Математические головоломки профессора Стюарта Стюарт Иэн

– Это будет просто замечательно, Ватсап, но всему свое время. Пока же у нас есть проблема. Мы должны подносить эти деликатесы к дверце в правильном порядке; ни в коем случае нельзя допустить, чтобы ваши кошки подрались.

– Конечно. Они могут поранить друг друга.

– Нет, дело не в этом. Подвал дома Могиарти заполнен мощной взрывчаткой, и злодей устроил так, что все взорвется, если животные подерутся.

– Что?! Почему?

– Потому что он уверен, и не без оснований, что любая попытка спасти их вызовет кошачью драку. Он хочет использовать самих животных в качестве сигнализации. Как обычно, ему наплевать на страшные последствия его кровавых махинаций. Как я уже сказал, он подает нам сигнал: он ни перед чем не остановится.

– Вижу, это и правда так.

– Вы видите, Ватсап, но вы не замечаете. Наблюдение начинается с расспросов, которые дают материал для дедукции. Я сейчас занимаюсь расспросами. При каких обстоятельствах ваши кошки дерутся? Будьте точны, от этого зависит успех или неудача нашего замысла.

– Они дерутся только в помещении, – ответил я, немного поразмыслив.

– Но тогда дом может в любой момент взлететь на воздух!

– Нет, мои кошки могут быть совершенно мирными, если удастся избежать некоторых их сочетаний.

Я записал на листе бумаги несколько условий.

• Если Ветрянка и Аневризма находятся в помещении вместе, они дерутся, если рядом нет Геморроя. Если Геморрой и Ботулизм находятся в помещении вместе, они дерутся, если рядом нет Аневризмы.

• Если Аневризма и Геморрой находятся в помещении вместе, они дерутся, если рядом нет Ботулизма или Ветрянки (или их обоих).

• Если Ветрянка и Геморрой находятся в помещении вместе, они дерутся, если рядом нет Ботулизма или Аневризмы (или их обоих).

• Если Аневризма или Ботулизм остаются в помещении поодиночке, они вообще отказываются выходить наружу.

Как Сомсу и Ватсапу выманить кошек наружу, не вызвав при этом взрыв? Одновременно в кошачью дверцу может протиснуться лишь одно животное. Забудьте о тривиальных ходах, когда какая-то из кошек выходит наружу и ее тут же возвращают обратно. Однако при необходимости любую из кошек в процессе выманивания можно в нужныймомент втолкнуть обратно через ту же дверцу.

Ответ см. в главе «Загадки разгаданные».

Блинные числа

Вот настоящая математическая загадка – простая задача, решение которой пока ускользает от ученых не хуже, чем преступный гений Могиарти.

Дается стопка круглых блинов разных неповторяющихся размеров. Ваша задача – поменять порядок блинов таким образом, чтобы они располагались снизу вверх в порядке убывания диаметра. Единственное действие, которое вам разрешается производить, – это вставить условную лопаточку под один из блинов стопки, поднять стопку, которая оказалась сверху, и перевернуть ее целиком. Вы можете повторять эту операцию столько раз, сколько потребуется, и произвольно выбирать место, куда вставлять лопаточку.

Приведем пример с четырьмя блинами. Для их упорядочивания требуется три переворота.

Вот несколько вопросов для вас.

1. Любую ли стопку из четырех блинов можно упорядочить не более чем за три переворачивания?

2. Если нет, то каково наименьшее число переворачиваний, при помощи которых можно упорядочить любую стопку из четырех блинов?

3. Определите для n-го блина число Pn – наименьшее число переворачиваний, при помощи которых можно упорядочить любую стопку из n блинов. Докажите, что Pn всегда конечно. То есть что любую стопку блинов можно упорядочить при помощи конечного числа переворачиваний.

4. Найдите Pn для n = 1, 2, 3, 4, 5. Я остановился на n = 5, потому что здесь мы уже имеем 120 различных вариантов стопки, все из которых нужно рассмотреть, а это, говоря откровенно, уйма работы.

Ответы на вопросы, а также то, что еще известно об этой задаче, см. в главе «Загадки разгаданные».

Фокус с суповой тарелкой

В продолжение кулинарной темы существует забавный фокус, который вы можете проделать с суповой тарелкой или другим похожим предметом. Начните с того, что поставьте тарелку на пальцы примерно так, как это делает официант, подавая кушанья. Затем объявите зрителям, что вы сейчас проделаете поразительный трюк: сделаете полный круг рукой, все время удерживая тарелку в горизонтальном положении.

Для этого сначала заверните руку внутрь – так чтобы тарелка оказалась примерно под мышкой. Затем продолжайте двигать тарелку по кругу, но руку поднимите над головой. Все естественным образом повернется в исходную позицию, и тарелка не упадет, несмотря на то что вы ее не придерживаете.

Видео трюка с тарелкой (суповой) можно найти в Интернете, к примеру на сайте

http://www.youtube.com/watch?v=Rzt_byhgujg,

где его называют балийским трюком с чашей и связывают с балийским танцем, где вместо тарелки используется чаша с жидкостью. Аналогичный филиппинский танец, где задействованы винные бокалы (по два на человека, по одному в каждой руке), можно увидеть на YouTube по адресу

http://www.youtube.com/watch?v=mOO_IOznZCQ

Движение руки при исполнении трюка может показаться достаточно простым, но имеет глубокий математический смысл. В частности, оно помогает специалистам по физике элементарных частиц разобраться в одном из любопытных квантовых свойств, который называют спином. В действительности квантовые частицы не вращаются на самом деле, как шарик на пальце жонглера, но существует число, которое называется «спин» и в определенном смысле обозначает что-то похожее. Спин может быть положительным и отрицательным, что аналогично вращению по часовой стрелке или против нее. У некоторых частиц спин выражается целым числом; эти частицы называются бозонами (помните охоту на бозон Хиггса?). Другие, что куда более необычно, имеют полуцелые спины, такие как 1/2 или 3/2. Такие частицы называются фермионами.

Половинки спина возникают благодаря одному очень странному явлению. Если взять частицу со спином 1 (или любым другим целым спином) и повернуть ее в пространстве на 360°, она окажется в прежнем состоянии. Но если взять частицу со спином и повернуть ее в пространстве на 360°, то спин ее превратится в . Нужно повернуть частицу на 720°, на два полных оборота, чтобы получить прежний спин.

Математический смысл всего этого заключается в том, что существует «группа преобразований» под названием SU (2), которая описывает спин и действует путем преобразования квантовых состояний, и другая группа SO (3), которая описывает вращения в пространстве. Они родственны между собой, но не идентичны: каждое вращение в SO (3) соответствует двум различным преобразованиям в SU (2), противоположным одно другому. Такое отношение называется двойным накрытием. SU (2) как бы накручивается вокруг SO (3), но при этом совершает два оборота. Это немного напоминает резиновую ленту, дважды обернутую вокруг гимнастической палки.

Физики иллюстрируют эту идею посредством фокуса со струной Дирака, названной в честь великого квантового физика Поля Дирака. Идея реализуется во множестве разных форм; в одной из простейших реализаций используется лента, один конец которой закреплен неподвижно, а другой прикреплен к свободно плавающему в пространстве вращающемуся объекту – ротору. Лента имеет форму вопросительного знака. После поворота на 360° она не возвращается в первоначальное положение, а занимает положение, повернутое относительно первоначального на 180°. А вот второй полный оборот ротора (720°) не перекручивает ленту, а возвращает ее в начальное положение. Лента движется приблизительно так же, как рука с суповой тарелкой, разве что тарелка при этом слегка перемещается. Астронавт в невесомости мог бы проделать те же движения вокруг зафиксированной тарелки, сохраняя при этом ориентацию тела.

Компьютерная анимация Air On Dirac String, подготовленная Джорджем Фрэнсисом, Лу Кауфманом и Дэниелом Сандином (графика Криса Хартмана и Джона Харта) и располагающаяся по адресу http://www.evl.uic.edu/hypercomplex/html/dirac.html, наглядно демонстрирует связь между фокусом со струной Дирака и филиппинским танцем с чашей вина.

Ту же идею можно использовать для связи электрического тока с неким вращающимся устройством, к примеру с колесом. На первый взгляд здесь возникает техническая проблема: чтобы лента могла распутываться, колесо должно висеть в воздухе без всякой поддержки. Однако в 1975 г. Д. А. Адамс разработал и запатентовал устройство, при помощи специального передаточного механизма позволяющее ленте беспрепятственно огибать колесо со всех сторон. Это устройство слишком сложно, чтобы описывать его здесь, но тот, кого это заинтересовало, может заглянуть в статью: C. L. Strong, The Amateur Scientist, Scientific American (December 1975) 120–150.

Математические хайку

Хайку – это малая японская стихотворная форма, состоящая традиционно из трех отдельных фраз (строк) и 17 слогов. Реальное японское слово не соответствует в точности английской[10] концепции слога, но для англоязычного хайку такая параллель вполне годится. Строгая традиционная форма предполагает наличие пяти слогов в первой и третьей фразах и семи – в центральной. В качестве примера приведем хайку Мацуо Басё (1644–1694), где как оригинал (не приводится), так и приведенный ниже английский перевод имеют верный формат:

  • At the age old pond
  • a frog leaps into water
  • a deep resonance.
  • Старый пруд заглох.
  • Прыгнула лягушка.
  • Слышен тихий всплеск.
(пер. Н. И. Конрада)

В нынешние декадентские времена формула 5-7-5 зачастую не соблюдается, допускаются и другие варианты, такие как 6-5-6. Полное число слогов также может не равняться 17. Самое важное в хайку – не точность формы, а эмоционльное содержание, которое требует наличия двух различных, но связанных образов.

Простой формат хайку несет в себе определенный математический «аромат», и любителями во всем мире написано бесчисленное количество хайку на математические сюжеты. К примеру:

Дэниел Мэтьюз

  • Ruler and compass
  • Degree of field extention
  • Must be power of two.

Джонатан Алперин

  • Beautiful Theorem
  • The basic lemma is false
  • Reject the paper.

Джонатан Розенберг

  • Colloquium time.
  • Lights out, somebody's snoring.
  • Mathis hard work[11].

Иногда случайные хайку возникают в прозе, когда автор, не задумываясь о том, строит предложение в соответствующем формате. К примеру, в «Машине времени» Г. Уэллса:

  • And in the westward
  • sky, I saw a curved pale line
  • like a vast new moon.

В 1977 г. мы с Тимом Постоном в качестве посвящения поместили в своей книге «Теория катастроф и ее приложения» такое хайку:

  • To Christopher Zeeman
  • At whose feet we sit
  • On whose shoulders we stand.

Дело о таинственном колесе

Из мемуаров доктора Ватсапа

Сомс пересматривал сложенные стопкой газеты в поисках преступления, которое послужило бы достаточным вызовом для его талантов, чтобы за его расследование стоило браться. В этот момент я случайно выглянул в окно и увидел, как из двухколесного кэба появляется знакомая фигура.

– О, Сомс! – воскликнул я. – Это же…

– Инспектор Роулейд. Он сейчас будет здесь, чтобы попросить нас о помощи.

В дверь постучали. Я открыл и увидел за дверью миссис Сопсудс и инспектора.

– Сомс! Я пришел насчет…

– Дела о похищении Даунингема. Да, в этом деле есть интересные особенности, – он передал Роулейду газету.

– Статья написана охотником за сенсациями, мистер Сомс. Невежественные разглагольствования о вероятной судьбе эрла Даунингема и размерах выкупа, который требуют с его родственников.

– Пресса весьма предсказуема, – заметил Сомс.

– Да. Хотя в данном случае она играет нам на руку; в статье не упомянуты некоторые ключевые факты, которые, возможно, помогут нам распознать…

– Преступника. Такие, к примеру, как полное отсутствие каких бы то ни было требований о выкупе.

– Но откуда…

– Если бы такое требование было, к настоящему моменту оно уже стало бы достоянием публики. Ничего такого нет. Очевидно, это не обычное похищение. Нам следует как можно быстрее ехать в Даунингем-холл. Который, если мне не изменяет память – а она никогда мне не изменяет, – находится в Верхнехэмских низинах.

– Поезд на Аппингем уходит через 11 минут с вокзала Кингс-Кросс, – сказал я. Поняв, к чему движется дело, я сразу взял с полки справочник Брэдшоу.

– У нас есть шанс успеть на него, если мы пообещаем кэбмену гинею! – воскликнул Сомс. – А дело можно будет обсудить в пути.

По прибытии в Даунингем-холл герцог Саутморленд – он приходился отцом эрлу Даунингему, который по освященной временем аристократической традиции пока носил один из не самых значимых титулов отца, – встретил нас лично и быстро провел на место похищения – к грязному истоптанному загону возле сарая.

– Мой сын пропал в какой-то момент ночью, – объявил он. По его внешности было ясно, как он потрясен происшедшим.

Сомс вытащил увеличительное стекло и несколько минут ползал вокруг, рассматривая истоптанную грязь. Время от времени он бормотал что-то себе под нос. Затем он вытащил из кармана рулетку и произвел несколько измерений в одном из углов сарая.

Проделав все это, Сомс поднялся на ноги.

– У меня есть почти все необходимые данные, – сказал он. – Мы должны вернуться в Лондон и найти последний недостающий фрагмент.

Оставив ошарашенного герцога стоять на собственном пороге рядом с равно ошарашенным инспектором, мы так и сделали.

– Но Сомс… – начал я, когда мы сели в поезд.

– Разве вы не заметили отпечатка колес? – раздраженно бросил он.

– Колес?

– Полиция затоптала все следы, как обычно, но кое-что все же осталось. Достаточно, чтобы я мог определить, что эрл отбыл на телеге, одно из колес которой плотно прижалось к углу сарая в том месте, где он примыкает к высокой стене. След глины на стене говорит о том, что некая точка на ободе колеса находилась одновременно в 8 дюймах от земли и в 9 дюймах от стены сарая. Если мы сможем вычислить диаметр колеса, то, может статься, окажемся близки к разрешению этого дела.

– Может статься?

– Это зависит от ответа. Мы должны также помнить, что у телег не бывает колес меньше 20 дюймов в диаметре. Так, дайте посмотреть… Ну да, все так, как я и подозревал.

По прибытии на вокзал Кингс-Кросс он вызвал одного из Нерушимых сил Бейкер-стрит – рядом с нами всегда крутился кто-нибудь из этих маленьких сорванцов – и отправил его на телеграф с посланием, которое нужно было отправить Роулейду.

– Что в телеграмме?

– Там сказано, где можно найти пропавшего эрла.

– Но…

– Я знаю только одну ферму в окрестностях Даунингем-холла, где есть телега с колесами, диаметр которых точно соответствует тому, что я вычислил, – это довольно большой диаметр для тележного колеса. Я убежден, что эрл покинул Даунингем-холл добровольно под покровом тьмы, а примитивной телегой воспользовался, чтобы не привлекать внимания. Он найдется в том месте, где обычно держат эту телегу.

На следующее утро миссис Сопсудс принесла телеграмму от инспектора: ЭРЛ Д ЦЕЛ И НЕВРЕДИМ МОИ ПОЗДРАВЛЕНИЯ РОУЛЕЙД.

– Так куда же уехал из дома эрл? – спросил я с любопытством.

– Эта тайна, Ватсап, могла бы разрушить репутацию нескольких в высшей степени уважаемых семейств Европы. Зато я могу сказать вам размер тележного колеса.

Какого диаметра было колесо? Ответ см. в главе «Загадки разгаданные».

Дважды два

Существует бесчисленное множество карикатур на тему Ноева ковчега. Мой любимый рисунок посвящен его биологическому аспекту. На ковчег по трапу заводят последние несколько пар животных – слонов, жирафов, обезьян. Ной что-то ищет вокруг, ползая на четвереньках. Его жена кричит, перегнувшись через борт: «Ной! Не ищи вторую амебу, обойдемся!»

Существуют и математические шутки на тему ковчега.

После того, как вода спала, Ной отпустил всех животных и велел им плодиться и размножаться. Примерно через год он решил проверить, как идут дела. Он отправился в путь и всюду встречал слонят, крольчат, козлят, детенышей крокодилов, жирафов, гиппопотамов и казуаров. Но затем он наткнулся на одинокую пару змей, которые выглядели потерянными.

– В чем проблема? – спросил Ной.

– Не можем размножаться, – ответила одна из змей. (Не забывайте, что наш Ной чем-то напоминает доктора Айболита и умеет разговаривать по-звериному.)

Разговор услышала пробегавшая по соседнему дереву обезьяна.

– Сруби несколько деревьев, Ной.

Ной ничего не понял, но сделал так, как посоветовала обезьяна. Еще через несколько месяцев он вновь посетил змей, и на этот раз его встретили многочисленные змееныши. В общем, все были счастливы.

– Ну хорошо, как же вам это удалось? – спросил Ной у змей.

– Мы – гадюки. Мы можем размножаться, только используя бревна.

Загадка гусиного клина

Не секрет, что стаи перелетных птиц в полете часто приобретают форму клина. Особенно привычны глазу клинья диких гусей, нередко состоящие из десятков и даже сотен птиц. Что заставляет их летать подобным строем?

Исследователи давно предположили, что такой строй в полете помогает сберечь энергию, позволяя птицам избегать турбулентного следа от крыльев тех, кто летит впереди, и недавние экспериментальные и теоретические исследования подтвердили, в общем и целом, эту точку зрения. Однако эта теория опирается на предположение о том, что птицы способны чувствовать воздушные течения и подстраивать свой полет соответственно, но до сих пор не ясно, могут ли они на самом деле это делать.

Есть и альтернативное объяснение. Оно состоит в том, что у стаи есть вожак – тот, что летит впереди, – и все остальные гуси просто следуют за лидером. Может быть, лидер лучше всех ориентируется – или просто знает, куда лететь. А может быть, первой в строю может оказаться любая птица.

Прежде чем перейти к ответу, необходимо разобраться в некоторых основных качествах птичьего полета. При устойчивом полете птица машет крыльями циклически, вверх-вниз. Вверх она поднимается за счет движения крыла вниз, когда воздушные завихрения уходят, вращаясь, от кромки крыла; движение вверх возвращает крыло на исходную позицию, чтобы цикл мог повториться. Длина цикла называется его периодом.

Предположим, две птицы машут крыльями с одинаковой периодичностью, как обычно и происходит в стае во время перелета. Однако, хотя крылья птиц движутся одинаково, это не означает, что одни и те же движения делаются одновременно. К примеру, в тот момент, когда одна из птиц ведет крыло вниз, другая, возможно, возвращает его вверх. Соотношение между движениями крыльев разных птиц называют относительной фазой – это доля цикла между тем моментом, когда одна из птиц начинает движение крылом вниз, и тем, когда то же движение начинает другая птица.

Благодаря замечательной, почти детективной, работе Стивена Португала и его группы мы теперь знаем, что теория энергосбережения верна и что птицы действительно чувствуют невидимые воздушные течения достаточно хорошо, чтобы подстраиваться под них. Серьезная проблема экспериментальных исследований состоит в том, что птицы, за которыми вы пытаетесь наблюдать, стремительно исчезают из виду вместе со всем закрепленным на них оборудованием.

И здесь на сцену выходит лысый ибис.

Когда-то лысых ибисов было так много, что древние египтяне даже использовали стилизованное изображение этой птицы в качестве иероглифа «ах», означающего «сиять». На сегодняшний день их уцелело всего несколько сотен, в основном в Марокко. В связи с этим в зоопарке Вены была начата программа по размножению этих птиц в неволе. Много усилий тратится на то, чтобы научить птиц правильным маршрутам миграции. Для этого их учат следовать за сверхлегким летательным аппаратом, который летает вдоль отдельных участков пути а также возвращается вместе с птицами на базу.

Португал понял, что, используя этот летательный аппарат, можно наилучшим образом измерить все параметры полета птиц, их положение в пространстве и характеристики движения крыла, ведь птицы при этом не исчезают за горизонтом с пугающей скоростью, а остаются все время рядом. То, что удалось обнаружить его группе, оказалось поразительно и элегантно. Каждая птица располагается позади и чуть в стороне от передней и так настраивает относительную фазу ударов крыльями, что может воспользоваться восходящим потоком, который создает вихрь из-под крыла впереди летящей птицы. При этом для того, чтобы эффективно воспользоваться восходящим движением воздуха, вторая птица должна не только попасть концом крыла в нужное место (а оно относительно невелико), но и точно настроить фазу движений крыльями.

На первый взгляд эта методика позволяет не только клиновидное построение в полете, но и зигзагообразное, при котором каждая птица летит сзади сбоку от предыдущей, но все вместе не образуют единого клина. (Каждая птица может выбирать, слева ей лететь от лидера или справа.) Однако в этом случае первая птица, нарушившая клиновидное построение, окажется прямо позади птицы, летящей на две позиции впереди нее. В этом месте воздух будет турбулентным из-за возмущения, производимого передней птицей, и попасть кончиком крыла в нужную точку – а значит, и воспользоваться подъемной силой – будет намного сложнее. Этой проблемы можно избежать, если каждая птица будет устраиваться обязательно с внешней стороны клина, где воздух ничем не возмущен.

В принципе, птицы могли бы образовать единую диагональную линию, примерно соответствующую одному из плечей V. Однако при этом место с другой стороны – ближе к лидеру – оставалось бы свободным. Но следует заметить, что один из концов птичьего клина, как правило, длиннее другого.

В экспериментах с ибисами молодым птицам требовалось немало времени, чтобы научиться занимать в полете правильную позицию. На практике обычно находятся птицы, у которых это не получается, а клин редко бывает правильным. Тем не менее детальные эксперименты убедительно показывают, что ибисы достаточно хорошо ощущают потоки воздуха, чтобы занимать самую энергоэффективную или близкую к ней позицию по отношению к передней птице.

Дополнительную информацию см. в главе «Загадки разгаданные».

Мнемоника для e

Для запоминания числа существует бесчисленное количество мнемонических правил. Для другой знаменитой математической постоянной – числа e, основания натурального логарифма

e = 2,7182818284 5904523536 0287471352662497757…,

таких правил гораздо меньше. Два из них позволяют запомнить по десять цифр этой константы:

  • To disrupt a playroom is commonly a practice of children.
  • It enables a numskull to memorise a quantity of numerals[12].

Существует также мнемонический текст на 40 знаков, в котором рассказывается о числе e и который придумал Зив Бэрел (Zeev Barel, A mnemonic for e, Mathematics Magazine 68 (1995) 253), его вы можете проверить по числовому варианту, приведенному выше. Для обозначения нуля в этом тексте используется восклицательный знак в кавычках «!», и выглядит это так:

We present a mnemonic to memorise a constant so exciting that Euler exclaimed: '!' when first it was found, yes, loudly '!'. My students perhaps will compute e, use power or Taylor series, an easy summation formula, obvious, clear, elegant[13].

«Простая формула суммирования», упомянутая в тексте, такова:

и так до бесконечности. Теперь знак! обозначает факториал

n! = n (n – 1) … 3 2 1.

Поразительные квадраты

Существует бесконечно много натуральных чисел, которые можно выразить в виде суммы трех квадратов двумя разными способами: a + b +c = d + e + f. Но возможны и дальнейшие выводы. Вот поразительный пример:

123789 + 561945 + 642864 = 242868 + 761943 + 323787.

Это соотношение сохраняется, если мы будем последовательно убирать из каждого числа крайнюю левую цифру:

23789 + 61945 + 42864 = 42868 + 61943 + 23787;

3789 + 1945 + 2864 = 2868 + 1943 + 3787;

789 + 945 + 864 = 868 + 943 + 787;

89 + 45 + 64 = 68 + 43 + 87;

9 + 5 + 4 = 8 + 3 + 7.

Оно сохраняется также, если последовательно убирать из каждого числа крайнюю правую цифру:

12378 + 56194 + 64286 = 24286 + 76194 + 32378;

1237 + 5619 + 6428 = 2428 + 7619 + 3237;

123 + 561 + 642 = 242 + 761 + 323;

12 + 56 + 64 = 24 + 76 + 32;

1 + 5 + 6 = 2 + 7 + 3.

А также если мы будем убирать цифры одновременно с двух сторон:

2378 + 6194 + 4286 = 4286 + 6194 + 2378;

37 + 19 + 28 = 28 + 19 + 37.

Эту математическую загадку прислали мне Молой Де и Нирмалья Чаттопадхьяй, объяснившие простую, но умную идею, на которой все это основано. Сможете ли вы уподобиться Хемлоку Сомсу и раскопать этот секрет?

Ответ см. в главе «Загадки разгданные».

Загадка тридцати семи

Из мемуаров доктора Ватсапа

– Как любопытно! – заметил я, размышляя вслух.

– В мире много любопытного, Ватсап, – отозвался Сомс, дремавший, как мне казалось, в своем кресле. – Что именно вы имеете в виду?

– Я взял число 123 и повторил его шесть раз, – объяснил я.

– И получили 123123123123123123, – пренебрежительно сказал Сомс.

– Ну да, но я еще не закончил.

– Вы, несомненно, умножили это число на 37, – сказал великий детектив, вновь подрывая мою убежденность в том, что я могу сказать что-нибудь новое для него.

– Да! Умножил! И вот я получил… нет, Сомс, не прерывайте меня, пожалуйста… вот ответ… 4555555555555555551, и цифра 5 в нем повторяется много-много раз.

– И это любопытно?

– Без сомнения. Причем если один такой пример может быть случайным совпадением, то в данном случае все это не случайно. Нечто подобное происходит и в тех случаях, когда я беру не 123, а 234, или 345, или 456. Взгляните! – и я показал ему свои расчеты:

234234234234234234  37 = 8666666666666666658;

345345345345345345 37 = 12777777777777777765;

456456456456456456 37 = 16888888888888888872.

– И не только это: если я повторю 123, или 234, или 345, или 456 какое-то другое число раз и умножу это на 37, то в ответе опять же будет много-много повторений одной и той же цифры, а нарушения будут только по бокам.

– Я склонен думать, – пробормотал Сомс, – что структура числа 123, 234, 345 и т. д. не имеет значения. Другие числа вы пробовали?

– Я пробовал 124, и ничего не получилось. Взгляните:

124124124124124124  37 = 4592592592592592588.

– Цифры здесь повторяются блоками по три, но мне это не кажется удивительным – ведь и первое число имеет такую же структуру.

– 486 вы пробовали?

– Нет… ну вообще-то, поскольку с 124 не получается, мне не кажется… Ну хорошо, хорошо, – я вернулся к своему блокноту и записал новый расчет. – Как любопытно! – воскликнул я вновь, увидев ответ:

486486486486486486  37 = 1799999999999999982.

Вдохновленный новым успехом, я попробовал еще несколько случайных трехзначных чисел, выписывая их по несколько раз подряд и умножая на 37. Иногда результат содержал множество повторений одной и той же цифры, чаще нет. Я показал Сомсу результаты своей работы и признался:

– Я в недоумении.

– Загадка, несомненно, разрешится, – ответил Сомс, – если вы рассмотрите число 111.

Я записал

111111111111111111  37 = 4111111111111111107

и уставился на получившееся число. Минут через 20 Сомс поднялся, заглянул мне через плечо и иронично покачал головой.

– Нет-нет, Ватсап! Я не предлагал вам попробовать свой метод на числе 111.

– Ох. А я полагал…

– Сколько раз я говорил вам, Ватсап: «Никогда ничего не полагайте!» Да, на первый взгляд эта загадка связана с числом 37, но на самом деле это, как бы это сказать, побочный эффект. Я предлагал вам посмотреть, как число 111 соотносится с числом 37.

Ответ см. в главе «Загадки разгаданные».

Средняя скорость

Из-за большого потока машин автобус, следующий из Эдинбурга в Лондон, проходит расстояние в 400 миль за 10 часов со скоростью 40 миль в час. На обратный путь у него уходит 8 часов со скоростью 50 миль в час. Какова средняя скорость автобуса за все время пути?

Очевидный ответ – 45 миль в час, среднее арифметическое между 40 и 50, для получения которого числа складывают, а сумму делят пополам. Однако в целом автобус проезжает 800 миль за 18 часов, и средняя скорость при этом равна 800/18 = 44 4/9 миль в час.

Как это может быть?

Ответ см. в главе «Загадки разгаданные».

Четыре псевдоку без указаний

Головоломку без дополнительных указаний придумали Джерард Баттерс, Фредерик Хенле, Джеймс Хенле и Колин МакГоги. Это вариант судоку, который мне нравится называть псевдоку без дополнительных указаний. Вам предлагается решить еще четыре такие головоломки. Правила:

• Каждая строка и каждый столбец должны содержать каждое из чисел 1, 2, 3, …, n ровно по одному разу, где n – размер квадрата.

• Числа в каждой из областей, обведенных жирной линией, должны при сложении давать одну и ту же сумму. Я выписал значение этой суммы над каждым квадратом, чтобы избавить вас от необходимости искать ее самостоятельно. Все головоломки, кроме последней, имеют единственное решение, а последняя – два симметричных варианта.

Ответы и ссылку на дополнительные материалы см. в главе «Загадки разгаданные».

Суммы кубов

Треугольные числа 1, 3, 6, 10, 15 и т. д. определяются сложением последовательных чисел, начиная с 1:

1 = 1;

1 + 2 = 3;

1 + 2 + 3 = 6;

1 + 2 + 3 + 4 = 10;

1 + 2 + 3 + 4 + 5 = 15

и т. д. Для таких чисел существует формула:

1 + 2 + 3 + … + n = n (n + 1)/2.

Чтобы доказать ее, можно, в частности, записать сумму дважды, примерно так:

1 + 2 + 3 + 4 + 5;

5 + 4 + 3 + 2 + 1.

Из этой записи видно, что числа в вертикальных столбцах при сложении дают одно и то же, в данном случае 6. Поэтому удвоенная сумма равна 6 5 = 30, а сумма равна 15. Если проделать то же самое с числами от 1 до 100, все получится примерно так же: будет 100 колонок, дающих при сложении сумму 101, так что сумма первых 100 чисел должна составлять половину от 100 101, то есть 5050. В более общем случае при сложении первых n чисел мы получаем половину от n (n + 1). Формула готова.

Существует формула и для суммы квадратов, но более сложная:

1 + 4 + 9 + … + n = n (n + 1) (2n + 1)/6.

А вот с кубами происходит нечто поразительное:

1 = 1;

1 + 2 = 9;

1 + 2 + 3 =36;

Страницы: «« 12345678 ... »»

Читать бесплатно другие книги:

Много лет назад майор Андрей Лавров и его друг и сослуживец Дениз Бахтияров были влюблены в одну жен...
«Радуга характеров. Психотипы в бизнесе и любви» – книга-бестселлер, раскрывающая перед читателем се...
Кремлевские чиновники Артюков и Сеченов «кинули» криминального олигарха Заурбека Баталова на пятьдес...
Неспокойно в Карачаево-Черкесии. Банда боевиков напала на склад вооружения одной из воинских частей ...
Zoom-покер — это еще достаточно новая разновидность игры «Техасский холдем», созданная покер-румом P...
Сегодня мой выбор пал на то, чтобы рассказать о белковой диете. Сразу хочу оговориться, что именно о...