Математические головоломки профессора Стюарта Стюарт Иэн
– Это мы выясним, когда проведем необходимые рассуждения.
Ватсап вытащил новый, толстый, пока еще совершенно чистый блокнот и написал:
Мемуарыдоктора Джона Ватсапа (M. Chir., R. M. C. S., в отставке)Дело 1: Кража с зелеными носкамиСомс, читая написанное вверх ногами, негромко заметил:
– Это не бульварный роман, Ватсап.
Ватсап перечеркнул слово «кража» и подписал вместо этого «случай». Затем, поджав губы, начал записывать ход их совместного анализа. После нескольких небольших заминок личность преступника вскоре прояснилась.
Ответ см. в главе «Загадки разгаданные».
– Я немедленно отправлю телеграмму инспектору Роулейду, – объявил Сомс. – Он пошлет констеблей обыскать жилище этого человека. Несомненно, они найдут там ваши кинжалы, поскольку грабитель, которого мы идентифицировали, известен тем, что всегда очень долго сбывает краденое. Он любит позлорадствовать, любуясь краденым, Ватсап, и такая опрометчивость уже не раз приводила его за решетку.
– И это поможет нам успешно завершить наше первое совместное дело! – с энтузиазмом добавил он, но его возбуждения надолго не хватило. – Ваша помощь в нем была бесценной, но, к несчастью, состояние финансов в результате всех наших размышлений не улучшится, поскольку это ваше дело.
– Некоторое улучшение все же будет. Я верну себе кинжалы.
– Боюсь, что полиция будет держать их у себя до суда как вещественные доказательства. Но все равно мы можем считать этот успех предвестником наступления других, более прибыльных времен, да, Ватсап?
Последовательные кубы
Кубы трех последовательных чисел 1, 2, 3 равны 1, 8, 27, что в сумме составляет 36, то есть полный квадрат. Какие следующие последовательные кубы дают в сумме полный квадрат?
Ответ см. в главе «Загадки разгаданные».
Adonis Asteroid Mousterian
Джереми Фаррелл опубликовал[4] несколько поразительных магических квадратов. Вот три примера из этой публикации. В каждой клеточке такого квадрата содержится двухбуквенное английское слово, которое можно найти в любом стандартном словаре. В клетках каждой строки, каждого столбца и каждой из двух главных диагоналей квадратов четвертого и пятого порядков содержатся одни и те же буквы. Каждая строка и столбец представляют собой анаграмму (хотя и не осмысленную) одного и того же словарного слова, написанного под соответствующим квадратом. Кстати говоря, Mousterian (мустьерский) – это разновидность кремневых орудий, которыми пользовались некоторые неандертальцы.
Вам может показаться, что правильным образом организованные слова не имеют отношения к математике. Однако любители головоломок, как правило, уважают и то и другое, а сам я склонен рассматривать игры со словами скорее как задачи по комбинаторике с нерегулярными ограничениями; говоря конкретнее, в качестве ограничения здесь выступает словарь. Но у этих квадратов есть и математические свойства. Если каждую букву заменить подходящим числом, а числа, соответствующие двум буквам в заданной клетке, сложить, то получившийся числовой квадрат тоже окажется магическим. То есть числа в каждой строке, в каждом столбце и (за исключением квадрата 3 3) по каждой диагонали в сумме дадут одно и то же число.
Конечно, это свойство выполняется для любого набора чисел, за исключением диагоналей квадрата 3 3, потому что каждая буква встречается в каждой строке, каждом столбце и (за исключением квадрата 3 3) на каждой диагонали ровно один раз. Однако при правильном выборе в квадратах будут стоять числа от 0 до 8, от 0 до 15 и от 0 до 24 соответственно. В каждом магическом словарном квадрате соответствия между буквами и цифрами будут разными.
Какие числа соответствуют каким буквам? Ответ см. в главе «Загадки разгаданные».
Два коротких вопроса на квадраты
1. Назовите наибольший полный квадрат, в котором каждая цифра 1 2 3 4 5 6 7 8 9 встречается ровно один раз.
2. Назовите наименьший полный квадрат, в котором каждая цифра 1 2 3 4 5 6 7 8 9 встречается ровно один раз.
Ответы см. в главе «Загадки разгаданные».
О вреде чистых рук
Джон Непер, восьмой лорд Мерчистона (ныне район Эдинбурга), знаменит тем, что в 1614 г. изобрел логарифмы. Но в его натуре была и темная сторона: он баловался алхимией и некромантией. Многие считали его колдуном, а его «фамильяром», или волшебным спутником, был черный петух.
При помощи этого петуха Непер ловил вороватых слуг. Он запирал слугу, заподозренного в краже, в комнате с петухом и велел ему погладить петуха, говоря, что волшебная птица сможет безошибочно определить виновного. Все обставлялось очень таинственно – но Непер точно знал, что делает. Он заранее покрывал черного петуха тонким слоем сажи. Невиновный слуга готов был, как велено, погладить птицу, и на его руках обязательно оставались следы сажи. Виновный, страшась разоблачения, игнорировал распоряжение хозяина, и его руки оставались чистыми.
Чистые руки служили доказательством вины.
Дело о картонных коробках[5]
Из мемуаров доктора Ватсапа
После возвращения ценных церемониальных кинжалов и по мере того, как росла репутация нашего партнерства в решении неразрешимого, постижении непостижимого и распутывании нераспутываемого, ситуация с нашими личными финансами улучшалась с каждым днем. Элита Англии становилась фактически в очередь, стремясь заручиться нашими услугами, и в моих записных книжках можно найти описание многих успехов моего друга: это и загадка пропавшей горы, и история с испарившимся виконтом, и союз лысых. Однако ни один из этих случаев не отражает талантов моего друга в их самой чистой форме ине раскрывает его способности распознавать значимые черты обычных на первый взгляд объектов и событий, на которые большинство людей просто не обратили бы внимания. В этой связи на ум сразу приходит случай с гигантской летучей мышью из Сент-Олбанс, но подробности этого дела слишком сложны и загадочны, чтобы разбирать его здесь.
Любопытные события Рождества 18.. года, однако, прекрасно подходят для моей цели и заслуживают большего интереса. (Я вынужден сохранить точную дату и большую часть обстоятельств происшедшего в тайне, чтобы не причинять неудобств знаменитой оперной диве-контральто и нескольким министрам Кабинета.)
Я сидел за своим письменным столом, припоминая и записывая подробности последних дел Сомса, а он проводил бесконечную, как мне казалось, серию экспериментов с моим старым армейским револьвером и вазой с хризантемами. И его, и мою деятельность прервала миссис Сопсудс, которая внесла и поставила на стол две картонные коробки разных размеров, перевязанные ленточками.
– Рождественские подарки для вас, мистер Сомс, – объявила она.
Сомс посмотрел на посылки. На упаковке каждой красовались его адрес и какие-то почтовые марки с нечитаемыми штемпелями. По форме коробки были прямоугольными… конечно, технически прямоугольник – двумерная фигура, так что на самом деле они были прямоугольными параллелепипедами. Кубоидами.
В общем, коробки имели форму коробок.
Сомс взял линейку и измерил все стороны.
– Замечательно, – пробормотал он. – И очень, очень неприятно.
К тому времени я уже научился уважать подобные оценки, какими бы странными на первый взгляд они ни выглядели. Я перестал смотреть на посылки как на подарки к Рождеству и попытался отбросить растущее подозрение о том, что там внутри бомбы; я постарался внимательно их осмотреть. В конце концов я заметил, что при обвязывании коробок было использовано больше ленты, чем это необходимо.
– Ленты образуют крест на каждой грани коробки, – сказал я. – Когда я упаковываю пакет, я обычно завязываю ленту так, чтобы она образовывала крест на верхней и нижней гранях коробки и проходила вертикально по каждой из четырех оставшихся граней.
– В самом деле.
Очевидно, мой анализ был неполон. Я напряг мозги.
– Ну… Там нет банта.
– Правильно, Ватсап.
По-прежнему ответ неполон. Я почесал голову.
– Это все, что мне удалось заметить.
– Это все, что вы видите, Ватсап. Вы заметили все, кроме главной закономерности. Боюсь, что на пороге ужасные дела.
Я признался, что не вижу ничего ужасного в двух рождественских подарках. Внезапно меня поразила одна мысль.
– Неужели вы имеете в виду, что в коробках содержатся отрезанные части тела, Сомс?
Он рассмеялся.
– Нет, они почти пусты, – сказал он, поднимая и встряхивая каждую по очереди. – Но вы, конечно же, понимаете, что ленты этого конкретного сорта можно купить только у Уилберфорса, в магазине для дам?
– К сожалению, нет, но я склоняюсь перед вашими несравненными познаниями. Хотя само заведение мне знакомо. Это галантерейный магазинчик на Исткасл-стрит. – И тут меня осенило: – Сомс! Это там, где произошло то ужасное убийство! Это было…
– …во всех газетах. Да, Ватсап.
– Улик было достаточно, но тело пока не найдено.
Сомс мрачно кивнул.
– Оно будет найдено.
– Когда?
– Вскоре после того, как я открою эти коробки.
Он натянул перчатки и начал осторожно разворачивать посылки.
– Несомненно, это работа картонариев, Ватсап.
Я непонимающе уставился на него, и Сомс добавил:
– Членов итальянского тайного общества. Но лучше бы вам об этом не знать, – и, несмотря на все мои мольбы, отказался что-либо рассказывать.
Он открыл обе коробки.
– Как я и подозревал. Одна коробка пуста, но во второй лежит вот это, – он поднял и показал мне небольшой прямоугольный лист бумаги.
– Что это?
Он передал лист мне.
– Квитанция из камеры хранения багажа, – сказал я. – Должно быть, это послание от убийцы. Но номер оторван, как и название станции.
– Как и следовало ожидать, Ватсап, как и следовало ожидать. Он – а по кровавым отпечаткам обуви ясно, что преступник определенно мужчина, к тому же крупный, – дразнит нас. Но мы разгадаем его загадки и возьмем над ним верх. Разумеется, название станции очевидно по тому, как коробки перевязаны лентой.
– Э-э… Простите?
– Конечно, вместе со стоимостью марок, что исключает вариант вокзала Чаринг-Кросс.
Мне все это показалось полной бессмыслицей, так что я взял со стола упаковку и насчитал на ней пять марок по одному шиллингу каждая. Откровенно говоря, я был озадачен.
– Нелепо платить столько за пересылку пустой коробки.
– Вовсе нет, если вы хотите тем самым что-то сообщить. Как иначе называется монета в пять шиллингов?
– Крона.
– А что символизирует крона и что на ней изображено?
– На ней отчеканена корона – символ нашей дорогой королевы.
– Близко, Ватсап, но вы не учли форму ленты.
– Коробка завязана крестом.
– Поэтому марки указывают на короля, а не на королеву. Станция – Кингс-Кросс, это очевидно! Но это не все. Ответьте мне вот на какой вопрос, Ватсап. Почему преступник прислал мне две большие коробки, если одна из них абсолютно пуста? Чтобы послать квитанцию, хватило бы одного небольшого конверта.
После долгой паузы я покачал головой.
– Понятия не имею.
– Коробки должны быть как-то связаны между собой, и характер этой связи должен что-то означать. Связь между ними, конечно, есть, я это понял сразу, как только измерил их стороны. – Сомс вручил мне линейку: – Попробуйте сами.
Я повторил его измерения.
– Длина, ширина и высота каждой коробки равняется целому числу дюймов, – сказал я. – Никакой другой закономерности в голову не приходит.
Он вздохнул.
– Вы не заметили странного совпадения?
– Какого странного совпадения?
– Объем обеих коробок одинаков, а перевязаны они одинаковыми по длине кусками ленты. Более того, размеры коробок – это наименьшие целые числа с такими свойствами.
– Из чего вы делаете вывод… ну конечно! Объем коробок и длина ленты дают нам номер багажной квитанции. Правда, число из них можно составить двумя разными способами, но мы можем с легкостью проверить оба варианта.
Сомс покачал головой.
– Нет-нет. Убийце потребовался бы помощник в багажном отделении, даже если бы такой номер квитанции вообще существовал. Все гораздо проще: преступник пометил какую-то вещь из оставленных в камере хранения этими числами. А внутри мы найдем нечто, что подскажет нам, где его искать.
– Кого искать?
– Разве не очевидно? Труп.
– Снимаю перед вами шляпу, Сомс, – с чувством сказал я. – Или снял бы, если бы она на мне была. Но разве труп, даже если мы его найдем, приведет нас к убийце?
– Это будет полезная улика, но вряд ли достаточная. Однако из этой посылки можно извлечь еще кое-что. Иногда преступник считает себя настолько умным, что намеренно оставляет за собой улики в уверенности, что представители власти глупы и при расследовании дела их просто не заметят. Картонарии – самоуверенные типы, и для них такое поведение типично. Но посмотрим. Так, возникает естественный вопрос, который ведет нас дальше от замечательной арифметики этих коробок. Каким будет наименьший набор из трех коробок с таким же свойством?
Я мгновенно понял ход его мыслей.
– Вы ожидаете такую посылку в ближайшем будущем! С еще одной разорванной квитанцией внутри! Значит, вы думаете, что будет еще одно убийство, да? – Я начал искать свой револьвер. – Мы должны остановить убийцу!
– Боюсь, что убийство уже совершено, но мы, если повезет, сможем предотвратить третью смерть. Сегодня убийца положит какую-то вещь – это может быть что угодно – в камеру хранения одного из главных лондонских вокзалов. Затем он отправит нам почтой коробки. Если мы сумеем заранее определить зашифрованные в них числа, то можно будет предупредить инспектора Роулейда. Он разошлет полицейских по всем основным окзалам. Они не смогут, конечно, проверить всех пассажиров, которые будут оставлять багаж в камере хранения, поскольку это встревожило бы преступника, но могут посмотреть, не появится ли там кто-нибудь, у кого на багаже будут нанесены каким-то образом эти три числа, и арестовать тех, кто принесет этот багаж. В багаже будут указания на то, где следует искать второй труп. А когда он будет найден, доказательств вины окажется более чем достаточно.
В реальности все прошло не так гладко, и нам с Сомсом пришлось вмешаться после того, как полиция упустила нужного человека. К счастью, три посылки, которые надлежащим порядком прибыли к нам на следующий день вечерней почтой, принесли новые улики, и мы обнаружили, что это убийство было частью более обширного заговора. Извилистые пути, которыми двигалось наше расследование, и леденящие кровь тайны, которые мы откопали – в буквальном смысле, – как я уже объяснил, никогда не будут преданы гласности. Но в конце концов мы поймали преступника. И Сомс позволил мне открыть ответы на два вопроса, которые сыграли главную роль во всем этом расследовании.
Каких размеров были две коробки, с которых все началось? Каких размеров должны быть три коробки, чтобы они обладали такими же свойствами?
Ответы см. в главе «Загадки разгаданные».
RATS-последовательность
1, 2, 4, 8, 16, … Что дальше? Очень соблазнительно, особо не задумываясь, назвать в качестве следующего числа 32. Но что, если я скажу, что последовательность, которую я имел в виду, на самом деле выглядит так:
1 2 4 8 16 77 145 668.
Что теперь скажете про следующий член последовательности? Разумеется, единственного правильного ответа на этот вопрос не существует: придумав достаточно хитрые правила, можно подобрать формулу для любой конечной последовательности. Карл Линдерхольм в книге «Непростая математика» (Mathematics Made Difficult) посвятил целую главу объяснению того, почему на вопрос «Каков следующий член данной последовательности?» всегда можно отвечать: «19». Но вернемся к нашей последовательности: для нее существует простое правило. На него указывает название этой главки, но должен признать, что указание это слишком невнятно, чтобы из него можно было что-то извлечь.
Ответ см. в главе «Загадки разгаданные».
Дни рождения полезны
Статистика показывает, что люди, у которых больше всего дней рождения, живут дольше всех.
Ларри Лоренцони
Математические даты
В последние годы многие календарные даты оказались связаны с различными аспектами математики, в результате чего были объявлены особыми днями. Никто не придает таким дням никакого особого значения; все ограничивается исключительно численным сходством. Эти даты не предсказывают конца света или чего-то подобного – по крайней мере, насколько нам известно. В эти дни не происходит ничего особенного, их отмечают исключительно математики и иногда упоминают в СМИ. Но они забавны и дают средствам массовой информации лишний повод заинтересоваться серьезной математикой. Или хотя бы упомянуть математику в своих публикациях.
Можно назвать несколько таких дат. Многие из них связаны с американской системой датировки, где первым указывается не число, а месяц. Опять же, допускаются кое-какие календарные вольности: так, нули иногда можно опускать.
14 марта, или, в американской системе датировки, 3/14 ( ~ 3,14). В Сан-Франциско это квазиофициальный день с 1988 г. Палата представителей США приняла необязывающую резолюцию, в которой признала этот день.
14 марта, время 1:59. В американской системе это записывается как 3/14 1.59 ( ~ 3,14159). Можно и еще точнее: момент времени 1.59 и 26 секунд. 3/14 1:59:26 ( ~ 3,1415926).
22 июля, в британской системе датировки записывается как 22/7 ( ~ 22/7).
Жаль, но вы его пропустили. Этот единственный момент наступил 7 августа 2009 г. (по британской системе), или 8 июля 2009 г. (по американской системе), вскоре после 12:34. Дату и время этого момента можно записать как 12:34:56 7/8/(0) 9. Но некоторые из вас, возможно, еще увидят «День 1234567890» в 2090 г.
Его вы тоже пропустили. Этот момент имел место 11 ноября 2011 г. (в любой системе) в 11 часов 11 минут 11 секунд. Дата и время в тот момент были 11:11:11 11/11/11.
Сегодня, когда я это пишу, до него еще несколько лет. У вас есть шанс! 2 февраля 2022 г.: 22:22:22 2/2/22.
Палиндром, как известно, читается одинаково и слева направо, и справа налево – как фраза «А роза упала на лапу Азора». 22 февраля 2002 г. в 20:02 (британская система, 24-часовое обозначение времени): 20:02 20/02/2002.
Здесь один и тот же палиндром повторяется трижды. Когда можно ожидать следующий такой день в британской системе? Какая дата после названной, опять же в британской системе, представляла собой один цельный палиндром?
Ответ см. в главе «Загадки разгаданные».
2 мая 2008 г. (британская система), 5 марта 2008 г. (американская система): 3/5/(0) 8.
5 августа 2013 г. (британская система), 2 минуты 3 секунды второго (8 мая 2013 г. в американской системе): 1:2:3 5/8/13.
2 марта 2011 г. (британская система), 3 февраля 2011 г. (американская система): 2:3 5/7/11.
Собака Баскетболлов
Из мемуаров доктора Ватсапа
– К вам леди, мистер Сомс, – сказала миссис Сопсудс.
Мы с Сомсом вскочили на ноги. В комнату вошла женщина неопределенного возраста – неопределенного потому, что ее лицо было скрыто под темной вуалью.
– Вам нет нужды скрывать свое лицо, леди Иакинф, – сказал Сомс.
Женщина изумленно ахнула и стянула вуаль.
– Но как…
– Необычайные события в Баскет-холле всю неделю служили темой для газетных заголовков, – сказал Сомс. – Я внимательно следил за ходом дела и знаю, что мой соперник из дома напротив не добился никаких результатов в расследовании. Ясно было, что рано или поздно вы обратитесь ко мне за помощью. Это был всего лишь вопрос времени. Кроме того, я узнал шляпу вашего кучера, таких больше не найдешь у слуг нашей аристократии.
– Баске, а не Бскет, – поправила его леди Иакинф, презрительно фыркнув. Получившийся носовой звук придал слову явственно французское звучание.
– Вряд ли это существенно, мадам, – возразил Сомс. – Этот дом принадлежит семье Баскет уже семь поколений, с тех самых пор, как Гонория Тампингем-Мэддли вышла замуж за третьего эрла.
– Ну да, но это же было тогда. Написание и произношение за это время… э-э…
– Осовременились, – вмешался я, надеясь немного успокоить бушующие волны взаимной неприязни. Одновременно я бросил на Сомса острый взгляд, оставшийся незамеченным ее светлостью. К чести Сомса, он воспользовался моей подсказкой.
– Это был гигантский черный пес! – внезапно воскликнула ее светлость, и слова прозвучали так, будто их силой вырвали из ее горла. – С громадной слюнявой пастью, с которой капала кровь!
– Вы его видели?
– Вообще-то нет, но мальчишка, который присматривает за поросятами… Ники, вот как его зовут. Или, может быть, Рики? Во всяком случае, он сказал, что мельком видел это жуткое чудовище, когда оно убегало.
– В темноте, – заметил Сомс.– С расстояния в 150 метров. Майкл Дженкинс близорук. Но неважно, рано или поздно улики приведут нас к истине. Правильно ли я понял, что это животное не причинило вреда ни одному человеческому существу?
– Ну… нет, – неохотно согласилась она. – Непосредственно нет, хотя мой бедный муж… Понимаете, этот пес погубил традицию, которая восходит к глубокой древности и возникла еще до третьего эрла Бск… Баске.
Я запоздало вспомнил о приличиях.
– Доктор Джон Ватсап, к вашим услугам, мадам. Сожалею, но я, в отличие от моего компаньона, не следил за новостями. Не будете ли вы столь любезны, чтобы просветить меня?
– Ах. Да. Хм-м, – она подобрала юбки и собралась с мыслями. – Это было за несколько дней до праздника Середины зимы, и мой муж Эдмунд… то есть лорд Баске, разумеется… расставил 12 старинных каменных шаров…
– Известных уже несколько столетий как шары Баскетов, – прервал ее Сомс.
– Ну да, но мы же не можем осовременить абсолютно все, мистер Сомс. Существуют традиции. Во всяком случае, мой муж расставил шары на лужайке возле нашего величественного особняка в виде древнего фамильного символа. Только наследник по мужской линии знает точно, что это за символ, и никому другому не разрешается наблюдать за этой церемонией, но информация потихоньку просачивалась, и сегодня все знают, что в этом символе шары расставлены в виде семи прямых рядов с четырьмя шарами в каждом ряду.
Мы с Сомсом внимательно слушали.
– Эдмунд репетировал церемонию, которую необходимо обязательно проводить накануне каждого праздника Середины зимы, то есть в канун дня зимнего солнцестояния. Но, проснувшись на следующее утро, мы с ужасом увидели, что некоторые шары сдвинуты со своих мест!
– Но ведь вы сказали, что никто, кроме лорда Баске, не должен видеть расстановки шаров, – возразил Сомс.
– На этот раз сложились исключительные обстоятельства. Его светлость отправился собирать шары, но не вернулся. Через некоторое время за ним послали одну из горничных… Понимаете, Лавиния слепа, но очень надежна и старательна. Она вернулась в слезах с криками о том, что его светлость лежит на земле и не двигается. Опасаясь, что он мертв, мы, то есть остальные присутствующие, решились нарушить освященный временем запрет и бросились к месту происшествия. Я подбежала как раз вовремя, чтобы услышать, как Эдмунд воскликнул: «Сдвинуты!» – и замер. С тех пор он находится в ступоре и ни на что не реагирует, мистер Сомс. Это ужасно.
– Сдвинуты, – повторил я. – Каким образом, мадам?
– Не находятся больше на тех местах, где находились, доктор Ватсап.
– Я имею в виду, сдвинуты куда?
– Теперь они образуют звезду, доктор Ватсап.
– Да! Звезду, в которой всего лишь шесть прямых рядов с четырьмя шарами в каждом, – сказал Сомс, быстро рисуя что-то на листе бумаги. – Об этом много говорили, и, похоже, говорили правду, потому что такое представители желтой прессы вряд ли придумали бы – слишком сложно для их мозгов. Это доказывает также, что мы и сами могли бы догадаться, что шары сдвинуты, не полагаясь при этом на последнее восклицание его светлости… для этого достаточно и дедукции.
– Последнее восклицание на настоящий момент, – торопливо добавил я, пока неосторожное замечание Сомса не послужило спусковым крючком для новой серии причитаний.
– А разве вы не могли вернуть шары на место? – поинтересовался я, когда ее светлость немного успокоилась.
– Нет! – почти крикнула она. Я давно заметил, что своим поведением английская аристократия во многих ситуациях заметно напоминает лошадей.
– Почему нет?
– Я уже говорила вам, что только его светлость точно знает правильное расположение шаров, предписанное традицией, а теперь врачи говорят, что он, возможно, никогда уже не оправится!
– Разве на земле не было отметок в тех местах, где первоначально лежали шары?
– Возможно, но их затоптала эта ужасная собака! Там всюду ее следы!
– Тогда я возьму с собой самое мощное увеличительное стекло, – сказал Сомс, с трудом сохраняя невозмутимое выражение лица. В этот момент его, должно быть, осенила какая-то мысль, потому что он внезапно застыл:
– Вы сказали «необходимо».
– Я так сказала? Когда именно?
– Несколько минут назад вы сказали, что церемонию необходимо проводить в определенное время каждый год. Мне только что пришло в голову, что слова в этой фразе выбраны вами не случайно. Поясните, пожалуйста.
– Согласно древнему трансильванскому пророчеству, если 12 шаров Баскетов не будут правильным образом разложены на лужайке в канун праздника Середины зимы, то дом Бс… э-э, Баске… падет и будет полностью разрушен! У нас осталось всего три дня, чтобы сделать это! О горе! – она зарыдала в голос.
– Успокойтесь, мадам, – произнес я, проводя открытой склянкой с нюхательной солью у нее под носом. – Пожалуйста, примите мои соболезнования в связи с прискорбным состоянием его светлости и мои заверения как медика, что, как бы он ни был слаб, некоторый шанс существует и в его состоянии со временем могут произойти буквально волшебные перемены…
Следует заметить, что я всегда гордился своим безупречным умением разговаривать с больными и их родственниками, и навыки моего друга Сомса в этом важном деле не идут ни в какое сравнение с моими, но в данном случае, что совершенно необъяснимо, ее светлость в ответ на мои слова зарыдала вдвое сильнее.
Сомс с вытянутым лицом вышагивал по комнате.
– Правильно ли я понял, ваша светлость, что значение имеет только форма, фигура, которую образуют выложенные шары? Или ориентация тоже имеет существенное значение?
– Простите? – переспросила она и потрясла головой, как будто пытаясь восстановить ясность рассудка.
– Если бы расположение шаров было верным с точностью до поворота, не меняющего их относительное расположение, то как, по-вашему, это запустило бы страшные события, предсказанные пророчеством? – попросил пояснить Сомс.
Леди Баскет немного помолчала, что-то обдумывая.
– Нет. Определенно нет. Я помню, что Вилли Вилликинс – наш старший садовник – предлагал мужу время от времени менять ориентацию фигуры и направлять ее в разные стороны, чтобы не повредить дерн на лужайке. И Эдмунд не возражал.
– Прекрасная новость! – воскликнул Сомс.
– Да, прекрасная, – подхватил и я, хотя не имел ни малейшего понятия, чему так радовался мой друг-детектив. Или хотя бы что означал его вопрос.
– Были ли там какие-либо следы человеческого вмешательства? – спросил Сомс.
– Нет. Старший садовник клялся и божился, что никакое человеческое существо, кроме Эдмунда, не ступало на эту лужайку. Юный Дики…
– Мики.
– Вики видел ужасного пса, но даже он видел его только мельком, когда тот перепрыгивал через садовую ограду. В нашем саду есть чудесные пионы, мистер Сомс, хотя они и не цветут в это вре…
– Я возьмусь за это дело, – сказал Сомс. – Если ваша светлость не против, вам лучше сейчас вернуться в Баскет-холл, а мы с коллегой приедем в четверг первым же медленным поездом.
– Только в четверг, не раньше, мистер Сомс? Но ведь четверг и есть канун дня зимнего солнцестояния! Шары должны быть расставлены правильно в этот день до заката солнца!
– Я очень сожалею, но до той поры меня задержит в Лондоне небольшое дело, касающееся трех восточных владык; речь идет о 600 000 вооруженных воинов, двух спорных границах и украденной шкатулке с изумрудами и сапфирами, принадлежавшей тайному древнему религиозному ордену. И о расплющенном медном наперстке, в котором, я уверен, и кроется ключ ко всему делу. Однако заверяю вас: я убежден, что ваше дело может быть разрешено, ко всеобщему удовлетворению, еще до заката солнца в четверг.
Никакие протесты не помогли. Сомс был непоколебим, и в конце концов леди Иакинф Баске отбыла из нашего дома, сморкаясь потихоньку в уголок кружевного платочка.
После ее ухода я поинтересовался, на какое именно дело ссылался Сомс в разговоре, поскольку сам я ничего подобного не слышал.
– Небольшая выдумка с моей стороны, Васап, – признался он. – У меня билеты в оперу на сегодняшний вечер.
Мы прибыли на место в середине дня в четверг. На станции нас встретил грум с легкой двуколкой, которую часто называют «кабриолетом для гувернантки» (а может быть, там была гувернантка с повозкой для грума, мои записи в этом месте несколько неразборчивы). Встречающий сообщил нам, что лорд Баск по-прежнему находится в коме. Через каких-то полчаса мы были уже в Баскет-холле, и Сомс вовсю ползал по обширным лужайкам вокруг господского дома с необычайно большим увеличительным стеклом, щеткой для волос и угломером.
– Прекрасная возможность для вас потренироваться в дедукции, Ватсап, – сказал он мне.
– Я вижу, что трава в этом месте потревожена, Сомс.
– Правильно, Ватсап. Следы весьма сложные, но в основном это многочисленные перекрывающиеся отпечатки лап… – он понизил голос, так что слышать его мог только я один, – карликового пуделя.
Дальше он вновь заговорил своим обычным голосом:
– Я не в состоянии разглядеть здесь места, где первоначально были положены шары, но, если я не ошибаюсь – а я этого никогда не делаю, – по следам ясно, что животное сдвинуло ровно четыре шара.
– Это существенно, мистер Сомс? – нервно спросила леди Баске, держа на руках карликового пуделя.
Сомс посмотрел в мою сторону.
– Да… возможно… – начал я и увидел, что Сомс незаметно кивнул. Ну конечно, кивнул он не совершенно незаметно, вы понимаете, поскольку если бы кивок действительно был незаметен, я бы его не увидел. Поняв кивок Сомса как завуалированное одобрение, я рискнул сказать наугад: – Благодаря этому обстоятельству можно вычислить первоначальное расположение шаров.
– И что, правда можно? – спросила она с полным надежды взглядом.
Каким же было первоначальное расположение шаров? Ответ см. в главе «Загадки разгаданные».
Цифровые кубы
Это старая история, но она может послужить нам прелюдией к менее известному вопросу. Число 153 равно сумме кубов составляющих его цифр:
1 + 5 + 3 = 1 + 125 + 27 = 153.
Существуют еще три трехзначных числа, обладающих таким же свойством, если не принимать во внимание такие числа, как 001, с начальными нулями. Сможете найти их?
Ответ см. в главе «Загадки разгаданные».
Самовлюбленные числа