счет негативного воздействия на здоровье в более позднем возрасте; различными непреднамеренными последствиями эволюционных изменений и несоответствиями между нашими организмами и современными условиями жизни. Все эти эффекты сегодня мы рассматриваем как болезни и патологии. В последнее время на нас обрушивают поток популярной оздоровительной литературы в стиле «идеальное тело благодаря…» – вегетарианству, Богу, науке или какому-либо фитнес-тренеру с его уникальной системой тренировок. Следуя в русле этой тенденции, я предлагаю вам познакомиться с вашим, пусть и не идеальным, телом, созданным эволюцией и естественным отбором – или, если ассоциировать теорию с ее создателем, – вашим «телом по Дарвину».
Подлинная трагедия состоит в том, что за всеми этими эволюционными компромиссами и несовершенствами стоят люди. Я включил их голоса в эту книгу, чтобы, рассуждая об абстрактных проблемах эволюционной теории, мы не забывали о них – о реальных людях, которые страдают от реальных болезней и немощи и которые проявляют огромную силу духа, борясь с этими болезнями сами или помогая бороться другим. Многие люди, с которыми я разговаривал, мужественно соглашаются стать «подопытными кроликами» для испытания новаторских методов лечения, основанных на эволюционном подходе. Я хочу искренне поблагодарить их всех за эту неоценимую помощь.
Наши старые друзья
Как гигиеническая гипотеза объясняет аллергию и аутоиммунные заболевания
В 1990-е годы семья Джонсонов столкнулась с бедой: их сынишка Лоренс делался все более и более неуправляемым и постоянно демонстрировал самоповреждающее поведение, причем с течением времени положение только усугублялось. Лоренс был эмоционально неустойчивым ребенком и быстро приходил в состояние возбуждения; он разбивал себе лицо, бился головой об стену, пытался выдавить себе глаза, до крови кусал руки. В два с половиной года ему поставили диагноз аутизм, и с возрастом его состояние ухудшалось. Если во время прогулки по улице светофоры загорались не тем светом, на который он рассчитывал, он впадал в ярость. Он не мог находиться в людных местах, таких как рестораны или кинотеатры, к нему часто приходилось применять силу, чтобы он не причинил себе вреда. Врачи пытались лечить его антидепрессантами, противосудорожными и нейролептическими препаратами, литием, но безрезультатно.
Родители не знали, что делать. К счастью, отец Лоренса Стюарт был сильным и энергичным человеком, «решателем проблем», поэтому он принялся самостоятельно искать способ справиться с болезнью сына и стал настоящим экспертом по аутизму. Вскоре он сделал интересное наблюдение. «Мы заметили, что, когда у Лоренса начинался жар, все симптомы аутизма исчезали. Так было в 100 процентах случаев. Стоило подняться температуре – из-за простуды, гриппа или синусита, – он прекращал причинять себе вред, становился спокойным и вел себя как совершенно нормальный ребенок. Мы разговаривали с родителями других детей-аутистов, и все они сказали то же самое».
Может быть, все дело было в плохом самочувствии и слабости, которые умеряли проблемное поведение Лоренса? Некоторые ученые предполагали, что лихорадка влияет на передачу нервных импульсов в головном мозге, другие ссылались на изменения в иммунной системе. Никто не знал, что происходит на самом деле. Но все, кто имел дело с Лоренсом, в один голос заявляли: «Мы счастливы, когда он заболевает. Тогда жизнь становится прекрасной!» Тем не менее, как только лихорадка отступала, патологическое поведение возвращалось. В 2005 году, когда Лоренсу исполнилось пятнадцать лет, его родители поняли, что больше не способны заботиться о сыне сами. И пока Лоренс находился в специальном летнем лагере, они, скрепя сердце, подали заявление о помещении мальчика в специализированное учреждение на всю оставшуюся жизнь. «Лоренс должен был уйти, потому что он убивал всю нашу семью», – сказал Стюарт.
И в этот самый момент, когда решалась печальная судьба Лоренса, раздался телефонный звонок из летнего лагеря. «Мы приготовились к худшему, – рассказывает Стюарт. – Но нам сказали: "Мы не знаем, что происходит, но Лоренс ведет себя совершенно нормально. У него хорошее настроение, он спокоен, не психует, не бьет себя, не бросает еду, активно участвует во всех мероприятиях, общается…"» Стюарт немедленно поехал в лагерь и с удивлением обнаружил, что это действительно так. Его сын выглядел умиротворенным, с удовольствием играл с другими детьми и обрадовался приезду отца. Они сели в машину и поехали домой. Мало того, что Лоренс спокойно выдержал двухчасовую поездку на машине, так по приезде еще и заявил, что хотел бы сходить куда-нибудь поужинать. Они не были в ресторане два или три года. «Всю его жизнь мы старались избегать шумных и многолюдных мест, а теперь он сам захотел туда пойти! Раньше он не мог выдержать в очереди и минуты, а тут спокойно прождал сорок пять минут, пока принесут наш заказ, потом мы не спеша поели и поболтали – в общем, это был замечательный ужин!»
Стюарт был в полном недоумении. В тот же вечер, помогая Лоренсу раздеться перед сном, он увидел, что ноги мальчика, от щиколоток до бедер, были покрыты многочисленными укусами чиггеров (личинок клещей-тромбикулидов, широко распространенных в регионах с теплым климатом). Эти личинки заползают на траву и при контакте с любым позвоночным, включая человека, прикрепляются к его коже. Могла ли существовать взаимосвязь между укусами личинок клещей и полным исчезновением симптомов аутизма у Лоренса? Обратившись к медицинской литературе, Стюарт узнал, что укусы чиггеров вызывают очень мощный иммунный ответ, поскольку личинки прокалывают кожу человека и выделяют пищеварительные соки для разжижения клеток тканей, которыми они питаются в течение нескольких дней. Затем личинки отпадают, а на месте укуса образуется сильно зудящая папула. Те десять дней, пока иммунная система Лоренса боролась с токсинами чиггеров, были для их семьи счастливым временем. Но, как только зуд прекратился и иммунная реакция стихла, насильственное и саморазрушительное поведение вернулось. «Я сказал себе: "Вот оно! Я знаю, что решение здесь! По крайней мере какая-то часть симптомов аутизма у Лоренса вызвана его искаженной иммунной реакцией"».
Стюарт знал, что лечащий врач его сына, специалист по аутизму доктор Эрик Холландер из Медицинского колледжа Альберта Эйнштейна в Нью-Йорке, провел исследование, которое показало, что у близких родственников детей, страдающих аутизмом, аутоиммунные заболевания встречаются в девять раз чаще, чем у близких родственников нормальных детей. У Лоренса была аллергия на арахис; Стюарт страдал тяжелой миастенией – аутоиммунным заболеванием, вызывающим слабость мышц и быструю утомляемость, а его жена была астматиком. Медицинская история их семьи полностью соответствовала результатам этого исследования, которое связывало аутизм с аутоиммунными заболеваниями и аллергией. Еще в 1971 году исследователи из Университета Джонса Хопкинса описали семью, где у младшего сына был диагностирован аутизм, болезнь Аддисона (аутоиммунное заболевание, затрагивающее надпочечники) и кандидоз (грибковая инфекция, вызываемая дрожжевыми грибами Candida albicans). У одного из его старших братьев был диагностирован гипопаратиреоз – заболевание, которое может иметь аутоиммунное происхождение, а также болезнь Аддисона, кандидоз и сахарный диабет 1-го типа. Другой брат страдал гипотиреозом, болезнью Аддисона, кандидозом и тотальной алопецией – аутоиммунным заболеванием, приводящим к полному облысению. А вот самый старший сын, первенец, не болел никакими болезнями, как и родители.
В 2003 году Тейн Свитен из Медицинской школы Университета Индианы сообщил о результатах исследования, которое показало, что в семьях детей с аутизмом распространенность аутоиммунных расстройств была даже выше, чем в семьях детей с аутоиммунными заболеваниями. Эти расстройства включали гипотиреоз, тиреоидит Хашимото (когда щитовидная железа атакуется собственными антителами и иммунными клетками) и ревматическую лихорадку. Свитен говорит, что это открытие более высокой распространенности аутоиммунных расстройств среди бабушек, дядей, матерей и братьев детей-аутистов «свидетельствует о возможной передаче предрасположенности к аутоиммунным заболеваниям по наследству от матери к сыну». Он также предполагает, что аутоиммунность или хроническая активация иммунной системы может объяснить некоторые биохимические аномалии, обнаруживаемые у больных аутизмом, в том числе высокие уровни мочевой кислоты и железодефицитную анемию, которые также наблюдаются при аутоиммунных расстройствах. Результаты исследования, проведенного среди датских детей в период между 1993 и 2004 годами доктором Йёрдис Атладоттир, согласуются с выводами Свитена, показывая более высокую частоту случаев аутизма среди детей, рожденных матерями с целиакией (непереносимостью глютена). Исследование также обнаружило связь между аутизмом и наличием в семье диабета 1-го типа, а также ревматоидного артрита у матерей.
Укусы клещей, исчезновение симптомов аутизма и аутоиммунные реакции – все это начало складываться в аналитическом уме Стюарта Джонсона в единую картину. Если аутизм его сына был вызван нарушением работы иммунной системы – ее гиперактивностью – значит, нужно каким-то образом ее утихомирить. Дальнейшее расследование привело его к работе Джоэла Вайнстока, Дэвида Эллиотта и их коллег из Университета Айовы. Команда исследователей под руководством Вайнстока сообщила об успешно проведенном клиническом эксперименте, в ходе которого им удалось вылечить небольшую группу пациентов с болезнью Крона (аутоиммунное воспалительное заболевание кишечника) при помощи яиц кишечного паразита – свиного власоглава (Trichuris suis). Группе из 29 пациентов через трубку в желудок вводились живые яйца этих глистов; разовая доза приема составляла 2500 яиц, процедура проводилась раз в три недели в течение 24 недель. К концу курса лечения у 79 процентов пациентов наблюдалось значительное улучшение состояния; яйца власоглава привели к ремиссии этого хронического заболевания. «Я был просто поражен, – говорит Стюарт. – Это были настоящие ученые, которые делали реальную работу и получали реальные результаты. Если это сработало с болезнью Крона, подумал я, возможно, это поможет и нам. Поэтому я написал своего рода научную мини-статью со ссылками на исследования и отправил ее Эрику Холландеру».
Холландер был заинтригован: «Стюарт очень умный парень и проделал замечательную исследовательскую работу. Его гипотеза показалась мне вполне правдоподобной, поэтому мы решили попробовать». Холландер получил необходимое разрешение на применение этого метода лечения и помог Стюарту доставить из Германии партию яиц власоглава. Они начали с небольшой дозы, опасаясь побочных эффектов. Стюарт тоже начал принимать яйца – он не собирался испытывать столь странный метод лечения на собственном сыне, не разделив его участь. Первоначальные результаты были обескураживающими. За все 24 недели терапии у Лоренса в общей сложности набралось всего четыре «хороших» дня. Стюарт позвонил производителю, и ему сказали, что в действительности эти результаты указывают на то, что человек реагирует, но будет реагировать гораздо сильнее, если увеличить дозу. Таким образом, Стюарт вышел на ту же дозировку, которую использовала команда Вайнстока для пациентов с болезнью Крона, – 2500 яиц за один прием. В течение восьми дней симптомы Лоренса полностью исчезли и с тех пор больше не появлялись. Они возвращались всего четыре раза на короткое время, когда Стюарт пытался экспериментировать и на несколько дней прекращал лечение. Но пока Лоренс регулярно принимает яйца власоглава, симптомы аутизма не дают о себе знать.
Так Стюарт Джонсон на практике применил «гигиеническую гипотезу», которая связывает бактерии, грибки и гельминтов (паразитических червей), обитающих в нашем кишечнике, дыхательных путях, влагалище и на коже, с широким спектром аутоиммунных и аллергических расстройств. Исследователи находят все больше доказательств того, что популяции микроорганизмов, живущих на нас и внутри нас, – которые все вместе называются микробиотой – могут защищать нас от множества серьезных аутоиммунных заболеваний, в том числе воспалительных заболеваний кишечника (болезни Крона и язвенного колита), диабета 1-го типа, ревматоидного артрита, рассеянного склероза, и, как мы увидели, даже поддерживать наше психическое здоровье. Некоторые исследования показывают, что микробиота также может защищать нас от целого ряда распространенных атопических или аллергических заболеваний, таких как экзема, разные виды аллергии (на пищу, пыльцу и домашних животных); сенная лихорадка, ринит и астма. Тем не менее следует особо подчеркнуть, что аутизм является сложным, многофакторным заболеванием; что же касается терапевтического применения гипотезы гигиены для лечения различных аутоиммунных и аллергических заболеваний, то сегодня в этой области делаются только первые шаги, поэтому все используемые методы являются непроверенными и неподтвержденными. Например, вышеописанный способ лечения Лоренса Джонсона лишь единичный эксперимент, не прошедший необходимые клинические испытания. Но в целом исследования в этом направлении дают весьма убедительные и обнадеживающие результаты, поэтому, если их удастся перевести в конкретные методы терапии, уже в ближайшем будущем они могут произвести настоящую революцию в медицине.
Значительные улучшения в области гигиены, санитарии и качества воды, произошедшие за последние сто лет, в сочетании с широким использованием антибиотиков и вакцинацией населения повысили качество и продолжительность жизни во всем развитом мире. Но, фактически искоренив эпидемии полиомиелита, коклюша, дизентерии, кори и многих других потенциально смертельных или инвалидизирующих инфекционных болезней, развитое постиндустриальное общество стало жертвой новых набирающих силу эпидемий аутоиммунных и аллергических заболеваний. Возьмем, например, болезни кишечника. Согласно исследованию Вайнстока, до начала XX века воспалительные заболевания кишечника (ВЗК) были фактически не известны. С 1884 по 1909 год в больницах Лондона регистрировалось в среднем два случая язвенного колита в год, а первый случай болезни Крона был описан только в 1932 году. Но во второй половине XX века ВЗК стали стремительно распространяться. В настоящее время в Соединенных Штатах воспалительными заболеваниями кишечника страдает от 1 миллиона до 1,7 миллиона человек. По текущим оценкам, в Западной Европе и Великобритании количество больных ВЗК достигает 2,2 миллиона человек, причем в Великобритании, Франции и Швеции число заболевших постоянно растет. В Восточной Европе, Азии, Африке и Южной Америке уровень заболеваемости ВЗК намного ниже, но по мере того, как эти регионы развиваются в социально-экономическом плане, этот показатель также начинает расти. Более того, когда люди переезжают из страны с низкой распространенностью ВЗК в страну с высокой распространенностью, их дети подвергаются более высокому риску развития этих заболеваний.
Или возьмем диабет 1-го типа. Хотя эта болезнь была известна на протяжении многих веков, сегодня уровень заболеваемости растет быстрыми темпами – слишком быстрыми, чтобы здесь могли быть замешаны генетические изменения. Аналогичная связь между одержимостью «чистотой и гигиеной» и аутоиммунными реакциями проявляется в заболеваемости рассеянным склерозом, который относительно редко встречается в тропических регионах, но становится все более распространенным при продвижении от экватора на север. В Соединенных Штатах к северу от 37-й параллели это заболевание встречается в два раза чаще, чем к югу от нее. Конечно, здесь играют роль и инфекционные агенты, и генетика, и уровни витамина D, но, что интересно, люди, иммигрирующие из Европы в Южную Африку взрослыми, подвергаются в три раза более высокому риску развития рассеянного склероза, чем те, которые переезжают туда в возрасте до пятнадцати лет. Таким образом, как можно предположить, защитный эффект окружающей среды в принимающей стране действует только на молодых. Противоположная тенденция наблюдается среди детей иммигрантов, переезжающих в Великобританию из Индии, Африки и стран Карибского бассейна (т. е. регионов с низкой распространенностью рассеянного склероза): эти дети подвергаются более высокому риску развития рассеянного склероза, чем их родители, но сопоставимому с риском у их ровесников, рожденных в Великобритании. Хорхе Корреале, невролог из Буэнос-Айреса, указывает, что заболеваемость рассеянным склерозом неуклонно растет во всех развитых странах. В Германии заболеваемость рассеянным склерозом в период между 1969 и 1986 годом выросла в два раза, а в Мексике начиная с 1970 года – в 29 раз, вместе со стабильным повышением уровня жизни. Корреале также указывает на наличие поразительной обратной связи между заболеваемостью рассеянным склерозом и распространением одного из самых известных кишечных паразитов – власоглава Trichuris trichiura, который раньше был широко распространен на юге США, а сегодня характерен для всех развивающихся стран. Распространенность рассеянного склероза, объясняет он, резко снижается, когда доля инфицированного населения превышает критический порог 10 процентов. Аналогичным образом такие типичные атопические заболевания, как экзема и астма, относительно редко встречаются в развивающихся странах, где уровни инфицирования гельминтами относительно высоки.
Вайнсток вспоминает, как на него «снизошло озарение», когда однажды в ожидании бесконечно откладывающегося рейса из чикагского аэропорта он размышлял о причинно-следственных связях – сначала вы что-то делаете, а потом что-то происходит. И вдруг он понял, что ответ на загадку всплеска заболеваемости кишечными и аутоиммунными заболеваниями очень прост: «Перестало происходить что-то, что происходило всегда». Другими словами, дело не в том, что новые аспекты окружающей среды способствуют развитию аутоиммунных заболеваний, а в том, что из современной среды исчезло что-то важное, в результате чего мы стали уязвимыми перед этими болезнями. «В прошлом у нас были грязные улицы, заваленные в том числе и конским навозом, и многие люди ходили босиком или в дырявой обуви. Теперь мы построили дороги и тротуары и носим хорошую обувь, так что возможности для передачи яиц гельминтов значительно сократились. Мы тщательно стерилизуем продукты питания, моем руки и т. п. – все стало чистым и стерильным. В результате гельминты практически исчезли из нашей жизни. Но стоит посмотреть на уровень дегельминтизации и уровень иммуноопосредованных заболеваний в разных странах, как обратная зависимость между ними становится очевидной. Конечно, эта отрицательная корреляция не доказывает, что гельминты полезны, но это косвенное свидетельство».
Современная санитария и гигиена оказались катастрофическими для большинства гельминтов, говорит Вайнсток. Унитазы со сливом, системы канализации и очистки сточных вод убирают яйца гельминтов, прежде чем те успевают распространиться. В том же направлении действуют частое мытье и стирка одежды. Чистящие средства дезинфицируют посуду и бытовые поверхности, также препятствуя передаче яиц. Тротуары и хорошая обувь препятствуют распространению анкилостом, в частности анкилостомы Нового Света (Necator americanus), кривоголовки двенадцатиперстной (Ancylostoma duodenale) и угрицы кишечной (Strongyloides stercoralis). А современные способы обработки пищевых продуктов убивают личинки лентецов (Diphyllobothrium), цепней (Taenia) и трихинелл (Trichinella). Эти изменения практически искоренили гельминтов в промышленно развитых странах. До 1960-х годов трихинеллез был эндемическим заболеванием в северо-восточной и западной части Соединенных Штатов, распространяясь через употребление в пищу зараженной свинины. Сегодня мы имеем менее двадцати пяти случаев заражения в год. Безусловно, в такой массовой дегельминтизации есть свои плюсы, но вместе с водой мы выплеснули и младенца – а именно ту защиту, которую обеспечивали нам эти организмы. Классический пример такой палки о двух концах демонстрирует Восточная Африка. Анализируя причины значительного прогресса, достигнутого за последние годы в школах Кении, исследователи, к своему удивлению, обнаружили, что гораздо более важным фактором, чем снабжение школ учебниками и учебными пособиями, отсутствие которых предположительно тормозило успеваемость в прошлом, были гельминты. После того как благодаря масштабным программам дегельминтизации были практически искоренены такие гельминты, как шистосомы и анкилостомы, успеваемость школьников резко пошла вверх. Однако нежелательным побочным эффектом дегельминтизации стал резкий рост заболеваемости экземой и другими аллергиями среди кенийских и угандийских детей. В Тропической Африке такие раздражения кожи, как правило, остаются без лечения, и постоянное расчесывание детьми зудящей кожи повышает риск инфекций и сепсиса.
Доктор Хорхе Корреале занимается лечением больных рассеянным склерозом в Аргентине. Несколько лет назад у двенадцати из двадцати четырех пациентов, которых он вел, обнаружилась легкая степень заражения кишечными паразитами. Он наблюдал за всеми пациентами на протяжении чуть более четырех лет, регулярно проверяя их иммунологическую функцию и отслеживая распространение очагов поражения в головном и спинном мозге при помощи МРТ. У инфицированных пациентов было значительно меньше рецидивов и меньше очагов поражения, а также гораздо лучшие показатели по всем параметрам оценки степени инвалидизации. Тогда Корреале решил увеличить период наблюдений до семи лет, но через пять лет четыре инфицированных пациента прошли антигельминтную терапию, потому что паразиты вызывали боли в кишечнике и диарею. Как только их организмы были очищены от гельминтов, все признаки и симптомы рассеянного склероза тут же усилились, и в скором времени их состояние сравнялось с состоянием неинфицированных пациентов.
Эрика фон Мутиус, специалист по аллергиям из Мюнхенского университета, в период объединения Восточной и Западной Германии получила уникальную возможность проверить свою теорию, согласно которой высокие уровни загрязнения воздуха и плохие условия жизни, включая высокую скученность людей, способствуют распространению астмы, сенной лихорадки и других атопических заболеваний. Она предполагала, что у детей из более богатой Западной Германии – с ее лучшей экологической обстановкой, высоким уровнем санитарии и меньшим количеством загрязняющих предприятий тяжелой промышленности – атопические заболевания должны встречаться гораздо реже, чем у детей из Восточной Германии. Каково же было ее удивление, когда она обнаружила совершенно обратную ситуацию. Восточногерманские дети, которые жили в тесных квартирах вместе со множеством родственников и домашних животных и целые дни проводили в детских садах в переполненных группах, намного реже страдали аллергиями и астмой, чем их западногерманские сверстники. Таким образом, фон Мутиус пришла к выводу, что контакт в раннем детстве с разнообразными микробными инфекциями (со стороны других детей, взрослых и животных) тренирует иммунную систему, делая ее более устойчивой к потенциальным аллергенам в дальнейшем.
Затем она решила сравнить городское и сельское население по всей Европе. Оказалось, что дети, которые растут на традиционных фермах, где они с рождения контактируют с домашним скотом и его кормом и пьют непастеризованное молоко, лучше защищены от астмы, сенной лихорадки и других видов аллергической сенсибилизации. Фон Мутиус отмечает, что в Швейцарии, Австрии и Германии, где фермерство традиционно было основным источником средств к существованию, сегодня большинство фермеров занимаются не только производством молочной продукции, но и разводят других животных, таких как лошади, свиньи, овцы, козы и домашняя птица, а также выращивают кукурузу, траву и зерно на корм скоту. Во многих фермерских хозяйствах животные, корма и люди находятся под одной крышей. Кроме того, женщины работают в хлеву и амбарах до, во время и после беременности и уже через несколько дней после рождения ребенка берут его с собой, чтобы присматривать за ним во время работы. Фон Мутиус подчеркивает, что несколько факторов, судя по всему, играют ключевую роль в развитии толерантности к аллергенам. Это «общение» с микробами в раннем детстве, даже в период внутриутробного развития, и разнообразие видов животных – а отсюда и разнообразие видов микробов и их количество, – с которыми контактируют дети.
Из всех аутоиммунных заболеваний диабет 1-го типа (и его все более раннее начало) стремительно становится главным бичом нынешнего одержимого гигиеной западного мира. По прогнозам, уровень заболеваемости среди европейских детей в возрасте до пяти лет в течение следующего десятилетия должен удвоиться. Но печальным рекордсменом здесь является Финляндия с самым большим процентом диабетиков 1-го типа в мире. В попытке выяснить причины такого положения дел, Микаэль Книп и его коллеги из Университета Хельсинки провели широкомасштабное исследование, чтобы определить, какую роль играют генетические, а какую внешние факторы в развитии этого угрожающего жизни заболевания, при котором иммунная система организма атакует бета-клетки поджелудочной железы, ответственные за производство инсулина, что приводит к хронически высокому уровню сахара в крови. Несмотря на то, что инсулиновая терапия позволяет стабилизировать состояние и устранить угрозу жизни, у многих больных со временем развивается слепота и поражение почек.
Карелия – территория на севере Европы, где традиционно проживает карельская народность. Эта территория разделена на две части: одна часть находится в Финляндии, а другая во время Второй мировой войны была присоединена к России. Таким образом, с тех пор существует финская и российская Карелия. Несмотря на то, что российские и финские карелы имеют одинаковый генетический профиль, включая одинаковую предрасположенность к диабету, их социально-экономическое положение и состояние здоровья существенно разнятся. Согласно Книпу, один из самых резких в мире перепадов в уровне жизни существует на границе между российской и финской Карелией, поскольку по объему ВНП последняя опережает первую в восемь раз. Это даже больше, чем разница между Мексикой и Соединенными Штатами. Тем не менее распространенность диабета 1-го типа, а также множества других аутоиммунных заболеваний на финской стороне гораздо выше. Среди финских карелов диабет встречается в шесть раз чаще, целиакия – в пять раз чаще, аутоиммунные заболевания щитовидной железы – в шесть раз чаще, а также наблюдаются более высокие уровни различных аллергий, чем среди российских карелов.
Книпу удалось наладить сотрудничество с российской стороной и собрать медицинские данные, образцы стула, пробы крови и мазки с кожи и из носа у нескольких тысяч детей по обе стороны границы. Исследователи обнаружили, что к двенадцати годам российские карелы подвергаются более высокой микробной нагрузке и имеют более разнообразные по своему составу колонии микробов в кишечнике, где шире представлены полезные виды бактерий, известные своей активной ролью в защите и поддержании оболочки кишечника. Исследователи также нашли биохимические свидетельства более точной отрегулированности иммунной системы. Кроме того, хотя дефицит витамина D часто указывается как важный фактор развития диабета 1-го типа, исследователи обнаружили с российской и эстонской стороны в целом более низкие уровни витамина D, чем с финской. Грубо говоря, российские карелы живут беднее и грязнее, чем их финские собратья, но с точки зрения иммунозависимых заболеваний гораздо здоровее.
Может ли раннее знакомство с широким кругом бактерий, грибков и гельминтов (которые в прошлом атаковали детей с самого рождения) действовать так же, как детские прививки, – например, как тройная вакцина против кори, краснухи и паротита – т. е. стимулировать иммунитет? Гигиеническая гипотеза в ее первоначальном варианте утверждает, что так оно и есть. Эта гипотеза впервые появилась в XIX веке в контексте изучения аллергии. В 1873 году Чарльз Харрисон Блэкли заметил, что сенная лихорадка, или поллиноз, причиной которой является аллергическая реакция на пыльцу, крайне редко встречается у фермеров. Чуть позже, в 1980-х, Дэвид Стрэкен из Госпиталя святого Георгия в Лондоне установил, что наличие в семье нескольких старших братьев и сестер также ассоциируется с более низким риском развития сенной лихорадки. Он предположил, что от развития аллергии младших детей защищает так называемый «синдром грязного брата», т. е. большое количество постнатальных инфекций в многодетных семьях. Таким образом, гипотеза Стрэкена гласила, что в результате таких ранних инфекционных атак дети приобретают иммунитет к этим заболеваниям, точно так же как это происходит при детской вакцинации, и что наша почти патологическая одержимость гигиеной лишает нашу иммунную систему столь важного стимулирования. Между тем за последние десять лет был обнаружен ряд важных свидетельств того, что здесь могут существовать куда более глубинные взаимосвязи.
Первое свидетельство касается того факта, что на протяжении значительного периода нашей эволюции мы, люди, подвергались воздействию некоторых видов бактерий, грибков и гельминтов, причем этот период существенно больше того, который мы имеем в случае более современных патогенов, таких как холера и корь. Джордж Армелагос из Университета Эмори считает, что на протяжении палеолита (более 2,5 миллиона – 10 тысяч лет назад) наши предки постоянно контактировали с сапрофитными микобактериями, в изобилии живущими в почве и разлагающейся растительности. Поскольку в то время люди ели необработанную пищу и хранили продукты в земле, их питание, вероятно, содержало в миллиарды раз больше сапрофитных и других непатогенных бактерий, таких как лактобактерии, чем питание современных людей. Кроме того, они были хронически инфицированы различными гельминтами. Молекулярный анализ ленточных червей, объясняет Армелагос, показывает, что 160 тысяч лет назад, до исхода человека из Африки, они повсеместно паразитировали в кишечнике человека. Хотя тяжелая форма гельминтозов ведет к ухудшению здоровья человека, паразиты редко убивают хозяина. После того как гельминты поселялись в организме, избавиться от них в те времена, когда не было современных лекарственных препаратов, было почти невозможно, поэтому хроническая гиперактивная иммунная реакция принесла бы человеческому организму гораздо больше вреда, чем пользы. У человеческого организма был только один выход – научиться жить вместе с ними.
Только после появления первых городов примерно шесть тысяч лет назад, когда люди начали жить в условиях многолюдия и скученности, появилось новое поколение тяжелых эпидемических заболеваний, таких как холера, тиф, корь, паротит, оспа и многие другие. Эти более современные болезни существуют недостаточно давно, чтобы обусловить такие же эволюционные изменения в людях, как более древние инфекции. Гельминты, грибы, микобактерии и синантропные бактерии жили бок о бок с нами – и внутри нас – на протяжении сотен тысяч лет. Мы эволюционировали вместе с ними, т. е. мы коэволюционировали. Неудивительно, что Грэм Рук из Университетского колледжа в Лондоне, авторитетнейший специалист в своей области, назвал эти организмы «старыми друзьями» и переименовал гигиеническую гипотезу в «гипотезу старых друзей», тем самым акцентировав ключевой аспект нашей долговременной коэволюции.
Второе свидетельство наших глубинных связей заключается в том, что мы нуждаемся в раннем воздействии этих «старых друзей» не только для того, чтобы активировать нашу иммунную систему, но и для того, чтобы ее создать, сформировать и довести до состояния зрелости. Пожалуй, самый убедительный пример, доказывающий, что мы, люди, коэволюционировали вместе с микроорганизмами внутри нас, – это взаимодействие человеческих детей с бактериями во время родов и в первые критические месяцы жизни.
Во время беременности в бактериальной флоре влагалища происходят важные изменения. Число видов и общее количество бактерий уменьшается, однако некоторые виды, наоборот, расширяют свое присутствие. Большинство из них относятся к лактобактериям (Lactobacillus) – роду бактерий, которые обычно используются для приготовления пробиотических йогуртов – конкретно, это бактерии L. crispatus, L. jensenii, L. iners и L. johnsonii. Они поддерживают во влагалище кислую среду, которая защищает его от патогенных микроорганизмов, но, кроме того, являются важными представителями постоянной микрофлоры кишечника. Во время родов ребенок невольно заглатывает эти бактерии, которые затем быстро заселяют его кишечник и защищают его от патогенных микроорганизмов, таких как энтерококки. Кроме того, когда ребенок выходит из влагалища, он «заражается» бактериями, присутствующими в остатках фекалий у анального отверстия матери. Как правило, это бывают определенные виды факультативных анаэробов – бактерий, которые могут существовать как в присутствии, так и в отсутствии кислорода. Эти бактерии способны выжить в кишечнике новорожденного, где есть кислород, но быстро создают в нем такую среду, которая позволяет поселиться там бактериям из числа «старых друзей», таким как бифидобактерии.
Ребенок рождается с практически стерильным кишечником, который должен быть немедленно заселен правильными бактериями. Если он находится на грудном вскармливании, то начинает получать один из самых удивительных продуктов, существующих в природе. Человеческое грудное молоко содержит сложный набор жиров и сахаров – быстрое питание, – а также иммуноглобулин А, антитела, которые защищают слизистую оболочку кишечника от повреждения вирусами и бактериями и не дают им проникать в организм. По оценкам, с грудным молоком младенец получает более 100 миллионов иммунных клеток в день, в том числе макрофагов, нейтрофилов, лимфоцитов, вместе с большим количеством цитокинов, хемокинов и колониестимулирующих факторов – веществ, которые обеспечивают передачу сигналов между клетками иммунной системы и способствуют их росту. Всего в человеческом грудном молоке обнаружено более 700 видов бактерий, многие из которых – такие как лактококки, лейконостоки и лактобактерии – способны переваривать молочный сахар (лактозу). Также в молоке находится большое количество бифидобактерий, одного из самых мощных пробиотиков.
Один из основных твердых компонентов грудного молока – сложные длинноцепочечные сахара, называемые олигосахаридами. В литре грудного молока их находится около десяти граммов, и их количество в человеческом молоке в 10–100 раз больше, чем в молоке любых других млекопитающих. Между тем ребенок не способен усваивать эти молекулы – у него попросту нет необходимых для этого ферментов. На протяжении многих лет ученые недоумевали, почему человеческое молоко содержит такое большое количество неперевариваемых веществ, но не так давно было выяснено, что олигосахариды предназначаются вовсе не для самого ребенка. Они служат питанием для тех бифидобактерий, которые содержатся в грудном молоке. Например, бифидобактерии B. longum имеют 700 уникальных генов, которые кодируют выработку ферментов, участвующих в переработке олигосахаридов. Эти дружественные микроорганизмы доставляются в детский кишечник вместе с собственным эксклюзивным ланчем. Таким образом, бифидобактерии получают хорошую фору в агрессивной бактериальной конкуренции в детском кишечнике. Младенцы быстро переваривают и усваивают более простые сахара, так что практически единственными молекулами сахара, которые остаются не расщепленными к тому моменту, когда еда достигает толстой кишки, являются олигосахариды. Это означает, что все виды присутствующих там бактерий вынуждены конкурировать за этот единственный источник углеводов, и эксклюзивная ферментативная способность бифидобактерий дает им важное конкурентное преимущество. Говоря языком дарвиновской медицины, находящиеся на грудном вскармливании младенцы являются экологическими нишами для бифидобактерий. В свою очередь, в процессе эволюции дети научились в полной мере использовать эти дружественные микроорганизмы. Так, одно исследование, выполненное в Финляндии, показало, что бифидобактерии составляют 90 процентов кишечной микрофлоры у младенцев в возрасте 3–5 дней.
Пробиотические бактерии выполняют важнейшие функции. Незрелый, стерильный кишечник новорожденного беззащитен перед агрессивными патогенами, а его неразвитая иммунная система еще не умеет распознавать и уничтожать захватчиков. Пробиотические бактерии могут действовать как рецепторы-ловушки, обманывая патогенные микроорганизмы и не давая им прикрепляться к стенке кишечника. Например, они могут защищать младенцев от такого потенциально смертельного заболевания, как некротический энтероколит. Oни также участвуют в образовании биопленки из насыщенной пробиотической слизи, которая защищает внутреннюю поверхность кишечника, и помогают сформировать хорошо регулируемую иммунную систему. Кишечник имеет свою собственную иммунную систему, распределенную вдоль его стенок и известную как лимфоидная ткань кишечника, и было установлено, что пробиотические бактерии играют важную роль в ее нормальном развитии. Эксперименты показали, насколько мощным влиянием обладают пробиотики. Когда в ходе контролируемых исследований в детскую питательную смесь добавляли олигосахариды, это приводило к снижению уровней циркулирующего иммуноглобулина Е (IgE), который является важным маркером аллергических реакций. Кроме того, было зафиксировано уменьшение количества случаев атопического дерматита, диареи и инфекций верхних дыхательных путей. Таким образом, система ребенок – богатое олигосахаридами грудное молоко – пробиотические бактерии является одним из самых красивых примеров коэволюции, известных науке, и уникальным механизмом, помогавшим человеческому потомству выживать на протяжении тысячелетий.
Рискуя предъявить еще одно обвинение современному развитому миру, все большее количество исследований демонстрирует отрицательные аспекты кесарева сечения и искусственного вскармливания. Кишечники детей, рожденных с помощью кесарева сечения, с большей вероятностью изначально колонизируются бактериями, которые обычно обитают на коже, и испытывают нехватку «дружественных» бактерий, таких как бифидобактерии. Таким детям требуется не менее пяти месяцев, чтобы сформировать в кишечнике устойчивую, здоровую микробиоту (микрофлору). В кишечниках искусственно вскармливаемых младенцев обнаруживаются более многочисленные популяции таких условно-патогенных бактерий, как клостридии, энтеробактерии, энтерококки и бактероиды. Доктор Кристина Коул Джонсон из Госпиталя Генри Форда в Детройте наблюдала за более чем тысячью младенцев с рождения до двух лет. Дети, рожденные в результате кесарева сечения, были в пять раз более склонны к развитию аллергий, чем дети, родившиеся естественным путем. Другие исследования добавляют в список риска такие заболевания, как целиакия, ожирение, диабет 1-го типа и даже аутизм. Одним из очевидных решений этой проблемы может быть целенаправленное «заражение» детей, появившихся на свет путем кесарева сечения, бактериями-пробиотиками при рождении. Именно это и делает Мария Домингес-Белло вместе со своими коллегами из США и Пуэрто-Рико. Они выдерживают марлевые тампоны в течение одного часа во влагалище женщин, которым предстоит кесарево сечение, и, как только ребенка извлекают из матки, обтирают его этими тампонами – сначала внутри ротовой полости, затем лицо и все тело. Анализы показывают, что после такой «обработки» младенцы населяются бактериальными популяциями из влагалищ своих матерей и после рождения имеют более богатое разнообразие видов бактерий в кишечнике, которое немного уменьшается после начала грудного вскармливания, пока не придет в соответствие с микробным профилем материнского молока.
По всей видимости, через грудное молоко также может происходить передача хороших и плохих черт непосредственно от матери к ребенку. Например, установлена взаимосвязь между материнским ожирением и разнообразием видов бактерий в грудном молоке. Страдающие ожирением женщины производят молоко с более бедным видовым составом по сравнению с худыми матерями. Их молоко содержит меньше полезных пробиотических видов бактерий и больше потенциально патогенных бактерий, таких как стафилококки и стрептококки. Существуют данные о том, что при приобретении детьми кишечной микробиоты, ассоциируемой с ожирением, у них повышается риск развития ожирения, а также резистентности к инсулину. Страдающие аллергией матери также могут передавать свои неправильные иммунные «настройки» детям. Установлено, что грудное молоко таких матерей содержит меньше пробиотических бифидобактерий. Хотя через несколько месяцев после рождения все дети, находящиеся как на грудном, так и на искусственном вскармливании, приобретают примерно одинаковую по своему видовому составу кишечную микробиоту, характер ранней колонизации в первые несколько дней после рождения, по всей видимости, играет ключевую роль в формировании иммунной системы.
Но каким образом «дружественные» бактерии попадают в грудное молоко? Швейцарский исследователь Кристоф Шассар говорит, что в кишечнике матери, ее грудном молоке и кишечнике ребенка обнаруживается одинаковый видовой состав бактерий. Судя по всему, бактерии перемещаются из кишечника в материнскую грудь следующим образом: они проникают через стенки кишечника и попадают в мезентериальные (брыжеечные) лимфатические узлы, из которых транспортируются через лимфатическую систему в молочные железы. Таков полный цикл вертикальной передачи от матери к ребенку, который, помимо прочего, означает, что ребенок в значительной степени зависит от состояния материнского кишечника. Если мать имеет здоровую кишечную микрофлору, ребенок будет здоров; если же ее микрофлора значительно обеднена, ее ребенок будет страдать аналогичными нарушениями.
Одному владельцу ресторана в лондонском Ковент-Гардене пришла в голову идея, что человеческое грудное молоко может быть отличной приманкой для покупателей. Он начал продавать новый вид мороженого под названием Baby Gaga, изготовленного из женского грудного молока с добавлением мадагаскарской ванили и лимонной цедры. Первым щедрым донором стала кормящая мать Виктория Хайли, остальные женщины-доноры были найдены через интернет-форумы. Как сообщает BBC News, по желанию покупателей к мороженому могут добавлять сухарики или ложку «Калпола» (детского обезболивающего средства) или «Бонджела» (геля для прорезывания зубов). «Некоторые люди, услышав об этом, говорят "Фу!", но на самом деле это экологически чистый, органический и абсолютно естественный продукт», – говорит Хайли, а владелец ресторана Мэтт О'Коннор добавляет: «За последние сто лет никто не делал с мороженым ничего интересного!» Но у этой истории есть продолжение. Инспекция по контролю за качеством пищевых продуктов Лондонского городского совета Вестминстера потребовала убрать мороженое из продажи: у них, видите ли, нет гарантий, что оно пригодно для потребления человеком!
Примерно через неделю после рождения изначально стерильный кишечник ребенка заселяется колонией микроорганизмов, насчитывающей до 90 триллионов бактерий. Вот несколько удивительных фактов: общее количество бактерий в нашем кишечнике на порядок превышает общее количество клеток в нашем теле; вся микрофлора кишечника весит намного больше, чем наш мозг или печень; а совокупное количество бактериальных генов в сто раз превосходит количество генов в геноме человека. Эти микробы вовсе не туристы, а «местные жители» в нашем организме. Хотя ученые уже давно признали, что бльшая часть микробиоты является безвредной и даже полезной, предполагалось, что мы и живущие внутри нас микроорганизмы просто питаемся с одного стола. Считалось, что мы позволяем им забирать часть питательных веществ, проходящих через наш кишечник, и обеспечиваем их теплой и бескислородной средой обитания, а они взамен снабжают нас отходами своего пищеварения, такими как витамины B, H и K, которые мы не можем производить сами, а также расщепляют сахара и жирные кислоты наподобие бутирата, помогая нашему метаболизму. Но теперь стало ясно, что наши отношения со «старыми друзьями» выходят далеко за рамки такого симбиоза. Мы эволюционировали в столь тесной взаимозависимости с нашей микробиотой, что разделять наши с ней геномы больше нет смысла. Отныне ученые говорят о метагеноме, представляющем собой совокупность геномов человека и его микробиоты, – суперорганизме, в котором мы, люди, являемся младшими партнерами и без которого мы уже не можем существовать. Ученые задают два фундаментальных, связанных между собой вопроса. Во-первых, каким образом наш организм отличает «старых друзей» (синантропные бактерии, грибки и кишечные гельминты) от опасных патогенов, чтобы мирно уживаться с первыми и атаковать вторых? Во-вторых, что происходит со здоровьем человека, когда эти «старые друзья» ослабевают или полностью исчезают? Ответы на эти вопросы позволяют нам приблизиться к более глубокому пониманию процессов, протекающих в нашем организме, и получению более точного представления о работе нашей иммунной системы, а также обещают привести к появлению в недалеком будущем нового поколения фармакологических средств, которые помогут побороть масштабные эпидемии аллергических и аутоиммунных заболеваний, терзающие сегодня развитые страны.
Чтобы понять, как «старые друзья» манипулируют нашей иммунной системой, чтобы замаскироваться под «своих», нам понадобится знание некоторых основополагающих фак тов о том, как устроена и как функционирует эта система. Человеческая иммунная система состоит из двух подсистем: врожденной иммунной системы, которая есть у всех животных, включая позвоночных и беспозвоночных, и адаптивной иммунной системы, которая имеется только у позвоночных. Врожденная иммунная система реагирует на патогены неспецифическим образом – она не может обеспечить длительной, надежной защиты, поскольку не обладает иммунологической памятью и не запоминает патогены, с которыми сталкивается. Как только иммунная система обнаруживает патоген, она немедленно начинает действовать, запуская в месте повреждения или проникновения инфекции воспалительную реакцию. Она «оцепляет» зараженный участок, расширяет окружающие кровеносные сосуды и стягивает к этому месту иммунные клетки для борьбы с инфекцией. За воспалительную реакцию отвечают цитокины – вещества, обеспечивающие передачу сигналов между иммунными клетками, а также гистамины и простагландины. Наиболее важными «провоспалительными» цитокинами являются фактор некроза опухоли альфа (ФНО-), гамма-интерферон (интерферон ) и интерлейкины 1, 6, 7 и 17. Система врожденного иммунитета также включает вспомогательную систему белков плазмы крови, которая помогает другим иммунным клеткам или дополняет их действие: атакует и разрушает патогены, специально маркирует их, чтобы сделать распознаваемыми для иммунных клеток, и привлекает на поле боя еще больше провоспалительных факторов.
Основные клетки врожденной иммунной системы – это лейкоциты (белые кровяные клетки). Существует множество разных видов лейкоцитов. Тучные клетки (мастоциты) присутствуют во всех слизистых оболочках, например, кишечника и легких, и вырабатывают гистамин, цитокины и хемокины – вид цитокинов, которые действуют как дорожные указатели для других иммунных клеток, направляя их к месту действия. Наиболее важными среди лейкоцитов являются фагоциты – группа клеток, которые активно захватывают и поглощают чужеродные организмы. Эта группа включает макрофаги (буквально «большие поедатели»); нейтрофилы, которые вырабатывают токсичные для болезнетворных организмов химические вещества, такие как перекись водорода, свободные радикалы и гипохлорит (природный отбеливатель), и дендритные клетки, особенно распространенные в стенке киечника, чья основная задача – захватывать чужеродные белки (антигены) из оболочки болезнетворных бактерий и вирусов и затем «презентовать» их на своей поверхности в такой форме, чтобы клетки адаптивной иммунной системы могли распознать их и запустить иммунный ответ. Дендритные клетки играют роль связующего звена между врожденной и адаптивной иммунной системой.
Ключевыми агентами адаптивной иммунной системы являются два типа белых кровяных клеток, называемых лимфоцитами. Первый тип – B-клетки (B-лимфоциты), которые образуются в костном мозге и в незрелом виде поступают в различные лимфоидные ткани, такие как селезенка, лимфатические узлы и иммунологически активная ткань стенки кишечника. Зрелые В-лимфоциты синтезируют на своей поверхности специальные рецепторные молекулы, предназначенные для распознавания антигенов чужеродных микроорганизмов. Эти рецепторы представляют собой молекулы иммуноглобулина с гипервариабельным «наконечником». Гены, кодирующие этот гипервариабельный участок, способны очень быстро мутировать, производя почти бесконечное число комбинаций, с тем чтобы создать рецептор, точно соответствующий антигенам конкретного патогенного организма. Таким образом, наивные В-клетки могут быстро произвести правильный замок для любого антигенного ключа. После связывания антигена с рецептором В-клетка либо трансформируется в плазматическую клетку и превращается в фабрику по выработке антител – она штампует миллионы копий данной рецепторной молекулы и выпускает их в свободное плавание в кровяное русло, где они находят и связывают соответствующие антигены; либо она превращается в В-клетку памяти, которая может долгое время жить в организме, сохраняя информацию об активировавшем ее антигене, и при новой встрече со старым врагом немедленно запускать иммунную реакцию.
Второй ключевой агент адаптивной иммунной системы – это Т-клетки, или Т-лимфоциты. Их незрелые предшественники мигрируют из костного мозга в тимус (отсюда и название Т-клетки), где они проходят несколько этапов созревания. Одна группа Т-лимфоцитов, эффекторные Т-лимфоциты, также имеют на своей мембране гипервариабельные рецепторы, которые могут быть трансформированы под любой антиген, находящийся на оболочке вторгшегося вируса или бактерии. Они не вырабатывают антитела, а непосредственно атакуют захватчиков и уничтожают их. Т-лимфоциты быстро производят целую армию клонов, специфических по отношению к конкретному антигену, которая бросается на уничтожение микроорганизмов с данным антигенным профилем. Часть этих специфических Т-лимфоцитов может оставаться в крови и лимфе двадцать лет и больше, отвечая за так называемую полупостоянную иммунологическую память. Именно эта память обеспечивает нас приобретенным иммунитетом, благодаря которому мы быстрее и легче справляемся с последующими вторжениями уже знакомого патогена, поскольку наши В-клетки памяти и Т-клетки уже наготове, как ружье с взведенным курком. Этот же принцип лежит в основе вакцинации, когда в организм вводятся мертвые, инактивированные или ослабленные вирусы и бактерии или же извлеченные из их внешней оболочки антигены, чтобы заставить организм выработать клоны лимфоцитов памяти, готовые немедленно дать отпор при проникновении настоящего, активного патогена. Таким образом, адаптивная иммунная система распознает конкретные антигены, производит специфические рецепторы и антитела для борьбы с ними, запоминает врагов «в лицо» и мгновенно дает отпор при следующей встрече с ними. Оба вида лимфоцитов – В-клетки и Т-клетки – проходят процесс созревания в костном мозге или тимусе, где отсеиваются те новобранцы, которые слишком сильно реагируют на «свои» антигены – белковые маркеры, находящиеся на собственных клетках организма. Другими словами, их «учат» проводить различие между «своими» и «чужими» и действовать соответственно.
Решающее значение для понимания аллергических и аутоиммунных заболеваний имеют два других вида Т-лимфоцитов. Первые – это Т-хелперы, или Тх (от английского helper – помощник). Они называются так потому, что помогают другим белым кровяным клеткам организовать защиту от патогенов. После активизации антигенами, «презентованными» другими клетками, они вырабатывают сигнальные молекулы – цитокины, которые могут либо подавлять, либо, наоборот, запускать иммунный ответ. Нас интересуют три типа Т-хелперов – это Tх1, задействованные в аутоиммунных заболеваниях; Tх2, которые участвуют в реализации ответа на кишечных гельминтов и типичные аллергены (и, следовательно, замешаны во всех аллергических и атопических расстройствах), и Tх17. Все трое обеспечивают защиту от целого ряда микробных захватчиков, против которых бессильны другие Т-хелперы, и продуцируют очень мощные провоспалительные цитокины – вследствие чего они также способны вызывать широкий спектр аутоиммунных заболеваний. Второй вид Т-лимфоцитов, который интересен в контексте нашего разговора, – это регуляторные Т-лимфоциты (Treg). Их задача – подавляя или регулируя активность хелперов Тх1 и Тх2 и других иммунных клеток-убийц, не давать им выходить из-под контроля. В частности, они отвечают за прекращение воспалительной цитотоксической реакции, как только вторгшийся патоген уничтожен.
На момент появления гигиенической гипотезы предполагалось, что клетки Тх1 и Тх2 являются антагонистами, функционируя по принципу качелей – т. е. факторы, способствующие выработке клеток Тх1, ингибируют выработку клеток Тх2, таким образом предотвращая аллергические реакции. И наоборот, факторы, приводящие к увеличению популяции клеток Тх2, подавляют выработку клеток Тх1, что предотвращает аутоиммунные реакции. Однако вскоре стало очевидно, что при некоторых видах аутоиммунных расстройств пациенты одновременно страдают и атопическими заболеваниями (как семья Джонсонов), и, кроме того, неспроста в развитых странах мира наблюдается одновременный рост аутоиммунных и аллергических заболеваний. Это заставило ученых пересмотреть свои представления о динамике иммунной системы, и в настоящее время считается, что именно регуляторные Т-клетки выполняют функцию главного переключателя, который запускает выработку всех эффекторных клеток – в том числе Тх1 и Тх2 – в иммунной системе. Для того чтобы наша иммунная система не рассматривала их как угрозу и не бросалась в бой, наши «старые друзья» используют хитрый прием – они стимулируют выработку регуляторных Т-лимфоцитов, которые сдерживают штурмовые батальоны эффекторных Т-клеток и, таким образом, вызывают состояние иммунологической толерантности. Например, микробиологи Джун Раунд и Саркис Мазманян исследовали пробиотические бактерии группы Bacteroides fragilis, которые присутствуют в кишечнике большинства млекопитающих. Они обнаружили, что эти бактерии синтезируют специфическое симбиотическое вещество, называемое полисахаридом А (PSA), которое связывается непосредственно с одним из рецепторов регуляторных Т-лимфоцитов. PSA действует как «паспорт», благодаря которому эти лимфоциты принимают бактерий за «своих» и подавляют воспалительную реакцию. Когда же исследователи блокировали выработку полисахарида А у Bacteroides fragilis, регуляторные лимфоциты немедленно распознавали в них «чужаков» и активизировали клетки Тх17, которые запускали воспалительную реакцию и уничтожали захватчиков.
Здесь действует один общий принцип. Иммунной системе человека пришлось научиться быть толерантной к широкому спектру микробов и грибов, которые присутствовали в пище и воде – и, следовательно, инфицировали людей – на протяжении миллионов лет. То же самое касается и гельминтов – как только они поселялись в организме, избавиться от них было почти невозможно, поэтому иммунная атака на них принесла бы непропорционально больше вреда, чем пользы. Например, упорные попытки иммунной системы уничтожить личинки нитевидного гельминта Brugia malayi могут приводить к развитию воспалительных уплотнений в стенках лимфатических сосудов и их закупорке, что вызывает слоновую болезнь. Тысячелетия совместного существования привели к развитию состояния взаимозависимости. Этим синантропным организмам нужно было научиться манипулировать нашей иммунной системой таким образом, чтобы иметь возможность спокойно существовать внутри нас, не подвергаясь постоянным атакам, а нашей иммунной системе нужно было научиться не реагировать чересчур интенсивно на этих долгосрочных резидентов, чтобы не причинять вреда своему же организму. Это означает, что в определенном смысле мы передали контроль над нашей собственной иммунной системой обитающей внутри нас микробиоте. Но тут есть одна опасность: дело в том, что подобная схема иммунной регуляции прекрасно работает при наличии в нашем кишечнике богатого ассортимента «дружественных» бактерий, грибов и гельминтов; но, как только «старые друзья» исчезают, эта схема быстро дает сбой. Наша мощная иммунная система, привыкшая функционировать в присутствии относительно безвредных эндопаразитов, выходит из-под контроля и лишается тормозов, вызывая хронические воспалительные процессы, что и является причиной сегодняшних эпидемий аллергических и аутоиммунных заболеваний.
Исследователь Маттео Фумагалли из Калифорнийского университета в Беркли считает, что паразитические черви оказывали довольно значительное давление отбора на человека на протяжении всей его истории. Даже сегодня, говорит он, свыше 2 миллиардов человек инфицированы гельминтами, что является распространенной причиной детской заболеваемости. Паразитарные инфекции замедляют рост, повышают подверженность другим инфекциям, вызывают преждевременные роды, служат причиной низкого веса при рождении и материнской смертности. Так было всегда. Фумагалли утверждает, что давление отбора, оказываемое на человеческий род гельминтами, было гораздо сильнее, чем давление, оказываемое бактериями, вирусами или даже климатом, и что свидетельство этого можно увидеть в наших геномах, особенно среди генов, отвечающих за иммунные реакции. Используя данные из Проекта по определению разнообразия человеческого генома, он взял образцы геномов 950 человек со всего мира и соотнес присутствующие в них генные мутации с видовым разнообразием гельминтов в соответствующих частях планеты. Почти у трети человек была обнаружена по меньшей мере одна генная мутация, в значительной степени ассоциирующаяся с видовым разнообразием гельминтов, а в общей сложности было найдено более восьмисот таких генных мутаций. Многие из этих генов отвечают за функционирование регуляторных Т-лимфоцитов и активацию макрофагов врожденной иммунной системы. Другие задействованы в продуцировании цитокинов клетками Тх2, которые мобилизуются в случае паразитарных инфекций.
Обнаруженные исследователями генные мутации дают нам важный ключ к пониманию характера отношений любви-ненависти между людьми и гельминтами. В то время как многие из генов, развившихся под давлением гельминтов, связаны с агрессивными, провоспалительными реакциями, направленными на борьбу с паразитарными инфекциями, другие гены действуют в противоположном направлении и стимулируют иммунологическую толерантность через регуляторные Т-лимфоциты, противовоспалительные цитокины и другие вещества, подавляющие иммунный ответ. Гельминты – мастера в манипулировании иммунной системой. Вот почему они способны долгое время существовать в организме любого хозяина и на протяжении многих тысячелетий остаются основной человеческой инфекцией. Грэм Рук рассматривает отношения между людьми и гельминтами как шахматную партию – или же с точки зрения динамического напряжения между паразитом и иммунитетом хозяина. Там, где паразитарная нагрузка была особенно высока, считает он, эволюцией был сделан выбор в пользу провоспалительных вариантов генов – либо для того, чтобы противостоять мощному иммунорегуляторному действию гельминтов, либо для того, чтобы сделать иммунную систему более эффективной против других вирусных и бактериальных инфекций в условиях гельминтоза. Когда же гельминты полностью исчезают, это динамическое равновесие нарушается, что приводит к чрезмерно интенсивной иммунной реакции – феномен, последствия которого мы и наблюдаем в сегодняшнем всплеске аллергических и аутоиммунных заболеваний.
Джим Терк – директор по биологической безопасности в Висконсинском университете. Он отвечает за то, чтобы все университетские лаборатории соблюдали правила безопасного обращения с патогенными и рекомбинантными организмами. Джим всегда поддерживал хорошую физическую форму и даже принимал участие в марафонских забегах. Но весной 2005 года у него внезапно нарушилась речь. Его жена испугалась, что это могло быть признаком скрытого инсульта, и заставила пойти к врачу, который обследовал его и не нашел ничего плохого. «Вы просто перенапряглись, – сказал врач. – Вы много работаете, часто задерживаетесь на работе допоздна, к тому же у вас семья, дети. Это результат усталости и стресса». Джим также заметил периодически возникающие проблемы с равновесием и онемение ног, но, успокоенный заключением врача, отмел все тревоги. В феврале 2008 года он начал серьезно готовиться к очередному марафону. Он вспоминает: «После трех-четырех минут интенсивного бега на крытом стадионе я терял над собой контроль. Я спотыкался и был вынужден хвататься за ограждения. Но я упрямо закрывал глаза на эти симптомы и продолжал тренировки. "Я нахожусь в плохой форме, – сказал я себе, – поэтому мне нужно тренироваться еще упорнее!"» Джим продолжал ходить на стадион, и каждый день повторялось то же самое, пока однажды он не упал лицом на дорожку.
По-прежнему не желая признавать, что с ним что-то не так, Джим начал тренировать бейсбольную команду своего сына. Но вскоре он заметил, что вынужден все шире расставлять ноги только лишь для того, чтобы удерживаться в вертикальном положении. От малейшего наклона вперед у него сильно кружилась голова. Тогда он снова пошел к врачу. Высокое кровяное давление было быстро исключено из списка возможных причин – сердце у Джима было как у подростка. Но магнитно-резонансная томография показала ужасающую картину. «Мой мозг был усеян этими бляшками. Их было штук двадцать», – говорит Джим. Следующее МРТ-обследование показало, что очаги поражения затронули даже спинной мозг, и в августе 2008 года ему был поставлен диагноз «рассеянный склероз с возвратно-ремиттирующим течением», т. е. его начальная стадия.
Так Джим присоединился к более чем 2 миллионам человек по всему миру, страдающих этим заболеванием. Эти люди живут в основном в развитых странах и, на удивление, очень молоды – средний возраст начала заболевания составляет всего двадцать пять лет. Хотя к развитию этого заболевания причастны более пятидесяти генов, недостаток солнечного света и витамин D, вирусы и курение, нельзя не обратить внимание на два поразительных факта – а именно на существование значительной отрицательной корреляции между распространением рассеянного склероза и распространением гельминтных инфекций, а также на дисрегуляцию функционирования Т-лимфоцитов, которая часто встречается у больных рассеянным склерозом. Так называемые склеротические «бляшки» представляют собой небольшие очаги воспаления, где происходит разрушение миелиновой оболочки, покрывающей и изолирующей нервные волокна. При возвратно-ремиттирующей форме рассеянного склероза за год обычно образуется от пяти до десяти новых бляшек, при этом в среднем лишь одна из десяти затрагивает критически важный участок центральной нервной системы – зрительный нерв, мозжечок или сенсорные нервные волокна.
Через несколько дней после постановки диагноза Джим с женой смотрели еженедельную передачу о рассеянном склерозе на местном телеканале. «Выступал доктор Флеминг из нашего Висконсинского университета. Он рассказал, что планирует провести испытания своего нового метода лечения – гельминто-индуцированной иммуномодулирующей терапии – с использованием яиц власоглава. Я уже кое-что слышал о гигиенической гипотезе, поэтому сразу заинтересовался этой идеей. Однако я понимал, что люди вряд ли выстроятся в очередь, чтобы глотать яйца глистов, учитывая, как отвратительно это звучит. Я знал, что эти яйца имеют микроскопический размер, их не увидишь невооруженным глазом. Но если вы попросите людей их проглотить…» На следующий же день Джим связался с Флемингом и стал первым добровольцем в этом исследовании. Он принимал яйца гельминтов в течение трех месяцев, после чего прошел двухмесячный период очищения.
Интерес Джона Флеминга к возможностям свиного власоглава (Trichuris suis) был подогрет успешным экспериментом Джоэла Вайнстока и его коллег по лечению воспалительных заболеваний кишечника, в ходе которого, как мы уже говорили, у примерно 79 процентов пациентов, принимавших яйца власоглава, на первой стадии клинических испытаний наблюдалось явное улучшение. Хотя яйца свиного власоглава не проходят в человеческом организме полный жизненный цикл (из них могут даже не вылупляться личинки) и находятся в нем всего несколько недель, после чего выводятся с калом, многократный прием яиц, по-видимому, обеспечивает им достаточное присутствие в кишечнике, чтобы оказать влияние на иммунную систему. Вайнсток считает, что они могут делать это напрямую, путем секреции иммунорегуляторных веществ, или косвенно, влияя на состав кишечной микробиоты, которая затем уже делает свое дело. Флеминг утверждает, что существуют убедительные свидетельства в пользу того, что в основе развития рассеянного склероза лежит именно сбой в иммунной регуляции. Иммунная регуляция, объясняет он, обеспечивается путем взаимодействия между регуляторными Т-лимфоцитами, дендритными клетками, регуляторными В-лимфоцитами, цитокинами и другими видами эффекторных клеток. У больных рассеянным склерозом вся эта сложная система приходит в беспорядок, и уже обнаружено более двадцати механизмов, посредством которых гельминты влияют на иммунную регуляцию.
Флеминг также обратил внимание на работу аргентинского невролога Хорхе Корреале, который сообщил о снижении тяжести симптомов рассеянного склероза у пациентов, инфицированных кишечными гельминтами. Как показал Корреале, паразитарная инфекция обладала специфическим действием в случае рассеянного склероза, поскольку регуляторные Т-лимфоциты, продуцируемые у зараженных пациентов, были специфическими по отношению к миелиновым антигенам, что означало, что они защищали миелиновую оболочку нервных волокон. Флеминг получил разрешение провести первую фазу испытаний на небольшой группе, включающей всего пять пациентов, которым диагноз был поставлен совсем недавно и которые еще не получали никакого лечения от рассеянного склероза. Хотя испытание специально было сделано коротким и нацеленным в первую очередь на проверку безопасности, а не эффективности, Флеминг обнаружил, что на фоне приема яиц власоглава у всех пяти добровольцев существенно сократилось образование новых очагов поражения в головном мозге, притом что после прекращения лечения темпы образования очагов выросли.
В настоящее время Джим принимает традиционные лекарства от рассеянного склероза и старается держать болезнь под контролем при помощи тщательно подобранной диеты и физической активности. «Если бы у меня не было рассеянного склероза, сейчас я бы находился в лучшей форме за всю мою жизнь!» – говорит он. Джим научился так хорошо контролировать свои симптомы, особенно нарушения речи, что большинство его коллег даже не догадываются о его болезни. Но занятия спортом с детьми стали делом прошлого. «Моим сыновьям сейчас девять и тринадцать лет. Конечно, я бы хотел играть с ними в футбол на заднем дворе, или в баскетбол, или совершать длинные велосипедные прогулки. Я могу немного побросать мяч в корзину – но не могу бегать с ним по площадке. Да, пожалуй, больше всего я тоскую о беге. Я очень люблю бег, но мне пришлось отказаться от него шесть лет назад».
Наша местная кишечная микробиота имеет очень сложный состав – это более двух тысяч видов бактерий, обитающих внутри нас на постоянной основе. Наши отношения с ними настолько близки и тесно переплетены, что многие метаболические сигнатуры, обнаруживаемые в человеческой крови, поте и моче, на самом деле принадлежат нашим синантропным бактериям, а не нам. Реакция человека на конкретное медикаментозное лечение, которую мы видим, вполне может быть не реакцией его организма, а реакцией микробных колоний в его кишечнике. Только позвоночные обладают такими разнообразными и устойчивыми колониями микроорганизмов. У беспозвоночных эти колонии очень малы, иногда всего несколько видов, и зачастую носят транзитный характер. Существует и еще одно интересное различие между позвоночными и беспозвоночными. У последних нет адаптивной иммунной системы – у них есть только примитивная система врожденного иммунитета.
Это наблюдение побудило Маргарет Макфолл-Нгай, специалиста по медицинской микробиологии из Висконсинского университета, перевернуть современную иммунологию с ног на голову. Она утверждает, что адаптивная иммунная система развивалась не только для того, чтобы защищать нас от внешних патогенных микроорганизмов, но и для того, чтобы контролировать постоянное микробное сообщество внутри нас. Новаторские микробиологические исследования XIX века, за которые мы должны благодарить Коха и Пастера, проводились в контексте человеческих болезней. Они задали направление для дальнейших исследований, где микробы рассматривались только как захватчики, которые вторгаются извне в человеческий организм и могут вызывать болезни. Патогенные бактерии и вирусы способны мутировать гораздо быстрее, чем мы, и быстро менять антигенные маркеры на своей поверхности, при помощи которых наша иммунная система распознает в них врагов. Чтобы успешно противостоять им, утверждает традиционная иммунология, нам требуется адаптивная иммунная система с долговременной памятью и способностью генерировать практически бесконечное разнообразие антител.
И хотя это сущая правда, что без адаптивной иммунной системы мы не могли бы эффективно противостоять инфекциям, также верно и то, говорит Макфолл-Нгай, что сложность внешней патогенной среды затмевается невероятной сложностью микробных сообществ внутри нас. Так, было установлено, что всего двадцать пять инфекционных заболеваний являются причиной подавляющего большинства человеческих смертей и случаев приобретенной инвалидности, причем десять из них могли появиться в нашей жизни только с началом урбанизации около шести тысяч лет назад, поскольку они передаются от человека к человеку. Эти патогены не могли бы выжить в те времена, когда люди жили небольшими, географически рассредоточенными общинами. В то же время наша кишечная микробиота может насчитывать тысячи видов микроорганизмов, и, хотя большую часть времени они могут быть дружелюбными, бактерии коварны по своей природе: они являются условно-патогенными и легко мутируют, превращаясь из полезных в болезнетворные, когда им представляется такая возможность. Например, когда из-за повреждения стенки кишечника они могут сбежать из своего надежного «заточения» и проникнуть во внутреннюю среду организма.
Таким образом, наша микробиота не только присутствует в нашей жизни гораздо дольше, чем большинство внешних патогенных микроорганизмов, но и значительно превосходит их по численности и видовому разнообразию. Без нее «кишечная полиция» нашей адаптивной иммунной системы никогда бы не развилась в столь невероятно гибкую систему, способную проводить различие между дружественными микробами и периодически проникающими в их ряды патогенами или же выявлять среди дружественных микробов тех, которые вдруг превратились во враждебных изгоев. Как утверждает Саркис Мазманян, взаимоотношения с микробиотой – это серьезный вызов для нашей адаптивной иммунной системы, поскольку микробиота несет с собой огромную чужеродную антигенную нагрузку, которую иммунной системе нужно либо игнорировать, либо терпеть для поддержания здоровья человека. В свою очередь, в интересах микробиоты поддерживать здоровье своего хозяина. Да, довольно унизительно осознавать, что мы являемся всего лишь подходящей средой обитания для миллионов микроорганизмов – домом, который они «подстраивают» под себя и свои потребности. В процессе коэволюции мы вместе с нашей микробиотой научились давать отпор внешним патогенам, поскольку это отвечает нашим общим интересам. Например, недавно было установлено, что мыши, страдающие системной бактериальной инфекцией, начинают вырабатывать особый вид сахара, благоприятствующий росту популяции дружественных бактерий в кишечнике, которые помогают им бороться с этой инфекций.
Жерар Эберль из Института Луи Пастера считает, что в этом суперорганизме, образованном человеком и микробами, иммунная система никогда не отдыхает – она работает по принципу пружины. Чем больше микробы колонизируют ниши внутри нас или проявляют патогенное поведение, тем сильнее сжимается пружина иммунитета, и чем сильнее сжимается эта пружина, тем более интенсивный отпор микробам она дает. Другими словами, иммунная система постоянно находится в динамическом напряжении, и это напряжение необходимо для поддержания гомеостаза – состояния равновесия внутри организма. Например, если уничтожить кишечную микробиоту при помощи антибиотиков, мы можем стать уязвимыми для инфекций, вызываемых энтерококками. Дело в том, что дружественные бактерии, обитающие на стенке нашего кишечника, производят антибактериальные пептиды, которые в нормальных условиях уничтожают эти патогены. Слишком слабая иммунная система, объясняет Эберль, с одной стороны, делает суперорганизм уязвимым для условно-патогенных старых друзей, которые внезапно «переходят на сторону зла»; с другой – слишком сильная иммунная система дестабилизирует нашу микробиоту и запускает развитие аутоиммунных заболеваний.
Макфолл-Нгай считает, что мы должны начать рассматривать микробиоту внутри нас как самостоятельный орган, аналогичный, но намного более сложный, чем сердце, печень или почки. По своей сложности она скорее сопоставима с головным мозгом. Наш мозг состоит из более чем 80 миллиардов нейронов, соединенных в общую сеть; наша микробиота насчитывает более чем 80 триллионов микроорганизмов, активно взаимодействующих между собой посредством сигнальных молекул. У обоих есть память, оба способны учиться на собственном опыте, и оба могут предвидеть будущие неопределенности. Недаром кишечник называют «вторым мозгом», и он имеет свою собственную нервную систему, распределенную по кишечной стенке. Становится все более очевидным, что кишечная микробиота способна напрямую общаться с нашим головным мозгом и, более того, она участвует в развитии мозга, оказывает влияние на мозговую химию, ментальные процессы, поведение и психические расстройства. Она производит сотни нейрохимических веществ, в том числе бльшую часть всего вырабатываемого в организме серотонина, и в настоящее время найдены свидетельства существования двусторонней связи – т. е. состав бактерий в кишечнике может влиять на головной мозг, и наоборот.
Это показывают, в частности, многочисленные исследования на мышах. Например, Пржемысл Берчик сравнил две линии мышей – более робких и более активных и смелых. Животные из обеих групп выращивались со стерильным кишечником. Затем стерильные кишечники робких мышей были засеяны кишечным материалом из кишечников смелых мышей, выращенных в нормальных условиях. И наоборот, стерильные кишечники смелых мышей были засеяны микрофлорой из кишечников нормальных робких мышей. Их поведение немедленно изменилось. Робкие мыши стали более смелыми, а смелые мыши – более робкими. Другой исследователь, Джон Биненсток, кормил робких мышей бульоном с большим содержанием распространенной пробиотической бактерии Lactobacillus rhamnosus. Через двадцать восемь дней эти мыши начали гораздо смелее входить в лабиринт, чем их собратья из контрольной группы, и реже сдавались в принудительном плавательном тесте. Было обнаружено, что в их головном мозге снизилась активность гормонов стресса. Этот результат подтверждается и другим экспериментом: мыши, выращенные со стерильным кишечником в условиях замкнутого пространства, испытывали высокий уровень стресса. У них наблюдалась повышенная активность гипоталамо-гипофизарно-надпочечниковой системы, что приводило к высоким уровням кортикостерона и аденокортикотропина – двух гормонов стресса. Но как только кишечники этих мышей были засеяны еще одним распространенным пробиотиком Bifidobacterium infantis, все признаки стресса немедленно исчезли. Разумеется, может происходить и обратное. Майкл Бейли обнаружил, что детеныши макаки, рожденные матерями, которые во время беременности испытывали стресс из-за высокого уровня шума, имели в своих кишечниках меньше дружественных бактерий, таких как лактобактерии и бифидобактерии. А еще один исследователь обнаружил снижение содержания лактобактерий в кале студентов во время экзаменационной недели.
Но как могут бактерии в нашем кишечнике «общаться» с нашим головным мозгом и наоборот? Что служит каналом коммуникации между ними? Недавно Эмеран Майер и Кирстен Тиллиш провели интересное исследование: они попытались определить влияние пробиотических бактерий на настроение и мозговую активность людей. Исследование было проведено на группе здоровых женщин-добровольцев с использованием функциональной МРТ. Одна группа женщин принимала ферментированный пробиотический питьевой йогурт два раза в день в течение четырех недель, вторая группа была контрольной. Женщин обследовали при помощи функциональной МРТ до и после курса терапии: в состоянии покоя и во время просмотра изображений лиц, выражающих различные эмоции. Исследователям удалось идентифицировать тот самый «коммуникативный канал» между кишечником и мозгом: им оказался пучок нервных волокон в стволе головного мозга, известный как ядро одиночного пути (или ядро солитарного тракта). Это ядро получает сигналы от блуждающего нерва, который иннервирует кишечник и, в свою очередь, активирует нейронные контуры, которые проходят через высшие мозговые центры, включая миндалину (отвечает за страх и другие эмоции), островковую долю и переднюю поясную кору, т. е. все те зоны, которые участвуют в обработке эмоциональной информации. У добровольцев, принимавших пробиотический йогурт, наблюдалось снижение активности в данных нейронных контурах, что свидетельствует о более низких уровнях возбуждения и тревоги. Эти женщины демонстрировали более спокойные эмоциональные реакции. Хотя результаты данного исследования следует интерпретировать с осторожностью, разумно предположить, что пробиотические бактерии в кишечнике способны посылать сигналы в головной мозг через посредничество блуждающего нерва – в буквальном смысле слова позволяя нам «чувствовать нутром».
В недавно опубликованной статье Джо Элкок, Карло Мейли и Афина Актипис приводят множество свидетельств того, что обитающие в наших кишечниках бактерии способны влиять на наше питание, порождая тягу к тем продуктам, которые дают им конкурентное преимущество в толстой кишке. При этом они вызывают состояние неудовлетворенности и беспокойства, пока мы не съедим нужные им продукты, например, шоколад, который не только доставляет удовольствие нам через стимулирование центра вознаграждения в нашем мозге, но и удовлетворяет питательные потребности бактерий. Через блуждающий нерв кишечные бактерии манипулируют нашим поведением. Это открывает перед нами фантастические возможности – путем изменения видового состава кишечной микрофлоры менять наши привычки в питании и даже предотвращать ожирение.
Что происходит при нарушении функционирования головного мозга? Например, установлено, что в развитии аутизма замешаны воспаление и кишечные патологии. У детей, страдающих аутизмом, часто обнаруживаются признаки воспалительного процесса в головном мозге, и появляется все больше доказательств того, что это воспалительное состояние передается детям от матерей во время беременности. Алан Браун, профессор клинической психиатрии из Колумбийского университета, использовал данные Финского когортного исследования, в рамках которого было собрано 1,6 миллиона образцов крови у более чем 800 тысяч женщин во время беременности. Исследователи сопоставили уровни С-реактивного белка (важнейшего индикатора воспаления, присутствующего в крови) с риском развития аутизма у детей. У детей, матери которых по уровню С-реактивного белка в крови во время беременности находились в верхнем двадцатом процентиле, риск развития аутизма был выше на 43 процента, а у детей, матери которых попадали в верхний десятый процентиль, – на 80 процентов выше. Поскольку уровень С-реактивного белка также повышается при иммунной реакции на инфекции, можно предположить, что в некоторых случаях инфекции во время беременности, а также воспаления, вызванные аутоиммунными заболеваниями,могут способствовать развитию воспалительного состояния у плода. Этот вывод подтверждается и результатами широкомасштабного популяционного исследования, проведенного в Дании, которое показало, что у матерей с целиакией риск рождения ребенка-аутиста возрастает на 350 процентов, а у матерей, страдающих ревматоидным артритом, – на 80 процентов. Специалист по аутизму Эрик Холландер, лечивший Лоренса Джонсона, считает, что даже такая простая инфекция, как грипп, у будущей матери может спровоцировать развитие у ребенка воспалительного состояния в результате воздействия материнских провоспалительных цитокинов через плаценту. Аналогичная реакция также наблюдается у плода, если мать страдает системной красной волчанкой – воспалительным аутоиммунным расстройством, вызывающим лихорадку, опухание суставов и кожные высыпания.
Аутичные дети также могут наследовать (в генетическом смысле) гиперактивную иммунную систему, что делает их предрасположенными к развитию аутоиммунных заболеваний. Около 70 процентов детей с расстройством аутического спектра страдают тяжелой формой раздражения кишечника. У них часто встречаются такие симптомы, как диарея и болезненное вздутие живота, что может усугублять их раздражительность, агрессивность и склонность к самоповреждающему поведению. Эндоскопическое обследование часто показывает наличие воспалительной патологии, очень похожей на болезнь Крона и язвенный колит. Стивен Уокер из Института Уэйк Форест сравнил паттерны экспрессии генов в биопсическом материале из кишечника аутичных детей, страдающих синдромом раздраженного кишечника, и взрослых людей с воспалительным заболеванием кишечника. Несмотря на существенные различия в затронутых паттернах генов, было обнаружено значительное совпадение по ряду генов, которые были либо включены, либо выключены в обоих случаях. Это говорит о том, что аутичные дети с раздраженным кишечником и взрослые не-аутисты с воспалительными заболеваниями кишечника страдают от аутоиммунной реакции. Мышиные модели аутизма показывают, что материнская инфекция во время беременности делает Т-хелперы хронически гиперчувствительными и уменьшает количество регуляторных Т-лимфоцитов у потомства.
А что по поводу депрессии? Нельзя с уверенностью утверждать, что депрессия не является воспалительным заболеванием как таковым. Да, многие люди, страдающие депрессией, не имеют очевидных признаков воспаления, а многие из тех, кто имеет высокие уровни воспалительных маркеров в крови, не впадают в депрессию. Тем не менее существует большая подгруппа людей, которые склонны реагировать на фоновое воспалительное состояние развитием депрессии. Интересный пример взаимосвязи между воспалением и депрессией демонстрирует действие альфа-интерферона (ИФН-) – мощного воспалительного цитокина, – который используется, в частности, в терапии гепатита С и рака. При приеме больших доз ИФН- почти у 50 процентов пациентов наблюдается развитие депрессии в течение трех месяцев после начала терапии. Дело в том, что ИФН- запускает выработку целого каскада других воспалительных цитокинов, таких как интерлейкин 6 и фактор некроза опухоли альфа (ФНО-), которые также коррелируют с депрессией. Но может ли происходить обратное? Если удалить цитокины, можно ли устранить и депрессию? В одном из исследований была взята группа пациентов, проходивших лечение от болезни Крона при помощи моноклонального антитела, известного как инфликсимаб. Часть этих пациентов также страдала клинической депрессией. Инфликсимаб снял депрессивные симптомы, но только у тех, кто имел высокие уровни С-реактивного белка в крови, указывающие на сильный воспалительный процесс. Инфликсимаб является мощным агонистом ФНО-, поэтому вполне вероятно, что одновременно с лечением болезни Крона он нейтрализовал указанный цитокин, стимулировавший воспаление, и, таким образом, облегчил симптомы депрессии.
У восприимчивых лиц депрессия является всего лишь одним из заболеваний, которые, по всей видимости, развиваются под влиянием низкого уровня хронического воспаления. В этот список входят сердечно-сосудистые заболевания, инсульт, диабеты, рак и деменция. Небольшое повышение уровня хронического воспаления позволяет с достаточной долей вероятности предсказать развитие всех этих современных заболеваний у людей, которые на данный момент не демонстрируют никаких соответствующих симптомов. При обследовании британских государственных служащих было установлено, что уровни циркулирующего в крови С-реактивного белка и интерлейкина 6 находятся в обратной зависимости с рангом сотрудников, т. е. чем ниже положение в служебной иерархии, тем выше уровень воспаления. Психолог Эндрю Стептоу, используя этот градиент, с достаточной точностью предсказал вероятность развития депрессии на протяжении последующих двенадцати лет. Между тем дальнейшие исследования показали, что люди с депрессивным состоянием, пережившие травмы и недостаток внимания в детском возрасте, вырабатывают в стрессовых тестах больше интерлейкина 6. Таким образом, корень проблемы может быть не столько в том, что высокий уровень стресса, сопряженный с современным образом жизни в развитых странах, вызывает воспаление и, как следствие, депрессию, а в том, что нарушение иммунной регуляции у современных людей обуславливает чрезмерную реакцию на стресс, приводя к бесконтрольной выработке воспалительных цитокинов. Но какую роль в этом сценарии может играть гипотеза «старых друзей»?
Том Макдейд из Северо-Западного университета провел развернутое исследование, сравнивая население развивающихся стран и население США в попытке разобраться с такими феноменами, как инфекции, воспаление, стресс, депрессия и заболеваемость. Он отмечает, что у индейских племен Амазонии на территории Эквадора наблюдаются временные повышения уровня С-реактивного белка, которые соответствуют частым вспышкам инфекций. Но, как только инфекция отступает, уровни этого белка также снижаются. Таким образом, в данном случае мы видим череду перемежающихся пиков и спадов. В отличие от этого уровни С-реактивного белка у жителей США являются стабильными и довольно высокими даже в отсутствие высокой частоты инфекционных заболеваний. Это хроническое устойчивое воспаление указывает на плохую иммунную регуляцию. Макдейд также изучил сельское население на филиппинском острове Себу. Он измерил уровни микробного разнообразия внутри и вокруг каждого деревенского дома, исследовав фекалии животных, а также учел такие показатели, как распространенность детской диареи и рождаемость в период сухого сезона, когда инфекционная нагрузка является наиболее высокой. Он установил, что все эти факторы свидетельствуют о высокой микробной нагрузке в начале жизни и обуславливают низкие уровни С-реактивного белка у взрослых.
Макдейд также изучил влияние на детей сепарации (расставания с матерью). Все дети, как и следовало ожидать, испытывают стресс в результате потери матери, однако этот стресс не приводит к повышению уровня С-реактивного белка у тех из них, кто живет в условиях значительного микробного разнообразия. Он не повышается даже в тех случаях, когда дети остро переживают боль разлуки. Так, в сельских районах Филиппин благодаря присутствию разнообразной микробной нагрузки с раннего детства временная депрессия, социальный стресс и несчастья никогда не приводят к развитию повреждающего воспаления. Макдейд также обнаружил, что в целом у населения Филиппин наблюдаются более низкие уровни провоспалительного цитокина интерлейкина 6 и, наоборот, чрезвычайно высокие уровни противовоспалительного цитокина интерлейкина 10. Даже тучные филиппинские женщины не имеют высокого уровня интерлейкина 6, который характерен для тучных американок. То же самое касается и мужчин: у филиппинских мужчин с большой толщиной кожной складки не было обнаружено высокого уровня С-реактивного белка, который присущ их американским собратьям. Макдейд пришел к выводу, что филиппинцы хорошо защищены от воспаления по всем фронтам и главным фактором защиты, по всей видимости, является разнообразная микробная среда, окружающая их с самого рождения.
Возможно, мы вступаем в эпоху, когда микробиология и иммунология, и в частности, гипотеза «старых друзей», начнут казывать реальное влияние на политику общественного здравоохранения. Так, микробиолог Мартин Блейзер выражает глубокую обеспокоенность в связи с чрезмерным использованием антибиотиков. Все мы знаем об опасностях распространяющейся сегодня множественной устойчивости к антибиотикам, которая ведет к появлению «супермикробов», практически не поддающихся уничтожению. Но стандартная практика лечения антибиотиками широкого спектра действия также уничтожает дружественные и полезные синантропные бактерии в нашем организме, приводя к катастрофическим последствиям. К 18 годам, отмечает Блейзер, американские дети в среднем проходят от десяти до двадцати курсов лечения антибиотиками, которые убивают не только врагов, но и «старых друзей». В некоторых случаях кишечная микробиота так никогда и не восстанавливается, поэтому нынешние эпидемии диабета 1-го типа, ожирения, воспалительных заболеваний кишечника, аллергии и астмы – в значительной степени дело наших же рук. Так, риск развития воспалительных заболеваний кишечника возрастает вместе с количеством курсов антибиотиков. Еще хуже, что антибиотики используются в промышленных масштабах при выращивании сельскохозяйственных животных только лишь для того, чтобы стимулировать быстрый набор веса. Антибиотики стандартно назначаются почти половине беременных женщин в Соединенных Штатах, а поскольку дети получают кишечную микрофлору от своих матерей, каждое следующее поколение начинает жизнь с более бедным наследством в виде дружественных микробов, чем предыдущее.
Страшный сценарий возможной катастрофы представил нам Свен Петтерссон из Каролинского института в Стокгольме. Как известно, объясняет Петтерссон, существует специальный кишечный барьер, который не дает триллионам микробов ускользать из нашего кишечника. На самом деле этот барьер создается и поддерживаются живущими внутри нас дружественными бактериями. В экспериментах на мышах он обнаружил, что микробиота кишечника аналогичным образом контролирует и непроницаемый гематоэнцефалический барьер, который защищает наш мозг от проникновения микроорганизмов и разнообразных вредных агентов. Детеныши мышей, рожденные от матерей с безмикробным кишечником, имели более проницаемый гематоэнцефалический барьер, который сохранялся на протяжении всей их жизни. Хотя результаты этого исследования еще не подтверждены на людях, они вызывают серьезную тревогу. Если обедненная кишечная микробиота у матери действительно может вести к формированию неполноценного гематоэнцефалического барьера у ребенка, это может серьезно нарушать правильное развитие головного мозга и его защиту. Таким образом, нам следует задуматься о стандартной практике лечения антибиотиками беременных женщин и применения кесарева сечения, поскольку, как мы уже знаем, оба этих вмешательства лишают детей полноценной микробиоты, которую они традиционно наследуют от своих матерей.
Огромное количество исследований наглядно показывает, насколько важную роль играет дружественная микробиота в защите нашего здоровья. Однако один из исследователей утверждает, что не меньший вклад в сохранение нашего здоровья вносят микробы, живущие в окружающей нас среде. Илкка Хански из Хельсинского университета считает, что при городском планировании, особенно при планировании зеленых насаждений, необходимо принимать во внимание микробиологию – и конкретно гипотезу «старых друзей». Он сообщил, что недавно проведенное им исследование показало наличие значимой взаимосвязи между кожными аллергиями, характером землепользования и растительностью, в гетерогенной группе из 118 финских подростков, живущих в разных видах «среды обитания», включая города, деревни и фермы. Исследователь взял у подростков мазки с кожи, чтобы измерить видовое разнообразие кожных бактерий, выполнил кожные тесты на аллергическую реакцию для установления склонности к атопии, и определил характер землепользования и растительного покрова в непосредственной близости от их домов и в радиусе до трех километров. Он обнаружил выраженную взаимосвязь между склонностью к атопии и группой бактерий под названием гамма-протеобактерии: у склонных к атопии подростков на кожном покрове обитало значительно меньше видов этих бактерий. Затем Хански измерил уровни противовоспалительного цитокина интерлейкина 10 в крови и обнаружил, что тесная связь одного из видов гамма-протеобактерий – ацинетобактера (Acinetobacter) – с высоким уровнем интерлейкина 10 в крови была характерна для здоровых подростков, но не для страдающих аллергическими реакциями.
Эти «защитные» бактерии обычно встречаются на растениях и в пыльце, а также в почве. Вот почему Хански обнаружил значимую связь между разнообразием кожных бактерий и отсутствием склонности к атопии, с одной стороны, и богатством окружающего растительного покрова, особенно наличием менее распространенных видов цветущих растений, – с другой. Подростки «подхватили» эти бактерии при контакте с почвой и растительностью или через пыльцу, переносимую ветром. Сегодня все больше людей по всему миру переезжает жить в города, где очень мало зеленых насаждений. Если мы зависим от определенных бактерий, которые стимулируют выработку противовоспалительных цитокинов, тем самым обеспечивая иммунную толерантность, и если эти бактерии, в свою очередь, зависят от богатства окружающей растительности, то зеленые насаждения – нечто гораздо большее, чем просто приятный элемент городского декора. Как отмечает Хански, зеленые насаждения – важнейший фактор в профилактике аллергических заболеваний и обеспечении общественного здоровья в целом, а их отсутствие может иметь далекоидущие последствия.
Аналогичным образом карельское исследование Микаэля Книпа показало, что микробиота играет важную роль в деле защиты от диабета 1-го типа. Российские карельские дети имели не только более разнообразную микробиоту, но и более высокие уровни регуляторных Т-лимфоцитов в крови. Книп продолжает свое исследование, надеясь выявить конкретные виды бактерий, противостоящих развитию аутоиммунных и аллергических заболеваний, с тем чтобы разработать метод медицинского вмешательства, способный уже в ближайшем будущем помочь детям из группы риска. Две другие метаболические пандемии, диабета 2-го типа и ожирения, как было установлено, также связаны с нарушением иммунной регуляции и потерей микробного разнообразия в кишечнике.
Большое количество все новых исследований подчеркивает отрицательное влияние на здоровье людей негативных жизненных событий, одиночества и социальной изоляции. Несмотря на то, что эти долгосрочные эпидемиологические исследования показывают существование корреляции между воспалением, стрессом, социальной изоляцией и социально-экономическим статусом, на сегодняшний день всего одно или два из них отметили такой важный фактор, как разнообразие кишечной микробиоты. Между тем Грэм Рук готов держать пари, что при более пристальном изучении этого фактора исследователи обнаружили бы интересную закономерность: люди, которые проявляют недостаточную устойчивость к превратностям современной жизни, имеют хронические высокие уровни воспаления и более других подвержены физическим или психическим болезням, в большинстве своем имеют менее разнообразную кишечную микробиоту и, как следствие, нарушенную иммунную регуляцию. Гипотеза «старых друзей», считает Рук, может быть ключевой «отсутствующей переменной» во всех этих исследованиях в области общественного здравоохранения.
Следующие несколько примеров позволяют понять, сколь важную роль играют «старые друзья» в нашей жизни – от самой колыбели до могилы. Например, Пер Густафссон установил, что изоляция и субъективное ощущение своей непопулярности в школе негативно влияют на здоровье людей несколько десятилетий спустя, коррелируя с психиатрическими проблемами, сердечно-сосудистыми заболеваниями и диабетом. Грегори Миллер и Стив Коул пошли еще дальше и непосредственно связали пережитые в детстве стрессы и невзгоды с низкоуровневым хроническим воспалением. Используя данные по большой группе подростков из Ванкувера, они показали, что депрессия и воспаление (проявляющееся в высоких уровнях циркулирующих в крови С-реактивного белка и интерлейкина 6) идут руку об руку, но только у тех подростков, которые страдали от невзгод в детстве. У таких детей уровень С-реактивного белка не снижается после окончания депрессивного эпизода, что в долгосрочной перспективе может способствовать развитию устойчивых расстройств настроения, сердечно-сосудистых заболеваний, диабета и аутоиммунных заболеваний.
Брюс Макьюэн вводит понятие «аллостатической нагрузки» – совокупного изнашивания организма, пытающегося адаптироваться к условиям жизни. Он показал, что стрессы, связанные с низким социально-экономическим статусом, ведут к хроническому воспалению, которое нарушает функционирование нейроэндокринной системы и, в свою очередь, может вести к развитию проблем с сердцем, остеопорозу, метаболическим расстройствам наподобие диабета и даже к снижению когнитивной функции. Томас Бойс и Кэтлин Зиол-Гест еще более определенно заявляют о взаимосвязи между бедностью в детстве и болезнями в дальнейшем. Хотя питание, безусловно, играет свою роль, хронические воспалительные процессы, запускаемые в детстве под воздействием негативных жизненных событий, являются еще одним фактором, способствующим развитию ряда хронических заболеваний. Хроническое воспаление управляется тем, что происходит в головном мозге, утверждают они, – взаимодействием между гипоталамусом, гипофизом, надпочечниками и клеточной иммунной системой, которая в результате заставляет Т-лимфоциты дифференцироваться в клетки-хелперы Тх1 и Тх2, что может вести к обширному повреждению тканей, если воспалительные условия сохраняются. Низкий социально-экономический статус в детстве ассоциируется с более высокими уровнями в крови С-реактивного белка, цитокина интерлейкин 6 и еще одного провоспалительного цитокина ФНО-, что делает этих детей более подверженными риску развития воспалительных заболеваний, таких как атеросклероз, аутоиммунные заболевания и рак. Вот где на сцену выходит исследование Тома Макдейда, который на примере филиппинских детей показал, что ключевым защитным фактором при негативных событиях в начале жизни, таких как потеря матери, которые в современном западном мире могут вести к метаболическим и ментальным заболеваниям в будущем, является высокая микробная нагрузка в раннем детстве.
И без гипотезы «старых друзей» мы знаем, что необходимо обеспечивать более качественный уход за пожилыми людьми в домах престарелых. Однако исследование, недавно проведенное Маркусом Клессоном и его коллегами из Университета Корка, наглядно показало, насколько неблагоприятными могут быть условия жизни в этих учреждениях. Исследователи взяли 178 пожилых людей со средним возрастом 78 лет, проживающих на юге Ирландии, и разделили их на три группы: продолжающих жить в обществе, проходящих краткосрочные курсы восстановительного лечения в больницах и живущих в домах престарелых. Опираясь на такие данные, как результаты бактериального анализа кала, информация о питании и показатели иммунного статуса, исследователи установили, что живущие в домах престарелых имеют гораздо менее разнообразную кишечную микробиоту, чем те, кто продолжает жить в обычных условиях, и это коррелирует с высокими уровнями хронического воспаления и распространенностью старческой астении. Когда мы стареем, мы хуже пережевываем пищу, производим меньше слюны, отчего наше пищеварение ухудшается, и мы чаще страдаем запорами. Все это вредит обитающим в нашем кишечнике микробам. Неполноценное питание и, вероятно, социальная изоляция в домах престарелых еще больше усугубляют ситуацию, лишая пожилых людей значительной части «старых друзей», вызывая хроническое воспаление, ухудшая здоровье и ускоряя старение. Учитывая стремительный рост доли пожилого населения в западных странах, говорит Клессон, вопрос правильного питания должен стать приоритетным в свете борьбы с ростом заболеваемости и преждевременной смертности.
По всему миру исследователи пытаются превратить открытия, сделанные в рамках гипотезы «старых друзей», в методы терапии конкретных заболеваний. На заре любой прикладной науки находятся самоотверженные ученые, готовые испытать новые методы на себе, прежде чем применять их к другим, а также люди, готовые пойти на такие эксперименты от отчаяния. Взять, к примеру, Дэвида Притчарда из Ноттингемского университета, который во время полевых исследований в Индонезии был настолько заинтригован тем, что зараженные нематодами-анкилостомами люди, кажется, защищены от аллергических заболеваний, что заразил сам себя личинками анкилостомы через царапины на коже и к своему огромному удовлетворению доказал, что негативные последствия гельминтной инфекции являются вполне терпимыми по сравнению с ее потенциальным положительным воздействием на иммунную регуляцию. В настоящее время Притчард проводит крупное клиническое испытание в Ноттингеме, цель которого – установить, могут ли анкилостомы замедлить прогрессирование рассеянного склероза.
В 2004 году один молодой человек, имя которого мы сохраним в тайне, поехал в Таиланд, чтобы намеренно заразить себя яйцами человеческого власоглава из фекалий инфицированной девушки. Он хотел узнать, не помогут ли ему гельминты вылечить язвенный колит, который был настолько устойчив к терапии циклоспорином, что перед молодым человеком стояла реальная угроза полного удаления толстой кишки и ее замены колостомным мешком. До этого он обращался к Джоэлу Вайнстоку с просьбой испытать на нем лечение яйцами свиного власоглава (Trichuris suis), но Вайнсток отказал ему из этических соображений. Через три месяца такого самолечения кишечник, который до того производил более десятка кровавых испражнений в день, вернулся к нормальному функционированию. Оказалось, что заражение гельминтами привело к повышению уровня интерлейкина 22 в крови, который, помимо прочего, способствует заживлению слизистой оболочки кишечника. В настоящее время этот молодой человек добровольно помогает Пьенг Локу из Нью-Йоркского университета исследовать влияние гельминтов на воспалительные заболевания кишечника.
Путь от научных озарений до создания проверенных и надежных методов лечения зачастую бывает весьма тернистым и долгим. Чтобы вывести на рынок новый метод лечения, он должен быть тщательно протестирован в ходе крупномасштабных, рандомизированных, двойных слепых испытаний, способных учесть любой эффект плацебо и отделить его от подлинной эффективности тестируемого метода. До сих пор клинические испытания методов терапии при помощи яиц свиного власоглава давали в этом плане разочаровывающие результаты. Так, недавно было прекращено крупномасштабное клиническое исследование терапии с использованием яиц власоглава у пациентов с болезнью Крона, поскольку та показала нулевую эффективность. Такая же неудача постигла и вторую фазу клинических испытаний Джона Флеминга, который изучал возможности лечения яйцами власоглава рассеянного склероза. Проблема может быть в том, что выбранный для этих испытаний вид власоглава попросту не подходит для человека. Свиной власоглав Trichuris suis паразитирует на свиньях, а не на людях. В человеческом кишечнике из его яиц зачастую даже не вылупляются личинки, и вся «инфекция» выходит вместе с калом в течение нескольких недель. Вот почему сын Стюарта Джонсона должен постоянно принимать яйца этих гельминтов, чтобы лечение давало результаты. Другими словами, поскольку люди не являются естественным домом для свиного власоглава, он может быть не способен регулировать иммунную систему человека так же эффективно, как это делают специфические для людей виды гельминтов.
Или же причина может быть в том, говорит Грэм Рук, создатель гипотезы «старых друзей», что мы используем не тех гельминтов не на тех людях. Случаи ремиссии, обнаруженные Хорхе Корреале у зараженных гельминтами больных рассеянным склерозом, возможно, объясняются тем, что данные гельминты являются эндемичным видом для этих регионов Южной Америки и пациенты могли перенести бессимптомную гельминтную инфекцию в раннем детстве, когда развивалась их иммунная система. Эта ранняя инфекция могла повлиять на развитие их иммунной системы или оказать эпигенетический эффект, посредством которого гельминты регулируют ключевые гены, отвечающие за иммунную систему. В случае пациентовс болезнью Крона или рассеянным склерозом в Северной Америке такое предшествующее воздействие, как правило, отсутствует.
Между тем Эрик Холландер все-таки добился успехов, хотя и довольно скромных, в лечении аутизма при помощи яиц свиного власоглава у немногочисленной группы взрослых пациентов. Было достигнуто небольшое снижение показателей по нескольким психологическим тестам, измеряющим различные симптомы аутизма, однако это снижение во всех случаях было ниже порога статистической значимости. По словам Холландера, пациенты были менее подвержены резким перепадам настроения и реже поддавались вспышкам гнева, были менее компульсивными и более терпимыми к изменениям. В настоящее время Холландер испытывает метод лечения с использованием яиц свиного власоглава на более многочисленной группе детей и молодых людей, больных аутизмом.
Каковы бы ни были окончательные результаты, полученные Холландером, Роза Крахмалник-Браун из Аризонского университета признает существование взаимосвязи между аутизмом, нарушением иммунной регуляции и расстройствами желудочно-кишечного тракта. Она исследовала микробиоту у аутичных детей и обнаружила, что в целом она менее разнообразна и лишена некоторых важных видов «дружественных» бактерий по сравнению с кишечной микробиотой у здоровых детей. В настоящее время она проводит исследование, вводя аутичным детям фекальные трансплантаты из кишечников здоровых людей, чтобы заселить их кишечники разнообразной и полезной микробиотой. Фекальная трансплантации – более эффективный способ быстро восстановить микробную популяцию кишечника, чем оральный прием пробиотиков, который имеет ограниченный эффект, поскольку очень трудно улучшить микробиоту в нижних отделах желудочно-кишечного тракта, где живут триллионы бактерий, вводя всего по несколько миллионов микроорганизмов через рот при помощи пилюль или йогурта. Кроме того, типичные пробиотические продукты содержат в основном лактобактерии и бифидобактерии, которые, хотя и играют важнейшую роль при формировании иммунной системы у младенцев, в кишечниках взрослых людей отступают на задний план. Нам нужны другие пробиотики.
Исследователи «старых друзей» с надеждой смотрят в будущее, уверенные в том, что их усилия в конечном итоге приведут к появлению «новой фармацевтики». Они понимают, что не могут вечно кормить людей яйцами власоглава или вводить под кожу личинки анкилостом. Работая с бактериями Bacteroides fragilis, Саркис Мазманян показал путь, по которому следует идти. Он обнаружил, что может обойтись без живых бактерий, поскольку выделенные из них молекулы полисахарида А способны регулировать иммунную систему точно так же, как и сами бактерии. Аналогичным образом Джоэл Вайнсток продолжает исследовать механизмы, используемые гельминтами для того, чтобы манипулировать нашей иммунной системой. Он надеется, что в будущем сумеет идентифицировать вещества, при помощи которых они это делают, и, таким образом, сможет на базе достижений эволюционной теории заложить фундамент для разработки нового поколения лекарств, способных помочь при лечении широкого диапазона болезней.
Большие надежды на этот подход возлагает и Стюарт Джонсон, чья героическая и в конечном счете успешная исследовательская работа спасла его сына Лоренса от пожизненного пребывания в специализированном психиатрическом учреждении. Как говорит Стюарт: «Я не знал, сработает это или нет. Я просто удовлетворял своего внутреннего ученого, который говорил мне "Давай, пробуй! Не сиди сложа руки! Иди вперед!" Я буду бороться и искать до самой смерти». Вероятно, Стюарт сделал больше, чем кто-либо другой, чтобы пробудить интерес общественности к терапии с использованием «старых друзей», и он надеется, что в ближайшем будущем появятся препараты на основе гельминтов, более удобные и простые в применении. «Что если подобные вещи способны эффективно регулировать нашу иммунную систему? – рассуждает Стюарт. – Это поможет справиться не только с аутизмом, но и с любым аутоиммунным заболеванием, причем без всякого побочного риска. Может быть, я слишком заинтересованное лицо, но каждый раз, когда делается очередное открытие, мне кажется, что оно соответствует этой модели и позволяет нам сделать важный шаг вперед».
Заманчиво поддаться ажиотажу, окружающему сегодня это новое направление в медицинской науке, и вслед за Джонсоном провозгласить тост «За старых друзей!», будь то паразитические черви, дружественные бактерии или армии микроорганизмов из окружающей среды. Затем поднять стаканы с пробиотическим йогуртом или яйцами власоглава и осушить их до дна, пополнив обитающие внутри нас популяции «старых друзей». Однако я призываю вас к мудрости и осторожности. Еще не пришло время для триумфального пира. Несмотря на открывающиеся перспективы, нам, скорее всего, предстоит долгий и тернистый путь, прежде чем гипотеза «старых друзей» воплотится в надежную, эффективную и проверенную практикой эволюционную медицину будущего.
Прекрасный роман
Как эволюционная теория объясняет бесплодие и патологии беременности
- Прекрасный роман без поцелуев,
- Это прекрасный роман, мой друг.
- Мы должны быть, как пара горячих помидоров,
- Но ты холодна, как вчерашнее картофельное пюре.
- Прекрасный роман, но ты не прильнешь ко мне…
Давайте посмотрим правде в глаза: вряд ли что-то еще побуждает нас с такой готовностью натягивать на себя розовые очки, как вид влюбленной пары, которая скрепляет свои отношения узами брака и начинает делать детей. Тайный вздох восторга, когда тест на беременность показывает две заветные полоски; сообщение радостной новости любимому партнеру, а потом и всем многочисленным родственникам и друзьям; расцветающая во время беременности женщина; успешные роды; детская комната в розовых или голубых тонах, прильнувший к материнской груди ребенок – короче говоря, прекраснейший роман о воспроизводстве человеческого рода.
Но попробуйте продать эту романтическую картину тысячам женщин, у которых мечты о беременности превращаются в настоящие кошмары с дикими скачками давления, постоянными желудочными болями, повреждением почек и страдающими младенцами, – и все это из-за возникновения малопонятного на сегодняшний день состояния, называемого преэклампсией беременных. Если преэклампсическое состояние перерастает в тяжелую форму, единственный способ спасти мать – избавить ее организм от ребенка, и многие беременные женщины теряют детей потому, что из-за преэклапсии врачи вынуждены стимулировать у них преждевременные роды.
Наши розовые очки вдребезги разбиваются о судьбу Прийи Тейлор, для которой рождение ребенка стало настоящим подвигом: после восьми выкидышей подряд, шести самопроизвольных выкидышей после процедуры ЭКО, потери на ранней стадии беременности одного из двоих близнецов, ей наконец удалось перенести самую тяжелую беременность, которую только можно себе представить, и успешно родить оставшегося близнеца – девочку Майю. Ее мужество и стойкость перед лицом таких тяжелейших испытаний не поддаются описанию.
Если посмотреть на нашу перенаселенную планету с ее 7 миллиардами обитателей, у вас может сложиться преувеличенное представление о репродуктивных способностях человека. На самом же деле мы, люди, отличаемся поразительно низкой плодовитостью. Как замечает Ник Маклон, профессор в области репродуктивной медицины из Саутгемптонского университета: «Если рассматривать человеческое воспроизводство с точки зрения его эффективности, становится ясно, что рост населения происходит несмотря на нашу репродуктивную способность, а вовсе не благодаря ей». Это было наглядно продемонстрировано, говорит он, когда исследователи сравнили количество детей, рожденных в Англии в 1970 году, с количеством рождений, которые можно было бы ожидать, исходя из численности населения и предполагаемого количества фертильных овуляторных циклов, сопровождавшихся коитусами, за тот же год. У людей этот показатель составил удручающе мизерные 22 процента по сравнению с 70 процентами у коров, 60 процентами у кроликов и более чем 50 процентами у собак и многих видов обезьян. Если перевести эту цифру на язык нормальной сексуальной активности, это означает, что, несмотря на значительные индивидуальные различия, в среднем пара должна совершить около сотни совокуплений или на протяжении семи-восьми месяцев вести регулярную половую жизнь без контрацепции, чтобы партнерша успешно забеременела. Отчасти проблема заключается в большой частоте выкидышей, что является самой распространенной причиной неудачной беременности. Около 30 процентов эмбрионов теряются еще до имплантации, и еще 30 процентов погибают в течение первых шести недель беременности, в основном до наступления очередной менструации. Эти беременности настолько короткие, что женщины могут их даже не замечать – они просто какое-то время испытывают небольшое ухудшение самочувствия. Кроме того, более 10 процентов беременностей заканчиваются медицинским абортом, в основном до двенадцатой недели беременности, а 1–2 процента пар сталкиваются с привычным невынашиванием беременности, которое в Соединенных Штатах определяется как две и более неудачные беременности подряд.
Даже если беременность успешно развивается дольше двенадцати недель, она несет с собой множество опасностей. Гестационный диабет затрагивает от 4 до 20 процентов беременных женщин по всему миру, а 10 процентов из них страдает от зашкаливающего кровяного давления, особенно в третьем триместре. Это может привести к повреждению нежной клубочковой структуры почек с выходом больших количеств белка в кровь. Это состояние может перерасти в синдром HELLP (расшифровывается как Hemolysis – гемолиз или склонность к кровотечениям, Elevated Liver enzimes – повышенный уровень энзимов печени, Low Platelet count – низкое содержание тромбоцитов), при котором повреждается печень, и эклампсию с судорожными припадками и потерей сознания. В прошлом, до появления современной медицины, эти состояния могли приводить к летальному исходу для матери и ребенка; такая опасность сохраняется и сегодня в тех частях мира, где отсутствует доступ к качественной медицинской помощи. На самом деле кесарево сечение стало использоваться в Древнем Риме около двух тысяч лет назад именно как попытка спасти жизнь ребенку, мать которого умирала от эклампсического судорожного припадка. Даже сегодня преэклампсия является главной причиной материнской смертности по всему миру, на ее долю приходится до 20 процентов всех случаев смерти.
Афина Байфорд перенесла тяжелую преэклампсию во время первой беременности в 1998 году. Она помнит, как однажды ночью на двадцать шестой неделе беременности проснулась от мучительной боли в желудке, а на следующий день чувствовала тошноту и испытывала сильную головную боль. Это были типичные симптомы преэклампсии. Из-за рождественских праздников ее врач не работал, поэтому Афина смогла попасть на прием только в начале января. Медсестра взяла у нее кровь и измерила артериальное давление, потом измерила его еще раз, после чего выскользнула из кабинета и быстро вернулась вместе с врачом, который измерил ей давление еще раз. Пытаясь скрыть обеспокоенность, чтобы не встревожить беременную пациентку, он сказал ей: «Сейчас я напишу вам записку. Отправляйтесь домой, соберите вещи и сразу же езжайте в больницу. Не нужно беспокоиться. Все будет в порядке». Врач в приемном отделении прочитал записку, посмотрел на Афину и сказал: «Наверное, здесь какая-то ошибка. Этого не может быть». Он попросил ее сесть на стул, снова измерил давление, а потом, по словам Афины, начался настоящий ад: «Меня окружили медсестры, акушерки и врачи и отвезли на каталке в палату интенсивной терапии. Мне строго-настрого запретили выходить одной из палаты. Вот когда я начала по-настоящему волноваться». За несколько минут ее подключили к множеству разных аппаратов и вставили катетеры. Пришел врач-консультант и объяснил ей: «У вас чрезвычайно высокое кровяное давление. При таком давлении возникает опасность судорог. Чтобы предотвратить приступ эклампсии, мы дадим вам противосудорожный препарат – сульфат магния – и морфин». Проснувшись среди ночи, она увидела вокруг себя толпу врачей и медсестер, которые внимательно следили за мониторами. Было видно, что все встревожены. Они сказали, что ребенок испытывает недостаток кислорода, поэтому нужно срочно сделать кесарево сечение. Таким образом, ее дочка появилаь на свет на двадцать восьмой неделе весом всего два фунта (около 900 грамм). «Она была очень, очень маленькой. Я мельком увидела ее сразу после рождения, потому что была в сознании во время операции, а потом ее немедленно унесли в отделение неонатальной интенсивной терапии».
Поскольку давление у Афины по-прежнему оставалось опасно высоким, ей не разрешили посетить ребенка. И персонал больницы, и родственники показывали ей фотографии и видеозаписи с дочкой, но на следующий день пришли плохие новости. Малышка подхватила какую-то инфекцию, и ее состояние начало резко ухудшаться. Ей давали столько кислорода, сколько могли выдержать крошечные легкие, но в конце концов врачи порекомендовали отказаться от мер по поддержанию жизнедеятельности. «Они сделали это. И вечером принесли мне ее в детской корзине. Они оставили ее со мной, чтобы я могла держать ее на руках, когда она сделает свой последний вздох. После того как она умерла, они предложили мне искупать ее и сменить ей подгузник, и сделали много фотографий – по их словам, это должно было помочь мне справиться с горем. Но это не помогло. Единственное, что я видела на этих фотографиях, – это мертвый ребенок. Я отдала их своей родственнице, потому что не могла больше на них смотреть».
Биологи-эволюционисты, как и женщины, перенесшие болезни и осложнения при беременности, не верят в романтику воспроизводства человеческого рода. Они отказываются от розовых очков, глядя на отношения между женщиной и мужчиной, и на женщину, вынашивающую ребенка, и видят за внешней романтической картиной жесткую, рациональную логику генетических интересов, которые стоят на кону в процессе воспроизводства и проливают свет на его мрачные тайны: почему женщины имеют такую низкую плодовитость; почему погибает так много оплодотворенных яйцеклеток и эмбрионов; почему у столь многих женщин беременность омрачена опасными для жизни осложнениями и потенциально смертельным патологическим состоянием плода. Исследователь Дэвид Хейг из Гарвардского университета объясняет все эти проблемы в рамках сформулированной им теоретической парадигмы, которую он назвал «конфликт между родителями и потомством».
На первый взгляд деторождение кажется процессом, построенным на совместных усилиях и общих интересах, но в реальности генетические интересы матери, отца и плода вовсе не идентичны. Разумеется, любой плод наследует 50 процентов своих генов от матери, а другие 50 процентов от отца. Однако во всем животном мире, но особенно у людей, на плечи самок и женщин ложатся основные обязанности по вынашиванию потомства, а после рождения – по его выкармливанию и выращиванию. Вложения со стороны самцов (в виде спермы) в буквальном смысле слова микроскопичны. Кроме того, дети, произведенные матерью на свет, несут ее гены, но отцы у них могут быть разными. Следовательно, в генетических интересах матери умерить свои вложения в любого отдельно взятого ребенка, чтобы распределить силы среди всего предполагаемого количества детей, которых она может родить на протяжении активного репродуктивного периода. Другими словами, природа программирует мать на то, чтобы не складывать все яйца в одну корзину. В то же время в эгоистических интересах отцовских генов, чтобы несущий их плод и затем детеныш/ребенок требовал от матери больше того, что она склонна ему давать. И если для матери потеря одного ребенка, хотя и, безусловно, болезненна, может быть компенсирована рождением других детей от любых других партнеров, то перед самим плодом стоит одна задача – выжить. Все это создает условия для конфликта.
Эволюционисты считают, что отцовские гены в виде спермы и затем своей доли в эмбрионах благоприятствуют механизмам, которые стимулируют восприимчивость матки и способствуют неразборчивой имплантации всех подряд эмбрионов независимо от их жизнеспособности. И наоборот, материнские гены способствуют запуску механизмов, которые отсортировывают качественных эмбрионов от некачественных, с тем чтобы не растрачивать материнские силы на потомство, имеющее генетические дефекты или проблемы совместимости. Если плод все же закрепляется в матке, отцовские гены в плоде и плаценте принимаются манипулировать матерью, стараясь заставить ее дать плоду больше ресурсов, чем это отвечает ее долгосрочным интересам. Разумеется, материнские гены стараются противостоять этой манипуляции. Хейг сравнивает этот конфликт интересов с перетягиванием каната. Представьте себе две команды нацеленных на победу мускулистых мужчин. Если силы с обеих сторон равны, флажок в середине каната не сдвигается с места, несмотря на все их усилия. Так происходит при нормальной беременности – ни одному из наборов генов не удается одержать победу в скрытой борьбе интересов, и беременность развивается успешно и для плода, и для матери. Но если одна из сторон дает слабину, вся система рушится.
В 1940–1960-х годах великий иммунолог-новатор сэр Питер Медавар, занимаясь фундаментальными исследованиями в области иммунологии и трансплантации, пролил свет на то, как иммунная система принимает или отторгает кожные трансплантаты и пересаженные органы. При этом Медавара заинтересовал один странный вопрос, связанный с беременностью: почему иммунная система автоматически распознает и атакует антигены (чужеродные белки), присутствующие в пересаженной ткани, но материнская иммунная система принимает и терпит эмбрионы, несмотря на присутствие в них чужеродных отцовских антигенов? Почему организм матери не отвергает «наполовину чужеродный» плод? Медавар предположил, что материнская иммунная система не обращает внимания на отцовские антигены, что может происходить по нескольким причинам: во-первых, потому что физически плод отделен от иммунной системы матери; во-вторых, потому что плод является незрелым в иммунологическом плане или же, наконец, потому что иммунная система матери почему-то перестает реагировать на эмбриональные антигены.
Наблюдения Медавара за последние полвека легли в основу многочисленных исследований в области толерантности матери к плоду, и в настоящее время ученые приблизились к исчерпывающему объяснению того, как работает этот сложнейший механизм. При этом они опровергли все предположения Медавара, поскольку стало очевидным, что между матерью и плодом не существует непроницаемого барьера, а происходит постоянный обмен. Отцовские антигены, присутствующие в продуктах клеточного распада от плода и плаценты, обнаруживаются в организме матери во время беременности и даже после нее. Более того, материнская иммунная система «знакомится» с отцовскими антигенами еще до того, как эмбрион пытается закрепиться в стенке матки.
Давно было замечено, что женщины чаще страдают преэклампсией, если они забеременели после короткого периода сожительства с данным сексуальным партнером, чем в том случае, если они сожительствовали с ним более шести месяцев перед зачатием. Последующие беременности от того же партнера, как правило, несут более низкий риск развития преэклампсии, который, однако, возрастает, если женщина меняет партнера между беременностями или если между двумя беременностями проходит несколько лет. Риск развития преэклампсии при первой беременности выше, если до зачатия пара регулярно пользовалась презервативами или занималась сексом относительно редко. Также этот риск значительно возрастает, если беременность наступила в результате ЭКО, особенно если использовалась донорская сперма, и снижается в том случае, если пара часто занималась незащищенным сексом до и после процедуры ЭКО. Есть даже данные о том, что женщины, которые проглатывают сперму партнера во время орального секса, сталкиваются с более низким риском развития преэклампсии. Все это говорит о том, что компоненты семенной жидкости и/или сперматозоидов могут взаимодействовать с женской иммунной системой, которая благодаря регулярным контактам с эякулятом партнера учится распознавать его антигены и развивает толерантность к ним. Это в некоторой мере облегчает дальнейший процесс «перетягивания каната», включающий попадание спермы в репродуктивный тракт, оплодотворение яйцеклетки, имплантацию эмбриона и развитие плода, на протяжении которого отцовские и материнские гены реализуют различные стратегии – первые стремятся во что бы то ни стало передать себя следующему поколению, а вторые хотят правильно выбрать партнера и эмбрион, которые заслуживают того, чтобы потратить на них время и силы.
Сперма представляет собой не просто смесь сперматозоидов и питательной семенной жидкости, а сложнейший коктейль из активных биохимических агентов. Психолог Гордон Гэллап из Университета штата Нью-Йорк в Олбани вместе со своими коллегами Ребеккой Бёрч и Лори Петриконе исследовал биохимический состав спермы и выявил активные ингредиенты, которые манипулируют женской репродуктивной системой и реакцией женского организма.
Влагалище, говорит Гэллап, это идеальный путь для проникновения компонентов спермы в кровяное русло женщины. Влагалище снабжено густой сетью кровеносных сосудов, и кровь от него напрямую идет к сердцу через подвздошную вену, минуя печень, которая обычно отфильтровывает чужеродные вещества. Это означает, что в течение одного-двух часов после осеменения в крови женщины можно обнаружить вещества, присутствующие в сперме партнера, – причем действие многих из этих веществ направлено на то, чтобы способствовать оплодотворению яйцеклетки и имплантации оплодотворенного эмбриона в матке. Вот почему при искусственном оплодотворении, когда используется «промытая» сперма, объясняет Гэллап, вероятность оплодотворения и имплантации эмбриона значительно снижается. Гэллап также сообщает об одном исследовании, в процессе которого женщинам была проведена процедура искусственного оплодотворения, известная как перенос гаметы в маточную трубу (процедура GIFT). При этом половину женщин попросили воздержаться от занятий сексом до и после процедуры, а вторую половину, наоборот, попросили активно заниматься сексом в этот период. В результате в первой группе забеременело всего пять из восемнадцати женщин, а во второй – пятнадцать из восемнадцати.
Семенная жидкость содержит удивительное количество гормонов, которые мы обычно ассоциируем с женским организмом. Она включает эстроген; фолликулостимулирующий гормон (ФСГ), который стимулирует рост и созревание фолликулов в яичниках; лютеинизирующий гормон (ЛГ), резкий выброс которого вызывает овуляцию. Человеческая семенная жидкость также содержит ряд сигнальных молекул – цитокинов, в том числе интерлейкины 1, 2, 4, 6 и 8, фактор некроза опухоли альфа, гамма-интерферон и гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ), причем все эти вещества обладают иммуноподавляющими свойствами и делают матку более восприимчивой к имплантации оплодотворенного эмбриона. Гэллап сообщает, что содержание этих гормонов в семенной жидкости часто превышает их уровни, обнаруживаемые у небеременных и даже у некоторых беременных женщин. Главным среди них является хорионический гонадотропин человека (уровень которого и измеряется в стандартных тестах на беременность), который поддерживает нормальную работу желтого тела в яичнике после овуляции, таким образом способствуя поддержанию высокого уровня прогестерона, что является жизненно важным для сохранения беременности.
Наконец, семенная жидкость содержит тринадцать типов простагландинов и липидных посредников, которые снижают активность лимфоцитов Т-киллеров, одного из главных штурмовиков иммунной системы. Эти присутствующие в сперме цитокины и простагландины, говорит Гэллап, воздействуют на рецепторы клеток-мишеней в матке и шейке матки, где они влияют на экспрессию генов, изменяя женские репродуктивные ткани. Цель этого, объясняет Гэллап, повысить выживаемость сперматозоидов и вероятность оплодотворения, повлиять на женский иммунный ответ, обеспечив толерантность к сперме и оплодотворенной яйцеклетке, и вызвать изменения в эндометрии (внутренней слизистой оболочке) матки, чтобы способствовать развитию эмбриона и его имплантации.
Сара Робертсон и ее коллеги из Университета Аделаиды решили узнать, как именно эти компоненты спермы взаимодействуют с материнской иммунной системой. Исследования в области репродуктивной биологии проводятся в основном на мышах, и было установлено, что у мышей семенная жидкость вызывает умеренную воспалительную реакцию в половых путях самок, что запускает иммунные реакции, повышающие вероятность оплодотворения и беременности. Робертсон и ее сотрудники задались вопросом, не происходит ли то же самое у людей. Поскольку медицинская этика запрещает инвазивные исследования на матке, они использовали шейку матки, предположив, что иммунные реакции в шейке отражают реакции в самой матке.
Исследователи отобрали группу фертильных женщин и разделили ее на три подгруппы. Всех женщин попросили использовать презервативы за пять дней до первой биопсии и воздерживаться от секса за два дня до нее, чтобы гарантировать полное отсутствие спермы в половых путях. Затем была проведена игольчатая биопсия шейки матки в период овуляции и два дня спустя. В промежутке между этими исследованиями одной группе женщин было разрешено заниматься незащищенным сексом, вторая группа должна была использовать презервативы, а третья группа – воздержаться от секса. Исследователи обнаружили множество иммунных событий в пробах ткани, взятых у женщин, занимавшихся незащищенных сексом, – т. е. тех, у которых шейка матки контактировала со спермой. В этой группе они обнаружили классическую воспалительную реакцию, которая включала мобилизацию различных видов иммунных клеток, изменения в активности генов, ассоциируемых с путями развития воспаления, а также повышенные уровни ряда активных провоспалительных цитокинов. Этого не было обнаружено в пробах тканей у женщин, использовавших презервативы или не занимавшихся сексом вообще. Среди белых кровяных клеток, наполнивших эпителий шейки матки после контакта со спермой, присутствовали макрофаги, дендритные клетки, нейтрофилы и Т-лимфоциты – клетки памяти иммунной системы, призванные распознавать чужеродные антигены.
Работа дендритных клеток, как мы узнали в первой главе, состоит в том, чтобы обрабатывать антигены (чужеродные белки), находящиеся на поверхности бактерий, зараженных вирусом клеток или (в данном случае) сперматозоидов и компонентов семенной жидкости, а затем «презентовать» их таким образом, чтобы они могли быть распознаны эффекторными Т-клетками адаптивной иммунной системы. В зависимости от сигнала, подаваемого презентующими антиген дендритными клетками, иммунная система может мобилизовать либо цитотоксические Т-лимфоциты, которые атакуют и уничтожают чужеродные клетки; либо провоспалительные Т-лимфоциты, создающие враждебную среду для пытающегося имплантироваться эмбриона; либо регуляторные Т-лимфоциты, обеспечивающие благоприятную среду. Эта слабая воспалительная реакция в матке, индуцируемая химическими посредниками хемокинами и цитокинами, присутствующими в семенной плазме, привлекает иммунные клетки в матку и шейку матки, где и происходит ключевое взаимодействие между спермой и иммунной системой, в результате которого последняя «знакомится» с этими мужскими антигенами и запоминает их. Благодаря иммунной памяти впоследствии, когда женская иммунная система встречает эти отцовские антигены на оплодотворенной яйцеклетке и эмбрионе, она реагирует на них толерантно и делает возможной имплантацию. Вот почему регулярный и длительный контакт со спермой партнера может обеспечивать надежную защиту от осложнений в ходе беременности. Более того, без такой «толеризации» женской иммунной системы невозможно и само возникновение беременности.
Также было установлено, что сперма разных мужчин значительно варьируется по содержанию в ней цитокинов, известных как трансформирующий фактор роста бета (ТФР-). Эти цитокины оказывают модулирующее действие на иммунную систему, т. е. они способны менять материнский иммунный ответ с враждебной воспалительной реакции на создание благоприятной толерантной среды, где преобладает популяция регуляторных Т-лимфоцитов. Однако такое хорошее «знание» материнской иммунной системой отцовских антигенов является палкой о двух концах, поскольку оно также помогает женскому организму отсортировывать эмбрионов по параметру качества и совместимости. Чтобы отличить «своих» от «чужих», иммунные клетки используют главный комплекс гистосовместимости (ГКГС). Главный комплекс гистосовместимости представляет собой группу расположенных на поверхности клеток белков (которые также называют человеческими лейкоцитарными антигенами), кодируемых 160 высоковариабельными генами. Каждый человек обладает уникальной сигнатурой ГКГС. Когда речь идет о трансплантации органов, близкое сродство (аффинность) ГКГС является ключевым фактором, предотвращающим отторжение (вот почему в качестве доноров предпочтительно использовать близких родственников). Однако в матке цель игры – различие. Установлено, что, если иммунные клетки матери распознают в сперматозоидах сигнатуру ГКГС, очень сходную с материнской, они отвергают эти клетки. Дело в том, что одна из функций белков ГКГС – активно презентовать чужеродные антигены на клеточных поверхностях. Значительное совпадение между материнским и отцовским ГКГС сужает круг антигенов, на которые может реагировать получившееся потомство – что имеет очевидные негативные последствия для его устойчивости к заболеваниям. Кроме того, близкое соответствие сигнатур ГКГС может свидетельствовать о наличии общих потенциально опасных рецессивных генов, которые у потомства могут перейти в гомозиготное состояние и стать активными – таким образом делая потомство подверженным генетическим болезням. Поэтому нет ничего удивительного в том, что, как показали некоторые исследования, близкое сродство ГКГС у женщины и ее партнера увеличивает вероятность самопроизвольного выкидыша.
Давайте представим, что же происходит в тот момент, когда яйцеклетка оплодотворяется, начинает делиться и пытается прикрепиться к стенке матки. Здесь противостояние женских и мужских генетических интересов приобретает поистине макиавеллиевский характер. Несколько лет назад исследователи обнаружили, что первые несколько циклов клеточного деления развивающегося эмбриона, или бластоцисты, полученной в результате ЭКО, подвержены высокой хромосомной нестабильности. Это считалось одним из главных сдерживающих факторов для успеха ЭКО, и было высказано предположение, что такая хромосомная нестабильность возникает вследствие предшествующей химический гиперстимуляции яичников, призванной способствовать развитию фолликулов и производству яйцеклеток. Таким образом, репродуктивная медицина кинулась искать новые методы, которые позволили бы ей создавать идеальных эмбрионов.
Но в 2009 году Йорис Вермес из Лёвенского католического университета решил разработать высокочувствительный скрининг-тест для выявления хромосомных аномалий у эмбрионов на ранних сроках беременности. Он взял вполне нормальные, зачатые естественным образом эмбрионы у молодых женщин в возрасте до тридцати пяти лет, в прошлом не страдавших бесплодием. К своему удивлению, он увидел в них ничуть не меньше «генетического хаоса». Изучив все клетки, или бластомеры, образующие 3–4-дневные эмбрионы, он обнаружил, что более 90 процентов человеческих эмбрионов несут в себе генетические аномалии. Примерно 50 процентов из них вообще не имели нормальных диплоидных клеток. Хромосомная нестабильность варьировалась от анеуплоидии, когда клетки содержат больше или меньше хромосом, чем должно быть в нормальном наборе, и однородительской дисомии, когда обе хромосомы в паре наследуются от одного родителя, а не по одной хромосоме от каждого родителя, до полной мешанины из хромосомных делеций, дупликаций, фрагментаций и амплификаций. Можно подумать, что при таком изобилии хромосомных дефектов эмбрион не может быть жизнеспособным. Однако, хотя совокупный процент гибели плода у женщин вследствие его неприкрепления к стенке матки, самопроизвольного или клинического выкидыша является чрезвычайно высоким и составляет порядка 70 процентов, этот показатель значительно ниже, чем доля генетически аномальных эмбрионов, составляюща 90 процентов. Таким образом, количество рожденных здоровых детей значительно превышает количество нормальных эмбрионов.
Здесь может быть несколько возможных объяснений. Некоторые генетически хаотичные эмбрионы могут быть в состоянии исправлять себя путем уничтожения аномальных бластомеров, оставляя только нормальные бластомеры, из которых затем образуется плод и плацента. Например, сообщалось, что один замороженный и оттаявший человеческий эмбрион содержал всего одну нормальную клетку, однако продолжил формироваться в совершенно здорового ребенка. Или же эмбрион может быть способен самостоятельно исправлять генетические ошибки. Однако возникает вопрос: если определенное количество таких хаотичных эмбрионов систематически выживает, почему они вообще проходят через период генетической нестабильности? Ян Бросенс, профессор в области репродуктивной медицины из Уорикского университета, и его коллега Ник Маклон из Саутгемптонского университета считают, что это преднамеренная стратегия, призванная сделать эмбрион более агрессивным. Единственный схожий пример таких высоких уровней генетической нестабильности мы можем увидеть в раковых опухолях, где это ведет к агрессивному поведению раковых клеток, в том числе к более высокой миграционной активности, инвазивности и склонности к метастазированию, в результате чего раковые клетки распространяются на другие органы. Исследователи предполагают, что эмбрионы на очень ранней стадии развития могут представлять собой репродуктивный эквивалент злокачественной опухоли. Тем не менее, несмотря на все эти объяснения, высокие уровни «генетического хаоса» в эмбрионах по-прежнему остаются настоящей медицинской загадкой, настоятельно требующей дальнейших исследований.
Одна часть клеток раннего эмбриона развивается в плод, а другая часть образует плаценту, причем люди имеют одну из самых инвазивных плацент в животном мире. Эта так называемая гемохориальная плацента глубоко внедряется в стенку матки и в конечном итоге так сильно меняет материнское кровообращение, что мать не может лишить плода питания, не уморив голодом саму себя. Плод – идеальный паразит. Как указывает Маклон, эмбрионы настолько агрессивные захватчики, что им даже не нужна матка. Недаром так распространены случаи внематочной беременности, когда эмбрионы имплантируются буквально где угодно, включая маточные трубы, шейку матки, яичники и даже брюшную полость. Большинство из них нежизнеспособны, однако они представляют опасность для матери, поскольку агрессивно внедряются хорионом (ворсинками) в стенки кровеносных сосудов и могут вызвать обширные кровотечения. Зафиксированы чудесные случаи, когда внематочная беременность заканчивалась рождением здоровых детей. Пожалуй, самый известный из них – это рождение Сейдж Далтон в 1999 году. Эмбрион смог нормально развиваться за пределами матки, поскольку его плацента закрепилась в брюшной полости матери на доброкачественной фиброзной опухоли, богато снабженной кровеносными сосудами. Пузырный занос – еще один пример агрессивного вторжения. В редких случаях сперматозоид оплодотворяет яйцеклетку, лишенную материнской ДНК. Присутствующий в сперматозоиде набор хромосом удваивается, формируя диплоидный набор из сорока шести хромосом, однако все эти хромосомы отцовские. В результате из оплодотворенной яйцеклетки в матке развивается большая, неупорядоченная клеточная масса – по сути представляющая собой плаценту без плода.
Благодаря относительно низким метаболическим затратам на производство спермы мужчины могут позволить себе продвигать свои генетические интересы, стимулируя имплантацию как можно большего количества эмбрионов независимо от их качества или жизнеспособности – азартная игра с малыми шансами на победу, но высоким призовым фондом. Один из примеров этого – троянский конь в виде генетически хаотичных эмбрионов. Теория конфликта между родителями и потомством утверждает, что в ответ женщины развили эффективные контрмеры, поскольку задача матери – не дать закрепиться некачественным эмбрионам, чтобы не тратить на них драгоценное время и силы, и выбрать из генетически аномальных эмбрионов те, которые все-таки имеют шансы нормально развиваться. В результате эволюции гемохориальной плаценты мать несет огромные метаболические затраты, сопряженные с развитием каждого эмбриона, поэтому она должна тщательно отбирать, на кого сделать ставку. Бросенс и его коллеги считают, что именно отбор эмбрионов и есть главная причина появления механизма менструаций и образования очень узкого окна в менструальном цикле, когда может произойти эффективная имплантация. Предыдущие теории пытались объяснить адаптивное значение менструации, предполагая, что она развилась как способ защиты женского репродуктивного тракта от присутствующих в сперме патогенов или же что менструация является менее дорогостоящий с метаболической точки зрения, чем постоянное поддержание толстой стенки матки. Однако Бросенс и его коллеги утверждают, что менструация идет рука об руку с процессом, называемым спонтанной децидуализацией, который позволяет женщинам контролировать качество пытающихся закрепиться эмбрионов.
Более ста видов животных, включая грызунов, медведей, оленей и кенгуру, имеют в своем репродуктивном процессе так называемую эмбриональную диапаузу, когда после попадания в матку эмбрион на какое-то время останавливается в своем развитии, пока ему не будет дан «зеленый свет» на имплантацию. Например, у некоторых видов оленей эмбрион попадает в матку осенью, а имплантируется только весной. В этот период эмбрион запускает материнскую реакцию на беременность в форме процесса, называемого децидуализацией. Эндометрий матки трансформируется в децидуальную ткань, образуя децидуальную или отпадающую оболочку, называемую так потому, что она отделяется вместе с плацентой при родах, а также во время менструации. Людей – а также обезьян Старого Света, длинноухих прыгунчиков и плотоядных летучих мышей-крыланов – отличает от других представителей животного мира то, что эта реакция запускается независимо от присутствия эмбриона. Она называется спонтанной децидуализацией и возникает спустя пять-семь дней после овуляции в каждом менструальном цикле. Бросенс называет это окном имплантации или окном восприимчивости.
Эндометрий матки снабжается кровью через специальные кровеносные сосуды, называемые спиральными артериями, и на 5–7-й день после овуляции окружающие эти артерии клетки, фибробласты стромы, претерпевают значительные изменения – они дифференцируются в децидуальные клетки и становятся секреторными. После того как этот процесс запущен, для его поддержания требуется непрерывная подача прогестерона, который вырабатывается желтым телом яичника. Если беременность не возникает, желтое тело снижает выработку прогестерона, и у женщины начинается менструация. Если же происходит имплантация эмбриона, уровень прогестерона остается высоким, и децидуальные клетки начинают действовать – они мигрируют, чтобы инкапсулировать эмбрион, и стягивают на место действия иммунные клетки, чтобы начать его проверку. Точно так же в жизни поступают и полицейские, когда заключают подозреваемого в тюремную камеру для проверки его личности.
Некоторые особенности этого процесса предполагают, что адаптивное значение менструации состоит в том, что она обучает матку проходить через эти децидуальные изменения и помогает подготовиться к эффективному взаимодействию с эмбрионами в будущем. У новорожденных девочек менструации часто случаются в первые несколько дней жизни, после чего матка переходит в состояние покоя до наступления менархе. Кроме того, от начала менархе до начала овуляций у молодых женщин обычно проходит около двух лет. Бросенс и его коллеги считают, что неслучайно такой длительный период менструаций предшествует периоду, когда становится возможным возникновение беременности: интенсивное кровотечение и воспаление, сопровождающие менструацию, «тренируют» матку. Многократные регулярные менструации также приводят к тому, что временная воспалительная реакция в ответ на попытку имплантации ослабляется в достаточной степени для того, чтобы запустить в матке все необходимые морфологические и иммунные изменения, но при этом не быть чересчур интенсивной, чтобы не повредить эмбрион. Это слабое воспаление, которое также было обнаружено Сарой Робертсон, позволяет объяснить, почему тяжелая преэклампсия чаще всего возникает при первой беременности и преимущественно у молодых женщин. Корень проблемы, объясняет Бросенс, – в недостаточной менструальной подготовке матки.
В медицинских учебниках, замечает Бросенс, по сей день рисуется ошибочная картина, где присутствуют активные, агрессивно вторгающиеся эмбрионы и абсолютно пассивный эндометрий (внутренняя слизистая оболочка матки). У такого медицинского взгляда долгая история. Дэвид Хейг приводит в пример типичные фразы из лексикона специалистов по репродуктивной медицине в первые два десятилетия XX века. Эти фразы несут на себе явный отпечаток настроений того времени – духа надвигающейся войны. Например, Эрнст Грефенберг в 1910 году назвал яйцеклетку 'Ein frecher Eindringling' – «жестоким интервентом», проедающим себе путь вглубь стенки матки, а Оскар Полано, описывая антагонизм между материнским организмом и зародышем, написал, что зародыш «возводит форпосты на вражеской территории». «В предчувствии пожара войны, который вот-вот охватит Европу, – пишет Хейг, – Джонстон рисует устрашающую пророческую картину: „Вместо четкой границы мы видим широкую линию фронта, где происходит кровопролитное сражение между материнскими тканями и вторгшимся эмбрионом, и груды погибших клеток с обеих сторон, которые никто не уносит с поля боя“».
Однако децидуальная оболочка матки играет очень активную роль – хотя и не в военных действиях, а в процессе отбора. Аномальный эмбрион подает четкие химические и иммунологические сигналы, предупреждающие о его непригодности для дальнейшего развития, однако материнский организм может распознать эти сигналы, только пройдя через процесс децидуализации. Таким образом, у людей существует не только окно восприимчивости, когда может произойти имплантация эмбриона, но и окно распознавания и селекции эмбрионов. Более того, тот же самый процесс, утверждает Бросенс, в конечном итоге влияет на формирование плаценты. Следовательно, нарушенный процесс децидуализации ведет к плохому отбору эмбрионов, формированию дефектной плаценты (даже в случае качественного эмбриона) и либо к ранней гибели эмбриона в результате самопроизвольного аборта, либо к преэклампсии на более поздних сроках беременности.
В своей повседневной работе Бросенсу приходится иметь дело со множеством женщин, у которых возникают проблемы с фертильностью. Они могут быть бесплодными или, наоборот, сверхфертильными, но в любом случае они не могут выносить ребенка. Он вспоминает, как несколько лет назад обследовал одну женщину из Шотландии, у которой было восемь выкидышей подряд. Поскольку раньше считалось, что бесплодие и выкидыши тесно связаны, он спросил, сколько времени потребовалось ей на то, чтобы забеременеть. Он думал, что услышит печальную историю, и был в шоке, когда она ответила: «Примерно месяц». У этой женщины не было никаких проблем с фертильностью; она беременела как по часам, каждый раз, когда пыталась это сделать, но так ни разу и не смогла родить из-за раннего выкидыша.
В 1999 году исследователь Аллен Уилкокс, который первым обнаружил очень высокую долю ранних выкидышей при нормальной беременности, составляющую выше 30 процентов, опубликовал в журнале New England Journal of Medicine статью, в которой сообщил, что успешность имплантации зависит от количества дней, прошедших со дня овуляции. Он набрал довольно многочисленную группу пытающихся забеременеть женщин и убедил их заполнить свои холодильники образцами мочи, которые они должны были собирать каждый день до тех пор, пока не наступит успешная беременность. Его команда проанализировала пробы мочи и по повышенному содержанию лютеинизирующего гормона определила примерный день овуляции. Затем исследователи измерили уровни хорионического гонадотропина человека (ХГЧ), который является одним из первых индикаторов имплантации. У большинства женщин имплантация произошла в узком окне продолжительностью всего шесть-семь дней после овуляции, хотя у некоторых это случилось намного позже, вплоть до одиннадцатого дня после овуляции. Уилкокс показал, что поздняя имплантация сопряжена с экспоненциальным ростом вероятности выкидыша. Бросенс объясняет это тем, что поздняя имплантация не попадает в критически важное окно восприимчивости, во время которого в стенке матки происходят изменения, готовящие ее к тому, чтобы инкапсулировать и тщательно изучить пытающегося имплантироваться эмбриона. Поздно имплантирующиеся эмбрионы пропускают эту ограниченную по времени проверку, поэтому материнский организм считает, что они ее не прошли, независимо от их подлинного качества, и избавляется от них. Таким образом, женщины, у которых произошло подобное нарушение в этом развившемся в ходе эволюции механизме контроля эмбрионального качества, сталкиваются с такой репродуктивной проблемой, как сверхфертильность вкупе с привычным невынашиванием беременности – все последствия которой в полной мере испытала на себе Прийя Тейлор.
Прийя вышла замуж в 2003 году и сразу же решила родить ребенка. Она забеременела уже в медовый месяц, но примерно на десятой неделе у нее начались периодические кровянистые выделения, которые продолжались до двадцатой недели. Прийя вспоминает: «Это было на двадцать второй неделе. Я проснулась оттого, что у меня сжимался желудок. Муж сказал: "Что-то не в порядке". Мне показалось, что я обмочилась в постель. Это отошли воды». В конце концов, она родила недоношенного ребенка на двадцать пятой неделе беременности. «На самом деле это очень печальная история. Александр кричал, когда родился. Они не предупредили, что заберут его от меня. За занавеской я даже не видела, что происходит. Его поместили в палату интенсивной терапии. Он был крошечным, весом всего один фунт (меньше 500 граммов), и не мог сам дышать. Он прожил два дня, а потом умер».
Не утратив присутствия духа, Прийя снова забеременела спустя два месяца после потери Александра, но на десятой неделе врачи не смогли услышать сердцебиение плода. Ей сделали операцию, известную как дилатация и кюретаж (выскабливание матки), чтобы удалить плод и плацентарную ткань. За этой неудачной беременностью последовало еще шесть, каждая из которых длилась от четырех до десяти недель. «Я видела, как трудно моему мужу провожать меня на очередную операцию по выскабливанию матки. И я видела, что все наши друзья уже обзавелись детьми. Это было поистине страшно. Я очень эмоциональный человек и легко расстраиваюсь по любому поводу, но тут я понимала, что мне нельзя сдаваться. Мне трудно смириться с тем, что есть вещи, над которыми я не властна».
Все попытки Прийи забеременеть естественным образом заканчивались неудачей. Поэтому спустя два месяца она прошла первый цикл ЭКО – первый из шести, пять из которых привели к краткосрочным беременностям. В промежутке между этими процедурами ей даже удалось забеременеть естественным путем, но эта беременность продолжалась всего семь недель. В этот момент она обратилась к Яну Бросенсу. Лабораторный анализ тканей ее пятого плода показал, что он имел серьезную хромосомную аномалию и у него не было шансов выжить. Прийя возлагала большие надежды на шестую искусственную беременность, но та превратилась в сплошной кошмар: отмененный из-за выкидыша отпуск на Карибах, неудачная операция, тяжелая инфекция матки, кровотечение и недельное пребывание в больнице. Ее муж Мэтт, человек со стоическим характером, в эту неделю не мог удержаться от слез и в конце концов сказал: «Все, хватит попыток. Ничто не заставит меня сделать это снова». Прийя тоже была совершенно сломлена, но в годовщину свадьбы два месяца спустя она попросила: «Пожалуйста, давай попробуем еще раз. Дай мне еще один шанс, и я обещаю, что у меня получится». Потребовался целый месяц, чтобы уговорить Мэтта.
Бросенс считает, что Прийя находится на крайнем конце спектра сверхфертильности и страдает дисфункцией матки, которая характеризуется удлиненным периодом восприимчивости, нарушением процесса децидуализации и отбора эмбрионов. Другими словами, у нее нарушен механизм контроля эмбрионального качества, что приводит к таким клиническим последствиям, как быстрое зачатие – и ранние выкидыши.
При следующем – и последнем – цикле ЭКО удалось получить удивительные двадцать яйцеклеток, четырнадцать из которых были оплодотворены. Ей ввели два шестидневных эмбриона и в скором времени позвонили и сказали, что ее тест на беременность дал положительный результат и все показатели были высокими, что свидетельствовало об успешной имплантации. Но через три дня их уровни начали падать. Даже когда шесть недель спустя врачи услышали сердцебиение плода, она не могла поверить в то, что плод выжил. Бросенс, который на этот раз наблюдал за ее беременностью, между шестой и двенадцатой неделями каждую неделю проводил сканирование, чтобы показать Прийе, что ее ребенок успешно растет. На самом деле она вынашивала два плода, один из которых погиб примерно на седьмой неделе, но девочка Майя продолжала упорно цепляться за жизнь. На шестнадцатой неделе Прийе ушили шейку матки, чтобы предотвратить выкидыш, но на восемнадцатой неделе у нее началось кровотечение. «Я снова проснулась среди ночи и обнаружила, что моя постель полна крови. Мы встали, и я спокойно сказала Мэтту: "Собери мою сумку. Я поеду в больницу. Видно, судьбой нам не предназначено иметь детей". Но когда они добрались до больницы, выяснилось, что у плода прослушивается сердцебиение. Обследовав ее на следующий день, Бросенс увидел рядом с плацентой довольно большой сгусток крови. На двадцать второй неделе ребенок почти перестал расти из-за значительной аномалии плаценты, которая была недостаточно хорошо подсоединена к материнской системе кровообращения в матке. Кроме того, плацента покрывала всю шейку матки, что делало естественные роды невозможными. Тем не менее беременность продолжалась, пока, наконец, на тридцать пятой неделе врачи не решили, что низкая скорость роста и плохое кровообращение в плаценте создают угрозу для жизни ребенка. В результате кесарева сечения родилась девочка Майя – здоровый ребенок весом почти два килограмма. Через пять дней пребывания в больнице врачи согласились выписать мать и ребенка домой. «Они спросили у меня, все ли готово у меня дома к принятию ребенка. У меня не было готово ничего! Не было даже ни одного подгузника! Они спросили, почему я не подготовилась, и я объяснила им, что после всего, что со мной было, я уже не надеялась вернуться домой с ребенком».
Клеточные и иммунные изменения в стенке матки, которые определяют успех или неудачу имплантации, представляют собой чрезвычайно сложный феномен, который в настоящее время вызывает пристальный интерес исследователей – и немалые разногласия в их среде. Значительная часть наших знаний об этих явлениях получена благодаря экспериментам на мышах, и не всегда известно, в какой степени их можно экстраполировать на людей. Тем не менее становится очевидным, что нарушение процесса децидуализации, затрагивающее нарушение дифференциации фибробластов стромы в децидуальные клетки, не только влияет на способность женского организма обеспечить надлежащую проверку и имплантацию эмбриона, но и создает предпосылки для дальнейших патологий беременности, таких как ранний выкидыш и преэклампсия.
Бросенс и его коллеги Мадхури Салкер, Шивон Квинби, Гейс Текленбург и другие постарались изучить процесс децидуализации в мельчайших подробностях. Оказалось, что важнейшую роль в нем играет один из представителей семейства провоспалительных цитокинов, известный как интерлейкин 33 (ИЛ-33). Как мы уже знаем, высокий уровень прогестерона запускает дифференциацию стромальных клеток в децидуальные. Когда клетки начинают дифференцироваться, они секретируют интерлейкин 33 и связывают его с рецепторной молекулой STL2, что позволяет им запустить в стенке матки выработку целого коктейля из хемокинов, цитокинов, С-реактивного белка и других воспалительных факторов. Это временное воспаление является необходимой прелюдией к имплантации, поскольку оно включает целый ряд генов, отвечающих за восприимчивость матки. Данное воспаление носит самоограничивающийся характер, поскольку, как только процесс децидуализации завершается, эти клетки активируют петлю обратной связи и начинают производить рецептор-ловушку для интерлейкина 33, который называется sST2. Такой маневр позволяет эффективно нейтрализовать интерлейкин 33 и прекратить воспалительную реакцию. Когда исследователи сравнили активность генов, кодирующих рецепторную молекулу STL2, в стромальных клеточных культурах, взятых у здоровых женщин и женщин, страдающих привычным невынашиванием беременности, они обнаружили одну интересную вещь: первоначально уровень продуцирования STL2 повышался во всех случаях, но у здоровых женщин он снижался через два дня после начала децидуализации, тогда как у второй группы женщин он оставался высоким на протяжении восьми дней после запуска децидуализации, а уровень производства рецепторов-приманок sST2, наоборот, был значительно ниже. Хотя у этих женщин происходила имплантация эмбрионов, кумулятивные воспалительные эффекты, вызванные более продолжительной выработкой воспалительных цитокинов и STL2, создавали очень враждебную среду для эмбрионов, поскольку децидуальная ткань была повреждена и наполнена иммунными атакующими клетками.
При трансформации стромальных клеток в децидуальные также меняется тип продуцируемых ими сигнальных молекул – цитокинов, что позволяет этим клеткам служить привратниками в важнейшей зоне соприкосновения между матерью и эмбрионом. Через секрецию интерлейкинов 11 и 15 они запускают мобилизацию и дифференциацию специализированного типа белых клеток крови, называемых натуральными (естественными) киллерами или NK-клетками. Как правило, эти клетки циркулируют в периферической крови и, как следует из их названия, обладают высокой цитотоксичностью, уничтожая клетки, зараженные вирусами, и опухолевые клетки. Однако маточные натуральные киллеры (uNK-клетки) действуют совершенно иначе: вместо того чтобы вырабатывать клеточные токсины, они продуцируют ряд цитокинов, которые, судя по всему, очень важны для продолжения беременности. Маточные NK-клетки составляют 70 процентов популяции всех белых кровяных клеток, присутствующих в децидуальной оболочке, и способствуют формированию плаценты, стимулируя рост новых кровеносных сосудов и проникновение эмбриона в материнскую ткань. В то же время децидуальные клетки защищают плод – аллогенный (чужеродный) в силу несомых им отцовских генов – от нападения цитотоксических Т-клеток. Они делают это путем отключения своих собственных ключевых генов, кодирующих цитокины, которые в ином случае они могли бы производить, натравливая Т-киллеров на эмбриональную цель.
Эмбрион, которому удалось успешно выдержать материнскую проверку, начинает более глубоко вторгаться в стенку матки, чтобы сформировать плаценту. По мере того как клетки эмбриона продолжают делиться, часть из них образует внешний клеточный слой, называемый трофэктодермой, из которого далее формируются клетки трофобласта с чрезвычайно высокой инвазивной активностью, а другая часть образует внутреннюю клеточную массу – эмбриобласт и затем сам плод. Проникая все глубже в стенку матки, трофобласт формирует древовидно-разветвленные структуры, называемые хорионическими ворсинками. Эти ворсинки богаты кровеносными сосудами и прикрепляют плод к матке. Далее трофобласт, который на этом этапе называют вневорсинчатым трофобластом, дорастает до спиральных артерий в стенке матки и образует в них открытые устья, которые открываются в большой просвет между материнской и фетальной тканью, известный как межворсинчатое пространство. Таким образом, из открытых устьев артерий кровь начинает свободно изливаться в межворсинчатое пространство и циркулировать между разветвленными ворсинками хориона. Хорионические ворсинки и межворсинчатое пространство покрыты специальным слоем клеток, называемым синцитиотрофобластом. Спиральные артерии претерпевают значительную перестройку. Гладкие мышечные и эластические волокна, образующие стенку артерий, разрушаются и заменяются клетками трофобласта. В результате из мышечных структур малого объема с высоким давлением артерии превращаются в объемные сосуды с низким сопротивлением – биологический эквивалент обвисших, растянутых рейтуз.
К двадцатой неделе нормальной беременности завершается формирование такой удивительной структуры, как плацента. На момент рождения ребенка общая площадь ее поверхности достигает одиннадцати квадратных метров, что делает ее почти такой же эффективной с точки зрения газообмена, как и легкие. Кроме того, перестройка материнских спиральных артерий означает, что мать не может ограничить приток крови к плаценте путем их сужения. Еще одним важным следствием такой глубокой плацентации является то, что плацента может выпускать вещества непосредственно в кровоток матери, чтобы манипулировать ее метаболизмом, тогда как мать не может делать того же самого в отношении эмбриона, поскольку поступающие с кровью вещества должны сначала пройти через синцитиотрофобласт, а затем и через эпителий плода, прежде чем они смогут попасть внутрь плода.
Стенки матки, плод и плацента образуют привилегированную в иммунном отношении зону, где действуют особые правила. Вместо того чтобы немедленно начинать атаку на вторгшиеся клетки, подающие сигнал «чужой», матка в процессе эволюции приобрела способность внимательно проверять «захватчиков» и затем запускать либо враждебный, либо, наоборот, благоприятный ответ. Плаценты впервые появились у млекопитающих около 120 миллионов лет назад, а такая сложная и глубокая форма плацентации, как гемохориальная плацента, развилась только у нас, людей, а также у человекообразных обезьян и некоторых других видов животных. Гемохориальная плацента дала возможность млекопитающим вынашивать своих детенышей на протяжении более длительного срока, эффективно снабжая их большим количеством питательных веществ и кислорода, но в то же время она потребовала огромных затрат со стороны матери, включая глубокую и значительную перестройку матки в результате вторжения эмбрионального трофобласта, и необходимости локальной модуляции нормальной активности иммунной системы. В этом процессе участвуют и врожденная, и адаптивная иммунная система в форме специализированных маточных натуральных киллеров и Т-клеток соответственно, которые ведут себя совершенно иначе, чем их собратья в периферической системе кровообращения. Чтобы развился такой тип плацентации, в геномах млекопитающих должны были произойти значительные изменения, и некоторые из них носили явно случайный характер.
С регуляторными Т-лифмоцитами мы уже встречались в предыдущей главе, где говорили о «старых друзьях» и о том, как эти лимфоциты защищают нас от аллергических и аутоиммунных реакций посредством ингибирования перепроизводства эффекторных Т-лифмоцитов. Они также играют важнейшую роль в обеспечении иммунной толерантности к плоду. Раньше эти клетки называли супрессорами, поскольку первые эксперименты с пересадкой тканей показали, что они могут предотвращать отторжение, однако они впали в немилость из-за того, что их предполагаемые побочные эффекты преувеличивались, а возможности их количественного анализа имели серьезные технические ограничения. Открытие в Т-клетках важного гена-маркера, транскрипционного фактора FOXP3, заставило исследователей вновь обратить на них внимание. Было установлено, что мыши и люди, у которых отсутствует фактор FOXP3, не имеют регуляторных Т-клеток и подвержены различным аутоиммунным заболеваниям.
Непосредственно перед овуляцией происходит значительное увеличение популяции регуляторных Т-клеток в периферической крови. Предположительно это вызывается повышением уровней эстрогена и прогестерона и помогает объяснить, почему беременные женщины с таким аутоиммунным заболеванием, как ревматоидный артрит, часто испытывают ремиссию во время беременности. Группа исследователей под руководством Тамары Тилберг из Гарвардского университета показала, что Т-клетки могут распознавать специфические варианты человеческих лейкоцитарных антигенов – молекулы HLA-C, единственные из этой группы антигенов, которые являются полиморфными в том плане, что могут существовать в 1600 потенциальных версиях. Это один из примеров механизма гистосовместимости, о котором мы говорили выше. Данные варианты HLA-C присутствуют в эмбриональной и фетальной ткани, и способность распознавать их позволяет Т-клеткам запускать либо враждебную, либо благоприятную реакцию в зависимости от того, что они узнают о совместимости с отцовскими генами. При несовместимости HLA-C, когда отцовские антигены HLA-C значительно отличаются от материнских антигенов HLA-C, начинают увеличиваться популяции продуцирующих цитокин Т-клеток и регуляторных Т-клеток. Именно присутствие регуляторных клеток сдерживает потенциально враждебную реакцию со стороны эффекторных Т-клеток, а ряд исследований также показал, что недостаточная популяция регуляторных Т-клеток связана как с привычным невынашиванием беременности, так и с преэклампсией.
Роберт Самстейн из Онкологического центра Слоун-Кеттеринг в Нью-Йорке помог нам взглянуть на вклад регуляторных Т-клеток в обеспечение иммунной толерантности к плоду под совершенно новым, эволюционным углом зрения. Бльшая часть регуляторных Т-клеток производится в вилочковой железе, или тимусе, отсюда и буква Т в их названии. Однако было обнаружено, что отдельная популяция регуляторных Т-клеток может продуцироваться из наивных Т-клеток в периферической кровеносной системе. Именно эта популяция Т-регуляторов участвует в обеспечении иммунной толерантности к плоду, и Самстейн считает, что она появилась в ходе эволюции специально для того, чтобы смягчать конфликт между матерью и плодом, который неизбежно возникает у плацентарных млекопитающих вследствие более тесного контакта между отцовскими антигенами и материнским организмом. Самстейн показал, что дифференцирование этих периферийных регуляторных Т-клеток требует наличия гена FOXP3 в паре с некодирующим генетическим элементом CNS1, который усиливает его действие. В то же время CNS1 не требуется для созревания тимусных Т-регуляторов. Самстейн изучил наличие генетического элемента CNS1 у широкого спектра видов животных и обнаружил, что он неожиданно появляется только у плацентарных млекопитающих. Оказалось, что CNS1 относится к разряду «прыгающих генов» (ученые называют их транспозонами), которые были впервые исследованы Барбарой Макклинток в 1950-х годах. Судя по всему, элемент CNS1 появился в какой-то части генома и затем «перепрыгнул» на другую хромосому, где приземлился чуть ниже гена FOXP3 таким образом, что в ходе совместной эволюции стал усиливать экспрессию этого гена. Самстейн сообщил о серии экспериментов на самках мышей, которые показали, что CNS1-дефицитные мыши продуцировали гораздо меньше регуляторных Т-клеток в децидуальной оболочке. У CNS1-дефицитных самок, даже когда они спаривались с самцами с несовпадающим ГКГС (главным комплексом гистосовместимости), наблюдался ранний некроз спиральных артерий, воспаление и отек – и резорбция плода.
Эта новая, эволюционная модель специализированных регуляторных Т-клеток, отвечающих за иммунную толерантность к плоду, представляется весьма убедительной, поскольку позволяет объяснить упомянутый выше факт – женщины, которые быстро беременеют от нового партнера, более склонны к преэклампсии. Причина может быть в том, что они попросту не успевают приобрести толерантность к специфическому типу молекул HLA-C, которые предварительно презентуются им в сперме партнера. Эта модель также объясняет, почему риск преэклампсии возрастает при длительном интервале между беременностями от одного и того же партнера – причина может быть в ослаблении иммунной памяти. Наконец, эта модель помогает объяснить значение очень высоких уровней цитокина, известного как трансформирующий фактор роста бета (TGF-), в человеческой сперме, о чем сообщила Сара Робертсон и ее коллеги. TGF- необходим для дифференциации специализированных регуляторных Т-клеток, которые в конечном итоге мобилизуются в матке. Если бы во время развития плаценты в стенке матки не собиралась армия таких Т-регуляторов, ничто бы не мешало материнскому организму начать атаку на чужеродный вторгающийся плод.
Когда плод начинает развиваться, перетягивание каната между матерью и плодом начинает идти в полную силу, поскольку, п словам Дэвида Хейга, теперь в интересах матери сдержать необузданный рост и прожорливость плода, а в интересах плода – получить от матери как можно больше питательных веществ. Поскольку плод несет две копии (аллели) всех генов, одна из которых достается ему от матери, а другая от отца, его ДНК содержит представителей геномов обоих родителей. Эволюция нашла решение этому материнско-отцовскому конфликту у млекопитающих в форме механизма геномного импринтинга, который состоит в подавлении экспрессии материнских или отцовских аллелей определенных генов посредством метилирования ДНК – попросту говоря, к этим аллелям присоединяются так называемые метильные группы и «выключают» их. Когда импринтируется материнский аллель гена, у плода экспрессируется отцовский аллель, и наоборот, когда импринтируется отцовский аллель, активным становится материнский. На настоящий момент у млекопитающих обнаружено примерно 150 генов, подверженных импринтингу (и, вероятно, в скором времени будет открыто множество других), и многие из этих генов связаны с плацентой и плодом. Как вы могли догадаться, эти гены, как правило, обладают взаимно противоположным действием – в полном соответствии с теорией перетягивания каната, выдвинутой Хейгом. Исследователи провели ряд экспериментов, в ходе которых они выключали либо материнский, либо отцовский аллель в импринтируемых генах, чтобы увидеть, что происходит, когда нарушается обеспечиваемая импринтингом симметричность. Другими словами, они намеренно вмешались в процесс перетягивания каната, чтобы узнать, что произойдет, если одна из сторон перестанет тянуть канат.
Например, одна из пар генов, которая импринтируется на очень раннем этапе, – ген, кодирующий синтез инсулиноподобного фактора роста 2 (IGF2). Этот белковый гормон способствует росту плода, поэтому в норме импринтингу подвергается материнский аллель, а отцовский остается активным. Когда исследователи отключили у мышей отцовскую копию гена, отвечающего за синтез IGF-2, тем самым они склонили баланс сил в пользу матери, в результате чего родившиеся детеныши весили на 40 процентов меньше, чем обычно. В нормальной ситуации материнский организм уравновешивает воздействие IGF2 при помощи гена с противоположным действием – IGF2R, который кодирует соответствующие рецепторы (понятно, что отцовский аллель этого гена предусмотрительно отключается). Когда же исследователи заблокировали материнский аллель этого гена, баланс сил сместился в пользу отца, что привело к увеличению выработки плацентарных гормонов на 35 процентов и, как следствие, к рождению более крупных детенышей, которые весили на 25 процентов больше нормы.
Недавно ученые из Университета Бата дополнили эту картину антагонистического генетического контроля роста плода еще двумя генами, находящимися на противоположных концах каната, – это ген Dlk1 (кодирующий вещество, известное как дельта-подобный гомолог), у которого экспрессируется отцовский аллель и отключается материнский, и ген Grb10 (кодирующий белок, связывающий гормон роста 10), у которого, наоборот, экспрессируется материнский аллель и блокируется отцовский. Мышата с отключенным материнским аллелем гена Grb10 при рождении весили на 40 процентов больше, чем их нормальные собратья, а также имели больший процент жировых отложений. И наоборот, мышата, у которых блокировали отцовский аллель гена Dlk1, были на 20 процентов легче нормального потомства. Оба этих гена действуют через один и тот же метаболический путь, поэтому их антагонистические эффекты обеспечивают нормальный, сбалансированный рост.
Ген PHLDA2 (кодирующий плекстрин-гомологичный домен) экспрессирует материнский аллель, который ограничивает рост плаценты. Это объясняет, почему гиперактивность этого гена ведет к задержке внутриутробного развития плода. Одно исследование также связало его гиперактивность с повышенным риском невынашивания беременности и рождения мертвого плода, что может быть связано с тем, что он нарушает способность плаценты перестраивать спиральные артерии в стенке матки. Эффектам гена PHLDA2 противостоит ген под названием PEG10 (Paternally Expressed Gene 10), который кодирует определенный вид белка и экспрессируется только в отцовской копии. Этот ген малоактивен в начале беременности, но на десятой-двенадцатой неделе резко увеличивает свою активность и сохраняет ее на высоком уровне вплоть до родов.
Ген CDKN1C (кодирующий синтез белка – игнибитора циклин-зависимой киназы 1С) в норме имеет активный материнский аллель и отключенный отцовский, и отключение материнского аллеля приводит к чрезмерному росту плаценты. Валария Романелли и ее коллеги исследовали группу женщин, у которых вследствие генной мутации был дезактивирован ген CDKN1C. Во время беременности эти женщины перенесли тяжелую форму синдрома HELLP (см. выше), а рожденные ими дети имели избыточный вес и страдали синдромом Беквита-Видемана, который приводит к рождению младенцев с непропорционально большими конечностями и органами, а также с целым рядом других дефектов. Похоже, что в этом случае баланс смещается в пользу отцовских генетических интересов, способствуя ненормальному росту плода и повышенным потребностям в питании.
Два других связанных между собой дефекта в импринтируемых генах как нельзя нагляднее демонстрируют, какое значение имеет правильный геномный баланс для нормального развития плода. Синдром Ангельмана вызывается генетическими мутациями, при которых теряется или инактивируется материнская часть генома в 15-й хромосоме (в норме она является активной, тогда как отцовская часть отключается). Для детей с этим синдромом характерно нарушение сна, длительные периоды сосания при грудном вскармливании и частый смех. Их ангельский внешний вид вместе с доверчивостью и улыбчивостью (недаром таких детей называют «счастливыми куклами») с головой выдает стремление отцовских генов манипулировать материнским вниманием. И наоборот, дефект отцовской части генома в 15-й хромосоме ведет к рождению детей с синдромом Прадера-Вилли (в норме активируются отцовские аллели этих генов и инактивируются материнские). Для таких детей характерна низкая подвижность, повышенная сонливость и плохой сосательный рефлекс. Однако ко второму году жизни, когда детей обычно отлучают от груди, у них развивается повышенный аппетит, и они часто страдают склонностью к перееданию и ожирению. В этом случае мы наглядно видим материализацию материнских интересов, поскольку этот синдром – из-за нарушения сосательного рефлекса – ограничивает потребление ребенком молока в период грудного вскармливания, когда питательные ресурсы ограничены, но резко повышает его прожорливость, когда ребенок переходит на обычное питание и может порадовать маму «хорошим аппетитом».
Недавно Дэвид Хейг продолжил эту линию рассуждений, чтобы объяснить явление, с которым хорошо знакомы многие матери, – частые пробуждения ребенка среди ночи с требованием груди. Поскольку прерывистый сон и длительные периоды сосания характерны для детей с синдромом Ангельмана, при котором из-за инактивации материнских генов верх берут в норме молчащие отцовские гены, Хейг предполагает, что, возможно, те же самые отцовские копии генов у нормальных детей вызывают этот вид адаптационного поведения, который позволяет малышам получить более частый доступ к материнской груди и питанию. Кроме того, интенсивное грудное вскармливание тормозит восстановление нормальных овуляторных циклов и задерживает рождение следующего ребенка – таким образом снижая вероятность возникновения соперничества за материнское питание, уход и внимание. Такая вот теория Дарвина в духе Макиавелли!
Примерно на двадцатой неделе беременности завершается перестройка спиральных артерий в стенке матки. С этого времени и вплоть до рождения ребенка у матери увеличивается частота пульса и количество красных кровяных клеток, поскольку ее метаболизм адаптируется к тому, чтобы обеспечивать всем необходимым и ее саму, и ребенка. У многих женщин повышается кровяное давление, поскольку даже нормальные плаценты выбрасывают в материнскую систему кровообращения клеточный мусор, что вызывает умеренное воспаление в кровеносных сосудах. Ян Сарджент и Крис Редман с факультета акушерства и гинекологии Колледжа Наффилда Оксфордского университета утверждают, что ранняя преэклампсия, которая обычно начинается именно на этом сроке беременности и сопровождается дефектами плацентации, является всего лишь результатом интенсификации этого воспалительного процесса. Некоторые исследователи предполагают, что корень проблемы кроется в том, что из-за недостаточной перестройки спиральных артерий уменьшается приток крови к плаценте и развивается гипоксия плода, что и провоцирует возникновение преэклампсического состояния. Однако Сарджент и Редман считают, что ключевым фактором является не сам по себе объем кровотока, а его прерывистость из-за не перестроившихся узких артерий. Эта прерывистость вызывает временную ишемию в плаценте, и, когда кровоток восстанавливается, в ней развиваются точно такие же дополнительные реперфузионные повреждения, как и в сердечной мышце (миокарде) при сердечном приступе, когда происходит сначала закупорка, а затем внезапное возобновление кровотока по коронарной артерии. Резкий приток крови, кислорода и питательных веществ, вместо того чтобы оказывать благотворное действие, вызывает воспаление и окислительный стресс в результате выброса свободных радикалов. Поврежденная плацента сбрасывает в кровяное русло матери воспалительные белки и мусор в виде поврежденных и мертвых клеток, что быстро индуцирует системную воспалительную реакцию в материнских артериях, повреждая их внутреннюю эндотелиальную оболочку и резко повышая кровяное давление.
Из теории Хейга следует, что, когда плод и плацента подвергаются вышеописанной опасности, они должны дать отпор материнскому организму и восстановить достаточное кровоснабжение, используя специфическое биохимическое оружие. Хейг предполагает, что первым делом плацента старается увеличить сердечный выброс, но, если этого оказывается недостаточно, следующим шагом она пытается повысить сопротивление и, следовательно, кровяное давление в периферической кровеносной системе матери, что обеспечивает приток крови к ее основным органами, в том числе к матке и плаценте. Это предположение было подтверждено Анантом Каруманчи, специалистом по нефрологии из Гарвардской медицинской школы.
В 2000 году Каруманчи начал наблюдать за группой беременных женщин, которые страдали высоким кровяным давлением вкупе с почечной недостаточностью. Заинтригованный отсутствием глубоких исследований и консенсуса в отношении причин преэклампсии, он начал собственную исследовательскую программу, используя отделяемые после родов плаценты для того, чтобы узнать, какие гены – из тех, которые кодируют белки, способные попадать в систему кровообращения матери, – увеличивали свою активность в поврежденных плацентах. Безусловным лидером оказался ген sFlt1, который кодирует белок, называемый растворимой fms-подобной тирозинкиназой. И, когда Каруманчи исследовал кровь женщин, страдающих тяжелой формой преэклампсии, он обнаружил, что уровень sFlt1 в их крови в пять раз превышает уровень sFlt1 у женщин с нормальной беременностью. Более того, когда он ввел белок sFlt1 крысам, у них развились типичные симптомы преэклампсии. Он опубликовал результаты своих исследований в 2003 году, и в скором времени с ним связался Дэвид Хейг, который был очень рад тому, что его теория нашла еще одно реальное подтверждение. С тех пор Каруманчи стал убежденным сторонником Хейга, поскольку тот обеспечил его убедительной теоретической парадигмой, позволяющей в том числе объяснить, почему создание подобного хаоса в кровеносной системе матери может отвечать интересам плаценты и плода.
Рост новых кровеносных сосудов и повседневное поддержание эндотелиальной выстилки существующих кровеносных сосудов регулируются белком, известным как фактор роста сосудистого эндотелия (vascular endothelial growth factor или VEGF). Здоровая артериальная стенка поддерживает нормальное артериальное давление. Однако вышеописанный белок sFlt1 является антагонистом белка VEGF; он связывается с ним и инактивирует его. Это приводит к росту кровяного давления в периферической кровеносной системе матери, обеспечивая приток крови к плаценте, как и предполагал Хейг. Но белок VEGF также необходим для поддержания эндотелия в тончайших капиллярах, образующих клубочки в почках, которые отфильтровывают отходы из крови, а также активен в печени и мозге. Это объясняет, почему преэклампсия ведет к повреждению почек и вызывает протеинурию. Но белок sFlt1 действует не в одиночку. Испытывающая стресс плацента также выпускает в кровеносную систему матери растворимый эндоглин, еще один белок, повышающий кровяное давление. Он может действовать согласованно с sFlt1 и ассоциируется с крайне тяжелой формой преэклампсии, синдромом HELLP, при которой у беременных женщин наблюдаются сильные головные боли, изжога и повышенная активность ферментов печени.
Когда еще в 1990-х годах Хейг впервые сформулировал свою теорию конфликта между родителями и потомством, в качестве базового примера он привел сражение между матерью и плодом за глюкозу. Не менее 10 процентов беременных женщин страдают гестационным диабетом (особенно в третьем триместре беременности), который спонтанно исчезает после родов. У них повышается уровень сахара в крови, поскольку клетки становятся устойчивыми к действию инсулина – т. е. их инсулиновые рецепторы почему-то вдруг становятся менее восприимчивыми и эффективными. В ответ материнский организм начинает производить все больше и больше инсулина, чтобы попытаться стабилизировать уровень сахара в крови. Это явление озадачило Хейга. Поскольку резистентность к инсулину и производство инсулина в здоровом организме уравновешивают друг друга, гораздо более экономичным способом обеспечить такое равновесие было бы снизить инсулиновую резистентность и выработку инсулина. Но эта точка зрения не принимает в расчет такую важную заинтересованную сторону, как плацента. Если ей не противодействовать, она всегда будет стремиться забрать из материнской крови больше глюкозы, чем в интересах матери ее дать. Таким образом, при помощи повышенного производства инсулина мать пытается ограничить уровень глюкозы в своей крови.
После каждого приема пищи, говорит Хейг, между матерью и плодом происходит «драка» за долю глюкозы, которую получит каждый из них. Чем больше времени требуется матери на то, чтобы абсорбировать глюкозу из крови, тем больше глюкозы достается плоду. Логично предположить, что цель плода – помешать попыткам матери уменьшить достающуюся ему долю глюкозы через повышенную выработку инсулина. И действительно, тот использует хитрую макиавеллиевскую стратегию, позволяющую снизить эффективность инсулина. Плацента синтезирует такое вещество, как человеческий плацентарный лактоген, который взаимодействует с инсулиновыми рецепторами в клетках материнского организма, нарушает связывание инсулина и, таким образом, обеспечивает повышение уровня сахара в крови. Помимо этого, он стимулирует синтез ряда провоспалительных цитокинов, которые также препятствуют действию инсулина и способствуют развитию инсулинорезистентности и гипергликемии. В качестве контрмеры материнский организм наращивает производство инсулина, и в тех случаях, когда ему не удается успешно противостоять плаценте, развивается гестационный диабет.
Сколько времени должна длиться нормальная беременность и почему она, в конце концов, завершается? Что именно запускает процесс родов? Беременность у людей длится в среднем около сорока недель, хотя преждевременные роды могут происходить и на более ранних сроках. До появления современной акушерской практики дети могли рождаться на сорок второй и даже сорок третьей неделе, хотя повышенные потребности таких неторопливых младенцев, как правило, обрекали их матерей на тяжелую преэклампсию. В 1995 году Роджер Смит и его коллеги из австралийского Госпиталя Джона Хантера предположили существование особых «плацентарных часов», которые включаются на раннем этапе беременности и определяют ее продолжительность и время родов. Работа этих часов основана на действии гормона, называемого кортикотропин-рилизинг-гормон, который продуцируется в плаценте и выпускается в материнскую кровеносную систему начиная примерно с двадцатой недели беременности. В последнем триместре беременности его уровень в крови экспоненциально растет.
Кортикотропин-рилизинг-гормон (КРГ) поступает в организм матери на протяжении всей беременности, однако продуцируемый ее печенью специальный связывающий белок немедленно его инактивирует. Таким образом, несмотря на повышение концентрации циркулирующего КРГ, он находится в неактивной форме. Но примерно за три недели до родов плацента резко увеличивает выработку этого гормона, так что тот не успевает связываться белком, в результате чего уровень активного КРГ в материнской крови резко возрастает. Когда австралийские ученые измерили концентрацию КРГ в плазме крови беременных женщин, они обнаружили, что те женщины, которые впоследствии родили преждевременно, в среднем на тридцать четвертой неделе, имели гораздо более высокие уровни циркулирующего КРГ, чем женщины, родившие в нормальный срок, на сороковой неделе. И наоборот, женщины, родившие позже нормального срока, в среднем на сорок второй неделе, имели значительно более низкие уровни КРГ. Таким образом, плацентарные часы функционируют посредством регулирования выработки КРГ. Исследователи пришли к выводу, что уровень КРГ является надежным индикатором продолжительности беременности, а его резкое повышение служит ранним сигналом, предупреждающим о возможности преждевременных родов.
Смит и его коллеги также предложили, что именно высокий уровень активного КРГ в конце беременности запускает механизм родов, поскольку в плодных оболочках имеются рецепторы КРГ, а этот гормон стимулирует выработку простагландинов и окситоцина, которые вызывают мышечные сокращения матки, выталкивающие ребенка наружу. Это может быть каким-то образом синхронизировано с развитием ребенка, поскольку КРГ также стимулирует у плода выработку гормонов надпочечников, участвующих в созревании органов. Таким образом, предложенная австралийскими исследователями модель предполагает, что мать и ребенок эффективно «согласуют» друг с другом время родов.
Но у этой истории может быть совсем другой поворот. Известно, что КРГ вырабатываются не только у беременных женщин, но и у всех людей как важнейший компонент реакции на стресс. Он синтезируется в гипоталамусе и стимулирует выработку в гипофизе адренокортикотропного гормона (АКТГ). Этот гормон воздействует на надпочечники, которые, в свою очередь, вырабатывают кортикостероиды, особенно кортизол (иногда его называют гидрокортизоном). Этот механизм называется гипоталамо-гипофизарно-надпочечниковой (ГГН) осью. Когда наступает беременность, производство гормонов КРГ, АКТГ и кортизола в ГГН-системе снижается. Традиционно считалось, что таким образом мать старается защитить плод, обладающий высокой чувствительностью к кортизолу.
Между тем некоторые странности модели плацентарных часов, предложенной Смитом и коллегами, озадачили Стива Гангестада, руководителя программы исследований в области эволюции и развития в Университете Нью-Мексико. Он решил посмотреть на эту ситуацию с позиции теории Хейга. Во-первых, если мать намеренно подавляет выработку КРГ в своем гипоталамусе, чтобы снизить уровень кортизола и защитить от него плод, почему плод вредит сам себе, выпуская плацентарный КРГ в материнский организм? Во-вторых, если конечными мишенями КРГ являются рецепторы в плаценте и плодных оболочках, запускающие механизм родов, почему плацента не продуцирует этот гормон локально, а вместо этого наводняет им кровяное русло матери на протяжении всей беременности? Гангестад предположил, что здесь существует альтернативное и более логичное объяснение.
Кортизол воздействует на печень, повышая уровень сахара в крови, чтобы обеспечить быстрый приток энергии для реализации стрессовой реакции «бей или беги». Согласно Гангестаду, выработка плацентой такого количества КРГ может быть еще одной попыткой плода получить от матери больше глюкозы, поскольку КРГ опосредованно стимулирует выработку кортизола. Мать дает отпор, пытаясь нейтрализовать КРГ при помощи связывающего белкового комплекса и сокращая свое собственное производство КРГ и кортизола. В поддержку такой интерпретации модели плацентарных часов говорит и тот факт, что при задержке внутриутробного развития плода, как и при преэклампсии, наблюдается повышенный уровень КРГ. Это происходит потому, что находящийся в опасности плод и плацента используют этот гормон в качестве средства борьбы за выживание. Уровень КРГ увеличивается при повышенном сосудистом сопротивлении спиральных артерий, ограничивающем кровоток к плаценте (что происходит из-за недостаточной перестройки спиральных артерий). А кортизол, помимо прочего, вызывает сужение материнских кровеносных сосудов, повышая их чувствительность к адреналину и норадреналину – что повышает сосудистое сопротивление в периферической кровеносной системе матери и, как правило, улучшает приток крови к плаценте.
Никто не оспаривает тот факт, что высокий уровень КРГ во втором триместре является предвестником преждевременных родов, но Гангестад считает, что это может быть связано с тем, что в какой-то момент растущие потребности плода в питательных веществах начинают превышать ту скорость, с которой они могут транспортироваться через плаценту. В результате плод начинает страдать от голода и принимается потреблять собственные жировые запасы. В конце концов он достигает критического метаболического порога, когда ему лучше родиться и начать получать питательные ресурсы от матери через грудное кормление, чем оставаться в материнской утробе и пытаться извлечь больше питательных веществ из ее кровеносной системы. Таким образом, плод резко увеличивает выработку КРГ, чтобы отобрать у матери больше глюкозы, но, если эта мера оказывается недостаточной, устойчиво высокий уровень КРГ стимулирует активную выработку кортизола, который запускает механизм родов.
Эта гипотеза также хорошо согласуется с гипотезой «энергии и роста», объясняющей продолжительность беременности и наступление родов, которая была выдвинута Питером Эллисоном и Холли Дансуорт. Продолжительность беременности, утверждают они, определяется не столько ограничениями размера женского таза и того, что может через него пройти, – как утверждает так называемая акушерская гипотеза – сколько балансом между метаболизмом матери и плода. Согласно их гипотезе, роды наступают в результате метаболического стресса, который развивается, когда мать больше не может удовлетворить потребности плода. Кроме того, исследователи считают, что, тогда как большинство известных на сегодня импринтируемых генов проявляют свою активность в плаценте, есть основания полагать, что многие из таких генов влияют и на работу головного мозга. Таким образом, геномный импринтинг после родов продолжает военную кампанию между матерью и ребенком, но теперь целью сражения является материнское внимание и доступ к питательным веществам через грудь, а средствами борьбы – привлекательность ребенка для матери, механизм формирования привязанности к ребенку и стимулирование лактации.
Этот эволюционный взгляд на беременность и роды кажется чересчур суровым: конфликт интересов, жесткое соперничество, агрессивный и ненасытный эмбрион, которого матка может приютить, но чаще всего безжалостно уничтожает. Он лишает нас романтического представления о человеческом размножении как о процессе, полном любви, сотрудничества и взаимопомощи. К сожалению, эти естественные, бессознательные механизмы часто путают с сознательным и в высшей степени аморальным поведением, направленным на причинение вреда ребенку или манипулирование своим партнером. Поэтому я хочу еще раз подчеркнуть: когда эволюционисты говорят о конфликтах интересов и стратегиях борьбы, они говорят о биологических механизмах, которые заложены в наши тела природой и эволюцией и над которыми мы не имеем никакого сознательного контроля. Например, женщина вовсе не преднамеренно ограничивает растущему внутри нее ребенку доступ к запасам жиров и углеводов в своем организме – таким образом эволюция попыталась примирить противоположные интересы отцовских и материнских генов и генов самого плода. Сара Робертсон сравнивает предшествующий возникновению беременности процесс иммунной регуляции и контроля качества с отношениями между продавцом и покупателем, где мужчины выступают в качестве недобросовестных продавцов, пытающихся любыми способами продать свой товар в виде своего генетического вклада в низкокачественных или несовместимых эмбрионов, а женщины выступают в роли дотошных покупателей, не желающих покупать крайне дорогостоящий некачественный товар.
Робертсон говорит, что мужчины различаются между собой по содержанию в сперме активных ингредиентов, которые стимулируют благоприятный иммунный ответ и восприимчивость стенки матки, тем самым увеличивая шансы на успешную имплантацию зачатых ими эмбрионов. Однако повышенная восприимчивость стенки матки также дает женскому организму шанс оценить качество эмбриона и избавиться от него в том случае, если он будет признан неполноценным. Логично предположить, что этот механизм, обеспечивающий женщине возможность выбора, сохраняется на протяжении всей беременности. Точно так же как некачественный эмбрион, если он успешно имплантируется, будет потреблять дорогостоящие женские ресурсы, по крайней мере до тех пор, пока не погибнет и не будет исторгнут из тела в результате самопроизвольного выкидыша, даже нормально развивающийся плод, потребляя все больше ресурсов, может оказаться непосильным бременем для матери, если внешняя среда вдруг становится для нее враждебной. Это может быть инфекция, недоедание из-за дефицита продовольствия или стресс, вызванный каким-либо стихийным бедствием, войной или, как это часто бывает, разрывом со своим партнером-мужчиной. В этом смысле плод находится на постоянном «испытательном сроке» – хотя Робертсон и не употребляет данное выражение – вплоть до самого рождения, и даже после.
Возможность женского выбора, утверждает Робертсон, распространяется на эмбрион, плод и плаценту. Материнская иммунная система всегда готова сменить благоприятную реакцию на враждебную под влиянием негативных внешних факторов. «Эволюция предусмотрела мощный механизм для изгнания гестационной ткани, если возникает такая необходимость», – говорит она. Тогда как биохимический состав спермы играет важную роль для запуска благоприятного иммунного ответа через стимулирование выработки регуляторных Т-лимфоцитов в начале беременности, объясняет она, впоследствии ответственность за поддержание благоприятной иммунной реакции переходит к сигналам, поступающим от плода и из внешней среды. Дендритные клетки и Т-лимфоциты очень чувствительны к внешним стрессорам – сигналам, которые иммунная система получает из внешнего мира через посредничество гипоталамо-гипофизарно-надпочечниковой оси. Этот связующий механизм между внешней средой и иммунной системы матери объясняет, каким образом иммунная система может реагировать на острый стресс и провоцировать выкидыш. Такое предположение согласуется с недавними исследованиями, которые показали взаимосвязь между выкидышем и высоким уровнем воспринимаемого психологического стресса, снижением выработки прогестерона и запуском воспалительной иммунной реакции. По словам Робертсона, признание функции контроля качества, выполняемой иммунной системой, может изменить широко распространенное сегодня представление о том, что все случаи невынашивания женщинами беременности являются «патологией». «Очень вероятно, что иммунообусловленное прекращение беременности при определенных обстоятельствах может быть нормальным и важным аспектом оптимальной репродуктивной функции», – говорит Робертсон. Я уверен, что Дэвид Хейг охотно подписался бы под ее словами.