Математические головоломки профессора Стюарта Стюарт Иэн
– Бывали случаи, когда мне удавалось случайно выудить что-нибудь полезное из скучных творений моего нещадно эксплуатируемого коллеги, Сомс, – возразил я.
– Что, например? – агрессивно вопросил он.
– На меня сильное впечатление произвел такой его аргумент: «Если вы исключите невозможное, то, что останется, каким бы невероятным ни казалось, и будет…
– Ошибкой, – бесцеремонно закончил за меня Сомс. – Если то, что остается, по-настоящему невероятно, значит, вы почти наверняка приняли «по умолчанию» какое-то условие, когда объявляли все другие объяснения невозможными.
Последовательность никогда не значилась в числе добродетелей Сомса.
– Ну, может быть, но…
– Без всяких «но», Ватсап!
– Но ведь в других ситуациях вы соглашались…
– Тьфу! Реальность не бывает невероятной, Ватсап! Она может казаться таковой, но на самом деле ее вероятность составляет 100 %, потому что она уже случилась.
– Ну да, формально это так, но…
– Вот пример. Сегодня утром, когда вы, Ватсап, выходили купить эту лживую газетенку, я принял весьма неожиданного посетителя. Небезызвестного герцога Бамблфортского.
– Главный лондонский щеголь, – сказал я. – Благородный человек безукоризненной честности, образец для всех нас.
– Ну да, ну да. Тем не менее он проинформировал меня… Ну, он рассказал, что в Бамблфорт-холле был обед, на котором эрл Мондеринг, желая развлечь гостей, поставил в ряд десять винных стаканов и наполнил первые пять из них – вот так, – и Сомс продемонстрировал мне этот процесс наглядно, на наших собственных стаканах, наполнив их довольно кислой мадерой, от которой мы как раз решили избавиться. – Затем он предложил гостям переставить стаканы таким образом, чтобы полные чередовались с пустыми.
– Но это очень просто… – начал я.
– Если переставить четыре стакана, то да. Достаточно поменять второй с седьмым и четвертый с девятым. Вот так – (см. рисунок). – Однако эрл просил получить тот же результат, переставив всего два стакана.
Я сложил пальцы перед собой в жесте глубокого размышления и через мгновение нарисовал грубый набросок первоначального и конечного расположения стаканов.
– Но, Сомс! Четыре названных вами стакана должны оказаться в разных местах! Так что без четырех перестановок не обойтись!
Он кивнул.
– Итак, Ватсап, вы только что исключили невозможное.
– Ну да, ей-богу, так я и сделал, Сомс! Неопровержимо.
Он начал набивать табак в свою трубку.
– И к какому же выводу вы придете, если я скажу, что, по словам герцога Бамблфортского, после того как все гости высказались примерно в таком же духе, эрл Мондеринг продемонстрировал верное решение.
– Я… ну…
– Вы вынуждены признать, что благородный герцог, наследник Британской империи и образец высокого благородства… на самом деле низкий лжец. Поскольку никакого решения не существует, как вы только что доказали.
Мое лицо вытянулось.
– Да, правда, все выглядит именно так… Нет, подождите, возможно, это вы не говорите мне…
– Мой дорогой доктор, я, честно признаюсь, иногда действительно умалчиваю кое-что, исключительно в ваших интересах, но не в данном случае. Даю слово.
– Но тогда… Я шокирован поведением герцога.
– Оставьте, Ватсап. Имейте веру в британский характер.
– Эрл обманывал?
– Нет-нет-нет. Ничего подобного. Вы способны на большее. В этой ситуации может быть и другое вполне прозаическое объяснение, которое вы проглядели. Более того, могу с уверенностью предсказать, что через несколько минут вы сами будете говорить мне, что решение очень простое и что догадаться может даже ребенок.
После этого Сомс рассказал мне, что сделал Мондеринг.
– Ну, здесь даже ребенок дога… – начал я, но вдруг резко остановился. Должен со всей откровенностью признать, что в этот момент я покраснел как рак.
Какое решение предложил Мондеринг? Ответ см. в главе «Загадки разгаданные».
Сила мидий
Идиллическая сцена на морском берегу: тихая бухта, волны разбиваются о скалы, покрытые водорослями и увешанные гроздьями моллюсков. Кажется, всюду царит сонное спокойствие. На самом деле эти неподвижные скопления мидий – царство непрекращающейся активности; чтобы ее увидеть, нам просто придется ускорить течение времени. При покадровой съемке видно, что моллюски в группах постоянно находятся в движении. Они прикрепляются к камням при помощи особых нитей, которые выделяет нога. Открепляя одни нити и добавляя другие в новых местах, мидия может управлять своим положением на камнях. С одной стороны, мидии любят находиться рядом с себе подобными, потому что вероятность того, что их оторвет от камня волнами, в этом случае заметно меньше. С другой стороны, если рядом нет других мидий, которые составили бы конкуренцию, можно добыть больше пищи. Оказываясь перед такой дилеммой, мидии делают то, что сделало бы на их месте большинство здравомыслящих организмов: идут на компромисс. Они размещаются таким образом, что у каждой мидии оказывается много близких соседей, но мало дальних. То есть они собираются группами. Эти группы – заплатки на дне – видны невооруженным глазом, но вот как они формируются, заметить невозможно.
В 2011 г. Моник де Джагер и ее коллеги применили математику случайного блуждания к моделированию того, как могла сформироваться у мидий групповая стратегия. Случайное блуждание часто сравнивают с движением пьяного по дорожке: то вперед, то назад, без всякой очевидной системы. Если добавить еще одно измерение, получится, что случайное блуждание на плоскости – это серия шагов, длины и направления которых выбираются случайным образом. Разные правила выбора – разные распределения вероятностей для длин и направлений – дают случайные блуждания с разными свойствами. В броуновском движении длины шагов распределяются по колоколовидной кривой вблизи одного конкретного среднего значения шага. В блужданиях Леви[19] вероятность того или иного шага пропорциональна некоторой фиксированной степени его длины, в результате чего многочисленные короткие шаги время от времени прерываются гораздо более длинным шагом.
Статистический анализ наблюдаемых длин шагов ясно показывает, что блуждания Леви вполне соответствуют тому, чем на самом деле занимаются мидии на приливных отмелях, а броуновское движение – нет. Это согласуется и с экологическими моделями, которые математически демонстрируют, что блуждания Леви позволяют мидиям быстрее распространяться, осваивать больше новых площадей и избегать конкуренции с другими видами моллюсков. Это, в свою очередь, позволяет предположить, почему в процессе эволюции появилась именно такая стратегия. Естественный отбор обеспечивает обратную связь между стратегиями передвижения и генетическими инструкциями, предписывающими их применение. У каждой отдельной мидии появляется больше шансов выжить, если она пользуется стратегиями, которые повышают ее шансы на получение пищи и снижают вероятность того, что она будет смыта волнами.
Команда де Джагер использовала данные полевых наблюдений за поведением мидий и математические модели эволюционного процесса. Моделирование показало, что вероятность появления в ходе эволюции блужданий Леви при наличии такой обратной связи достаточно высока, но эволюционно стабильной – то есть не приводящей к катастрофе в случае вторжения какого-либо мутанта с другой стратегией – она становится тогда, когда показатель экспоненты достигает 2. Полевые наблюдения дают величину 2,06.
Устричные поля в этом контексте демонстрируют, что эффективность стратегии движения каждой отдельной мидии зависит от того, что делают все остальные мидии. Стратегия каждой отдельной мидии определяется ее генетикой, но ценность этой стратегии для выживания зависит от коллективного поведения всей местной популяции. Так что здесь мы видим, как окружающая среда – в форме остальных мидий – оказывает влияние на генетический «выбор» индивида и формирует паттерны поведения на уровне популяции.
Дополнительную информацию см. в главе «Загадки разгаданные».
Доказательство шарообразности Земли
Большинство из нас знает, что наша планета по форме круглая – но не точная сфера, а эллипсоид, слегка сплюснутый у полюсов. На ней достаточно неровностей, чтобы при увеличении отклонения от сферической формы примерно в 10 000 раз превратиться в картофелину. Некоторые – их очень немного – упрямцы продолжают настаивать, что Земля плоская, хотя еще древние греки 2500 лет назад собрали достаточно доказательств ее шарообразности, чтобы убедить даже средневековую церковь, а с тех пор доказательств стало намного больше. Вера в то, что Земля плоская, почти полностью ушла, но возродилась примерно в 1883 г. с основанием Зететического общества. Это общество, с 1956 г. известное как Общество плоской Земли, действует и поныне. Вы можете найти его в Интернете, можете следить за событиями в нем в «Фейсбуке» и «Твиттере».
Существует простой и совершенно неопровержимый способ самостоятельно убедиться в том, что наша планета не может быть плоской, если на ней действует обычная геометрия Евклида. Для этого вам потребуется Интернет или общение с терпеливым турагентом – и больше ничего, и речь не идет о том, чтобы посмотреть информацию о форме Земли в Википедии. Описываемая методика не показывает сама по себе, что Земля круглая, но в этом можно убедиться, если ей следовать систематически и аккуратно. Чуть позже мы поговорим о возможных способах отвергнуть полученное доказательство. Я не утверждаю, что таких способов нет: если вы адепт плоской Земли, то способ всегда найдется. Но в данном случае стандартные уловки выглядят еще менее убедительными, чем обычно. Во всяком случае, этот аргумент представляется свежим и необычным на фоне традиционных научных доказательств шарообразности Земли.
Я не имею в виду спутниковые фотографии круглой планеты – они, конечно, подделаны. Все мы знаем, что NASA никогда не летало на Луну, все это снималось в Голливуде, а это доказывает, что и фотографии – фальшивка, так что вот. Не годятся также никакие данные, основанные на научных измерениях: ученые типы – известные шутники, они даже делают вид, что верят в эволюцию и глобальное потепление, а ведь то и другое – это всего лишь левацкие заговоры с целью не дать добропорядочным и во всех отношениях правильным людям зарабатывать неприличные суммы денег, как заповедано Богом.
Нет, я имею в виду исключительно коммерческое доказательство: расписание авиалиний. Их можно легко найти в Интернете: убедитесь только, что вы видите перед собой расписание реальных полетов, а не программы для расчета полетного времени, работающие на основе предположения о шарообразности Земли.
По экономическим причинам все крупные пассажирские самолеты летают примерно на одной скорости. Если бы это было не так, то весь бизнес у медленных компаний перехватили бы их более быстрые конкуренты. По тем же причинам все летают по кратчайшим маршрутам – в той мере, конечно, в какой это допускается местными законами. Поэтому мы можем использовать полетное время как достаточно точную оценку расстояний. (Чтобы снизить влияние ветров, возьмите подходящее среднее значение полетного времени в обоих направлениях – на практике обычного среднего арифметического вполне достаточно.) Затем можно, использовав геодезические методики триангуляции, которые заключаются в построении сети треугольников, нанести на карту расположение нужных аэропортов. Чтобы показать, что плоская модель Земли не годится, мы можем предположить, что планета на самом деле плоская, и посмотреть, что из этого получится. Геодезисты обычно работают с одним-единственным начальным расстоянием – базовой линией, а все остальное рассчитывают через углы треугольников, но у нас есть большое преимущество: мы можем использовать реальные расстояния (в часах полета).
На рисунке показана триангуляция на базе шести крупных аэропортов. Сколько ни жонглируй числами, это единственная плоская фигура, сколько-нибудь разумно объединяющая все шесть аэропортов с учетом времени полета. Начнем, к примеру, с Лондона и добавим Кейптаун на расстоянии 12 часов. После этого поместим Рио-де-Жанейро и Сидней. Расположить их можно единственным образом, за исключением того, что всю карту можно зеркально отразить, поменяв местами право и лево, но не меняя никаких расстояний. Такая неоднозначность не имеет значения, а вот о том, чтобы Рио-де-Жанейро и Сидней находились по разные стороны от линии Лондон – Кейптаун, следует позаботиться. Если бы они находились по одну сторону от этой линии, то время полета между ними составляло бы примерно 11 часов, а на самом деле составляет 18. Далее можно добавить Лос-Анджелес и, наконец, Таити, опять же используя дополнительное время для устранения неоднозначности.
Теперь мы можем воспользоваться гипотезой плоской Земли и сделать предсказание. Расстояние от Таити до Сиднея, измеренное по этой карте, составляет примерно 35 часов. (Судя по ней, путь через Рио и Кейптаун проходит почти по прямой и сумма расстояний равна 35.) Таким образом, это минимальное время, которое, по идее, должен занимать перелет, не считая остановок.
Реальное же время перелета между этими пунктами – 8 часов. Даже допустив небольшие ошибки в расчетах, следует признать, что разница предсказанной и реальной продолжительности полета слишком велика и гипотеза плоской Земли должна быть отвергнута. Если включить в сеть намного больше аэропортов и взять более точные данные полетного времени, то можно выстроить базовую форму значительной части планеты очень точно – и по-прежнему в единицах часов полета. Чтобы установить масштаб, необходимо выяснить, с какой скоростью летают самолеты, или измерить по крайней мере одно расстояние каким-то другим способом.
Надо отметить, что каждый хорошо информированный адепт плоской Земли знаком с подобными аргументами и нестандартной физикой, которая их «объясняет». Может быть, какое-то искажающее поле изменяет геометрию пространства, так что буквальное измерение плоскости обычными мерами расстояния оказывается неверным. Это реально работает: азимутальная изогональная проекция Земли с Северного полюса дает именно такой эффект, и можно спокойно перенести все, включая и законы природы, с круглой Земли на плоскую, воспользовавшись проекцией на плоский диск. Конечно, если вам не нужна область вокруг Южного полюса. На логотипе ООН сделано именно так, и Общество плоской Земли постоянно использует его в качестве «доказательства» верности своих взглядов. Однако подобные выкладки тривиальны и бессмысленны, а изображение на логотипе логически эквивалентно круглой Земле с ее традиционной геометрией. Математически это всего лишь не слишком явный способ признать «она не плоская», в пределах ортодоксального смысла этой фразы. Так что измененная метрика и другие подобные отговорки на самом деле ничего не решают.
Действие ветра? Может быть, на самом деле от Таити к Сиднею постоянно дует сильный ветер? Такой ветер должен был бы достигать скорости 1200 км/ч, но дело обстоит еще хуже: прямой маршрут из Таити в Сидней очень близок маршрутам Таити – Рио – Кейптаун – Сидней, которые мы уже учли. Если можно попасть из Таити в Сидней по-настоящему быстро, воспользовавшись силой ветра, то путешествие, по крайней мере по одному из участков приведенного сложного маршрута, явно занимает слишком много времени.
Следующей линией обороны может быть стандартный прием всех отрицателей: это всеобщий заговор. Да, но чей? Времена, обозначенные на сайтах, где можно заказать авиабилеты, не могут быть слишком далеки от истины, поскольку миллионы людей ежедневно летают по воздуху, и большинство из них обратило бы внимание, если бы время полета по расписанию часто отличалось от реального в разы. Но все авиакомпании мира могли договориться летать по некоторым маршрутам медленнее, чем необходимо, так что большую часть моей схемы следовало бы ужать, сделав возможным перелет из Таити до Сиднея всего за 14 часов. Для этого пришлось бы поделить все времена по крайней мере на четыре, и получится, что обычный пассажирский самолет на самом деле мог бы добраться от Лондона до Сиднея всего за пять часов, если бы авиалиния не задерживала бы его специально для того, чтобы убедить нас в шарообразности Земли.
В отличие от обвинений в заговорах ученых, которые способны произвести впечатление только на тех, у кого нет ни одного знакомого ученого[20], у этого утверждения есть один фатальный недостаток. Теория заговора требует, чтобы большинство авиалиний добровольно теряли каждый день громадные суммы в виде напрасно потраченного топлива и не стремились бы выиграть в конкурентной борьбе, сократив время перелетов по многим маршрутам больше чем в два раза. Заговор с целью представить Землю круглой при помощи метрик авиаперелетов потребовал бы, чтобы сотни частных авиакомпаний выбрасывали на ветер огромные суммы денег. Не сошли ли вы с ума?
Разумеется, вы всегда можете прибегнуть к старому доброму методу: когда ничто уже не помогает, просто не обращай внимания на доказательства.
123456789 раз по X. Продолжение
Нет нужды останавливаться на 9. Попробуйте умножить 123456789 на 10, 11, 12 и т. д. Что вы заметили?
Ответ см. в главе «Загадки разгаданные».
Цена славы
Владислав Роман Орлич – польский тополог, который предложил то, что ныне известно в математике как пространства Орлича – весьма специфические понятия из области функционального анализа. Однажды известность сыграла с ним злую шутку. Подобно большинству своих соотечественников, Орлич жил в очень небольшой квартирке, а потому обратился к городским властям с просьбой предоставить ему квартиру побольше. В ответ он услышал следующее: «Мы согласны, у вас действительно очень маленькая квартира, но мы вынуждены отказать вам в просьбе, поскольку у вас уже есть собственные пространства».
Загадка золотого ромба
Из мемуаров доктора Ватсапа
Впечатляющий успех наших совместных предприятий побудил меня вновь взяться за медицинскую практику, и я распорядился соорудить в своем доме небольшой кабинет с приемной. Но я всегда заботился о том, чтобы мое расписание сохраняло достаточную гибкость на тот случай, если Сомсу потребуется моя помощь, – как с предварительным уведомлением, так и без такового. Поэтому, получив телеграмму, я передал пациента своему заместителю доктору Джекиллу и вызвал кэб, чтобы отправиться на Бейкер-стрит, 222b.
Прибыв на квартиру Сомса, я обнаружил его в окружении обрезков бумаги с ножницами в руках.
– Симпатичная головоломка, – заметил он. – Обычная треугольная полоска бумаги, завязанная в простой узел (так называемый клеверный лист). Трудно вообразить, что от такого пустяка может зависеть жизнь человека.
– Господи боже, Сомс! Как такое может быть?
– Вымогательство, Ватсап. Доказательство вины зависит от формы, которую принимает полоска бумаги, если узел затянуть как можно сильнее, сплющить и хорошенько разгладить. Подозреваю, что этот узелок окажется символом какого-то тайного общества, и, если я смогу это доказать, дело будет сделано, – он поднял бумажный узелок и показал мне. – Что скажете, Ватсап? Какая получится форма, а?
Я быстро набросал простой узел в блокноте.
– Хорошо известно, что простой узел, завязанный на замкнутой в кольцо веревке, обладает трехсторонней симметрией, – сказал я, чувствуя себя необыкновенно умным. – Так что я сказал бы, что получится либо треугольник, либо шестиугольник.
– Тогда давайте попробуем. Проведем эксперимент, – сказал Сомс. – А затем возьмемся за более сложную задачу – попытаемся доказать, что глаза нас не обманывают.
Какую форму приобретает расплющенный узел? Проверьте. Ответ и доказательство см. в главе «Загадки разгаданные».
Арифметическая последовательность степеней
Арифметическая последовательность (последовательность чисел с постоянной разницей между соседними членами) называется последовательностью степеней, если второй ее член является полным квадратом, третий – кубом и т. д. То есть k-й член такой арифметической последовательности представляет собой k-ю степень. (Это не накладывает никаких ограничений на первый член последовательности, поскольку любое число есть первая степень самого себя.) К примеру, последовательность 5, 16, 27 имеет длину 3 и шаг 11; кроме того,
Тривиальный способ получить последовательность степеней длины n состоит в том, чтобы повторить n раз число 2n!. Это число является одновременно первой степенью, квадратом, кубом и т. д., вплоть до n-й степени. Шаг в этом случае будет равняться 0.
В 2000 г. Джон Робертсон доказал, что, за исключением таких последовательностей, в которых многократно повторяется одно и то же число, – то есть последовательностей с нулевым шагом, – самая длинная возможная последовательность степеней состоит из пяти членов (имеет длину 5)[21]. Чтобы получить такую последовательность, возьмите числа 1, 9, 17, 25, 33, образующие арифметическую последовательность с шагом 8, и умножьте каждое из них на 32453011241720. Получившиеся в результате числа тоже образуют арифметическую последовательность с шагом, в восемь раз превосходящим это число. Вот эти числа:
1. 10529630094750052867957659797284314695762718513641400204044879414141178131103515625
2. 94766670852750475811618938175558832261864466622772601836403914727270603179931640625
3. 179003711610750898755280216553833349827966214731903803468762950040400028228759765625
4. 263240752368751321698941494932107867394067962841035005101121985353529453277587890625
5. 34747779312675174642602773310382384960169710950166206733481020666658878326416015625.
Ее шаг равен:
84237040758000422943661278378274517566101748109131201632359035313129425048828125000.
Если обозначить пять членов прогрессии как a1, a2, a3, a4, a5, то a1 есть первая степень самого себя (очевидно);
a2 = 307841957589849138828884412917083740234375 – квадрат;
a3 = 5635779747116948576103515625 – куб;
a4 = 7162889984611066406254 – четвертая степень;
a5 = 510722993555156255 – пятая степень.
Вот это да!
(Проще всего проверить, что члены последовательности действительно являются заявленными полными степенями, если работать с простыми сомножителями.)
Почему пузырьки в пиве идут сверху вниз?
Всякий, кто пьет темное крепкое пиво, такое как «Гиннес», наверняка видел в нем кое-что, на первый взгляд бросающее вызов традиционной физике. Пузырьки в таком пиве движутся сверху вниз. Во всяком случае, создается такое впечатление. Но ведь пузырьки легче окружающей жидкости, так что они должны испытывать на себе действие подъемной силы, толкающей их вверх.
Этот вопрос – настоящая загадка, или, по крайней мере, был таковой до 2012 г., когда его решила команда математиков. Кстати говоря, ирландцев (или по меньшей мере жителей Ирландии): это Уильям Ли, Юджин Бенилов и Каталь Каммингс из Университета Лимерика.
Тот же эффект наблюдается и в других жидкостях, но в крепком пиве его легче увидеть, потому что пузырьки в нем содержат не только углекислый газ, который можно наблюдать в любом пиве, но и азот, а азотные пузырьки меньше и держатся дольше. Отчасти ответ на этот вопрос прост: мы видим только те пузырьки, которые находятся близко к стеклу. Пузырьки в глубине стакана скрыты от нас темным пивом. Так что не исключено, что только некоторые пузырьки опускаются вниз, а остальные поднимаются вверх. Однако таким образом невозможно объяснить, почему вообще хоть какие-то пузырьки опускаются вниз. Они не должны этого делать.
До некоторого момента мы не могли сказать даже, не является ли вся эта история просто оптической иллюзией. Одно из альтернативных объяснений состоит в том, что эффект вызывается волнами плотности – областями, где пузырьки поднимаются вверх. Пузырьки поднимаются, но волны плотности движутся в противоположном направлении. Подобное поведение часто встречается в волновых процессах. К примеру, вода в океанских волнах не движется с ними вместе; по большей части она ходит кругами примерно на одном месте. Движется же то место, где вода поднимается выше всего. Правда, волны, набегающие на пляж, действительно на него набегают; однако отчасти это происходит из-за мелководья, да и вода тут же стекает обратно в море. Если бы вода двигалась вместе с волнами, ей пришлось бы забираться на берег все выше и выше, а это явно противоречит здравому смыслу. Хотя вода не возвращается назад в сколько-нибудь значительном объеме, этот знакомый пример помогает почувствовать разницу между тем, куда движется вода, и тем, куда идут волны. А теперь проделаем то же самое с пузырьками.
Это довольно правдоподобная теория, но в 2004 г. группа шотландских ученых под руководством Эндрю Александера вместе с коллегами из Калифорнии получила видеозаписи, доказывающие, что пузырьки действительно движутся сверху вниз. Свои данные группа опубликовала в День святого Патрика. Чтобы замедлить движение и проследить за отдельными пузырьками, ученые использовали высокоскоростную видеокамеру. Выяснилось, что пузырьки, касающиеся стеклянных стенок, склонны прилипать к ним, так что они не могут двигаться вверх. Однако ближе к середине стакана пузырькам ничто не мешает; пиво поднимается в середине стакана и опускается вниз вдоль стенок, увлекая за собой пузырьки.
Ирландская команда нашла более точное объяснение, показав, что движение пива вызвано не прилипанием пузырьков к стенкам. Все дело в форме стакана. Темное пиво обычно пьют из стакана с изогнутыми стенками, который вверху шире, чем у донышка. Проделав гидродинамические расчеты и эксперименты, ученые выяснили, что, когда пузырьки вблизи стенки поднимаются, они идут прямо вверх, как и следовало ожидать. Но стенка уходит от вертикали, поэтому пузырьки, по существу, уходят от стенки прочь. Поэтому пиво у стенки плотнее, чем в середине стакана, и стремится опуститься вниз, увлекая за собой часть жидкости. Так что пиво в стакане циркулирует: вверх – в середине, вниз – вдоль стенок.
Пузырьки всегда поднимаются вверх относительно пива, но по краям пиво опускается быстрее, чем поднимаются пузырьки, и пузырьки опускаются вместе с ним. Пузырьки хорошо видны, в то время как движение пива заметить гораздо сложнее.
Дополнительную информацию см. в главе «Загадки разгаданные».
Гармонический ряд со случайными знаками
Бесконечный ряд
математики называют гармоническим рядом. Название отдаленно связано с музыкой, где обертоны колеблющейся струны имеют длины 1/2, 1/3, 1/4 и т. д. относительно основной для данной струны длины волны. Однако сама эта последовательность музыкального смысла не имеет. Известно, что это расходящаяся последовательность, то есть сумма первых n ее членов становится сколь угодно большой при достаточно большом n. Она расходится очень медленно, но все же расходится. Так, сумма первых 2n членов последовательности больше, чем 1 + n/2. С другой стороны, если мы изменим знак каждого второго члена последовательности, получится знакопеременный гармонический ряд
который является сходящимся. Его сумма равна ln 2, что составляет примерно 0,693.
Байрон Шмуланд заинтересовался тем, что происходит, если знак очередного члена последовательности выбирается случайным образом, бросанием монетки и присвоением знака плюс, к примеру, орлу, а знака минус – решке. Он доказал, что такая последовательность сходится с вероятностью 1 (гармонический ряд соответствовал бы выпадению ООООООО… до бесконечности, что происходит с нулевой вероятностью). Однако сумма такой последовательности зависит от последовательности бросков.
Возникает вопрос: какова вероятность получения какой-то определенной суммы? В принципе, суммой может быть любое действительное число, положительное или отрицательное, так что вероятность получения любого конкретного значения равна нулю (как обычно и бывает в случае «непрерывных случайных переменных»). В этом случае следует ввести распределение (или плотность) вероятности. Эта функция определяет вероятность попадания суммы в любой заданный диапазон величин, скажем, в промежуток между числами a и b. Эта вероятность равна площади под графиком функции распределения между x = a и x = b.
Для гармонического ряда, модифицированного при помощи монетки, распределение вероятности выглядит так, как показано на рисунке. Эта функция немного напоминает знакомую колоколовидную кривую, или нормальное распределение, но ее верхняя часть приплюснута. Это симметричная кривая, где замена левой стороны на правую соответствует замене орла на решку при бросании симметричной монетки.
Эта задача – предметный урок «экспериментальной математики», в которой компьютерные расчеты используются для выдвижения интересных гипотез. Похоже, что центральный пик достигает высоты 0,25, то есть 1/4. Кроме того, значения функции при –2 и +2 равны 0,125, то есть 1/8. В 1995 г. Кент Моррисон предположил, что обе эти гипотезы верны, но в 1998 г. он изменил свое мнение и исследовал их подробнее. С точностью до десяти знаков после запятой плотность вероятности при x = 0 составляет 0,2499150393, то есть чуть меньше 1/4. Однако с той же точностью при x = 2 значение функции раво 0,1250000000, что по-прежнему очень похоже на 1/8. Но если провести расчет до 45 знаков после запятой, значение получится следующее:
0,124999999999999999999999999999999999999999764,
что отличается от 1/8 менее чем на 1042.
В статье Шмуланда[22] объясняется, почему эта вероятность так близка, но не равна в точности 1/8. Таким образом, очень правдоподобная гипотеза, выдвинутая на основе экспериментальных данных, оказывается ошибочной. Вот почему математики всегда настаивают на доказательствах, в точности так, как на них всегда настаивает Хемлок Сомс.
Собаки, дерущиеся в парке
Из мемуаров доктора Ватсапа
Во время обычной утренней прогулки в Равностороннем парке, что возле Мэрилбоун-роуд рядом с пабом «Пес и треугольник», я стал свидетелем любопытного инцидента и по прибытии на Бейкер-стрит, 222b не удержался от того, чтобы поделиться своими впечатлениями с коллегой.
– Сомс, я только что наблюдал любопытный…
– Инцидент. Вы видели в парке трех собак, – отозвался он, не моргнув глазом.
– Но как… конечно! На моих брюках грязь, и форма пятен и брызг указывает…
Сомс хмыкнул.
– Нет, Ватсап, мои дедуктивные выводы имеют другую основу. Они говорят мне не только, что вы видели трех собак в парке, но что эти собаки дрались.
– Так и есть! Но любопытный инцидент состоял не в этом. Наоборот, было бы любопытно, если бы собаки не стали драться.
– И правда. Нужно запомнить это замечание, Ватсап. Очень удачно сказано.
– Любопытно то, что предшествовало драке. Собаки появились одновременно в трех углах парка…
– Который представляет собой равносторонний треугольник со сторонами по 60 ярдов, – вставил Сомс.
– Ну да. И стоило собакам появиться, как каждая из них увидела противника – того, что находился от нее по часовой стрелке, – и без малейшего промедления рванула к нему.
– Все бежали с одинаковой скоростью 4 ярда в секунду.
– Склоняюсь перед вашей проницательностью. В результате все три собаки пробежали по одинаковым кривым дорожкам и одновременно столкнулись в центре парка. Никто и глазом моргнуть не успел, а они уже дрались, и мне пришлось их разнимать.
– Отсюда прорехи в вашем пальто и на брюках, а также следы зубов у вас на ноге. Я вижу, что они нанесены ирландским сеттером, ретривером и метисом бульдога с ирландским волкодавом. Хромым на переднюю левую лапу.
– Ах!
– В красном кожаном ошейнике. С колокольчиком. Который заржавел и больше не звонит. Хватило ли у вас наблюдательности, чтобы заметить, сколько времени ушло у собак на бег к точке встречи?
– Я забыл вынуть свои карманные часы, Сомс.
– Да ладно, Ватсап! Вы смотрите, но не видите. Однако в данном случае это время можно вычислить по уже установленным данным.
Считайте собак точечными объектами. Ответ см. в главе «Загадки разгаданные».
Какой высоты это дерево?
У лесничих есть один старый прием, позволяющий оценить высоту дерева, не влезая на него и не пользуясь геодезическими инструментами. Этот прием может послужить прекрасным средством взломать лед и оживить атмосферу на пикнике, если где-нибудь поблизости найдется подходящее дерево. Я познакомился с этим трюком в статье Тоби Бакленда[23]. Проделывать этот фокус рекомендуется в брюках.
Встаньте на некотором расстоянии от дерева спиной к нему. Наклонитесь и взгляните на дерево между своими ногами. Если вы не видите его вершины, отойдите подальше и повторяйте процедуру до тех пор, пока не увидите. Если вы легко видите ее, подойдите поближе на такое расстояние, чтобы вершина была едва видима. В этой точке расстояние от вас до основания дерева будет приблизительно равно его высоте.
Эта методика, если ее можно так назвать, представляет собой простое приложение евклидовой геометрии. Она основана на том, что большинство людей может посмотреть между ногами назад и вверх под углом примерно 45°. Поэтому линия взгляда на вершину дерева оказывается гипотенузой равнобедренного прямоугольного треугольника, две другие стороны которого равны.
Очевидно, точность этого метода напрямую зависит от гибкости вашего тела, но для многих из нас он дает не слишком большую ошибку. Бакленд замечает: «Попробуйте, это дешевле, чем занятия йогой, и открывает нам взгляд на мир с такого ракурса, с какого большинство из нас не видело его с детства!»
Почему у моих друзей больше друзей, чем у меня?
Бог ты мой! Кажется, у всех вокруг больше друзей, чем у меня!
Такое можно встретить и в «Фейсбуке», и в «Твиттере». Такое можно встретить на сайте любой социальной сети, но такое происходит и в реальной жизни. Это случается, если вы вдруг решаете произвести подсчет деловых или сексуальных партнеров. Начиная перебирать своих друзей, чтобы посмотреть, сколько друзей у них, получаешь весьма поучительный опыт. Мало того, что у большинства из них друзей оказывается больше, чем у вас; в среднем у всех без исключения оказывается больше друзей.
Почему же вы так непопулярны в сравнении со всеми остальными? Это внушает серьезную тревогу. Но расстраиваться нет никаких причин. Друзья большинства людей имеют больше друзей, чем сами эти люди.
Вероятно, это звучит по меньшей мере странно. Каждый в данной социальной сети имеет в среднем одно и то же число друзей; говоря конкретно, среднее существует только одно. У кого-то друзей больше, у кого-то меньше, но в среднем их… среднее количество. В этом случае кажется интуитивно правдоподобным, что и друзья этих людей в среднем тоже имеют это же число друзей. Но так ли это?
Рассмотрим пример. Он не придуман специально так, чтобы создать нестандартную ситуацию; это первое, что пришло мне в голову. Большинство сетей ведет себя точно так же. В сети (см. выше) представлено 12 человек, линии соединяют друзей. (Считаем, что все дружбы взаимны. В социальных сетях это не всегда так, но эффект, о котором идет речь, все равно возникает.) Представим несколько ключевых показателей в табличной форме.
Жирным шрифтом я выделил в последнем столбце числа, которые оказались больше, чем число во втором столбце. Это те случаи, в которых друзья X имеют в среднем больше друзей, чем сам X. Выделены 8 из 12 чисел в этом столбце, и еще в одном случае числа там и там одинаковы.
Если усреднить числа во втором столбце, получится 3. Это означает, что среднее число друзей у человека по всей социальной сети равно 3. Но большинство записей в четвертом столбце больше этого среднего значения. Что в данном случае не так с интуицией?
Ответ дают такие люди, как Джордж и Жанна, у которых особенно (и необычно) много друзей – в данном случае 5 и 6 соответственно. По этой причине при подсчете друзей у друзей их считают намного чаще, чем остальных. И поэтому они вносят больший вклад в сумму в столбце 3 и, следовательно, в среднее значение. С другой стороны, люди с небольшим числом друзей фигурируют в подсчете гораздо реже и вносят значительно меньший вклад.
Ваши друзья – не типичный пример. Среди них гораздо лучше представлены люди с большим числом друзей, поскольку шанс на то, что вы входите в число их друзей, намного выше. А люди с небольшим числом друзей представлены куда хуже. Именно этот эффект сдвигает среднее число друзей у друзей в сторону увеличения.
В третьем столбце таблицы можно увидеть, как это происходит. Число 5 фигурирует в столбце 3 пять раз – по одному у каждого из друзей Джорджа; точно так же 6 в столбце 3 встречается шесть раз, по одному у каждого из друзей Жанны. С другой стороны, вклад Алисы в столбец 3 (не в ее собственной строке, а в тех случаях, когда она сама фигурирует в других строках как друг) составляет всего лишь две двойки: одна от Боба и дна от Вероники. Таким образом, вклад Джорджа составляет 25, а вклад Жанны – даже 36, тогда как бедняжка Алиса вносит всего лишь 4.
Кому дано, приумножится.
Во втором столбце ничего подобного не происходит: каждый вносит в среднее значение, равное 3, свою справедливую долю.
На самом деле среднее значение всех чисел в столбце 4 равно 3,78, заметно больше трех. Вероятно, мне следовало бы использовать взвешенное среднее значение: сложить все числа в столбце 3 и разделить на их количество. Тогда получится 3,55, все равно больше трех.
Надеюсь, после моего объяснения вы почувствовали себя лучше.
Доказательство см. в главе «Загадки разгаданные».
Статистика. Разве это не чудесно?
По статистике, каждый год в мире откладывается 42 млн крокодильих яиц. Из них проклевывается только половина. Три четверти проклюнувшихся крокодильчиков съедается хищниками за первый месяц жизни. Из оставшихся только 5 % доживают до возраста одного года – по разным причинам.
Если бы не статистика, нас всех съели бы крокодилы!
Приключение шестерых гостей
Из мемуаров доктора Ватсапа
Меня давно расстраивала откровенная нелюбовь Сомса к обедам с гостями. Он презирает светскую болтовню и чувствует себя неловко в компании женщин, особенно привлекательных женщин, таких как моя приятельница Беатрис. Но время от времени ему приходится стискивать зубы, брать быка за рога, запасаться банальностями и посещать светские мероприятия с присутствием прекрасного пола. На них он может показать себя в разные моменты времени замкнутым, несносным, обаятельным, словоохотливым или всем одновременно в разных сочетаниях.
Событие, о котором пойдет речь, представляло собой скромный tte--tte, на котором присутствовали Артур и Беатрис Шипшер (брат и сестра) и Гренвилл и Доринда Лэмбшенк (муж и жена). Разумеется, я был знаком со всей четверкой; Беатрис – милая леди, не замужем, и, я убежден, поклонника у нее в настоящее время тоже нет. Сомс знал только меня, и я опасался, что из-за этого в нем могут возобладать худшие черты характера, но я надеялся расширить круг его общения. Шипшеры и Лэмбшенки прежде не встречались – то есть встречались только мужчины, которые состояли в одном клубе.
Когда гости прибыли, Сомс быстро сориентировался в ситуации, и вскоре мы уже сидели все вместе. В присутствии Сомса разговор шел неровно, он то вспыхивал, то затухал, поэтому я взял на себя смелость налить всем скромного, но вполне приемлемого шерри, а ему подал двойную порцию.
– Как необычно! Я вижу среди нас трех человек, знакомых между собой, и троих незнакомцев.
– Три – это уже обычно, – пробормотал Сомс, но, заметив мой недовольный жест, не стал развивать тему. Я долил ему вина.
Беатрис попросила меня объяснить свои слова, и я поспешил выполнить ее просьбу.
– Вы, Артур и я – каждый из нас – знаем остальных двоих: вот вам тройка взаимных знакомств.
– Мне кажется, мы с вами больше, чем просто знакомые, Джон, – ответила она.
– Счастлив это слышать, дорогая леди, – сказал я, – но я подбирал слово, которое можно было бы применить к любой паре здесь присутствующих. Напротив, Сомс, вы и Доринда совершенно не знакомы между собой, в том смысле, что до сего дня вы не встречались в обществе. Конечно, слава Сомса намного его обгоняет.
– В самом деле, – сказал Гренвилл, одарив меня кислым взглядом.
– Ну так вот, этот факт кажется мне весьма примечательным…
– А не должен бы, Ватсап, – прервал меня Сомс. – По крайней мере, присутствие одной такой тройки, знакомцев или незнакомцев, не должно казаться чем-то особенным.
– Почему нет? – спросил Артур.
– Потому что по крайней мере одна такая тройка должна возникнуть в любом месте, где соберется вместе шесть человек, – ответил Сомс. – При этом не имеет значения, кто с кем знаком.
– Черт возьми! – воскликнул Артур. – Но это же замечательно, ведь так?
– Как вы можете быть в этом уверены, мистер Сомс? – поинтересовалась Беатрис. Ее глаза сияли – и я подозревал, не только из-за шерри.
– Потому что, моя дорогая мадам, это можно доказать.
– О-о. Продолжайте, пожалуйста, мистер Сомс. Меня чрезвычайно интересуют подобные вещи.
Сомс наклонил голову, но я заметил, что на его губах мелькнула слабая улыбка. Он делает вид, что женские чары не оказывают на него никакого действия, но я-то знаю, что это лишь притворство. Ему просто не хватает уверенности в себе. Я надеюсь, что не будет хватать и дальше, потому что Беатрис очень симпатичная и скромная, настоящая находка для любого достойного мужчины. Для меня, к примеру.
– Доказательство будет понятнее всего, если представить его в виде диаграммы, – сказал Сомс. Он поднялся, подошел к обеденному столу и взял из стопки несколько тарелок и столовых приборов; попутно он отмел все мои возражения вместе с несколькими салфетками, горчицей и горшком с геранью.
– Тарелки представляют нас шестерых, – объявил Сомс, подписывая на тарелках наши инициалы палочкой театрального грима, которая, видимо, сохранилась у него сувениром того времени, когда он обдумывал карьеру на сцене. – Вилка, соединяющая двух людей, означает, что они знакомы; нож между ними означает, что нет.
– Взгляды как кинжалы, значит, – заметила Беатрис. Я поспешил поаплодировать ее остроумию и наполнить ее бокал.
– К примеру, меня и Ватсапа соединяет вилка в центре стола, но со всеми остальными меня соединяет нож. Таким образом, как проницательно заметил Ватсап, треугольник ВАБ состоит из вилок, а треугольник СБД – из ножей. Однако я утверждаю, что, как бы мы ни разложили ножи и вилки, на столе всегда будет присутствовать по крайней мере один треугольник, образованный одинаковыми приборами.
– Но, может быть, оба, мистер Сомс? – спросила Беатрис. Ее глаза не отрываясь следили за каждым его движением.
– Иногда да, мадам, но не всегда. Если взять крайний случай, то есть если на столе окажутся одни только вилки, то никакого треугольника из ножей не образуется; или, если там будут только ножи, не образуется треугольника из вилок.
Беатрис кивнула с серьезным видом.
– В таком случае представляется, – протянула она, – что по мере того, как вилки заменяются ножами и возможность образования треугольника из вилок уменьшается, возможность образования треугольника из ножей, наоборот, увеличивается.
Сомс кивнул.
– Очень хорошо сформулировано, мадам. Для доказательства достаточно всего лишь показать, что второе появляется раньше, чем исчезает первое. Для определенности выберем одну конкретную тарелку. Любую. На нее указывают пять приборов. По крайней мере три из них должны быть одного типа. Почему?
– Потому что если там окажется два одних и два других, то всего приборов будет максимум четыре, – сразу же сказала Беатрис.
– Очень хорошо! – объявил я прежде, чем Сомс успел озвучить аналогичный комплимент.
– Так, – сказал он, – рассмотрим набор из трех одинаковых приборов – будем считать, что это вилки, в случае с ножами будет то же самое, – и посмотрим на тарелки, на которые они указывают. Конечно, на остальные, не на ту, которую выбрали в самом начале. Видим, что либо одна из этих тарелок связана с другой вилкой, либо…
– Все три связаны ножами! – воскликнула она. – В первом случае мы нашли треугольник из вилок, во втором – из ножей. Да, мистер Сомс, теперь, когда вы все это так ясно объяснили, это кажется…
– Совершенно очевидным, – вздохнул Сомс, делая большой глоток шерри.
Это замечание немного остудило ее энтузиазм, и я помахал ей рукой, извиняясь за грубость моего товарища. От ее ответной улыбки у меня потеплело на сердце.
Эта область математики носит название теории Рамсея. Дополнительную информацию см. в главе «Загадки разгаданные».
Как записывать очень большие числа
Сколько песчинок во Вселенной? Архимед, величайший из древнегреческих математиков, решил в порядке борьбы с осподствовавшим тогда представлением о том, что ответом на этот вопрос является бесконечность, найти способ выражения очень больших чисел. В его книге «Исчисление песчинок» предполагалось, что Вселенная имеет размеры, которые приписывали ей греческие философы, и что она целиком заполнена песком. Архимед рассчитал, что в этом случае в ней содержалось бы (в нашем десятичном представлении) не более 1 000… 000 песчинок (число с 63 нулями).
Это много, но не бесконечное количество. Существуют ли числа еще больше?
Математикам известно, что наибольшего (целого) числа не существует. Числа могут быть сколь угодно большими. Причина проста: если бы наибольшее число существовало, его можно было бы сделать еще больше, прибавив 1. Большинство детей, освоивших десятичную запись, быстро понимают, что любое число можно сделать больше (мало того, вдесятеро больше), просто приписав к его концу еще один нолик.
Однако, несмотря на то что в принципе предела для величины числа не существует, у нас часто имеются практические ограничения, присущие выбранному нами способу записи чисел. К примеру, римляне записывали числа при помощи букв I (1), V (5), X (10), L (50), C (100), D (500) и M (1000), объединяя их в группы для получения промежуточных чисел. Так что числа 1–4 записывались I, II, III, IIII, за исключением того, что IIII часто заменяли на IV (5 минус 1). В этой системе наибольшее число, которое вы можете записать, равно:
MMMMCMXCIX = 4999,
или еще на тысячу меньше, если ограничиться только тремя M.
Однако иногда римлянам требовались числа и побольше. Чтобы обозначить миллион, они ставили черточку (римское название vinculum) над M, получая M. Вообще, черточка над буквой увеличила ее значение в тысячу раз, но такая запись использовалась редко, и даже когда использовалась, то ставилась лишь один раз, так что максимум, до чего можно было добраться таким образом, – это несколько миллионов. Ограничения этой символьной системы ясно показывают, что размер чисел, которые можно записать, всегда зависит от используемой системы представления чисел.