Искусственный интеллект. Этапы. Угрозы. Стратегии Бостром Ник

Одна из причин, по которым когнитивное совершенствование способно привести к прогрессу в проблеме контроля к моменту, когда произойдет взрывное развитие искусственного интеллекта, состоит в том, что этот прогресс может быть достижим лишь на экстремально высоких уровнях интеллектуальной производительности — даже более высоких, чем те, что требуются для создания машинного интеллекта. При решении проблемы контроля роль проб и ошибок, а также накопления экспериментальных результатов не так велика, как в работе над искусственным интеллектом или в исследованиях эмуляции головного мозга. То есть относительная важность времени и умственных усилий сильно варьируется в зависимости от типа задачи, и прогресс в решении проблемы контроля, достигнутый за счет когнитивного совершенствования, может оказаться большим, чем прогресс в деле создания машинного интеллекта.

Еще одна причина, почему когнитивное совершенствование способно обеспечить больший прогресс в решении проблемы контроля, состоит в том, что сама потребность в этом прогрессе будет скорее признана интеллектуально более развитыми обществами и индивидуумами. Чтобы понять, почему проблема контроля важна, и присвоить ей высший приоритет, нужно обладать прозорливостью и здравомыслием[543]. А для решения столь непривычной задачи требуется обладать редкостным разумом.

Эти соображения подводят нас к заключению о желательности когнитивного улучшения, особенно если придавать большое значение экзистенциальным рискам взрывного развития искусственного интеллекта. Оно также поможет снизить риски, связанные с другими вызовами, для чего требуются проницательность и умение абстрактно мыслить (в противоположность постепенной адаптации к происходящим в окружающем мире изменениям или процессу культурного созревания и строительства соответствующих институтов, который может растянуться на время жизни нескольких поколений).

Технологические связки

Предположим, решить проблему контроля в случае искусственного интеллекта довольно трудно, а по отношению к имитационным моделям несколько легче, — поэтому в сторону создания машинного интеллекта предпочтительнее двигаться через исследования по полной эмуляции головного мозга. Мы еще вернемся к вопросу о том, безопаснее ли этот путь по сравнению с развитием искусственного интеллекта. Но пока нужно отметить, что даже если принять это допущение, из него вовсе не следует, что нам нужно торопить появление технологии эмуляции мозга. Одну из причин мы уже обсудили — лучше, чтобы сверхразум был создан скорее позже, чем раньше, потому что тогда у нас будет больше времени для решения проблемы контроля и достижения прогресса по другим важным направлениям. Поэтому если есть уверенность, что эмуляция головного мозга станет предтечей развития ИИ, было бы контрпродуктивно спешить с развитием этой технологии.

Но даже если оказалось бы, что нам выгодно как можно быстрее создать технологию эмуляции головного мозга, из этого вовсе не следовало бы, что мы должны торопить прогресс в этом направлении. Поскольку он может привести к созданию вовсе не имитационной модели мозга, а нейроморфного искусственного интеллекта — формы ИИ, копирующей некоторые аспекты организации коры головного мозга, но недостаточно точно воспроизводящей его нейронную функциональность, чтобы симуляция получилась близкой. Если такой нейроморфный ИИ хуже, чем ИИ, который мог бы быть создан в противном случае, — а есть все основания полагать, что это так, — и если, подстегивая прогресс в области эмуляции мозга, мы увеличиваем шансы создать подобный нейроморфный ИИ, тогда наши усилия в направлении лучшего исхода (имитационная модель мозга) приведут к худшему исходу (нейроморфный ИИ); если мы все-таки стремимся ко второму по степени привлекательности исходу (синтетический ИИ), то можем действительно его достичь.

Мы только что описали (гипотетический) случай того, что можно назвать технологической связкой[544]. Этот термин относится к условиям, в которых две технологии предсказуемо связаны во времени так, что развитие одной должно привести к развитию другой, в качестве или предтечи, или приложения, или следствия. Технологические связки следует принимать в расчет, когда мы используем принцип различного технологического развития: не очень правильно ускорять создание желательной технологии Y, если единственный способ ее получить — это создать чрезвычайно нежелательную технологию-предтечу X, или если в результате создания Y немедленно появится связанная с ней чрезвычайно нежелательная технология Z. Прежде чем делать предложение любимому человеку, посмотрите на будущих родственников.

В случае эмуляции головного мозга прочность технологической связки вызывает вопросы. Во второй главе мы заметили, что хотя для прогресса в этом направлении нужно будет создать множество новых технологий, каких-то ярких теоретических прорывов не потребуется. В частности, нам не нужно понимать, как работает биологический механизм познания, достаточно лишь знать, как создавать компьютерные модели небольших участков мозга, таких как различные виды нейронов. Тем не менее в процессе развития способности моделировать человеческий мозг будет собрано множество данных о его анатомии, что даст возможность значительно улучшить функциональные модели нейронных сетей коры головного мозга. И тогда появятся хорошие шансы создать нейроморфный ИИ раньше полноценной имитационной модели мозга[545]. Из истории нам известно множество примеров, когда методы ИИ брали начало в области нейробиологии и даже обычной биологии. (Например, нейрон Маккаллока–Питтса, перцептроны, или персептроны, и другие искусственные нейроны и нейронные сети появились благодаря исследованиям в области нейроанатомии; обучение с подкреплением инспирировано бихевиоризмом; генетические алгоритмы — эволюционной теорией; архитектура поведенческих модулей и перцепционная иерархия — теориями когнитивистики о планировании движений и чувственном восприятии; искусственные иммунные системы — теоретической иммунологией; роевой интеллект — экологией колоний насекомых и других самоорганизующихся систем; реактивный и основанный на поведении контроль в робототехнике — исследованиями механизма передвижения животных.) Возможно, еще важнее, что есть множество важных вопросов, имеющих отношение к ИИ, на которые можно будет ответить, лишь изучая мозг дальше. (Например, каким образом мозг хранит структурированные представления в кратковременной и долговременной памяти? Как решается проблема связывания? Что такое нейронный код? Как в мозгу представляются концепции? Есть ли некая стандартная единица механизма обработки информации в коре головного мозга, вроде колонки кортекса, и если да, то какова ее схема и как ее функциональность зависит от этой схемы? Как такие колонки соединяются и обучаются?)

Скоро мы сможем больше сказать об относительной опасности эмуляции головного мозга, нейроморфного ИИ и синтетического ИИ, но уже сейчас можно отметить еще одну важную технологическую связку между эмуляцией и ИИ. Даже если усилия в направлении эмуляции головного мозга действительно приведут к созданию имитационной модели мозга (а не нейроморфного ИИ) и даже если появление такой модели окажется безопасным, риск все-таки остается — риск, связанный со вторым переходом, переходом от имитационной модели к ИИ, который представляет собой гораздо более мощную форму машинного интеллекта.

Есть множество других примеров технологических связок, заслуживающих более глубокого анализа. Например, усилия в сфере полной эмуляции головного мозга ускорят прогресс нейробиологии в целом[546]. Быстрее станут развиваться технология детекции лжи, техники нейропсихологического манипулирования, методы когнитивного улучшения, различные направления медицины. Усилия в области когнитивного совершенствования (в зависимости от конкретного направления) будут иметь такие побочные эффекты, как быстрое развитие методов генетической селекции и генетического инжиниринга, причем для улучшения не только когнитивных способностей, но и других черт нашей личности.

Аргументация от противного

Мы выйдем на следующий уровень стратегической сложности, если примем в расчет то, что не существует идеально доброжелательного, рационального и универсального контролера над миром, который просто реализовывал бы то, что считается наилучшим вариантом действий. Любые абстрактные соображения о том, что «следовало бы сделать», должны быть облечены в форму конкретного сообщения, которое появится в атмосфере риторической и политической реальности. Его будут игнорировать, неправильно трактовать, искажать и приспосабливать для различных конфликтующих целей; оно будет скакать повсюду, как шарик в пинболе, вызывая действия и противодействия и становясь причиной целого каскада последствий, которые не будут иметь прямой связи с намерениями автора.

Проницательный агент мог бы предвидеть все это. Возьмем, например, следующую схему аргументации в пользу проведения исследований с целью создания потенциально опасной технологии X. (Один из примеров использования этой схемы можно найти в работах Эрика Дрекслера. В его случае X = молекулярная нанотехнология[547].)

   1. Риск Х высок.

   2. Для снижения этого риска требуется выделить время на серьезную подготовку.

   3. Серьезная подготовка начнется лишь после того, как к перспективе создания Х начнут серьезно относиться широкие слои общества.

   4. Широкие слои общества начнут серьезно относиться к перспективе создания Х только в случае проведения масштабных исследований возможности его создания.

   5. Чем раньше начнутся масштабные исследования, тем больше времени понадобится на создание Х (поскольку в самом начале ниже уровень развития необходимых технологий).

   6. Следовательно, чем раньше начнутся масштабные исследования, тем больше будет времени на серьезную подготовку и тем сильнее удастся снизить риск.

   7. Следовательно, масштабные исследования в отношении Х нужно начинать немедленно.

Если следовать этой логике рассуждений, то, начав с причины двигаться вперед медленно или вовсе остановиться — из-за высокого риска, связанного с Х, — приходишь к прямо противоположному следствию.

Родственный этому тип аргументации сводится к тому, что нам следует — какая жестокость! — приветствовать мелкие и средние катастрофы на том основании, что они вскроют наши уязвимые места и заставят принять меры предосторожности, снижающие вероятность экзистенциальной катастрофы. Идея состоит в том, что мелкие и средние катастрофы служат своего рода прививкой: сталкиваясь с относительно слабой угрозой, цивилизация вырабатывает иммунитет, благодаря которому сможет справиться с потенциально губительным вариантом той же самой угрозы[548].

По сути, речь идет о призывах к так называемой шоковой терапии, когда оправдывается нечто плохое в надежде, что это сможет вызвать нужную реакцию общества. Мы упомянули о ней не потому, что одобряем ее, а для того чтобы познакомить вас с идеей того, что называем аргументацией от противного. Она подразумевает, что если относиться к другим людям как к иррациональным агентам и играть на их когнитивных искажениях и ошибочных суждениях, то можно добиться от них более адекватной реакции, чем в случае, когда говоришь о проблеме прямо и обращаешься к их рассудку.

Скорее всего, использовать стратегию аргументации от противного для достижения глобальных долгосрочных целей будет невероятно трудно. Кто сможет предсказать результирующее воздействие сообщения после его скачков влево-вправо и вверх-вниз в пинболе общественного дискурса? Для этого пришлось бы смоделировать риторический эффект на миллиарды его составляющих, для которых характерны свои уникальные черты и степень влияния на события, меняющиеся на протяжении долгого времени, в течение которого извне на систему будут действовать непредсказуемые события, а изнутри ее топология будет претерпевать непрерывную эндогенную реорганизацию — задача явно неразрешимая![549] Однако может статься, что нам не придется детально прогнозировать всю траекторию будущего развития системы, дабы обзавестись уверенностью, что наше вмешательство в нужный момент увеличит вероятность достижения ею нужной нам долгосрочной цели. Можно было бы, например, сосредоточить внимание лишь на сравнительно краткосрочных и предсказуемых этапах этой траектории, выбирая такие действия, которые облегчат их прохождение, и рассматривая поведение системы за пределами горизонта прогнозирования как случайное блуждание.

Существуют, однако, некоторые этические основания для отказа от шагов в пределах аргументации от противного. Попытки перехитрить других выглядят как игра с нулевой суммой или даже отрицательной, если учесть время и энергию, которых понадобится намного больше как на сами эти попытки, так и потому, что всем становится сложнее понять, что же на самом деле думают другие, и добиться доверия к своим собственным суждениям[550]. Повсеместное использование методов стратегического манипулирования убило бы искренность, а истина была бы обречена блуждать в коварном мраке политических игр.

Пути и возможности

Следует ли нам приветствовать успехи в создании аппаратного обеспечения? А успехи на пути к созданию компьютерной модели мозга? Давайте ответим на эти вопросы по очереди.

Последствия прогресса в области аппаратного обеспечения

Повышение быстродействия компьютеров облегчает создание машинного интеллекта. Таким образом, одним из эффектов от прогресса в области аппаратного обеспечения является ускорение момента, когда на свет появится машинный интеллект. Мы уже говорили о том, что с объективной точки зрения это может быть плохо, поскольку у человечества будет меньше времени на то, чтобы решить проблему контроля и подняться на более высокую ступень цивилизации. Впрочем, это не означает неминуемость катастрофы. Поскольку сверхразум устранит множество других экзистенциальных рисков, стоит предпочесть его раннее появление, если уровень этих рисков окажется слишком высоким[551].

Приближение или откладывание взрывного развития искусственного интеллекта — не единственный канал, посредством которого прогресс в области аппаратного обеспечения способен повлиять на экзистенциальный риск. Еще одна возможность заключается в том, что аппаратное обеспечение может до некоторой степени заменить программное: более совершенная аппаратная основа снижает требования к минимальному уровню навыков, которые требуются для создания кода зародыша ИИ. Быстрые компьютеры могут также стимулировать использование подходов, которые больше полагаются на полный перебор (вроде генетических алгоритмов и прочих методов, работающих по схеме «генерация–оценка–уничтожение») и меньше — на техники, требующие глубокого понимания ситуации. Если в результате использования методов полного перебора, как правило, возникают системы с более беспорядочной и менее точной архитектурой, где проблему контроля решить труднее, чем в системах с более точно спроектированной и теоретически предсказуемой архитектурой, то это означает еще одну причину, по которой более быстрые компьютеры увеличивают экзистенциальный риск.

Еще одно соображение состоит в том, что быстрый прогресс в области аппаратного обеспечения повышает вероятность быстрого взлета. Чем больших успехов добивается индустрия микропроцессоров, тем меньше человеко-часов требуется программистам для вывода возможностей компьютеров на новый уровень производительности. Это значит, что взрывное развитие искусственного интеллекта вряд ли произойдет на самом нижнем уровне производительности аппаратного обеспечения. То есть более вероятно, что такой взрыв случится тогда, когда компьютеры окажутся на гораздо более высоком уровне развития. Это означает, что взлет произойдет в условиях «аппаратного навеса». Как мы видели в четвертой главе, аппаратный навес — один из многих факторов, снижающих сопротивляемость системы в процессе взлета. А значит, быстрый прогресс в области аппаратного обеспечения, скорее всего, приведет к более быстрому и взрывоопасному переходу к сверхразуму.

Быстрый взлет за счет так называемого аппаратного навеса может разными путями оказывать влияние на риски перехода. Наиболее очевидно, что при быстром взлете остается меньше возможностей отреагировать и внести корректировки в процесс перехода, что повышает связанные с ним риски. Кроме того, в случае аппаратного навеса снижаются шансы, что потенциально опасный зародыш ИИ, приступивший к самосовершенствованию, будет удачно изолирован и не допущен к достаточному объему вычислительных ресурсов, поскольку чем быстрее процессоры, тем меньше их требуется, чтобы ИИ быстро развился до уровня сверхразума. Еще один эффект аппаратного навеса заключается в том, что он уравнивает шансы мелких и крупных проектов, снижая преимущества крупных в более мощном компьютерном парке. Он также повышает экзистенциальный риск, поскольку в рамках крупных проектов выше вероятность решить проблему контроля и установить более приемлемые с этической точки зрения цели[552].

У быстрого взлета есть свои преимущества. Он увеличивает вероятность того, что будет сформирован синглтон. Если формирование синглтона важно для решения проблемы постпереходной координации, может иметь смысл пойти на более высокий риск в ходе взрывного развития искусственного интеллекта, чтобы снизить риск катастрофических последствий провала координационных усилий после него.

Успехи в сфере вычислений могут повлиять на исход революции машинного интеллекта не только прямо, но и косвенно, благодаря своему влиянию на общество и опосредованному участию в формировании условий для взрывного развития искусственного интеллекта. Скажем, интернет, для развития которого требуется массовое производство недорогих компьютеров, влияет на деятельность людей во многих областях, включая работу над созданием искусственного интеллекта и исследования по проблеме контроля. (Эта книга, скорее всего, не была бы написана, и вы могли бы остаться без нее, не будь интернета.) Однако аппаратное обеспечение уже довольно хорошо развито, чтобы появились отличные приложения, облегчающие людям работу, общение, размышления, — поэтому неясно, действительно ли прогресс в этих областях сдерживается скоростью его совершенствования[553].

Итак, представляется, что с объективной точки зрения более быстрый прогресс в области развития аппаратного обеспечения нежелателен. Это предварительное заключение может быть опровергнуто, например, если окажется, что другие экзистенциальные риски или риски, связанные с провалом постпереходной координации, окажутся чрезвычайно высокими. В любом случае, похоже, трудно еще сильнее полагаться на скорость совершенствования оборудования. А значит, наши усилия по улучшению исходных условий взрывного развития искусственного интеллекта следует сосредоточить на других параметрах общего стратегического процесса.

Обратите внимание, что даже если мы не знаем, как влиять на тот или иной параметр, может быть полезно для начала работы над стратегией хотя бы определить «знак» этого влияния (то есть понять, что лучше — увеличивать или уменьшать значение параметра). А точку опоры для воздействия на выбранный параметр можно будет отыскать и позже. Возможно также, что знак одного параметра коррелирует со знаком какого-то другого, которым легче манипулировать, и тогда наш исходный анализ помог бы нам решить, что с ним делать.

Следует ли стимулировать исследования в области полной эмуляции головного мозга?

Чем труднее кажется проблема контроля в случае искусственного интеллекта, тем более соблазнительным представляется движение по пути создания имитационной модели мозга в качестве менее рискованной альтернативы. Однако есть некоторые сложности, которые стоит проанализировать, прежде чем делать окончательные выводы[554].

Прежде всего, это наличие технологических связок, которые мы уже обсуждали. Было отмечено, что усилия по созданию имитационной модели мозга могут привести к появлению нейроморфного ИИ, то есть особенно опасной формы машинного интеллекта.

Но на время допустим, что мы действительно добились своей цели и создали компьютерную имитационную модель головного мозга (далее по тексту — КИМГМ). Будет ли она безопаснее ИИ? Это сложный вопрос. У КИМГМ есть минимум три предполагаемых преимущества перед ИИ: 1) ее характеристики производительности легче понять; 2) ей внутренне присущи человеческие мотивы; 3) в случае ее первенства взлет будет медленным. Предлагаю коротко рассмотреть каждый фактор.

   1. То, что характеристики производительности КИМГМ понять легче, чем ИИ, звучит убедительно. У нас в изобилии информации о сильных и слабых сторонах человеческого интеллекта, но нет никаких знаний об ИИЧУ. Однако понимать, что может или не может делать оцифрованный моментальный снимок человеческого интеллекта, не то же самое, что понимать, как этот интеллект будет реагировать на изменения, направленные на повышение его производительности. В отличие от него, ИИ можно изначально тщательно проектировать таким образом, чтобы он был понятен как в статическом, так и в динамическом состоянии. Поэтому хотя интеллектуальная производительность КИМГМ может оказаться более предсказуемой на сравнимых стадиях их разработки, неясно, будет ли она динамически более предсказуемой, чем ИИ, созданный компетентными и озабоченными проблемой безопасности программистами.

   2. Нет никакой гарантии, что КИМГМ будет непременно присуща мотивация ее человеческого прототипа. Чтобы скопировать оценочные характеристики человеческой личности, может потребоваться слишком высокоточная модель. Даже если мотивационную систему отдельного человека удастся скопировать точно, неясно, насколько безопасным это окажется. Люди могут быть лживыми, эгоистичными и жестокими. И хотя можно надеяться, что прототип будет выбран за его исключительную добродетель, трудно спрогнозировать, как он станет действовать после переноса в совершенно чуждую ему среду, после повышения его интеллектуальных способностей до сверхчеловеческого уровня и с учетом возможности захватить господство над миром. Верно лишь то, что у КИМГМ будет более человекоподобная мотивация (они не станут ценить лишь скрепки или знаки после запятой в числе пи). В зависимости от ваших взглядов на человеческую природу это может как обнадеживать, так и разочаровывать[555].

   3. Неясно, почему технология полной эмуляции головного мозга может привести к более медленному взлету, чем технология разработки искусственного интеллекта. Возможно, в случае эмуляции мозга можно ожидать меньшего аппаратного навеса, поскольку она менее эффективна с вычислительной точки зрения, чем ИИ. Возможно, также, что ИИ способен легче превратить всю доступную ему вычислительную мощность в один гигантский интегрированный интеллект, в то время как КИМГМ будут предшествовать появлению сверхразума и опережать человечество лишь с точки зрения быстродействия и возможного количества копий. Если появление КИМГМ приведет к более медленному взлету, то дополнительным преимуществом будет ослабление проблемы контроля. Кроме того, более медленный взлет повысит вероятность многополярного исхода. Но настолько ли он желателен, этот многополярный мир, — большой вопрос.

Есть еще одно соображение, которое ставит под сомнение идею безопасности создания вначале технологии эмуляции головного мозга, — необходимость решать проблему второго перехода. Даже если первый машинный интеллект человеческого уровня будет создан в форме эмулятора, возможность появления искусственного интеллекта останется. ИИ в его зрелой форме обладает важными преимуществами по сравнению с КИМГМ, которые делают его несравнимо более мощной технологией[556]. Поскольку зрелый ИИ приведет к моральному устареванию КИМГМ (за исключением специальной задачи по консервации мозга отдельных людей), обратное движение вряд ли возможно.

Это означает следующее: если ИИ будет разработан первым, возможно, что у взрывного развития искусственного интеллекта будет всего одна волна; а если первым будет создана КИМГМ, таких волн может быть две. Первая — появление самой КИМГМ, вторая — появление ИИ. Совокупный экзистенциальный риск на пути КИМГМ–ИИ представляет собой сумму рисков, связанных с первым и вторым переходом (обусловленную успешным завершением первого), см. рис. 13[557].

Рис. 13. Что раньше, искусственный интеллект или компьютерная имитационная модель головного мозга? В сценарии «сначала КИМГМ» есть два перехода, связанных с риском, — вначале в результате создания КИМГМ, затем — ИИ. Совокупный экзистенциальный риск этого сценария представляет собой сумму рисков каждого перехода. Однако риск самого перехода к ИИ может быть ниже, когда это происходит в мире, где уже успешно работает КИМГМ.

Насколько более безопасным окажется переход к ИИ в мире КИМГМ? Одно из соображений заключается в том, что переход к ИИ мог бы быть менее взрывным, если случился бы уже после появления какой-то иной формы машинного интеллекта. Имитационные модели, работающие на цифровых скоростях и в количествах, далеко превосходящих население Земли, могли бы сократить когнитивный разрыв и легче контролировать ИИ. Впрочем, этому соображению не стоит придавать слишком большое значение, поскольку разрыв между ИИ и КИМГМ все-таки будет очень значительным. Однако если КИМГМ не просто быстрее и многочисленнее, но еще и качественно умнее людей (или как минимум не уступают лучшим представителям человечества), тогда у сценария с КИМГМ будут преимущества, аналогичные сценарию с когнитивным улучшением биологического мозга, который мы рассматривали выше.

Второе соображение касается ситуации конкуренции проектов, в этом случае при создании КИМГМ лидер может упрочить свое преимущество. Возьмем сценарий, в котором у лидирующего проекта по созданию КИМГМ есть шестимесячная фора по сравнению с ближайшим преследователем. Предположим, что первые работающие эмуляторы будут безопасными, терпеливыми и станут с готовностью сотрудничать с людьми. Если они работают на быстром оборудовании, то смогут потратить целую субъективную вечность в поисках ответа на вопрос, как создать безопасный ИИ. Например, если они работают на скоростях, в сто тысяч раз превышающих человеческие, и способны, не отвлекаясь, заниматься проблемой контроля в течение шести месяцев звездного времени, то смогут продвинуться в ее решении на пятьдесят тысяч лет дальше к тому моменту, когда столкнутся с конкуренцией со стороны эмуляторов, созданных в рамках проекта ближайшего конкурента. При наличии доступного аппаратного обеспечения они смогут еще ускорить свой прогресс, запустив миллиарды собственных копий независимо работать над различными подзадачами. А если лидирующий проект использует свое шестимесячное преимущество для формирования синглтона, то сможет купить своей команде по разработке ИИ неограниченное количество времени для решения проблемы контроля[558].

В целом возникает ощущение, что в случае, если КИМГМ появится раньше ИИ, риск перехода к ИИ может быть ниже. Однако если сложить остаточный риск перехода к ИИ с риском предшествующего ему перехода к КИМГМ, становится не столь понятно, как соотносится совокупный экзистенциальный риск сценария «сначала КИМГМ» с риском сценария «сначала ИИ». Получается, что если смотреть скептически на способность человечества управлять переходом к ИИ — приняв во внимание, что человеческая природа или цивилизация могут улучшиться к тому моменту, когда мы столкнемся с этим вызовом, — то сценарий «сначала КИМГМ» кажется более привлекательным.

Чтобы понять, следует ли продвигать идею создания технологии полной эмуляции головного мозга, нужно учесть еще несколько важных моментов.

Во-первых, следует помнить об уже упомянутой связке технологий: движение в сторону КИМГМ может привести к созданию нейроморфного ИИ. Это причина не настаивать на эмуляторах[559]. Несомненно, есть некоторые варианты синтетического ИИ, которые менее безопасны, чем некоторые нейроморфные варианты. Однако в среднем кажется, что нейроморфные системы более опасны. Одна из причин этого в том, что имитация может подменить собой знание. Чтобы построить нечто с нуля, обычно нужно сравнительно хорошо представлять, как будет работать система. Но в таком понимании нет нужды, если всего лишь копируешь какие-то свойства уже существующей системы. Полная эмуляция головного мозга полагается на масштабное копирование биологической системы, что не требует досконального понимания механизмов познания (хотя, без сомнения, понадобятся серьезные знания на уровне ее компонентов). В этом смысле нейроморфный ИИ может походить на КИМГМ: его можно получить путем плагиата различных элементов без необходимости того, чтобы инженеры имели глубокое математическое понимание принципов ее работы. Зато нейроморфный ИИ не будет похож на КИМГМ в другом аспекте — у него не будет по умолчанию человеческой системы мотивации[560]. Это соображение говорит против стремления двигаться по пути КИМГМ, если в результате может появиться нейроморфный ИИ.

Во-вторых, о чем нужно помнить: КИМГМ, скорее всего, подаст нам сигнал о своем скором появлении. В случае ИИ всегда есть возможность неожиданного концептуального прорыва. В отличие от него, для успеха эмуляции головного мозга требуется совершить множество трудоемких предварительных шагов: создать высокопроизводительные мощности для сканирования и программное обеспечение для обработки изображений, проработать алгоритм моделирования нейронной сети. Поэтому можно уверенно утверждать, что КИМГМ еще не на пороге (и не будет создан в ближайшие двадцать–тридцать лет). Это значит, что усилия по ускорению создания КИМГМ имеют значение лишь для тех сценариев, где машинный интеллект появляется сравнительно нескоро. Это делает инвестиции в КИМГМ привлекательными для тех, кто хотел бы, чтобы взрывное развитие интеллекта исключило другие экзистенциальные риски, но опасается поддерживать разработку ИИ из страха, что этот взрыв произойдет преждевременно, до того как будет решена проблема контроля. Однако, похоже, неопределенность относительно сроков этих событий настолько велика, что не стоит придавать этому соображению слишком большой вес[561].

Поэтому стратегия поддержки КИМГМ более привлекательна, если: 1) вы с пессимизмом смотрите на способность людей решить проблему контроля над ИИ; 2) не слишком беспокоитесь по поводу нейроморфного ИИ, многополярных исходов и рисков второго перехода; 3) думаете, что КИМГМ и ИИ будут созданы довольно скоро; 4) предпочитаете, чтобы сверхразум появился не слишком рано и не слишком поздно.

С субъективной точки зрения — лучше быстрее

Боюсь, что под словами одного из комментаторов в блоге могут подписаться многие:

Мне инстинктивно хочется двигаться быстрее. И не потому что, как мне кажется, мир от этого выиграет. Почему я должен думать о мире, если все равно умру и превращусь в прах? Мне просто хочется, чтобы все двигалось быстрее, черт возьми! Это увеличивает шансы, что я застану более технологически продвинутое будущее[562].

С субъективной точки зрения у нас есть серьезная причина торопить появление любых радикально новых технологий, с которыми связан экзистенциальный риск. Причина в том, что все, кто сейчас живет, по умолчанию умрут в течение ближайших ста лет.

Особенно сильно желание торопить события, когда речь идет о технологиях, способных продлить нашу жизнь и тем самым увеличить количество ныне живущих людей, способных застать взрывное развитие искусственного интеллекта. Если революция машинного интеллекта пойдет так, как нам хотелось бы, появившийся в ее результате сверхразум почти наверняка найдет способ бесконечно продлевать жизнь людей, которые окажутся его современниками, причем не просто продлевать жизнь, но и делать ее абсолютно качественной, поскольку люди будут совершенно здоровы и полны молодой энергией — тоже благодаря стараниям сверхразума. Более того, сверхразум увеличит возможности человека далеко за пределы того, что можно было бы предположить; кто знает, вдруг он поможет человеку совсем избавиться от своего бренного организма, загрузит его мозг в цифровую среду и подарит ему идеально здоровое виртуальное тело. Что касается технологий, не обещающих продление жизни, то здесь оснований для спешки меньше, но они все равно есть, поскольку появление таких возможностей способно повысить стандарты жизни[563].

Благодаря такой же логике с субъективной точки зрения кажутся привлекательными многие рискованные технологические инновации, обещающие приблизить момент взрывного развития искусственного интеллекта, даже если они нежелательны с объективной точки зрения. Такие инновации могут сократить «час волка», в течение которого мы должны сидеть на своем насесте в ожидании рассвета постчеловеческой эпохи. Поэтому с субъективной точки зрения быстрый прогресс в области аппаратного обеспечения кажется таким же желательным, как и в области создания КИМГМ. Потенциальный вред из-за повышения экзистенциального риска уравновешивается возможной пользой для отдельно взятого человека благодаря возросшим шансам, что взрывное развитие искусственного интеллекта произойдет еще при жизни живущих сейчас людей[564].

Сотрудничество

Важным параметром является степень сотрудничества и координации, которую удастся обеспечить в ходе создания машинного интеллекта. Сотрудничество способно принести много пользы. Посмотрим, какое влияние этот параметр мог бы оказать на процесс создания машинного интеллекта и какие рычаги имеются в нашем распоряжении для расширения и углубления сотрудничества.

Гонка и связанные с ней опасности

Ощущение гонки возникает, когда есть страх, что проект обойдут конкуренты. Для этого совсем не обязательно наличие множества сходных проектов. Ситуация, при которой инициаторы проекта находятся в состоянии гонки, может сложиться и в отсутствие реальных конкурентов. Возможно, союзники не создали бы атомную бомбу так быстро, если не считали бы (ошибочно), что Германия крайне близка к этой цели.

Интенсивность ощущения гонки (то есть степень того, насколько конкуренты готовы ставить скорость выше безопасности) зависит от нескольких факторов, таких как плотность конкуренции, относительная важность возможностей и удачи, количество соперников, схожесть их подходов и целей. Также важно, что думают обо всех этих факторах конкуренты (см. врезку 13).

ВРЕЗКА 13. СМЕРТЕЛЬНАЯ ГОНКА

Рассмотрим гипотетическую гонку вооружений с применением ИИ — гонку, в которой несколько команд конкурируют за право первыми создать сверхразум[565]. Каждая из них сама решает, сколько инвестировать в безопасность, понимая, что ресурсы, потраченные на меры предосторожности, — это ресурсы, не потраченные на создание ИИ. В отсутствие согласия между соперниками (которого не удалось достичь из-за различия позиций или невозможности контролировать соблюдение договора) гонка может стать смертельно опасной, когда каждая команда тратит на безопасность лишь минимальные средства.

Производительность каждой команды можно представить как функцию ее возможностей (к которым относится и удача), штрафной функцией являются затраты на обеспечение безопасности. Первой создаст ИИ команда с наивысшей производительностью. Риски, связанные с появлением ИИ, зависят от того, сколько его создатели инвестировали в безопасность. В наихудшем сценарии все команды имеют одинаковые возможности. В этом случае победитель определяется исключительно по величине его капиталовложений в безопасность: выиграет команда, потратившая на меры предосторожности меньше всего. Тогда равновесие Нэша в этой игре достигается в ситуации, когда ни одна команда ничего не тратит на безопасность. В реальном мире такая ситуация будет означать возникновение эффекта храповика: одна из команд принимает на себя больший риск, опасаясь отстать от конкурентов, последние отвечают тем же — и так несколько раз, пока уровень риска не оказывается максимальным.

Возможности и риск

Ситуация меняется, когда возможности команд не одинаковы. Поскольку различия в возможностях являются более важным фактором по сравнению с затратами на обеспечение безопасности, эффект храповика слабеет: стимулов идти на больший риск в ситуации, когда это не повлияет на расстановку сил, гораздо меньше. Различные сценарии такого рода показаны на рис. 14, иллюстрирующем риски ИИ в зависимости от значимости такого параметра, как возможности разрабатывающих его команд. Инвестиции в безопасность лежат в диапазоне от 1 (в результате получаем идеально безопасный ИИ) до 0 (совершенно небезопасный ИИ). По оси x отображается относительная значимость возможностей команды для определения ее прогресса на пути создания ИИ по сравнению с инвестициями в безопасность. (В точке 0,5 уровень инвестиций в безопасность в два раза значимее возможностей; в точке 1 они равны; в точке 2 возможности в два раза значимее инвестиций в безопасность и так далее.) По оси y отображается уровень риска, связанный с ИИ (ожидаемая доля максимальной полезности, которую получает победитель.)

Рис. 14. Уровни риска в условиях гонки технологий искусственного интеллекта. На рисунке изображен уровень риска опасного ИИ для простой модели гонки технологий с участием а) двух или б) пяти команд в сочетании с относительной значимостью их возможностей (по сравнению с инвестициями в безопасность) для определения того, какой проект станет победителем. На диаграмме отражены три сценария: сплошная линия — нет информации об уровне возможностей; штриховой пунктир — закрытая информация о возможностях; точечный пунктир — открытая информация о возможностях.

Мы видим, что во всех сценариях опасность ИИ максимальна, когда возможности не играют никакой роли, и постепенно снижается по мере роста их значимости.

Сравнимые цели

Еще один способ снизить риск заключается в том, чтобы обеспечить командам большую долю в успехе друг друга. Если конкуренты убеждены, что второе место означает потерю всего, что им дорого, они пойдут на любой риск, чтобы обойти соперников. И наоборот, станут больше инвестировать в безопасность, если окажутся менее зависимыми от результатов гонки. Это означает, что нам нужно поощрять различные формы перекрестного инвестирования.

Количество конкурентов

Чем больше конкурирующих команд, тем более опасной становится гонка: у каждой из команд меньше шансов на то, чтобы прийти первой, соответственно, выше соблазн рисковать. Это видно, если сравнить позиции а и б на рис. 14: две команды и пять команд. В каждом сценарии риск растет с ростом числа конкурентов. Его можно снизить, если команды объединятся в небольшое количество конкурирующих коалиций.

Проклятие избыточной информации

Хорошо ли, если команды будут знать о своем месте в гонке (например, уровень своих возможностей)? И да, и нет. Желательно, чтобы о своем лидерстве знала сильнейшая команда (это будет означать, что отрыв от конкурентов позволит ей больше думать о безопасности). И нежелательно, чтобы о своем отставании знали остальные (поскольку это подтвердит их решимость ослабить меры предосторожности в надежде нагнать конкурентов). Хотя на первый взгляд может показаться, что компромисс возможен, модели недвусмысленно показывают, что информация — это плохо[566]. На рис. 14 (а и б) отражены три сценария: прямая линия соответствует ситуации, в которой ни одна из команд не имеет информации о возможностях участников гонки, включая свои собственные; штриховой пунктир соответствует ситуации, в которой команды знают только о своих собственных возможностях (тогда они готовы идти на дополнительный риск в случае, если их возможности низки); точечный пунктир показывает, что происходит, если все команды осведомлены о возможностях друг друга (они могут пойти на дополнительный риск в случае, если их возможности близки). С каждым ростом уровня информированности гонка обостряется.

В случае развития машинного интеллекта представляется, что ощущение гонки будет как минимум заметным, а возможно, и очень сильным. От интенсивности этого ощущения зависит, какими могут быть стратегические последствия возможного взрывного развития искусственного интеллекта.

Из-за ощущения гонки проекты могут ускорить свое движение в сторону сверхразума, сократив капиталовложения в решение проблемы контроля. Возможны и другие негативные последствия вроде прямых враждебных действий по отношению к конкурентам. Предположим, что две страны соревнуются в том, какая из них первой создаст сверхразум, и одна вырывается вперед. В ситуации, когда «победитель получает все», аутсайдер может решиться на отчаянный удар по сопернику, вместо того чтобы пассивно ждать поражения. Предполагая это, страна-лидер может нанести упреждающий удар. Если антагонисты обладают достаточной военной мощью, их столкновение приведет к большой крови[567]. (Даже точечный удар, нанесенный по инфраструктуре проекта разработки ИИ, несет риск более широкой конфронтации, кроме того, он может не достичь своей цели, если страна, в которой ведутся работы над этим проектом, примет соответствующие меры предосторожности[568].)

Если взять сценарий, в котором враждующие разработчики представляют не страны, а менее мощные институты, их конфликт, по всей вероятности, окажется менее разрушительным с точки зрения непосредственного вреда. Хотя в целом последствия такой конкуренции будут почти столь же плохи. Это связано с тем, что главным образом вред вызывается не столкновением на поле битвы, а ослаблением мер предосторожности. Как мы видели, ощущение гонки приведет к снижению инвестиций в безопасность, а конфликт, даже бескровный, устранит возможность сотрудничества, поскольку в атмосфере враждебности и недоверия проектные группы вряд ли захотят делиться идеями о путях решения проблемы контроля[569]

О пользе сотрудничества

Итак, сотрудничество дает много полезного. Оно избавляет от спешки при разработке машинного интеллекта. Позволяет больше вкладывать в безопасность. Избегать насильственных конфликтов. И облегчает обмен идеями в вопросах контроля. К этим преимуществам можно добавить еще одно: сотрудничество, скорее всего, приведет к такому исходу, в котором благоприятный эффект от контролируемого взрывного развития интеллекта будет распределен более равномерно.

Расширение сотрудничества приводит к более широкому распределению благ, но это не столь очевидно, как кажется. В принципе, небольшой проект под управлением альтруиста тоже может привести к исходу, в котором блага будут распределены равномерно или справедливо между всеми обладающими моральным статусом существами. Тем не менее есть несколько причин полагать, что более широкое сотрудничество, включая большее количество инвесторов, будет лучше (как ожидается) с точки зрения распределения результатов. Одна из причин заключается в том, что инвесторы предположительно предпочитают исход, в котором они сами получают справедливую долю. Тогда более широкое сотрудничество означает, что сравнительно много людей получат как минимум свою справедливую долю в случае успешного завершения проекта. Другая причина заключается в том, что более широкое сотрудничество выгодно даже людям, не имеющим непосредственного отношения к проекту. Чем шире сотрудничество, тем больше людей в него вовлечено и тем больше людей вне проекта связано с ними и может рассчитывать на то, что участники проекта учтут их интересы. Кроме того, чем шире сотрудничество, тем больше вероятность, что к нему будут привлечены как минимум несколько альтруистов, стремящихся действовать на благо всех. Более того, такой проект с большей вероятностью будет объектом общественного контроля, что снизит риск присвоения всего пирога кликой программистов или частных инвесторов[570]. Заметьте также, что чем шире сотрудничество в работе над успешным проектом, тем ниже его издержки на распределение выгод среди людей, не имеющих к нему прямого отношения. (Например, если 90 процентов всех людей уже вовлечены в сотрудничество, то поднять всех остальных до своего уровня им будет стоить не больше 10 процентов их доли.)

Поэтому вполне возможно, что более широкое сотрудничество приведет к более широкому распределению благ (хотя некоторые проекты с небольшим количеством инвесторов тоже могут иметь отличные перспективы для их распределения). Но почему столь желательно широкое распределение благ?

Исход, в котором все получат свою долю сладостей, предпочтительнее с точки зрения как этики, так и благоразумия. Об этической стороне вопроса много говорить не будем, скажем лишь, что дело не обязательно в стремлении к эгалитаризму. Причина может быть, например, в желании справедливости. С проектом, в рамках которого создается машинный сверхразум, связаны глобальные риски гибели человечества. В смертельной опасности оказывается каждый житель Земли, включая тех, кто не согласен подвергать угрозе свои жизни и жизни своих близких. А поскольку риск разделяют все, требование минимальной справедливости означает, что и свою часть награды тоже должны получить все.

То, что общий (ожидаемый) объем благ, похоже, будет выше в сценариях сотрудничества, является еще одним важным этическим аргументом в их пользу.

С точки зрения благоразумия широкое распределение благ выгодно по двум причинам. Первая заключается в том, что такой подход к распределению благ приведет к расширению сотрудничества, что, в свою очередь, позволит снизить негативные последствия гонки технологий. Если от успеха проекта выиграют все, будет меньше поводов бороться за лавры первого создателя сверхразума. Спонсоры конкретного проекта могут также выиграть благодаря информированию общественности о готовности равномерно распределить выгоды от него, поскольку альтруистические проекты скорее привлекут больше сторонников и меньше противников[571].

Вторая причина предпочтения широкого распределения благ с точки зрения благоразумия заключается в том, что для агентов характерно стремление избежать риска, а их функция полезности нелинейна относительно ресурсов. Здесь главное то, что потенциальный выигрыш в ресурсах может быть колоссальным. Если предположить, что наблюдаемая Вселенная действительно так необитаема, какой выглядит, то на каждого жителя Земли сегодня приходится больше одной свободной галактики. Большинство людей предпочли бы гарантированный доступ к одной галактике, полной ресурсов, лотерейному билету с шансом один на миллиард стать владельцем миллиарда галактик[572]. Учитывая такие космические масштабы, ожидающие человечество в будущем, похоже, в наших интересах предпочесть сделку, в рамках которой каждому человеку была бы гарантирована доля, даже если она соответствует лишь малой части общего. Когда на горизонте маячит столь щедрый приз, важно не остаться с носом.

Этот аргумент о громадности призового фонда основан на предположении, что предпочтения являются ресурсно-насыщенными[573]. Это не обязательно так. Например, есть несколько известных этических теорий — включая особенно агрегированные консеквенциалистские, — с которыми соотносятся нейтральные к риску и линейные по ресурсам функции полезности. Имея миллиард галактик, можно создать в миллиард раз больше счастливых жизней, чем имея одну. То есть с утилитарной точки зрения это в миллиард раз лучше[574]. То есть функции предпочтения обычных эгоистичных людей, похоже, относительно ресурсно-насыщаемые. Последнее замечание нужно дополнить двумя важными уточнениями.

Первое: многих людей беспокоят рейтинги. Если множество агентов захотят возглавить список богатейших людей мира, никаких мировых запасов не хватит, чтобы удовлетворить каждого.

Второе: постпереходная технологическая база, возможно, позволит превращать материальные ресурсы в беспрецедентно широкий спектр продуктов, включая такие, которые недоступны сейчас ни за какие деньги, хотя и высоко ценимы многими. Миллиардеры не живут в тысячу раз дольше миллионеров. В эпоху цифрового разума, однако, миллиардеры смогут позволить себе в тысячу раз большую вычислительную мощность и соответственно проживать субъективно в тысячу раз более долгую жизнь. Точно так же окажется доступной за деньги и ментальная мощность. В таких обстоятельствах, когда экономический капитал можно будет конвертировать в жизненно важные товары по постоянному курсу даже на очень высоком уровне богатства, неограниченная жадность обретет гораздо больший смысл, чем в современном мире, где богачи (лишенные филантропических черт) озабочены приобретением самолетов, яхт, коллекций предметов искусства, бесчисленных резиденций — и на все это тратятся целые состояния.

Значит ли это, что эгоист должен нейтрально относиться к риску, связанному с его обогащением в постпереходный период? Не совсем. Может так получиться, что физические ресурсы не будут конвертироваться в жизни или ментальную мощность в произвольных масштабах. Если жизнь должна быть прожита последовательно, чтобы наблюдатель помнил прошлые события и ощущал последствия сделанного когда-то выбора, тогда жизнь цифрового мозга не может быть продлена произвольно долго без использования все возрастающего количества последовательных вычислительных операций. Но законы физики ограничивают степень, до которой ресурсы можно трансформировать в последовательные вычисления[575]. Пределы возможностей последовательных вычислений могут также довольно сильно ограничить некоторые аспекты когнитивной эффективности, которая не сможет расти линейно в соответствии с быстрым накоплением ресурсов. Более того, совершенно неочевидно, что эгоист должен быть нейтрален к риску даже в случае очень релевантных показателей успеха, скажем, количества скорректированных на качество субъективных лет жизни. Если будет стоять выбор между гарантированными дополнительными двумя тысячами лет жизни и одним к десяти шансом получить дополнительно тридцать тысяч лет жизни, думаю, большинство людей выберут первое (даже при условии, что все годы будут одинакового качества)[576].

В реальности аргумент, что с точки зрения здравомыслия предпочтительнее более широкое распределение благ, вероятно, имеет субъективный и зависящий от ситуации характер. Хотя в целом люди с большей вероятностью получили бы (почти все), что они хотят, если удастся найти способ обеспечить широкое распределение благ, — и это верно даже без учета того, что обязательство такого распределения подстегнет сотрудничество и тем самым снизит шансы экзистенциальной катастрофы. То есть широкое распределение благ представляется не только этически необходимым, но и выгодным.

Есть и другое следствие сотрудничества, которое нельзя не отметить хотя бы вскользь: это возможность того, что степень сотрудничества в преддверии перехода повлияет на степень сотрудничества после него. Предположим, что человечество решило проблему контроля. (Если проблема контроля не решена, степень сотрудничества в постпереходный период будет значить пугающе много.) Тогда нужно рассмотреть два случая.

Случай первый: взрывное развитие искусственного интеллекта не создаст ситуацию типа «победитель получает все» (предположительно потому, что взлет окажется сравнительно медленным). В этом случае можно допустить, что если степень сотрудничества в преддверии перехода как-то повлияет на степень сотрудничества после него, то это влияние будет положительным и стимулирующим. Сложившееся сотрудничество сохранится и продолжится после перехода, кроме того, совместные усилия, предпринятые до перехода, позволят направить развитие в желательном направлении (и предположительно, открывающем возможности для еще более тесного сотрудничества) после него.

Случай второй: природа взрывного развития искусственного интеллекта поощряет формирование ситуации, когда «победитель получает все» (предположительно потому, что взлет окажется сравнительно быстрым). В этом случае в отсутствие широкого сотрудничества в преддверии перехода, скорее всего, сформируется синглтон — переход совершит всего один проект по сверхразуму, в какой-то момент обеспечив себе решающее стратегическое преимущество. Синглтон по определению представляет собой социальный порядок с высокой степенью сотрудничества[577]. Таким образом, отсутствие сотрудничества в предшествующий переходу период приведет к чрезвычайно активному сотрудничеству после него. По контрасту с этим более высокая степень сотрудничества в ходе подготовки к взрывному развитию искусственного интеллекта открывает возможности для широкого диапазона исходов. Сотрудничающие группы разработчиков могут синхронизировать работу над проектами так, чтобы гарантированно совершить переход вместе и не допустить получения решающего стратегического преимущества ни одному из них. Или вообще объединить усилия и действовать в рамках общего проекта, но отказаться при этом от формирования синглтона. Например, можно представить консорциум стран, которые запускают совместный научный проект по созданию машинного интеллекта, но не дают санкцию на его превращение в сверхмощный аналог ООН, ограничившись поддержанием имеющегося мирового порядка.

Таким образом, получается, что более активное сотрудничество до перехода может привести к меньшему сотрудничеству после него, особенно в случае быстрого взлета. Однако в той мере, в которой сотрудничающие стороны способны контролировать исход, они могут прекратить сотрудничать или вовсе не начинать это делать лишь в том случае, если считают, что постпереходная фракционность не приведет ни к каким катастрофическим последствиям. То есть сценарии, в которых активное сотрудничество в преддверии перехода сменяется его отсутствием в постпереходный период, в основном относятся к ситуации, в которой это будет безопасно.

В общем случае представляется желательным более активное сотрудничество в постпереходный период. Оно снизит риск возникновения антиутопии, в которой в результате экономической конкуренции и быстрого роста населения возникают мальтузианские условия, или в которой эволюционный отбор приводит к эрозии человеческих ценностей и отсеву жизнелюбивых характеров, или в которой противоборствующие силы сталкиваются с другими последствиями своей неспособности к координации усилий — последствиями вроде войн и технологической гонки вооружений. Последнее — перспектива острой технологической конкуренции — может оказаться особенно опасным в случае перехода к промежуточной форме машинного интеллекта (имитационная модель мозга), поскольку это создаст ощущение гонки и снизит шансы решения проблемы контроля к моменту начала второго перехода к более развитой форме машинного интеллекта (искусственный интеллект).

Мы уже обсудили, каким образом в результате сотрудничества на этапе подготовки к взрывному развитию интеллекта может уменьшиться острота конфликтов, повыситься вероятность решения проблемы контроля и сложиться более оптимальное распределение ресурсов в постпереходную эпоху — как с этической, так и с практической точек зрения.

Совместная работа

Сотрудничество может принимать различные формы в зависимости от количества участников. В нижней части шкалы объединять свои усилия могут отдельные группы конкурирующих друг с другом разработчиков ИИ[578]. Корпорации могут сливаться или инвестировать друг в друга. На верхнем уровне возможно создание крупного международного проекта с участием нескольких стран. Уже известны прецеденты масштабного международного научно-технологического сотрудничества (Европейская организация по ядерным исследованиям; проект «Геном человека», Международная космическая станция), но с международным проектом создания безопасного сверхразума связаны трудности более высокого порядка из-за необходимости соблюдать строгие меры предосторожности. Он может быть организован не в форме открытого научного сотрудничества, а в форме чрезвычайно жестко контролируемого предприятия. Возможно даже, что участвующих в нем ученых придется физически изолировать в течение всего срока реализации проекта, лишив их всех возможностей связываться с внешним миром за исключением единственного тщательно цензурируемого канала. В настоящее время требуемый уровень безопасности вряд ли достижим, но позднее, в результате развития технологий детекции лжи и систем наблюдения, ситуация может измениться. Тесное сотрудничество не обязательно означает, что в проекте принимают участие множество известных ученых. Скорее, это примет другую форму — крупные ученые будут иметь право голоса при определении целей проекта. В принципе, проект мог бы обеспечить максимально широкое сотрудничество, если в качестве его организатора выступит все человечество (представленное, например, Генеральной Ассамблеей Объединенных Наций) и при этом в качестве исполнителя привлекут единственного ученого[579].

Существует причина, по которой начать сотрудничество нужно как можно раньше: это дает возможность воспользоваться преимуществом «вуали неведения», которая пока скрывает от нас то, какой из проектов первым выйдет на уровень разработки сверхразума. С одной стороны, чем ближе мы подойдем к финишной черте, тем меньше неопределенности останется относительно шансов конкурирующих проектов; соответственно, тем сложнее будет объединить усилия, преодолев эгоистический интерес разработчиков лидирующих проектов и обеспечив возможность распределения благ между всеми жителями планеты. С другой стороны, будет сложно формально договориться о сотрудничестве в масштабах всей планеты до тех пор, пока перспективы появления сверхразума не станут более очевидны всем и пока не проявятся контуры пути, по которому можно двигаться в сторону его создания. Более того, учитывая, что сотрудничество способно привести к более быстрому прогрессу на этом пути, сейчас стремиться к нему может быть даже неконструктивно с точки зрения безопасности.

Следовательно, в наши дни идеальной формой сотрудничества могла бы быть такая, которая не подразумевает конкретных формальных договоренностей и не ускоряет движение в сторону создания машинного интеллекта. Этим критериям удовлетворяет, в частности, предложение сформулировать некий этический принцип, выражающий нашу приверженность идее, что сверхразум должен служить на благо всем.

Принцип общего блага

Сверхразум должен быть создан исключительно на благо всего человечества и отвечать общепринятым этическим идеалам[580].

Чем раньше мы сформулируем принцип, что весь безмерный потенциал сверхразума принадлежит всему человечеству, тем больше у нас будет времени, чтобы эта норма прочно утвердилась в умах людей.

Принцип общего блага не исключает коммерческих интересов отдельного человека и компаний, действующих в соответствующих областях. Например, соответствовать этому принципу можно было бы, согласившись, что все «свалившиеся с неба» доходы от создания сверхразума — доходы немыслимо высокого уровня (скажем, триллион долларов в год) — распределяются между акционерами и прочими заинтересованными лицами так, как это принято сегодня, а те, что превышают этот порог, — равномерно между всеми жителями планеты (или как-то иначе, но в любом случае в соответствии с неким универсальным этическим критерием). Принять решение о доходах, «свалившихся с неба», не стоит компании практически ничего, поскольку превысить эту астрономическую сумму в наши дни практически невозможно (такие маловероятные сценарии не принимаются во внимание в процессе принятия решений современными управляющими и инвесторами). При этом широкое распространение такого рода обязательств (при условии, что им можно доверять) дало бы человечеству гарантию, что если какая-то частная компания получит джекпот в результате взрывного развития интеллекта, все смогут участвовать в распределении свалившихся благ. Ту же идею можно применить не только к фирмам. Например, государства могут договориться о том, что если ВВП какого-то из них превысит некоторую довольно большую долю мирового ВВП (например, 90 процентов), превышение будет распределено равномерно между всеми жителями планеты[581].

Поначалу принцип общего блага (и его практические следствия вроде обязательства распределять сверхдоходы) мог бы применяться избирательно, путем добровольного согласия поступать в соответствии с ним, данного ответственными специалистами и организациями, которые работают в области машинного интеллекта. Позднее к нему присоединились бы другие, и со временем он превратился бы в закон или международное соглашение. Приведенная выше не очень строгая формулировка вполне подойдет для начала, но в конечном счете должна быть заменена набором конкретных требований, поддающихся проверке.

Глава пятнадцатая

Цейтнот

Мы заблудились в непроходимой чаще стратегической сложности, которую окутывает плотный туман неопределенности. Хотя многие элементы окружающего нас пейзажа разглядеть удалось, но отдельные детали и взаимосвязи остаются загадкой. Кроме того, могут быть другие факторы, о которых мы пока даже не задумываемся. Что нам остается в такой ситуации?

Крайний срок философии

Мои коллеги часто шутят, что вручение Филдсовской премии (высшей награды в области математики) может означать две вещи: или награжденный смог сделать что-то важное, или нет. Не очень приятно, но доля правды в этом есть.

Определим «открытие» как действие, в результате которого некая информация становится известна раньше, чем могла бы появиться. Тогда ценность открытия не равняется значимости заложенной в нем информации, а скорее приобретает значение, потому что информация попадает в наше распоряжение сейчас, а не позже. Чтобы первому найти решение проблемы, которое ускользнуло от многих других, ученому требуется приложить много сил и способностей; но если проблема в любом случае должна была в ближайшее время быть решена, мир получил не так много пользы от его работы. Конечно, есть случаи, когда даже чуть более раннее решение проблемы несет в себе огромную ценность, но чаще всего это возможно лишь в тех случаях, когда такое решение можно немедленно использовать: или применить на практике, или положить в основу другой теоретической работы. Причем в последнем случае, когда решение сразу используется в качестве строительного материала для дальнейших теоретических поисков, то сам факт, что оно получено чуть раньше, будет значим лишь тогда, когда новая работа сама по себе и важная, и срочная[582].

То есть вопрос не в том, является ли результат, полученный математиком, награжденным Филдсовской премией, «важным» (или сам по себе, или с инструментальной точки зрения). Скорее, значение имеет то, насколько важно появление этого результата сейчас, а не позже. И ценность этого перемещения во времени следует сравнивать со значимостью иного результата, который мог бы получить этот математик мирового уровня, работая над другой проблемой. Как минимум в некоторых случаях Филдсовская премия становилась свидетельством того, что жизнь была потрачена на решение неправильно выбранных задач, например тех, привлекательность которых вызвана главным образом тем, что они представляли собой трудноразрешимые проблемы.

Того же упрека заслуживает и философия. Конечно, она действительно занимается изучением проблем, решение которых поможет снизить экзистенциальный риск, — с некоторыми философскими концепциями мы познакомились в этой книге. Но часть философских теорий не имеет отношения ни к экзистенциальным рискам, ни к какой-либо иной практической направленности. Конечно, некоторые проблемы, которыми занимается философия (как и математика), важны сами по себе, в том смысле, что размышлять над ними люди могут независимо от возможностей применить результаты своих умозаключений на практике. Фундаментальную природу реальности, например, стоит понимать в любом случае. Мир определенно был бы менее симпатичным местом, если бы никто не изучал метафизику, космологию или теорию струн. Однако мрачные перспективы взрывного развития интеллекта проливают новый свет на это старое как мир стремление к мудрости.

Сейчас складывается ощущение, что прогресса в области философии можно достигнуть, двигаясь окольными путями, а не за счет непосредственного философствования. Одной из многих задач, в решении которых сверхразум (и даже слегка улучшенный человеческий интеллект) мог бы опередить современных мыслителей, является задача ответа на фундаментальные научные и философские вопросы. Эта мысль предполагает следование стратегии отложенного удовольствия. Мы могли бы отложить ненадолго работу над вечными вопросами, делегировав эту задачу нашим, будем надеяться, более компетентным потомкам, чтобы сосредоточить свое внимание на более неотложной проблеме: повышении шансов того, что у нас вообще будут компетентные потомки. Вот это и называют настоящей философией и настоящей математикой[583].

Что нужно делать?

Таким образом, нам следует сосредоточить силы на проблемах, не просто важных, но неотложных в том смысле, что их нужно разрешить раньше, чем произойдет взрывное развитие интеллекта. И воздерживаться от работы над задачами с отрицательной ценностью (то есть решение которых принесет вред). Отрицательную ценность могут иметь некоторые технические задачи в области искусственного интеллекта, поскольку их решение может подстегнуть развитие этого направления, опережающее создание методов контроля, которые все-таки призваны помочь человечеству пережить революцию машинного интеллекта и получить выгоду от нее.

Довольно нелегко определить проблемы, которые одновременно являются важными, срочными и имеющими абсолютно положительную ценность. Стратегическая неопределенность, присущая попыткам снизить экзистенциальные риски, приводит к тому, что даже действия, предпринятые с самыми добрыми намерениями, могут оказаться не только непродуктивными, но даже неконструктивными. Чтобы ограничить риск совершения действий, способных принести реальный вред или оказаться ошибочными с этической точки зрения, нам следует работать лишь над теми проблемами, которые, как представляется, обладают строго положительной ценностью (например, решение которых помогает получить положительный исход в широком спектре сценариев), и применять инструменты исключительно допустимые (например, приемлемые с точки зрения широкого спектра этических норм).

При расстановке приоритетов есть и другое соображение, которое следует учитывать. Мы хотим работать над проблемами, которые эластичны к нашим усилиям по их решению. Высокоэластичные проблемы — это такие, которые в результате приложения дополнительной единицы усилий могут быть решены гораздо быстрее и в гораздо большей степени. Сделать мир добрее — задача явно важная и срочная, более того, имеющая строго положительную ценность, однако из-за отсутствия прорывных идей — как именно этого можно добиться — она предстает совершенно неэластичной. Точно так же крайне желательно было бы обеспечить мир во всем мире, но учитывая огромные усилия, уже направленные на решение этой задачи, и серьезные препятствия, не позволяющие сделать это быстро, кажется маловероятным, что вклад еще нескольких человек будет иметь какое-то принципиальное значение.

Чтобы снизить риски, связанные с революцией машинного интеллекта, мы предложили бы две цели, которые, по всей видимости, удовлетворяют всем высказанным пожеланиям: это стратегический анализ и создание возможностей. Мы можем быть уверенными в положительной ценности этих параметров, поскольку стратегическое понимание и большие возможности — это благо. Более того, они эластичны: небольшие дополнительные инвестиции способны привести к сравнительно большим изменениям. Срочность этой задачи также очевидна — обеспечив понимание и создав новые возможности сейчас, можно будет более эффективно прилагать усилия в будущем. Кроме этих двух крупных целей можно предложить еще несколько других, также достойных нашего внимания.

В поисках стратегии

В условиях растерянности и неопределенности стратегический анализ представляется задачей, имеющей особенно высокую ожидаемую полезность[584]. Понимание ситуации, в которой мы находимся, поможет нам действовать более эффективно. Особенно полезен стратегический анализ в том случае, если мы не уверены не только во второстепенных деталях, но и главных аспектах проблем. Часто неопределенность связана даже со знаком многих ключевых параметров: то есть неизвестно, какое направление изменений желательно, а какое — нет. Наше незнание может иметь непоправимые последствия. Однако область эта изучена мало, и сверкающие стратегические озарения могут ожидать нас совсем близко, стоит лишь сделать первый шаг.

Под «стратегическим анализом» мы понимаем здесь поиск критически важных соображений: идей и аргументов, обладающих потенциалом изменить наши взгляды не столько на детали реализации плана, сколько на общую топологию желательного[585]. Даже единственное упущенное из виду критически важное соображение способно обесценить наши самые напряженные усилия или вовсе обратить их во вред — как в случае солдата, воюющего за неправую сторону. Поиск критически важных соображений (в ходе которых приходится изучать как нормативные, так и дескриптивные вопросы) часто предполагает пересечение границы между различными научными дисциплинами и другими областями знаний. Поскольку устоявшейся методологии проведения такого рода исследований пока не существует, они требуют напряженных размышлений буквально с чистого листа.

В поисках возможностей

Еще одним ценным видом деятельности, для которого характерно такое же, как у стратегического анализа, свойство пользы в случае реализации широкого спектра сценариев, является создание хорошо организованной базы поддержки идеи, что к будущему следует относиться серьезно. При наличии такой базы немедленно появятся ресурсы для проведения аналитических исследований. Если приоритеты изменятся, соответственно можно будет перераспределить и ресурсы. То есть база поддержки и станет той самой возможностью, использование которой будет определяться новыми идеями (по мере их появления).

Одним из самых ценных активов могла бы стать донорская сеть, состоящая из людей, приверженных идее рациональной филантропии, информированных об экзистенциальном риске и о средствах его уменьшения. Особенно важно, чтобы эти отцы-основатели были проницательными и альтруистичными, поскольку им представится возможность сформировать культуру направления прежде, чем в ней проявятся и укоренятся обычные корыстные мотивы. То есть фокус в ходе этого открывающего партию гамбита должен быть направлен на привлечение к работе над направлением правильных людей. Возможно, даже стоит пожертвовать какими-то быстрыми техническими успехами ради того, чтобы заполнить вакантные позиции теми, кто искренне заботится о безопасности и ориентируется на поиск истины (а также способен привлекать единомышленников).

Важным параметром является качество «социальной эпистемологии» области ИИ и лидирующих в ней проектов. Поиск критически важных соображений — ценное занятие, но только в том случае, если как-то влияет на конкретные действия. А это не обязательно так. Представьте проект, в рамках которого в создание прототипа ИИ вложены годы работы и миллионы долларов инвестиций и который после преодоления многочисленных технических сложностей начинает демонстрировать реальный прогресс. Есть шанс, что еще чуть-чуть — и он превратится в нечто полезное и прибыльное. Но тут возникает критически важное соображение о том, что гораздо безопаснее было бы пойти по совершенно иному пути. Убьет ли проект сам себя, как опозоренный самурай, отказавшись от своей небезопасной архитектуры и зачеркнув весь достигнутый прогресс? Или отреагирует как потревоженный кальмар, выбросив облако контраргументов в надежде отбить нападение? Если, столкнувшись с такой дилеммой, команда проекта выберет путь самурая, она окажется гораздо более предпочтительным разработчиком[586]. Хотя довольно трудно строить процессы и институты, готовые из-за голословных обвинений совершать харакири. Еще одним измерением социальной эпистемологии является управление конфиденциальной информацией, особенно способность избежать ее утечки. (Информационное воздержание может оказаться особенно трудным в случае традиционных ученых, привыкших расклеивать результаты своих исследований на всех столбах и деревьях.)

Конкретные показатели

В дополнение к общим целям стратегического понимания и создания новых возможностей могут быть обозначены и более специфические цели, достижение которых станет экономически оправданным.

Одна из них — это прогресс в решении технических вопросов обеспечения безопасности машинного интеллекта. Преследуя эту цель, стоит внимательно относиться к управлению информационными рисками. Какие-то действия, полезные с точки зрения решения проблемы контроля, могут быть полезными и с точки зрения решения проблемы компетентности. Если какое-то задание приведет к перегоранию предохранителей ИИ, возможно, оно имеет отрицательное значение.

Еще одной специфической целью является пропагандирование последних достижений в этой области среди исследователей ИИ. Следует распространять информацию о любом прогрессе в решении задачи контроля. В некоторых видах вычислительных экспериментов, особенно когда предполагается возможность рекурсивного самосовершенствования, требуется использовать меры контроля возможностей, чтобы снизить риск случайного взлета. Хотя практическое применение инструментов обеспечения безопасности пока неактуально, оно станет таковым по мере нашего продвижения вперед. Не за горами то время, когда перспективы появления машинного интеллекта окажутся довольно близкими, и нужно будет призвать участников процесса выразить свою приверженность безопасности, согласие с принципом общего блага и обещание усилить меры предосторожности. Одних благочестивых слов может быть недостаточно, и сами по себе они не сделают опасную технологию безопасной, но за словами могут постепенно последовать мысли, а потом и поступки.

Время от времени могут возникать другие возможности улучшения каких-то важных параметров, например снижения одного из экзистенциальных рисков, проведения когнитивного улучшения биологического мозга и углубления нашей коллективной мудрости или даже перевода мировой политики в какой-то более гармоничный регистр.

Все лучшее в человеческой природе — шаг вперед!

Перед лицом перспективы взрывного развития интеллекта мы похожи на детей, играющих с бомбой. Именно таков разрыв между мощностью нашей игрушки и незрелостью нашего поведения. Сверхразум — это вызов, ответить на который мы не готовы сегодня, и не будем готовы еще долгое время. Мы понятия не имеем, когда произойдет детонация, хотя если поднести устройство к уху, уже можно услышать тихое тиканье.

Ребенку с тикающей бомбой в руках правильнее всего осторожно положить ее на пол, быстро выбежать из комнаты и обратиться к ближайшему взрослому. Впрочем, в нашем случае ребенок не один, нас много, и у каждого в руках свой взрыватель. Шансы на то, что все обладают достаточным здравым смыслом, чтобы аккуратно поместить опасный предмет в безопасное место, ничтожны. Какой-нибудь маленький идиот обязательно нажмет красную кнопку просто из любопытства.

Убежать мы тоже не можем, поскольку взрывное развитие искусственного интеллекта обрушит сам небесный свод. Да и взрослых в поле зрения нет.

В такой ситуации проявлять восторженное любопытство было бы неуместным. Более подходящими чувствами были бы озабоченность и страх, а самое правильное поведение — горькая решимость стать настолько компетентными, насколько это возможно, как при подготовке к экзамену, который или позволит исполнить наши мечты, или разрушит их.

Никто не призывает к фанатизму. Возможно, что до взрыва остается еще много десятков лет. Более того, отчасти вызов, с которым мы столкнулись, состоит в необходимости оставаться людьми — практичными, здравомыслящими, добропорядочными и оптимистичными, — даже оказавшись в когтях этой совершенно неестественной и нечеловеческой проблемы. И чтобы найти ее решение, нам придется использовать всю присущую людям изобретательность.

И все-таки давайте не терять из виду самое главное. Сквозь пелену сиюминутных мелочей уже проступают — пока смутные — контуры главной задачи нашей эпохи. В этой книге мы попытались рассмотреть некоторые ее аспекты и приблизились к пониманию того, что высший этический приоритет (как минимум с объективной и секулярной точки зрения) имеют такие вопросы, как снижение экзистенциального риска и выход на цивилизационную траекторию, которая ведет к лучшему исходу — на благо всего человечества.

Библиография

Acemoglu 2003 — Acemoglu Daron. Labor- and Capital-Augmenting Technical Change // Journal of the European Economic Association, 2003, 1 (1), p. 1–37.

Albertson, Thomson 1976 — Albertson D. G., Thomson J. N. The Pharynx of Caenorhabditis Elegans // Philosophical Transactions of the Royal Society B: Biological Sciences, 1976, 275 (938), p. 299–325.

Allen 2008 — Allen Robert C. A Review of Gregory Clark’s «A Farewell to Alms: A Brief Economic History of the World» // Journal of Economic Literature, 2008, 46 (4), p. 946–973.

American Horse Council, 2005 — National Economic Impact of the US Horse Industry // American Horse Council, 2005 (Retrieved 2013, July 30; http://www.horsecouncil.org/national-economic-impact-us-horse-industry).

Andres et al. 2012 — Andres B., Koethe U., Kroeger T., Helmstaedter M., Briggman K. L., Denk W., Hamprecht F. A. 3D Segmentation of SBFSEM Images of Neuropil by a Graphical Model over Supervoxel Boundaries // Medical Image Analysis, 2012, 16 (4), p. 796–805.

Armstrong 2012 — Armstrong Alex. Computer Competes in Crossword Tournament // I Programmer, 2012, March 19.

Armstrong 2007 — Armstrong Stuart. Chaining God: A Qualitative Approach to AI, Trust and Moral Systems // Unpublished manuscript, 2007, October 20 (Retrieved 2012, December 31; http://www.neweuropeancentury.org/GodAI.pdf).

Armstrong 2010 — Armstrong Stuart. Utility Indifference. Technical Report 2010–1. Oxford: Future of Humanity Institute, University of Oxford, 2010.

Armstrong 2013 — Armstrong Stuart. General Purpose Intelligence: Arguing the Orthogonality Thesis // Analysis and Metaphysics, 2013, 12, p. 68–84.

Armstrong, Sandberg 2013 — Armstrong Stuart, Sandberg Anders. Eternity in Six Hours: Intergalactic Spreading of Intelligent Life and Sharpening the Fermi Paradox // Acta Astronautica, 2013, 89, p. 1–13.

Armstrong, Sotala 2012 — Armstrong Stuart, Sotala Kaj. How We’re Predicting AI — or Failing To // Beyond AI: Artificial Dreams / Eds. Jan Romportl, Pavel Ircing, Eva Zackova, Michal Polak, Radek Schuster. Pilsen: University of West Bohemia, 2012, p. 52–75 (Retrieved 2013, February 2).

Asimov 1942 — Asimov Isaac. Runaround // Astounding Science-Fiction, 1942, March, p. 94–103.

Asimov 1985 — Asimov Isaac. Robots and Empire. New York: Doubleday, 1985.

Aumann 1976 — Aumann Robert J. Agreeing to Disagree // Annals of Statistics, 1976, 4 (6), p. 1236–1239.

Averch 1985 — Averch Harvey Allen. A Strategic Analysis of Science and Technology Policy. Baltimore: Johns Hopkins University Press, 1985.

Azevedo et al. 2009 — Azevedo F. A. C., Carvalho L. R. B., Grinberg L. T., Farfel J. M., Ferretti R. E. L., Leite R. E. P., Jacob W., Lent R., Herculano-Houzel S. Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically Scaled-up Primate Brain // Journal of Comparative Neurology, 2009, 513 (5), p. 532–541.

Baars 1997 — Baars Bernard J. In the Theater of Consciousness: The Workspace of the Mind. New York: Oxford University Press, 1997.

Baratta 2004 — Baratta Joseph Preston. The Politics of World Federation: United Nations, UN Reform, Atomic Control. Westport, CT: Praeger, 2004.

Barber 1991 — Barber E. J. W. Prehistoric Textiles: The Development of Cloth in the Neolithic and Bronze Ages with Special Reference to the Aegean. Princeton, NJ: Princeton University Press, 1991.

Bartels et al. 2008 — Bartels J., Andreasen D., Ehirim P., Mao H., Seibert S., Wright E. J., Kennedy P. Neurotrophic Electrode: Method of Assembly and Implantation into Human Motor Speech Cortex // Journal of Neuroscience Methods, 2008, 174 (2), p. 168–176.

Bartz et al. 2011 — Bartz Jennifer A., Zaki Jamil, Bolger Niall, Ochsner Kevin N. Social Effects of Oxytocin in Humans: Context and Person Matter // Trends in Cognitive Science, 2011, 15 (7), p. 301–309.

Basten et al. 2013 — Basten Stuart, Lutz Wolfgang, Scherbov Sergei. Very Long Range Global Population Scenarios to 2300 and the Implications of Sustained Low Fertility // Demographic Research, 2013, 28, p. 1145–11466.

Baum 2004 — Baum Eric B. What Is Thought? Bradford Books. Cambridge, MA: MIT Press, 2004.

Baum et al. 2011 — Baum Seth D., Goertzel Ben, Goertzel Ted G. How Long Until Human Level AI? Results from an Expert Assessment // Technological Forecasting and Social Change, 2011, 78 (1), p. 185–195.

Beal, Winston 2009 — Beal J., Winston P. Guest Editors’ Introduction: The New Frontier of Human-Level Artificial Intelligence // IEEE Intelligent Systems, 2009, 24 (4), p. 21–23.

Bell, Gemmel 2009 — Bell C. Gordon, Gemmell Jim. Total Recall: How the E-Memory Revolution Will Change Everything. New York: Dutton, 2009.

Benyamin et al. 2013 — Benyamin B., Pourcain B. St., Davis O. S., Davies G., Hansell M. K., Brion M.-J. A., Kirkpatrick R. M. Childhood Intelligence is Heritable, Highly Polygenic and Associated With FNBP1L // Molecular Psychiatry, 2013, January 23.

Berg, Rietz 2003 — Berg Joyce E., Rietz Thomas A. Prediction Markets as Decision Support Systems // Information Systems Frontiers, 2003, 5 (1), p. 79–93.

Berger et al. 2008 — Berger Theodore W., Chapin J. K., Gerhardt G. A., Soussou W. V., Taylor D. M., Tresco P. A. Brain-Computer Interfaces: An International Assessment of Research and Development Trends. Springer, 2008.

Berger et al. 2012 — Berger T. W., Song D., Chan R. H., Marmarelis V. Z., LaCoss J., Wills J., Hampson R. E., Deadwyler S. A., Granacki J. J. A Hippocampal Cognitive Prosthesis: Multi-Input, Multi-Output Nonlinear Modeling and VLSI Implementation // IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20 (2), p. 198–211.

Berliner 1980 a — Berliner Hans J. Backgammon Computer-Program Beats World Champion // Artificial Intelligence, 1980, 14 (2), p. 205–220.

Berliner 1980 b — Berliner Hans J. Backgammon Program Beats World Champ // SIGART Newsletter, 1980, 69, p. 6–9.

Bernardo, Smith 1994 — Bernardo Jos M., Smith Adrian F. M. Bayesian Theory. 1st ed. Wiley Series in Probability & Statistics. New York: Wiley, 1994.

Birbaumer et al. 2008 — Birbaumer N., Murguialday A. R., Cohen L. Brain-Computer Interface in Paralysis // Current Opinion in Neurology, 2008, 21 (6), p. 634–638.

Bird, Layzell 2002 — Bird Jon, Layzell, Paul. The Evolved Radio and Its Implications for Modelling the Evolution of Novel Sensors // Proceedings of the 2002 Congress on Evolutionary Computation, 2002, 2, p. 1836–1841.

Blair 1957 — Blair Clay, Jr. Passing of a Great Mind: John von Neumann, a Brilliant, Jovial Mathematician, was a Prodigious Servant of Science and His Country // Life, 1957, February 25, p. 89–104.

Bobrow 1968 — Bobrow Daniel G. Natural Language Input for a Computer Problem Solving System // Semantic Information Processing / Ed. Marvin Minsky. Cambridge, MA: MIT Press, 1968, p. 146–227.

Bostrom 1997 — Bostrom Nick. “Predictions from Philosophy? How Philosophers Could Make Themselves Useful, 1997 (Unpublished manuscript. Last revised 1998, September 19).

Bostrom 2002 a — Bostrom Nick. Anthropic Bias: Observation Selection Effects in Science and Philosophy. New York: Routledge, 2002.

Bostrom 2002 b — Bostrom Nick. Existential Risks: Analyzing Human Extinction Scenarios and Related Hazards // Journal of Evolution and Technology, 2002, 9.

Bostrom 2003 a — Bostrom Nick. Are We Living in a Computer Simulation? // Philosophical Quarterly, 2003, 53 (211), p. 243–255.

Bostrom 2003 b — Bostrom Nick. Astronomical Waste: The Opportunity Cost of Delayed Technological Development // Utilitas, 2003, 15 (3), p. 308–314.

Bostrom 2003 c — Bostrom Nick. Ethical Issues in Advanced Artificial Intelligence — Cognitive, Emotive and Ethical Aspects of Decision Making in Humans and in Artificial Intelligence / Eds. Iva Smit and George E. Lasker. Windsor, ON: International Institute for Advanced Studies in Systems Research / Cybernetics, 2003, 2, p. 12–17.

Bostrom 2004 — Bostrom Nick. The Future of Human Evolution // Death and Anti-Death. Vol. 2: Two Hundred Years After Kant, Fifty Years After Turing / Ed. Charles Tandy. Palo Alto, CA: Ria University Press, 2004, 2, p. 339–371.

Bostrom 2006 a — Bostrom Nick. How Long Before Superintelligence? // Linguistic and Philosophical Investigations, 2006, 5 (1), p. 11–30.

Bostrom 2006 b — Bostrom Nick. Quantity of Experience: Brain-Duplication and Degrees of Consciousness // Minds and Machines, 2006, 16 (2), p. 185–200.

Bostrom 2006 c — Bostrom Nick. What is a Singleton? // Linguistic and Philosophical Investigations, 2006, 5 (2), p. 48–54.

Bostrom 2007 — Bostrom Nick. Technological Revolutions: Ethics and Policy in the Dark // Nanoscale: Issues and Perspectives for the Nano Century / Eds. Nigel M. de . Cameron, M. Ellen Mitchell. Hoboken, NJ: Wiley, 2007, p. 129–152.

Bostrom 2008 a — Bostrom Nick. Where Are They? Why I Hope the Search for Extraterrestrial Life Finds Nothing // MIT Technology Review, 2008, May/June, p. 72–77.

Bostrom 2008 b — Bostrom Nick. Why I Want to Be a Posthuman When I Grow Up // Medical Enhancement and Posthumanity / Eds. Bert Gordijn, Ruth Chadwick. New York: Springer, 2008, p. 107–137.

Bostrom 2008 c — Bostrom Nick. Letter from Utopia // Studies in Ethics, Law, and Technology, 2008, 2 (1), p. 1–7.

Bostrom 2009 a — Bostrom Nick. Moral Uncertainty — Towards a Solution? // Overcoming Bias (blog), 2009, January 1.

Bostrom 2009 b — Bostrom Nick. Pascal’s Mugging // Analysis, 2009, 69 (3), p. 443–445.

Bostrom 2009 c — Bostrom Nick. The Future of Humanity // New Waves in Philosophy of Technology / Eds. Jan Kyrre Berg Olsen, Evan Selinger, Sren Riis. New York: Palgrave Macmillan, 2009, p. 186–215.

Bostrom 2011 a — Bostrom Nick. Information Hazards: A Typology of Potential Harms from Knowledge // Review of Contemporary Philosophy, 2011, 10, p. 44–79.

Страницы: «« 4567891011 »»

Читать бесплатно другие книги:

Книга «Сожжённые революцией» рассказывает о парадоксальной разрушительно-созидательной сущности русс...
Все носят маски. Абсолютно все. Наивной дурочки, веселого бабника, интеллигентной заучки. Чем маска ...
Город, которого нет, – это Питер. Тут не подводят стрелки часов, в метро есть станция для тех, кто ж...
Он - обольститель, соблазнитель, игрок. Он безжалостен, холоден и непреклонен. Николас всегда добива...
Решившая уничтожить два рода, белогоров и склавинов, Мара - богиня древнеславянского ада,способствуе...
Отчего умер Высоцкий? Перепой? Передоз? Общая изношенность организма алкоголем и наркотиками? Или бы...