Физика для «чайников». Несерьезное пособие Ильин Андрей
Помимо паскаля, который используют в общей физике, есть ещё одна единица измерения давления, которую любят метеорологи и синоптики, предсказывающие погоду: миллиметр ртутного столба (мм рт. ст.) Это давление, которое создаёт столбик ртути высотой в 1 мм. Почему именно миллиметр и почему именно ртуть? Как любят отвечать те же физики, так исторически сложилось. Был другой умный чувак, по фамилии Торричелли, который мерил давление при помощи столбика ртути. Поскольку ртуть – штука тяжёлая и давит сильно, то решили взять миллиметр как 1 условную единицу. И понеслось. Сейчас в этих «мм рт. ст.» пишут атмосферное давление в прогнозах погоды. 1 мм рт. ст. примерно равен 133.3 Па. А атмосферное давление – это давление, которое создаёт воздух силой своей тяжести. Нормальное атмосферное давление на уровне моря считается равным 760 мм рт. ст., что примерно равно 101300 Па. Почему нас не продавливает, ведь это же достаточно много? А это уже проделки матери-природы. Наше тело само по себе устроено так, что оно изнутри даёт примерно такое же давление, итого получается эдакое равновесие. Более того, оно даже может переносить перепады давления – правда, не слишком большие, миллиметров 30 в обе стороны. Есть люди, у которых такая способность слабо выражена, их называют метеозависимыми: при значительном изменении давления им уже становится дурно. Поскольку с высотой воздух становится менее плотным, то и давление его постепенно падает – примерно на тот же 1 мм рт. ст. с каждым 1 м высоты. В космосе давление настолько низкое, что почти ноль. И если человек, не надев скафандр, попытается войти в открытый космос, его, должно быть, разорвёт изнутри. Неприятность.
Ну ладно, что-то опять в космос улетели. Обратно на землю, где особо пытливые умы уже дёргают за рукав: а почему миллиметр ртутного столба считается по высоте? Давление – это же сила на площадь! Отвечаю: так-то оно так, но если для жидкости в сосуде посчитать это давление, то получится, что оно от площади не зависит:
p = m.g/S = .g.V/S = .g.h. Проще говоря: вспоминаем, что масса – это плотность на объём, а объём – это площадь на высоту. Площадь сокращается, остаётся одна высота. Итого: p – давление жидкости, – её же плотность, g – ускорение свободного падения, h – высота уровня жидкости. Лично я запоминал это так: роже – х. Или роже – аш, как удобнее.
И жидкость, и газ – субстанции, которые не любят, когда в них оказывается что-то постороннее. И вода, и воздух стремятся вытолкнуть из себя это постороннее. Правда, вода это делает гораздо сильнее, чем воздух: если спокойно лечь на воду, то она ещё будет держать туловище на поверхности. В воздухе, увы, так же «летать» не получится. Полёт вообще основан на дугих принципах, и их в школьной механике, кстати, не проходят. Зато вот про плавание (как в воде, так и в воздухе) говорят.
Чтобы тело держалось на поверхности, надо, чтобы та сила, с которой вода выталкивает из себя, была хотя бы равна силе тяжести плавающего тела. Да, это всё то же вездесущее состояние покоя – две одинаковые по значению и противоположные по направлению силы при сложении дадут 0, или равновесие, или умиротворённость, или дзен…
Короче. Выталкивающую силу почему-то очень любят называть именем древнего товарища Архимеда. Мужик сел в наполненную до краёв ванну, отчего из неё вытек такой же объём воды, какой занимал товарищ. Говорят, после этого и родилась та формула, о которой пойдёт речь дальше.
В общем, чтобы посчитать эту архимедову силу, надо умножить g на плотность жидкости и на объём той части тела, которая погружена в жидкость. Отсюда можно вытащить такое следствие: всё зависит от плотности тела. Почему? Если считать, что тело погрузилось в воду как раз на весь свой объём (плавает, точь-в-точь соприкасаясь своей верхушкой с поверхностью), то в равенстве m.g = .g.V «сократятся» обе g. К тому же, m в левой части равно V. тела – так что и обе V можно тоже убрать. Получается, если плотность тела равна или меньше плотности жидкости, то такое тело будет плавать (или всплывать, выталкиваться до тех пор, пока погружённая часть не станет настолько мала, чтобы архимедова сила воды уравновесила силу тяжести). Если плотность тела больше плотности воды – оно утонет.
На этом принципе основаны в том числе плавание судов и воздухоплавание лёгких аппаратов типа воздушных шаров. Корабль, хоть и сделан из стали (которая почти в 8 раз плотнее воды), погружается таким образом, что под ватерлинией (уровнем воды) оказывается не только стальной корпус, но и трюм – с воздухом. А воздух менее плотный, чем вода. При правильном соотношении воздух-сталь получится, что общая плотность погружённой в воду части судна уравновесит его силу тяжести, и корабль будет держаться на поверхности. Понятно, что если образуется пробоина, и в трюм хлынет вода, то корабль утонет – архимедова сила воды уже не сможет противостоять силе тяжести стали и воды, вместе взятых. Примерно такой же принцип и у воздушных шаров: он наполняется газом, более лёгким, чем воздух (например, гелием), который как бы компенсирует собой большую плотность материалов, из которых сделан шар, и человека (по сравнению с воздухом).