Математические головоломки профессора Стюарта Стюарт Иэн
– Тем не менее это плохой выбор, Ватсап.
– Почему? Мне кажется…
– Ватсап, вам много что кажется, но мало что на самом деле имеет место быть. Хотя любая отдельная область топологически равноценна кругу, две или большее число областей могут перекрываться способом, невозможным для двух или нескольких кругов. Об этом свидетельствует тот факт, что для вашей карты достаточно всего двух красок, – и он заштриховал примерно половину областей.
– Ну да, но я уверен, что более сложная карта того же рода…
Сомс покачал головой.
– Нет-нет, Ватсап. Любая карта, состоящая исключительно из круглых областей, даже если эти области разных размеров и перекрываются разными, сколь угодно сложными способами, может быть раскрашена в две краски. Считая, как обычно и делается в подобных вопросах, что «соседние» области должны иметь общие участки границы, а не отдельные изолированные общие точки.
У меня отвалилась челюсть.
– Теорема о двух красках! Поразительно! – Сомс соизволил пожать плечами. – Но как такую теорему можно доказать?
Сомс откинулся в кресле.
– Вы знаете мои методы.
Ответ см. в главе «Загадки разгаданные».
Теорема о четырех красках в пространстве
Сомс говорил о знаменитой теореме о четырех красках, которая гласит, что для любой заданной карты на плоскости ее области можно раскрасить не более чем четырьмя разными красками так, чтобы области, имеющие общую границу, были окрашены в разные цвета. (Здесь «иметь общую границу» означает, что общая граница должна быть ненулевой длины; то есть если области сходятся в одной общей точке, это не считается.) Такое предположение высказал в 1852 г. Фрэнсис Гутри и доказали в 1976 г. Кеннет Аппель и Вольфганг Хакен при активном использовании компьютера[32]. За прошедшее с того момента время их доказательство удалось серьезно упростить, но компьютер по-прежнему является существенной его частью; он необходим, чтобы проводить большое количество рутинных, сложных вычислений.
Могут ли существовать аналогичные теоремы для «карт» в пространстве, а не на плоскости? Области в пространстве будут представлять собой что-то вроде заполненных пузырей. Немного подумав, несложно догадаться, что для раскрашивания такой карты может потребоваться сколько угодно красок. Представьте, к примеру, что вы хотите нарисовать карту, для которой нужно шесть красок. Для начала возьмите шесть отдельных шаров. Пусть шар 1 выпустит пять тонких щупалец и коснется ими шаров 2, 3, 4, 5 и 6. Затем пусть шар 2 выпустит пять щупалец и коснется шаров 3, 4, 5 и 6. Затем перейдите к шару 3 и т. д. Получится, что каждая обросшая щупальцами область касается всех остальных областей и, следовательно, все шесть должны быть окрашены в разные цвета. Если проделать такую процедуру со 100 шарами, то потребуется 100 красок; если шаров будет миллион, красок тоже потребуется миллион. Короче говоря, числу необходимых красок нет предела.
В 2013 г. Баскар Багчи и Басудеб Дата[33] поняли, что это не конец истории. Представьте себе «карты», сформированные из конечного числа кругов на плоскости, которые либо вообще не перекрывают друг друга, либо пересекаются в одной общей точке. Предположим, вы хотите раскрасить эти круги так, чтобы даже соприкасающиеся круги были окрашены в разные цвета. Сколько красок вам потребуется? Оказывается, ответ здесь такой же: не больше четырех.
На самом деле эта проблема по существу эквивалентна теореме о четырех красках. Эту теорему можно переформулировать в задачу раскрашивания узлов сети на плоскости с непересекающимися ребрами, так что если два узла этой сети соединены ребром, то эти узлы должны быть окрашены в разные цвета. Для этого достаточно просто создать по узлу для каждой области карты и соединить ребрами попарно те из них, области которых имеют общую границу. Можно доказать, что любая сеть на плоскости может быть собрана из подходящего набора кругов путем соединения центров тех кругов, которые касаются друг друга. К примеру, вот набор кругов, для окрашивания которых необходимы четыре цвета, связанная с ними сеть и карта с топологически эквивалентным искажением этой сети, для раскрашивания которой также требуется четыре краски.
Формулировку с кругами мы можем естественным образом распространить на три измерения, если используем шары вместо кругов. Опять же, эти шары либо вообще не перекрываются, либо касаются друг друга в общей точке. Предположим, вы хотите раскрасить шары так, чтобы те, которые касаются друг друга, были окрашены в разные цвета. Сколько красок вам понадобится? Багчи и Дата объяснили, почему это число не может быть меньше 5 и больше 13. Его точное значение до сих пор остается математической загадкой. Но вы, возможно, сумеете доказать, что нужно по крайней мере пять красок. Из их результата следует, что некоторые трехмерные карты не эквивалентны картам, построенным на базе шаров.
Ответ см. в главе «Загадки разгаданные».
Комическое исчисление
Чтобы понять эту историю, вы должны быть немного знакомы с интегральным исчислением. Если – знак интеграла, то экспоненциальная функция ex – сама себе интеграл:
Эта формула кажется какой-то чепухой; даже первая строка должна была бы выглядеть как ex = exdx, а 1 + y + y + y + y4 +… = (1 – y)–1.
На следующем шаге в формуле для суммы бесконечной геометрической прогрессии переменная y заменяется на знак интеграла. Эта формула справедлива, если y – число, меньшее 1. Но – это даже не число, просто символ. Какой абсурд!
Несмотря на это, конечный результат – корректный степенной ряд для ex.
Это не совпадение. При правильных определениях (к примеру, – это оператор, превращающий функцию в ее интеграл, а формула для «суммы геометрической прогрессии» работает для операторов при подходящих технических условиях) все может выглядеть совершенно логичным. Но смотрится все равно странно.
Задача Эрдёша о расходимости
Пал Эрдёш был весьма эксцентричным, блестящим венгерским математиком. Он никогда не имел дома, он никогда не занимал никакого ученого поста, предпочитая путешествовать по миру с небольшим чемоданом и ночевать в домах понимающих коллег. Он опубликовал 1525 математических статей и сотрудничал с 511 математиками – число, к которому никто другой в мире не смог даже приблизиться. Он предпочитал изобретательность глубоким систематическим занятиям теорией и с особенным удовольствием разгадывал загадки, которые выглядели очень просто, но на самом деле оказывались совсем не простыми. Его основные достижения относятся к области комбинаторики, но он мог бы приложить свою руку и ко многим другим областям математики. Он нашел новое доказательство постулата Бертрана (между n и 2n всегда найдется хотя бы одно простое число), гораздо более простое, чем оригинальное аналитическое доказательство Пафнутия Чебышёва. Вершиной карьеры Эрдёша стало доказательство теоремы о числе простых (число простых чисел, меньших x, приблизительно равно x/lnx), которая не поддавалась комплексному анализу, считавшемуся до того момента единственным способом доказательства.
Эрдёш любил предлагать денежные призы за решение задач, которые придумал, но не смог сам решить. Он мог предложить $25 за решение чего-то, что, как он подозревал, решается относительно просто, и несколько тысяч долларов за что-то, что он считал по-настоящему сложным. Типичный пример его математики – задача Эрдёша о расходимости, оцененная им в $500. Она была поставлена в 1932 г. и решена в начале 2014 г. Замечательный пример того, как сегодняшняя математика подходит к разрешению давних загадок.
Задача начинается с бесконечной последовательности чисел, равных или +1, или –1. Это может быть регулярная последовательность, к примеру
+1–1 +1–1 +1–1 +1–1 +1–1…,
или нерегулярная («случайная)
+1–1 –1–1 +1–1 +1 +1–1 +1…,
которую я получил путем бросания монетки. Она не обязана содержать равную долю плюсов и минусов. Подойдет любая последовательность.
Один из способов убедиться в том, что первая из этих последовательностей регулярна, – это взглянуть на каждый второй ее член:
– 1–1 – 1–1 – 1…
Сумма первых n членов такой последовательности выглядит так:
– 1–2 – 3–4 – 5…
и убывает до бесконечности. Если посмотреть те же параметры для второй последовательности, получим:
+1–1 – 1 + 1–1…
с суммами
+1 0–1 0 +1…,
которые скачут вверх и вниз.
Предположим, что мы возьмем конкретную, но произвольную последовательность из ±1 и выберем произвольное положительное число С, которое мы хотим получить. Это число может быть сколь угодно большим, например миллиардом. Эрдёш задал вопрос, всегда ли существует такое число d, что суммы членов последовательности, разделенных d шагами, то есть стоящих на позициях d, 2d, 3d и т. д., на каком-то этапе станут либо больше C, либо меньше – C. После того как эта цель достигнута, та же последовательность может давать дальнейшие суммы, лежащие между C и – C: достаточно хотя бы раз дойти до цели. Однако подходящий шаг d должен существовать для любого целевого C. Разумеется, d зависит от C. То есть, если последовательность имеет вид x1, x2, x3,…, вопрос состоит в том, можем ли мы найти d и k такие, что |xd + x2d + x3d + … + xkd| >C.
Абсолютная величина суммы слева – это «разброс» подпоследовательности, определяемой величиной шага d; это мера избытка знаков «+» по сравнению со знаками «–» (или наоборот).
В начале февраля 2014 г. Алексей Лисица и Борис Конев объявили, что ответ на вопрос Эрдёша – «да», если C = 2. В самом деле, если выбрать подпоследовательность с шагом d из первых 1161 члена произвольной ±1-последовательности и взять подходящую длину k, то абсолютная величина суммы превысит C = 2. Их доказательство получено с активным использованием компьютера, а файл данных занимает 13 Гб. Это больше, чем все содержание Википедии, объем которой около 10 Гб. Несомненно, это одно из самых длинных доказательств в истории математики, слишком длинное, чтобы человеческий разум мог самостоятельно его проверить.
В настоящее время Лисица занимается поиском доказательства для C = 3, но компьютер еще не завершил своих расчетов. Мысль о том, что полное решение требует понимания того, что происходит при любом выборе C, отрезвляет. Надежда только на то, что компьютерные решения для маленьких C натолкнут ученых на какую-нибудь новую идею, которую математик сможет обратить в общее доказательство. С другой стороны, может оказаться,что ответ на вопрос Эрдёша – «нет». Если это так, то где-то существует по-настоящему интересная последовательность из +1 и –1, которая ждет своего определения.
Грек-интегратор
Из мемуаров доктора Ватсапа
Хотя дедуктивные способности моего друга направлены в основном на искоренение преступности, время от времени они находят приложение и на службе науки. Одним таким примером был уникальный поиск, который мы провели осенью 1881 г. по просьбе богатого, но нелюдимого коллекционера древних рукописей. При помощи странички, вырванной из старой записной книжки, фонаря, связки отмычек и большого лома мы с Сомсом отыскали громадный камень и сдвинули его рычагом, открыв тем самым спиральную лестницу, ведущую вниз, в тайную комнату, расположенную глубоко под библиотекой знаменитого европейского университета.
Сомс сверился с потрепанным клочком бумаги, сильно поврежденным огнем и водой.
– Потерянная книга картонариев, – объяснил он.
– Опять! – он, помнится, упоминал мельком это название в ходе расследования, связанного с приключениями картонных коробок, но не сказал тогда ничего конкретного. Теперь же я настоял на подробностях.
– Это название означает «производители картона». Это итальянское тайное общество, организованное по типу франкмасонов и преданное делу национализма; его участники были замешаны в неудавшейся революции 1820 г.
– Я помню саму революцию очень ясно, Сомс. А вот организацию эту не помню.
– Мало кто вообще знает о ее тайной деятельности, – он вновь сверился с клочком бумаги. – Эта страница почти не читается, но не нужно быть особым знатоком высшей математики, чтобы распознать на ней какую-то разновидность шифра Фибоначчи, переписанного зеркальным письмом да Винчи и превращенного в последовательность рациональных точек на эллиптической кривой.
– Это поймет даже ребенок, – солгал я, цедя слова сквозь зубы.
– Вот именно. Теперь, если я правильно читаю эти руны, мы найдем то, что ищем, где-то на этих полках.
Мгновение спустя я спросил:
– Сомс, но что же мы ищем? Вы на этот раз совсем не хотите раскрывать карты, это для вас необычно.
– В этом знании скрываются великие опасности, Ватсап. Я не видел нужды подставлять вас раньше времени. Но теперь, когда мы проникли в святая святых… А! Вот он! – и он вытащил откуда-то свиток, в котором я сразу же узнал написанный на пергаменте кодекс, и сдул накопившуюся за столетия пыль.
– Что это такое, черт побери, Сомс?
– Армейский револьвер у вас при себе?
– Никогда не хожу без него.
– Тогда можно без опаски сказать вам, что в моих руках сейчас… палимпсест Архимеда!
– Ах!
Я вообще-то знал, что палимпсест – это документ, который записали на пергаменте, а затем тщательно соскребли, чтобы освободить место для другой записи, и что ученым удается, хотя и не без труда, реконструировать и прочесть то, что было стерто, восстанавливая таким образом, к примеру, неизвестное прежде Евангелие, скрытое под списком белья, отданного в стирку в каком-то заштатном монастыре XIV в. Архимеда я тоже знал как талантливейшего древнегреческого геометра. Таким образом, было очевидно, что Сомсу удалось откопать прежде неизвестный математический текст. Но он настаивал, что нам следует немедленно убраться из хранилища, пока на нас не обрушилось отмщение инквизиции.
Оказавшись вновь в относительной безопасности нашего дома на Бейкер-стрит, мы как следует рассмотрели добытый документ.
– Это византийский список X в. неизвестного до сих пор труда Архимеда, – сказал Сомс. – Его заголовок можно достаточно вольно перевести как «Метод»: речь в нем идет о знаменитом труде этого геометра, посвященном объему и площади поверхности шара. В нем показано, как автор пришел к таким результатам, и можно практически заглянуть в его мысли – беспрецедентный случай.
От изумления я лишился речи и напоминал, наверное, вытащенную из воды золотую рыбку.
– Архимед открыл, что если шар вписан в подходящий цилиндр, то объем шара составляет в точности две трети от объема цилиндра, а площадь его поверхности в точности равна площади криволинейной поверхности этого цилиндра. На современном языке это означает, что если радиус шара равен r, то его объем равен а площадь поверхности – 4r.
– Архимед был настолько великим математиком, что сумел найти логически строгое геометрическое доказательство этих фактов, которое включил в книгу «О шаре и цилиндре». Там он использовал сложный метод доказательства, известный в настоящее время как метод исчерпывания. С этим методом, однако, связаны некоторые сложности, одна из которых состоит в том, что нужно заранее знать точный ответ, верность которого вы и будете доказывать. Поэтому для ученых долгое время было загадкой: откуда Архимед узнал, каким должен быть ответ?
– Понятно, – сказал я. – А в этом давным-давно утерянном документе объясняется, как он это сделал.
– Именно. Замечательно, что метод Архимеда – это почти предвидение – в данном конкретном случае – интегрального исчисления Исаака Ньютона и Готфрида Лейбница, разработанного на 2000 лет позже. Но, как хорошо знал Архимед, идеям, использованным им в «Методе», недостает строгости. Отсюда и метод исчерпывания, к которому ему пришлось прибегнуть… Совершенно иной подход.
– Так как же он это сделал? – спросил я.
Сомс тщательно изучил палимпсест через увеличительное стекло.
– Греческий язык здесь не совсем классический и местами плохо читается, но для такого опытного лингвиста, как я, это не представляет серьезной трудности. Показывал я вам свой памфлет о расшифровке неизвестных древних текстов Средиземноморья? Напомните, чтобы показал.
Судя по всему, Архимед начал с шара, конуса и цилиндра подходящих размеров. Затем он представил тончайший срез каждой из этих фигур и представил, что эти срезы можно взвешивать: срез шара и срез конуса на весах с одной стороны, срез цилиндра – с другой. Если расстояния подобраны правильно, то массы совпадут в точности. А поскольку масса пропорциональна объему, то и объемы фигур связаны по закону рычага.
– Э-э… Напомните мне, пожалуйста, этот закон, – сказал я. – Не могу сказать, почему, но его не было в учебной программе медицинской школы.
– А должен был бы быть, – отозвался Сомс. – Он очень пригодился бы при работе с вывихнутыми суставами. Ну, не важно. Закон этот, открытый и доказанный Архимедом, утверждает, что крутящее действие, или момент, заданной массы на заданном расстоянии равен произведению массы на расстояние. Чтобы массы уравновесились, суммарный момент по часовой стрелке должен равняться суммарному моменту против часовой стрелки. Или, при соответствующей расстановке знаков плюс и минус, полный суммарный момент системы должен быть равен нулю.
– Э-э…
– Масса на заданном расстоянии уравновесит половинную массу на вдвое большем расстоянии, если, конечно, она находится на другом плече весов.
– Понятно.
– Подозреваю, что нет, но позвольте мне продолжить. Разбив объемные тела на бесконечное количество бесконечно тонких ломтиков и развесив их нужным образом на своих весах, Архимед сумел сосредоточить всю массу шара и конуса в одной точке. Ломтики цилиндра, которые представляют собой одинаковые круги, размещаются на разных расстояниях; все вместе они составляют первоначальный цилиндр. Зная, что объем конуса (а значит, и его масса) составляет одну треть от соответствующего параметра цилиндра, Архимед смог решить получившееся «уравнение» для объема шара.
– Поразительно, – сказал я. – Мне это все представляется достаточно убедительным.
– Но не математику калибра Архимеда, – возразил Сомс. – Если ломтики имеют конечную толщину, в ходе процедуры возникнут небольшие, но неизбежные ошибки. Но если сделать ломтики нулевой толщины, то и масса у них окажется нулевой. Бессмысленно говорить о единственной точке равновесия, когда все задействованные массы равны нулю.
Я начал понимать сложности, связанные с описанной процедурой.
– Но ведь чем тоньше становятся ломтики, тем меньше, наверное, становятся ошибки? – рискнул я предположить.
– Это так, Ватсап, вы правы. И современный подход к интегральному исчислению превращает это утверждение в доказательство того, что процесс такого рода приводит к разумным ответам. Однако Архимеду эти идеи были неизвестны. Так что он воспользовался нестрогим методом, чтобы найти верный ответ, и это позволило ему прибегнуть к методу исчерпывания, чтобы доказать правильность ответа.
– Поразительно, – вновь сказал я. – Мы должны опубликовать палимпсест.
Сомс покачал головой.
– И рисковать навлечь на себя гнев картонариев? Я слишком высоко ценю наши с вами жизни, чтобы привлекать к себе их внимание.
– Что же нам делать?
– Мы должны поместить рукопись в безопасное место. Не вернуть обратно в библиотеку, ибо там, должно быть, уже заметили ее исчезновение и успели расставить множество хитрых ловушек. Я спрячу его в какой-нибудь другой научной библиотеке. Нет, не спрашивайте, в какой именно! Может быть, когда-нибудь позже, когда времена будут менее тревожные и влияние тайных обществ ослабнет, его найдут заново. А до той поры мы должны удовлетвориться тем, что познакомились с методом великого геометра, хотя и не смогли открыть его миру.
Он ненадолго остановился.
– Я уже рассказал вам о формулах для площади поверхности и объема шара. А вот небольшая и несложная задачка, которая может вас позабавить. Каким должен быть радиус шара в метрах, чтобы площадь его поверхности в квадратных метрах в точности равнялась его же объему в кубических метрах?
– Понятия не имею, – признался я.
– Так выясните, чего ж вы ждете! – воскликнул он.
Подлинную историю архимедова палимпсеста и ответ на загадку Сомса см. в главе «Загадки разгаданные».
Сумма четырех кубов
Сумма четырех квадратов, как и многие другие математические загадки, имеет давнюю историю. Греческий математик Диофант, чья «Арифметика» примерно 20 г. н. э. была первым учебником, в котором использовалась некая система алгебраических обозначений, задал вопрос, является ли каждое положительное целое число суммой четырех полных квадратов (0 разрешен). Несложно проверить это утверждение экспериментально для небольших чисел, к примеру:
5 = 2 + 1 + 0 + 0;
6 = 2 + 1 + 1 + 0;
7 = 2 + 1 + 1 + 1.
Теперь, стоило вам подумать о том, что для 8 потребуется еще одна 12, то есть пять квадратов, на помощь приходит 4:
8 = 2 + 2 + 0 + 0.
Эксперименты с более крупными числами позволяют с серьезным основанием предположить, что ответ должен быть «да», однако эта задача оставалась нерешенной более 1500 лет. Она получила известность как задача Баше по имени Клода Баше де Мезириака, опубликовавшего французский перевод «Арифметики» в 1621 г. Доказательство нашел Жозеф-Луи Лагранж в 1770 г. Не так давно были найдены более простые доказательства, основанные на абстрактной алгебре.
А как насчет суммы четырех кубов?
В том же 1770 г. Эдвард Уоринг заявил без доказательства, что любое положительное целое число есть сумма не более чем 9 кубов и 19 четвертых степеней, и задал вопрос, можно ли утверждать что-то подобное о более высоких степенях. То есть для заданного числа k существует ли некий конечный предел количества k степеней, необходимых для выражения любого положительного целого числа в виде их суммы? В 1909 г. Давид Гильберт доказал, что ответ на этот вопрос – «да». (Нечетные степени отрицательных чисел отрицательны, и это сильно меняет правила игры, так что пока мы ограничиваемся только степенями положительных чисел.)
Число 23 определенно требует 9 кубов. Единственные возможные слагаемые здесь – 8, 1 и 0, и лучшее, что можно сделать, – это сложить две восьмерки и семь единиц:
23 = 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1.
Таким образом, в общем правиле кубов не может быть меньше 9. Однако это число можно и уменьшить, если согласиться на конечное число исключений. К примеру, в реальности 9 кубов требуется только для чисел 23 и 239; все остальные можно получить с использованием не более чем 8 кубов. Юрий Линник снизил это число до 7, допустив еще несколько исключений, и сегодня считается, что правильный ответ, допускающий конечное число исключений, – это 4. Наибольшее известное число, для записи которого необходимо больше 4 кубов, – это 7 373 170 279 850, и предполагается, что более крупных чисел с таким свойством не существует. Так что очень возможно – но пока вопрос остается открытым, – что любое достаточно большое положительное целое число есть сумма четырех положительных кубов.
Но, как я уже сказал, куб отрицательного числа отрицателен. Это порождает новые возможности, отсутствующие у четных степеней. Так,
23 = 27 – 1–1 – 1–1 = 3 + (–1) + (–1) + (–1) + (–1),
то есть достаточно 5 кубов, тогда как в случае только положительных или нулевых кубов требуется 9, как мы только что видели. Но можно и еще улучшить результат: 23 можно выразить с использованием всего 4 кубов:
23 = 512 + 512 – 1 – 1000 = 8 + 8 + (–1) + (–10).
Разрешение на использование отрицательных чисел означает, что используемые кубы могут быть намного больше (если не обращать внимания на знак «–») самого числа. В качестве примера покажем, что число 30 можно записать в виде суммы 3 кубов, но придется постараться:
30 = 2 220 422 932 + (–283 059 965) + (–2 218 888 517).
То есть мы не можем систематически просмотреть ограниченное число вариантов, как в случае, когда рассматриваем только положительные кубы.
Эксперименты привели нескольких математиков к гипотезе о том, что всякое целое число есть сумма 4 (положительных или отрицательных) целых кубов. Пока истинность этого утверждения окончательно не установлена, хотя свидетельств в его пользу хватает. Компьютерные расчеты подтверждают, что любое положительное целое число вплоть до 10 млн есть сумма 4 кубов. В. Демьяненко доказал, что любое число, которое нельзя представить в виде 9k ± 4, всегда представимо как сумма 4 кубов.
Откуда у леопарда пятна
У леопардов есть пятна, у тигров – полосы, а львы щеголяют ровным цветом. Почему? Все эти варианты кажутся какими-то случайными, как будто на распродаже из списка в «Каталоге больших кошек» эволюция выбирает для каждой самый красивый вариант окраски шкуры. Но накопилось уже немало свидетельств в пользу того, что дело обстоит совершенно иначе. Уильям Аллен с коллегами исследовал, как математические правила, определяющие узоры и орнаменты, соотносятся с кошачьими привычками и средой обитания и как это влияет на эволюцию расцветок.
Самая очевидная причина обзавестись разноцветной шкурой – маскировка. Если кошка живет в лесу, пятна или полосы сделают ее малозаметной среди теней и световых пятен. Напротив, кошек, которые обитают на открытом месте, было бы видно лучше, если бы у них на шкуре был яркий рисунок. Однако теории такого рода не намного лучше простых сказок, если их невозможно подтвердить реальными данными. Экспериментальная проверка затруднительна: представьте, что вы хотите закрашивать полоски на тиграх на протяжении нескольких поколений или снабдить тигров и их потомство гладкой шкурой, чтобы посмотреть, что из этого получится. Альтернативных теорий сколько угодно: может быть, рисунок на шкуре привлекает партнера – или просто связан естественным образом с размерами животного.
Математическая модель кошачьей раскраски дает возможность проверить теорию маскировки. Некоторые расцветки, такие как леопардовые пятна, очень сложны, причем сложны по такому типу, который тесно связан с маскировочной ценностью окраски. Поэтому исследователи классифицировали варианты окраски с использованием математической схемы, придуманной Аланом Тьюрингом; согласно этой схеме рисунок определяется химическими веществами, которые реагируют между собой и расплываются по поверхности развивающегося зародыша.
Эти процессы моно характеризовать конкретными числами, определяющими скорость диффузии и тип реакции. Эти числа действуют как координаты в «пространстве маскировки» – множестве всех возможных узоров, подобно тому как широта и долгота дают координаты на поверхности Земли.
Исследователи соотносят эти числа с наблюдаемыми данными у 35 различных видов кошачьих: какой ландшафт эти кошки предпочитают, что едят, охотятся днем или ночью. Статистические методы выявили значимую связь между этими переменными и узорами на кошачьих шкурах. Результаты показывают, что узоры тесно связаны с закрытыми ландшафтами, такими как лес. Животные открытых пространств, таких как саванны, с большей вероятностью имеют гладкую шкуру, как львы. Если нет, то узор на шкуре обычно несложен. А вот животные, которые много времени проводят на деревьях, как леопарды, с большей вероятностью имеют узорчатые шкуры. Более того, их узоры, как правило, сложны – это не просто пятна или полосы. Этот метод объясняет также, почему черные леопарды (так называемые пантеры) встречаются достаточно часто, а вот черных гепардов не бывает.
Данные откровенно противоречат некоторым теориям, альтернативным маскировочной. Размеры кошек и размеры их добычи мало влияют на расцветку. Кошки, ведущие общественный образ жизни, с той же вероятностью оказываются узорчатыми или гладко окрашенными, как и кошки-одиночки, так что отметки на шкуре, вероятно, не имеют ценности в качестве социальных сигналов. Исследование не доказывает, что отметки на шкурах появились в процессе эволюции только ради маскировки, но позволяет предположить, что маскировка сыграла здесь ключевую эволюционную роль.
Львы окрашены ровно, потому что гуляют по открытым равнинам. Леопарды пятнисты, потому что такой рисунок труднее заметить в лесу.
Дополнительную информацию см. в главе «Загадки разгаданные».
Многоугольники навсегда
Вот вам тест на геометрическую и аналитическую интуицию. Начните с окружности единичного радиуса. Нарисуйте вокруг нее равносторонний треугольник, который будет как можно плотнее ее охватывать (то есть описанный равносторонний треугольник); затем нарисуйте вокруг него плотно охватывающую (описанную) окружность. Повторите процесс, только вместо треугольника используйте на очередном шаге квадрат, правильный пятиугольник, правильный шестиугольник и т. д.
Если этот процесс будет продолжаться до бесконечности, то станет ли ваш рисунок сколь угодно большим или навсегда останется в пределах какой-то ограниченной области на плоскости?
Ответ см. в главе «Загадки разгаданные».
Совершенно секретно
Где-то в 1930-е гг. один русский профессор математики вел семинар по гидродинамике. Среди постоянных участников семинара были двое, приходившие всегда в форме; очевидно, это были военные инженеры. Они никогда не рассказывали о проекте, над которым работали, поскольку он, судя по всему, был секретным. Но однажды они попросили профессора помочь им с решением одной математической задачи. Решение некоего уравнения приводило к колебательному процессу, и они хотели узнать, как нужно изменить коэффициенты, чтобы сделать решение стабильным.
Профессор посмотрел на уравнение и сказал: «Сделайте крылья длиннее».
Приключения гребцов
Из мемуаров доктора Ватсапа
Я нередко поражаюсь способности Сомса находить закономерности в самых неподходящих для этого обстоятельствах. Невозможно подобрать лучшего примера, чем история, имевшая место ранней весной 1877 г.
Когда, направляясь к дому Сомса, я проходил через Равносторонний парк, на дорожках плясали пестрые пятна света и теней, которые свежеотчеканенное солнышко бросало сквозь кружевные пухлые облака, а живые изгороди звенели птичьими песнями. В такой великолепный день казалось просто неприличным оставаться дома, но все мои усилия оторвать моего друга от каталогизации полной коллекции использованных спичек встретили с его стороны лишь равнодушие.
– Нередко исход дела зависит от того, сколько времени горела спичка, Ватсап, – недовольно проворчал он, занося в блокнот какой-то очередной размер, снятый с циркуля.
Разочарованный, я раскрыл газету на спортивной странице, и мой глаз сразу же выхватил своевременное напоминание о событии, которое даже Сомс вряд ли хотел бы пропустить. У меня же оно совершенно выскочило из головы, вытесненное жужжанием пчел и цветением деревьев. Меньше чем через час мы уже сидели на берегу реки с корзинкой ленча и несколькими бутылками вполне приличного бургундского и ждали начала ежегодной гонки.
– За кого вы болеете, Сомс?
Он прекратил измерение длины сгоревшей части раннешотландской безопасной спички – Сомс настоял на том, чтобы взять некоторое количество спичек с собой, чтобы было чем заняться.
– За голубых.
– Темных или светлых?
– Да, конечно, – загадочно ответил он.
– Я имею в виду, за Оксфорд или за Кембридж?
– Да, – он покачал головой. – За кого-то из них. Переменных слишком много, и они слишком сложные, чтобы предсказать успех, Ватсап.
– Сомс, я спрашивал, за кого вы болеете, а не просил предсказать победителя.
Он бросил на меня уничтожающий взгляд.
– Ватсап, с какой стати я должен болеть за людей, с которыми даже не знаком?
Когда на Сомса нападает хандра, тому всегда есть причина. Я заметил, что он выкладывает из спичек нечто, напоминающее рыбий скелет, и спросил, в чем дело.
– Я вот смотрю, как распределяются весла на лодках, и мне интересно, почему стало традиционным такое неэффективное их расположение.
Я перевел взгляд на Темзу, где две лодки как раз занимали места на стартовой линии перед ежегодной Университетской гонкой.
– Традиция часто неэффективна, – поучающе заметил я, – поскольку суть ее заключается в том, чтобы делать все точно так, как делалось всегда, а не задаваться вопросом, как сделать лучше всего. Но я не вижу здесь никакой неэффективности. Восемь гребцов, и весла обращены по очереди то на правую сторону, то на левую. Такая лодка называется распашной, и ее устройство представляется мне симметричным и разумным.
Сомс недовольно хмыкнул.
– Симметричной? Тьфу! Вовсе нет. Все весла одного борта расположены впереди по отношению к веслам другого борта. Разумной? Когда гребцы налегают на весла, асимметрия создает крутящую силу, которая заставляет лодку отклоняться в одну сторону.
– Но именно поэтому, Сомс, на лодке есть рулевой. Который направляет лодку при помощи руля.
– Который порождает сопротивление поступательному движению лодки.
– Ах! Но как еще можно расположить весла? Невозможно ведь посадить двух гребцов рядом, бок о бок.
– Существует 68 вариантов, Ватсап; 34, если считать зеркально симметричные варианты одинаковыми. Кстати говоря, наши немецкие и итальянские друзья пользуются другими схемами расположения весел, – он выложил перед собой из спичек две скелетообразные схемы.
Я в недоумении уставился на них.
– Но ведь такие странные варианты расположения весел наверняка страдают от еще больших проблем!
– Возможно. Давайте посмотрим, – он поджал губы и погрузился в размышления. – В этом деле бесчисленное количество практических вопросов, Ватсап, которые требуют более сложного анализа. Не говоря уже о том, что у меня не хватит спичек. Поэтому я ограничусь простейшей моделью, какую смогу придумать, и буду надеяться, что она подскажет мне что-нибудь полезное. Предупреждаю заранее, что результаты будут не слишком определенными.
– Достаточно справедливо, – сказал я.
– Теперь рассмотрим одно отдельно взятое весло и рассчитаем силы, действующие на уключину, в которой оно вращается, в ходе той фазы гребка, когда весло находится в воде. Для простоты я буду считать, что все гребцы обладают одинаковой силой и гребут с идеальной синхронностью, так что прикладывают одинаковую силу F в любой заданный момет. Затем я раскладываю эту силу на компоненты P (параллельный оси лодки) и R (направленный к ней под прямым углом).
– Все эти силы изменяются во времени, – заметил я.
Он кивнул.
– Важно здесь то, что специалисты по механике называют моментом каждой силы, – степень, в которой она поворачивает лодку вокруг какой-то выбранной точки. Находят его, как вы помните из истории с палимпсестом Архимеда, перемножением силы на расстояние от точки ее приложения по перпендикуляру до этой точки.
Настала моя очередь кивнуть. Я был уверен, что припоминаю что-то в этом роде.
– Я отмечаю положение ближайшего к корме весла точкой. Это и будет наша выбранная точка. Далее, сила P имеет момент Pd относительно точки, в которой крепление уключины весла пересекается с центральной продольной осью лодки, если это весло расположено на левой стороне. Но если оно располагается справа, момент будет равен – Pd, поскольку сила при этом закручивает лодку в противоположном направлении. Обратите внимание: эти моменты для всех четырех весел на одном борту лодки одинаковы. Следовательно, суммарный момент всех восьми весел равен 4Pd – 4Pd, то есть 0.
– Вращающие силы уравновешивают друг друга!
– Для продольных составляющих P – да, уравновешивают. Однако момент силы R у каждого весла свой, поскольку зависит от расстояния x между этим веслом и крайним кормовым. Если говорить конкретно, этот момент равен Rx. Если расстояние между соседними веслами везде одинаково и равно c, то x принимает значения
0 cR 2cR 3cR 4cR 5cR 6cR 7cR
по мере продвижения от кормы к носу. Поэтому суммарный момент равен
± 0 ± cR ± 2cR ± 3cR ± 4cR ± 5cR ± 6cR ± 7cR,
где ставится знак плюс для весел левого борта и знак минус – для весел правого борта.
– Почему?
– Силы на левой стороне поворачивают лодку по часовой стрелке, Ватсап, а силы по правой стороне – против. Можно упростить это выражение до (± 0 ± 1 ± 2 ± 3 ± 4 ± 5 ± 6 ± 7) cR, где последовательность плюсов и минусов соответствует последовательности сторон, на которые смотрят весла.
– А теперь рассмотрим стандартное расположение весел на спортивной распашной восьмерке. Последовательность знаков здесь такова:
+ – + – + – + –,
так что суммарный крутящий момент равен
(0–1 + 2–3 + 4–5 + 6–7) cR = –4cR.
В первой фазе гребка R направлена внутрь, но, когда весло начинает уходить назад, направление R меняется, она начинает действовать наружу. Поэтому лодка в ходе гребка сначала поворачивается в одном направлении, затем в другом, то есть вихляет на ходу. Рулевой должен при помощи руля корректировать ход лодки, а это, как я уже сказал, порождает сопротивление.
– А что в немецком варианте? Здесь суммарный крутящий момент равен
(0–1 + 2–3 – 4 + 5–6 + 7) cR = 0,
какими бы ни были c и R. Так что лодка в этом варианте не склонна вилять.
– А у итальянцев? – воскликнул я. – О, дайте мне попробовать! Суммарный крутящий момент равен
(0–1–2 + 3 + 4–5–6 + 7) cR = 0.
Тоже! Как замечательно!
– Вот именно, – отозвался Сомс. – А теперь, Ватсап, вопрос для вашего живого ума. Являются ли немецкий и итальянский варианты – или их зеркальные отражения, которые ничем, в сущности, от них не отличаются, – единственными способами обнулить вращающие силы? – должно быть, он заметил выражение моего лица, поскольку добавил: – Вопрос сводится к разделению чисел от 0 до 7 на две группы по четыре, каждая из которых при сложении даст одну и ту же сумму. А именно 14, поскольку все эти числа в сумме дают 28.
Ответ, а также результат гонки Оксфорд – Кембридж 1877 г. см. в главе «Загадки разгаданные».
«Пятнашки»
Эта старая головоломка – моя любимая, она никогда не надоедает. Это увлекательное занятие, где маленькая математическая догадка могла бы избавить нас от невероятного количества напрасных усилий. Плюс к тому она нужна мне в качестве подготовки к следующей теме.
В 1880 г. нью-йоркский почтмейстер по имени Ной Палмер Чепмэн предложил головоломку, которую он назвал «драгоценной», а дантист Чарльз Певи предложил денежный приз за ее решение. Головоломка ненадолго вошла в моду, но никто не сумел выиграть приз, так что ажиотаж быстро спал. Американский составитель головоломок Сэм Лойд[34] утверждал, что именно он ввел моду на эту головоломку в 1870-е гг., но на самом деле все, что он сделал, – это написал о ней в 1896 г. и предложил приз в $1000 за решение, что на время воскресило интерес к полузабытой игре.
Головоломка «пятнашки» (ее также называют игрой в «15» и «загадочным квадратом») начинается с 15 подвижных квадратиков, пронумерованных числами от 1 до 15 и расставленных в форме квадрата с одним пустым квадратиком в правом нижнем углу. Квадратики расставлены в порядке возрастания, за исключением номеров 14 и 15. Задача играющего – поменять местами квадратики 14 и 15, сохранив положение остальных квадратиков неизменным. Делать это нужно сдвиганием любого из соседних квадратиков на пустое место, причем повторять эту операцию можно сколько угодно.
По мере того как вы сдвигаете все больше и больше квадратиков, номера перепутываются. Но если вы будете действовать аккуратно, вы сможете вновь их распутать. Легко предположить, что при достаточной сообразительности можно получить любое, абсолютно произвольное расположение квадратиков.
Лойд с радостью предложил такой щедрый по тем временам приз, поскольку был уверен, что платить не придется. В игре существует 16! потенциально возможных перестановок (15 нумерованных квадратиков плюс один пустой). Вопрос в следующем: какие из этих вариантов можно получить при помощи серии разрешенных ходов? В 1879 г. Уильям Джонсон и Уильям Стори доказали, что ответ состоит в том, что получить можно ровно половину вариантов; причем (так мы и знали, не правда ли?) вариант, который нужен для получения приза, относится к другой половине. «Пятнашка» нерешаема. Но люди в большинстве своем этого не знали.
Для доказательства невозможности решения нужно раскрасить квадратики под шахматную доску, как на правом рисунке. Сдвиг любого квадратика, по существу, меняет его местами с пустым квадратиком, и всякий раз при этом меняется цвет, связанный с пустым квадратиком. Поскольку в результате пустой квадратик должен вернуться на свое первоначальное место, число шагов должно быть четным. Вообще, любая расстановка может быть получена путем серии обменов, но некоторые комбинации требуют четного числа обменов, а некоторые – нечетного.
Существует множество способов получить любую заданную расстановку, но они либо все четные, либо все нечетные. Желаемый результат может быть получен при помощи всего лишь одной замены (нужно поменять местами 14 и 15), но единица – число нечетное, так что получить такую расстановку четным числом замен невозможно.
Это условие оказывается единственным препятствием: разрешенные ходы позволяют получить ровным счетом половину из 16! возможных расстановок. 16!/2 = 10 461 394 944 000; это число настолько велико, что, сколько бы раз вы ни пробовали, большая часть вариантов останется неисследованной. Это может заронить в ваше сознание мысль, что возможен, безусловно, любой вариант расстановки.
Хитрая шестиугольная головоломка