Остров знаний. Пределы досягаемости большой науки Глейзер Марсело

Глава 10. Нет никакого «сейчас»

из которой мы узнаем, что понятие «сейчас» – это ошибка восприятия

Что происходит, когда мы что-то видим? К примеру, вот эту книгу, которую вы сейчас читаете. Оставим в стороне весь процесс обработки визуальной информации мозгом и сфокусируемся на времени ее передачи. Для еще большего упрощения мы будем рассматривать лишь классическое распространение света без учета того, как он поглощается и излучается атомами. В вашей комнате светло, потому что у вас открыто окно, или включена лампа, или и то и другое. Так или иначе, поток света попадает на поверхность книги, частично поглощается ею, а частично отражается в различных направлениях. Бумага и чернила, с помощью которых на ней напечатан текст, поглощают и излучают свет по-разному, и эти различия воплощаются в отраженном свете. Затем часть этого отраженного света попадает от книги в ваши глаза, и благодаря невероятной способности мозга декодировать сенсорную информацию вы видите слова на странице.

Вам кажется, что весь этот процесс происходит в одно мгновение. Вы можете сказать: «Я читаю это слово прямо сейчас». Но в реальности это не так. Поскольку свет движется с конечной скоростью, ему требуется время для того, чтобы отразиться от страницы вам в глаза. Когда вы читаете слово, на самом деле вы видите, как оно выглядело в определенный момент в прошлом. Если быть точным, то, при условии, что вы держите книгу в одном футе от лица, время движения света от нее до ваших глаз составит одну наносекунду, или одну миллиардную долю секунды.[56] То же самое происходит с каждым предметом, который вы видите, и с каждым человеком, с которым ведете разговор. Оглядитесь вокруг. Вам кажется, что вы видите все предметы одновременно («сейчас»), вне зависимости от расстояний, на которых они находятся. Но в реальности это не так, потому что отражающемуся от них свету требуется разное время, чтобы достигнуть ваших глаз. Мозг интегрирует различные источники визуальной информации, и, так как различия во времени движения света гораздо меньше, чем может различить ваш глаз и обработать ваш мозг, вы не видите разницы. Настоящее, то есть совокупность всей входящей информации от органов чувств, которую мы получаем в данный момент, – это всего лишь убедительная иллюзия.

Как бы быстро нервные импульсы ни двигались по волокнам нервной ткани, их скорость все равно меньше скорости света. Средняя скорость нервного импульса составляет 60 футов в секунду, хотя это значение может варьироваться в зависимости от человека и типа нерва. Итак, нервный импульс проходит один фут за 16 миллисекунд (тысячных долей секунды). Для сравнения, свет за это время покрывает дистанцию 2980 миль – это примерно как от Нью-Йорка до Сан-Диего.

Давайте проведем мысленный эксперимент, иллюстрирующий влияние этих временных различий. Представьте себе, что у нас есть два источника света, которые одновременно включаются каждую секунду. Один из них установлен в 10 ярдах от наблюдателя, а другой постепенно удаляется от него по прямой. Теперь представьте, как они медленно расходятся в пространстве, все еще включаясь одновременно каждую секунду. Наблюдатель начнет замечать разницу во времени включения, когда расстояние между ними превысит 2980 миль. Поскольку наше зрение не позволяет нам видеть так далеко, наше восприятие одновременности кажется нам очень надежным даже для больших расстояний. Для того чтобы проверить эту теорию, можно провести альтернативный и более реалистичный опыт – настроить источники света так, чтобы они включались с небольшой задержкой во времени, и проверить, когда наблюдатель заметит разницу. Если мои расчеты верны, это произойдет, когда временной интервал превысит 20 миллисекунд. Данный промежуток времени – граница человеческого восприятия одновременности визуальных явлений.

Все эти аргументы приводят нас к поразительному выводу: настоящее существует, потому что наш мозг размывает реальность. Иными словами, гипотетический мозг, обладающий способностью к невероятно быстрому визуальному восприятию, заметил бы, что два источника света не синхронизированы, гораздо раньше. Для такого мозга слово «сейчас» означало бы куда меньший промежуток времени, чем для нас. Итак, помимо описанной Эйнштейном относительности одновременности для одного или нескольких движущихся наблюдателей существует еще и относительность одновременности на когнитивном уровне, возникающая в результате субъективного восприятия одновременности (момента «сейчас») человеком или, если говорить в общем, любым мозгом или аппаратом, способным распознавать свет.[57]

Каждый человек – это остров восприятия. Глядя на океан, мы видим горизонт – линию, разделяющую небо и воду, дальше которой наш взгляд проникнуть не в силах. Точно так же наши горизонты восприятия представляют собой все явления, которые наш мозг считает происходящими одновременно, даже если на самом деле это не так. Горизонт восприятия очерчивает границы нашего настоящего. Для того чтобы описать область настоящего, я использую скорость света, самую высокую скорость в Природе. Если бы мы ориентировались по скорости звука, которая составляет всего 1126 футов в секунду в сухом воздухе при температуре 68 градусов по Фаренгейту, наша область настоящего была бы куда меньше. Вспомните, как две молнии, ударяющие на разном расстоянии от вас, выглядят одинаково, но звучат по-разному.

Резюмируя: скорость света велика, но конечна, поэтому для того, чтобы попасть к нам в мозг, информации от любого объекта требуется время, пускай и совсем незначительное. Мы никогда не видим вещи такими, какими они являются прямо сейчас. Мозгу требуется время для обработки информации, поэтому он не разделяет (и не может расставить в хронологической последовательности) два события, происходящие с небольшой временной задержкой. Если мы видим несколько событий, происходящих прямо сейчас, это всего лишь иллюзия, вызванная нашим размытым восприятием. Не существует двух людей с одинаковым мозгом, поэтому каждый из нас имеет собственный лимит восприятия времени и собственную область настоящего. Любой мозг, будь он биологическим или механическим (например, светочувствительный детектор), обрабатывает информацию с разной скоростью и по-своему видит настоящее. Соответственно, наши восприятия реальности различаются. На основании недавних нейрокогнитивных экспериментов можно предположить, что среднее значение человеческого восприятия времени составляет порядка 10 миллисекунд. Расстояние, которое за это время проходит свет (несколько тысяч миль), составляет примерный радиус области настоящего для каждого человека.

«Сейчас» – это не только когнитивная иллюзия, но и математический трюк, связанный с тем, что мы определяем пространство и время с помощью количественных характеристик. Соответственно, восприятие настоящего как прослойки между прошлым и будущим, – это не что иное, как удобная ложь. Если настоящее представляет собой период времени, не имеющий длительности, оно не может существовать. Реальны лишь память о недавнем прошлом и ожидания от ближайшего будущего. Мы связываем прошлое и будущее с помощью концептуального понятия настоящего, или «сейчас». Но на самом деле все, чем мы располагаем, – это накопленная память о прошлом (хранящаяся в биологических системах или на различных устройствах) и ожидания от будущего.

Понятие времени неразрывно связано с изменениями, а течение времени – это всего лишь инструмент для их отслеживания. Когда мы видим, как что-то движется в пространстве, мы можем наблюдать изменение его положения с течением времени. Допустим, перед нами мяч. Двигаясь, он описывает в пространстве кривую, то есть воображаемую последовательность точек между стартовым положением А и финишным положением В. Мы можем определить, в какой точке между А и В находится мяч, расположив все его передвижения в хронологическом порядке; ноль секунд – мяч отрывается от ноги футболиста, то есть покидает точку А, одна секунда – мяч попадает в верхний левый угол ворот, то есть в точку В. Кривая между А и В показывает положение мяча в промежуточные периоды времени между нулем и одной секундой. Однако мяч никогда не занимает одну-единственную точку в пространстве, а время невозможно измерить с абсолютной точностью (самые точные часы имеют погрешность в одну миллиардную секунды, а время в них измеряется на основании перехода электронов в атомах). Рассуждая математически, мы отбрасываем все эти уточнения и рассчитываем, как позиция мяча изменяется в каждый момент времени, в который нам известно его положение. Разумеется, это всего лишь приближение, пускай и очень хорошее.

Мы представляем время в виде последовательности единиц, каждая из которых имеет порядковый номер. В нашем примере с футбольным мячом время охватывает промежуток с нуля до одной секунды. Но сколько единиц времени умещается между ними? С математической точки зрения их количество бесконечно, как и количество чисел между нулем и единицей. Любой временной интервал делится на более мелкие: десятые, сотые, тысячные доли секунды и т. д. Но даже самые точные часы имеют погрешность. Пусть мы представляем себе время последовательно, но измеряется оно в дискретных единицах. Соответственно, понятие «сейчас», временной интервал, не имеющий длительности, – это всего лишь математическая условность, не имеющая никакого отношения к реальности временных измерений и тем более нашего восприятия времени. Я еще вернусь к этой теме и к тому, почему она важна для нашего представления о реальности, когда мы перейдем к теме квантовой физики – области знаний, в которой нет ничего непрерывного.

Глава 11. Космическая слепота

в которой мы рассмотрим концепцию космических горизонтов и выясним, как они ограничивают наши знания о Вселенной

По мере приближения к современной космологии становится все интереснее и интереснее. Сочетание Вселенной, имеющей ограниченный возраст (ведь время возникло в момент Большого взрыва), и конечности скорости света создает непреодолимый барьер для нашего познания космоса. Данный барьер совершенно не похож на те, которые мы видели до этого, потому что он не зависит от точности наших измерительных приборов, то есть от нашей «близорукости» в отношении реальности. Это абсолютная граница возможных знаний о физическом мире, о которой даже не подозревали Галилей, Коперник и Ньютон. Пространство Вселенной может быть бесконечным, но мы никогда не узнаем этого наверняка. Мы живем в информационном пузыре, как рыбки в аквариуме. За этим пузырем тоже что-то есть, мы можем делать выводы об этом, исходя из тех неясных образов, что мы видим через его стенки, но нам никогда не узнать наверняка, что за ними скрывается. Три века назад де Фонтенель уже понимал, что агония и экстаз научного и философского познания проистекают из желания знать больше, чем мы можем увидеть. Мы тянемся к границе познания, рискуя разбить себе голову о стекло. Так же как и наши предшественники, мы мечтаем освободиться от ограничений и коснуться неведомого. Но теперь это невозможно. То, что находится за установленными границами, останется неизвестным.

Теории относительности Эйнштейна устанавливают довольно жесткие ограничения для тех, кто мечтает путешествовать во времени в прошлое. Специальная теория прямо заявляет, что это невозможно, так как по мере достижения скорости света масса объекта бесконечно возрастает. Однажды, во время традиционного метафизического спора по дороге в школу, мой шестилетний сын Луциан гордо заявил мне: «Папа, только одна штука может двигаться со скоростью света. Это свет!» Что ж, это верно. И ему это удается потому, что у света нет массы. Любая частица материи, даже находящаяся в состоянии покоя, будет иметь энергию, равную ее массе (m), умноженной на квадрат скорости света 2), что и показал Эйнштейн в своей знаменитой формуле Е = mc2. Но, в отличие от материи, свет никогда не бывает в состоянии покоя. Его энергия зависит от частоты (f), что выражается в до смешного простой формуле E = hf, где h – это постоянная Планка, крошечная природная константа, задающая тон всему квантовому миру. Чем выше частота света, тем больше его энергия. Формула E = hf не описывает поведение света, который мы видим вокруг себя и который представляет собой постоянно отражающиеся от объектов волны. Эта формула скрывает одну из величайших загадок современной науки.

Для того чтобы создать свою формулу энергии света, Эйнштейн предложил теорию, которую он сам считал своей самой революционной идеей. Он заявил, что свет можно одновременно интерпретировать и как волну (как считали большинство ученых в XIX веке), и как частицу. Частицы света называются фотонами, а формула E = hf описывает энергию одного фотона. Потоки света содержат множество фотонов, и их энергия всегда кратна энергии одного – hf. В данном случае можно провести аналогию с деньгами. Сумму любой финансовой сделки, от пары долларов до миллиардов, можно выразить в центах. Разумеется, при больших объемах теряется «квантовость» сделки, то есть ее центовое выражение. Но как каждый цент – это деньги, так и каждый фотон – это свет.[58]

На практике в одном световом потоке могут находиться фотоны с разной длиной волны. К примеру, солнечный свет состоит из всех видимых цветов, от красного до фиолетового, а каждый цвет имеет свою длину волны и свои фотоны. Если продолжить нашу финансовую аналогию, солнечный свет – это клиент, который приходит в обменный пункт с множеством разных валют (цветов спектра), и при этом каждая из них имеет свой вариант цента (фотон с энергией, равной hf).

Большая часть информации о Вселенной поступает к нам в форме электромагнитного излучения. В качестве примера можно привести оптическую астрономию – благородную традиционную технологию, предполагающую сбор фотонов видимого света невооруженным глазом или с помощью телескопа. Сегодня астрономы рассматривают небеса почти во всем электромагнитном спектре, от радио – до гамма-волн. Однако на какой тип света мы бы ни смотрели, его скорость все так же ограничена.[59] Когда вы читаете эту книгу, вы видите страницу такой, какой она была одну миллиардную долю секунды назад. Луна представляется нам такой, какой она была 1,282 секунды назад, так как расстояние от нее до Земли составляет 1,282 световой секунды. Солнце выглядит в наших глазах таким, каким оно было 8,3 минуты назад, ведь расстояние до него – 8,3 световой минуты. Прямо сейчас Солнце может взорваться, и вы еще восемь минут не узнаете об этом.

Путешествуя по Солнечной системе дальше, мы сталкиваемся с трудностью. Планеты движутся вокруг Солнца с разной скоростью, а значит, расстояния между ними и Землей могут значительно изменяться в зависимости от соотношения орбит. Например, расстояние между Землей и Марсом варьируется от 4,15 световой минуты (при максимальном приближении и расположении с одной стороны Солнца) до 20,8 световой минуты (максимальное удаление и Солнце посередине). Если вы не работаете на НАСА и не проектируете полеты космических кораблей, проще всего измерять расстояния в Солнечной системе дистанциями между планетами и Солнцем. Марс находится от него примерно в 12 световых минутах, а Нептун – в 4,16 светового часа. Внезапно восьмиминутная задержка света между Солнцем и Землей кажется просто мелкой погрешностью по сравнению с расстояниями на краю нашей системы. Самым дальним из известных объектов в Солнечной системе является облако Оорта – скопление ледяных шаров, опоясывающее Солнце и планеты на расстоянии один световой год. Именно там находятся остатки газового облака, которое сжалось 4,6 миллиарда лет назад и сформировало Солнце, планеты и их луны.

Все небесные тела внутри этого пузыря диаметром два световых года, включая и нашу планету, имеют общее происхождение. Удаляясь от Солнца, мы попадаем на незнакомую территорию, полную чужих звезд со своими планетами. Их тоже объединяет общее происхождение и история. Эти звездные системы можно сравнить с семьями, где дети имеют одних и тех же родителей (первичное газовое облако), а затем вырастают и идут в жизни своими путями. Ближайшая к Солнцу звездная система находится в созвездии Центавра, которое было известно еще Птолемею во II веке н. э. Это значит, что его можно увидеть на южном небе невооруженным глазом и попытаться разглядеть в нем полуконя-получеловека. В созвездии Центавра находятся ближайшие к Солнцу звезды – тройная звезда под названием альфа Центавра расположена от нашего светила в 4,4 светового года, то есть в 26 триллионах миль. Из трех звезд, составляющих альфу Центавра, ближайшая к нам – это Проксима, свет от Солнца до которой идет 4,24 светового года. Итак, когда мы смотрим на альфу Центавра (и ошибочно считаем, что перед нами одна звезда), мы получаем информацию более чем четырехлетней давности. В этот момент звезд вообще уже может не быть на своих местах. Мы можем лишь предполагать, что они никуда не исчезли, потому что мы знаем, к какому типу они принадлежат и на каком этапе развития находятся. Но прямых доказательств у нас нет и никогда не будет. Ночное небо – это коллекция историй из прошлого.

В Южном полушарии созвездие Центавра с трех сторон граничит со знаменитым Южным Крестом. Я родился в Бразилии, так что для меня на небе нет более важного знака (второе место занимает Орион). Южный Крест находится на нашем флаге (а еще на флаге Австралии, Новой Зеландии, Папуа – Новой Гвинеи и Самоа), символизируя нашу преданность небу и верность нашим звездным корням. Несомненно, Южный Крест подкреплял веру набожных и жадных миссионеров, прибывших в Южную Америку в начале XVI века. Они были убеждены, что крест в небе – это знак Бога, подарившего им эту полную красоты и богатств землю обетованную. Именно поэтому они посчитали себя вправе разграбить ее.

Если мысленно соединить две вертикально расположенные звезды Южного Креста, а затем продолжить линию вниз, она практически точно укажет на Южный полюс мира. Я уже достаточно долго прожил в северных широтах, но каждый раз, возвращаясь в Бразилию, ищу в небе Южный Крест. Только после этого я чувствую, что действительно вернулся к небесам, под которыми находится мой дом. Очень странно думать о том, что звезды, из которых состоит Южный Крест, находятся от нас на разных расстояниях в сотни световых лет. Изображение креста – это всего лишь иллюзия, спроецированная на небесный свод.

Если вы верите в инопланетян и мечтаете о космических путешествиях, я бы хотел вас отрезвить. Даже если бы мы отправили к альфе Центавра свой самый быстрый космический корабль и он сумел бы развить скорость 30 тысяч миль в час, он все равно долетел бы до места назначения только через сотню тысяч лет. Даже если бы нам удалось разработать новую технологию, способную переносить нас в пространстве со скоростью, равной одной десятой скорости света, перелет все равно занял бы 44 года. Так что до тех пор, пока мы не организуем массовую звездную миграцию с участием нескольких поколений или не придумаем совершенно новый способ космических путешествий, новые звездные системы – даже наши ближайшие соседи – нам не светят.

Диаметр нашей Галактики, Млечного Пути, составляет 100 тысяч световых лет. Если зажечь на одном ее краю фонарик, столько времени потребуется фотонам, чтобы достигнуть противоположного края. Иными словами, когда мы изучаем звезды на границе нашей Галактики, мы видим их такими, какими они на самом деле были во времена зарождения нашего вида Homo sapiens sapiens. Если перевести взгляд на галактику Андромеды, то мы увидим свет, испущенный звездами еще в то время, когда первые Homo только расселялись по Африке.

Когда астрономы наблюдают за звездами, они заглядывают в прошлое и собирают свет, зажегшийся миллионы, если не миллиарды лет назад. Это верно и для модели расширяющейся Вселенной, хотя в данном случае все немного сложнее. Если Вселенная статична, то мы видим ее компоненты такими, какие они есть на самом деле. Когда нам известно расстояние до объекта, мы можем рассчитать, насколько давно этот объект испустил свет. Для этого нужно просто разделить расстояние на скорость света. Но расширение Вселенной заставляет галактики и другие источники света двигаться, поэтому излучаемый ими свет может проходить за одно и то же время большие расстояния, чем в статическом космосе. Представьте себе пловца в реке. Если он движется по течению, то за тот же промежуток времени покроет большее расстояние, чем если бы он плавал в бассейне. В расширяющейся Вселенной свет от объекта, находящегося на расстоянии 2,6 миллиарда световых лет от нас, был испущен им 2,4 миллиарда лет назад. Чем дальше разбегаются наблюдаемые объекты, тем больше становится это несоответствие. В тот момент, когда я пишу эти строки, самый дальний из известных космических объектов находится на расстоянии 32,1 миллиарда световых лет от Земли. Свет покинул его 13,2 миллиарда лет назад и прошел в 2,5 раза большее расстояние, чем сумел бы покрыть, если бы Вселенная была статичной. Учитывая, что возраст Вселенной составляет около 13,8 миллиарда лет, свет от этого объекта покинул свой источник всего через 600 лет после Большого взрыва и шел к нам в течение почти всей истории космоса.

Я уверен, что читатели уже поняли, к чему я клоню. В какой-то момент мы упремся в заграждение, в стенку аквариума, в барьер, который мы не сумеем преодолеть. Теоретически таким барьером является сингулярность, точка начала времени. Практически же, по крайней мере в ходе сбора информации от электромагнитного излучения, мы натыкаемся на стену немного раньше. Примерно через 400 тысяч лет после Большого взрыва Вселенная пережила существенную трансформацию. Чтобы понять почему, представьте себе раннюю Вселенную как бульон, в котором плавают и постоянно сталкиваются между собой элементарные частицы: фотоны, протоны, электроны, нейтроны и легкие атомные ядра.[60] Чем дальше мы углубляемся в прошлое, тем горячее космос и тем активнее эти частицы взаимодействуют между собой. Если же мы продвинемся во времени вперед, мы убедимся, что Вселенная остывает – по мере ее расширения частицы теряют энергию. Благодаря этому остыванию и потере энергии происходит то, что раньше было невозможно. Электрон и протон соединяются и образуют атом водорода. До этого момента фотоны наполнявшего космос излучения были такими активными, что при любой попытке протона и электрона объединиться сталкивались с ними и мешали формированию прочной связи. Получался эдакий космический любовный треугольник, который распался лишь тогда, когда страсть фотонов угасла и они позволили протонам и электронам соединиться. Так родился самый простой из атомов, а фотоны, освободившись от любовных драм, смогли беспрепятственно продолжить движение по космосу. Этот процесс называется рекомбинацией и обозначает переход от темной к прозрачной Вселенной.[61]

До рекомбинации фотоны были так заняты в своем любовном треугольнике с протонами и электронами, что не могли свободно перемещаться. А если фотон не двигается, мы не можем его заметить. Ранняя Вселенная была непроницаема для электромагнитного излучения любого типа, поэтому пытаться понять, что происходило до рекомбинации, – словно смотреть сквозь густой туман. Однако вскоре после рекомбинации они получили свободу передвижения – в физике этот процесс называется расщеплением материи и излучения. Эти расщепленные фотоны, несущиеся сквозь космос, известны как реликтовое излучение – затухающий свет тех времен, когда формировались первые атомы. В ходе рекомбинации температура излучения составляла около 4000 градусов по Кельвину, или 7200 по Фаренгейту. Вселенная сияла, как флюоресцентная лампа. Вот уж воистину «да будет свет»! После 13,8 миллиарда лет расширения реликтовые фотоны остыли до 2,75 градуса по Кельвину (–454,7 по Фаренгейту). Космос утратил очарование юности, и теперь его глубины погружены в холод и мрак.

Итак, мы видим, как в космологии появляется концепция горизонта. Когда мы стоим на берегу моря, горизонт обозначает границы видимого пространства, но при этом мы знаем, что море продолжается и за ним. Тот же принцип работает и для Вселенной. Существует самая дальняя точка, свет от которой шел к нам 13,8 миллиарда лет, то есть в течение всей жизни Вселенной. Даже если космос продолжается за данной точкой, мы не можем получать сигналов из-за этой стены. Релятивистская космология показывает нам новую границу наших знаний о мире. Физическая Вселенная – это все тот же Остров знаний.

Вероятность развить на обычном космическом корабле скорость, превышающую скорость света, крайне мала. У нас нет оснований полагать, что специальная теория относительности может ошибаться в этом отношении. С другой стороны, как я пытаюсь показать этой книгой, никогда нельзя знать наверняка. Вполне возможно, что наше текущее представление о причинно-следственных связях и хронологии, основанное на скорости света, не является последним словом по данному вопросу. Мы должны строить свои рассуждения на имеющихся у нас научных знаниях, но быть открытыми для неожиданностей. Вера в то, что научное знание неизменно, – это ошибка, которую мы ни в коем случае не должны совершать. Как уже должен был понять читатель из нашего краткого обзора истории астрономических знаний, ни одна научная конструкция не является непоколебимой. Изменения – это единственный путь вперед.

Все, что мы знаем (и можем узнать) о Вселенной, основывается на информации из нашего космического пузыря, царства причинно-следственных связей, ограниченного скоростью света и историей нашей расширяющейся Вселенной. По иронии судьбы над нами все же нависает небесный свод, пускай он ограничивает не пространство, как полагали Аристотель, Коперник или Эйнштейн, но время. Мы не можем увидеть того, что находится за космическим горизонтом, если только нам не будет отправлен оттуда сигнал. Возможно, там происходят совершенно сумасшедшие вещи, например, прямо сейчас розовые слоноподобные дроиды пляшут там самбу на планете Мамба. Но мы этого никогда не узнаем и не сможем узнать.

Сегодня нашим самым ценным источником информации о ранней Вселенной является реликтовое излучение – фотоны, оставшиеся после рекомбинации. Данные спутниковых миссий, таких как Cosmic Microwave Background, Explorer, Wilkinson Microwave Anisotropy Probe и недавно запущенной космической обсерватории «Планк», совмещенные с информацией, полученной в результате десятков наземных наблюдений, помогли астрономам составить подробную карту раннего космоса. Тот факт, что результаты некоторых измерений реликтового излучения были независимо подтверждены разными телескопическими исследованиями, показывает, что современная космология является серьезной наукой, основанной на фактах и ушедшей далеко вперед от своих первых дней, наполненных исключительно рассуждениями. Гравитационные толчки и пертурбации, которые переживала материя в начале существования космоса, отражены в едва заметных температурных колебаниях фотонов реликтового излучения и потрясающим образом помогают нам понять, как галактики распределяются по небу сегодня.

Что же говорят нам последние измерения космоса? Во-первых, они указывают на то, что космическая геометрия плоская – что-то вроде трехмерной версии столешницы (которая имеет лишь два измерения). Если свет не проходит рядом с массивной звездой или галактикой, он движется по прямой в заданном направлении. Плоскость – это один из трех возможных вариантов. Еще один из них описывает замкнутую геометрию, вроде поверхности сферы, двигаясь по которой в одном и том же направлении можно оказаться в точке старта (не пытайтесь представить себе это в трех измерениях). Наконец, третий вариант – это открытая геометрия, которую можно (весьма приблизительно) описать с помощью такого двухмерного аналога, как кусочек чипсов Pringles, загибающийся одновременно в двух направлениях. Иногда в качестве примера используют седло, которое опускается вниз под ногами всадника, но поднимается вверх на спине у лошади.

Космическая геометрия, форма космоса в самом что ни на есть вселенском масштабе зависит от всего, что существует во Вселенной, и от взаимоотношений между этими объектами или явлениями. За контроль над космосом борются две противоположные тенденции: расширение (за счет того, что в самом начале горячая материя и излучение были сжаты до небольшого объема) и сжатие (за счет действия сил притяжения). Победитель определит судьбу Вселенной: она может либо вечно расширяться, либо, если в ней окажется достаточно материи, начать сокращаться. Большой взрыв вполне может обернуться Большим схлопыванием.

Эти две тенденции определяют геометрию космоса с тех пор, как Эйнштейн показал нам влияние на нее материи. Вселенная с невысокой плотностью материи, в которой силы притяжения недостаточно сильны, будет расширяться вечно и иметь открытую геометрию. Критическое количество энергии в объеме, необходимом для остановки расширения, иногда называют критической плотностью. Она равняется всего 5 атомам водорода на кубический метр пространства. Согласно нашим измерениям, обычная атомная материя составляет лишь 4,8 % от этого количества (то есть 0,2 атома на кубический метр).[62]

Однако, помимо обычной атомной материи, существует другой тип материи, состав которой нам до сих пор неизвестен. Это так называемая темная материя. Почему темная? Потому, что она не излучает свет, то есть не испускает никакого электромагнитного излучения. Мы знаем, что она существует, потому что она заставляет галактики вращаться быстрее. Астрономы также могут измерить то, как темная материя, собираясь вокруг галактик в своеобразную темную вуаль, искажает пространство. Это довольно интересное зрелище. Для того чтобы увидеть его, астрономы обращают внимание на свет, исходящий от очень далеких объектов и проходящий мимо ближайших галактик. Точно так же, как и Солнце, галактики заставляют свет изгибаться. Этот эффект называется гравитационным линзированием, потому что свет при нем искривляется так же, как при попадании в обычную линзу. Если сложить все данные наблюдений и прибавить к ним информацию о реликтовом излучении, окажется, что количество темной материи во Вселенной в шесть раз превышает объем обычной. Соответственно, темная материя добавляет к плотности космоса еще 25,9 % критического значения. Природа темной материи, то есть ее состав, является одной из главных загадок современной космологии и физики частиц. Однако ее мы, вероятно, сможем разгадать, когда у нас появятся более совершенные приборы. Этим она отличается от космического горизонта – предела, за который мы не можем выйти.

Сегодня основными кандидатами на включение в состав темной материи являются частицы, существование которых предсказывают суперсимметричные теории, продолжающие современную физику частиц и вводящие новое понятие природной симметрии. Приставка «супер» в названии суперсимметричных теорий происходит из теории суперструн, которая должна объединить общую теорию относительности с квантовой механикой. По состоянию на зиму 2014 года доказательств суперсимметрии так и не было обнаружено, несмотря на многолетние исследования и активную поддержку многих физиков. Реализована ли суперсимметрия в Природе, на сегодняшний день неясно (и немного сомнительно).

Еще один способ объяснить существование темной материи – это не вводить новую частицу, а постулировать ошибку в общей теории относительности Эйнштейна. Теория заявляет, что изменения в поведении сил гравитации возникают лишь на огромных галактических расстояниях. Тем не менее и в этом случае у нас не имеется доказательств того, что такое объяснение будет работать и соответствовать астрофизическим наблюдениям. Загадочная природа темной материи – это еще одна яркая иллюстрация того, что существуют важные вопросы (вроде существования неизвестного компонента в материальном составе Вселенной), на которые мы не можем ответить из-за ограниченной точности и дальности наших приборов. Мы знаем, что вокруг галактик что-то скапливается, но не можем понять, что именно.

Если сложить вместе общую массу (и энергию) атомной материи, темной материи и излучения (которое не привносит в это уравнение почти ничего), плотность Вселенной с ее открытой геометрией составит всего 30 % от критической. Но это еще не вся история. Если во Вселенной существует космологическая постоянная или что-то подобное, она заставляет космос растягиваться. Вспомните, что Эйнштейн ввел ее, чтобы сделать свою закрытую Вселенную статичной, а затем отказался от этой идеи, узнав об открытии Хабблом закона расширения космоса. Удивительно, однако данные, полученные двумя группами астрономов независимо друг от друга, указывают на то, что что-то похожее на космологическую постоянную не только существует, но и управляет материей в рамках нашего космического горизонта. Результаты измерений были опубликованы в 1998 году и поразили физическое и астрономическое сообщество. Поначалу никто не хотел им верить, но шло время, а данные проходили проверку за проверкой и выдерживали критику. Мощные новые инструменты снова открыли что-то, о чем мы и не подозревали, показав нам, каким странным местом на самом деле является космос. Все эта ситуация очень похожа на историю с темной материей: мы знаем, что там что-то есть, но не можем понять что.

В 2011 году трое лидеров исследовательских групп получили Нобелевскую премию по физике за открытие темной энергии, загадочного явления, действующего как космологическая постоянная и ответственного не только за растяжение пространства, но и за ускорение этого процесса. Что еще более важно, при подсчете доли темной энергии в общей плотности Вселенной получается почти 70 % критической плотности. Сопоставив различные собранные данные, можно прийти к потрясающему выводу: темная энергия не только весит больше всего остального в космосе, но и доводит плотность до критического значения. Это звучит слишком хитро, чтобы быть правдой. Итак, выходит, что плотность космоса практически достигла критического значения. Текущие измерения показывают соответствие общей плотности Вселенной этому значению с точностью до 0,5 %.

На первый взгляд, космос, в котором значение критической плотности достигнуто абсолютно точно, кажется результатом тонкой божественной настройки. Но если задуматься, вселенные, способные породить жизнь, должны соответствовать строгим критериям: их плотность не должна быть ни слишком низкой, иначе они будут расширяться слишком быстро и материя не успеет сгруппироваться в планеты и галактики, ни слишком высокой, иначе они схлопнутся еще до того, как в них появятся первые звезды. Вселенная, в которой может зародиться жизнь, должна быть достаточно старой, чтобы в ней сменилось несколько поколений звезд и чтобы они сумели произвести достаточно тяжелых химических элементов. Эти условия налагают ограничения на потенциальные значения плотности Вселенной и гипотетической космологической постоянной. Оптимальная для жизни Вселенная должна иметь как раз такое критическое значение плотности материи, как в нашем случае. Физик и писатель Пол Дэвис называет наш космос «Вселенной-Златовлаской». Действительно, считать нашу Вселенную идеально подходящей для жизни очень соблазнительно. Однако у меня имеется несколько другое объяснение этих космических совпадений, к которому я скоро вернусь.

Современные измерения настолько точны, что мы можем определить плотность материи и темной энергии с точностью более половины процента. Если в будущем не произойдет никаких потрясений вселенского масштаба и космическое доминирование темной материи не ослабнет, мы можем с уверенностью говорить, что живем в плоской Вселенной, обреченной на вечное расширение с постоянным ускорением. Но если Вселенная продолжит вести себя подобным образом, наших (очень далеких) потомков ждет мрачное будущее. Растягиваясь, пространство утащит за собой большую часть небесных светил, то есть почти все те галактики, которые мы сегодня можем рассмотреть в телескоп. Со временем скорость их разбегания превысит скорость света, и возникнет новый космический горизонт, свет из-за которого мы никогда не увидим.[63] В конце концов, в ночном небе останется лишь наше местное сверхскопление – большая группа галактик, включающая в себя Млечный Путь и Андромеду и связанная силами гравитации. Да и оно будет выглядеть непривычно для нашего глаза. Как уже говорилось выше, через несколько миллиардов лет Млечный Путь и Андромеда могут слиться в одну галактику. Через четыре миллиарда лет Солнце превратится в красный гигант и жизнь на Земле станет невозможна (на самом деле это произойдет гораздо раньше из-за нестабильных выбросов солнечной энергии). Если космологи из далекого будущего не будут иметь доступа к результатам прошлых измерений, их выводы о природе Вселенной будут совершенно отличными от наших. Не видя разбегающихся галактик, они не смогут прийти к заключениям о расширении Вселенной или о Большом взрыве. По иронии судьбы их космос окажется статичным – островок местного сверхскопления, окруженный темной пустотой. Остров знаний будет уменьшаться до тех пор, пока не исчезнет совсем. Через какое-то время редкие звезды, еще способные испускать свет, состарятся и погаснут. Космос погрузится во тьму, и кошмар, когда-то описанный лордом Байроном, станет явью:

  • Я видел сон… Не все в нем было сном.
  • Погасло солнце светлое, и звезды
  • Скиталися без цели, без лучей
  • В пространстве вечном; льдистая земля
  • Носилась слепо в воздухе безлунном.
  • Час утра наставал и проходил,
  • Но дня не приводил он за собою…
  • И люди – в ужасе беды великой
  • Забыли страсти прежние… Сердца
  • В одну себялюбивую молитву
  • О свете робко сжались – и застыли.[64]

К счастью, по последним данным, эти мрачные перспективы ожидают нашу планету лишь в далеком будущем, вероятно через пару триллионов лет. Я рассказываю об этом не для того, чтобы напугать своих читателей, а чтобы дать им пищу для размышлений, ведь подобные прогнозы влияют на имеющуюся у нас сегодня картину космоса. Вселенная, которую мы изучаем, рассказывает нам лишь конечную историю, состоящую из информации, которая может к нам попасть (то есть не ограничена космическим горизонтом), и информации, которую мы можем собрать (доступную для наших технологий). Если несчастные космологи будущего станут основывать свои теории только на том, что они могут измерить, они получат неверную картину мира и никогда не узнают, что их мрачный космос имеет историю, длящуюся уже несколько триллионов лет. Их статический космос будет иллюзией, результатом существования космического горизонта, в рамках которого галактики не разбегаются. Из всей этой истории можно извлечь страшный урок: наши знания о космосе ограничиваются не только естественными лимитами и технологическими причинами. Собранная нами информация может быть обманчивой и приводить к возникновению у нас совершенно неправильного видения мира. Наши измерения не показывают нам всю картину целиком – возможно, всего лишь краешек.

Чтобы не впасть в научный нигилизм, мы должны наслаждаться тем, что мы можем узнать о мире, пускай уверенными можно быть лишь в немногом. Вместо громких заявлений вроде «Мы знаем истинную природу Вселенной» следует говорить: «Вот то, что мы можем заключить о природе Вселенной». Слово «истинный» бессмысленно, если мы так никогда и не узнаем, в чем состоит истина. Но мы все еще в состоянии делать потрясающие выводы, и это тоже ценно. Мы не должны останавливаться. Нужно продолжать стремиться дальше, к тому, что может лежать за нашим космическим горизонтом.

Глава 12. Конечные бесконечности

в которой мы рассматриваем понятие бесконечности и его применение в космологии

– Что будет, если сложить две бесконечности? – спросил однажды мой сын Луциан.

– Бесконечность, – стоически ответил я.

– Но как это возможно, чтобы число плюс число равнялось этому же числу? – настаивал Луциан. – Я думал, так может делать только ноль.

Я ответил:

– На самом деле бесконечность – это не число. Это скорее идея.

Луциан закатил глаза и задумался:

– То есть бесконечность – это противоположность нуля, но при этом бесконечность плюс бесконечность равно бесконечность?

– Да.

– Папа, но это странно.

– Именно.

Бесконечность – это то, что не поддается исчислению, хотя математики часто используют термины «счетная и несчетная бесконечность». Да, бесконечности бывают разными. Например, все множество целых чисел (… –3, –2, –1, 0, 1, 2, 3…) – это счетная бесконечность. Еще один пример – это совокупность рациональных чисел, то есть чисел, имеющих форму p / q (1/2, 3/4, 7/8 и т. д., кроме деления на ноль). Количество объектов в каждом множестве (также называемое его кардинальным числом) обозначают как алеф-0. Алеф – это первая буква еврейского алфавита, которая в каббалистической интерпретации обозначает союз неба и земли (). Значение алеф-0 бесконечно, но это не наибольшая из возможных бесконечностей. Совокупность действительных чисел, включающая в себя все рациональные и иррациональные числа (то есть числа, которые нельзя представить в качестве частей от целого, такие как 2, , е), имеет кардинальное число алеф-1. Значение алеф-1, называемое континуумом, больше алеф-0 и может быть получено путем умножения алеф-0 на себя алеф-0 раз: . Немецкий математик Георг Кантор, создавший все эти концепции и разработавший теорию множеств, выдвинул гипотезу континуума: не существует множества с кардинальным числом, находящимся между алеф-0 и алеф-1. Однако недавние исследования показывают, что гипотеза континуума неразрешима, то есть ее нельзя ни доказать, ни опровергнуть. Человеческое сознание создает различные бесконечности даже в упорядоченном пространстве абстрактной математики. Но к вопросу неразрешимости мы еще вернемся, а сейчас давайте перенесем понятия счетной и несчетной бесконечности в космос.

Бесконечен ли космос? Расширяется Вселенная в бесконечность или замыкается сама на себя, как поверхность воздушного шарика? Сможем ли мы когда-нибудь узнать ее форму? Существование космического горизонта и тот факт, что мы получаем информацию лишь из пространства, ограниченного скоростью света, устанавливают серьезные границы нашего познания. Когда космологи говорят, что Вселенная плоская, на самом деле они имеют в виду (или по крайней мере должны иметь в виду), что измеримая часть Вселенной является плоской или практически плоской с учетом погрешности измерений. Подобная плоскость космоса предполагает, что на самом деле Вселенная гораздо больше, чем мы можем измерить. Но с нашей позиции мы не в состоянии делать никаких заключений о том, что лежит за пределами нашего информационного пузыря, или об общей форме Вселенной.

Разумеется, мы можем и должны рассуждать о том, что находится за космическим горизонтом, и, возможно, такие рассуждения помогут нам что-то узнать. Иногда вернуться на берег Острова познания может быть полезным. Если вы не житель Древней Месопотамии, где верили, что горизонт является краем мира, то, глядя с берега на океан, вы легко предположите, что он продолжается и за горизонтом. Когда корабль выплывает из-за горизонта, вы не можете видеть его нижнюю часть, так как Земля круглая. Если вы видите на горизонте остров, вы можете отметить его положение относительно горизонта, а затем забраться на высокую гору и увидеть, что океан продолжается и за островом, а значит, не ограничивается горизонтом, который вы видели у подножия горы. Однако даже с вершины самого высокого пика невозможно осмотреть все океаны и континенты нашей планеты или увидеть, что она представляет собой шар, слегка приплюснутый у полюсов. Исторически наше видение планеты определялось тем, как далеко (или высоко) мы могли на ней продвинуться. Затем, объединив усилия математики и астрономии, ученые смогли сделать гигантский шаг вперед. Это подтверждается расчетами окружности Земли, произведенными Эратосфеном примерно в 200 году до н. э., а также наблюдениями за круглой тенью, которую Земля отбрасывает на Луну во время лунного затмения. Можно привести еще множество других примеров, но окончательное подтверждение того, что Земля круглая, мы получили лишь в 1521 году, когда завершилось кругосветное плаванье Фернана Магеллана и Себастьяна Элькано. Если математические расчеты и толкование теней на Луне еще могли вызывать у людей какие-то сомнения (пускай и неверные), то путь, пройденный кораблями Магеллана, был непреложной истиной. К сожалению, когда дело доходит до космического горизонта, кругосветное путешествие исключается.

В данном случае уместно привести двухмерную аналогию. Представьте себе поверхность очень большого шара. На этой поверхности существует галактика, и в ней живут разумные существа. Как и наша Вселенная, эта двухмерная конструкция когда-то пережила Большой взрыв. Так же как и у нас, у существ из этой Вселенной имеется космический горизонт – участок поверхности шара в форме диска. Если шар достаточно велик, а диск слишком мал, существа будут считать свою Вселенную бесконечной, а ее геометрию – плоской. (Если вы мне не верите, возьмите воздушный шарик и нарисуйте на нем круг. Поверхность внутри круга действительно будет казаться вам плоской.) Но этот вывод будет неверным. Да, поверхность видимого им диска действительно плоская, но поверхность всего шара, то есть их Вселенная, конечна. Смогут ли эти существа когда-нибудь узнать правду о форме своей Вселенной, если выход за границы диска им недоступен?

Можем ли мы определить форму Вселенной, если находимся на плоскости, ограниченной космическим горизонтом? Если наша Вселенная – это трехмерная сфера, нам не повезло. Судя по текущим данным, радиус кривизны этой сферы, скорее всего, настолько мал, что мы просто не сможем его измерить. Существует еще одно интересное, хотя и не совсем правдоподобное предположение. Наша Вселенная может иметь сложную форму, которую математики называют нетривиальной топологией. Топология – это направление в геометрии, которое изучает непрерывную деформацию пространств. «Непрерывное» в данном случае означает без разрывов, как, например, растягивание и сгибание куска резины. Такие трансформации называют геоморфизмами. К примеру, цельную сферу можно превратить в эллипсоид, в куб или в грушу – но не в кольцо. Кольцо же, в свою очередь, можно превратить в кружку с ручкой. Соответственно, сложная топология космоса может налагать свой отпечаток на наши измерения. Например, если топология подразумевает сложное соединение (то есть если в ней есть отверстия, как в пончике), свет от дальних объектов может определенным образом проявляться в фоновом излучении. В частности, если Вселенная действительно имеет форму кольца и его радиус невелик по сравнению с нашим космическим горизонтом, свет от дальних галактик может несколько раз описывать круг, создавая множественные одинаковые образы, похожие на отражения в зеркалах, стоящих параллельно друг другу. В принципе, такие отражения, или узоры, можно заметить и проанализировать.

Эта история показывает, как несовершенство наших измерительных приборов позволяет нам заниматься рассуждениями. До тех пор пока мы не удостоверимся, что радиус кривизны нашего космического диска точно равен нулю, у нас всегда останется место для фантазий о других топологиях, отличных от скучного плоского трехмерного космоса. Разумеется, существует вероятность, что однажды мы сумеем засечь зеркальные отражения, которые дадут нам основания предположить, что Вселенная имеет несколько иную форму. Гораздо интереснее будет, если мы так никогда их и не обнаружим. Будет ли это означать, что космос действительно плоский? Поскольку мы не в состоянии измерить что-либо с абсолютной точностью, то, даже если все текущие данные будут указывать на нулевое пространственное искривление в пределах нашего космического горизонта, мы все равно не сможем сказать этого наверняка. В отсутствие сведений о наличии искривления вопрос о форме космоса в принципе не имеет ответа. Сможем ли мы когда-нибудь найти его? Судя по всему, нет, если только у нас не появится новых фактов. Если бы Вселенная действительно имела форму сферы, как писал Эйнштейн, и если бы в далеком будущем эта сфера схлопнулась, наблюдатели этого последнего момента (если бы они существовали) смогли бы увидеть собственные затылки. Затем они бы исчезли, растворились в небытии, зная, что Вселенная все-таки была конечной, и затаив в сердцах (если у них были бы сердца) надежду на новый цикл существования, в котором их энергия нашла бы новый способ превращения в сложные материальные формы (возможно, даже такие, которые смогли бы, в свою очередь, задуматься о значении вечности).

Существует и еще одна надежда – что форма Вселенной будет однозначно определена с помощью фундаментальной теории, объединяющей в себе общую теорию относительности и квантовую механику. Одной из главных проблем современной физики является преодоление трудностей, возникающих при достижении сингулярности, будь то в начале времени, как при Большом взрыве, или в конце жизненного цикла звезды при формировании черной дыры. Мы пытаемся описать оба случая с помощью эйнштейновской общей теории относительности, но при этом прекрасно знаем, что она не работает для крайне малых расстояний и/или большой плотности материи. Что же нам делать? Единственный выход – это создать такую физическую теорию, которая успешно описывала бы микромир и одновременно была бы применима к сильным искривлениям пространства и объектам с высокой плотностью. Для этой цели идеально подходит квантовая теория, так как она устанавливает ограничение для небольших расстояний – горизонт, дальше которого мы не можем видеть микромир. Это ограничение возникает вследствие принципа неопределенности Гейзенберга.

Идея этого принципа, который мы рассмотрим более подробно во второй части книги, состоит в том, что наблюдатель, занимающийся измерением положения объекта с постоянно увеличивающейся точностью, в конце концов наткнется на стену, информация из-за которой будет ему недоступна. Иными словами, квантовая теория предполагает некоторую естественную расплывчатость материи, конечное минимальное значение, меньше которого не бывает. Объект может быть сколь угодно маленьким, но ниже этого значения его размер не опустится. В Природе не существует «точечных» частиц, так как любые материальные структуры в какой-то момент распадаются на квантовую неопределенность и заполняют некоторый объем. В каком-то смысле минимальный объем – это барьер между тем, что мы можем узнать о физической реальности, и тем, что навсегда останется скрытым от наших глаз. Более того, в квантовой физике сама попытка узнать больше, то есть выйти за границы, установленные неопределенностью, не имеет смысла. Предположение о том, что наши возможности познания Вселенной ограниченны, сводило Эйнштейна с ума.

Логично предположить, что этот же подход применим и к космосу, то есть что существует минимальное расстояние в пространстве, меньше которого быть не может. Если развить этот подход, окажется, что пространство не непрерывно, а размыто и что движение из одной точки в другую не может происходить напрямую. Если это так, то сингулярность в принципе невозможна, так как пространство нельзя сжать до нулевого объема. Этого взгляда придерживаются сторонники квантовой теории гравитации, такие как Абэй Аштекар, Ли Смолин, Мартин Божовальд и др. Они предполагают, что границы неопределенности, действующие в квантовой механике и применимые к свету и материальным объектам, можно распространить на пространство и время – концептуальные инструменты, которые мы используем для описания материальных объектов и их движения. Но обоснована ли такая экстраполяция?

Существует и противоположный подход, приверженцы которого утверждают, что нужно не «квантифицировать» космос, а, наоборот, избавиться от самого понятия точечных частиц. Идея проста: если мельчайшая из существующих частиц материи имеет некое пространственное продолжение, то такие частицы невозможно сжать до нулевого объема. Именно это и утверждает квантовая механика. Материальные объекты одновременно представлены как частицами, так и волнами, так как у них имеется пространственное продолжение. Основываясь на этом, теория струн утверждает, что мельчайшими объектами во Вселенной являются не электроны, не кварки, не другие частицы, о существовании которых мы знаем благодаря ускорителям вроде Большого адронного коллайдера, а одномерные линии энергии, которые могут пересекаться и переплетаться различными способами. Форма таких линий, а также тот факт, что они часто формируют закрытые петли, означают, что у этих объектов (струн) есть пространственное продолжение, а значит, их нельзя сжать до нулевого объема. Следовательно, если динамика ранней Вселенной основывалась на суперструнах, они не могли сформировать сингулярность.

Теорию суперструн часто называют теорией всего, имея в виду, что потенциально она предлагает единое объяснение для всех частиц материи (которые представляются как различные виды вибрации базовых струн) и для четырех сил Природы (также описываемых через переносящие их частицы, выраженные в форме вибраций). Я посвятил подробному разбору теории всего и стремлений к всеобщему объединению часть своей книги A Tear at the Edge of Creation и предлагаю всем, кого заинтересовала эта тема, прочесть ее. В ней я обращаю внимание на то, что само понятие окончательного ответа несовместимо с научным методом. Учитывая, что мы можем накапливать научные знания только с помощью измерения естественных процессов, мы по определению не можем быть уверены в том, что знаем о существовании всех сил Природы или частиц. В любой момент может появиться новая технология, которая откроет нам что-то неожиданное и заставит нас пересмотреть свои текущие представления. Представления о всеобъемлющей Божественной Вселенной – это всего лишь романтическая фантазия. В лучшем случае теория суперструн или те идеи, которые придут за ней, смогут объединить все наши знания о частицах и их взаимодействии на момент их возникновения. Но это ни в коем случае не будет последним словом по данному вопросу[65]. Вспомните о космологах далекого будущего, живущих в статичной и темной Вселенной, которую мы рассматривали пару страниц назад. Как бы выглядела их окончательная теория всего? Наверняка она казалась бы им очень убедительной, даже если с нашей точки зрения была бы абсолютно неправильной. Можем ли мы быть уверены, что мы хоть в чем-то лучше, что мы не упускаем из виду большую часть космической картины? Наука умеет обнаруживать то, что существует в пределах досягаемости, но то, чего она обнаружить не может, нельзя и полностью исключать. Это приводит нас к важнейшему вопросу: уникальна ли наша Вселенная? Или есть и другие, сосуществующие с ней в некой бесконечной множественной структуре? Если Мультивселенная реальна, как нам об этом узнать? Чтобы ответить на этот вопрос, нужно разобраться, что могло бы дать толчок к такому безудержному росту вселенных. Для этого мы рассмотрим нормальное и метастабильное состояние материи и поговорим о том, как они могли повлиять на космос в его первые годы жизни.

Глава 13. Вниз по склону

в которой объясняется понятие энергии ложного вакуума, ее связь со знаменитым бозоном Хиггса и роль в ускорении космического расширения

Общая теория относительности Эйнштейна описывает гравитацию как искривление пространства по причине наличия материи и энергии. Мы не знаем, почему материя (или энергия) искривляет пространство, но можем рассчитать, как это происходит. Блестящая теория Эйнштейна – это очередной уровень описания. Разумеется, в этом описании Эйнштейн отходит от представлений Ньютона о гравитации как о действии на расстоянии, ведь искривленное пространство присутствует здесь и сейчас, а не является сторонним влиянием. Тем не менее причина этого искривления до сих пор неясна. Если бы Эйнштейна спросили, почему материя искривляет пространство, он наверняка ответил бы, что не знает. Его теория базируется на так называемом принципе эквивалентности, говорящем, что масса одинаково реагирует на гравитационное притяжение и на силу инерции. Пока ускорение остается неизменным, наблюдатель (который не может получать информацию извне) не будет в состоянии обнаружить его источник. Как говорил сам Эйнштейн, падающий наблюдатель не чувствует своего веса.[66] Принцип эквивалентности прочно удерживает свои позиции до сегодняшнего дня и проходит все многочисленные проверки.

Будучи самым лучшим описанием гравитации, доступным нам на сегодняшний день, теория Эйнштейна позволяет делать интересные предположения. Базируясь на подтвержденном наблюдениями предположении о том, что материя в больших объемах распределена гомогенно и изотропно (то есть одинаково во всех направлениях, как гласит космологический принцип), теория может делать количественные утверждения относительно геометрии космоса в целом. Для этого космологи представляют материю и излучение в виде гомогенного газа, обладающего энергетической плотностью (то есть массой и/или энергией на единицу объема) и давлением (силой, с которой газ давит на единицу площади, как делаете вы, когда надуваете воздушный шарик). В теории Эйнштейна и плотность, и давление газа влияют на искривление пространства и, соответственно, на динамику космоса.[67] Для обычной материи или излучения энергетическая плотность и давление имеют положительные значения в уравнениях, моделирующих развитие Вселенной. В результате мы получаем Вселенную, которая расширяется со временем, но в которой скорость расширения постепенно снижается. В зависимости от количества материи такая Вселенная может либо схлопнуться, либо продолжить расширение, но со скоростью, медленно приближающейся к нулевой в далеком будущем. Исключением является Вселенная с открытой геометрией, которая просто продолжит расширяться. Но нормальность материи и излучений – это совсем не обязательное явление в физике.

В общей теории относительности под влиянием давления на искривленное пространство-время могут происходить удивительные вещи: некоторые типы материи приобретают загадочные гравитационные свойства.

Для начала вот вам краткий экскурс на физическую кухню. Вода существует в трех состояниях: твердом (лед), жидком и газообразном (пар). Для того чтобы перевести ее из одного состояния в другое, необходимо изменить ее температуру. Чтобы жидкость превратилась в твердое тело, ее нужно поставить в холодильник с температурой ниже точки замерзания, то есть 32 градуса по Фаренгейту (или 0 по Цельсию). Жидкая вода внутри холодильника находится в неестественном состоянии, поэтому она трансформируется – выбрасывает энергию в окружающую среду и медленно превращается в лед. Можно сказать, что внутри холодильника жидкая вода попадает в метастабильное состояние – такое, при котором в ней содержится больше энергии, чем необходимо. Смена метастабильного состояния стабильным называется фазовым переходом.[68] Могут ли другие виды материи совершать фазовый переход? Конечно! Это происходит постоянно при соответствующей температуре (и/или давлении).

Тот же принцип применим и к физике частиц. Частицы материи также могут проходить через различные фазы, в рамках которых меняются их свойства. Например, мы с вами существуем в нормальной фазе материи, в которой электроны весят в две тысячи раз меньше, чем протоны. Материю в этой фазе можно сравнить с водой в состоянии льда. Однако при повышении энергии частицы начинают деформироваться и их массы постепенно уменьшаются до нуля. Представьте себе, что мы могли бы взять кусок такой материи в руки при текущем уровне энергии. Как и жидкая вода в холодильнике, этот кусок не имеющих массы электронов и протонов (или, еще лучше, кварков, составных элементов протонов) оказался бы в метастабильном состоянии. Оно не продлилось бы долго – материя быстро перешла бы в другую, более привычную нам фазу. Несмотря на то что современные ускорители пока не в состоянии создавать такие метастабильные частицы материи без массы, есть все основания полагать, что это будет возможно в будущем. Как когда-то изобретение холодильника, такие технологии требуют времени и фантазии (и еще денег, кучи денег).

Но есть одно место, в котором такой метастабильной материи имеется в избытке, – это ранняя Вселенная. Раньше космос был горячее, а уровни энергии – выше. В течение одной триллионной доли секунды после Большого взрыва температура и плотность Вселенной были достаточными для того, чтобы материя находилась в метастабильном состоянии.[69] И вот что удивительно: метастабильная материя имеет отрицательные значения в уравнениях, описывающих космическое расширение. А общая теория относительности утверждает, что отрицательное давление ускоряет расширение Вселенной, а не замедляет его. Именно эта энергия, скрытая в метастабильной материи, двигает нашу Вселенную вперед. Представьте себе груз, подвешенный на сжатой пружине. Если отпустить груз, накопленная энергия пружины толкнет его вперед. Отрицательное давление делает примерно то же самое с геометрией космоса. Итак, мы приходим к удивительному заключению: ранняя Вселенная могла переживать периоды ускоренного расширения, когда масса находилась в метастабильном состоянии. Этот эффект оказался настолько всеобъемлющим, что метастабильного состояния больше не требуется – космическое ускорение происходит всегда, когда материя не находится в своем нормальном состоянии, то есть при минимальном уровне энергии. В качестве аналогии можно привести мяч на наклонной плоскости. Он будет скатываться по ней до тех пор, пока не найдет стабильную точку, в которой сможет вернуться в состояние покоя. Соответственно, в любой точке на склоне мяч будет находиться в «смещенном» состоянии, а его энергия будет выше, чем у подножия склона. Точно так же и Вселенная, заполненная материей в смещенном состоянии, будет расширяться все быстрее и быстрее до тех пор, пока не «скатится» до минимального уровня энергии.

Внимательный читатель вспомнит, что мы уже обсуждали ускоренное расширение, когда говорили про космологическую постоянную. До тех пор пока материя остается в смещенном состоянии (то есть в любой точке на склоне), она имеет силу космологической постоянной. Основное различие состоит в том, что космическое ускорение, возникающее под влиянием космологической постоянной, имеет неизменное значение (потому-то она и называется постоянной), а для материи ускорение может уменьшаться и увеличиваться в зависимости от того, насколько она отклоняется от нормального состояния. Такое отклонение часто называют энергией ложного вакуума, но мы будем обозначать ее термином «смещенная энергия», так как это избыточная энергия, возникающая при смещении из нормального состояния.[70] Чем выше уровень смещенной энергии, тем быстрее происходит космическое ускорение.

Для полноты картины нам требуется еще один элемент: фактор, запускающий изменения в свойствах частиц и превращающий их из безмассовых при высоком уровне энергии (высоком смещении) в массивные при низком (то есть в нормальном состоянии). Согласно нашим сегодняшним знаниям о физике частиц, выраженным в так называемой стандартной модели, этим фактором является еще одна частица, знаменитый бозон Хиггса. О его открытии в июле 2012 года объявили ученые, работавшие на Большом адронном коллайдере.

Для того чтобы понять, как бозон Хиггса воздействует на другие частицы, можно представить его в качестве своего рода среды, в которой они движутся. Звучит как старый добрый электромагнитный эфир, но это не совсем так. Традиционно эфир представлялся как нечто неизменное и инертное, в то время как бозон Хиггса может изменяться и взаимодействовать с обычной материей. Подобно обычным частицам материи, он также изменяет свои свойства при разных температурах. Современные модели физики частиц используют колебания свойств бозона Хиггса для того, чтобы изменять характеристики частиц материи. Возвращаясь к образу бозона Хиггса как среды (вроде воздуха или меда), нужно сказать, что при высоких температурах эта среда, по сути, прозрачна и материя проходит сквозь нее, не встречая преград. Это его безмассовая фаза. При более низких температурах «среда» сгущается и частицам материи требуется больше усилий, чтобы пройти сквозь нее. Благодаря этой вязкости среды кажется, что масса частиц растет. Вот почему часто говорят, что бозон Хиггса «придает массу» частицам.

Давайте перейдем к тому, почему кварки, электроны и другие частицы, входящие в стандартную модель, обладают разными массами. Дело в том, что они чувствуют присутствие бозонов Хиггса с разной интенсивностью. Чем сильнее чувствительность частицы к нему, тем выше ее масса в нормальной фазе. В математическом выражении стандартной модели эту чувствительность называют интенсивностью, с которой каждая частица взаимодействует с бозоном Хиггса. К примеру, топ-кварк, самый тяжелый из кварков и в целом из известных нам элементарных частиц, имеет массу, в 399 216 раз превосходящую массу электрона. Поэтому мы можем сказать, что он сильнее взаимодействует с бозоном Хиггса. Исключением является фотон, который вообще не вступает во взаимодействие с бозоном и потому не имеет массы.

Вооруженные образом бозона Хиггса как среды, мы можем забыть обо всех частицах, которые взаимодействуют с ним, и просто представить его в роли мяча, катящегося вверх или вниз по склону холма. Чем ближе к вершине, тем дальше бозон от своей нормальной фазы и тем выше его смещенная энергия. Вселенная, наполненная бозонами Хиггса в такой фазе, будет стремительно расширяться. По мере того как бозон скатывается вниз по склону к своему минимальному значению энергии, ускорение уменьшается. Так происходит до тех пор, пока он полностью не остановится.

Итак, этот простой образ мяча, катящегося по склону холма, должен помочь нам понять невероятную концепцию множественной Вселенной. Давайте рассмотрим ее поближе.

Глава 14. Считая вселенные

в которой вводится понятие множественности вселенных и объясняются его физические и метафизические последствия

Читатели наверняка заметили, что я делаю различие между понятиями «Вселенная» и «вселенная». Поначалу это кажется всего лишь незначительной деталью. Однако дело в том, что современная космология вполне серьезно рассматривает возможность существования более чем одной вселенной. Вот почему разница в написании все-таки важна. Я использую слово «Вселенная» с заглавной буквы для обозначения нашего видимого космоса и всего, что в нем находится, известно оно нам или нет. Иными словами, термин «Вселенная» обозначает все то, что существует в пределах нашего космического горизонта. Вселенная – это наш дом, построенный из причин и следствий. Как мы уже знаем, рассчитанная на основании измерений плоскость видимого космоса может означать, что наша Вселенная продолжается и за пределами горизонта – все дальше и дальше, вплоть до бесконечности, которая недоступна для измерения нашим приборам. В связи с этим хотелось бы расширить понятие Вселенной на это потенциальное бесконечное пространство. Но я должен строго придерживаться правила «Мы знаем лишь то, что можем измерить». Соответственно, наша Вселенная может быть лишь частью потенциально бесконечной Вселенной. Более того, по соседству с нами могут находиться и другие вселенные – и их может быть много.

Согласно Оксфордскому словарю английского языка, вселенная – это «совокупное обозначение всей существующей материи, пространства, времени, энергии и т. д., в частности, как систематического или упорядоченного целого; все творение, космос». Характеристика «все существующее» тут же усложняет дело. Если под этим подразумевается действительно все то, что существует в реальности, то Оксфордский словарь должен был бы включить в свое определение все другие участки пространства, которые могут существовать, но быть отделены от нас пространственно-временным барьером. В таком случае вселенная будет представляться единым целым, а любой участок пространства, в том числе доступный нам, – ее составной частью. Однако если поискать в словаре понятие «Мультивселенная», можно наткнуться на довольно странное определение: «гипотетическое место или пространство, состоящее из некоторого количества вселенных, одной из которых является наша Вселенная».[71] Итак, если Мультивселенная существует, то наша Вселенная уже не может рассматриваться как совокупность «всей существующей материи, пространства, времени, энергии и т. д.». Наоборот, такое определение можно дать как раз Мультивселенной, а наша Вселенная окажется лишь ее частью, одной из (возможно, бесконечного) множества «островных вселенных», существующих одновременно. Еще больше усложняет дело тот факт, что вселенная, даже будучи частью Мультивселенной, все равно может быть пространственно бесконечной. Бесконечность является частью еще большей бесконечности, как входит в . В современной космологии, как и в математике, могут существовать разные типы бесконечностей.

Перед тем как мы пойдем дальше, позвольте мне объяснить, как такая идея, как совокупность различных вселенных, часть из которых, возможно, бесконечна, вообще может иметь смысл. Для того чтобы это было проще визуализировать, давайте ограничимся двумя измерениями. Представьте себе плоскую столешницу, которая имеет огромную длину и ширину. Если значения ее длины и ширины не ограничены, значит, наша столешница – это плоский бесконечный космос. В этой бесконечной вселенной могут жить крошечные плоские амебообразные существа. Теперь представьте, что у вас есть две столешницы, которые расположены параллельно друг другу, но не соприкасаются. Пускай вторая столешница тоже будет бесконечной, а на ее поверхности тоже будут жить плоские существа (в конце концов, все это происходит у вас в голове). Теперь представьте, что столешницы соединены в одном месте узким туннелем. Теперь у нас имеется два бесконечных пространства с точкой соединения. Существа, живущие в каждом из них, не имеют доступа к туннелю и верят, что их вселенная уникальна и бесконечна, особенно если туннель находится за их космическим горизонтом. Они никогда не узнают, что их вселенные являются элементами гораздо большей структуры – мультивселенной. А вы легко можете себе представить множество столешниц, расположенных одна над другой и соединенных переходами, которые недоступны их обитателям. Продолжайте этот ряд до бесконечности, и у вас в голове возникнет бесконечная двухмерная мультивселенная!

Но она не обязательно должна быть такой простой. Вселенные могут быть искривленными и конечными. Или они могут возникать из «материнской» вселенной, которая бесконечна сама по себе. Или такие «дочерние» вселенные тоже могут быть бесконечными. Представьте себе, что вы выдуваете пузырь из жевательной резинки. Если вы хоть раз пытались это сделать, то знаете, что маленькие пузыри обычно сдуваются, а те, что побольше, продолжают расти (и в итоге лопаются, но этот факт мы пока что игнорируем). Вообразите, что такой пузырь начинает расти в той части плоской вселенной, которая плотно населена амебообразными существами. Кого-то из них затянет внутрь, а кто-то останется снаружи, в ужасе наблюдая, как его друзья исчезают в небытии. Но все прошло удачно, большинство амеб, оказавшихся внутри пузыря, пережили этот катаклизм и начали исследовать новый мир. Сменились поколения, и наконец ученые измерили радиус кривизны пространства и выяснили, что они живут в замкнутом сферическом космосе. Все это время пузырь продолжал расти, поэтому к данному моменту туннель, соединяющий его с материнской вселенной, уже находится за пределами их космического горизонта. Они живут в замкнутой расширяющейся вселенной, не зная о своей связи с плоским бесконечным космосом. Возможно, в их мире существует миф, повествующий о боге, который выдул их вселенную из другой вселенной, населенной богами, которые целыми днями занимаются только тем, что надувают другие пузыри. В это же время существа, оставшиеся в материнской вселенной, наблюдают, как вход в пузырь становится все уже и уже, пока наконец не закрывается вовсе. Вместо него остается лишь шрам на ткани пространства, отмечающий эти давние события. Вселенная-пузырь, возможно, остается соединенной с материнской вселенной чем-то вроде пуповины, но их жители уже изолированы друг от друга.

Может ли что-то подобное происходить на самом деле? Как ни удивительно, да, это теоретически возможно. И вот почему.

Для начала вообразите себе вселенную, наполненную материей Хиггса. Не думайте, что это то же самое, что и бозон Хиггса в стандартной модели. Все теории физики частиц, пытающиеся объяснить физику энергий, не входящих в стандартную модель, обычно включают в себя дополнительную материю, похожую на бозоны. Давайте впредь называть материю Хиггса ее настоящим именем – поле. Понятие поля было введено в XIX веке Майклом Фарадеем и Джеймсом Клерком Максвеллом в рамках их теории электромагнетизма и является ключевым в современной физике. По сути, поле представляет собой пространственное влияние определенного источника. Для того чтобы составить картину температурного поля в комнате, нужно всего лишь измерить температуру в разных ее точках. Такое поле, зависящее исключительно от значения температуры в определенной точке в пространстве, называется скалярным. Еще один тип поля – это скорость потока воды в реке. Если течение не идеально равномерно, то в нем всегда будут существовать отклонения и завихрения. Поле, для которого важно не только значение в определенной точке, но и направление движения в ней, называется векторным. В качестве примера векторного поля можно привести поток ветра, дующего вокруг дома. Хиггсовы поля скалярны, в то время как электромагнитные состоят одновременно из скалярных и векторных полей.

Но вернемся к нашей модели вселенной. Давайте представим, что это заполняющее весь космос Хиггсово поле не достигло своего минимального уровня энергии и смещенная энергия заставляет его разгоняться и расширяться. И здесь возникает важнейший момент, приводящий нас к идее множественности вселенных. Вовсе не обязательно, чтобы вся вселенная была наполнена смещенной энергией скалярного поля. Хватит и небольшого участка. Если его объем будет достаточным, то он будет раздуваться на фоне огромной, потенциально бесконечной вселенной, как воздушный шарик. Точно так же мы выдуваем пузыри из жвачки! Вот только толчок, который заставляет пузырь расти, дает не бог, а смещенная энергия скалярного поля. Насколько большим должен быть такой участок пространства, чтобы расти в геометрической прогрессии? На самом деле хватит и пространства, охваченного космическим горизонтом. Например, при том уровне энергии, который заставил частицы приобретать массу в присутствии бозона Хиггса (и существовал примерно в течение одной триллионной доли секунды после Большого взрыва), достаточно было бы одного миллиметра. И чем ближе к началу времени, тем меньше становится этот участок. Итак, пока мы всего лишь представляем, что этот участок пространства, наполненный скалярным полем, возник в прошлом точно так же, как и наша Вселенная. К вопросу этого возникновения мы еще вернемся.

Таким образом, мы можем представить себе сценарий, при котором пространство космоса похоже на клетчатый плед, в разных клетках которого скалярное поле имеет разные значения, отличные от его минимального уровня энергии. Вообразите, что на каждом из таких участков стоит холм с катящимся по склону мячом и при этом каждый мяч находится на разной высоте. Достаточно большие участки пространства будут расширяться в геометрической прогрессии, а скорость расширения будет зависеть от количества смещенной энергии на участке (чем выше мяч на склоне, тем быстрее расширение). Очень скоро космос превратится в кучу разномастных пузырей, растущих с разной скоростью. Каждый из таких пузырей – это потенциальная вселенная, связанная с материнской вселенной трубкой или туннелем, своеобразной пуповиной, которую чаще называют кротовиной (кротовой норой, червоточиной). Этот сценарий, получивший название хаотической инфляции, был предложен в 1980-х годах американским космологом российского происхождения Андреем Линде, который сейчас работает в Стэнфордском университете. Слово «хаотический» в данном случае обозначает случайное распределение значений скалярного поля на различных участках пространства.

Линде добавил в свою модель потрясающий ход. Квантовая механика учит нас, что ничто в Природе не остается неподвижным. Все вибрирует, пускай эти вибрации и не воспринимаются нами в повседневной жизни. Но для скалярного поля, наполняющего нашу гипотетическую вселенную, эти квантовые колебания очень важны. Чем дальше поле отходит от своего минимального уровня энергии, тем колебания сильнее. Если в уже надувающемся пузыре достаточно большой кусок поля достигнет более высокого уровня энергии, он начнет расти с другой скоростью. В результате он отколется от пузыря и сформирует собственную вселенную, «внучку» оригинальной. Читатель легко может представить себе эту картину: пузыри, постоянно возникающие на поверхности других пузырей и формирующие все новые и новые вселенные с собственной историей. Линде заключил, что вселенная, наполненная скалярным полем с уровнем энергии, смещенным от минимального, в обязательном порядке будет порождать новые вселенные и, таким образом, превратится в постоянно растущую мультивселенную без начала и конца.

В это же время еще один космолог российского происхождения, Александр Виленкин из Университета Тафта, предложил альтернативную теорию, ведущую к аналогичным последствиям. Виленкин рассматривал поля с крайне плоским начальным распределением энергии (если раньше мы использовали аналогию со склоном холма, то эти поля можно сравнить с вершинами горных плато). Если в теории Линде квантовый эффект толкал поле вверх и вниз, то в модели Виленкина поле случайным образом двигалось по плато в различных направлениях. Если участок с таким плато оказывается достаточно большим, он растет по экспоненте, производя множество пузырей. Виленкин назвал свою модель вечной инфляцией, так как он заключил, что в мире всегда будут существовать плато, расположенные достаточно высоко на склоне нашего воображаемого холма и ведущие к разрастанию пространства. В каких-то регионах поле уже достигнет минимального энергетического уровня, и фаза ускоренного роста прекратится (как это случилось с нашей Вселенной), а в каких-то в это же время он только начнется. Виленкин показал, что растущие участки будут возникать чаще, чем замедляющие свое расширение.[72] Итак, двое моих российско-американских коллег (от общения с которыми на совместных встречах я всегда получаю удовольствие) создали запутанные модели бесконечно самовоспроизводящихся вселенных. Пускай каждый участок имеет свое начало и свою историю, сама мультивселенная может существовать вечно. Большой взрыв может оказаться лишь одним из множества разнообразных случаев зарождения вселенных.

Но может ли такая идея, как бы безумно она ни звучала, оказаться чем-то большим, чем просто умозрительным экспериментом? Может ли ее подтвердить физика? Каждая научная гипотеза должна быть экспериментально проверяемой. Для ее подтверждения или опровержения необходимо провести опыты или собрать данные наблюдений. Учитывая, что мы не располагаем никакими свидетельствами того, что живем в мультивселенной (и такие свидетельства, вполне вероятно, вообще невозможно получить), эту теорию следует рассматривать с большой осторожностью, внимательно анализируя все те данные, которые у нас уже имеются и которые мы можем получить в будущем.

Для начала давайте рассмотрим понятие ускоренного космического расширения. Есть ли у нас основания верить в его существование? Конечно! В 1998 году мы получили убедительные доказательства того, что живем в расширяющейся Вселенной, работающей на темной энергии. Это блестящее открытие, о котором нельзя забывать. Оно кажется еще более интересным, если вспомнить, что ускоренное расширение началось всего пять миллиардов лет назад. Иными словами, фазы космического расширения не просто реальны, но имеют начало и, вероятно, конец. Пять миллиардов лет – это точное время формирования нашей Солнечной системы. Иногда эту ситуацию называют проблемой совпадения. Почему расширение космоса началось именно в этот момент, а не раньше и не позже?

Еще одним весомым подтверждением существования периода активного расширения является инфляционная космологическая модель, предложенная в 1981 году американским космологом Аланом Гутом. Это оригинальная модель инфляции космоса, которая впоследствии повлияла на идеи Линде и Виленкина. Гута интересовали некоторые вопросы, на которые не могла ответить стандартная модель Большого взрыва (описывающая появление Вселенной из горячей первобытной смеси материи и излучения 13,8 миллиарда лет назад). Во-первых, почему космос имеет плоскую геометрию? Почему она не является закрытой или открытой? Во-вторых, температура фонового излучения во всей Вселенной одинакова до одной стотысячной доли градуса. Откуда взялась такая тонкая настройка? Размер космического горизонта при расщеплении не позволяет нам верить в ее существование. Для того чтобы иметь сегодня одинаковую температуру, частицы и фотоны в процессе расщепления должны были бы взаимодействовать на огромных расстояниях, превышающих те, которые были допустимы их горизонтом. Во всей Вселенной (как в горячей ванне) температура регулируется за счет столкновения частиц (молекул воды) друг с другом. Чем больше ванна, тем больше времени требуется, чтобы вода в ней нагрелась или охладилась равномерно. Точно так же излучению в расширяющейся Вселенной требуется время на то, чтобы урегулировать ее температуру. И с момента расщепления времени прошло недостаточно. Учитывая это, откуда фотоны по другую сторону неба знают, какую температуру поддерживать?

Гут предположил, что молодая Вселенная пережила краткий период ускоренного расширения, который он назвал инфляцией. Его идея была аналогична приведенной выше метафоре мяча на склоне холма. Хиггсово поле оказывалось в метастабильном состоянии, и до тех пор, пока его состояние не изменялось, Вселенная расширялась в геометрической прогрессии. Андрей Линде и Андреас Альбрехт из Калифорнийского университета в Дейвисе, а также Пол Штейнхардт из Принстона быстро поняли, что в модели Гута существовал недочет, который они назвали элегантным выходом: поле оставалось бы в метастабильном состоянии слишком долго для формирования той Вселенной, которую мы наблюдаем. Независимо друг от друга они скорректировали модель Гута, представив ее энергетический профиль как плоское плато. Именно это натолкнуло Виленкина на его идею вечной инфляции.

Инфляция объясняет, почему Вселенная имеет плоскую форму. Небольшой участок, раздираемый в разные стороны магнитудами разного порядка, будет казаться плоским, даже несмотря на то, что он может быть элементом огромной сферической поверхности. В таком случае наш космический горизонт – это всего лишь небольшая часть гораздо большей Вселенной, недоступной нашим наблюдениям. Инфляция также объясняет, почему значения фонового излучения остаются неизменными во всей Вселенной. Если весь доступный нашему наблюдению космос произошел из одного раздутого участка пространства, логично предположить, что частицы и фотоны в нем будут иметь одинаковые термальные характеристики.

Но инфляция помогает нам сделать еще один шаг вперед. Помните квантовые скачки, из-за которых новые вселенные возникают как грибы после дождя? Те же самые скачки, которые заставляют колебаться поле на различных участках пространства, приводят к возникновению небольших энергетических флуктуаций. Участки расширяющегося космоса можно сравнить с поверхностью озера в ветреную погоду – где-то энергии немного больше, а где-то немного меньше. Благодаря инфляции эти крошечные квантовые неровности раздуваются в участки поля астрономических масштабов. Теперь давайте быстро вернемся в прошлое, в момент расщепления, к началу формирования водорода. Так как гравитация – это сила притяжения, участки с повышенной или пониженной плотностью будут притягивать к себе соответственно больше или меньше материи, заставляя ее концентрироваться в определенных местах, как дождевую воду в лужах. По сути, участки с повышенной плотностью привели к появлению галактик и скоплений галактик во Вселенной. В то время космос был похож на старую грязную дорогу с выбоинами и кочками – вокруг кочек скапливалось меньше материи, а в рытвины попадало больше. Иными словами, инфляция представляет собой механизм для описания зарождения галактик. Так как фотоны тоже попадают в выбоины и трещины дороги, инфляция также предсказывает, что эти несоответствия будут оставлять свои следы в фоновом излучении в форме крошечных температурных флуктуаций (появления более горячих и более холодных точек). Эта пестрая температурная карта была исследована с высокой точностью с помощью спутника Wilkinson Microwave Anisotropy Probe и европейской орбитальной исследовательской станции «Планк». Удивительно, но полученные данные практически совпадают с данными некоторых моделей на основе теории инфляции. Это дает космологам основания полагать, что молодая Вселенная действительно когда-то пережила период ускоренного роста.

Если это так и если наш космический горизонт действительно является практически плоским, Вселенная должна быть куда больше, чем мы можем увидеть, и должна простираться намного дальше наблюдаемой Вселенной. Несмотря на то что исследователи до настоящего времени не делали никаких определенных заявлений относительно существования бесконечностей в Природе, Вселенная наверняка невероятно огромна и, возможно, бесконечна. Соответственно, есть все основания полагать, что в ней могут существовать и другие участки инфляции, на что указывает вечная инфляционная модель.

Ключевым фактором инфляции, разумеется, является скалярное поле. Можем ли мы быть уверены в том, что такое поле существовало на ранних стадиях космической эволюции? Нет, по крайней мере пока. Однако успех стандартной модели физики частиц и недавнее открытие бозона Хиггса подтверждают гипотезу о том, что при высоких уровнях энергии может существовать что-то вроде бозона Хиггса, оказывающее аналогичное влияние на космическое расширение. Скалярные поля используются во многих моделях, созданных для того, чтобы расширить наши текущие знания о физике частиц за пределы стандартной модели. К примеру, довольно перспективна теория суперструн. Даже если вас не привлекают модели, в которых используется суперсимметрия, вы все равно можете быть уверены в том, что новая физика будет иметь дело с более высокими энергиями, чем те, которые мы можем измерить на сегодняшний день, и, вероятно, найдет потенциальных кандидатов (поле или несколько полей) на роль движущей силы инфляции.

Здоровая наука – это сочетание смирения и надежды. Мы должны смириться с размерами нашего незнания, но при этом надеяться, что новые открытия смогут пролить на него немного света. Однако если мы находимся на самой границе познания нового, но не можем получить подтверждающих данных, нашей единственной стратегией остаются обоснованные предположения. Без воображения наука не может двигаться вперед.

Было бы упущением с моей стороны не рассказать о вкладе теории струн в понятие Мультивселенной. Несколько моих коллег, приверженцев этой теории, написали о ней ряд популярных работ, на которые я ссылаюсь в библиографии. Тем читателям, которые хотели бы узнать больше о теории струн, я в первую очередь рекомендую книги Брайана Грина и Леонарда Сасскинда. Для всех остальных же будет достаточно и следующих глав этой книги.[73]

Глава 15. Интерлюдия: прогулка по струнному ландшафту

в которой вводится понятие струнного ландшафта и объясняется, что такое антропная мотивация

Для того чтобы теория суперструн имела математический смысл, струны должны существовать более чем в трех измерениях. Это создает для теории определенные затруднения, ведь теперь она должна дополнительно объяснить, почему мы видим всего три из этих измерений. Кроме того, важно знать, сколько их всего. Четыре, пять, двадцать? Теория струн вводит понятие новой симметрии Вселенной – суперсимметрии. Я уже упоминал ее, когда мы обсуждали темную материю, но сейчас настало время поговорить о ней более подробно. Насколько нам известно, в Природе существует два типа частиц – те, из которых состоит материя (электроны, кварки и некоторые другие), и те, которые переносят силы (фотоны для электромагнитных сил, гравитоны для гравитации, менее известные глюоны, удерживающие кварки внутри протонов и нейтронов, и тяжелые частицы Z0, W+ и W, переносчики слабого ядерного взаимодействия, ответственного за радиоактивный распад). Суперсимметрия означает, что частицы материи могут превращаться в частицы силы и наоборот. В результате, каждая частица имеет своего «суперсимметричного партнера»: у электрона он будет называться селектроном, у любого из кварков – скварком и т. д.

У вас мог возникнуть вопрос: зачем кому-то понадобилось удваивать количество элементарных частиц в Природе? Ответ (и изначальный толчок к введению понятия суперсимметрии в середине 1970-х) состоит в том, что теории суперсимметрии могут объяснить, почему пустое пространство имеет нулевую энергию. Если бы это было не так, если бы в космосе имелась какая-то остаточная энергия, она бы действовала как космологическая постоянная, ускоряющая расширение Вселенной. В середине 1970-х ученые еще не располагали доказательствами существования расширения, поэтому и ввод подобной постоянной был невозможен. Темная энергия была открыта в 1998 году, и до этого момента предполагалось, что космическая постоянная равна нулю. Суперсимметрия предлагалась в качестве объяснения того, почему это так.

Проблема состояла в вакууме (так физики называют состояние отсутствия каких бы то ни было частиц). Вакуум – это пустое пространство и максимальное физическое приближение к понятию «ничто». Но квантовая физика все усложняет. Как вы можете помнить, основное ее положение состоит в том, что все колеблется – положение частицы, ее скорость и энергия. Даже если пустое пространство вообще не имеет энергии, квантовые флуктуации могут периодически подталкивать уровни энергии выше нуля. В регионах с избытком энергии могут периодически возникать частицы, так как в соответствии с уравнением E = mc2 энергия может превращаться в массу. Такие частицы возникают и исчезают, как пузыри на кипящем супе. Если суммировать крошечные квантовые эффекты по всему космосу, мы получим огромную добавку к энергии. Суперсимметрия подавляет такие флуктуации, заставляя энергию пустого пространства исчезнуть. Таким образом, она объясняет, почему космологическая постоянная равна нулю. Но теперь, когда нам известно о темной энергии, мы знаем, что это не так! С 1998 года ученые больше не могли использовать суперсимметрию для объяснения отсутствия вакуумных флуктуаций.

Объяснение небольших значений – это довольно сложная задача в физике. Тем не менее у теории суперсимметрии есть и другие точки приложения. Например, она может объяснить, почему масштаб, с которым частицы получают массы под воздействием бозона Хиггса, намного (почти в 16 раз) меньше, чем масштаб, при котором наблюдаются колебания пространства-времени в результате квантовых эффектов. Кроме того, она может предложить некоторые объяснения темной материи. В связи с этим, несмотря на отсутствие свидетельств ее существования (эксперименты, направленные на поиски предсказанных ей частиц, ничего не выявили), суперсимметрия все еще остается прочно укоренившейся в умах многих физиков.

Но вернемся к струнам. Если совместить их с суперсимметрией, то можно легко установить количество пространственных измерений, в которых могут существовать суперструны. Всего таких измерений девять. В данный момент существует пять возможных теорий струн. Физик-теоретик из Института перспективных исследований Эдвард Виттен показал, что все их можно объединить в одну, если добавить еще одно измерение. Эта новая теория получила название «М-теория».[74]

Итак, если в основе Природы лежат струны, это значит, что еще целых шесть измерений остаются для нас невидимыми. Как такое возможно? Этому достаточно новому для науки вопросу была посвящена моя докторская диссертация и некоторая часть работы в постдокторантуре. В частности, если мы попытаемся совместить теорию суперструн с теорией Большого взрыва, как объяснить, что три измерения разрослись, а остальные шесть остались в своем первоначальном виде? Было предложено множество моделей, большинство из которых содержало в качестве причины силу притяжения между частицами, порождаемыми вибрациями струн. Именно это притяжение и должно было удерживать другие измерения в их изначальном виде. Так как у нас все еще нет единого кандидата на роль теории суперструн, то и ответить на этот вопрос мы не можем. Последние идеи основываются на том, что некоторые измерения слишком малы по сравнению с другими (также недоступными для наблюдения). Другие предполагают, что дополнительные измерения очень велики и пронизывают собой все, а мы живем в пространстве (в бране) между ними, словно на куске тоста, зависшем в воздухе. Лиза Рэнделл, мой друг с ранних лет существования экстрамерной космологии и первая женщина, получившая должность профессора теоретической физики в Гарвардском университете (долго же они ждали), написала книгу о концепции браны, которую она разработала совместно с Раманом Сандрумом в 1999 году.[75]

Я рассказываю вам об этом потому, что теория суперструн также предсказывает существование Мультивселенной, которая в данном случае называется струнным ландшафтом. Струнный ландшафт включает в себя все возможные складки и изгибы шести измерений, которые могут существовать в принципе (представьте себе бесчисленное количество форм, которые вы можете слепить из куска пластилина, да еще и с разным количеством отверстий). Каждая форма экстрамерного пространства обладает в нашей трехмерной реальности разными физическими свойствами. Струнный ландшафт – это пространство, в котором могут существовать все формы шести измерений, так что пройтись по нему вам не удастся. Идея ландшафта привела к возникновению интересного психологического сдвига в отношении к теории струн. Изначально ее главной привлекательной стороной была претензия на роль единственной теории Природы. Ее основное преимущество и красота крылись в уникальности. Ученые надеялись, что после решения фундаментальных уравнений теории они смогут получить единственно возможное решение – нашу Вселенную. Увы, все оказалось совсем не так. Дальнейшие исследования показали, что теория суперструн может давать огромное множество решений (до 10500) в связи с топологическим разнообразием структуры многомерного космоса. Как можно выбрать единственно верное решение из 10500? Что направляло Вселенную к выбранному ей решению – «истинному вакууму»? На сегодняшний день никому не удалось найти убедительный критерий отбора, а в его отсутствие теория струн перестает быть уникальной.

Кроме того, так как каждое возможное объяснение экстрамерного космоса означает новую геометрию четырехмерного пространства, воплощенную в уникальном наборе частиц и взаимодействий между ними, различные колебания ландшафта (струнные пустоты) могут означать совершенно разные вселенные. Чем из них может выделиться наша с ее измеренными значениями основных постоянных и скорости расширения? Может быть, она уникальна тем, что в ней есть живые существа? Начиная с XVII века физическая космология показывает нам, как ничтожна наша роль в общей картине мира. Могут ли суперструны опровергнуть идеи Коперника?

В 2000 году Рафаэль Буссо из Университета Калифорнии в Беркли и Джозеф Полчински из Института теоретической физики имени Кавли при Университете Калифорнии в Санта-Барбаре (где я когда-то работал в качестве постдока) решили совместить струнный ландшафт с теорией вечной инфляции. Они рассуждали так. Различные провалы (или, точнее, углубления) в ландшафте должны чередоваться с быстро расширяющимися участками, что в итоге приведет к их изоляции друг от друга. Иными словами, все струнные пустоты – это отдельные вселенные (а не только наша). Таким образом, Буссо и Полчински избавились от вопроса нашей уникальности. Чтобы еще сильнее приблизить свою идею к модели инфляции, они предположили, что небольшие квантовые колебания могут вызывать незначительные изменения в геометрии дополнительных шести измерений, что, в свою очередь, привело бы к возникновению случайных движений по всему ландшафту. Итак, Мультивселенная в теории струн состоит из изменяющихся реализаций различных струнных пустот, каждая из которых представляет собой отдельную вселенную с собственными частицами и, возможно, даже собственными физическими законами. Последнее предположение высказывается часто, но кажется мне довольно непонятным. Изменения в массах и силе взаимодействия между частицами не ведут к изменению фундаментальных законов Природы, таких как сохранение энергии или электрического заряда.

Теория постоянно расширяющейся струнной мультивселенной постулирует существование множества вселенных, которым неизвестно друг о друге. Впервые в истории науки теоретическая физика дала добро на неизвестное. Такое радикальное отступление от проверенных временем методов экономической науки вызвало удивление множества физиков и появление по меньшей мере такого же количества вопросов. Как мы можем надеяться когда-нибудь найти объяснение своему собственному существованию в этой безумной мешанине постоянно возникающих новых вселенных? Или наука отказалась от этой идеи? Для ответа на эти вопросы многие приверженцы теории струн используют подход, который еще пару лет назад считался проклятием для всей философии уникальности, стоящей за разработкой теории струн. Имя ему антропный принцип, и он гласит, что наша уникальность – это не причина, а следствие.[76]

В 1870-х годах астрофизик Брэндон Картер заявил, что нет ничего удивительного в том, насколько наша Вселенная благоприятна для жизни. В конце концов, только во вселенной, обладающей необходимыми свойствами (читай: значениями масс фундаментальных частиц и силы взаимодействия между ними, а также ряда космологических параметров, указывающих на достаточный возраст космоса и его расширение с подходящей скоростью), могло бы смениться несколько поколений звезд, а значит, у жизни появился бы шанс зародиться. Иными словами, природные константы, такие как сила притяжения или масса электрона, способствуют возникновению жизни. Учитывая тонкость физических процессов, приводящих к возникновению и смерти звезд в расширяющейся вселенной, допустимый диапазон значений этих постоянных не так уж велик. Мы могли бы существовать лишь в нескольких возможных вселенных, в которых природные константы имели бы значения, близкие к измеряемым нами сейчас.

Буссо и Полчински (а за ними и их коллеги) заключили, что антропный принцип – это единственный критерий отбора, по которому наша Вселенная как-то выделяется на огромном струнном ландшафте. Когда в 2003 году к ним присоединился один из создателей теории струн Леонард Сасскинд из Стэнфордского университета, концепция струнного ландшафта стартовала с места в карьер. Антропный принцип указывает на то, что мы можем существовать только в струнной пустоте с небольшим значением космологической постоянной (примерно таким же, которое, судя по всему, обеспечивается темной энергией). Так как все пустоты в ландшафте в принципе реализованы где-то в Мультивселенной, нет ничего удивительного в том, что среди них есть и наша, даже если мы занимаем всего лишь дальний уголок космоса. Уникальности не существует, есть лишь бесконечное количество возможностей, включая самые невероятные. Наша посредственность, на которую указывал еще Коперник, была полностью восстановлена. Разумеется, если бы кто-нибудь сумел найти убедительное подтверждение тому, что наш вакуум чем-то выделяется на струнном ландшафте, антропный принцип был бы забыт уже на следующий день как противоречащий самой сути физики.

Те, кто не верит в пользу антропного принципа (я причисляю и себя к этой группе), утверждают, что он не помогает нам в открытии нового, но всего лишь предлагает ряд допустимых значений для заданных переменных путем подгонки под них уже известных нам данных. Антропный принцип сужает возможный выбор физических параметров на основании свойств известной нам Вселенной, но не дает этому выбору никаких объяснений. Он подстраивается под реальность, а не проливает свет на нее. Чтобы проиллюстрировать это, я скажу вам, что средний рост взрослого американца составляет 1,77 метра. Простая статистика говорит нам, что во время прогулки по улицам города в США шансы встретить мужчину ростом от 1,63 до 1,99 метра составляют 95 %. Именно это и дает нам антропный принцип – ряд значений, основанный на среднем показателе. Но если бы этот средний показатель был нам неизвестен, мы не извлекли бы из антропного принципа ничего полезного. В частности, он не смог бы объяснить нам, почему средний рост американского мужчины именно таков (на самом деле это сложный вопрос, требующий междисциплинарных исследований).[77]

Может ли Мультивселенная с различными значениями различных природных констант возникнуть в контексте вечной инфляции без участия суперструн? В теории да. Мы можем представить себе теорию, содержащую множество скалярных полей, каждое из которых имеет собственный набор постоянных при минимальном уровне энергии (как бозон Хиггса определяет значение масс в низкоэнергетическом вакууме, в котором существуем мы). При такой форме инфляции участок пространства, ограниченный космическим горизонтом, будет содержать несколько скалярных полей с разными историями, разными минимумами энергии и, соответственно, разными наборами констант. Или скалярное поле может быть одно, или их может быть несколько, но с многочисленными возможными минимальными уровнями энергии. На различных участках поля будут сводиться к разным минимальным значениям, приводя к возникновению различных физических констант.

В совокупности все приведенные выше аргументы указывают на то, что множественность вселенных теоретически возможна. Итак, для продолжения рассуждений давайте остановимся на мысли о том, что мы живем в Мультивселенной. Сможем ли мы когда-либо узнать об этом наверняка? Доступна ли Мультивселенная для наблюдений? Иными словами, Мультивселенная – это экспериментально доказуемая научная гипотеза или чисто теоретическая концепция, ведущая к опасному расколу в научном сообществе? И, что самое важное, познаваема ли она?

Глава 16. Можно ли экспериментально доказать существование Мультивселенной

в которой мы узнаем, является Мультивселенная полноправной физической теорией или обычной спекуляцией

Когда дело доходит до глобальных идей, физики должны быть беспощадны. За время существования человечества возникало множество разнообразных идей, у которых находились свои последователи. Потом такие идеи (например, существование электромагнитного эфира, флогистона, теплорода или планеты Вулкан) исчезали, вытесненные из сознания людей убедительными доказательствами. Всему виной избыток человеческого воображения и постоянное стремление к новым теориям. В конце концов, если не вы поддержите собственную идею, то кто? Мы хотим знаний, мы стремимся к ним, и мы делаем все, что в наших силах, для создания рациональных объяснений необычных явлений. Мы придумываем разнообразные убедительные доказательства того, почему верна именно наша теория. Разумеется, мы учимся на своих ошибках, но любое неправильное объяснение приближает нас к единственно верному. Если вы не любите ошибаться, не занимайтесь наукой. Остров знаний разрастается хаотично и непредсказуемо. Иногда на месте ровного берега образуются заливы. Воображение – ключевой элемент всех открытий и изобретений, но само по себе оно не работает. Фундаментом для построения любой научной теории является ее экспериментальная доказуемость. Двадцать физиков-теоретиков, запертых в одной комнате, могут придумать вселенную, полностью отличную от той, в которой живем мы.

Теория о множественности вселенных представляет серьезную угрозу для этого modus operandi. Если за пределами нашего космического горизонта существуют иные вселенные, мы никогда не сможем получить от них какой-то знак или отправить им свои сигналы. Даже если они реальны, они находятся в пространстве, совершенно недоступном для нас и наших инструментов. Мы никогда не увидим и не посетим их, а наблюдатели из них не смогут увидеть или посетить нас. Поэтому, строго говоря, существование Мультивселенной никогда не сможет быть подтверждено наверняка. Космолог Джордж Эллис из Университета Кейптауна, ЮАР, активно отстаивает эту позицию: «Все параллельные вселенные лежат за пределами нашего горизонта и вне нашего доступа – ни сейчас, ни в будущем, как бы ни развились наши технологии. Они находятся слишком далеко, чтобы хоть как-то влиять на нашу Вселенную. Вот почему ни одно из заявлений, приводимых теоретиками Мультивселенной, не может быть подтверждено напрямую».[78]

Современные физики лишь немного готовы встать под древнее знамя позитивизма, поднятое выше всех австрийским философом Эрнстом Махом, который в 1900 году заявил, что атомов не существует, потому что их нельзя увидеть (и, к сожалению, придерживался этого подхода до самой своей смерти в 1916 году). Существует множество способов определить, реально что-то или нет, даже если мы не можем увидеть это или потрогать. К примеру, астрофизики делают вывод о существовании массивной черной дыры в центре Млечного Пути на основании движения расположенных рядом с ней звезд, а затем экстраполируют этот вывод на другие галактики. Специалисты по физике частиц действуют сходным образом, рассчитывая свойства частицы на основании следа, который она оставляет на детекторе. Невозможно увидеть электрон, но можно рассмотреть его след в различных устройствах. Мы делаем вывод о существовании частиц по их влиянию на различные приборы. Возможно, «существование» – это слишком сильное слово. Мы создаем идею электрона, чтобы обозначить ею точки и линии, которые мы видим на экранах приборов, используемых для измерения элементарных частиц. Точно так же мы вводим идею темной энергии как экономное объяснение смещенных в сторону красного цвета спектральных сигнатур удаленных объектов.

Итак, вопрос заключается не в том, можем ли мы увидеть соседнюю вселенную напрямую, а в том, существуют ли способы засечь ее присутствие, находясь в пределах нашего космического горизонта. Таким образом мы не докажем существование Мультивселенной, но подтвердим возможность наличия соседних вселенных. Такой эксперимент обеспечил бы значительную поддержку всей теории множественности вселенных, поэтому данная область исследований является очень привлекательной. Очень важно понимать разницу между обнаружением характерных признаков соседних вселенных и доказательств существования полноценной Мультивселенной. На данном этапе часто возникает путаница, поэтому я повторю еще раз: даже если мы, будучи ограниченными нашим космическим горизонтом, сумеем получить убедительные экспериментальные доказательства существования соседних вселенных, это не обязательно будет означать, что Мультивселенная существует. Для некоторых физиков обнаружение существования другой вселенной является достаточным основанием для экстраполяции, такой концептуальный прыжок не подтверждается никакими данными. Пара расположенных по соседству домов не считается страной. Существование Мультивселенной, бесконечна она или нет, остается неизвестным.[79]

Как вы помните из нашего обсуждения космологии Большого взрыва, на данный момент нашим лучшим инструментом для изучения свойств Вселенной является фоновое космическое излучение. Могли ли другие вселенные каким-то образом оставить свой отпечаток на фотонах, движущихся через весь космос в течение последних 13,8 миллиарда лет?

Если бы я писал статью на эту тему, я бы назвал ее «Когда сталкиваются вселенные».[80] Могла ли соседняя вселенная в прошлом столкнуться с нашей? Очевидно, даже если это произошло, столкновение не было очень сильным, иначе ни нас, ни наших рассуждений об этом уже бы не существовало. Но соседние вселенные действительно могут сталкиваться по мере роста и расширения – или, скорее, касаться друг друга, потому что слово «столкновение» звучит слишком жестко. В 2007 году Алан Гут совместно с Алексом Виленкиным и Хауме Гаррига из Барселонского университета предположили, что подобное соприкосновение действительно имело место. Если представить себе два столкнувшихся мыльных пузыря, можно понять, что такое соприкосновение вызовет вибрацию поверхностей вселенных. Затем такая вибрация передастся внутрь пузыря и заставит дрожать все, что находится в нем. Столкновение вызвало бы колебания в космической геометрии обоих вселенских пузырей. Такие колебания шли бы по пространству, как волны по воде, заставляя людей и неживые объекты подниматься и опускаться. Интересно, что такие волны могут быть дискообразными – похожими на круги на поверхности воды. Соответственно, микроволновая карта неба должна отображать кольцевые узоры в том месте, где произошло столкновение.

Некоторые космологи, включая Энтони Агирре из Калифорнийского университета в Санта-Крузе, Мэтью Клебана из Университета Нью-Йорка и их сотрудников, разработали теоретические сценарии того, какие следы подобных событий в прошлом могли бы дойти до наших дней. К примеру, в фотонах базового излучения могли бы наблюдаться кольцевые колебания температур разных размеров и разной интенсивности в зависимости от характера столкновения. Кроме того, фотоны также могли бы иметь поляризационный рисунок, то есть располагаться на небе в определенной последовательности, как костяшки домино, поставленные вертикально.[81] Первые исследования, проведенные с использованием данных спутника WMAP, не дали положительных результатов, но это не означает, что вопрос можно признавать окончательно решенным. Команда орбитальной станции «Планк» готовит к публикации данные, которые могут содержать сигнатуры, ожидаемые Клебаном и его командой: дискообразные круглые узоры в фоновом излучении с двумя пиками поляризации фотонов, направленными в определенную точку у края диска. Такая сигнатура будет уникальной и станет достаточным подтверждением того, что столкновение вселенных действительно имело место в далеком прошлом, ведь привести другие объяснения ее существованию вряд ли удастся.

Обратите внимание, что даже в этом случае мы не сможем узнать почти ничего о физике, действующей в соседней вселенной, то есть о существующей в ней материи и силах и о том, сходны ли ее законы с нашими (хотя расчеты параметров столкновения строятся на том, что это так по крайней мере в общем смысле). Мы всего лишь увидим призрак альтернативной реальности за пределами нашей Вселенной, манящей, но недоступной, реальной, но непознаваемой. Даже если сценарий струнного ландшафта получит косвенное подтверждение из области физики частиц и, соответственно, еще больше подкрепит гипотезу Мультивселенной, мы никогда не узнаем, сколько вселенных соприкасались с нашей в прошлом, возможно ли подобное событие в будущем и приведет ли оно к нашей гибели (скорее всего, да). Мы будем подобны героям из легенд, которые, пройдя многочисленные испытания, находят темный артефакт, обладающий невероятной разрушительной силой. Открытие соседней вселенной вызовет у нас одновременно триумфальное ликование и первобытный страх. Чтобы развить эту метафору, можно вспомнить, что мы ищем в небе кольцеобразные узоры. На ум сразу же приходят «Кольцо нибелунгов» Рихарда Вагнера и «Кольцо всевластия», принадлежавшее Владыке Саурону в книгах Дж. Р. Р. Толкина.

Несмотря на то что шансы обнаружить подобный узор в фоновом излучении крайне малы, Агирре, Клебан и их коллеги указывают на один важный момент. Существование других вселенных, которое до этого казалось предметом изучения скорее эзотерики, чем физики, сегодня находится в области экспериментально доказуемого. Как это часто случается с экзотическими темами исследований, даже пусть шансы на успех невелики, результат в случае удачи будет настолько важным, что окупит все затраченные усилия. Однако я хотел бы еще раз подчеркнуть, что обнаружение соседней вселенной нельзя будет считать доказательством существования Мультивселенной. В рамках современных физических формулировок гипотеза множественности вселенных, несмотря на всю свою убедительность, не может быть доказана экспериментально. Нельзя автоматически экстраполировать данные о двух (или нескольких) вселенных на их бесконечное количество.

Кроме того, само понятие «бесконечное количество» тоже, в принципе, не доказуемо. Для того чтобы быть уверенными в бесконечности космоса, мы должны получить сигнал с бесконечно далекого расстояния (то же самое верно для бесконечности времени и далекого прошлого). Чтобы знать о вечном расширении Вселенной, мы должны вечно отслеживать это расширение, причем мы не можем знать наверняка, не поступят ли к нам в будущем новые данные, указывающие на то, что расширение остановилось или обратилось вспять. Несмотря на то что понятие бесконечности имеет для нас огромную математическую привлекательность и кажется совершенно естественным, мы никогда не узнаем наверняка, существует ли оно в Природе. В физическом мире бесконечное означает неизвестное. Все, что мы можем, – это рассуждать о его существовании, сидя на берегу своего Острова знаний.

Инфляционная гипотеза и возможное существование Мультивселенной доводят понятие испытуемости в физике до крайности. Мы уже знаем, почему так происходит с понятием Мультивселенной, которое, в строгом смысле, нельзя подтвердить экспериментально. В случае с инфляцией все немного тоньше. Инфляционная космология в своей наиболее независимой от моделей форме делает некоторые предположения, действительность которых была подтверждена. Основные из них – плоскость Вселенной и температурная гомогенность и изотропность фонового излучения. Но нам следует помнить, что на самом деле это вовсе не предположения, проистекающие из инфляционной гипотезы. Наоборот, инфляционная гипотеза была специально создана для того, чтобы найти ответы на вопросы о плоскости Вселенной и космическом горизонте, возникающие в стандартной космологии Большого взрыва. Нет ничего удивительного в том, что она выполняет свою задачу.

Если говорить о по-настоящему новых предположениях, выдвинутых в рамках инфляционной гипотезы, то в первую очередь следует упомянуть предсказанные ею колебания гомогенного фона фотонов в микроволновом излучении. Согласно инфляционной космологии, эти колебания, похожие на крошечные волны на поверхности озера, вызываются квантовыми колебаниями скалярного поля, которое и является причиной инфляции. В процессе инфляции эти небольшие участки растягиваются на огромные расстояния, в конце концов выходящие за пределы космического горизонта. По мере расширения Вселенной некоторые из этих флуктуационных волн возвращаются в область, ограниченную космическим горизонтом, но уже в астрономическом размере. А если где-то есть избыток энергии, гравитация привлечет в это место материю (в основном атомы водорода). Точно так же и фотоны из фонового излучения будут стремиться к этим более насыщенным областям космоса, приобретая при этом энергию (то есть повышая свою температуру). Это движение будет приводить к крошечным температурным колебаниям в фоновом излучении. Через миллионы лет материя, собравшаяся в участках с избыточной энергией, превратится в первые звезды, а затем и галактики. Итак, величайший триумф инфляционной космологии состоит в том, что она описывает механизм появления галактик и объясняет их распределение в пространстве в форме иерархии скоплений, похожей на пену в ванне.[82]

Температурные колебания фотонов фонового излучения, измеренные с помощью современных спутниковых технологий и наземных детекторов, указывают на первобытные колебания материи. Исследовать их – означает открыть окно в первые секунды существования времени. Инфляционная гипотеза удивительным образом соединяет квантовый мир с миром астрономическим. Чем точнее становятся измерения, тем проще исключать неверные модели инфляции. Дополнительным признаком инфляции является спектр флуктуаций в геометрии пространства-времени: если концентрация материи колеблется определенным образом, то на это реагирует и пространство вокруг нее. Инфляция увеличивает масштаб таких пространственных колебаний и создает спектр так называемых гравитационных волн. Они также оставляют свой след в фоновом излучении. По своей природе (но не по сути) этот след похож на поляризационные флуктуации, возникающие в результате гипотетических столкновений с соседними вселенными. Остается надеяться, что орбитальная станция «Планк» сумеет измерить этот спектр поляризации. Если это будет сделано и если будет обнаружена ожидаемая сигнатура, мы сможем быть уверены, что процесс, похожий на инфляцию, действительно имел место на заре существования космоса.[83]

Тем не менее подтвердить существование явления в общем – это одно, а вот проверить экспериментально его точную формулировку – совсем другое. Инфляционная гипотеза все еще оставляет многие вопросы без ответов. Данные помогают сузить круг возможных вариантов, но текущих наблюдений (равно как и тех, которые мы получим в ближайшем будущем) недостаточно для того, чтобы точно определить причину инфляции. Было ли это скалярное поле? Если да, то что за невероятно высокие энергии вызвали его появление? Инфляция также не объясняет важного перехода от стремительного расширения к более медленному, происходящему с нашей Вселенной на протяжении последних пяти миллиардов лет. Вероятно, именно во время этого перехода, ознаменовавшего собой конец периода инфляции, Вселенная разогрелась до высоких температур, а энергия, накопленная в скалярном поле, которое стремилось к своему энергетическому минимуму, в результате своеобразного взрыва была преобразована в другие типы материи, возможно в известные нам электроны и кварки. Многие космологи сегодня называют это взрывное образование частиц истинным Большим взрывом. Несмотря на множество попыток объяснить этот процесс (некоторые предпринимал и я), у нас есть лишь общее представление о том, как проходил данный переход и какие частицы образовались в результате. Главная проблема состоит в том, что мы совершенно ничего не знаем о тех типах материи, которые существовали во времена зарождения Вселенной и соответствовали энергиям, в триллионы раз превышающим те, которых мы можем достичь в лаборатории. Астрономические наблюдения позволяют исключить некоторые космологические теории или ограничить применимость других, но не дают нам точной картины произошедшего. Мы знаем лишь то, что неверно. Эта ситуация наверняка понравилась бы философу Карлу Попперу, который говорил, что подтвердить правоту физической теории в конечном итоге невозможно – мы можем лишь доказать, что она была неправильной.

Все, что мы можем сделать с инфляцией, – это создать рабочую модель, соответствующую всем измеримым параметрам. Но такая модель может оказаться похожа на эпициклы Птолемея – фантастическое нагромождение идей, которое «работает». Возможно, многие даже поверят в ее истинность, но суть ее будет заключаться в резюмировании всего, что мы сегодня знаем о ранней космической истории.

Наша следующая задача состоит в ответе на величайший из физических вопросов – вопрос о происхождении Вселенной. Ни гипотеза об инфляции, ни концепция Мультивселенной не приближают нас к пониманию начала всего. Для того чтобы ответить на этот вопрос, необходимо исследовать свойства материи и квантовые законы, которые их определяют. Если Вселенная расширяется с самого начала своего существования, значит, в какой-то момент времени в прошлом она была очень мала – настолько мала, что ее поведением управляли законы квантовой физики. Однако, как мы увидим дальше, эти законы заставляют нас отказаться от некоторых любимых нами представлений о том, что мы называем реальностью, и заменить их гораздо более тонкими и загадочными описаниями квантовой Вселенной и нашего взаимодействия с ней.

В квантовой физике мы сталкиваемся с двумя фундаментальными лимитами знания, о которых нам уже известно, – теми, которые налагает на нас ограниченная точность наших приборов, и теми, которые являются естественными результатами природных процессов. Эти лимиты – непреодолимые барьеры, стоящие между нами и нашими знаниями о природе реальности.

Часть II. От алхимии к квантовой физике: неуловимая природа реальности

На деле мы не знаем ничего, ибо истина скрыта в глубине.

Демокрит, фрагмент 40

И почему среди всех ее разнообразных и странных трансмутаций Природа не превращает Тела в Свет и Свет в Тела?

Исаак Ньютон. Оптика (1704)

Если рассматривать квантовую теорию как окончательную (в принципе), мы приходим к тому, что более подробное описание не имеет смысла, так как для него не будет существовать никаких законов. Если это так, то физика превращается в науку для торговцев и инженеров, в бессмысленную путаницу.

Альберт Эйнштейн в письме к Эрвину Шрёдингеру от 22 декабря 1950 года

Каждый шаг в изучении природы – это всегда только приближение к истине, вернее, к тому, что мы считаем истиной. Все, что мы узнаем, – это какое-то приближение, ибо мы знаем, что не все еще законы мы знаем. Все изучается лишь для того, чтобы снова стать непонятным или в лучшем случае потребовать исправления.

Ричард Фейнман. Фейнмановские лекции по физике

Глава 17. Все плавает в пустоте

в которой мы узнаем о древнегреческой концепции атомизма

Из чего состоит бесчисленное множество вещей в мире с их разнообразными формами, текстурами и цветами? Почему страница книги, горсть песка, огонь или порыв холодного ветра кажутся нам разными на ощупь? Почему вещества изменяются под влиянием различных температур и почему эти изменения различаются в зависимости от вещества? До какой степени мы можем изменять материю, подгоняя ее под свои цели и потребности? Существует ли абсолютная пустота?

Всеми этими вопросами люди задаются уже давно. В первой части данной книги мы познакомились с философами-досократиками, которые первыми задумались о материальной природе космоса. Мы знаем, что Фалес и его последователи из ионийской школы, действовавшие во времена зарождения западной философии, еще в 600 году до н. э. предложили общую теорию Природы, в соответствии с которой все природные объекты считались проявлениями первичной субстанции, вечно изменяющегося воплощения реальности.[84] Для ионийцев сутью реальности было время. Парменид и приверженцы его идей, наоборот, полагали, что природа реальности состоит не в переменчивости, а в стабильности. То, что существует, не может измениться, а изменяясь, превращается в несуществующее. Они говорили, что истина не может быть эфемерной, и полагали вневременность основной реальности. Итак, всего в течение 100 лет философия сумела предложить человечеству два взаимоисключающих подхода к открытию природных секретов – путь существования и путь становления.

Через два века после Фалеса эта дихотомия была блестяще разрешена в работах Левкиппа и его ученика Демокрита. Вместо того чтобы рассматривать бытие и становление как два совершенно разных способа видения реальности, они предложили свое видение реальности как палки о двух концах. Согласно Левкиппу и Демокриту, все сущее состоит из крошечных, невидимых глазу частиц материи. Такую частицу они назвали атомом (в переводе с греческого – «неделимый»).[85] Атомы неизменны, поэтому они – воплощение сущего. Они движутся в пустоте, в среде, абсолютно свободной от материи. Для атомистов и атомы и пустота были одинаково важны при описании Природы. Парменид мог бы ответить им, что пустота нереальна, ведь то, чего не существует, не может быть реальностью. Если вы говорите: «Пустота существует», вы заявляете о ее реальности, а если пустота реальна, она не может быть пустотой.

Если бы атомисты могли поучаствовать в споре с Парменидом, они, скорее всего, просто пожали бы плечами и продолжили настаивать на том, что атомы движутся в пустоте. За счет комбинирования и механических перестановок атомы принимают различные формы, что объясняет разнообразие материальных объектов, видимых нами в Природе. Изменения происходят из-за перемещения неизменных атомов, как в конструкторе «Лего». Бытие и становление соединяются в единое целое, и перед нами возникает еще одна универсальная теория Природы. Несмотря на возможность трансформации и разложения, у всего сущего имеется основа, суть, остающаяся неизменной. Вода, текущая в реке, превращается в облако на небе, а затем снова проливается дождем. Желудь, растущий на дубе, сам становится деревом, на нем появляются другие желуди, и цикл повторяется. Миры разрушаются, и из их праха восстают новые. Движение атомов отражает постоянную переменчивость Природы. Укрепившись в своих представлениях, Демокрит пошел еще дальше и предположил, что наше восприятие мира объясняется влиянием атомов на органы чувств: «Цвет, сладость или горечь – лишь условность, в реальности представляющая собой только атомы в пустоте».[86] В своих многочисленных работах Демокрит предлагает мощный инструмент объяснения, основанный исключительно на материалистическом описании реальности. Тем не менее он был достаточно мудр, чтобы предостеречь читателей от иллюзии окончательности знания: «На деле мы не знаем ничего, ибо истина скрыта в глубине».[87]

В 300 году до н. э. Эпикур с удвоенной энергией обратился к идеям атомизма и уточнил некоторые расплывчатые теории своих предшественников. В частности, он указал на то, что атомы должны всегда быть невидимыми и что из их комбинаций можно собрать огромное количество различных форм (аналогов того, что мы сегодня называем молекулами): «Кроме того, неделимые твердые частицы материи, из которых формируются и на которые распадаются все составные тела, существуют в таком множестве форм, что человеческий ум не может постичь их количество».[88]

Кроме того, Эпикур расширил понятие множества вселенных (kosmoi), которое ввели до него Левкипп и Демокрит, предположив, что они разделены в пространстве четкими границами: «Количество миров, как подобных нашему, так и отличных от него, также бесконечно». Можно возразить, что под kosmoi Эпикур подразумевал другие планеты, но он специально уточняет, что речь идет о вселенных или по крайней мере о том, что мы сегодня знаем как галактики, разделенные пространственными границами: «Мир (kosmos) – это ограниченная часть вселенной, содержащая в себе звезды, и землю, и другие видимые вещи, отрезанная от бесконечности, имеющая законченную форму (круглую, треугольную или иную) и покоящаяся или вращающаяся».[89] Итак, понятие островной вселенной или, возможно, даже Мультивселенной появилось гораздо раньше, чем нам казалось.

Хотя представление об атомах древнегреческих ученых отличалось их от их современного понимания, идея о том, что материя составлена из неделимых блоков, с тех пор остается основной в физике микромира. Несмотря на свой текущий триумф, атомизм знал времена взлетов и падений, а в Средние века на Западе о нем и вовсе почти забыли. Ситуация начала изменяться только в эпоху раннего Ренессанса, когда древние атомистические тексты (в первую очередь поэма «О природе вещей» Лукреция) были вытащены с пыльных полок удаленных европейских монастырей и частных коллекций. Как пишет Стивен Гринблатт в своей блестящей книге The Swerve, мы обязаны возрождением атомизма и материализма в целом бесстрашному охотнику за манускриптами XV века Поджо Браччолини, который обнаружил копию поэмы Лукреция в груде полузабытых свитков в одном немецком монастыре.

Разумеется, существовали и другие люди, которые незаметно поддерживали жизнь в атомистических теориях, пусть и не в форме убедительной древнегреческой традиции, а посредством активной практики. Они пытались заставить материю выдать им свои тайны путем постоянного смешивания и дистилляции веществ. Ни один рассказ о попытках человечества познать Природу не будет полным без истории алхимии и ее огромном влиянии на патриархов современной науки, таких как Роберт Бойль или Исаак Ньютон. В широком смысле алхимия представляет собой мост между старым и новым миром, практическое выражение философских и духовных верований в форме научных экспериментов. Алхимики верили, что очищение материи и духа – это совместный процесс и что то, что вверху, подчиняется тем же правилам, каким подчиняется то, что внизу. Эти принципы вдохновляли лучшие умы своего времени (и вместе с ними множество мошенников) на исследование характера и состава материи и ее многочисленных трансформаций. Каждый современный ученый, который стремится расширить свои познания о фундаментальных свойствах материи и о нашей связи с космосом, идет по пути, проложенному алхимиками много веков назад.

Глава 18. Восхитительная сила и воздействие природы и искусства

в которой мы погрузимся в мир алхимии – изучения скрытых сил материи с помощью научных методик и духовных практик

Трансформирующая сила Природы очевидна любому наблюдателю. Нагревание, охлаждение и смешение стихий ведет к формированию новых веществ и очистке уже существующих. Об этом было известно еще жителям Древнего Египта, хотя подобные знания наверняка появились гораздо раньше. Можно ли подчинить себе эти природные силы и использовать их для познания сути предметов и веществ? Вообще, алхимия представляет собой попытку воспроизвести возможности Природы и расширить их с помощью экспериментальных практик. Эти практики включали в себя процедуры, которые позже станут основными элементами химического анализа: дистилляцию, сублимацию, смешивание различных веществ и составов. Такой набор лабораторных технологий алхимики скромно именовали искусством.

Многие ассоциируют алхимию с черной магией и эзотерическими учениями, но их направленность в большинстве случаев не совпадает с ее истинными целями – совершенствованием металлов и человеческого духа. Несмотря на то что восточные, иудейские, мусульманские и христианские алхимики дополняли свой поиск смысла специфическими религиозными постулатами и черпали в них силу для стремления к своим целям, их практики объединяет один общий признак – вера в то, что человек, имея в распоряжении лабораторию, может исследовать природные силы и осуществлять трансформацию материи. Косвенным (а иногда и вполне прямым) результатом обладания такими способностями являлось приравнивание человека к божеству. Умелый алхимик был уже не просто человеком, и даже если он был не равен Богу, то, по крайней мере, ему были ведомы пути Творца. Многие алхимики верили, что «эликсир» – вещество, способное очищать металлы, превращая их в золото, – также продлял жизнь, давал человеку невосприимчивость ко всем болезням и останавливал процесс старения.[90]

У алхимиков не было установленного набора практик, так как их знания различались в зависимости от времени жизни и региона. Тем не менее основным источником изменений всегда был огонь с его способностью к трансформации материи. Если внутренний жар Земли смог превратить материю в отдельные вещества, а их разделить на чистые или почти чистые металлы, то и человек, обладающий достаточным терпением и правильной методикой, мог достичь того же с помощью собственного очага. Потенциально алхимик мог бы зайти еще дальше и завершить работу Природы по трансформации всех металлов в идеальное вещество – золото. Блестящий алхимик, монах ордена францисканцев и натурфилософ XIV века Роджер Бэкон писал: «Кроме того, я говорю, что природа всегда имеет своей целью и беспрестанно стремится достичь совершенства, то есть золота. Но вследствие различных случайностей, мешающих ее работе, происходит разнообразие металлов».[91]

Вскоре после того, как люди приручили огонь для приготовления пищи, обогрева жилищ и отпугивания хищников, они начали замечать и другие, менее очевидные его свойства, например, способность превращать некоторые минералы в металл. Огонь превратился в волшебный инструмент для извлечения чистой эссенции материи и раскрытия секретов, таящихся в ее глубинах.

Уже пять тысяч лет назад жители Ближнего Востока сжигали в кострах куски зеленого минерала малахита для получения меди. От момента ее открытия прошло примерно в два раза больше времени – вероятно, это произошло ненамного позже появления первых сельскохозяйственных поселений. Люди, наблюдавшие за «высвобождением» металла из горящего минерала, должны были воспринимать огонь как спасителя, открывающего ворота темницы для духа породы. Так как медь имеет довольно низкую температуру плавления – 1083 градуса по Цельсию, – ремесленники научились делать из нее чаши, украшения, плуги и другие полезные вещи. Но вот для оружия им требовалось что-то более твердое.

Потребность в военном превосходстве была основной движущей силой в поисках более прочных металлов, способных выдерживать удары и сохранять свою форму при затачивании. Об этом пишет Джаред Даймонд в своей книге «Ружья, микробы и сталь».[92] В те времена, как и сегодня, войны выигрывали те, кто владел наиболее развитыми технологиями. Первым ответом на запросы военной отрасли стала бронза – соединение (сплав) меди и еще более мягкого олова, обычно в пропорции 88 к 12 %, хотя встречались и другие рецепты. Мы не знаем, как была открыта бронза, но, скорее всего, это происходило методом проб и ошибок. Наверняка людям того времени казалось загадкой, как соединение двух мягких металлов может привести к возникновению чего-то гораздо более твердого.[93] К 3000 году до н. э., то есть к началу бронзового века, бронзовые артефакты и оружие встречались уже во многих районах Ближнего Востока. В Китае искусство работы с бронзой достигло невероятных высот, особенно во времена династии Шан (около 1500 года до н. э.). К тому моменту огонь уже был одним из главных союзников людей, инструментом для познания скрытых трансформационных сил Природы.

Опасности этого союза описываются во многих историях, но самой известной из них является греческий миф о Прометее – титане, который сделал людей из глины, а затем подарил им украденный у богов огонь. Разгневавшийся Зевс приказал навечно приковать Прометея к скале. Кроме того, каждый день к нему прилетал орел и клевал его печень. Так как печень бессмертного титана восстанавливалась за ночь, эта пытка продолжалась бесконечно. Должно быть, огонь действительно был важной тайной, раз бедный Прометей был обречен за его похищение на такие муки. Контроль над огнем был привилегией богов, посягательств на которую они не могли простить. Подобный смысл несет и изложенная в Книге Бытия история падения Адама и Евы. Вкусив плода с древа познания добра и зла, они стали смертными и были изгнаны из рая. Детали повествования могут отличаться в зависимости от религии, но суть одна: избыток знаний о скрытых силах Природы может быть опасен.

От бронзы человечество перешло к железу, и бронзовый век сменился железным. Первые образцы железа получались из метеоритов, богатых железом и никелем. Температура плавления железа примерно на 250 градусов выше, чем у меди, но зато и найти его проще. К 1300 году до н. э. выплавкой и ковкой железа занимались в Анатолии (Турция), в Индии, на Балканах и на Кавказе. Чем сложнее становились поиски олова, тем быстрее железо захватывало мир. Вскоре люди научились добавлять к железу немного углерода (обычно менее 2 %) и получать сталь – самый прочный из металлических сплавов.

Создание различных сплавов привело к появлению зачатков научной методики. Для того чтобы получить положительные результаты, требовалось подробно изучить свойства различных металлов и их сочетаний, причем всегда в присутствии огня. Кроме того, люди понимали, что повторяющиеся действия ведут к одинаковым результатам, то есть что Природе присуща регулярность. Пускай никто специально не занимался поиском естественных причин, вызывающих трансформацию материи в горне или при ковке, люди постепенно приходили к пониманию того, что они могут использовать природные силы, чтобы манипулировать материей и обращать ее себе на службу. Подобные знания часто считались священными, а тех, кто ими обладал, наделяли божественным статусом. Алхимия родилась из союза священного и практического, из мечты о том, что познание тайн Природы может приблизить человека к Божественной мудрости.

Из трех основных направлений алхимии – китайского, индийского и западного – нам больше всего известно о последнем. Нет смысла напоминать читателям о захватывающей ранней истории алхимии в Европе. Я бы хотел остановиться лишь на ее связи с корпускулярной теорией и ключевой роли в возникновении современной науки. Главным действующим лицом в этом процессе был Джабир ибн Хайян, придворный алхимик аббасидского халифа Харуна ар-Рашида, проживавший в тогдашнем центре мусульманского мира – Багдаде. Джабир (также известный под латинизированным именем Гебер), судя по всему, первым начал использовать кристаллизацию для очистки веществ, а также выделил несколько кислот: лимонную, винную, уксусную, хлористо-водородную и азотную. Возможно, он даже соединил две последние в «царскую водку», или aqua regia, – крайне агрессивное едкое вещество, которое называется так за свою способность растворять «царские» металлы золото и платину.[94]

Отличительной чертой Джабира было его внимание к деталям и методикам – признак зарождающегося научного подхода. Он писал: «Самое важное в химии – это практическая работа и проведение опытов, ибо тот, кто не работает практически и не проводит опыты, никогда не достигнет даже низшего уровня мастерства».[95] Несмотря на то что его труды, как и работы большинства алхимиков, наполнены запутанным символизмом и мистическими образами (существует даже версия, что английское слово gibberish – «чепуха, белиберда» – происходит от имени Гебер), Джабиру приписывают использование и, возможно, изобретение большей части стандартного оборудования химических лабораторий, например перегонного куба и разнообразных реторт для дистилляции. Его огромный труд, оказавший большое влияние на средневековых алхимиков, включает в себя текст знаменитой Изумрудной скрижали – загадочной и, как считается, древней алхимической книги, авторство которой приписывают легендарному Гермесу Трисмегисту (Гермесу Триждывеличайшему – божеству, сочетающему в себе черты египетского бога мудрости и покровителя наук Тота и греческого бога-посланника Гермеса).

Изумрудная скрижаль имеет значимость не только как главный священный текст алхимии, но и как документ, постулирующий единство космоса в качестве фундаментального алхимического принципа («как на Земле, так и в небесах»). Она состоит из 13 туманных строк, которые, как считается, скрывают в себе все секреты и задачи алхимии. Об огромном влиянии этого документа на науку говорит тот факт, что его перевод был найден в многочисленных алхимических записях Ньютона. В частности, Ньютон перевел вторую строку скрижали так: «То, что снизу, равно тому, что сверху, а то, что сверху, – тому, что снизу, и вместе они чудесным образом составляют единство».[96] Ньютоновская теория гравитации, вводящая одинаковые законы притяжения массы как на Земле, так и в небесах, была практическим выражением этого алхимического принципа (об этом я уже упоминал в первой части книги). Объединение работает в две стороны: небеса становятся ближе к Земле, а Земля – к небесам. Те, кто понимает это, приближаются к божественному сознанию. Недавние работы Бетти Джо Титер Доббс и других историков науки, посвященные жизни и трудам Ньютона, не оставляют сомнений в том, что именно это и было его основной мотивацией.

Как многие из вас знают, главной целью алхимии является превращение «нечистых» металлов в чистейший из них – золото, «металл, который не ржавеет».[97] «Итак, алхимия – это наука, которая учит нас, как создать и составить некое лекарство, называемое “эликсиром”, которое при соприкосновении с металлами или несовершенными телами делает их идеальными во всех отношениях», – писал Роджер Бэкон в своем «Зеркале алхимии». «Философский камень», или эликсир (это слово происходит от арабского al-iksir, «эффективный рецепт»), считался активным катализатором, способным устранить все недостатки и завершить прерванную работу Природы. Согласно Бэкону, который, в свою очередь, следовал инструкциям Джабира, двумя «принципалами» среди металлов были ртуть и сера: «Из чистоты и нечистоты вышеупомянутых принципалов, ртути и серы, рождаются чистые и нечистые металлы, а именно золото, серебро, сталь, свинец, медь и железо».[98] Сера – это загрязнитель, горючий и переменный, а ртуть – очиститель, плотный и постоянный. Большая или меньшая степень чистоты металла зависит от их соотношения.

В некоторых традициях эликсир также мог влиять на самого алхимика. Философский камень очищал не только металлы, но и души, вознося человека над двумя величайшими скорбями – болезнью и смертью. Лабораторная процедура химической очистки требовала терпения, отдачи и постоянного повторения и таким образом очищала и человеческую душу. Только чистые сердцем могли рассчитывать на успех в своих поисках.

Наука – это корпус знаний, полученных в результате методического изучения природных процессов. Если придерживаться этого определения, то мы можем видеть, как алхимики (или мошенники, притворявшиеся ими) пытались использовать науку своего времени для того, чтобы поднять все человечество (или хотя бы самих себя и своих покровителей) над болезнями и бедностью. Врач и алхимик немецко-швейцарского происхождения Парацельс, живший в начале XVI века и ставший основателем токсикологии, служит прекрасным примером связи между оккультными и научными практиками. В алхимии заметна тенденция, которая жива и в современных научных исследованиях: стремление к богатству и избавлению от болезней за счет честного использования природных ресурсов или нечестного манипулирования ими. Одной из задач науки является прекращение человеческого страдания, и корни этой задачи уходят в древние алхимические практики.

Описывая природные трансформации, Аристотель наделял каждую из четырех основных стихий определенными качествами, которыми они могли обмениваться. Земля была сухой и холодной, вода – влажной и холодной, воздух – влажным и теплым, а огонь – сухим и теплым. Изменения материи происходили за счет смешения стихий и их качеств. По словам историка науки Уильяма Р. Ньюмена, Джабир перенес Аристотелевы понятия влажности и сухости на два базовых элемента – серу (сухую) и ртуть (влажную). Соответственно алхимические практики были направлены на изменение соотношений этих качеств, которые проявлялись в различных металлах в разных пропорциях. Когда Псевдо-Гебер написал в XIII веке свой влиятельный труд Summa Perfectionis («Сумма совершенств»), он приписал выделенные Джабиром качества корпускулам серы и ртути, которые могут иметь различные размеры, чистоту и соотношение. В соответствии с греческой атомистической традицией корпускулы считались неизменными и сохраняющими свои свойства в различных химических процессах, а также состоящими из еще более мелких частиц четырех основных стихий. «Соответственно, ртуть и сера сами по себе формируют вторичные частицы большего размера, чем их элементарные составляющие, и эти вторичные частицы благодаря своему прочному строению имеют полупостоянное существование», – отмечал Ньютон в своих заметках к трудам Псевдо-Гебера.[99] Эта картина поразительным образом схожа с современными представлениями о фундаментальных частицах (электронах, протонах и нейтронах), из которых состоят атомы разных элементов (или об атомах, составляющих молекулы).

Подобные идеи, представленные в трудах Псевдо-Гебера, указывают на то, что корпускулярная теория была популярна среди алхимиков. Она повлияла не на кого иного, как на Роберта Бойля, натурфилософа XVII века, который считается родоначальником современной химии и у которого Исаак Ньютон учился алхимии. В то время наука еще не отделилась окончательно от своих прародителей. Механическая философия Бойля, изображавшая материю состоящей из частиц с определенным размером, формой, движением и текстурой, зародилась из средневековой алхимии.

Ньютон надеялся узнать у Бойля секреты алхимии, но тот, судя по всему, рассказал своему ученику не слишком много. Бойлю удалось синтезировать одно из веществ, о котором мечтали алхимики, – так называемую красную землю; она считалась последним этапом работы перед получением философского камня и якобы тоже могла превращать свинец в золото, пускай и не так эффективно. Ньютону удалось получить образец «красной земли» только после смерти Бойля в 1691 году благодаря его душеприказчику, философу-эмпирику (и алхимику) Джону Локку.

Еще одним желанным результатом алхимических опытов была философская ртуть – жидкая форма ртути, способная медленно растворять золото, а значит, являющаяся очередным шагом на пути к заветной цели. Лоуренс Принсип, химик и историк науки из Университета Джонса Хопкинса, после множества неудачных попыток сумел получить философскую ртуть по рецепту Бойля. В лучших алхимических традициях Принсип смешал ее с золотом и поместил в плотно закрытое стеклянное яйцо. Впоследствии он рассказывал научной журналистке Джейн Босвельд, что смесь начала подниматься, «как заквашенное тесто». После этого она стала вязкой, затем жидкой, а после нескольких дней нагревания превратилась в «древовидный фрактал»: «Металлическое дерево, вроде тех, которые шахтеры находят под землей, только состоящее из золота и ртути».[100]

Представление о том, что металлы растут под землей, как ветви деревьев, добавляет к алхимии Ньютона и Бойля органическую составляющую. Лаборатория была координатором, местом, где алхимик мог воспроизвести действия Природы, а если повезет – то и ускорить их с помощью тщательно подобранных методов. Ньютон написал огромный труд по алхимии (больше миллиона слов), но, желая оставить свои открытия в секрете, зашифровал его так, что мы не можем прочесть его до сих пор. Тем не менее некоторые из его алхимических точек зрения (включая органические и атомистические взгляды) проявляются и в его чисто научных работах, например в «Началах» или «Оптике». В частности, в конце третьей книги «Начал» он пишет:

Пары, производимые Солнцем, неподвижными звездами и кометными хвостами, могут от своего тяготения падать в атмосферы планет, здесь сгущаться и превращаться в воду и влажные спирты и затем от медленного нагревания постепенно переходить в соли, в серы, в тинктуры, в ил, в тину, в глину, в песок, в камни, в кораллы и другие земные вещества.[101]

Этот пассаж ярко иллюстрирует веру алхимиков в то, что Природа путем медленного нагревания превращает первичную космическую субстанцию в различные вещества. Тем не менее в предисловии к «Началам» Ньютон пишет о своей вере в атомистический состав материи: «Ибо многое заставляет меня предполагать, что все эти явления обусловливаются некоторыми силами, с которыми частицы тел вследствие причин, покуда неизвестных, или стремятся друг к другу и сцепляются в правильные фигуры, или же взаимно отталкиваются и удаляются друг от друга».[102]

«Многое», заставляющее Ньютона «предполагать», очевидно, было результатом его алхимических экспериментов, а выражение «все эти явления обусловливаются некоторыми силами» указывало на его веру в единство Природы, в которой несколько сил могли объяснить огромный спектр явлений. Наконец, описание притяжения и отталкивания «частиц тел», которые «сцепляются в правильные фигуры» кажется смелой попыткой проникнуть в тайны образования атомов и формирования из них молекул с определенной симметрией.

В «Оптике» Ньютон, что называется, дал себе волю более свободно рассуждать о природе материи и света. При этом интуиция часто приводила его к невероятно точным выводам: «Разве все неподвижные Тела, нагретые выше определенного градуса, не излучают Свет и сияние и разве не является это Излучением, производимым вибрирующими движениями их частиц?»[103] Это абсолютно точное описание того, что происходит, когда нагретое тело испускает электромагнитное излучение (иногда в форме видимого света) в результате внутренней вибрации своей твердой структуры и скачков электронов между атомными орбитами (о чем мы подробно поговорим чуть позже).

Согласно Ньютону, свет тоже состоит из корпускул: «Все Тела состоят из твердых частиц, иначе Жидкости не застывали бы… Даже Лучи Света кажутся твердыми телами… Соответственно, Твердость можно считать Свойством всей чистой Материи».[104] Довольно интересное замечание, особенно если учесть все то, что мы сегодня знаем о свойствах света. Ньютон даже рассуждает о возможном переходе света в материю и наоборот: «И почему среди всех ее разнообразных и странных трансмутаций Природа не превращает Тела в Свет и Свет в Тела?»[105] Именно эта трансформация лежит в основе теории относительности Эйнштейна и воплощена в формуле Е = mc2. Разве это не удивительно?

Глава 19. Загадочная природа тепла

в которой мы узнаем о флогистоне и теплороде, странных веществах, введенных для объяснения природы тепла, и о том, как впоследствии эти объяснения были опровергнуты

Начало науки скрыто в ртутном тумане, который клубится над тиглем алхимика, вдохновленного видениями небесного совершенства. Но, совершив резкий поворот к новой эре, наука начала стыдиться своего мистического прошлого. В научных трактатах больше не упоминали Бога, а при описании природных явлений не использовали религиозную терминологию – она уступила место точному механическому стилю, облеченному в строгие одежды математики. Ньютоновская теория природы, описывающая, как большие и малые материальные объекты реагируют на силы притяжения и отталкивания, возникающие между ними, стала путеводной звездой Просвещения. Несмотря на всю свою сложность, мир мог быть методически изучен путем разбиения на мельчайшие частицы, поведение которых определяется суммой воздействующих на них сил. Ньютоновская физика запустила стремительный процесс научного редукционизма.

Изменения продолжали набирать скорость. Если частицы материи удерживались вместе силами, то для преодоления их хватки требовались большие силы. Как и в алхимии, ключевым элементом в данном случае считалось тепло. При нагревании лед превращался в воду, а вода – в пар. Большинство веществ так или иначе реагировали на тепло: газы расширялись и увеличивались в объеме, твердые вещества (даже самые прочные металлы) таяли и становились жидкими. Уже в 1662 году Роберт Бойль доказал, что давление определенного количества газа при постоянной температуре обратно пропорционально его объему. Иными словами, если поместить газ в сосуд и сжать поршнем, давление газа увеличится настолько же, насколько уменьшится его объем. Три главные макроскопические переменные – давление, объем и температура, – будучи напрямую измеримыми, позволяли проводить количественное изучение газов и их свойств. При сохранении объема газа и повышении температуры давление увеличивалось пропорционально. И наоборот, если давление оставалось постоянным, а температура повышалась, рос объем газа.[106]

Важно отметить, что такая пропорция верна для любого газа. Именно так появляются физические законы: на основании нескольких примеров определяется тенденция, а затем она переносится на целый класс веществ или объектов. Такая генерализация проверяется экспериментально в максимально широком ряде опытов до тех пор, пока не перестанет быть применимой. Например, в случае газов это может случиться при достижении экстремальных условий, ведущем к изменению обстоятельств и самого закона. При очень высоком давлении газы могут принимать жидкую или даже твердую форму. Но очевидно, что такое общее поведение и исключения из него должны определяться составом газа.

Ответ на этот вопрос был обнаружен в начале XVIII века, забыт, повторно найден век спустя, отклонен и наконец через несколько десятков лет снова принят, хотя и не без сомнений. Нужно сказать, что такие отклонения и сомнения не были полностью безосновательными, ведь предлагаемый ответ создавал опасный прецедент. Физическое объяснение свойств газа строилось на предположении о существовании невидимой реальности, недоступной ни нашим органам чувств, ни даже измерительным приборам. Можно ли использовать нечто, что мы не можем увидеть и в существовании чего мы даже не уверены, для объяснения результатов измерений? Если да, то как провести границу между невидимой и недоступной реальностью и фантазиями? Грубо говоря, если мы не можем увидеть ни атомы, ни фей, почему мы считаем, что атомы существуют, а феи – нет?

В 1738 году блестящий голландский математик Даниил Бернулли, действуя в истинном духе атомизма, предположил, что газы состоят из множества крошечных молекул, движущихся случайным образом и периодически сталкивающихся друг с другом без значительной потери энергии в процессе. Основываясь на своей атомистической гипотезе, Бернулли доказал, что давление газа возникает в результате ударов молекул о стенки сосуда. Согласно закону Бойля, если уменьшить объем сосуда с газом вдвое, сохранив при этом неизменную температуру, давление увеличится в два раза. Бернулли объяснял это тем, что при уменьшении объема молекулы имеют меньше простора для движения и потому чаще сталкиваются со стенками. Макроскопическим эффектом таких постоянных столкновений становится увеличение давления газа. Иными словами, Бернулли попытался объяснить макроскопическое свойство газа (давление) с помощью невидимых глазу микроскопических объектов. Значило ли это, что атомизм наконец-то превратился в точную науку?

До 1845 года в этой области не происходило ничего серьезного, но затем британский физик Джон Джеймс Уотерстоун подал в Королевское научное общество заявление о том, что он сумел связать температуру и давление газа с его крошечными молекулярными составляющими. Он доказал, что температура газа пропорциональна квадрату средней скорости его молекул, а давление – плотности молекул, умноженной на квадрат их средней скорости.[107] Это была беспрецедентная попытка связать температуру с движением. Еще более удивительной ее делал тот факт, что речь шла о движении невидимых объектов.

В течение многих столетий ученые пытались познать природу тепла, изобретая хитроумные объяснения и часто путая тепло и горение. Первым таким объяснением был флогистон – магическое вещество, из-за которого предметы могли гореть. Предположение о его существовании высказал немецкий врач и алхимик Иоганн Иоахим Бехер в 1667 году. Он заявлял, что языки пламени появляются, когда горючее вещество испускает флогистон. «Дефлогистированное» вещество, наоборот, будет несгораемым. Сомнения в гипотезе о флогистоне возникли, когда было доказано, что масса металлов увеличивается при сгорании. Это привело к возникновению совершенно диких теорий, например, о том, что флогистон имеет отрицательный вес или что он легче воздуха. Такое часто случается в науке: когда убедительная идея ставится под сомнение, на ее спасение бросаются все силы, пусть такие меры и кажутся отчаянными. Идея флогистона была окончательно отброшена только в 1783 году, когда Антуан Лоран Лавуазье с помощью ряда революционных экспериментов доказал, что для горения требуется газ, имеющий массу (кислород), и что в каждой химической реакции, включая горение, общая масса реактивов остается одинаковой.

Объяснив процесс горения, но все еще не поняв до конца природу тепла, Лавуазье предположил существование нового вещества – теплорода. Согласно его теории, передача тепла от горячего объекта к холодному осуществлялась в форме потока теплорода. Учитывая, что общая масса на входе и на выходе любой реакции остается неизменной, Лавуазье заключил, что теплород не имеет массы, а его общее количество в Природе является константой. За этой теорией последовало множество объяснений разнообразных явлений с участием тепла. Несмотря на кажущуюся логичность, все они были ложными. К примеру, горячий чай якобы остывает, потому что теплород, имеющий более высокую кнцентрацию в теплом воздухе, медленно оттекает из более теплых областей пространства в более холодные (то есть из горячей жидкости в более прохладный воздух вокруг чашки). Теплород был своего рода эфиром, способным двигаться, не имеющим веса, но удобным для объяснения многих природных явлений.

Первым человеком, поставившим под сомнение гипотезу о теплороде, был граф Румфорд, лоялист из Нью-Гемпшира, по биографии которого можно было бы снять неплохой эпический фильм. После отъезда из Соединенных Штатов он занимал множество должностей, и в том числе был специалистом по артиллерийским боеприпасам в Баварии. В его обязанности входило надзирать за тем, как создаются пушки. Когда в цилиндрической металлической заготовке огромным сверлом проделывалось дуло, для уменьшения жара от трения использовалась вода. Румфорд заметил, что в процессе сверления тепло никогда не оттекало от металла, а вода постоянно кипела. В 1798 году он записал: «Если изолированное тело или система тел может создавать нечто без ограничений, это нечто не является материальной субстанцией».[108] Далее он предположил, что тепло возникает не из-за потока теплорода, но из-за трения между сверлом и металлом. Итак, заключил он, тепло – это производная движения, а не вещество. Несмотря на то что научное сообщество не сразу приняло его идеи, эксперимент Румфорда посеял зерно сомнений. Возможно, тепло действительно было не веществом, а свойством вещества.

Второму и куда более опасному испытанию гипотеза о теплороде подверглась со стороны Джеймса Прескотта Джоуля, который в 1840-х годах провел серию детально проработанных экспериментов, чтобы определить, как механическая работа может приводить к повышению температуры. Джоуль опустил в бочку с водой вращающиеся лопасти, чтобы точно определить количество механической работы, необходимой для того, чтобы поднять температуру воды на 1 градус по Фаренгейту. С помощью полученных результатов он смог объяснить процесс сохранения и передачи энергии, ответственный за нагревание и охлаждение веществ. По мере того как лопасти заставляют воду двигаться, ее молекулы разгоняются и набирают скорость. Увеличение скорости ведет к повышению температуры, как и предполагал Уотерстоун. Джоуль был знаком с работами Джона Херэпэта и Джеймса Уотерстоуна о микроскопической теории газов, а его учителем был сам Джон Дальтон, главный приверженец атомистической теории, который еще в начале XIX века предположил, что химические реакции происходят в результате обмена атомами между веществами. Например, олово могло соединиться с одним или двумя атомами кислорода и массы полученных смесей отражали бы количество кислорода в каждой из них. Дальтон считал, что каждый элемент имеет собственные атомы, которые не распадаются в ходе химических реакций. Кроме того, атомы различных элементов могли связываться друг с другом, образуя комплексы, которые мы сегодня называем молекулами.

В период между зарождением микроскопической теории газов и атомистическим объяснением химических реакций, разработанным Дальтоном, представление о том, что материя имеет корпускулярную структуру, постепенно набирало вес. Взлет и падение флогистона и теплорода в качестве объяснений процесса горения и тепла ярко иллюстрируют процессы, происходящие в науке. По мере того как ученые пытаются объяснить природные явления, они создают все новые и новые гипотезы и готовы яростно их защищать. Так и должно быть, учитывая, что чем более убедительной является идея, тем больше чувств она вызывает у своих создателей и последователей. Однако научные гипотезы должны постоянно подвергаться эмпирической проверке, поэтому они остаются в силе ровно до тех пор, пока не будут опровергнуты или ограничены. Объяснение может казаться достаточным для описания данных («сохранения фактов», как говорил Платон), даже если по сути оно неверно. Эпициклы были совершенно искусственным понятием, но описывали движение небесных светил с достаточной точностью. Флогистон и теплород были далеки от реальной физики, но хорошо объясняли горение и существование тепла. Способность науки добиваться все более и более точных описаний физической реальности основывается на нашем умении проверять верность предположений со все возрастающей точностью. Если движение к большей точности блокируется или прерывается, научный прогресс останавливается. Исследования расширяют границы Острова знаний (а иногда и, наоборот, отодвигают их назад). То, что в океане неведомого вокруг него нет ни одного маяка, чтобы указать нам путь, делает научный поиск одновременно и сложнее, и интереснее. И нет лучшего примера этого поиска, чем изучение света и его туманной природы.

Глава 20. Таинственный свет

в которой мы узнаем, как загадочные свойства света стали причиной целых двух научных революций в начале ХХ века

Мы создания света, этого таинственного и странного явления, которое и сегодня остается загадкой для многих из нас.

Свет, который мы получаем от Солнца, представляет собой совокупность множества электромагнитных волн, каждая из которых имеет свою длину. Небольшая видимая часть этого множества, спектр от красного до фиолетового цвета, состоит из волн длиной от 400 до 650 миллиардных долей метра (нанометров). Длина волны – это расстояние между двумя ее последовательно идущими гребнями. Соответственно, когда мы говорим о коротких волнах, мы имеем в виду, что их гребни расположены плотно. В длинных же волнах дистанция между двумя гребнями больше.

По сути, все мы продукты эволюции, происходившей на нашей планете в течение четырех миллиардов лет под ярким солнечным светом. Солнце, поверхность которого имеет температуру около 5500 градусов Цельсия, в соответствии с неформальной классификацией звезд считается желтым карликом и испускает большую часть света в желто-зеленом спектре. На самом деле поверхность Солнца белая, а желтоватый цвет, который мы видим с Земли, объясняется рассеиванием синих частот при прохождении солнечного света через атмосферу. В дневные часы Солнце кажется нам очень ярким, потому что свет отражается от молекул азота и кислорода в воздухе. Этим же объясняется и голубой цвет неба: воздух гораздо эффективнее рассеивает короткие волны, чем длинные, а синий имеет меньшую длину волны, чем красный или желтый. Если посмотреть на небо в сторону от Солнца, мы увидим ту часть солнечного света, которая рассеивается лучше всего, то есть синий и немного белого цвета.[109] Учитывая, что размеры молекул воздуха в тысячи раз меньше стандартной длины волны, можно понять, почему синий цвет рассеивается лучше всего. Желтый и красный цвета с большой длиной волны прокатываются по воздуху, как волны по каменистому берегу, не замечая мелких преград на своем пути. На закате солнечный свет падает на Землю по касательной, и ему требуется больше времени на прохождение через атмосферу. Поэтому большая часть синего цвета рассеивается еще до того, как свет достигнет низкой высоты. В результате мы видим больше красного и оранжевого, чем синего и зеленого. В пасмурные дни капли воды и кристаллики льда, из которых состоят облака, рассеивают все волны, из которых состоит солнечный свет, равномерно, и в результате он приобретает белесый цвет.

Вопреки нашим наивным предположениям, свет, который воспринимают наши глаза, составляет менее половины всего излучения, которое Земля получает от Солнца. Без научных приборов, регистрирующих то, что невидимо для глаз, наши знания о физической реальности были бы крайне ограниченны. Но, даже располагая необходимыми инструментами, мы должны помнить, что их возможности имеют границы, и обзор с нашего Острова знаний обладает своим горизонтом. Чем больше мы видим, тем к большему стремимся.

Видимый свет составляет всего 40 % от всего солнечного излучения, попадающего в верхние слои нашей атмосферы. Оставшаяся часть – это 50 % инфракрасного и 10 % ультрафиолетового излучения. Благодаря защите атмосферы лишь 3 % ультрафиолетовых лучей достигают поверхности планеты, а объем видимого света увеличивается до 44 %. В случае с Солнцем (как и во многих других случаях) то, что мы видим, и то, что мы получаем, – это совсем не одно и то же. Наши органы чувств были сформированы естественным отбором так, чтобы повысить наши шансы на выживание на этой планете. Жители других планет с другим атмосферным составом и большим или меньшим количеством звездного света могли бы развить у себя чувствительность к другим частям электромагнитного спектра. Даже на Земле ночные животные, пещерные и глубоководные существа имеют разные механизмы адаптации (вспомните, например, об эхолокации у летучих мышей и о свечении глубоководных рыб).

Страницы: «« 1234 »»

Читать бесплатно другие книги:

Мир готов давать нам все, что мы желаем, чтобы наши души могли расти, получать свои уроки и поднимат...
Французский писатель Жорж Блон (1906–1989) – автор популярнейшей серии книг о морских путешествиях и...
Если Вы мечтаете о том, чтобы Ваш бизнес наконец-то вырос из малого или микро-бизнеса в большой и си...
Сборник статей, материалов конференции из цикла «Диалоги и встречи», прошедшей 20—22 февраля 2015 го...
Слушай свою Душу — там ты найдёшь все ответы. И жизнь твоя станет дорогой, усыпанной белоснежными ле...
Все люди разные. Однако можно заметить, что высокие и стройные люди преимущественно стратеги – вспом...