Остров знаний. Пределы досягаемости большой науки Глейзер Марсело
Marcelo Gleiser
THE ISLAND OF KNOWLEDGE
The Limits of Science and the Search for Meaning
© 2014 by Marcelo Gleiser
© Перевод на русский язык ООО Издательство «Питер», 2017
© Издание на русском языке, ООО Издательство «Питер», 2017
© Серия «Pop Science», 2017
Пролог
То, что я вижу в природе, является великолепной структурой, которую мы можем постигать лишь поверхностно, и подобное обстоятельство должно наполнить думающего человека чувством «смирения». Это есть искреннее религиозное чувство, которое не имеет ничего общего с мистицизмом.
Альберт Эйнштейн
Мы должны помнить, что то, что мы наблюдаем, – это не сама природа, а природа, которая выступает в том виде, в каком она выявляется благодаря нашему способу постановки вопросов.
Вернер Гейзенберг
Как много мы знаем о мире? Можем ли мы сказать, что знаем всё? Или же существуют какие-то фундаментальные ограничения, дальше которых наука продвинуться не в состоянии? Если это так, то до какой степени мы можем понять природу физической реальности? В этой книге мы задаем подобные вопросы, получаем на них неожиданные ответы и исследуем наше понимание Вселенной и самих себя.
То, что мы видим в окружающем мире, – это лишь капля в огромном океане. Даже когда мы пользуемся для этого телескопами, микроскопами и другими исследовательскими инструментами, многое остается скрытым от наших глаз. Любой инструмент, как и наши собственные органы чувств, имеет диапазон действия. Поскольку большая часть Природы не входит в этот диапазон, мы судим о реальности лишь по той ее крошечной доли, которую можем измерить и проанализировать. Таким образом, наука как повествовательное описание того, что мы видим и что, по нашим предположениям, может существовать в мире, раскрывает лишь часть общей картины, а значит, по определению ограниченна. Но что же насчет тех загадок, на которые у нас пока нет ответов? Основываясь на своих прошлых успехах, мы уверены, что со временем часть неизвестного станет известным и будет включена в наш научный опыт. Однако в этой книге я попытаюсь доказать, что некоторые тайны так и останутся неразгаданными. Неизвестность неизбежна, даже если на некоторые вопросы со временем находятся ответы. Мы стремимся к знаниям и хотим получать их как можно больше, но нам следует понять, что мы всегда будем окружены загадками.
Подобный взгляд не является антинаучным или пораженческим. И я совершенно точно не предлагаю вам подчиниться религиозному мракобесию. Наоборот, именно эти игры в загадки, именно это стремление выйти за границы известного питают наши творческие порывы и заставляют нас узнавать новое.
Карта того, что мы называем реальностью, – это постоянно изменяющаяся мозаика идей. Мы рассмотрим ее в контексте западной мысли и отследим, как с течением времени менялся наш научный взгляд на мир. Эта книга разделена на три независимые, но дополняющие друг друга части. В каждую из них я включил разнообразные научные и философские концепции, чтобы показать вам, как перемены в сознании и мышлении влияли на наши поиски знаний и смыслов. В первой части мы поговорим о Вселенной, ее происхождении и физической природе, а также о том, как наши постоянно увеличивающиеся знания о космосе формировали наше понимание самих себя, пространства, времени и энергии. Вторая часть посвящена природе материи и материальной составляющей нашего мира – от размышлений древних алхимиков до современных квантовых теорий. Мы узнаем, что они говорят нам о сущности физической реальности и о нашей роли в ее определении. В третьей части мы погрузимся в мир разума, компьютеров и математики и обратим особое внимание на то, как все эти факторы связаны с ограниченностью наших знаний и характером нашей реальности. Вы увидите, что неполнота знания и ограниченность нашей научной картины мира делают поиск смыслов еще интереснее, сочетаясь с нашими устремлениями и несовершенством человеческой природы.
Пока я пишу эти строки, миллионы нейронов в моем мозгу танцуют свой загадочный танец, мысли облекаются в слова, а слова оказываются напечатанными на моем ноутбуке благодаря точнейшей координации мышц моих глаз и рук. Что-то управляет всеми этими действиями, и это что-то мы обозначаем общим словом «сознание». Кроме того, прямо сейчас я нахожусь на высоте 30 тысяч футов – лечу со съемок документального фильма в Лос-Анджелесе. Моя книга посвящена известной нам Вселенной и блестящим открытиям современной науки, в частности астрономии и космологии. Я вижу белые облака внизу и голубое небо над ними, слышу гул двигателей самолета и то, как мой сосед притопывает ногой в такт музыке из своего iPod.
Как учит когнитивная нейробиология, за восприятие мира вокруг отвечают разные участки моего мозга. То, что я называю реальностью, представляет собой совокупность бесконечного количества стимулов, собранных пятью моими органами чувств и перенесенных из внешнего мира в мой головной мозг с помощью нервной системы. Восприятие, то есть осознание своего существования в данном месте в данный момент времени, – это результат сочетания огромного количества химических веществ, проходящих через мириады синаптических соединений между моими нейронами. Я, как и любой из вас, представляю собой независимую электрохимическую сеть, действующую благодаря соединению биологических клеток. И при этом каждый из нас – это нечто гораздо большее. Я – это я, а вы – это вы, и мы отличаемся друг от друга, несмотря на то что сделаны из одного материала. Современная наука отказалась от устаревшего картезианского противопоставления материи и духа в пользу строгого материализма. Личность – это пьеса, которая разыгрывается в нашем мозгу, а мозг – это совокупность взаимосвязанных нейронов, через которые постоянно проходят электрические импульсы, как в гирлянде на рождественской елке.
Мы плохо понимаем, как именно этот танец нейронов приводит нас к осознанию самих себя. Каждый день мы занимаемся своими делами в полной уверенности, что имеем объективный взгляд на окружающую реальность. Я знаю, что я – не вы и не кресло, в котором я сижу. Я могу уйти и от вас, и от этого кресла, но не от собственного тела (если, конечно, я не нахожусь в состоянии транса). Мы также знаем, что наше восприятие реальности, на основании которого мы осознаем себя, крайне ограниченно. Наши органы чувств воспринимают лишь крошечную долю из того, что происходит вокруг. Мы слепы и глухи к огромным объемам информации, которая не была важна нашим предкам для выживания в опасных условиях. Например, каждую секунду наше тело пронизывают триллионы нейтрино, испускаемых из самого сердца Солнца; различные электромагнитные волны (микроволны, радиоволны, инфракрасные и ультрафиолетовые волны) переносят информацию, которую не видят наши глаза; наши уши не улавливают звуки, не входящие в их диапазон восприятия; мы не замечаем частички пыли и бактерий. Как говорил Лис Маленькому Принцу в сказке Антуана де Сент-Экзюпери, «самого главного глазами не увидишь».
Некоторые приборы и инструменты расширяют границы видимого нами мира, включая в него очень далекие и очень маленькие объекты. Они позволяют нам увидеть крошечные бактерии, электромагнитное излучение, субатомные частицы и взрывы звезд, находящихся в миллиардах световых лет от нас. Высокотехнологичные устройства помогают врачам видеть опухоли в наших мозгу и легких, а геологам – находить подземные месторождения нефти. Тем не менее любая технология наблюдения или измерения имеет ограниченные точность или охват. Весы показывают значения массы предмета с точностью до половины своего минимального деления. Если каждая засечка на весах обозначает одну унцию, то вам не удастся определить вес предмета с точностью больше половины унции. Абсолютно точных измерений не существует. Каждое измеренное значение указывается в существующих для него границах точности и с учетом «планки погрешностей», то есть масштаба допустимых ошибок. Точные измерения – это просто измерения с меньшей планкой погрешностей или высоким уровнем достоверности. Идеальные безошибочные измерения попросту невозможны.
Рассмотрим более сложный пример, чем весы, – ускоритель частиц. Такие приборы предназначены для изучения состава материи, для поиска самых маленьких элементов, из которых строится все сущее в мире.[1] В ускорителях частиц активно используется знаменитая формула Эйнштейна Е = mc2. Они превращают энергию движения быстрых частиц в новые кусочки материи. Для этого используется довольно жесткий способ – сталкивание частиц, движущихся практически со световой скоростью. Как еще ученые могли бы рассмотреть, к примеру, что находится внутри протона? В отличие от человеческих органов протоны нельзя разрезать. Вот почему ученые сталкивают протоны друг с другом на больших скоростях, а затем исследуют обломки. Если бы у нас не было острых ножей и мы хотели бы изучить содержимое апельсина, мы могли бы воспользоваться тем же способом – разгонять фрукты до высокой скорости, сталкивать друг с другом и изучать разлетающиеся в стороны мякоть, сок и семена. При этом чем выше была бы скорость апельсинов, тем более ценными стали бы результаты эксперимента. Например, после одного столкновения мы узнали бы, что внутри апельсинов есть семена. Еще несколько столкновений на больших скоростях – и семена бы раскололись. В этом и состоит весь принцип: чем выше энергия столкновения, тем глубже мы можем заглянуть внутрь материи.[2]
За последние полвека мощность ускорителей частиц существенно выросла. Радиоактивные частицы, которые Эрнест Резерфорд использовал в 1911 году для изучения строения атомного ядра, имели в миллион раз меньше энергии, чем те, которые сегодня применяются в Большом адронном коллайдере, гигантском ускорителе частиц, построенном в Женеве, Швейцария. Соответственно, современные физики могут гораздо глубже заглянуть в природу материи и увидеть вещи, которые даже не снились Резерфорду, например элементарные частицы, весящие в сотню раз больше протона, – знаменитые бозоны Хиггса, открытые в июле 2012 года.[3] Если финансирование ускорителей продолжится (я говорю «если», потому что на их обслуживание требуются огромные суммы), можно ожидать, что новые технологии позволят нам изучать еще более высокоэнергетичные процессы и приведут нас к блестящим, а то и революционным результатам.
Однако важно отметить, что технологии ограничивают глубину нашего «проникновения» в физическую реальность. По сути, машины определяют, что именно мы можем измерить, а значит – что именно ученые могут узнать о человечестве и Вселенной. Будучи человеческими изобретениями, машины зависят от нашей фантазии и доступных нам ресурсов. При удачном стечении обстоятельств их точность постоянно повышается, и иногда они могут открыть нам что-то неожиданное. В качестве примера можно привести поразивший Резерфорда факт, что ядро атома занимает лишь небольшую часть его объема, но при этом содержит почти всю его массу. Для Резерфорда и его коллег, работавших в начале ХХ века, мир атомов и субатомных частиц выглядел совершенно по-другому, нежели для нас сейчас. Можно быть совершенно уверенными в том, что через 100 лет наша картина этого мира тоже радикально изменится. Итак, из всего вышесказанного мы можем сделать эмпирический вывод: наука воспринимает только те процессы, энергия которых доступна ей экспериментально.
Но что в таком случае мы можем с уверенностью сказать о характеристиках материи, обладающей в тысячи или миллионы раз большим запасом энергии, чем позволяют измерить наши нынешние инструменты? Теоретики могут сколько угодно рассуждать о них и приводить убедительные, простые и элегантные доказательства своих точек зрения. Но суть эмпирической науки состоит в том, что последнее слово всегда остается за Природой. Фактам нет дела до нашей любви к эстетике и красоте (об этом я подробнее рассказываю в своей книге A Tear at the Edge of Creation). Таким образом, если мы имеем доступ к Природе только через наши инструменты и, если говорить точнее, через наши несовершенные методы исследования, то и наши знания о реальном мире неизбежно будут ограниченны.
Помимо технологических ограничений, которые мы чувствуем, пытаясь познать реальность, существуют еще открытия в физике, математике и точных науках. За последние пару столетий они преподали нам не один урок относительно уклончивости Природы. Как мы увидим ниже, наши знания о мире ограниченны не только из-за несовершенства инструментов, но и из-за того, что у самой Природы (по крайней мере в той степени, в которой ее воспринимают люди) существуют ограничения. Греческий философ Гераклит понял это еще 25 веков назад, когда произнес свою знаменитую фразу «Природа любит прятаться». Бесчисленные успехи и неудачи показали нам, что Природу действительно невозможно обыграть в прятки. Говоря об этом, можно использовать метафору, которой Сэмюэль Джонсон описывал свои затруднения при определении некоторых английских глаголов: «Это словно пытаться нарисовать отражение леса в водах озера во время бури».
В результате, несмотря на постоянный рост наших возможностей, в любой момент времени огромная часть мира вокруг нас остается невидимой или, вернее, незамеченной. Однако такая близорукость дает дополнительные стимулы нашему воображению – мы начинаем воспринимать ограничения не как непреодолимые препятствия, но как брошенные нам вызовы. Как писал прозорливый французский автор Бернар ле Бовье де Фонтенель в 1686 году, «мы хотим знать больше, чем видим».[4] В телескоп, построенный Галилеем в 1609 году, едва можно было разглядеть кольца Сатурна, а сегодня с этой задачей справляются даже игрушечные телескопы. Наши знания о мире – это совокупность того, что мы можем выявить и измерить. Сегодня мы видим больше, чем Галилей в свое время, но и этого недостаточно. Ограничения накладываются не только на измерения, ведь теории и модели, которые описывают неизвестные области физической реальности, также полагаются на текущие знания. Если знаний для подкрепления идей недостаточно, ученые используют критерий совместимости. Любая новая теория, которая распространяется за пределы известного, должна хотя бы в определенной степени основываться на текущих знаниях. Например, общая теория относительности Эйнштейна, описывающая гравитацию как искривления пространства-времени в результате присутствия материи (и энергии), сводится к более старой ньютоновской теории универсального притяжения в пределах слабых гравитационных полей. Нам не нужна теория Эйнштейна, чтобы посадить космический корабль на Юпитер, но при описании черных дыр без нее не обойтись.
Поскольку значительная часть мира остается для нас невидимой или недоступной, мы должны с большим вниманием относиться к понятию реальности. Нам следует определиться, существует ли в принципе такое явление, как высшая реальность (источник всего сущего), и, если да, сможем ли мы когда-либо познать ее во всей ее полноте. Обратите внимание, что я не называю эту высшую реальность Богом, так как, согласно большинству религий, Бог непознаваем. Кроме того, она не является и предметом научных изысканий. Я не провожу параллелей между ней и понятиями трансцендентной реальности, характерными для восточной философии, например состоянием нирваны, которого можно достигнуть путем медитации, Брахманом из индуистского течения веданта или всеобъемлющим Дао. Я рассматриваю лишь физическую реальность, имеющую более конкретный характер, который мы можем познать, применяя научные методы. Нам следует задаться вопросом: является познание основ природы лишь вопросом преодоления наших собственных границ или же наш взгляд на возможности науки слишком наивен?
Существует и еще одна дилемма. Предположим, один человек воспринимает окружающую реальность исключительно через свои органы чувств (как это делает большинство людей), а другой пользуется специальными инструментами. Чей взгляд на мир будет более правильным? Один человек «видит» микроскопические бактерии, далекие галактики и субатомные частицы, скрытые от взгляда другого. Очевидно, что вещи, которые они видят, совершенно различны, и если эти люди начнут воспринимать видимое буквально, то придут к абсолютно разным выводам о мире или, по крайней мере, о природе физической реальности. Кто же из них будет прав?
Разумеется, человек, использующий инструменты, может глубже заглянуть в суть вещей, но вопрос, кто из этих двоих прав, некорректен сам по себе. Очевидно, что главной мотивацией при познании является желание более четко увидеть, из чего состоит мир, и в процессе изучения понять его еще лучше. Де Фонтенель понимал это, когда писал: «Вся философия основывается на двух вещах – любопытстве и плохом зрении».[5] Большая часть всего, что мы делаем, в итоге направлена на преодоление нашей собственной близорукости.
То, что мы считаем реальным, зависит от глубины, на которую мы способны проникнуть в реальность. Даже если существует истинная, высшая природа реальности, мы можем постичь ее лишь настолько, насколько хватает наших знаний. Давайте представим, что когда-нибудь будет разработана блестящая теория, подтвержденная невероятными экспериментами, и что она окажет огромное влияние на наше понимание истинной природы реальности. Даже если мы сможем уловить какие-то признаки данной реальности своими приборами, это приведет нас к единственному выводу – наша теория частично верна. Инструментальная методология, с помощью которой мы познаем мир, не может подтвердить или опровергнуть теоретические утверждения о высшем характере реальности. Итак, еще раз: наше восприятие реальности развивается вместе с инструментами, которые мы используем для познания Природы. Неизвестное постепенно становится известным, и поэтому то, что мы называем реальностью, постоянно меняется. Во времена Колумба считалось, что Земля находится в центре Вселенной, а во времена Ньютона на смену этим представлениям пришла гелиоцентрическая система. Сегодняшняя картина космоса с его миллионами галактик, состоящих из миллиардов звезд, наверняка повергла бы Ньютона в шок. Она удивляла даже Эйнштейна. Версия реальности, которую мы считаем верной в тот или иной момент времени, может быть опровергнута в будущем.
Разумеется, законы ньютоновской механики всегда будут работать в пределах их области действия, и вода всегда будет состоять из атомов водорода и кислорода, по крайней мере, пока у нас не появится другой способ описания физических и химических процессов в атомах. И законы Ньютона, и состав молекулы воды – это элементы нашего объяснения окружающей реальности, действительные в рамках своего диапазона применения и концептуальной структуры. Учитывая, что наши инструменты постоянно развиваются, реальность будущего обязательно будет включать в себя сущности, о которых нам сегодня неизвестно, будь то астрофизические объекты, элементарные частицы или вирусы. Пока технологии развиваются (а у нас нет оснований предполагать, что этот процесс прекратится, пока существует человечество), конца научному поиску не будет. Конечная истина – всего лишь иллюзия.
Давайте представим себе всю накопленную нами информацию об окружающем мире в виде острова, который я называю Островом знаний. Под знаниями я подразумеваю в основном научные и технические знания, хотя на нашем острове могут также разместиться все культурные достижения человечества и произведения искусства. Остров знаний окружен огромным океаном неизведанного, скрывающим бесчисленные множества манящих тайн. Есть ли у нашего океана берега? К этому вопросу мы еще вернемся. Пока достаточно просто вообразить себе, что Остров знаний разрастается по мере того, как мы узнаем больше о мире и о самих себе. Это не всегда происходит равномерно, и известное отделяет от неизвестного лишь зыбкая линия прилива. Кроме того, весь процесс может быть повернут вспять, если в свете новых фактов мы отбросим идеи, ранее казавшиеся приемлемыми.
Рост Острова знаний имеет для нас одно удивительное, но важное последствие. Мы в своей наивности полагаем, что чем больше знаем о мире, тем ближе становимся к конечной точке (одни называют ее теорией всего, а другие – высшей природой реальности). Однако, если развить нашу метафору, можно увидеть, что чем больше становится Остров знаний, тем протяженнее оказывается его береговая линия – граница между известным и непознанным. Новые знания о мире не приближают нас к концу путешествия (само существование которого не больше чем просто предположение), а ставят перед нами новые загадки. Чем больше мы знаем, тем больший объем неизвестного открывается перед нами и тем больше вопросов мы задаем.[6]
Некоторые люди, включая многих моих друзей-ученых, считают такой взгляд на вещи крайне пессимистичным. Меня даже называли пораженцем, но это совсем не так. Я восхищаюсь достижениями человечества, которых мы добились благодаря бесконечному поиску новых знаний. Меня спрашивают: «Если мы никогда не получим окончательный ответ, зачем вообще пытаться? И как понять, прав ты или нет?» Ответы на такие вопросы вы найдете в этой книге. Приступая к изучению природы человеческого знания (то есть наших попыток понять мир и свое место в нем), нужно признать, что наш подход фундаментально ограничен. Это понимание откроет перед нами новые двери, а не закроет их. Оно сделает поиск знаний бесконечным путешествием, вечным романом с неизведанным. Разве может быть что-то более вдохновляющее, чем уверенность в том, что в мире всегда будет что исследовать и что, как бы много мы ни знали, новые открытия неизбежны? Предположить, что у этого пути есть конец и когда-нибудь мы к нему придем, – вот что кажется мне пораженчеством. Перефразируя «Аркадию» Тома Стоппарда, «возвышает нас не цель, а сама необходимость познания».
Новые открытия проливают свет на отдельные участки непознанного, но стоит отойти чуть дальше – и их сияние теряется во мраке. Как и с любой жизненной загадкой, мы можем по-разному обойтись с этим фактом. Наш разум либо будет медленно, но верно продвигаться вглубь неизведанного, либо нет. Если мы выбираем второй вариант, то для борьбы с вечным незнанием нам требуется что-то помимо разума, например вера в альтернативные (в том числе сверхъестественные) объяснения. В итоге нам приходится выбирать между двумя полярными точками зрения – научным подходом и мистицизмом. Этот дуализм очень заметен в наше время. Я же предлагаю третий путь, основанный на понимании наших способов исследования реальности как источника бесконечного вдохновения, не требующего установления конкретной цели и не дающего обещания вечной истины.
По мере развития науки мы будем знать больше. Новые инструменты исследования ставят перед нами новые вопросы – зачастую такие, какие мы ранее даже не могли себе вообразить. Подумайте о развитии астрономии до и после изобретения телескопа (1609) или биологии до или после создания первого микроскопа (1674). Разве можно было представить себе, какую революцию в науке совершат эти приборы? Нестабильность у науки в крови. Для того чтобы двигаться вперед, ей нужно делать ошибки. Теории должны опровергаться, а их ограничения – обнаруживать себя. Чем глубже мы погружаем свои инструменты в ткань реальности, тем чаще обнаруживаем бреши в старых теориях, на обломках которых возникают новые. Если вы верите в то, что у этого процесса есть конец, – вы заблуждаетесь. Научный подход к знаниям ограничен, и ответов на некоторые вопросы мы никогда не получим. Некоторые аспекты окружающего мира обязательно должны оставаться неизвестными. Некоторые, как я покажу ниже, в принципе непознаваемы.
Установление границ научного познания – совсем не то же самое, что мракобесие. Наоборот, это проявление самоанализа, столь необходимого во времена постоянного теоретизирования и научного высокомерия. Описывая ограничения, налагаемые на наши объяснения физической реальности научной методологией, я пытаюсь защитить науку от нападок на ее целостность, а также объяснить, что наука движется вперед благодаря нашему невежеству, а не знаниям. Как отмечает в своей недавней книге Ignorance: How It Drives Science нейрофизиолог из Колумбийского университета Стюарт Файерстейн, все великие предположения в первую очередь представляют собой признания в невежестве. Претензия на обладание истиной – это слишком тяжелая ноша для ученого. Мы узнаем новое на основании того, что можем измерить, а все остальное должно повергать нас в трепет. Важно лишь то, чего мы не знаем.
Наше восприятие реальности основывается на искусственном разделении субъекта и объекта. Эта дилемма вдохновляла и приводила в замешательство многие поколения мыслителей. Вам кажется, что вы знаете, где заканчиваетесь вы сами и начинается внешний мир, но на самом деле это куда более сложный вопрос. В мире нет даже двоих людей с одинаковым взглядом на мир. С другой стороны, наука – это лучший набор инструментов, которым мы располагаем для создания универсального языка, преодолевающего индивидуальные различия. Исследуя наше собственное стремление к покорению неизвестного, мы также откроем для себя способность науки изменять и вдохновлять.
Часть I. Происхождение мира и природа рая
Вначале бог создал землю и посмотрел на нее из своего космического одиночества. И бог сказал: «Создадим живые существа из глины, пусть глина взглянет, что сотворено нами». И бог создал все живые существа, какие до сих пор двигаются по земле, и одно из них было человеком. И только этот ком глины, ставший человеком, умел говорить. И бог наклонился поближе, когда созданный из глины человек привстал, оглянулся и заговорил. Человек подмигнул и вежливо спросил: «А в чем смысл всего этого?»
– Разве у всего должен быть смысл? – спросил бог.
– Конечно, – сказал человек.
– Тогда предоставляю тебе найти этот смысл! – сказал бог и удалился.
Курт Воннегут. Колыбель для кошки
Именно теми вопросами, на которые нет ответа, ограничены людские возможности, очерчены пределы человеческого существования.
Милан Кундера. Невыносимая легкость бытия
Человек всегда был своей самой раздражающей проблемой.
Рейнгольд Нибур. Природа и судьба человека
Глава 1. Желание верить
в которой автор исследует роль веры и экстраполяции в религии и науке
Возможно ли понять мир, не имея веры? Этот вопрос лежит в основе раздвоения науки и религии, определяющей взаимоотношения человека и окружающей реальности. Сравнив мифологические и научные концепции, можно сказать, что религиозные мифы пытаются описать непонятное с помощью непонятного, в то время как наука стремится объяснить непознанное с помощью знаний. Противостояние этих двух подходов усиливается из-за веры в существование двух не соответствующих друг другу реальностей – нашего мира (познаваемого с помощью правильно применяемых научных методов) и мира потустороннего (а значит, недоступного, нематериального, традиционно относимого к области религии).[7]
В мифах неизвестное отражает священную природу божеств, чье существование не ограничено временем и пространством. Историк религии Мирча Элиаде писал об этом так:
Для австралийца, равно как и для китайца, индуиста или европейского крестьянина, мифы являются достоверными, потому что они священны и рассказывают о божественных существах и событиях. Соответственно, пересказывая миф или слушая его, человек вступает в контакт со священным и выходит за пределы привычного состояния, своей «исторической ситуации».[8]
В течение многих веков религиозные мифы позволяли верующим подниматься над своим «мирским состоянием», то есть осознанием того, что каждый человек живет во времени и имеет свою историю, которая неизбежно движется к концу. На более практическом уровне мифические объяснения природных явлений представляли собой донаучные попытки понять то, что находилось вне человеческого контроля, и ответить на вопросы, которые казались вечными. Почему Солнце каждый день движется по небу? Греки считали, что это Аполлон провозит его в своей огненной колеснице. Племя навахо, проживавшее на юго-востоке Америки, верило, что существо по имени Джохонааэи (оригинал: Johonaa’ei) каждый день переносит светило через небо на своей спине. У египтян эта роль отводилась Ра, который вез Солнце с востока на запад на лодке. В строго натуралистическом смысле мотивы, что прячутся за этими мифами, не так уж далеки от научных, – выявить скрытые механизмы, стоящие за природными явлениями. В конце концов, Солнце движется по небу вне зависимости от того, считаем мы ответственными за это богов или физические явления.
По сути, и ученые, и адепты религий верят в существование необъяснимых причинно-следственных связей, то есть в вещи, происходящие по неизвестным причинам, пускай характер таких причин и различается. В науке эта вера оказывается особенно очевидной, когда теоретики пытаются экстраполировать гипотезу или модель за пределы, установленные на практике (например, заявляют, что законы гравитации одинаковы во всей Вселенной или что теория эволюции путем естественного отбора применима ко всем формам жизни, включая инопланетные). Такие экстраполяции имеют огромное значение для изучения неизведанных территорий. Ученые же чувствуют себя удовлетворенными, так как их теории позволяют описать значительную часть реальности. Немного погрешив против истины, мы можем сказать, что в данном случае вера ученых имеет эмпирическое подтверждение.[9]
К примеру, ньютоновскую теорию всемирного тяготения, описанную в книге III его революционного труда «Математические начала натуральной философии», следовало бы назвать теорией тяготения Солнечной системы, так как за ее пределами никакие испытания еще не были возможны к концу XVII века. Тем не менее Ньютон назвал третью книгу «Начал» «О системе мира», предположив, что его описание гравитационного притяжения как силы, пропорциональной массе двух тел и обратно пропорциональной квадрату расстояния между ними, применимо ко всей Вселенной. Это подтверждается его собственными словами из книги III:
Наконец, как опытами, так и астрономическими наблюдениями устанавливается, что все тела по соседству с Землей тяготеют к Земле, и притом пропорционально количеству материи каждого из них; так, Луна тяготеет к Земле пропорционально своей массе, и взаимно наши моря тяготеют к Луне; подобно этому и тяготение комет к Солнцу. На основании этого правила надо утверждать, что все тела тяготеют друг к другу.[10]
Ньютон проявляет хитрость и не говорит о причинах возникновения гравитации («я не изобретаю гипотез»), но предполагает, что они воздействуют на все тела, имеющие массу. «Для нас достаточно того, что притяжение существует, действует в соответствии с законами, которые были нами объяснены, и отвечает за все движения небесных тел и наших морей», – пишет Ньютон в «Общем поучении», своего рода заключении к «Началам». Он не понимал, почему объекты, обладающие массой, притягиваются друг к другу, но знал, как именно они это делают. «Математические начала натуральной философии» отвечали на вопрос «Как?», а не «Почему?».
Позднее, 10 декабря 1692 года, в письме к теологу из Кембриджа Ричарду Бентли Ньютон использовал свои рассуждения о природе силы притяжения, чтобы подкрепить свою идею о бесконечности Вселенной. Эта мысль стала поворотной точкой для всей космологии. Бентли задавался вопросом: если гравитация подчиняется одним и тем же законам во всей (конечной) Вселенной, почему же вся материя в итоге не окажется сжатой в комок в ее центре. Ньютон соглашался, что все было бы именно так, если бы Вселенная имела границы. Однако, писал он, «если бы материя была равномерно распределена по бесконечному пространству, она бы никогда не слилась в единую массу. Часть ее образовала бы одну массу, часть – другую, и в итоге бесконечное количество масс оказалось бы расположено на огромных расстояниях друг от друга в пространстве, не имеющем конца». Ньютон настолько верил в универсальную природу гравитации, что мог с уверенностью рассуждать о бесконечности всего космоса.
Через несколько веков после него Эйнштейн сделал примерно то же самое. Он окончательно сформулировал свою общую теорию относительности в 1915 году. Для этого ему пришлось пойти на шаг дальше Ньютона и объяснить гравитацию искривлением пространства рядом с массивным объектом (на самом деле время тоже искривляется, но об этом мы поговорим позже). Чем больше масса объекта, тем больше пространства искривляется вокруг него, как батут по-разному прогибается под людьми с разным весом. Для объяснения того, как притягиваются друг к другу массивные объекты, больше не требовалось выдумывать загадочных сил, действующих на расстоянии. В искривленном пространстве траектории не могут быть прямыми. Разумеется, Эйнштейн не объяснял, почему масса оказывает такое воздействие на геометрию пространства. Я подозреваю, что, если бы его спросили об этом, он ответил бы, как Ньютон: «Я не изобретаю гипотез». Его теория прекрасно работала, объясняя те вещи, которые ставили в тупик ньютоновскую физику. И эффективность данной теории подтверждалась наблюдениями за динамикой объектов в Солнечной системе. Этого было достаточно.
В 1917 году, меньше чем через два года после публикации своей теории, Эйнштейн написал любопытную работу «Вопросы космологии и общая теория относительности». Как и Ньютон, Эйнштейн экстраполировал свою теорию за пределы Солнечной системы, в которой она подтверждалась экспериментально, – на всю Вселенную. В данной работе Эйнштейн рассуждает о форме космоса и, как истинный платоник, придает ему самую совершенную форму – форму шара. Для удобства, а также в связи с отсутствием наблюдений, подтверждающих противоположную точку зрения, он также делает Вселенную статичной. Его уравнения дают ему желаемый результат, но при этом преподносят небольшой сюрприз. Эйнштейн отказывается признавать Вселенную бесконечной и, чтобы избежать коллапса всей материи в одной центральной точке (о котором Бентли писал Ньютону), вводит так называемую универсальную постоянную. Это новый элемент его уравнений, описывающих искривление пространства. Эйнштейн обращает внимание, что при достаточно небольшом значении такая постоянная будет совместима «с эмпирическими фактами, полученными на основании наблюдений за Солнечной системой». Эта константа, которая, по словам Эйнштейна, «не основывалась на наших фактических знаниях о гравитации», сегодня называется космологической постоянной и, вполне возможно, действительно играет ключевую роль в динамике космоса, пускай и не такую, которую приписывал ей Эйнштейн. Эйнштейну нужно было убедиться, что его статистическая шарообразная Вселенная не сколлапсирует. Демонстрируя полную уверенность в своей теории, он не только экстраполировал свои расчеты с Солнечной системы на всю Вселенную, но и учел в своем описании космоса результаты непонятных ему колебаний, удерживавших небесный свод на своем месте.
Для того чтобы покинуть пределы известного, Ньютону и Эйнштейну приходилось идти на интеллектуальные риски, делать предположения на основании интуиции и личных убеждений. Они пошли на это, зная, что их теории наверняка являются неверными и неполными, и это показывает, насколько два величайших ученых всех времен верили в силу творческого процесса. В той или иной степени каждый человек, занимающийся наукой, делает то же самое.
Глава 2. За пределами времени и пространства
в которой мы рассмотрим, как разные религии объясняют происхождение мира
Давайте вернемся на 10 тысяч лет в прошлое, к моменту зарождения первой великой цивилизации между реками Тигр и Евфрат (сейчас там находится Ирак). Обожествление природы было попыткой контролировать неконтролируемое. Наводнения, засухи, землетрясения, извержения вулканов, цунами (то есть все то, что и сегодня называется в англоязычных страховых полисах act of God – «стихийное явление», «действие непреодолимой силы») считались действиями разозленных богов, которых следовало умилостивить. Для этого необходимо было разработать язык общения между человечеством и божествами, своего рода мост между людьми и силами Природы. Таким языком стали ритуальные практики и мифические сказания. Угрозы выживанию человечества исходили отовсюду: из глубин Земли, с ее поверхности и с небес, а значит, и боги должны были быть вездесущими. Религия родилась из нужды и почитания. Вполне вероятно, что любое мыслящее существо с широкими, но ограниченными возможностями должно на каком-то этапе предположить, что есть и другие существа, обладающие большими силами, например боги или инопланетяне. Альтернатива (то есть объяснение природных катаклизмов волей случая) была слишком страшной, ведь она означала бы принятие беспомощности и полного одиночества человечества перед лицом неизвестного. Для того чтобы хоть как-то контролировать свою судьбу, людям необходимо было верить.
Но страх был не единственным (хотя, видимо, главным) движущим фактором веры. Жизнь людей не состояла из сплошных неудач. Случалось и что-то хорошее – богатый урожай, удачная охота, благоприятная погода или спокойное море. Природа не только забирала, но и многое давала, не только убивала людей, но и поддерживала в них жизнь. Некоторые явления, отражавшие дуалистичный характер Природы, могли быть регулярными и безопасными (например, смена дня и ночи или времен года, фазы Луны или приливы и отливы), а некоторые – внезапными и пугающими (солнечные затмения, кометы, лавины и лесные пожары). Неудивительно, что регулярность ассоциировалась (и продолжает ассоциироваться) с добром, а нерегулярность – со злом. Природные явления приобрели моральный аспект, который, в связи с обожествлением Природы, напрямую отражал капризы богов.
Древние культуры по всему миру возводили монументы и храмы для фиксирования и прославления регулярных природных явлений. В качестве примера можно рассмотреть английский Стоунхендж, который использовался как место захоронения. Скорее всего, эта функция была связана с тем, что каждый год в день летнего солнцестояния Солнце всходит ровно над его Пяточным камнем. Таким образом, создается связь между периодическим возвращением Солнца и циклом жизни и смерти человека. Даже если механизмы движения светил были неизвестны и у строителей Стоунхенджа не было желания узнавать их, они все равно внимательно фиксировались и измерялись. К примеру, три тысячи лет назад в Вавилоне уже существовала развитая астрономическая система, отраженная в эпосе о сотворении мира «Энума Элиш» («Когда наверху»). Вавилоняне составляли подробные таблицы движения планет и Луны по небу и отмечали все наблюдаемые циклы. К примеру, в табличку Аммисадука внесены данные о восходе и заходе Венеры за 21 год.
Повторения успокаивают. Если Природа задает ритм, нам ничего не остается, как следовать ему. Цикличность времен обещает нам перерождение, устанавливает глубокую связь между человеком и космосом. Неудивительно, что миф о многократном перерождении есть во множестве культур. Что может быть лучше, чем верить: мы из раза в раз возвращаемся в этот мир, а смерть – не конец, а новое начало?
У меня пятеро детей, и, глядя на них, я вижу, как им сложно примириться с конечностью бытия. Когда я пишу эти строки, моему сыну Луциану шесть лет, и тема смерти интересует его уже два года. Смерть кажется ему абсурдом, а время – бесконечным. Каждому родителю доводилось услышать вопрос «Что происходит, когда люди умирают?», и каждый затруднялся дать на него ответ. Луциан уверен, что все мы возвращаемся, но сомневается – теми же, кем были, или другими. Конечно же, ему хочется вернуться таким же, какой он есть, с теми же родителями, братьями и сестрами и прожить свою жизнь дважды, а еще лучше – бесконечное количество раз. Что может быть безопаснее, чем отсутствие потерь? Мне больно говорить ему, что с нами происходит то же самое, что и с муравьем, которого он нечаянно давит ногой. Разумеется, Луциану не нравится такой ответ: «Откуда ты знаешь, папа?» «Я не знаю наверняка, сынок. Одни люди считают, что мы возвращаемся, другие верят, что мы уходим в место, называемое раем, и встречаем там всех, кто умер до нас. Проблема в том, что никто из умерших не может ничего рассказать нам о конце пути», – говорю я. Обычно такой разговор заканчивается крепкими объятиями и многочисленными «я тебя люблю». Может ли быть что-то ужаснее, чем осознание, что я не смогу любить его вечно? И что однажды ему придется столкнуться с моей смертью?
С появлением авраамических религий возникло совершенно новое видение Природы. Вместо постоянных циклов создания и разрушения, жизни и смерти время превратилось в линию с началом и концом. «Профанная история», как ее называет Элиаде, – это все то, что происходит с нами между рождением и смертью. Внезапно ставки становятся гораздо выше, потому что одна жизнь означает единственный шанс на счастье. Христиан и мусульман от этого осознания спасает вера в загробную жизнь. Таким образом, время начинает выглядеть дуалистично: при жизни оно линейно, а после смерти его границы размываются.
Линейное или цикличное, время всегда было мерилом трансформации. Если следовать за ним в будущее, оно приведет к концу, а если в прошлое – к началу. В мифах люди всегда сталкиваются с изменениями, которые приносит время, а боги живут вне его, в том месте, где не существует ни старости, ни болезней. Поскольку жизнь порождает жизнь и поколения следуют друг за другом, то, продвинувшись во времени назад достаточно глубоко, можно обнаружить первую жизнь – первый живой организм, будь то бактерия, человек или животное. И здесь возникает ключевой вопрос: как появилась первая жизнь, если до нее не существовало ничего живого? Мифы в большинстве своем дают четкий ответ: боги сотворили этот мир, а затем населили его жизнью. Только то, что существует вне времени, может создать что-то, подвластное его законам. Некоторые мифы о сотворении мира, в частности предания новозеландских маори, рассказывают о том, что первый акт творения мог произойти и без вмешательства богов, но в большинстве из них говорится о возникновении самого времени одновременно с появлением мира. Блаженный Августин пишет об этом в своей «Исповеди» (книга 11, глава 13): «А так как делатель всякого времени – Ты, то, если до сотворения неба и земли было какое-то время, то почему можно говорить, что Ты пребывал в бездействии? Это самое время создал Ты, и не могло проходить время, пока Ты не создал времени. Если же раньше неба и земли вовсе не было времени, зачем спрашивать, что Ты делал тогда. Когда не было времени, не было и “тогда”».
Таким образом, происхождение мира и начало времени прочно связаны с природой невидимого божественного мира. Эта связь сохраняется и сейчас, когда появление Вселенной пытаются объяснить современными космологическими моделями, а происхождение звезд и планет изучают астрофизики. Как я уже писал в своей книге «Танцующая Вселенная», понятия цикличного и линейного времени заново возникают в современной космологии. Еще более удивительно то, что важнейшая характеристика древних мифов о сотворении – глубокая связь между человеком и космосом – также присуща современной астрономической мысли. Эта связь повторно возникла в ней лишь после долгого перерыва, спустя годы после главных открытий Коперника. В течение этого периода наше собственное существование казалось нам чем-то вторичным по сравнению с великолепием Вселенной. Когда Коперник, Иоганн Кеплер и Галилео Галилей в XVI–XVII веках показали, что Земля не является центром творения, мы утратили свой особый статус и превратились всего лишь в обитателей одного из бесчисленного множества миров. Но 400 лет спустя мы занялись поиском жизни во Вселенной и выяснили, что планеты, похожие на Землю, встречаются крайне редко. Жизнь и, что еще важнее, уникальность человечества снова приобрели космическое значение. Мы важны потому, что уникальны. Множество шагов, которые мы сделали от неживых молекул к живой клетке, а затем от нее – к сложным многоклеточным организмам, будет непросто повторить. Кроме того, многие детали этого процесса зависели от истории нашей планеты. Однако даже при нынешнем отсутствии доказательств мы не можем быть окончательно уверенными в том, что во Вселенной больше нет разумной жизни. Может быть, это так, а может быть, и нет. С уверенностью можно лишь сказать, что если разумные инопланетяне существуют, то они живут очень далеко от нас и встречаются крайне редко (конечно, есть вероятность, что они просто очень хорошо умеют прятаться, но об этом мы поговорим ближе к концу книги). Итак, мы одиноки во Вселенной и должны научиться с этим жить.
Желание понять свое происхождение и свое место во Вселенной – одно из определяющих свойств человека. Древнейшие космологические мифы задают практически те же вопросы, что и современные ученые, рассматривающие гипотезы квантового создания Вселенной «из ничего» или множественности вселенных. Эти вопросы и ответы на них различаются по многим пунктам, кроме мотивации – понять, откуда мы пришли и какова наша космическая роль (если она вообще существует). Для создателей мифов ответы на эти вечные вопросы находились в области священного, ведь только существа вне времени могли создать наш временный мир. Тем, кто не верит в мифические объяснения, остается лишь тщательно проверять наши рациональные объяснения мира и определять, насколько далеко они могут зайти в описании реальности, а значит, и в ответе на вечные вопросы творения.
Глава 3. Быть или стать? Вот в чем вопрос
в которой мы знакомимся с первыми философами античной Греции и их представлениями о сути реальности
Значительные перемены в человеческом сознании произошли между VI и V веками до н. э. в Древней Греции. Несмотря на то что важные новые идеи о социальной и духовной сторонах человеческой жизни появлялись в разных регионах планеты (в Китае их авторами были Конфуций и Лао-Цзы, а в Индии – Сиддхартха Гаутама, или Будда), именно Греция стала колыбелью западной философии – новой формы понимания, основанной на вопросах и аргументах, созданных для изучения фундаментальной природы бытия и познания. Первых греческих философов интересовали не мифы о сотворении мира и священные знания, построенные на божественном откровении. Досократики (так называют философов, живших ранее Сократа) пытались познать реальность с помощью логики и гипотез. Этот переход к вере в силу разума, способного ответить на ключевые вопросы существования, полностью изменил взаимоотношения между человеком и непознанным. Теперь человек не просто пассивно надеялся на судьбу и сверхъестественное вмешательство, а активно подходил к знаниям и личной свободе.
Первую группу досократиков, ионийцев, занимала материальная составляющая окружающего мира. Они задавались вопросом: «Из чего сделано все сущее?» Его значимость показывает тот факт, что на этот вопрос до сих пор пытается ответить современная физика частиц. Мы постоянно даем на него все новые и новые ответы, которые, в свою очередь, изменяют наши методы исследования. Представители ионийской школы предлагали разные варианты ответа, но все их объединяла одна фундаментальная характеристика – вера в «единство сущего», то есть в то, что материальная составляющая реальности заключена в едином объекте или веществе. Эта концепция централизованного единства резко контрастировала с пантеистической мифологией, в которой разные боги отвечали за различные природные явления. Для ионийцев все, что человек видел вокруг себя, являлось проявлением единого материального начала, переживающего различные физические трансформации.
Фалес, которого не кто иной, как Аристотель, считал первым философом, заявлял, что «основой всех вещей является вода, ведь из воды выходит все сущее и в воду превращается».[11] Эта цитата из труда византийского врача Аэция Амидского является типичным примером мировоззрения, приписываемого Фалесу. К сожалению, ни одна из его работ не сохранилась, и для того, чтобы разобраться в его идеях, нам приходится полагаться на промежуточные источники. Читая литературу на эту тему, можно понять, что Фалес полагал воду источником всего и подчеркивал ее роль как дарительницы жизни. Для него вода символизировала постоянно изменяющуюся Природу, находящуюся в вечном движении даже под маской спокойствия. Чтобы объяснить источник этого движения, Фалес вводит понятие силы, чем-то схожей с душой. «Некоторые также утверждают, что душа разлита во всем; быть может, исходя из этого, и Фалес думал, что все полно богов», – писал Аристотель в своем трактате «О душе».[12] Однако эти боги не были антропоморфными, как в древних мифах, а обозначали необъяснимые силы, стоящие за изменениями физической реальности. Фалес и ионийцы проповедовали философию становления, постоянной трансформации, происходящей из единого материального источника. Все выходит из него, и в него все возвращается.
Удивительно, что первые западные философы жили в мире, привыкшем объяснять различные явления действиями многочисленных богов, но при этом искали единого объяснения реальности, абсолютный принцип существования. Они явно стремились к созданию общей теории Природы, античной «теории всего». Историк идей Исайя Берлин назвал эту сохранившуюся до наших дней веру в единство ионийским заблуждением и заявил, что она не имеет смысла: «Предложение, которое начинается со слов “Все состоит из…”, или “Все является…”, или “Ничего не…”, если только оно не является эмпирическим… не говорит ни о чем, ведь заявление, которое нельзя опровергнуть или в котором нельзя усомниться, не несет никакой информации».[13] Иными словами, авторитетные всеобъемлющие заявления, которые нельзя сравнить друг с другом и измерить, неинформативны. Это не рассуждения, а постулаты веры. Я расскажу об этом более подробно чуть позже, когда мы будем говорить о поисках всеобъемлющих объяснений в науке. А сейчас я хотел бы обратить ваше внимание на протонаучные идеи наследника Фалеса Анаксимандра Милетского, которого по праву считают первым философом науки за описание Природы в терминах механики.
Анаксимандр не верил в существование конкретного материального вещества, объединяющего все сущее, и предполагал, что все происходит из некой древней среды, «безграничного» (apeiron). «Из этого вышло все, и все в это вернется. Вот почему бесконечные системы мироустройства то возникают, то растворяются в том, откуда они появились», – пишет Аэций, резюмируя идеи Анаксимандра.[14] Безграничное – это нечто, что не было создано и что нельзя разрушить, это первичный материальный принцип, существующий в вечности и безграничном пространстве космоса.
Анаксимандр видел мир как цепочку событий, вызываемых естественными причинами.[15] Согласно многим источникам, в своем утраченном трактате «О природе», который считается первым известным текстом по натуральной философии, Анаксимандр пытался объяснить различные явления – от молнии (возникающей при движении воздуха в облаках) до происхождения человека (который, как и вся жизнь, сначала зародился в море, а затем вышел на сушу). Дэниэл У. Грэм писал: «Сколь многому бы мы ни научились от Фалеса, Анаксимандр был настоящим революционером. Организовав свои идеи в единую космологическую теорию и записав ее на папирусе, он создал основу для рассмотрения Природы как автономного царства со своими базовыми элементами и законами взаимодействия. Насколько можно судить, он был основателем натуральной философии».[16]
Анаксимандр не верил, что Аполлон каждый день перевозит Солнце по небу на своей колеснице. Вместо этого он предполагал, что Солнце – это отверстие в огненном колесе, вращающемся вокруг Земли. Какой бы простой эта идея ни казалась нам сегодня, ее историческую важность трудно переоценить. Это была первая механическая модель неба, попытка объяснить наблюдаемое движение небесных объектов причинно-следственной связью без вмешательства божественных сил. Такой же механистической и фантастической была идея Анаксимандра о происхождении космоса. Плутарх пишет в своих «Моралиях»: «[Анаксимандр] говорит, что горячая и холодная части [безграничного] разделились в начале создания миропорядка, и огненная сфера выросла вокруг воздуха, как кора вокруг ствола дерева. Затем эта сфера разделилась и сформировала отдельные круги – Солнце, Луну и звезды».[17] Итак, не только Солнце, но и Луна и звезды оказались отверстиями в огненных колесах, вращающихся вокруг Земли. Космос превратился в упорядоченный механизм, подчиняющийся законам причины и следствия.
Идеи Анаксимандра, равно как и все представления досократиков и последующих греческих философов, основывались исключительно на интуиции и силе аргументации, а значит, никак не были связаны с понятием экспериментального подтверждения. Тем не менее они полны потрясающей интеллектуальной смелости и воображения. Греки были далеко не первыми, кто задался вопросом о происхождении космоса или природе реальности. Но в отличие от своих предшественников они дали людям новую систему существования, в которой свобода задавать подобные вопросы являлась неотъемлемым правом человека и единственным путем к интеллектуальной независимости и личному счастью.[18] Лукреций писал в своей знаменитой поэме «О природе вещей» (50 год до н. э.), посвященной философии атомистов-досократиков Левкиппа и Демокрита:
- Значит, изгнать этот страх из души и потемки рассеять
- Должны не солнца лучи и не света сиянье дневного,
- Но природа сама своим видом и внутренним строем.
- За основание тут мы берем положенье такое:
- Из ничего не творится ничто по божественной воле.
- И оттого только страх всех смертных объемлет, что много
- Видят явлений они на земле и на небе нередко,
- Коих причины никак усмотреть и понять не умеют
- И полагают, что все это божьим веленьем творится.
- Если же будем мы знать, что ничто не способно возникнуть
- Из ничего, то тогда мы гораздо яснее увидим
- Наших заданий предмет: и откуда являются вещи,
- И каким образом все происходит без помощи свыше.[19]
Эти строки можно считать самым ярким произведением в защиту атеизма, когда-либо написанным в истории человечества.
Четкое разделение между верой и рациональным подходом к пониманию мира, за которое ратовал Лукреций, не было широко распространено в античном мире. Наоборот, для многих досократиков, а также, очевидно, для живших после них Платона и Аристотеля между этими двумя аспектами существовала связь. Вселенная имела смысл только в присутствии божества. Из всех досократических школ наиболее активно эту идею поддерживали пифагорейцы – секта мистиков, полагавших, что суть Природы зашифрована в комбинациях (сочетаниях) цифр. Центр пифагорейства располагался на юге Италии, то есть географически был удален от западной Турции – места действия ионийцев. Пифагорейцы верили, что путь к просвещению лежит через понимание математики и геометрии – инструментов, которые Божественный Архитектор использовал для строительства всего космоса.
Согласно трудам Филолая Кротонского, выдающегося последователя Пифагора, жившего около 470 – после 400 года до н. э., сердцем космоса являлись не Земля и не Солнце, но «центральный огонь» – дворец Зевса. Это смещение Земли с центральных позиций, произошедшее задолго до Коперника, обосновывалось теологическими аргументами – ведь только Бог мог занимать подобное место посреди творения. Как писал Аристотель в своем труде «О небе», «большинство считает, что [Земля] находится в центре <…>. Италийские же философы, известные как пифагорейцы, держатся противоположного взгляда: в центре, утверждают они, находится огонь, а Земля – одна из звезд – движется по кругу вокруг центра, вызывая смену дня и ночи».[20] Эта выдающаяся идея могла иметь влияние на более поздних мыслителей, также не ставивших Землю в центр Вселенной, к примеру на Аристарха Самосского, жившего в 280 году до н. э., или на знаменитого ученого XVI века Николая Коперника. Коперник сам пишет об этом в своей работе «О вращении небесных сфер»:
Сначала нашел я у Цицерона, что Гикет высказывал мнение о движении Земли, затем я встретил у Плутарха, что этого взгляда держались и некоторые другие. Чтобы это было всем ясно, я решил привести здесь слова Плутарха: «Другие считают Землю неподвижной, но пифагореец Филолай считал, что она вращается вокруг центрального огня по косому кругу, как Солнце и Луна». Побуждаемый этим, я тоже начал размышлять относительно подвижности Земли.[21]
Итак, корни так называемого коперниковского вращения уходят куда глубже в прошлое, чем мы предполагали.
Большинство из нас знакомо с теоремой Пифагора о трех сторонах треугольника еще со школы. Доказательство теоремы приписывают легендарному мудрецу Пифагору, но существует вероятность, что это открытие совершил кто-то из его учеников, просто вся слава досталась учителю. Как бы там ни было, Пифагор точно открыл явление, которое можно назвать первым математическим законом Природы – соотношение между музыкальным звуком и длиной струны, которая его издает. Он понял, что звуки, кажущиеся нам гармоничными, производятся струнами, длины которых соотносятся как первые четыре целых числа (1, 2, 3 и 4). Именно эти числа составляли священную тетраду (tetractys) пифагорейцев, «источник и корень постоянно изменяющейся Природы», как писал о ней позднее Секст Эмпирик. К примеру, если длина струны равна L, то в два раза более короткая струна (L/2) будет давать звук на октаву выше; струна длиной, равной двум третьим первоначальной (2L/3) – на квинту, а при (3L/4) – на кварту выше. То, что кажется нам гармоничным, открывает доступ к нашей душе, поэтому Пифагор и его последователи полагали, что обнаружили мост, соединяющий внешний мир и его восприятие через органы чувств. Этот мост был построен на математических зависимостях, из чего пифагорейцы делали вывод: чтобы познать мир, его нужно описать в терминах математики. Более того, раз гармоничное означает прекрасное, то и красоту мира можно выразить математически. Таким образом зарождается новая эстетика, в которой математические законы приравниваются к красоте, а красота – к истине.
Помимо выделения роли математики в описании окружающего мира и наших взаимодействий с ним, пифагорейцы также внесли большой вклад в космологию. Они не просто переместили Землю из центра Вселенной на периферию, заменив ее «центральным огнем». Экстраполировав музыкальную гармонию на небесные сферы, пифагорейцы заключили, что расстояния между планетами соотносятся между собой так же, как расстояния между нотами в гамме. Двигаясь по небу, планеты играли «музыку сфер», которую, по легенде, мог слышать только сам Пифагор. Мировое устройство (от чувственного удовольствия от музыки до расстояния между планетами) представляло собой строгие и гармоничные пропорции. Красота творения была математической по своей сути, и можно ли было представить себе более высокую цель, чем познание ее законов?
Перед тем как перейти к Платону и его ученику Аристотелю, давайте кратко резюмируем то, что мы уже знаем. С одной стороны, у нас есть ионийцы, заявляющие, что суть Природы состоит в трансформации и что все сущее представляет собой воплощение единого материального основания. С другой стороны, пифагорейцы полагают, что ключом ко всем природным тайнам и к нашему восприятию реальности является математика. Более того, существуют и другие точки зрения. Парменид и элеаты, также жившие в Италии, противостояли ионийцам и заявляли, что изменения не могут быть сутью вещей и что основа реальности, или «сущее», должна оставаться неизменной. Элеаты полагали, что все перемены – это иллюзии, погрешности, вызываемые в восприятии реальности из-за недостатков наших органов чувств. Они одними из первых на Западе подняли вопрос природы реальности и того, как мы ее воспринимаем. Является ли сутью реальности то, что мы видим, – перемены, которые фиксируют наши органы чувств? Или же основа всего сущего скрыта в области абстракций, воспринимаемой только силой нашей мысли?
Для того чтобы воспринимать изменения, мы должны их чувствовать. Но что, если наши органы чувств передают нам лишь неполную картину сущего? Как нам постичь то, что существует на самом деле? Если следовать логике рассуждений Парменида, то как бы мы вообще пришли к мысли о неизменном сущем? Если что-то не меняется, мы становимся невосприимчивыми к нему, как к низким звукам, которые не слышит наше ухо. А если эта неизменная реальность существует в каком-то другом, более утонченном измерении, как мы можем ее понять или исследовать? Итак, ионийцы обвиняли элеатов в пустом абстрагировании, а элеаты считали ионийцев дураками из-за веры в то, чему верить нельзя. Пифагорейцы же игнорировали и тех и других, продолжая верить в способность математики описать гармонию и красоту окружающего мира.
Разнообразие досократических идей и мнений поражает. Первые западные философы расширяли границы известного во всех направлениях, увеличивая территорию рационального мышления. Идеи о природе реальности вступали в конфликты и сталкивались друг с другом еще 25 веков назад. Какими бы богатыми и сложными они ни были, в их основе лежал вопрос, который мы все еще задаем себе сегодня и который является центральной темой этой книги. До какой степени мы можем понять реальность? Остров знаний продолжал разрастаться, а на берегах Океана неведомого открывалось все больше возможностей.
Глава 4. Чему может научить сон Платона
в которой мы узнаем, как Платон и Аристотель отвечали на вопрос Первопричины и относились к границам человеческого знания
И Парменид, и пифагорейцы оказали огромное влияние на Платона, жившего между 428 и 348 годами до н. э. В каком-то смысле Платон объединил их модели мышления. Как и Парменид, он презирал чувственный опыт как источник информации о мире, но при этом, как и Пифагор, считал геометрические понятия мостом между человеческим разумом и миром чистой мысли, в котором и была скрыта вечно ускользающая от человечества истина. Платон жил в эпоху политической нестабильности – в 404 году до н. э. Спарта победила Афины в Пелопоннесской войне, поэтому неизменные истины виделись ему путем к стабильности и мудрости.
Мышление Платона наиболее ярко проявляется в его знаменитой метафоре пещеры, которую он впервые приводит в «Государстве». Эта аллегория также считается одним из первых прямых рассуждений о природе реальности. Представьте себе группу людей, скованных одной цепью в пещере. Они находятся здесь с рождения и не в состоянии ее покинуть. Все, что они могут, – это смотреть на стену пещеры перед собой. Они не знают ничего о мире вокруг себя или за пределами пещеры, и их реальность состоит лишь в тенях, пляшущих на стене. Им неизвестно, что за их спинами горит огонь, к которому ведет узкая тропинка, и что между ними и огнем находится небольшая стена. Другие люди могут пройти по тропинке и поставить на стену статуэтку или любой другой предмет. Скованные люди видят тени таких предметов на стене перед собой и принимают их за реальность. Неспособность повернуться и осознать свое положение мешает им увидеть правду. Их мир – это мир фальшивых иллюзий.
Платон предполагал, что, даже если бы с закованных людей были сняты цепи и они могли бы подойти к костру и статуям, боль и временная слепота от яркого пламени оказались бы настолько сильны, что люди быстро вернулись бы на свое прежнее место. Они бы предпочли верить в истинность теней на стене, а не в открывшуюся им ослепительную правду. У знаний есть цена, и не каждый согласен ее заплатить. Познание требует терпения и храбрости, ведь оно может привести к неприятной смене точки зрения. Платон утверждал, что, если бы закованных людей вытащили из пещеры на солнце, то есть еще ближе к истине, они умоляли бы вернуть их к теням на стене.
Платон сравнивает движение закованных людей к солнцу с «поднятием души в области ума», то есть с просвещением в буквальном смысле слова. Он также говорит, что истина (производное от того, что он называет «базовой Формой Блага») ускользает от нас, так как мы прикованы к нашему чувственному восприятию реальности. Однако, когда мы оказываемся готовыми увидеть ее (настолько, насколько это вообще возможно), это неизбежно толкает нас к новым знаниям:
Итак, вот что мне видится: в том, что познаваемо, идея Блага – это предел, и она с трудом различима, но стоит только ее там различить, как отсюда напрашивается вывод, что именно она – причина всего правильного и прекрасного. В области видимого она порождает свет и его владыку, а в области умопостигаемого она сама – владычица, от которой зависят истина и познание, и на нее должен взирать тот, кто хочет сознательно действовать как в частной, так и в общественной жизни.[22]
В «Государстве» Платон описывает, как следует управлять справедливым и равным обществом и какой человек может стать его правителем. Он предлагал на это место «короля-философа», кого-то, кто проник в абстрактную реальность чистых форм, постоянно имеет перед глазами «Форму Блага» и питается от бесконечного и неисчерпаемого источника мудрости, которую она дает.
Формы Платона часто становятся предметами споров и недопонимания. К счастью, нам не нужно углубляться в детали. Достаточно считать Формы неким идеальным чертежом, базовыми идеями, стоящими за предметами или чувствами. Например, Форма стула содержит в себе все возможные стулья, а любой стул является лишь тенью истинной Формы. Формы – это универсальное содержание того, что потенциально может существовать, но сами они при этом не существуют ни во времени, ни в пространстве. Из-за нашей ограниченности мы можем лишь туманно представлять себе, из чего они состоят, так как все попытки познать их через воспринимаемую нами реальность выглядят неуклюжими. Таким образом, идея круга, которая возникает в нашем мозгу, когда мы думаем о круге, и является единственным настоящим кругом, а рисунки или иные формы ее представления никогда не могут быть идеальными, а значит, и реальными.
В «Тимее» Платон экстраполирует эти идеи на космологию. Вселенная, по его словам, – это результат работы божественного существа, Демиурга, который использует Формы как чертежи своего творения. Космос сферичен, а все движения в нем единообразны и идут по кругу, так как «такая система наиболее приемлема для сознания и разума». Платон описывает эстетику космоса, в которой наиболее идеальные и симметричные формы являются единственно возможными для небесных тел и траекторий их движения. Сознание задает путь, по которому движется материя. Мир происходит из идеи, и его физическая структура должна отражать ее суть. Такой подход к строению космоса называется телеологическим и предполагает, что Вселенная имеет собственную цель или отражает замысел Творца. Он напрямую противоречит теории атомистов о космической бессмысленности, которая отрицает всякие намерения и заранее заложенные смыслы и утверждает, что все сущее происходит благодаря случайным движениям и сочетаниям в Пустоте. Лукреций писал об этом в своей поэме «О природе вещей»:
- Если к тому ж этот мир природою создан и если
- Сами собою вещей семена в столкновеньях случайных,
- Всячески втуне, вотще, понапрасну сходяся друг с другом,
- Слились затем наконец в сочетанья такие, что сразу
- Всяких великих вещей постоянно рождают зачатки:
- Моря, земли и небес и племени тварей живущих.[23]
Большинство философских споров о природе Вселенной от Платона до наших дней противопоставляют две гипотезы: существование Мультивселенной, крошечной частью которой является наш мир, и вероятность того, что наше существование имеет некую космическую цель. Эта дихотомия возникла еще в античные времена.
С научной точки зрения основная проблема телеологических теорий состоит в том, что мы не можем доказать или опровергнуть их правоту. Научный метод основывается на эмпирическом подтверждении, а научная гипотеза должна быть фальсифицируемой (то есть ученые должны быть способны доказать ее неправоту). Если мы не можем этого сделать (или, скорее, пока, ведь каждая гипотеза рано или поздно опровергается), мы считаем ее верной.[24] Поэтому, если кто-то заявляет, что у Вселенной есть цель, мы должны сначала определить эту цель и убедиться в ее существовании. Популярный претендент на такое доказательство – аргумент о существовании разумной жизни: «Вселенная имеет очевидное стремление к созданию сознания». Но Вселенная-Творец почти ничем не отличается от Бога-Творца, она просто превращает сверхъестественную телеологию в телеологию сверхъестественного. Вселенная, обладающая научно доказанными намерениями, – это современный ответ на давление, которое испытывали многие поколения ученых. Она дает цели научную достоверность. Образ Вселенной, которая сознательно порождает разумных существ, отражает наше вечное желание быть не просто особыми существами, но особыми творениями.
Но какой бы привлекательной ни казалась идея существования вселенской цели, она ставит перед нами серьезные вопросы. Каким образом мы можем проверить эту цель? Если мы не получим однозначного ее описания, то такая натуралистическая телеология станет областью непознанного. Если в мире существует вселенская цель и она нам неизвестна, откуда нам знать, что она вообще есть? Мы остаемся в неведении в любом случае, и все, что мы можем сделать, – это поверить в нее или нет, так же как Платон верил в своего Демиурга, но не мог доказать его существование.
Ученик Платона Аристотель придерживался совершенно других целей. Он был во многом прагматиком и поэтому создал для объяснения природных процессов сложную цепочку (или, скорее, башню) взаимосвязанных рациональных аргументов. Эта вертикальная структура в будущем показалась весьма удобной церкви, которая присвоила взгляд Аристотеля на устройство космоса. Аристотель заявлял, что четыре базовых элемента – земля, вода, огонь и воздух – имеют естественную иерархию и располагаются в ней снизу вверх именно в такой последовательности. Вот почему предмет, созданный из любого элемента, а затем перемещенный в другую среду, стремится занять в ней свое предписанное иерархией место: пузырек воздуха в воде поднимается вверх, а камень падает на дно. Аристотель отказывался от идей Платона о Формах и Демиурге, считая их абстракциями, и искал телеологические принципы внутри самих предметов, в их «сути», которой он считал изменения, присущие всем живым существам.
При этом Аристотель продолжал верить в божественное присутствие в мире. Несмотря на то что он считал Вселенную вечной и никем не созданной, он вводит понятие отдельного божества, отвечающего за движение небесных светил – «недвижимых двигателей». Задачей таких нематериальных божественных сущностей было направлять движения небесных объектов, не двигаясь при этом самим, не совершая никаких материальных действий и не подвергаясь им. Управление движением светил осуществлялось таинственным образом, через «вдохновение или желание». Космос Аристотеля был похож на луковицу, состоящую из множества слоев (небесных сфер), в центре которых находилась неподвижная Земля, а на периферии – звезды. Соответственно, «недвижимые двигатели» имели свою иерархию, и тот, что находился ближе всего к краю, назывался перводвигателем. Его задачей было управлять Вселенной снаружи, заводить весь механизм космоса для запуска цепочки причин и следствий.[25]
Перводвигатель и подчиненная ему цепочка «недвижимых двигателей» были необходимы Аристотелю для ответа на два фундаментальных вопроса, с которыми сталкивается человек в попытке объяснить Природу: как предметы переходят из состояния покоя в состояние движения и как это движение сохраняется? Что еще могло вечно поддерживать работу огромной космической машины? Аристотелю не было известно понятие инерции, естественного стремления тела оставаться в состоянии движения, если внешние силы не принудят его к изменению такого состояния. До открытия инерции оставалось еще 18 столетий.
Космос Аристотеля был вечным, что делало его теорию гораздо проще любых других представлений, в которых космос появился в определенный момент времени, – от библейских текстов до современной космологии Большого взрыва. Как мы уже отмечали выше, если у Вселенной есть начало, то этому требуется логическое объяснение. Почему Вселенная вообще существует? Что вызвало ее появление? Религии отвечают на этот вопрос, постулируя существование Божественной Первопричины, на которую не распространяются физические законы. Но объяснить возникновение физической Вселенной с точки зрения науки – это крайне сложная задача, которая все еще преследует современную космологию, даже несмотря на то, что многие верят в квантовую механику как в универсальное объяснение (как мы увидим ниже, это не только плохо с философской точки зрения, но и ошибочно с научной). Заявление о том, что мы знаем все о происхождении Вселенной, не просто неверно – оно искажает общественное понимание науки. Нравится нам это или нет, у каждого острова есть границы, и Остров знаний не исключение.
Но вернемся к Аристотелю. Как мы увидели, он вывел философию из пещеры Платона, устранив различия между миром абстрактных форм и областью чувственного восприятия. Согласно Аристотелю, любые изменения на Земле и вокруг нее объясняются взаимодействием четырех базовых веществ. Поднявшись в небеса, мы перейдем в область небесных сфер, которые ответственны за движение Луны и пяти планет по круглым орбитам (до открытия Урана в 1781 году человечеству были известны лишь Меркурий, Венера, Марс, Юпитер и Сатурн). Все небесные объекты состояли из пятого вещества, идеального и вечного эфира, не подвластного никаким изменениям. Космос Аристотеля имел дуалистичную природу, ведь он устанавливал различия между Землей, миром обычной материи, и идеальным эфиром, недоступным ни для чего материального. Более того, в нем еще оставалось место для телеологии, воплощенной в нематериальных, но активных «недвижимых двигателях», на которые впоследствии сделала ставку христианская теология.
В течение нескольких последующих столетий было разработано несколько моделей для объяснения неравномерного движения небесных объектов вокруг Земли в Аристотелевом космосе. Еще со времен шумеров было известно, что планеты порой ведут себя странно. Если понаблюдать за движением Марса по небу в течение нескольких месяцев, можно заметить, что иногда он поворачивает назад, как если бы он не был уверен, что выбрал правильный путь. Для древнегреческих астрономов, считавших Землю центром космоса, это «ретроградное» движение было настоящей головной болью. Согласно Симпликию Киликийскому, философу VI века и комментатору Аристотеля, Платон потребовал от своих учеников объяснить такую траекторию движения Марса, используя лишь циркулярные орбиты и равные скорости. Эту задачу он назвал спасением факта (хотя обычно ученые как раз занимаются спасением собственных теорий от изменений под влиянием фактов). Симпликий так объяснял задачу Платона: «Это блестящая проблема для астрономов: доказать, с учетом полученных гипотез, что все предметы в космосе движутся по кругу и что кажущиеся несоответствия… порождаются не чем иным, как нашим восприятием, и не имеют отношения к реальности».[26]
На данном примере мы видим, как прочное научное убеждение может одновременно подстегивать мышление и останавливать его, заставляя воображение создавать множество возможных сценариев в рамках строгих ограничений. Несмотря на то что идеи Платона почти две тысячи лет вели астрономию по неверному пути, благодаря им было создано множество сложнейших теорий о движении небесных объектов. Самой известной из них является модель эпициклов Птолемея, предложенная около 150 года н. э. и просуществовавшая (с небольшими изменениями, введенными исламскими астрономами) до конца XVI века.
Вкратце, эпицикл – это малый цикл, являющийся частью большего (деферента). Представьте себе, что Земля – это центр большого цикла. У этого большого цикла имеется эпицикл, и по нему движется Луна. По мере вращения большого цикла эпицикл вращается вместе с ним. Если, помимо этого, эпицикл может вращаться и самостоятельно, то мы получаем сочетание двух круговых движений. Перемещаясь по созданному ими петлеобразному пути, космические тела могут демонстрировать обратное или нестандартное движение. Теперь давайте повторим ту же процедуру для всех известных планет и Солнца. Каждый из этих объектов имеет собственный эпицикл, входящий в деферент. В итоге вся конструкция выглядит как ряд концентрических кругов, в центре которых находится Земля. Если правильно соотнести размеры деферентов и эпициклов, можно получить как раз такие ретроградные движения, которые уже известны астрономам по результатам наблюдений.
Птолемей быстро осознал, что эта конструкция была слишком простой, чтобы оказаться верной. Будучи в состоянии предсказывать положение небесных тел на долгое время вперед, он доработал свою модель, добавив в нее дополнительный фактор. Вместо того чтобы вращаться вокруг центра деферента, как кабинки колеса обозрения, эпициклы движутся вокруг экванта – воображаемой точки, слегка смещенной в сторону. После этой модификации модель Птолемея стала невероятно точным инструментом для предсказания положения планет. Ее точность была примерно равна полной Луне, то есть погрешность Птолемеевых измерений не могла быть больше места, занимаемого на небе полной Луной.
Ни Птолемей, ни большинство его последователей из исламских стран никогда не верили в реальность эпициклов. Для них это были лишь расчетные инструменты, позволявшие предсказать положение различных небесных тел. Моисей Маймонид, средневековый последователь Аристотеля еврейского происхождения, упоминает это в своем труде сразу же после опровержения физической природы эпициклов: «Все это никак не касается астронома. Его цель – не сказать нам, как на самом деле располагаются сферы, но предложить астрономическую систему, в которой движение небесных тел могло бы быть равномерным и циркулярным и соответствовало бы тому, что мы воспринимаем зрением, независимо от того, таково ли положение сфер на самом деле».[27] Иными словами, несмотря на то что размышление о движении небесных сфер могло приблизить человечество к Богу, астрономию интересовала не природа вещей, а описание движения небесных объектов, «воспринимаемых зрением», то есть наблюдаемых. Итак, существуют вещи, которые могут быть поняты (воспринимаемые через органы чувств), и вещи, которые находятся за пределами понимания (и восприятия). Маймонид признает, что истинная природа небес сокрыта от человека:
Ибо невозможно человеку подняться до высот, с которых он сможет делать заключения о небесах, находящихся слишком далеко от нас и слишком высоких как по местоположению, так и по статусу. Даже если мы можем делать на их основании общие выводы, например, о существовании Двигателя, знания о таких материях не могут быть достигнуты человеческим умом. Изнурять свое сознание понятиями, которые недоступны ему или неподвластны его инструментам, – это врожденный дефект характера или соблазн.
Разумеется, со времени Маймонида мы узнали много нового о природе небес. Тем не менее нельзя отбрасывать его слова как бессмысленные или пораженческие. Сам характер человеческих исследований предполагает, что каждая эпоха сталкивается с собственным неизвестным. Вопрос лишь в том, остается это неизвестное с нами навсегда или с течением времени с ним можно справиться. Иными словами, на все ли вопросы существуют ответы?
Пускай эпициклы были лишь плодом воображения, но хрустальные сферы, несущие на себе небесные тела, считались вполне реальными. Кажется, ни одна другая идея в истории астрономии не продержалась так долго. Первое упоминание хрустальных («подобных льду») сфер в космосе приписывают ученику Анаксимандра Анаксимену, еще одному пресократику-ионийцу из Милета. Согласно Аэцию, «Анаксимен утверждал, что звезды вбиты, как гвозди, в подобную льду поверхность, и таким образом формируется их структура».[28] Некоторые историки приписывают идею вращающихся колец, двигающих небесные тела вокруг Земли, Эмпедоклу. Как бы там ни было, очевидно, что во времена Платона вращающиеся сферы стали основным образом космической механики. Особенно четко это проявлялось в модели взаимосвязанных сфер, созданной его учеником Евдоксом Книдским. Даже Коперник 18 веков спустя был уверен, что планеты переносятся по своим орбитам с помощью хрустальных сфер, а его революционный труд, в котором он предположил, что в центре космоса находится не Земля, а Солнце, назывался «О вращении небесных сфер». Разумеется, без этого образа трудно было бы объяснить движение космических тел. Единственную идею, сходную с понятием гравитации, высказывал Аристотель, когда делил космос на две «области» с разными физическими законами. Для того чтобы контролировать движения всех небесных тел, ему требовалось ни много ни мало 59 сфер. Коперник понимал, что эта задача требует решения, но не знал, как к ней подойти.
Сделав Солнце центром Вселенной, Коперник вызывал огромный космический катаклизм, подорвав устои аристотелевского мировоззрения, существовавшего почти два тысячелетия. Новый порядок вещей требовал объяснения, новой науки, которую Коперник не мог ему предоставить. Согласно физике Аристотеля, Земля являлась точкой притяжения для всех движений материи, причиной того, почему подброшенные предметы падали вниз. Небесные сферы переносили Луну, Солнце, планеты и звезды по равномерным круговым (или как минимум эпициркулярным) орбитам. Если Земля – это всего лишь одна из планет, почему любой подброшенный предмет падает на нее? Кроме того, согласно Аристотелю, Солнце и все прочие небесные тела состояли из пятого вещества, эфира, совершенно отличного от четырех земных стихий. Эфир был вечным и непреложным. В небесах никогда ничего не изменялось. Даже астероиды и кометы считались атмосферными или «метеорологическими» явлениями.[29] Как же Земля, не состоящая из эфира, могла быть равной другим планетам? Как физика могла объяснить эту путаницу?
Кроме того, вопросы имелись и у теологов. Новое расположение планет означало нарушение природной вертикальности аристотелевского космоса, которую церковь приняла с большим энтузиазмом. Именно эта вертикальность заставляла людей с благоговейным страхом смотреть снизу вверх на небо – обитель Бога и святых. Кроме того, если Земля вращается вокруг Солнца, то и ад не находится в самом центре всего Сущего, а движется по небу вместе с нашей планетой. Неудивительно, что одним из первых обличителей Коперника был Мартин Лютер: «Рассказывают о новом астрологе, который хочет доказать, будто Земля движется и оборачивается вокруг себя, а не небо… Этот дурак хочет перевернуть все искусство астрономии».[30]
Но Коперник вовсе не хотел революции. Он хотел «спасения факта», как и Платон, и поэтому создал модель космоса, основанную на красоте и симметрии и подчиняющуюся законам равномерного кругового движения. Коперник презирал идею Птолемея об экванте, так как она нарушала всю стройность небесной механики. Коперник был человеком Возрождения, учился в Италии всего за несколько лет до того, как Микеланджело закончил роспись Сикстинской капеллы, и потому верил, что гелиоцентрический космос задавал гармонию, новую космическую эстетику, отсутствующую в древней геоцентрической системе. В своем видении мира он отдавал дань уважения Филолаю и пифагорейским представлениям о центральном огне как основе Вселенной и источнике всего света. Модель Коперника была идеей Платона, облаченной в ценности Ренессанса, – космосом, построенным на красоте и симметрии с небольшой добавкой новых астрономических наблюдений. Разумеется, Копернику принадлежала лишь малая часть из них. Основные используемые им данные были получены Птолемеем и его последователями из исламских стран.
Ключевое различие между Коперником и его предшественниками состояло в представлении о реальности идей. Для Коперника гелиоцентрический космос был не просто инструментом расчета, но истинной формой организации мира. Астрономия не просто занималась описанием космоса, но и отражала физическую реальность, воспринимаемую человеческим сознанием. Внезапно ставки оказались гораздо выше, чем раньше.
Но труд Коперника стал лишь первой ласточкой новой эпохи в науке – в основном благодаря Галилею и Кеплеру. Для них обоих переломные моменты наступили с получением новых эмпирических данных. Жизнь Галилея и будущее всей астрономии изменились в тот момент, когда он впервые взял в руки телескоп, а революционная физическая астрономия Кеплера была бы невозможна, не окажись в его распоряжении результатов исследований Тихо Браге.
Глава 5. Преобразующая сила нового инструмента для наблюдений
в которой описывается, как три выдающихся ученых мужа изменили наши представления о мире с помощью новых инструментов и своей творческой мысли
Первый телескоп был сделан в Голландии и попал в руки Галилея только в 1608 году. Предшественник ученого Тихо Браге в течение последних трех десятилетий XVI века тщательно фиксировал движение планет по небу. Браге был достаточно состоятелен, а кроме того, имел поддержку короля Дании Фредерика II, который в 1576 году подарил ему остров Вен «со всеми арендаторами и слугами короны, проживающими на нем, и с правом взимания аренды и иных пошлин… до конца жизни или до тех пор, пока он имеет желание продолжать свои studia mathematices».[31] Благодаря этому Браге удалось создать коллекцию измерительных приборов, равной которой мир еще не видел. Во времена до изобретения телескопа астрономические измерения производились исключительно невооруженным глазом с использованием квадрантов, секстантов, астролябий и иных инструментов, позволявших определять местоположение и отслеживать движение небесных тел. По сути, астрономы проводили угловые измерения небесного свода – воображаемой сферы, на которой были закреплены звезды.
Если посмотреть на небо в ясную ночь, можно увидеть множество звезд (до нескольких тысяч). Расстояние между ними кажется нам неизменным, как если бы они действительно были прибиты к темному небесному своду. С течением ночи звездное небо медленно движется с востока на запад. Из-за этой кажущейся относительной неподвижности звезд древние наблюдатели различали на небосклоне фигуры (созвездия) и придавали им разные значения. Несмотря на то что в различных мифологиях одно и то же созвездие могло иметь разные значения, стремление к поиску смыслов в звездах является общим для всех человеческих культур. В реальности же наши органы чувств нас подводят. Во-первых, звезды не статичны – некоторые из них движутся со скоростью много тысяч километров в секунду. Во-вторых, они не располагаются на одном и том же двухмерном небосводе, а находятся на разных расстояниях от Земли и, следовательно, распределены в трехмерном пространстве. Небосвод – это стена из платоновской пещеры, иллюзия, возникающая вследствие нашего ограниченного восприятия реальности (хотя в данном случае, вероятно, за нашими спинами никто не стоит). Эта иллюзия объясняется огромными расстояниями, отделяющими нас от звезд. Когда мы видим с земли пролетающий над нами самолет, нам кажется, что он движется медленнее, чем на самом деле. Точно так же и звезды, находящиеся в нескольких световых годах (или сотнях световых лет) от нас, выглядят статичными.[32]
Фотографии с длинной экспозицией, сделанные в Северном полушарии, показывают, что звездное небо вращается вокруг одной неподвижной точки – Полярной звезды. На самом деле, движется не небо, а Земля, а Полярная звезда (на сегодняшний день) находится прямо над ее полюсом. В течение следующих нескольких тысяч лет она постепенно сместится из этого положения из-за «предварения равноденствий» – колебаний земной оси.
Предположение о том, что Земля вращается вокруг своей оси, казалось людям настолько необычным, что этот факт ускользал от внимания наблюдателей многие тысячи лет. Если бы мы сказали последователю Аристотеля, что в течение 24 часов именно Земля, а не небеса над ней, делает полный оборот, он бы спросил, почему в таком случае облака и птицы остаются на месте, а подброшенные камни не зависают в воздухе. Нас поддержали бы лишь некоторые греческие мыслители вроде Экфанта и Гераклида, а до Коперника и его теории вращения Земли оставалось бы еще две тысячи лет.
Для того чтобы измерять положение звезд относительно друг друга и отслеживать движущиеся по небу планеты, астрономы делят небесный свод на два полушария, разделенные экватором. В зените (высшей точке) Северного полушария находится Полярная звезда. Положение относительно экватора небесного свода называется склонением (и соответствует долготе на поверхности Земли). Соответственно, склонение Полярной звезды составляет +90°. По аналогии с наземной долготой, которая отсчитывается от выбранной произвольным образом нулевой точки в Гринвиче (Англия), на небесном своде существует прямое восхождение. Прямое восхождение принято отсчитывать от точки весеннего равноденствия, когда Солнце пересекает небесный экватор в начале весны.[33] Ситуацию немного усложняет то, что вместо углов (как в случае с широтой, долготой и склонением) прямое восхождение измеряется в часах, минутах и секундах. Для соединения двух угловых единиц астрономы используют вращение Земли. Поскольку Земля проходит 360 (полный круг) за 24 часа, значит, за один час она проходит 360/24 = 15, за минуту – 15/60 = 0,25 (15 угловых минут, или 15'), а за секунду – 15 /60 = 15' (15 угловых секунд). Таким образом, прямое восхождение с угловым положением 15 относительно нулевой точки равняется одному часу. Например, чтобы найти звезду Бетельгейзе в созвездии Ориона на небесном своде, нужно использовать следующие координаты: 5 часов 52 минуты 0 секунд к востоку от точки весеннего равноденствия (прямое восхождение) и 7 24 к северу от небесного экватора (склонение).
Но вернемся к Тихо Браге. Его огромные, построенные на заказ инструменты позволяли ему измерять позиции планет с невероятной точностью – восемь угловых минут от градуса.[34] Браге также знал, что для лучшего понимания планетарных орбит требовалась не только точность, но и регулярность. Чем больше данных у него имелось, тем лучше он мог отследить движение планет по небу. А потом, 11 ноября 1572 года, возвращаясь домой из своей алхимической лаборатории, Браге увидел новую звезду в созвездии Кассиопеи. Загадочная гостья была такой яркой, что ее можно было рассмотреть даже днем. Физика Аристотеля отрицала возможность появления новых светил, ведь небеса были незыблемы и все изменения могли происходить лишь в подлунной сфере. Любые новые объекты на звездном небе считались лишь атмосферными явлениями, предметом изучения метеорологии. Вооруженный своими инструментами, Браге тщательно измерял новое небесное тело, пока в марте 1574 года оно не скрылось из виду. Его выводы были революционными: во-первых, новая звезда находилась дальше от Земли, чем Луна, во-вторых, она не была кометой, так как у нее не было хвоста и она не двигалась по небу. Наблюдения Браге впервые бросили вызов установкам Аристотеля. Чтобы заявить, что определенный порядок вещей неверен и грядут перемены, требуется недюжинная интеллектуальная смелость. Современность подхода Браге проявлялась в высочайшей точности его измерений и в понимании, что теории, не подкрепленные фактами, сродни пустым раковинам – их приятно держать в руках, но у них отсутствует живое начало, raison d’etre.
Сегодня мы знаем, что Браге наблюдал взрыв сверхновой. То, что он посчитал рождением новой звезды на небе, на самом деле было смертью старой. Великолепный инструментарий и усердие Тихо Браге позволяли ему видеть мир точнее, чем это делал кто-либо из его предшественников. Тем не менее, как часто случалось в истории науки (и часто упоминается в этой книге), его видение было ограничено имеющимися у него возможностями. Обвиняя тех, кто сомневался в нем, он в сердцах восклицал: «О глупцы! О слепцы, глядящие на небо!» Эту фразу можно отнести к каждому из нас.
Но небеса как будто сами подталкивали науку вперед. В 1577 году еще одна яркая вспышка среди звезд подбросила дров в медленно разгорающийся костер борьбы с аристотелевскими догматами. Речь идет о Великой комете 1577 года, которую видели по всей Западной Европе и которая была зафиксирована многими астрономами. Браге увидел ее 13 ноября перед закатом, возвращаясь с рыбалки, и следил за ее движением 74 дня. Сравнив свои данные с данными пражского коллеги, Браге заключил, что расстояние от кометы до Земли в три раза превышало расстояние между нашей планетой и Луной. Он также отметил, что, хотя Луна для пражского астронома находилась в другом месте, нежели для него, местоположение кометы в обоих наблюдениях оставалось неизменным. Эта техника носит название параллакс и является крайне эффективной для определения расстояния между удаленными объектами.[35] Другие астрономы также подтвердили наблюдения Браге, еще сильнее пошатнув установку Аристотеля о неподвижности небесных сфер.
Учитывая, что Браге делал свои открытия всего через 30 лет после публикации книги Коперника в 1543 году, было бы логично предположить, что он с радостью принял гелиоцентрическую модель. Увы, это было не так. По определенным физическим и теологическим мотивам он отказался ее поддерживать и вместо этого предложил странную гибридную модель с двумя центрами. Земля продолжала быть неподвижным центром всего сущего, Солнце и Луна вращались вокруг нее, а все остальные планеты – вокруг Солнца. Создавая эту запутанную структуру, Браге полагался одновременно и на библейские догматы, и на свою незыблемую веру в силу наблюдений. Он тщательно регистрировал и сравнивал положения звезд в разные времена года, чтобы получить хотя бы малейшее доказательство движения Земли (при этом применялась та же техника параллакса, что и при наблюдении за Великой кометой 1577 года), но не обнаружил ничего, что искал. Если бы Земля двигалась вокруг Солнца, то в разное время года звезды, расположенные к ней ближе, оказывались бы в разных положениях относительно более далеких. Браге не нашел желаемых доказательств, потому что звездный параллакс невозможно увидеть невооруженным глазом, пусть даже с самыми точными измерительными инструментами. Как и все остальные его современники, он смотрел на небо и был слеп, хоть и видел дальше остальных. Кроме того, Браге не мог представить себе новую физику, которая объяснила бы модель Вселенной с Солнцем в центре. Несмотря на то что его собственные наблюдения указывали на неправоту Аристотеля, разделявшего реальность на две отдельные области, Браге не был готов сделать еще один шаг вперед и поверить, что перед ним лежали законы абсолютно новой физики, ждущие, пока их откроют.
Тем не менее у него хватило смелости отойти от идеи существования хрустальных сфер, так как в его модели космоса они неизбежно сталкивались бы между собой. Он предположил, что, если бы сферы существовали, кометы пролетали бы сквозь них, как пули сквозь стекло, оставляя за собой след из осколков, хотя собранные им данные были недостаточно точными для того, чтобы доказать это. Избавившись от священных небесных сфер, Браге столкнулся с проблемой. Как объяснить движение светил по небу, если движущих их сфер на самом деле не существует? Будучи совершенно уверенным в своих наблюдениях, Браге считал, что планеты просто движутся в пустом пространстве, но при этом не мог объяснить их вращение, которое сам же и измерял с такой точностью. Ему нужен был архитектор, человек с достаточным воображением и знаниями в математике, готовый доказать, что его модель правильно описывает положение вещей. Ему нужен был Иоганн Кеплер.
В истории науки найдется немного персонажей, столь же интересных, как этот блестящий, храбрейший и крайне неурвновешенный немецкий астроном, который в самые мрачные моменты своей жизни считал себя самым слабым и безвольным человеком, будучи в реальности гигантом мысли и героем борьбы за свободу вероисповедания. Испытав немало жизненных трагедий, перенеся ужасное детство и множество эмоциональных потрясений в личной жизни, пережив жестокую конфронтацию между католиками и лютеранами в Центральной Европе в первых десятилетиях XVII века, Кеплер обратил свой взгляд к небесам, надеясь найти в них тот порядок, которого ему так не хватало на Земле.[36]
Кеплер стал ассистентом Браге в начале 1600-х годов. К тому моменту состоятельный астроном уже вышел из фавора датской короны и стал придворным математиком Рудольфа II, правителя Священной Римской империи, трон которого находился в Праге. Браге не мог отказаться от привычных ему блеска и роскоши и потому построил в замке Бенатки, примерно в 40 милях от столицы, сложную астрономическую обсерваторию, полную дорогих инструментов и многочисленных ассистентов.
С самого начала Браге и Кеплер преследовали разные цели. Первому нужна была теоретическая помощь для обоснования странной геоцентрической модели, которая, как он полагал, соответствовала не только его собственным наблюдениям, но и Священному Писанию. Второй же, будучи преданным последователем Коперника, хотел использовать данные Браге, чтобы раз и навсегда доказать истинность гелиоцентрической структуры космоса. Несмотря на то что они проработали вместе всего полтора года, это было эпическое столкновение. Браге не соглашался предоставить результаты своего многолетнего упорного труда немецкому последователю Коперника, Кеплеру же не терпелось начать собственную работу. После многочисленных споров Браге наконец дал Кеплеру доступ к своим записям о движении Марса. Это был хитрый ход, ведь Браге знал, что Марс движется по крайне странной орбите, порой делая резкие скачки в сторону от привычного круга.[37] Задачей Кеплера было объяснить траекторию Марса с помощью циркулярных движений, используя собранные Браге данные.
Кеплер надеялся, что эта работа займет у него лишь пару недель, а в итоге закончил ее через девять лет. В 1609 году он с гордостью опубликовал свою «Новую астрономию», в которой заявил, что Марс движется не по круговой, а по эллиптической орбите. Это было неожиданное решение, противоречащее тысячелетним представлениям астрономов, но Кеплер ни на шаг не отступал от наблюдений Браге. После нескольких лет экспериментов с кругами и эллипсами Кеплер применил идею Птолемея об экванте к Солнцу, немного сместив его из центра всех планетарных орбит. Этот подход сработал почти идеально, вот только два наблюдаемых параметра отличались от расчетов на основании его модели на восемь угловых минут, то есть на 8 / 60 одного градуса. Большинство людей просто проигнорировали бы эти несоответствия и посчитали бы такую модель максимально точным приближением к истинному положению вещей (так оно и было). Но неуемный Кеплер знал, что может лучше использовать драгоценную информацию, оказавшуюся в его руках.
Итак, Кеплер продолжил попытки и через какое-то время пришел к теории эллипса. Это был уже второй случай – в первый раз он отказался от идеи эллиптических орбит. Иногда ответ находится прямо у нас перед глазами, но мы не готовы его принять. Итак, звезды сошлись идеально. В руках Кеплера точнейшие данные Браге, собранные с помощью лучших инструментов, могли совершить революцию в науке. В истории науки вряд ли можно найти много примеров, столь же ярко иллюстрирующих силу точных данных как катализатора масштабных изменений в наших представлениях о мире. История Браге и Кеплера показывает нам, что наблюдатель и теоретик могут создать практически всесильный союз, пускай и не всегда столь блестящий. Перефразируя знаменитое высказывание Эйнштейна о науке и религии, «информация без теории хрома, а теория без информации слепа».
Но Кеплер не остановился на достигнутом. Для того чтобы по-настоящему изменить науку, ему недостаточно было обосновать астрономию Коперника данными, полученными от Браге. Требовалось создать новую физику для ее объяснения. Полное название книги Кеплера звучало так: «Новая астрономия, причинно обоснованная, или Физика неба, изложенная в исследованиях движения звезды Марс по наблюдениям достопочтенного Тихо Браге». Причинно обоснованная астрономия или физика неба. Кеплер не просто описывал астрономические явления, как все его предшественники, но пытался объяснить движения светил с помощью физики, будучи уверенным в том, что они подчиняются законам причины и следствия. Это была настоящая революция – первая попытка в истории астрономии объяснить траектории планет воздействием физических сил. Кеплер предположил, что Солнце и планеты имеют магнитную природу и взаимодействуют друг с другом с помощью притяжения. На эту идею его вдохновил труд Уильяма Гилберта, придворного врача Елизаветы I, в котором автор описывал Землю как гигантский естественный магнит. Кеплер заключил, что если Земля является магнитом, то им должно быть и Солнце. А два магнита притягиваются друг к другу даже на расстоянии, как и происходит с Солнцем и планетами. В письме от 1605 года он писал: «Моя цель – показать, что небеса представляют собой не божественный организм, но скорее часовой механизм… поскольку почти все из огромного количества движений объясняются единственно простейшей магнитной силой». Революционные идеи Кеплера о физических причинах движения планет стали основанием для ньютоновской теории гравитации, созданной позднее, в XVII столетии.
Перед тем как перейти от Кеплера к другим темам, я бы хотел обратить внимание еще на один очень важный пассаж из названия его книги – «физика неба, основанная на наблюдениях». Несмотря на то что пространные рассуждения о космосе порой заводили его слишком далеко, Кеплер понимал, что информация – это главный судья между Природой и теориями, которые мы создаем, чтобы ее объяснить. Сегодня это кажется нам очевидным, но во времена Кеплера все было совсем не так. Кеплер был человеком переходного периода, провозвестником нового. Но к этому моменту он уже был не одинок. Вдали от него, в Италии, на сцену мировой науки готовился выйти еще один последователь Коперника.
В 1610 году, всего через год после выхода «Новой астрономии» Кеплера, Галилео Галилей опубликовал свою работу Siderius Nuncius, название которой обычно переводят как «Звездный вестник». Этой небольшой книгой Галилей изменил представление человечества о Вселенной. А помог ему в этом новый мощный инструмент для наблюдения за небом – телескоп. Благодаря ему Галилей смог увидеть новый космос, полный сложности и красоты, далекой от идеализированной Аристотелевой симметрии вечных и неизменных эфирных сфер. Инструменты Браге позволяли ему измерять небесные явления с беспрецедентной точностью. Точно так же и телескоп Галилея давал ему возможность видеть дальше и точнее, чем кто-либо из его предшественников. Как это часто случается в истории науки, новый измерительный прибор открыл людям неожиданные аспекты физической реальности. Остров знаний увеличивается неравномерно, новые участки суши поднимаются из воды и изменяют старые границы, порой до неузнаваемости.
Несмотря на то что новости об изобретении телескопа появились уже в октябре 1608 года, когда голландский мастер Иоанн Липперсгей подал заявку на регистрацию соответствующего патента (она была отклонена), свой первый телескоп Галилей создал сам. Друг Галилея, дипломат, подарил ему образчик труда Липперсгея, и Галилей осознал потенциал этого прибора. Он начал вытачивать линзы самостоятельно и к июлю 1609 года собрал телескоп с трехкратным увеличением. Вскоре после этого, в августе того же года, он представил перед венецианским сенатом инструмент, приближающий наблюдаемые объекты в восемь раз. Это позволило ему закрепить свое место в Падуанском университете и потребовать увеличения жалованья в два раза. В октябре он уже смотрел на небо через телескоп с 20-кратным увеличением. Галилей не был одинок в своих трудах. Сегодня мы знаем, что в августе 1609 года Томас Хэрриот из Англии уже использовал устройство с шестикратным увеличением для наблюдения за Луной, хотя результаты его работы так и не были опубликованы.[38] Итак, телескоп обязан своей славой Галилею и его уверенности в том, что в его руках находится инструмент новой астрономии, если не нового мирового порядка.
О Галилее и его злоключениях по вине католической церкви написано очень много. Я и сам поднимал эту тему в своей книге «Танцующая Вселенная». Поэтому сейчас я постараюсь сфокусироваться на влиянии его открытий и на его роли в создании эмпирического метода, который впоследствии станет основой современной науки.
В «Звездном вестнике» (несомненно, в этой роли Галилей видел самого себя) он описывает три главных открытия, сделанных с помощью его телескопа и полностью противоречащих Аристотелевым взглядам на космос. Во-первых, поверхность Луны не является ровной – на ней имеются горы и кратеры и она больше похожа на Землю, чем на идеальную сферу из чистого эфира. Во-вторых, направив свой телескоп на Плеяды и созвездие Ориона, Галилей увидел в десять раз больше звезд, чем невооруженным глазом. Это заставило его предположить, что Млечный Путь и другие туманности являются не облачными формированиями, а бесчисленными множествами звезд. Наконец, у Юпитера обнаружилось четыре спутника, которые Галилей тут же окрестил «светилами Медичи» в стремлении получить поддержку великого герцога Тосканского Козимо II. Эти открытия, а также многие последующие наблюдения (например, фазы Венеры и пятна на Солнце) убедили Галилео, что Коперник был прав, а Аристотель – нет.[39] Даже несмотря на то что они не в полной мере доказывали теорию Коперника (и при необходимости легко вписывались в модель Браге), как, к примеру, звездный параллакс, Галилей решил заявить всему миру и церкви о том, что пришло время перемен. Это в конце концов и навлекло на него гнев инквизиции.
Несмотря на всю свою новизну и революционность, работы Галилея в области астрономии все равно несли на себе печать консерватизма. Например, он так и не поверил в существование Кеплеровых эллиптических орбит. Вместо этого он предложил странный закон круговой инерции, основанный на идеях оксфордского ученого XIV века Жана Буридана. С помощью этого закона он пытался объяснить вращение планет вокруг Солнца, а впоследствии экстраполировал его и на линейную инерцию: «Тело, движущееся по ровной поверхности, будет продолжать движение в том же направлении с постоянной скоростью, если не подвергнется внешнему воздействию» (представьте себе, как человек на коньках скользит по гладкому льду замерзшего озера). Позднее Ньютон превратит эту формулировку в свой первый закон движения, введя в нее понятие силы: «Тело сохраняет постоянную скорость, если на него не воздействует чистая неуравновешенная сила». Кстати, слово «инерция» впервые встречается в Epitome Astronomiae Copernicanae Кеплера – труде в трех томах, напечатанном между 1618 и 1621 годами. В этом шедевре ранней астрономической науки Кеплер применяет свою идею эллиптических орбит ко всем планетам, а также успешно доказывает правильность своих математических формул с помощью данных, полученных от Браге. Согласно Кеплеру, инерция представляет собой сопротивление тела стартовому импульсу, выводящему его из состояния покоя.
Тем не менее и для Галилея, и для Кеплера космос оставался закрытой структурой, ограниченной сферой звезд. Идея бесконечности Вселенной вселяла в Кеплера отвращение: «Даже сами мысли об этом полны скрытого ужаса, возникающего в попытках представить себе столь полное отрицание любых границ и центров, что любое определение местоположения становится бессмысленным».[40]
Кеплер верил, что космос, созданный Богом, должен быть симметричным и геометрически упорядоченным, а не бесконечным и бесформенным. Он даже сравнивал его со Святой Троицей: Солнце, находящееся в центре, представляло Бога-Отца, сфера звезд на периферии – Сына, а пространство между ними, наполненное солнечным (Божественным) светом, – Святой Дух. Чтобы подкрепить свое теологическое объяснение, он заявлял, что идея бесконечной Вселенной противоречит данным астрономических наблюдений, и приводил в качестве примера сверхновую 1604 года (так называемую Кеплерову сверхновую, последнюю, наблюдавшуюся невооруженным глазом). Защитники теории бесконечного космоса утверждали, что новая звезда стала заметна, приблизившись к Земле из космических глубин, а затем снова исчезла из виду, когда расстояние увеличилось. Кеплер отрицал эту идею, говоря, что звезды не могут двигаться. Кроме того, он считал, что бесконечный космос был бы однородным и выглядел бы одинаково в любой точке, в то время как наблюдения за созвездиями показывали, что это не так.
Вполне возможно, что и Кеплер, и в особенности Галилей просто не забывали об ужасной судьбе Джордано Бруно, закончившего жизнь на костре инквизиции, пускай его обвинение и казнь стали результатом скорее его борьбы с религиозными догматами, чем трудов в области астрономии. К примеру, Бруно утверждал, что Христос был не сыном Бога, а просто ловким волшебником, и что Святой Дух – это душа всего мира. Тем не менее он верил в бесконечность Вселенной и в то, что каждая звезда представляет собой солнце, вокруг которого вращаются другие планеты (подумать только, как он был прав!), населенные мыслящими существами. Эта теория также противоречила представлениям о Земле как о центре творения и людях как любимых детях Создателя.
Итак, Галилей и Кеплер подготовили сцену к выходу еще одного человека, готового изменить реальность, – Исаака Ньютона. Он не только точно сформулировал закон всемирного тяготения, применимый ко всем объектам во Вселенной, но и разбил небесный свод, показав, что за ним скрывается бесконечный космос. Ни одному человеку до него не удавалось настолько увеличить наш Остров знаний – и лишь немногим это удастся после.
Глава 6. Разбить небесный свод
в которой мы узнаем больше о гении Исаака Ньютона и поймем, почему его физика стала маяком человеческой мысли во тьме непознанного
Галилей умер в 1642 году – в год рождения Ньютона. Великий итальянец не ограничивался в своей работе только астрономией. Он потрясал основы Аристотелевой физики и на Земле, показывая, к удивлению многочисленных читателей и ярости святых отцов, что внешность действительно бывает обманчива. Самое блестящее открытие Галилея касается природы тяготения. Даже сегодня, когда я читаю лекции, посвященные этой теме, и показываю, насколько неверными могут быть наши интуитивные представления, я вижу удивление и зачастую даже неверие на лице своих студентов. Как писал Аристотель и как подсказывают нам органы чувств, все объекты в мире стремятся к своему «месту в природе». «Места в природе» организованы в соответствии с иерархией четырех стихий. Они располагаются вертикально снизу вверх в такой последовательности: земля, вода, огонь и воздух. Это кажется совершенно логичным, ведь мы знаем, что, если подбросить камень в воздух (или бросить его в огонь или воду), он упадет вниз, а если разжечь костер, то языки пламени будут стремиться вверх. Из этого эксперимента можно сделать вывод, что чем тяжелее предмет, тем быстрее он упадет. Соответственно, гравитация должна каким-то образом учитывать состав предмета. Почему бы и нет, если перо действительно падает на землю куда медленнее булыжника?
Проведя ряд потрясающих экспериментов, Галилей доказал, что ни Аристотель, ни наша интуиция не правы. Все предметы, вне зависимости от их веса, формы или состава, падают вниз с одной и той же скоростью. Различия могут объясняться лишь сопротивлением воздуха или разницей во времени броска. Если точнее, можно сказать, что все предметы, вне зависимости от их массы, в вакууме падают с одинаковой скоростью (хотя для того, чтобы объяснить разницу между весом и массой, необходимо было дождаться прихода Ньютона). Галилей описал кинематические характеристики свободного падения, измерив его скорость для различных объектов. Для осуществления таких измерений он придумал блестящий эксперимент – наблюдение за шарами, скатывающимися по наклонной поверхности. При этом он мог варьировать угол наклона, контролируя тем самым их скорость и рассчитывая время движения шара даже в отсутствие часов (которые к тому моменту еще не изобрели). Для измерения времени он использовал собственный пульс, музыку (так как все люди известны своей способностью чувствовать ритм) и даже воду, капающую в ведро. Чтобы убедиться, что в гроб Аристотеля загнано уже достаточно гвоздей, Галилей провел еще два опыта. В рамках одного из них, самого известного, он сбросил деревянный и свинцовый шары с верхушки Пизанской башни. Несмотря на разницу в весе, оба шара коснулись земли практически одновременно.[41]
Еще один эксперимент с падением предметов был проведен ранее, в 1602 году, во время мессы в Пизанском соборе, когда внимание Галилея привлек прислуживающий в алтаре мальчик, зажигавший свечи на большой люстре. Галилей заметил, что после того, как мальчик отпускал люстру, она некоторое время раскачивалась вперед и назад. К его удивлению, даже при уменьшении амплитуды время между полными колебаниями (период осцилляции) оставалось примерно одинаковым (на самом деле это верно лишь для колебаний с небольшой амплитудой). Позднее Галилей доказал, что время колебаний не зависело от массы объекта: при старте из одного и того же положения (то есть под одним и тем же углом к перпендикуляру) и легкие и тяжелые предметы колебались с одинаковой скоростью. Для колебаний с небольшой амплитудой время определяется лишь длиной подвеса и местным значением силы притяжения (которое в экспериментах Галилея оставалось неизменным).
Учитывая, что движение маятника представляет собой, по сути, контролируемое падение, тот факт, что маятники с разным весом имели равное время колебания, соответствовал данным эксперимента с шарами, движущимися по наклонной плоскости или сброшенными с Пизанской башни. Итак, свободное падение – это демократичное явление, ведь в нем все массы равны. Различия, которые мы будем наблюдать, если одновременно сбросим с высоты 10 футов перо и кадиллак, объясняются исключительно сопротивлением воздуха. В конце своей прогулки по Луне командир корабля «Аполло-15» Дэвид Скотт одновременно выпустил из рук перо и молоток, чтобы провести опыт Галилея в вакууме. Видео, снятое во время этого эксперимента, поражает воображение и кажется совершенной магией, хотя и не должно удивлять тех, кому известно об открытиях Галилея.[42] Единственное волшебство здесь заключается в отсутствии всякого волшебства.
Пока Кеплер формулировал первые математические законы, описывающие орбиты небесных тел, Галилей работал над выведением законов, регулирующих движения более близких к Земле объектов. Природа стала подвластной рациональному объяснению через математические формулы и собранные данные. И Кеплер, и Галилей сумели сформулировать то, что мы сегодня называем эмпирическими законами природы, после проведения экспериментов и тщательного анализа данных. Помимо всего прочего, их история учит нас, что для открытия математических законов Природы крайне важна экспериментальная точность (подумайте о Кеплере с его отклонением 8 угловых минут и о Галилее с его замерами времени при свободном падении). Естественным наукам необходимы методы, включающие в себя как математические уравнения, так и точные приборы. Одно значение измерений – это всего лишь число, но вот ряд значений может указывать на тенденцию. Задача ученого – понять смысл этой тенденции, изучить вероятные закономерности и выразить их в терминах математических законов, применимых к аналогичным системам. Законы Кеплера работают для всех объектов, движущихся по орбитам, будь то в Солнечной или иной звездной системе (если только гравитация в ней не слишком сильна), а результаты экспериментов Галилея со свободным падением применимы для всех (постоянных) гравитационных полей.
Ньютон стал для науки великим объединителем, связав физику Земли с законами небес. Своим законом всемирного тяготения он показал, что и закон Галилея о свободном падении, и закон Кеплера о движении планет по сути являются одним и тем же. Ньютон приблизил небеса к Земле и ко всему человечеству и позволил человеческому уму проникнуть в их тайны. Если эмпирические законы его предшественников рассказывали о закономерностях процессов на Земле и над ней, то его закон описывал общий космический порядок в масштабе, доселе недоступном мыслителям. Будучи увлеченным алхимиком, Ньютон, должно быть, очень радовался, когда ему удалось найти практическое воплощение знаменитого выражения из «Изумрудной скрижали» Гермеса Трисмегиста, главного кодекса алхимии: «То, что находится внизу, аналогично тому, что находится вверху».[43] Для Ньютона математические принципы натурфилософии, алхимический поиск единства духа и материи и роль Бога как Создателя и хранителя мирового порядка были прочно связаны между собой.
Движения всех деталей космического механизма, будь то дальние планеты или падающее яблоко, подчиняются ряду правил, выраженных в одном уравнении. Неудивительно, что Ньютона превозносят как создателя современной науки, как воплощение силы разума, позволяющей познать мир вокруг.
Но многие забывают, что Ньютон не был типичным одиноким теоретиком, погруженным в поиски математических законов природы в своем кабинете в Кембридже. Он и правда был отшельником и отрицал любые прямые социальные контакты или обмен знаниями, чему существует множество документальных доказательств и что не раз отражалось в его биографиях. Гораздо меньше широкой публике известно о том, что Ньютон был старательным экспериментатором, проведшим много часов за изучением свойств света и алхимическими опытами в поисках тайных знаний. К этому мы еще вернемся чуть позже.
В оптике Ньютон занимался исследованиями природы видимого света, в частности, он определил, что тот состоит из напластования бесконечного количества цветов, находящихся в радуге между красным и фиолетовым. Более того, Ньютон изобрел новый тип телескопа, рефлектор, гораздо более мощный, чем рефракторный телескоп Галилея, дававший изображения с гораздо большим разрешением и не имевший цветовых искажений (так называемых аберраций). Благодаря рефлекторному телескопу, в котором использовалось зеркало, собирающее свет и фокусирующее его в глазах наблюдателя, Ньютон стал знаменитым еще до открытия законов механики и всемирного тяготения. К 1669 году он уже был назначен вторым Лукасовским профессором математики в Кембриджском университете. Эта должность была создана в 1663 году и существует до сих пор. С 1979 года ее занимал Стивен Хокинг, а после его ухода на пенсию место перешло к Майклу Грину – известному ученому, занимающемуся теорией струн.
В декабре 1671 года первый Лукасовский профессор Исаак Барроу, восхищавшийся работами Ньютона, отвез его рефлекторный телескоп в Лондон, чтобы продемонстрировать членам Королевского общества – знаменитого сообщества ученых, ставившего своей целью познание законов Природы. Еще через месяц Ньютон вступил в общество, тем самым закрепив за собой место среди элиты британской науки. Однако вместе со славой к нему пришла известность, а с известностью – профессиональная зависть и интеллектуальная конфронтация. Ньютону совсем не хотелось играть в эти игры, по крайней мере поначалу. Только после публикации в 1687 году «Начал», его труда, в котором были представлены законы механики и всемирного тяготения, и признания в качестве одного из величайших ученых всех времен Ньютон осмелился вернуться в общество.
Что касается алхимических работ Ньютона, то их он по большей части держал при себе, делясь лишь с избранными коллегами, например с одним из первых химиков Робертом Бойлем (кстати говоря, так же ревностно он охранял и свои теологические труды). Тем не менее ньютоновская новая теория мира распространялась на все области знаний быстрее лесного пожара, и Ньютон уже не мог это контролировать. Разумеется, теория, объясняющая динамику небесных тел воздействием невидимых сил не могла не вызвать интереса у теологов, тем более что эти силы, судя по всему, управляли всеми процессами в космосе – от падения самой крошечной песчинки до движения планет и комет. Могли ли верующие люди увидеть за силой гравитации что-то иное, кроме воли Творца? Как объяснял Ньютон кембриджскому теологу Ричарду Бентли, только бесконечный космос мог являться отражением безграничной Божественной силы творения. Если Бог присутствует во всем космосе, значит, космос не имеет конца. В «Общем поучении» к «Началам» Ньютон пишет, что Бог и Вселенная суть одно и то же: «[Бог] существует всегда и присутствует везде и, будучи вечным и всеобъемлющим, представляет собой время и пространство».[44]
Новая теория гравитации Ньютона разбила небесный свод и показала, что простирающийся за ним космос безграничен. Вселенная предстала перед людьми во всей своей бесконечной и грозной красоте. Это был космос тысячи солнц, «находящихся на неисчислимых расстояниях друг от друга», в котором Земля оказалась лишь крошечной точкой в пустоте, не имеющей центра, лишь хрупким убежищем для человечества. Через несколько десятков лет после публикации революционных идей Ньютона французский математик и философ Блез Паскаль, вторя Кеплеру, описал экзистенциальный ужас, охватывающий его при мысли о безграничности мира: «Вечная тишина этого бесконечного пространства пугает меня». Если точнее, его мысль звучала так:
Когда я размышляю о мимолетности моего существования, погруженного в вечность, которая была до меня и пребудет после, о ничтожности пространства, не только занимаемого, но и видимого мною, растворенного в безмерной бесконечности пространств, мне неведомых и не ведающих обо мне, я трепещу от страха и недоуменно вопрошаю себя: почему я здесь, а не там, потому что нет причины мне быть здесь, а не там, нет причины быть сейчас, а не потом или прежде. Кто определил мою судьбу? Чей приказ, чей промысел предназначил мне это время и место?[45]
И сегодня, сталкиваясь с новыми научными открытиями, постоянно подтверждающими бесконечность времени и пространства, многие испытывают тот же ужас, что и Паскаль. Великого философа поддерживала в борьбе с его страхом христианская вера. Но как еще, если не с помощью религии, мы можем понять истинный смысл нашего мимолетного существования в этом мире?
Глава 7. Наука как грандиозное описание Природы
в которой автор рассуждает о том, что наука – это человеческий конструкт, действующий в установленных рамках, но открытый для изменений
Ньютон, Галилей и Кеплер, равно как и многие после них, находили смысл существования в познании законов Природы. Если мир и его законы действительно были созданы Богом, то поиск этих законов и постижение Божественного плана – обязанность каждого верующего. Понимание задумки Творца было высочайшей целью человеческого разума, вооруженного математикой, интуицией и точными данными. Даже сегодня верующие ученые точно так же объясняют, как в их жизни сочетаются наука и религия: чем больше они узнают о Природе, тем сильнее восхищаются результатами Божественного труда. Но даже среди тех, кто не причисляет себя ни к одной религии, распространено представление о природном единстве.
Теперь мы знаем, как Галилей, Кеплер и Ньютон изменили правила игры в свое время, как наука стала больше полагаться на инструменты и приборы и как в эффективности этих устройств отражались ограниченные возможности человека при познании мира. Природные закономерности выражались в математических законах, разработанных на основании внимательных наблюдений за физическими явлениями. С каждым открытием Остров знаний разрастался, но и береговая линия непознанного становилась длиннее. У ученых появлялись новые вопросы, на которые они не могли дать ответ.
Тем не менее начало было положено, и настолько эффективно, что к 1827 году, через 100 лет после смерти Ньютона, научное знание полностью изменилось. Такие понятия, как энергия и законы ее сохранения, электрический ток и магнетизм, были признаны частью природного повествования. На небеса направлялись все более и более мощные телескопы, и физика расширяла свое присутствие. После открытия Урана Уильямом Гершелем в 1781 году число известных человечеству планет достигло семи, новые кометы пересекали небеса, двигаясь по своим огненным орбитам, туманности виделись наблюдателям уже не как бесформенные облака, но как объекты, наполненные невероятной игрой света и цвета. Космос оказался куда более ярким и живым, чем можно было предположить. Древние ионийцы с их представлениями о постоянно меняющейся Вселенной внезапно снова вышли на передний план. Разумеется, нельзя было забывать и о противоположных идеях идеальной неизменности космоса. Для того чтобы понять природу космоса, наука должна была уравновесить понятия симметрии, красоты и сохранения энергии с представлениями об изменениях, распаде и перерождении.
По мере накопления знаний о мире увеличивался и объем непознанного. Приборы, предназначенные для улучшения человеческого зрения, открывали перед наблюдателями неожиданные богатства на всех уровнях, от крошечного до галактического. Если та или иная теория достаточно успешна, она может предсказать существование новых природных объектов и характеристик. Но предвидеть все, чего мы еще не знаем, невозможно. Новые инструменты не только расширяют наше видение мира, но и показывают, сколького мы еще не знаем и не можем предсказать, причем зачастую это происходит весьма впечатляюще. В качестве примера можно привести голландцев Захария Янсена и Антони ван Левенгука, совершивших революцию в микромире и создавших микроскоп примерно в то же время, когда Галилей впервые направил свой телескоп на звезды. В частности, Левенгук исследовал налет, снятый с его собственных зубов, и обнаружил в нем бактерии, открыв, таким образом, целый новый мир микроорганизмов.
Открытие этих крошечных форм жизни сразу же породило лавину вопросов. Насколько маленьким может быть живой организм? В чем разница между живой и неживой материей? Откуда вообще произошла жизнь? У важнейших вопросов макромира, вроде границ Вселенной и возраста нашего мира, нашлись эквиваленты и в микромире. Какова минимальная частица материи? Какова продолжительность ее жизни? Что есть смерть – Божественная установка или природное явление? Возможность того, что неживая материя когда-то превратилась в живую без какого бы то ни было посредничества Творца, пугала многих верующих. Здесь уместно вспомнить четвертое письмо Ньютона к Ричарду Бентли, в котором он отвечает на вопрос теолога о природе гравитации:
Невозможно представить, чтобы неодушевленная грубая материя без посредства чего-нибудь еще нематериального могла действовать и оказывать влияние на другую материю без взаимного соприкосновения с ней… То, что тяготение должно быть врожденным, внутренне присущим материи и существенным для нее…представляется мне столь вопиющей нелепостью, что, по моему убеждению, ни один человек, способный со знанием дела судить о философских материях, не впадет в нее.[46]
Ньютон настаивал на том, что гравитация не может иметь материального объяснения, так как инертная материя остается инертной. В самой материи имелось что-то непостижимое, запускавшее силы притяжения. Возможно, Ньютон объяснял это вмешательством Бога, хотя в своем ответе Бентли по этому поводу он весьма осторожен (если не сказать противоречив): «Тяготение должно вызываться неким агентом, постоянно действующим по определенным законам; материален этот агент или нематериален, я предоставляю судить читателям».
После Ньютона поведение материальных объектов начали объяснять с помощью сил. Именно они определяют то, как мы познаем мир вокруг нас через наши органы чувств и их искусственные продолжения – приборы. В «экспериментальной философии» не осталось места для метафизики. Говоря словами Ньютона, «то, что не проистекает из фактов, не имеет места».[47]
Это высказывание и по сей день остается кредо науки. Онтологическое описание физического мира через силы, влияющие на материальные объекты, не содержит никаких объяснений о природе таких сил или причинах их существования. Массы притягиваются друг к другу с силой, которая обратно пропорциональна расстояниям между ними. Притяжение (или отторжение) заряженных тел происходит по аналогичному принципу. Такие формулы позволяют физикам описывать поведение масс и зарядов в различных ситуациях. При этом мы не знаем, что представляют собой электрический заряд или масса и почему некоторые базовые единицы материи, например электроны или кварки, обладают и тем и другим. Масса или заряд – это характеристики материальных объектов, которые мы познаем с помощью приборов и опытов и используем для классификации их типов и физических свойств. Масса и заряд не существуют сами по себе. Они лишь часть информационной картины, которую люди создают для описания мира вокруг себя. Пятьсот лет назад этих понятий еще не существовало, а через 500 лет их могут заменить другие концепции. Иными словами, если во Вселенной существуют другие разумные существа, они, несомненно, пытаются объяснить наблюдаемые ими физические явления. Но считать, что они используют при этом те же концепции, что и мы, то есть что придуманные нами описания отражают какую-то вселенскую истину, – это глупость и антропоцентризм.
Наше понимание материальных объектов и взаимодействий между ними резко изменилось в ХХ веке с распространением нового описательного инструмента – понятия поля, породившего новую онтологию. Частицы материи стали представляться как локализованные флуктуации в полях, сгустки энергии, появляющиеся из базового поля и исчезающие в нем же. Несмотря на то что после введения полей как инструмента для объяснения фундаментальной физической реальности наше понимание материи и взаимодействий между объектами существенно улучшилось, поля все равно следует рассматривать как всего лишь один из уровней описания, а не как окончательное объяснение того, почему массы и заряды ведут себя так, как мы наблюдаем. Наверняка мы можем сказать лишь то, что на нашем текущем уровне понимания массы и заряды представляют собой измеримые характеристики возбуждения полей на уровне частиц. То, что это объяснение успешно, не значит, что в будущем мы не найдем ничего лучше. Более того, учитывая скорость развития научных знаний, это почти наверняка произойдет. Точно так же, как современные представления об электроне отличаются от представлений вековой давности, концепции будущего будут отличаться от сегодняшних.[48]
Но давайте вернемся в XIX век. Двести лет назад ньютоновская наука потрясла основы человеческого знания и изменила наши представления о мире. Девятнадцатый век породил ученых, выдающихся не только своим блестящим воображением, но и потрясающей работоспособностью и экспериментальным мастерством. В 1865 году Джеймс Клерк Максвелл объединил десятки на первый взгляд разрозненных электрических и магнитных явлений, введя понятие колебаний магнитного поля. В 1886 году Генрих Герц подтвердил предположение Максвелла о том, что такие колебания распространяются в пространстве, перенося энергию и импульс. Позже он также доказал, что электромагнитные волны движутся со скоростью света (как и предсказывал Максвелл). Объединившись, теория и опыт оказались непобедимыми. Чтобы избавиться от ассоциаций с философами прошлого, натурфилософию стали называть наукой. Согласно Оксфордскому словарю английского языка, слово «ученый» вошло в обиход в 1863 году.
Ученый – это человек, который ищет знания о физическом мире, используя специальную методику. Научный метод предполагает выдвижение гипотезы с ее последующим экспериментальным подтверждением. У ученого имеется четкая цель: описать природное явление, используя для этого рациональные аргументы, основанные на воспроизводимых экспериментах и единообразии. Рассуждения допустимы только в той степени, в которой они ведут к возникновению доказуемых прогнозов. Итак, между старой натурфилософией и новой наукой возникла четкая граница, и пересекать ее ученым предлагалось на свой страх и риск (впрочем, желающих оказалось немного). Большинство физиков-исследователей занимаются изучением твердой материи, ее элементарных частиц, жидкостей, плазмы и небесных тел, от планет и звезд до галактик и их расположения в космосе. Однако с ростом наших знаний о Вселенной в ХХ и XXI веках ученые (по крайней мере те, кого интересуют космологические и фундаментальные проблемы) все чаще сталкиваются с вопросами метафизического характера, которые угрожают разрушить неприступную стену между наукой и философией. К сожалению, в большинстве случаев встречи этих двух областей человеческого знания сопряжены с невнимательностью и концептуальной неосторожностью, что лишь больше усложняет дело. Когда известные космологи делают заявления вроде «философия не имеет смысла» или «квантовая космология доказывает, что в Боге нет необходимости», они лишь ухудшают ситуацию. Для того чтобы понять, как мы оказались в такой ситуации и как она демонстрирует нам ограниченность наших знаний, нужно сначала кратко описать современную космологию – от теории Большого взрыва до концепции множественности вселенных.
Глава 8. Пластичность пространства
в которой рассказывается об общей и специальной теории относительности Эйнштейна и об их влиянии на наше понимание пространства и времени
Седьмого ноября 1919 года лондонская газета Times вышла с сенсационным заголовком: «Революция в науке. Новая теория Вселенной. Ньютон повержен». Еще через три дня эстафету подхватила New York Times: «Искаженный свет в небесах. Ученые взбудоражены результатами наблюдений за солнечным затмением. Триумф теории Эйнштейна. Звезды не то, чем кажутся, но волноваться не о чем». Эти публикации быстро превратили Эйнштейна в знаменитость. В них говорилось о том, как две команды астрономов подтвердили правильность его блестящей общей теории относительности после наблюдения за солнечным затмением на западном берегу Африки и в городе Собрал в северо-восточной Бразилии.
Эйнштейн предлагал новое видение природы гравитации. Он описывал ее не как загадочное ньютоновское «воздействие на расстоянии», а как эффект, возникающий в результате искривления пространства вокруг массивных объектов. Пространство эластично, а степень его искривления зависит от концентрации массы в том или ином регионе. Небольшие объекты слабо деформируют пространство вокруг себя, а большие вызывают более сильные изменения. Поэтому деформация вокруг человеческого тела незаметна (хотя она и существует), а вот деформация вокруг Солнца гораздо более выражена. В ходе опыта с затмением проводились измерения света дальних звезд в момент, когда они проходили рядом с Солнцем. Звезды были выбраны таким образом, чтобы Солнце находилось на пути между ними и Землей для их света. Затмение на время скрыло солнечный свет, позволив астрономам увидеть дальние звезды и сравнить их положение на небе с тем, которое наблюдалось при отсутствии Солнца как помехи. Если пространство вокруг Солнца действительно искривлено, то звездный свет отклонился бы от своего первоначального маршрута и звезды стали бы видны в других местах. Эйнштейн использовал свою теорию, чтобы рассчитать видимые глазу различия в положении звезд, возникающие в присутствии Солнца. Результаты эксперимента нельзя было назвать полностью ясными, но и их было достаточно для подтверждения его теории.
Уравнения, включенные в общую теорию относительности, можно использовать для расчета искривления пространства вокруг любого массивного объекта, а не только Солнца. По мере движения от далекого источника свет отклоняется то в ту, то в другую сторону, реагируя на пространственные неровности.
Еще в одном эксперименте Эйнштейн использовал искривление пространства для объяснения хорошо известных ученым аномалий в орбите Меркурия, перед которыми оказался бессилен закон всемирного тяготения Ньютона. Успех теории был закреплен, и очень скоро ее начали считать величайшим достижением человеческой мысли в истории.
Но на присутствие материи реагирует не только пространство, но и время. В своей специальной теории относительности, созданной в 1905 году, то есть за десять лет до выведения более общей версии, Эйнштейн показал, что время и пространство нельзя рассматривать как абсолютные величины, как было принято со времен Эйнштейна. Кроме того, нельзя и разделять их, так как они формируют единое целое – пространственно-временной континуум, в котором время играет роль четвертого измерения. Соответственно, присутствие материи (или энергии в целом) искривляет и пространство, и время (или лучше сказать «пространство-время»).
Идея пространственно-временного континуума проще, чем кажется на первый взгляд. Представьте, что вы видите у себя в комнате муху и через пять секунд убиваете ее. Когда вы заметили муху впервые, она находилась в определенной точке в пространстве, а время на «мушиных часах» составляло 0 секунд. Когда вы ее прихлопнули, местоположение мухи в пространстве изменилось и прошло 5 секунд. Для того чтобы точно указать, где и когда погибла муха, вам нужно знать точку в пространстве и момент во времени. Для того чтобы связать время с расстоянием, оно умножается на скорость. Эйнштейн выбрал для этого скорость света, которую считал самой высокой в природе. Скорость света в вакууме составляет 186 282 мили в час и обычно обозначается буквой с (от латинского celeritas – «скорость»; тот же корень используется, например, в слове acceleration – «ускорение»). За время, необходимое нам на то, чтобы моргнуть, луч света успевает семь с половиной раз обойти вокруг Земли. Если умножить значение времени (t) на скорость света, мы получим ct, а к этому значению уже можно применять единицы расстояния. Точка в четырехмерном пространстве имеет координаты ct,x, y и z, где x, y и z задают ее местоположение в трех измерениях (с севера на юг, с запада на восток и сверху вниз). Последовательность точек в пространстве-времени может рассказать нам целую историю – например, как двигалась муха между моментами, когда вы ее заметили и убили. Эта история, или путь в четырехмерном пространстве, называется мировой линией.
Для того чтобы аргументировать свою теорию, Эйнштейн весьма умно сфокусировал ее на наблюдателе, то есть на человеке (или инструменте), замеряющем расстояния и временные интервалы. Он постулировал, что два наблюдателя, движущиеся относительно друг друга, получат разные результаты таких измерений. В своей специальной теории Эйнштейн рассматривал лишь относительное движение с постоянной скоростью, в общей же теории учитывалось и ускорение. Теория предлагала способ согласования несоответствующих измерений, полученных двумя такими наблюдателями. Несоответствия обычно являются минимальными и определяются относительной скоростью движения между наблюдателями (v) и скоростью света (с), то есть выражаются как v/c. Различия становятся существенными только в том случае, если скорости наблюдателей приближаются к скорости света. Тем не менее они все же существуют и представляют собой еще один уровень искажений в нашем восприятии мира. Движущиеся объекты кажутся короче по направлению движения, а движущиеся часы идут более медленно. Например, объект, движущийся со скоростью, равной 60 % от скорости света, будет выглядеть на 20 % короче, а часы, движущиеся с той же скоростью, окажутся на 20 % медленнее. Когда относительная скорость движения между двумя наблюдателями достигнет скорости света, время остановится, а объект исчезнет.
В реальности подобная странная ситуация никогда не происходит, так как относительное движение имеет и еще один эффект – возрастание массы по мере увеличения скорости. Пока движущийся объект стремится к скорости света, его масса бесконечно увеличивается. Поскольку для разгона объекта с постоянно растущей массой требуется все больше энергии, а к моменту, когда масса объекта приближается к бесконечной, такой разгон и вовсе становится невозможен, специальная теория Эйнштейна говорит нам, что ни один объект, обладающий массой, не может разогнаться до скорости света. Это доступно лишь чему-то без массы, например самому свету. Кроме того, по непонятным причинам свет всегда движется в определенной среде (например, в вакууме, воздухе или воде) с постоянной скоростью относительно любого наблюдателя, какую бы скорость (ниже с) он ни развивал. Для отбивающего в бейсболе мяч летит медленнее, если подавать его против ветра, и быстрее, если ветер дует в направлении подачи. Если питчер во время броска бежит в направлении отбивающего, мяч будет лететь еще быстрее, так как скорости складываются. Однако скорость света совершенно не зависит от движения его источника – это абсолютная природная величина, не подвластная никаким изменениям. На самом деле теория относительности – это теория абсолютов, неизменных вещей в Природе, таких как законы физики и скорость света.[49]
Специальная теория относительности позволяет различным наблюдателям самостоятельно давать объяснения тому, как действует Природа, при условии, что скорость света всегда неизменна и является самой высокой скоростью передачи сигналов (и, соответственно, информации). В мире ньютоновской физики время и пространство были абсолютны, а значит, была возможна любая скорость. Предположив, что абсолютным лимитом является лишь скорость света, Эйнштейн опроверг эту теорию. Если вспомнить платоновскую аллегорию пещеры, то теория Ньютона окажется тенью на стене, видимой для существ, которые не подозревают о постоянстве скорости света и потому считают ее единственно верным описанием реальности. Разумеется, мы действительно живем в этой пещере, так как наше зрение не может делать поправку на скорость света. Специальная теория относительности – это еще одна проекция на стену пещеры, исправленная впоследствии общей теорией, в рамках которой учитывалось ускорение движения наблюдателей. После общей теории относительности Эйнштейна наше представление о мире снова изменилось и мы снова немного продвинулись к свету. У платоновской пещеры много стен. Возможно, это даже несколько пещер, расположенных одна в другой, как матрешки. Двигаясь от стены к стене, мы понимаем, что по мере расширения наших знаний о мире перед нами будут появляться все новые и новые уровни описания реальности. Все, что мы видим, – это тени на стенах. Платон мечтал о пещере, из которой есть выход к свету чистого знания, но кажется разумным предположить, что никакое знание не может быть чистым или окончательным.
Как что-то может существовать без массы? Свет – это, пожалуй, одна из величайших загадок. Даже Эйнштейн, один из ключевых исследователей его физической природы, часто признавался, как его поражают потрясающие свойства света. Мы не знаем, почему свет может распространяться как волна в вакууме, в то время как другим волнам (например, звуковым или водным) для этого требуется физическая среда. Мы не знаем, почему свет движется именно с такой скоростью и почему ничто в Природе не может его обогнать. Все, что мы можем сказать, – это что пока мы не имеем оснований посмотреть на свет по-другому. Если в уравнение добавляются свойства света, становятся возможными невероятные вещи: уменьшение расстояний, замедление времени, увеличение массы… Удивительно, но все они были подтверждены многочисленными экспериментами. GPS в вашем фитнес-браслете или автомобиле работает так точно потому, что при его создании учитывались поправки общей и специальной теории относительности к ньютоновской теории. Они изменили наше представление о пространстве, времени и материи – о Вселенной в целом. И именно Эйнштейн сделал первый шаг.
Глава 9. Беспокойная Вселенная
из которой вы узнаете о расширении Вселенной, сингулярности и начале времени
«Если пространство пластично, – рассуждал Эйнштейн, – и если оно реагирует на количество материи, то, если бы я знал, сколько материи имеется во всем космосе и как она распределена, я мог бы использовать свои уравнения, чтобы рассчитать форму Вселенной». Как мы уже отмечали, Эйнштейн сделал гигантский шаг вперед, когда всего через год после публикации своей общей теории относительности экстраполировал ее на весь космос. Точно так же когда-то поступил и Ньютон со своим законом всемирного тяготения. Эйнштейн вывел свою новую теорию из-за пределов Солнечной системы, где она уже была испытана, и распространил на всю Вселенную, будучи уверенным, что в ней действуют одни и те же физические принципы. Он предположил, что космос является сферическим и статичным, а затем продолжил упрощение. Поскольку точных данных о распределении материи в космосе получить невозможно, Эйнштейн логично предположил, что в среднем в достаточно больших объемах пространства материя распределена одинаково.[50] Такое приближение работает только для по-настоящему огромных пространств, включающих в себя миллионы галактик и простирающихся на множество световых лет. Математически это означает, что плотность материи, то есть ее количество в объеме, является примерно постоянной величиной. В больших объемах содержится больше материи в той же пропорции. Уравнения Эйнштейна определяли геометрию пространства на основании распределения материи, а значит, геометрия должна была отражать эту однородность, выражая ее в простейшей из возможных форм – в сфере. Эйнштейну удалось рассчитать «радиус» этого сферического космоса, а чтобы сделать свою модель стабильной, он добавил в нее странную константу, которую мы сегодня называем космологической постоянной. На этом он прекратил работу, будучи уверенным, что его теория (с некоторыми поправками и коррективами) может ответить на один из старейших вопросов в истории: «Какую форму имеет космос?»
В 1929 году, всего через 12 лет после публикации работы Эйнштейна, ставшей первым трудом по современной космологии, все резко изменилось. Американский астроном Эдвин Хаббл опубликовал результаты своих наблюдений за дальними галактиками, указывающие на то, что они удаляются от Млечного Пути со скоростями, пропорциональными расстоянию до них. Иными словами, галактика, находящаяся в два раза дальше от нашей, чем ее соседка, двигалась в два раза быстрее. В распоряжении Хаббла имелся самый большой телескоп того времени, рефлектор диаметром 100 дюймов, установленный на горе Маунт-Вилсон в Калифорнии.[51] С его помощью он мог видеть дальше и точнее, чем кто-либо до него. Примерно за десять лет до этого Весто Слайфер писал о том, что свет далеких галактик имеет тенденцию отклоняться в красную часть спектра сильнее, чем более близких. Сегодня данное явление известно как красное смещение. Что оно могло означать? Ответ на этот вопрос был получен австрийским физиком Кристианом Доплером еще в XIX веке. Любая волна растягивается по мере смещения ее источника (или наблюдателя). Мы знаем это из экспериментов со звуковыми волнами. Например, по мере того, как машина скорой помощи с включенной сиреной подъезжает ближе к нам, высота звука постепенно повышается, а когда она удаляется от нас, звук становится ниже. Доплер предположил существование этого эффекта в 1842 году, а в 1845 году подтвердил его с помощью эксперимента с участием поезда и нескольких музыкантов, дующих в рога.[52] «Эффект Доплера» распространяется и на световые волны, но здесь вместо высоты звука варьируется частота (при этом у синего цвета она выше, чем у красного). Итак, когда астрономы говорят о красном смещении, они имеют в виду растяжение световых волн в результате удаления источника. Синее смещение, наоборот, означает, что источник (или наблюдатель) приближается. Благодаря Доплеру рождается потрясающая связь между повседневным и космическим: теперь каждый раз, заслышав на улице сирену скорой помощи, вы можете думать о миллиардах галактик, разбегающихся в небесах.
Итак, в очередной раз мощный новый инструмент изменил наш взгляд на Вселенную. Еще до Эдвина Хаббла некоторые теоретики размышляли о том, что она может не быть статичной, что, вполне вероятно, она изменяется со временем. Первым подобную мысль высказал голландский ученый Виллем де Ситтер, критиковавший кажущуюся необоснованной идею Эйнштейна о статичном космосе: «Все экстраполяции неточны… Перед нами лишь фотоснимок мира, и мы не можем и не должны утверждать…что мир навсегда останется таким же, как и в момент съемки».[53] Пытаясь понять поведение материи в бесконечной Вселенной, де Ситтер в 1917 году предложил другую модель, которая предполагала почти полное отсутствие в космосе материи. Единственным вкладом Эйнштейна в эту концепцию пространства-времени был сам придуманный им термин «пространство-время». С помощью уравнений де Ситтер продемонстрировал, что любой материальный объект должен двигаться со все возрастающим ускорением. Еще через несколько лет русский метеоролог Александр Фридман, приверженец теории Эйнштейна, математически доказал, что ни одно из уравнений общей теории относительности не указывало на обязательную статичность Вселенной. Наоборот, с течением времени она могла расширяться или сжиматься, как воздушный шарик. В таком случае плотность материи также изменялась бы со временем – уменьшаясь при расширении и увеличиваясь при сжатии (представьте себе, что вы переставляете мебель из маленькой комнаты в большой зал или, наоборот, из гостиной в чулан и как от этого меняется количество свободного пространства). Открытый Хабблом закон линейного расширения (указывающий на то, что скорость расхождения далеких галактик пропорциональна расстоянию до них) подтвердил правоту Фридмана. Незачем было делать космос статичным, а тем более вводить для этого искусственные постоянные.[54]
Концепция расширяющейся Вселенной часто вводит людей в замешательство. Большинство наивно (и неверно) представляет расширение чем-то вроде взрыва бомбы, а галактики – осколками, разлетающимися к краям космоса. Почему эта картина неверна? Потому, что она предполагает, что космос остается неизменным, а галактики движутся по нему, хотя на самом деле происходит совершенно противоположный процесс – пространство расширяется и тащит за собой галактики, как течение реки – мелкие щепки. Это космическое движение даже называют потоком Хаббла. Разумеется, гравитационное притяжение, возникающее между галактиками или их группами (галактическими кластерами), может вызывать отклонения от потока, называемые пекулярными движениями. Например, наша ближайшая галактическая соседка, Андромеда, движется по направлению столкновения с Млечным Путем. Моделирование и данные, полученные с помощью телескопа «Хаббл», указывают на то, что это произойдет примерно через четыре миллиарда лет.[55]
Открытие Хаббла и его подтверждение подняли представления о пластичности пространства до новых высот. Наблюдая за локальными отклонениями вблизи звезд, мы можем видеть, что теория Эйнштейна верно предсказывает растяжение пространства как реакцию на содержащуюся в нем материю (по крайней мере в наблюдаемой Вселенной, так как ни о чем ином мы не можем говорить с определенностью). Но все становится гораздо интереснее, когда мы задумываемся, что было до расширения, то есть когда заглядываем в прошлое. Если сейчас космос растет, значит, в прошлом галактики находились ближе друг к другу. Чем дальше мы проникаем в прошлое в нашем мысленном эксперименте, тем меньше становится расстояние между ними. Так происходит до тех пор, пока все они не оказываются сжатыми в одной точке. Но как это возможно? Как все сущее может уместиться в одной точке в пространстве? Все еще больше усложняется, когда мы понимаем, что точка – это всего лишь математическая концепция, не существующая в реальном мире. Как же тогда объяснить происходящее? Теория Хаббла описывает космос, существование которого началось в определенный момент в прошлом. Эта точка начала называется сингулярностью.
В 1960-х годах физики Стивен Хокинг и Роджер Пенроуз доказали, что, принимая во внимание разумные предположения о характеристиках материи, любая расширяющаяся вселенная должна иметь в своем прошлом сингулярность. Но вот в чем состоит затруднение: так как при движении назад во времени объем космоса постоянно уменьшается, а вся материя постепенно сжимается в одну точку, плотность этой точки постоянно растет. Представьте себе забитый людьми вагон метро, который сначала уменьшили до размера консервной банки, потом – горошины, затем – атома и т. д. Очевидно, что плотность материи станет при этом бесконечно высокой, а пространство вокруг нее окажется бесконечно искривленным. Время остановится, так как сингулярность достигается при t = 0 (начало времени). Но ни одна физическая теория не может безнаказанно оперировать бесконечными величинами. Значит, что-то должно быть не так.
Когда математики сталкиваются с сингулярностью (например, при делении любого числа на ноль), они, так сказать, изучают ее границы, чтобы найти выход из нее. К примеру, вместо деления на ноль можно использовать деление на бесконечно малое число. Возможно, существует путь, при котором можно избежать сингулярности, но все равно попасть в нужную точку (то есть обойти ее, как вы объезжаете яму на дороге). В физике наличие сингулярности – это серьезный звоночек, показывающий, что теория, которую вы используете, скорее всего, неверна. В ней чего-то не хватает, и это что-то обычно включает в себя новую физику. Например, использование законов Ньютона для объяснения того, как ведут себя тела на скоростях, близких к световым, ведет к появлению ошибок – неверных теней на стене платоновской пещеры. Сегодня мы знаем, что для получения ответов нужно применять специальную теорию относительности Эйнштейна. То же касается и сильной гравитации: ньютоновские законы хороши для описания достаточно слабого гравитационного притяжения, но требуют корректирования рядом с массивными объектами (например, Солнцем).
Ни одна теория не является полной или окончательной. Новые значения требуют новых формул, а те, в свою очередь, – новых экспериментальных подтверждений, зависящих от доступных технологий. В поисках предсказанных эффектов для тестирования своих теорий ученые частенько сталкиваются с чем-то неожиданным, толкающим их назад к расчетам и, вполне возможно, к новым знаниям. Большинство физиков, участвовавших в поисках бозона Хиггса и работавших на Большом адронном коллайдере в Швейцарии, с гораздо большей радостью обнаружили бы частицу, не соответствующую предсказаниям Стандартной модели физики частиц. Неожиданности ведут к изменениям.
Космическая сингулярность указывает на необходимость в новой физике, выходящей за пределы, которые устанавливает общая теория относительности Эйнштейна. Поскольку в самом начале времен расстояния были крайне небольшими, такая новая физика должна объяснить, как пространство, время и материя действуют на коротких дистанциях. Физика макромира сталкивается с микромиром. Мы вступаем в царство «квантовой гравитации», в котором общая теория относительности сочетается с квантовой физикой (физикой атомов и субатомных компонентов). Происходит невероятный скачок – исследования Вселенной и ее истории приводят нас к мельчайшим единицам материи. Насколько нам известно сегодня, макро – и микромир накрепко связаны между собой. Ученые не смогут понять происхождение Вселенной до тех пор, пока не узнают, как квантовая физика влияет на геометрию пространства-времени. Но перед тем, как мы перейдем к этому вопросу, давайте рассмотрим некоторые из фундаментальных последствий влияния современной космологии на границы наших знаний. Начнем с конечности скорости света и понятия «сейчас».