Математические головоломки профессора Стюарта Стюарт Иэн
Наименьшее такое R обозначается как R (f, k) и называется числом Рамсея. Из доказательства Сомса видно, что R (3,3) = 6. Числа Рамсея вычисляются с необычайным трудом, за исключением нескольких простых случаев. Известно, к примеру, что R (5,5) лежит в промежутке от 43 до 49, но его точное значение остается загадкой.
Рамсей доказал более общую теорему, в которой количество типов соединения (ножи, вилка, что угодно – чаще всего используются цвета, но Сомс использует то, что оказывается под рукой) может определяться любым конечным числом. Единственное известное нетривиальное число Рамсея для больше чем двух типов соединения – это R (3,3,3), равное 17.
Существуют бесчисленные обобщения этой идеи. Конкретное число, о котором идет речь, известно лишь в нескольких, очень немногочисленных, случаях. Вот статья, с которой все началось: F. P. Ramsey, On a problem of formal logic, Proceedings of the London Mathematical Society 30 (1930) 264–286. Как можно предположить по названию, автор думал о логике, а не о комбинаторике.
Число Грэма
R. L. Graham and B. L. Rothschild, Ramsey theory, Studies in Combinatorics (ed. G.-C. Rota) Mathematical Association of America 17 (1978) 80–99.
Дело водителя с уровнем выше среднего
В 1981 г. О. Свенсон опросил 161 шведского и американского студента, попросив каждого из них оценить свое мастерство и безопасность вождения по отношению к остальным участникам опроса. В отношении мастерства 69 % шведов оценили себя как выше среднего уровня; в отношении безопасности то же сделали 77 %. Для американских студентов цифры составили 93 % по мастерству и 88 % по безопасности. Мне довелось сдать два американских экзамена по вождению, один из которых проводился вообще без автомобиля, и я понимаю, почему американцы до такой степени преувеличивают свои способности. См.: O. Svenson, Are we all less risky and more skillful than our fellow drivers? Acta Psychologica 47 (1981) 143–148.
Тот же эффект наблюдается при оценке многих других качеств – популярности, здоровья, памяти, профессиональной квалификации, даже счастья в личной жизни. Не особенно удивительно: это один из способов поддержания самоуважения и уверенности в себе. А низкое самоуважение может быть признаком психологической неадекватности, поэтому, чтобы быть счастливыми и здоровыми, мы развили у себя в процессе эволюции способность к завышенной оценке собственного счастья и здоровья.
Не знаю, как вы, а я великолепно себя чувствую.
Ограбление в Баффлхэме
– Нужные нам числа – это 4 и 13, – сказал Сомс.
– Поразительно, просто поразительно. Я…
– Вы знакомы с моими методами, Ватсап.
– Тем не менее мне кажется замечательным, что вы можете вывести ответ из таких неопределенных разговоров.
– Хм. Посмотрим. Суть дела, Ватсап, состоит в том, что каждое утверждение, которое мы делаем, добавляет дополнительную информацию к тому, что знаем мы оба. И знаем, что оба знаем, и т. д. Предположим, что произведение двух нужных нам чисел равно p, а сумма равна s. Первоначально вы знаете p, а я знаю s. Мы оба знаем, что второй из нас знает то, что знает, но не знаем конкретного значения.
– Поскольку вы не знаете самих чисел, p не может быть произведением двух простых, таким как 35. Ведь 35 – это 5 7, и никак иначе выразить это число как произведение двух чисел, больших 1, невозможно, так что вы сразу поняли бы, какие два числа имеются в виду. По аналогичной причине p не может равняться кубу простого числа, такому как 5 = 125, поскольку такое число раскладывается только как 5 25.
– Да, это понятно, – вставил я.
– Кроме того, p не может быть равно qm, где q – простое число, а m – составное, поскольку для любого d больше 1, которое является делителем m, qd будет больше 100.
– Ну, даааа…
– К примеру, p не может быть равным 67 3 5, что раскладывается на множители тремя способами: 67 15, 201 5 и 335 3. Поскольку в двух последних случаях используются числа больше 100, на эти способы разложения можно не обращать внимания, и остается только один способ, с числами 67 и 15.
– Верно.
– Итак, ваше замечание помогает мне понять все это, но к тому моменту я и сам сделал те же выводы на основании известной мне суммы чисел. Я видел, что s не является суммой двух таких чисел. Но затем вы тоже об этом узнали, потому что я вам сказал, то есть вы узнали кое-что новое о числе s. Конечно, оба мы должны помнить, что если s = 200, то оба числа должны равняться 100, а если s = 199, то они равняются 100 и 99.
– Разумеется.
– Если исключить невозможное… – сказал Сомс, – получится, что сумма s может равняться одному из следующих чисел: 11, 17, 23, 27, 29, 35, 37, 41, 47, 51 и 53.
– Но раньше вы с большим пренебрежением отзывались о…
– О, в математике это правило достаточно хорошо работает, – небрежно ответил он. – Потому что здесь мы можем быть уверены, что невозможное на самом деле невозможно.
– Итак, на главной стадии рассуждений мы оба знаем то, что я только что вам рассказал. И в этот момент вы быстро объявляете, что можете определить нужные нам числа! Так что я быстро перебираю все возможные пары чисел с этими суммами и обнаруживаю, что 10 из 11 вариантов s имеет одно из возможных произведений, совпадающее с произведением для другого значения s. Поскольку вы сказали мне, что уже знаете нужные нам числа, все 10 таких s можно смело исключить из расследования. Остается единственный возможный вариант суммы, 17, и единственное произведение, не допускающее двух разных значений s. А именно 52, которое получится, если представить 17 как 4 + 13, и только в этом случае. Следовательно, два наших числа – это 4 и 13.
Я поздравил Сомса с такой проницательностью.
– Пошлите кого-нибудь из Нерушимых сил Бейкер-стрит к Роулейду с этим сообщением, – скомандовал он, быстро записывая числа на клочке бумаги. – Не пройдет и часа, как двое злоумышленников будут арестованы.
Ошибка Малфатти
В 1930 г. Хайман Лоб и Херберт Ричмонд доказали, что в некоторых случаях жадный алгоритм дает лучшее решение, чем построение Малфатти. Ховард Ивз в 1946 г. заметил, что для равнобедренного треугольника с очень острой вершиной пирамидальное построение почти вдвое больше по площади, чем построение Малфатти. В 1967 г. М. Голдберг доказал, что жадный алгоритм всегда лучше варианта Малфатти, а в 1994 г. Виктор Залгаллер и Г. А. Лось доказали, что он всегда дает наибольшую возможную площадь.
Как устранить нежелательное эхо
M. R. Schroeder, Diffuse sound reflection by maximum-length sequence. Journal of the Acoustical Society of America 57 (1975) 149–150.
Тайна универсальной плитки
Гипотеза о трекле
Jnos Pach and Ethan Sterling, Conway's conjecture for monotone thrackles, American Mathematical Monthly 118 (June/July 2011) 544–548.
Непериодическая мостовая
Теорема о двух красках
Я ломал голову три часа кряду, но в конце концов сдался и попросил Сомса раскрыть секрет.
– Но потом вы скажете мне, как все абсурдно просто.
– Нет! Никогда!
– Позволю себе не согласиться, Ватсап. Потому что на этот раз все действительно просто до абсурдности, – молчание тянулось и тянулось, и он смилостивился: – Очень хорошо. Будем считать, что в нашем распоряжении имеется только черная и серая краска, а белым цветом отмечены еще не рассмотренные области. Начнем с того, что покрасим одну из областей в черный цвет (см. верхнюю левую фигуру на рисунке). После этого я выбираю одну из примыкающих областей и окрашиваю ее в серый цвет (верхняя средняя фигура). Затем окрашиваю примыкающую область черным, затем следующую – серым и т. д.
– Мне кажется, что после первого сделанного выбора во всех последующих случаях выбор делается вынужденно, – неуверенно сказал я.
– Да! Решение, если оно существует, должно быть единственным – с точностью до взаимной замены двух красок. И вы видите, что постепенно вся карта будет раскрашена с использованием только двух красок – черной и серой. Так что в данном случае, по крайней мере, решение существует.
– Согласен. Но я не до конца понимаю…
– Почему. Прекрасное замечание. На этот раз, мой дорогой Ватсап, вы попали в самую точку, а не по пальцу молотком. Проблема в том, чтобы доказать, что любая такая цепочка раскрашивания в черный и серый цвета приведет к одному и тому же результату, так? Потому что таким образом процесс не может привести к ситуации, для которой следующую оставшуюся область окрасить невозможно.
– Кажется, это я понимаю.
– Это можно сделать, – сказал Сомс. – Но есть более простой способ. Обратите внимание на то, что каждый раз, когда мы пресекаем общую границу, цвет меняется. Таким образом, если мы пересекаем нечетное число границ, то мы должны выбирать серый цвет, а если четное – то черный.
Я кивнул и тут же ляпнул:
– Но… как можем мы быть уверены, что не возникнет никаких противоречий?
Сомс блеснул улыбкой.
– Это потому, что мы можем, опираясь на только что мною сказанное, предписать каждой области вполне определенный цвет. Просто сосчитайте, в состав скольких кругов входит данная точка – конечно, точка не на окружности, потому что окружности мы не красим. Если это число четное, окрашиваем точку в черный цвет; если нечетное, окрашиваем в серый.
– Далее, пересечение любой границы либо добавляет к этому числу один дополнительный круг, либо вычитает из числа кругов единицу. В любом случае нечетное меняется на четное, а четное – на нечетное, так что цвет по разные стороны от этой границы должен быть разным.
Доказательство оказалось ясным как божий день.
– Ну, Сомс…
– Конечно, – прервал он меня с легчайшим намеком на улыбку, – некоторые из окружностей могут касаться друг друга. Но и здесь действует тот же метод, нужно лишь правильно интерпретировать. Следует избегать пересечения границ в точке касания, и если немноо подумать, то станет ясно, что это всегда можно сделать.
Ну, может, не совсем как божий день, но… да, я понял.
– Это… – начал я, но остановился, увидев выражение его лица, и закончил иначе:
– Очень умно.
Теорема о четырех красках в пространстве
Четыре одинаковых шара можно разместить так, чтобы каждый из них касался остальных трех. Поставьте три шара равносторонним треугольником, чтобы они касались друг друга, а затем поместите четвертый сверху, чтобы он лег в центральное углубление и образовал вместе с ними тетраэдр. Теперь в центр пирамиды можно поместить пятый, меньший шарик такого размера, чтобы он касался всех четырех. Таким образом получаем пять шаров, каждый из которых касается остальных четырех; следовательно, все они должны быть окрашены в разные цвета.
Грек-интегратор
Сначала ответ. Нам нужно решить уравнение Разделив обе части на 4r, получим Следовательно, r = 3.
А теперь о палимпсесте.
Оригинальная рукопись Архимеда не сохранилась, но эта копия (несомненно, результат целой серии копирований) была сделана византийским монахом около 950 г. н. э. В 1229 г. рукопись была расшита, а листы чисто (относительно) выскоблены вместе с листами по крайней мере шести других рукописей. Затем они были сложены пополам и использованы для записи 177-страничного христианского богослужебного текста – описания порядка религиозных служб.
В 1840-е гг. германский библеист Константин фон Тишендорф, наткнувшись на этот текст в Константинополе (ныне Стамбул), обратил внимание на какие-то слабо различимые математические записи и привез страницу из рукописи с собой. В 1906 г. датский ученый Йохан Гейберг установил, что часть палимпсеста составляет какое-то произведение Архимеда. Он сфотографировал его и в 1910 и 1915 гг. опубликовал кое-какие выдержки из документа. Вскоре после этого Томас Хит перевел опубликованный материал, но в то время он привлек мало внимания. В 1920-е гг. документом владел один французский коллекционер; к 1998 г. документ каким-то образом оказался в США и стал предметом судебного разбирательства между аукционным домом «Кристис» и Греческой православной церковью, которая утверждала, что в 1920 г. этот документ был похищен из монастыря. Судья принял решение в пользу «Кристис» на основании того, что промежуток времени между предполагаемым похищением и судебным иском по его поводу был слишком велик. Документ был приобретен анонимным покупателем (по сообщению журнала Der Spiegel, это был основатель компании Amazon Джефф Безос) за $2 млн. С 1999 по 2008 г. документ был подвергнут консервации в Художественном музее Уолтерса в Балтиморе и проанализирован группой специалистов по визуальной информации, целью которых было «проявить» скрытые записи.
Метод Архимеда можно объяснить (используя современный язык и обозначения) следующим образом. Начнем с шара радиусом 1, описанного вокруг него цилиндра и некоего конуса. Если поместить центр шара в точку x = 1 на действительной прямой, то радиус сечения в любой точке x от 0 до 2 равен (x(2 x)), а его масса пропорциональна квадратам этой величины, а именно x (2 – x) = 2x – x.
Далее рассмотрим конус, полученный вращением прямой y = x вокруг оси x, опять же для 0x2. Сечение этого конуса в точке x представляет собой круг радиусом x и площадью x. Его масса пропорциональна этой величине с тем же коэффициентом пропорциональности, так что общая масса ломтика шара и ломтика конуса равна (2x – x) + x = 2x.
Поместим два эти ломтика в точку x = –1, на расстоянии 1 слева от начала координат. По закону рычага их в точности уравновешивает круг радиусом 1, помещенный на расстоянии x справа от той же точки.
А теперь сдвинем все ломтики шара и конуса в одну и ту же точку x = –1, так что вся их масса сосредоточится в этой единственной точке. Соответствующие (и уравновешивающие) круги имеют радиус 1 и располагаются на расстояниях от 0 до 2. Таким образом, они образуют цилиндр. Центр массы цилиндра находится в его середине, то есть в точке x = 1. Следовательно, по закону рычага,
масса шара + масса конуса = масса цилиндра,
а поскольку масса пропорциональна объему, то объем шара + объем конуса = объем цилиндра.
Однако Архимед уже знал, что объем конуса составляет одну треть объема цилиндра (одна треть площади основания на высоту, помните?), так что объем шара равен двум третям объема цилиндра. Объем цилиндра равен площади основания (r), умноженной на высоту (2r), то есть 2r Следовательно, объем шара равен от этой величины, то есть (4/3)r.
Площадь поверхности сферы Архимед вывел при помощи аналогичной процедуры.
Он описал этот процесс геометрически, но нам проще следить за его аргументами, пользуясь современными обозначениями. Учитывая, что происходило это все около 250 г. до н. э. и что закон рычага открыл тоже Архимед, его достижения можно по праву назвать поразительными.
Откуда у леопарда пятна
W. L. Allen, I. C. Cuthill, N. E. Scott-Samuel, and R. J. Baddeley. Why the leopard got its spots: relating pattern development to ecology in felids, Proceedings of the Royal Society B: Biological Sciences 278 (2011) 1373–1380.
Многоугольники навсегда
Хотя может показаться, что эта фигура будет увеличиваться до бесконечности, на самом деле она всегда остается в пределах ограниченной области на плоскости: круга радиусом приблизительно 8,7.
Отношение радиусов окружности, описанной вокруг правильного n-угольника, и окружности, вписанной в него, равно sec /n, где sec – это тригонометрическая функция секанс, а угол измеряется в радианах. (Если хотите измерять угол в градусах, замените на 180°.) Таким образом, для любого n радиус окружности, описанной вокруг правильного n-угольника на рисунке, равен
S = sec /3 sec /4 sec /5 … sec /n[38].
Мы хотим узнать предел этого произведения при n, стремящемся к бесконечности. Возьмем логарифм:
lnS = lnsec /3 + lnsec /4 + lnsec /5 + … + lnsec /n.
Пока x мал, lnsec x ~ x/2, так что этот ряд можно сравнить с рядом
1/3 + 1/4 + 1/5 + … + 1/n,
который при n, стремящемся к бесконечности, сходится. Следовательно, lnS конечен, так что и S конечно. Сумма членов ряда до n = 1 000 000 дает 8,7 в качестве разумной оценки предела.
Я узнал об этой задаче, а также о приведенном ответе из книжного обзора Харольда Боаса[39]. Этот автор нашел эту задачу в книге «Математика и воображение» Эдварда Каснера и Джеймса Ньюмена, изданной в 1940 г. Он пишет: «Может быть, если этот рисунок воспроизвести в достаточном числе книг, этот забавный пример станет частью стандартного набора задач занимательной математики».
Я стараюсь, Харольд.
Приключения гребцов
Мы с Сомсом нашли еще два варианта распределения весел, не считая зеркально симметричных:
– Несмотря на всю механическую сложность задачи, – сказал Сомс, – в конечном итоге она сводится к простой арифметике. Нам нужно разделить числа от 0 до 7 на две группы – так, чтобы сумма чисел в каждой из них равнялась 14.
– Если мы знаем один такой набор, то второй определяется автоматически и тоже дает сумму 14.
– Да, Ватсап, это очевидно: просто беем числа, которые не вошли в первый набор.
– Я согласен, что это тривиально, Сомс, но это подразумевает, что мы можем использовать набор, содержащий 0; это означает, что заднее весло мы размещаем слева (при необходимости мы всегда можем взять зеркально симметричный вариант). Таким образом мы снижаем число вариантов, которые необходимо рассмотреть.
– Это правда.
Теперь рассуждения шли практически сами собой.
– Если в набор входит также 1, – заметил я, – то остальные два числа в сумме дают 13, так что это должны быть 6 и 7, что дает 0167. Если там нет 1, но есть 2, то единственный возможный вариант – 0257. Если вариант начинается с 03, возникает два следствия: 0347 и 0356. Вариант, начинающийся с 04, можно не рассматривать, поскольку получить 10 сложением двух чисел из 5, 6, 7 невозможно. Аналогично отвергаем 05, 06 и 07.
– Итак, вы пришли к выводу, – подвел итог Сомс, – что единственные возможные варианты, исключая симметрию право-лево, – это
0167 0257 0356 0347
Но 0257 – это немецкий вариант, а 0347 – итальянский. Остаются два, те самые, что выложил из спи…
Он внезапно вскочил и напрягся.
– Святые угодники!
– Что, Сомс?
– Мне только что пришло в голову, Ватсап, извините за каламбур, что эта спичка… – он помахал передо мной какой-то горелой спичкой… – это не редкая ранняя спичка Конгрива, как я воображал, но одна из бесшумных спичек Ирини. Когда подорвался его профессор химии, Ирини пришло в голову заменить бертолетову соль в головке спички двуокисью свинца.
– Ах. Это имеет значение, Сомс?
– Еще какое, Ватсап. Это позволяет пролить совершенно новый свет… опять же, извините за каламбур… на одно из самых невероятных наших нераскрытых дел.
– Замечательное дело перевернутого чайника! – воскликнул я.
– Вот именно, Ватсап! Итак, если в ваших записях сохранилась информация о том, справа или слева от мумифицированного попугая лежала та спичка…
Анализ Сомса основан на:
Maurice Brearley, 'Oar arrangements in rowing eights', in Optimal Strategies in Sports (ed. S. P. Ladany and R. E. Machol), North-Holland 1977.
John Barrow, One Hundred Essential Things You Didn't Know You Didn't Know, W. W. Norton, New York 2009.
Как и предупреждал Сомс, это лишь первоначальный упрощенный подход к весьма сложной проблеме.
Кстати говоря, Университетская гонка 1877 г. закончилась ничьей – единственный случай в истории этих состязаний.
Кольца из правильных многогранников
Джон Мейсон и Теодорус Деккер нашли более простые методы доказательства невозможности, чем те, которыми пользовался Сверчковский. При склеивании двух одинаковых тетраэдров гранями каждый из них становится как бы отражением другого в их общей грани.
Начнем с одного тетраэдра. У него четыре грани и, соответственно, четыре таких отражения; назовем их r1, r2, r3 и r4. Каждое отражение ставит все на прежнее место, если проделать операцию дважды, так что r1r1 = e, где e – это нулевая трансформация («ничего не делать»). То же можно сказать и об остальных отражениях. Таким образом, все комбинации нескольких отражений представляют собой произведения вроде такого:
r1r4r3r4r2r1r3r1,
где последовательность индексов 14342131 может быть любой последовательностью чисел 1, 2, 3, 4, где ни одно число не встречается два раза подряд. К примеру, последовательности 14332131 быть не может. Причина в том, что здесь r3r3 – это одно и то же отражение, проделанное дважды, то есть e, которое не производит никакого действия и потому может быть исключено.
Если такая цепочка замыкается, то очередное отражение, примененное к крайнему тетраэдру в цепочке, дает тетраэдр, который совпадает с первоначальным. Таким образом, мы получаем уравнение вида
r1r4r3r4r2r1r3r1 = e
(только более длинное и сложное), где e означает «ничего не делать». Записав формулы для четырех отражений и воспользовавшись подходящими алгебраическими методами, можно доказать, что такое уравнение не выполняется никогда. Подробности см.:
T. J. Dekker, On reflections in Euclidean spaces generating free products, Nieuw Archief voor Wiskunde 7 (1959) 57–60.
M. Elgersma and S. Wagon, Closing a Platonic gap, Mathematical Intelligencer in the press.
J. H. Mason, Can regular tetrahedrons be glued together face to face to form a ring? Mathematical Gazette 56 (1972) 194–197.
H. Steinhaus, Problem 175, Colloquium Mathematicum 4 (1957) 243.
S. Swierczkowski, On a free group of rotations of the Euclidean space, Indagationes Mathematicae 20 (1958) 376–378.
S. Swierczkowski, On chains of regular tetrahedra, Colloquium Mathematicum 7 (1959) 9–10.
Невозможный маршрут
– Как вы правильно сказали, вы их не видите, – сказал Сомс. – Вы же знаете мои методы: воспользуйтесь ими.
– Очень хорошо, Сомс, – ответил я. – Вы всегда говорили, что нужно отбросить все несущественное. Поэтому я повторю свои рассуждения, а чтобы устранить всякую мыслимую возможность ошибки, представлю задачу в простейшем виде. Я пронумерую области на карте – вот так. Их пять. Затем я нарисую диаграмму – кажется, она называется графом, – на которой схематически покажу эти области и связи между ними.
Он молчал с непроницаемым выражением лица.
– Мы должны попасть из области 1 в область 5, причем мост A должен быть последним. Если начинать из 1, единственным оставшимся вариантом будет пересечь мост B, затем неизбежно последуют C и D. Далее мы должны воспользоваться мостом E или F. Скажем, мы выбрали мост E. Далее мы не можем воспользоваться F, потому что это приведет нас в область 4, из которой далее пути для нас нет. Однако мы не можем воспользоваться и мостом A, потому что это приведет нас в область 1, из которой пути нет. То же произойдет, если мы выберем F вместо E. Я закончил.
– Почему, Ватсап?
– Потому, Сомс, что я исключил невозможное, – он поднял бровь. – Поэтому то, что останется, каким бы невероятным оно ни казалось, – продолжал я, – должно быть…
– Продолжайте.
– Но, Сомс, ничего не остается! Следовательно, задача не имеет решения!
– Неверно. Я уже сказал вам, что решений здесь восемь.
– Тогда вы, вероятно, солгали мне об условиях задачи.
– Нет.
– Тогда я в тупике. Что я упустил?
– Ничего.
– Но…
– Вы кое-что впустили, Ватсап. Вы слишком многое приняли за данность. Вы ошибочно решили, что маршрут не должен выходить за пределы нарисованной мной карты.
– Но вы же сказали, что дальше реки текут до границ Швейцарии и дальше, а нам нельзя пересекать границу.
– Да. Но на карте изображена не вся Швейцария. Откуда течет эта река?
– О-ох! – я хлопнул себя ладонью по лбу.
– Кто? Бог?
– Просто непроизвольное выражение. Я браню себя за собственную глупость, Сомс. Не «Бог», скорее просто «О-ох!».
– Я посоветовал бы вам избегать этого выражения, Ватсап. Оно вам не идет, да и модным никогда не станет.
– Как скажете, Сомс. Моя вспышка была вызвана тем, что я понял: мою вторую попытку можно завершить, если обогнуть исток реки и пройти по мосту A.
– Верно.
– Так что области 1 и 4 на моем рисунке – на самом деле одна и та же область.
– В самом деле. Это, – сказал я через мгновение, – было нечестно. Откуда мне знать, что исток реки находится в границах Швейцарии? Он не показан на вашей карте.
– Но ведь я сказал вам, Ватсап, что существует по крайней мере один маршрут, удовлетворяющий всем условиям. Из этого однозначно следует, что исток реки должен находиться в Швейцарии.
Туше. Я вспомнил также, что он говорил про восемь маршрутов.
– Я вижу второй маршрут, Сомс: достаточно поменять местами мосты E и F. Но остальные шесть, признаюсь, от меня ускользают.
– Ах. Ваше утверждение, что начинать мы должны непременно с моста B, теряет смысл, если области 1 и 4 сливаются. Позвольте мне перерисовать вашу упрощенную схему правильно.
– Я изобразил мост A пунктирной линией в качестве напоминания о том, что его мы должны оставить напоследок. Обратите внимание: начиная с области 1 мосты, кроме A, образуют два различных замкнутых контура: BCD или DCB, а также EF или FE. Более того, мы можем начать с любого из этих контуров, а затем перейти к другому. Наконец, в конце мы должны поставить мост A. Получаем следующие маршруты:
– Всего восемь.
– Теперь я ясно вижу свою ошибку, Сомс, – признал я.
– Вы видите конкретную свою ошибку, Ватсап, но не общую закономерность, которая за ней стоит и которая затрагивает все аргументы об исключении невозможного.
Я в недоумении покачал головой.
– Что вы имеете в виду?
– Я имею в виду, Ватсап, что вы не рассмотрели все возможные варианты. А причиной тому было…
Я снова хлопнул себя ладонью по лбу, но на этот раз воздержался от каких бы то ни было звуков, не желая служить мишенью для насмешек Сомса.
– Я забыл, что, размышляя над задачей, необходимо выйти за рамки.
Ссылки на источники
«О форме апельсиновой кожуры». Слева и в центре рисунки: Laurent Bartholdi and Andr Henriques. Orange peels and Fresnel integrals, Mathematical Intelligencer 34 No. 4 (2012) 1–3.
"О форме апельсиновой кожуры". Справа рисунок: Luc Devroye.
"Дело о картонных коробках". Концепция загадки с коробками: Moloy De.
"Пифилология, пиэмы и пиллиш". Отрывок из Not A Wake: Mike Keith.
"Математические хайку". Хайку: Daniel Mathews, Jonathan Alperin, Jonathan Rosenberg.
"Загадка гусиного клина". Фото: http://getyournotes.blogspot.co.uk/2011/08/why-do-some-birds-fly-in-v-formations.html
"Поразительные квадраты". Поразительные квадраты: Moloy De и Nirmalya Chattopadhyay.
"Загадка тридцати семи". Загадка тридцати семи: основана на наблюдениях Stephen Gledhill.
"Четыре псевдоку без указаний". Псевдоку без указаний: Gerard Butters, Frederick Henle, James Henle and Colleen McGaughey. Creating clueless puzzles, Mathematical Intelligencer 33 No. 3 (Fall 2011) 102–105.
"Загадки простого числа". Рисунок: Eric W. Weisstein, «Гипотеза Брокара» с сайта MathWorld: http://mathworld.wolfram.com/BrocardsConjecture.html
"Оптимальная пирамида". Справа фото: Steven Snape.
"Путаница с инициалами". Фото: с разрешения архива Университета Висконсина в Мэдисоне.
"Загадка песков". Сверху слева фото: [George Steinmetz, с разрешения Anastasia Photo].
"Загадка песков". Сверху справа фото: снимок камеры HiRISE на спутнике Марса Mars Reconnaissance Orbiter, NASA.
"Загадка песков". Снизу справа рисунок: Rudi Podgornik.
"Загадка песков". Снизу слева рисунок: Veit Schwmmle and Hans J. Herrmann. Solitary wave behaviour of sand dunes, Nature 426 (2003) 619–620.
"Бросание монетки – несправедливый жребий". Рисунок: Persi Diaconis, Susan Holms and Richard Montgomery, Dynamical basis in the coin toss, SIAM Review 49 (2007) 211–223.
"Непериодическая мостовая". 3-тий и 4-ый рисунки: Joshua Socolar and Joan Taylor. An aperiodic hexagonal tile, Journal of Combinatorial Theory Series A 118 (2011) 2207–2231; http://link.springer.com/article/10.1007%2Fs00283-011-9255-y
«Кольца из правильных многогранников». Рисунки: Michael Elgersma and Stan Wagon, Closing a Platonic gap, The Mathematical Intelligencer (2014) готовится к выходу.
Следующие рисунки перепечатываются в соответствии с лицензией Creative Commons Attribution 3.0 Unported с указанием источника, как требуется в оригинальной публикации:
«Загадки простого числа», «График зависимости». Krishnavedala.
"Оптимальная пирамида". Рисунок слева Ricardo Liberato.
"Оптимальная пирамида", "Все, что осталось от Черной пирамиды Аменемхета III". Tekisch.
"Сила мидий". Andreas Trepte, www.photo-natur.de
"Озера Вады". Braindrain0000.
"Озера Вады", "Три области, соответствующие решениям кубического уравнения". LutzL
"Грек-интегратор". Балтимор, музей Walters Art Museum.