Почему Е=mc?? И почему это должно нас волновать Кокс Брайан
Brian Cox and Jeff Forshaw
Why Does E=mc
(And Why Should We Care?)
Научный редактор: Игорь Красиков
Издано с разрешения Apollo’s Children Ltd and Jeff Forshow и литературного агентства Diane Banks Associates Ltd
Книга рекомендована к изданию Романом Петренко
Правовую поддержку издательства обеспечивает юридическая фирма «Вегас-Лекс».
© Brian Cox and Jeff Forshaw, 2009
© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2016
Посвящается членам наших семей, а именно: Джиа, Мо, Джорджу, Дэвиду, Барбаре, Сандре, Наоми, Изабель, Сильвии, Томасу и Майклу
Предисловие
Наша цель – как можно проще описать теорию пространства-времени Эйнштейна и в то же время раскрыть перед вами ее глубинную красоту. В конечном счете это позволит нам получить знаменитое уравнение E = mc, не углубляясь в дебри математики и не используя ничего сложнее теоремы Пифагора. И не волнуйтесь, если вы ее не помните, мы расскажем вам и об этом. Не менее важна и другая цель: мы хотим, чтобы каждый, кто дочитает эту небольшую книгу до конца, получил представление о том, как современные физики воспринимают окружающий мир и как создают свои весьма полезные теории, которые в корне меняют нашу жизнь. Построив модель пространства и времени, Эйнштейн проложил путь к пониманию того, как загораются и светят звезды, открыл глубинные причины работы электродвигателей и генераторов электрического тока и, по сути, заложил фундамент всей современной физики.
Эта книга задумана как провокативная и бросающая вызов. К самой физике вопросов нет: теория Эйнштейна очень хорошо обоснована и подтверждена огромным количеством экспериментальных данных. Важно подчеркнуть, что в свое время этой теории, возможно, придется уступить место еще более точной картине мира. В науке нет универсальных истин, есть только представления об окружающем мире, которые еще не опровергнуты как ложные. Мы можем с уверенностью сказать лишь одно: теория Эйнштейна пока работает. Провокативность книги в том, что наука заставляет нас задуматься об устройстве Вселенной. У каждого из нас, будь то ученые или обычные люди, свои, интуитивные взгляды на мир, проистекающие из повседневного опыта. Однако, подвергнув их холодному и точному научному анализу, мы часто обнаруживаем, что природа противоречит нашей интуиции. В ходе чтения мы выясним, что при высоких скоростях понятия о пространстве и времени, основанные на здравом смысле, становятся непригодными и должны быть заменены чем-то новым, неожиданным и красивым. Этот урок, одновременно благотворный и смиряющий, вызывает у многих ученых чувство благоговения: Вселенная гораздо богаче, чем можно себе представить исходя из повседневного опыта. Но, пожалуй, самое замечательное, что новой физике во всем ее многообразии свойственна удивительная математическая элегантность.
Как ни трудно в это поверить, но, по сути, наука не такая уж сложная система знаний. Можно даже сказать, что наука – это попытка устранить все наши предрассудки, чтобы мы могли взглянуть на мир максимально объективно. Несмотря на определенные проблемы в достижении этой цели, мало кто поставит под сомнение способность науки объяснить нам устройство Вселенной. В действительности самое трудное – научиться не доверять тому, что мы называем здравым смыслом. Внушая нам мысль о необходимости принимать природу такой, какая она есть, а не какой должна быть согласно нашему предвзятому мнению, научный метод породил современный технологический мир. Короче говоря, научный метод работает.
В первой половине книги мы займемся выведением уравнения E = mc. Под «выведением» мы подразумеваем демонстрацию того, каким образом Эйнштейн пришел к выводу, что энергия равна массе, умноженной на квадрат скорости света, как гласит уравнение. Задумайтесь на минуту над этим соотношением, и оно покажется вам донельзя странным. Наверное, наиболее знакомый нам вид энергии – энергия движения. Если кто-то бросит в вас крикетный мяч и попадет в лицо, вы прекрасно ощутите эту энергию в виде боли. Физик может сказать, что бросающий передал энергию мячу и она оказалась передана вашему лицу, остановившему мяч. Масса – это мера количества материи, содержащейся в объекте. Крикетный мяч массивнее теннисного, но менее массивен, чем булыжник или целая планета. Уравнение E = mc говорит о том, что понятия массы и энергии взаимозаменяемы, как, например, доллар и евро, а квадрат скорости света представляет собой обменный курс. Но как же Эйнштейн мог прийти к такому выводу? И как скорость света попала в уравнение, связывающее энергию и массу? Мы не предполагаем наличия у читателя каких-либо предварительных научных знаний и стараемся по возможности избегать математических формул, но тем не менее все же стремимся предоставить настоящее, истинно научное (а не просто популярное) объяснение. В связи с этим надеемся предложить вам нечто новое.
В последних главах книги мы увидим, что уравнение E = mc лежит в основе нашего понимания устройства Вселенной. Почему светят звезды? Почему ядерная энергия гораздо эффективнее угля или нефти? Что такое масса? Эти вопросы приведут нас в мир современной физики элементарных частиц, Большого адронного коллайдера (БАК) в Европейском центре ядерных исследований (Centre Europen pour la Recherche Nuclaire, CERN) в Женеве, а также к поиску частицы Хиггса[1], которая поможет объяснить происхождение массы. Книга завершается рассказом о замечательном открытии Эйнштейна, доказывающем, что структура пространства и времени отвечает за гравитацию, и странной идеей по поводу того, что Земля «падает по прямой линии» вокруг Солнца.
1. Пространство и время
Что для вас значат слова «пространство» и «время»? Возможно, вы представляете себе пространство как тьму между звездами, которую видите, глядя на небо холодной зимней ночью? Или как пустоту между Землей и Луной, в которой мчится космический корабль со звездами и полосами, пилотируемый парнем по имени Базз[2]? Время можно представить как тиканье ваших часов или осеннее превращение листьев из зеленых в красные и желтые, когда Солнце проходит по небу все ниже в пятимиллиардный раз. Мы все интуитивно ощущаем пространство и время; они – неотъемлемая часть нашего существования. Мы движемся через пространство на поверхности голубой планеты, пока время ведет свой отсчет.
Ряд научных открытий, сделанных в последние годы XIX столетия на первый взгляд в совершенно не связанных между собой областях, побудил физиков пересмотреть простые и интуитивные картины пространства и времени. В начале XX века Герман Минковский, коллега и учитель Альберта Эйнштейна, написал свой знаменитый некролог древней сфере с орбитами, по которым путешествовали планеты: «Отныне пространство само по себе и время само по себе превратились не более чем в тени, и имеется только своего рода смешение этих двух понятий».
Что Минковский подразумевал под смешением пространства и времени? Чтобы разобраться в сути этого почти мистического утверждения, необходимо понять специальную теорию относительности Эйнштейна, которая представила миру наиболее известное из всех уравнений, E = mc, и навсегда поместила в центр нашего понимания устройства Вселенной величину, обозначаемую символом c – скорость света.
Специальная теория относительности Эйнштейна – это фактически описание пространства и времени. Центральное место в ней занимает понятие особой скорости, которую невозможно превзойти никаким ускорением, каким бы сильным оно ни было. Эта скорость – скорость света в вакууме, составляющая 299 792 458 метров в секунду. Путешествуя с такой скоростью, луч света, покинувший Землю, через восемь минут пролетит мимо Солнца, за 100 тысяч лет пресечет нашу Галактику Млечный Путь, а через два миллиона лет достигнет ближайшей соседней галактики – Туманности Андромеды. Сегодня ночью крупнейшие телескопы Земли будут вглядываться в черноту межзвездного пространства и ловить древние лучи света от дальних, давно умерших звезд на краю наблюдаемой Вселенной. Эти лучи начали свое путешествие более 10 миллиардов лет назад, за несколько миллиардов лет до возникновения Земли из сжимающегося облака межзвездной пыли. Скорость света велика, но далеко не бесконечна. По сравнению c огромными расстояниями между звездами и галактиками она может казаться удручающе низкой – настолько, что мы в состоянии ускорить очень малые объекты до скоростей, отличающихся от скорости света на доли процента, с помощью такой техники, как 27-километровый Большой адронный коллайдер в Европейском центре ядерных исследований в Женеве.
Существование специальной, предельной космической скорости – достаточно странная концепция. Как мы узнаем позже из этой книги, связь этой скорости со скоростью света – своего рода подмена понятий. Предельная космическая скорость играет гораздо более важную роль во Вселенной Эйнштейна, и есть веская причина, по которой луч света перемещается именно с данной скоростью. Однако мы к этому еще вернемся. А пока достаточно сказать, что по достижении объектами этой особой скорости начинают происходить странные вещи. Как можно предотвратить превышение объектом этой скорости? Это выглядит так, словно существует универсальный закон физики, не позволяющий вашей машине разогнаться свыше 90 километров в час, независимо от мощности двигателя. Но в отличие от ограничения скорости автомобиля выполнение этого закона обеспечивается не какой-то неземной полицией. Его нарушение становится абсолютно невозможным благодаря самому построению ткани пространства и времени, и это исключительное везение, поскольку в противном случае мы имели бы дело с очень неприятными последствиями. Позже мы увидим, что если бы можно было превышать скорость света, то мы могли бы построить машину времени, переносящую нас в любую точку истории. Например, мы могли бы отправиться в период до нашего рождения и случайно или преднамеренно помешать встрече родителей. Это неплохой сюжет для фантастической литературы, но не для создания Вселенной. И действительно, Эйнштейн выяснил, что Вселенная устроена совсем не так. Пространство и время настолько тонко переплетены, что подобные парадоксы недопустимы. Однако все имеет свою цену, и в данном случае эта цена – наш отказ от глубоко укоренившихся представлений о пространстве и времени. Во Вселенной Эйнштейна движущиеся часы идут медленнее, движущиеся объекты сокращаются в размере и мы можем путешествовать на миллиарды лет в будущее. Это Вселенная, где человеческая жизнь может растянуться почти до бесконечности. Мы могли бы наблюдать угасание Солнца, испарение океанов, погружение Солнечной системы в вечную ночь, рождение звезд из облаков межзвездной пыли, формирование планет и, возможно, зарождение жизни в новых, пока еще не сформировавшихся мирах. Вселенная Эйнштейна позволяет нам путешествовать в далекое будущее, вместе с тем удерживая двери в прошлое плотно закрытыми.
К концу этой книги мы увидим, как Эйнштейн был вынужден прийти к столь фантастической картине Вселенной и как ее корректность была неоднократно доказана в ходе большого количества научных экспериментов и технологического применения. Например, спутниковая навигационная система в автомобиле разработана с учетом того факта, что время на орбите спутников и на земной поверхности движется с разной скоростью. Картина Эйнштейна радикальна: пространство и время – совсем не то, чем нам кажутся.
Но не будем забегать вперед. Чтобы понять и оценить радикальное открытие Эйнштейна, мы должны сначала очень тщательно обдумать две концепции, лежащие в основе теории относительности, – пространство и время.
Представьте, что вы читаете книгу во время полета в самолете. В 12:00 вы взглянули на часы и решили сделать перерыв и прогуляться по салону, чтобы поговорить с другом, сидящим на десять рядов впереди. В 12:15 вы вернулись на место, сели и вновь взяли в руки книгу. Здравый смысл подсказывает, что вы вернулись на то же место: то есть прошли те же десять рядов назад, а когда вернулись, ваша книга находилась там же, где вы ее оставили. А теперь давайте немного задумаемся над концепцией «то же самое место». Поскольку интуитивно понятно, что мы имеем в виду, говоря о некоем месте, все это может восприниматься как чрезмерный педантизм. Мы можем пригласить друга на бокал пива в бар, и бар никуда не переедет к тому времени, когда мы до него дойдем. Он будет на том же месте, где мы его оставили, вполне возможно, накануне вечером. В этой вводной главе многие вещи наверняка покажутся вам излишне педантичными, но все же продолжайте читать. Тщательное обдумывание этих на первый взгляд очевидных концепций проведет нас по стопам Аристотеля, Галилео Галилея, Исаака Ньютона и Эйнштейна. Так как же точно определить, что мы подразумеваем под «тем же самым местом»? Мы уже знаем, как сделать это на поверхности Земли. Земной шар покрыт воображаемыми линиями параллелей и меридианов, так что любое место на его поверхности можно описать двумя числами, представляющими собой координаты. Например, британский город Манчестер расположен в точке с координатами 53 градуса 30 минут северной широты и 2 градуса 15 минут западной долготы. Эти два числа говорят нам о том, где именно находится Манчестер, при условии согласования положения экватора и нулевого меридиана. Следовательно, положение любой точки как на поверхности Земли, так и за ее пределами можно зафиксировать с помощью воображаемой трехмерной сетки, распространяющейся от поверхности Земли вверх. На самом деле такая сетка может проходить и вниз, через центр Земли, и выходить на другой ее стороне. С ее помощью можно описать положение любой точки – на поверхности Земли, под землей или в воздухе. В действительности нам нет необходимости останавливаться на нашей планете. Сетку можно протянуть до Луны, Юпитера, Нептуна, за пределы Млечного Пути, вплоть до самого края наблюдаемой Вселенной. Такая большая, возможно, бесконечно большая сетка позволяет вычислить местоположение любого объекта во Вселенной, что, перефразируя Вуди Аллена, может очень пригодиться тому, кто не в состоянии вспомнить, куда что положил. Стало быть, эта сетка определяет область, где находится все сущее, своего рода гигантскую коробку, содержащую все объекты Вселенной. У нас даже может возникнуть соблазн назвать эту гигантскую область пространством.
Но вернемся к вопросу, что означает «одно и то же место», и к примеру с самолетом. Можно предположить, что в 12:00 и 12:15 вы находились в одной и той же точке пространства. Теперь представим, как выглядит последовательность событий с позиции человека, который наблюдает за самолетом с поверхности Земли. Если самолет пролетает над его головой со скоростью, скажем, около тысячи километров в час, то за период с 12:00 до 12:15 вы переместились, с его точки зрения, на 250 километров. Другими словами, в 12:00 и 12:15 вы находились в разных точках пространства. Так кто же прав? Кто двигался, а кто оставался на одном и том же месте?
Если вы не в состоянии ответить на этот будто бы простой вопрос, то вы оказались в хорошей компании. Аристотель, один из величайших мыслителей Древней Греции, был бы абсолютно неправ, поскольку однозначно бы заявил, что движется пассажир самолета. Аристотель считал, что Земля неподвижна и находится в центре Вселенной, а Солнце, Луна, планеты и звезды вращаются вокруг Земли, будучи закреплены на 55 концентрических прозрачных сферах, вложенных друг в друга, как матрешки. Таким образом, Аристотель разделял наше интуитивное представление о пространстве как некой области, в которой размещены Земля и небесные сферы. Для современного человека картина Вселенной, состоящей из Земли и вращающихся небесных сфер, выглядит совершенно нелепой. Но подумайте сами, к какому выводу вы могли прийти, если бы никто не сказал вам, что Земля вращается вокруг Солнца, а звезды представляют собой не что иное, как очень удаленные солнца, среди которых есть звезды в тысячи раз ярче ближайшей к нам звезды, хотя они и расположены в миллиардах километров от Земли? Безусловно, у нас не было бы ощущения, что Земля дрейфует в невообразимо огромной Вселенной. Наше современное мировоззрение сформировалось ценой больших усилий и зачастую противоречит здравому смыслу. Если бы картина мира, которую мы создавали на протяжении тысячелетий экспериментов и размышлений, была очевидной, то великие умы прошлого (такие как Аристотель) сами бы разгадали эту загадку. Стоит вспомнить об этом, когда какая-либо из описанных в книге концепций покажется вам слишком сложной. Величайшие умы прошлого согласились бы с вами.
Чтобы найти изъян в ответе Аристотеля, давайте на минуту примем его картину мира и посмотрим, к чему это приведет. Согласно Аристотелю, мы должны заполнить пространство линиями воображаемой сетки, связанной с Землей, и определить с ее помощью, кто где находится и кто движется, а кто нет. Если представить себе пространство как заполненный объектами ящик, с Землей, зафиксированной в центре, то будет очевидно, что именно вы, пассажир самолета, меняете свое местоположение в ящике, тогда как наблюдающий за вашим полетом человек стоит не шевелясь на поверхности Земли, неподвижно висящей в пространстве. Другими словами, имеется абсолютное движение, а значит, и абсолютное пространство. Объект пребывает в абсолютном движении, если со временем меняет свое местоположение в пространстве, которое вычисляется с помощью воображаемой сетки, привязанной к центру Земли.
Безусловно, проблема такой картины в том, что Земля не покоится неподвижно в центре Вселенной, а представляет собой вращающийся шар, движущийся по орбите вокруг Солнца. Фактически Земля движется относительно Солнца со скоростью около 107 тысяч километров в час. Если вы ляжете вечером в постель и проспите восемь часов, то к моменту пробуждения переместитесь более чем на 800 тысяч километров. Вы даже вправе заявить, что примерно через 365 дней ваша спальня вновь окажется в той же точке пространства, так как Земля завершит полный оборот вокруг Солнца. Следовательно, вы можете решить лишь немного изменить картину Аристотеля, оставив нетронутым сам дух его учения. Почему бы просто не перенести центр координатной сетки на Солнце? Увы, эта достаточно простая мысль тоже неверна, поскольку Солнце также движется по орбите вокруг центра Млечного Пути. Млечный Путь – это наш локальный остров во Вселенной, состоящий из более чем 200 миллиардов звезд. Только представьте, насколько велика наша Галактика и сколько времени требуется, чтобы ее обойти. Солнце с Землей на буксире двигается по Млечному Пути со скоростью около 782 тысячи километров в час на расстоянии примерно в 250 квадриллионов километров от центра Галактики. При подобной скорости понадобится около 226 миллионов лет, чтобы совершить полный оборот. В таком случае, может, достаточно будет еще одного шага, чтобы сохранить картину мира Аристотеля? Разместим начало сетки в центре Млечного Пути и посмотрим, что же было в вашей спальне, когда место, в котором она находится, пребывало в этой точке пространства в прошлый раз. А в прошлый раз на этом месте динозавр ранним утром поглощал листья доисторических деревьев. Но и эта картина ошибочна. В действительности галактики «разбегаются», удаляясь друг от друга, и чем дальше от нас расположена галактика, тем быстрее она удаляется. Наше движение среди мириады галактик, образующих Вселенную, представить себе крайне трудно.
Так что в картине мира Аристотеля наблюдается явная проблема, поскольку она не позволяет точно определить, что значит «оставаться в неподвижности». Другими словами, невозможно рассчитать, где нужно разместить центр воображаемой координатной сетки, а стало быть, и решить, что находится в движении, а что стоит на месте. Самому Аристотелю не приходилось сталкиваться с данной проблемой, потому что его картина неподвижной Земли, окруженной вращающимися сферами, не оспаривалась почти две тысячи лет. Наверное, это следовало сделать, но, как мы уже говорили, подобные вещи не всегда очевидны даже для величайших умов. Клавдий Птолемей, которого мы знаем как просто Птолемея, работал во II столетии в великой Александрийской библиотеке и внимательно изучал ночное небо. Ученого беспокоило на первый взгляд необычное движение пяти известных на то время планет, или «блуждающих звезд» (название, от которого произошло слово «планета»). Многомесячные наблюдения с Земли показывали, что планеты не движутся на фоне звезд по ровному пути, а выписывают странные петли. Это необычное движение, обозначаемое термином «ретроградное», было известно за много тысячелетий до Птолемея. Древние египтяне описывали Марс как планету, которая «движется назад». Птолемей был согласен с Аристотелем в том, что планеты вращаются вокруг неподвижной Земли, но, чтобы объяснить ретроградное движение, ему пришлось прикрепить планеты к эксцентричным вращающимся колесам, которые, в свою очередь, были прикреплены к вращающимся сферам. Такая весьма сложная, но далеко не элегантная модель позволяла объяснить движение планет по небу. Истинного объяснения ретроградного движения пришлось ждать до середины XVI века, когда Николай Коперник предложил более изящную (и более точную) версию, заключавшуюся в том, что Земля не покоится в центре Вселенной, а вращается вокруг Солнца вместе с остальными планетами. У работы Коперника нашлись серьезные противники, поэтому она была запрещена католической церковью, и запрет был снят только в 1835 году. Точные измерения Тихо Браге и работы Иоганна Кеплера, Галилео Галилея и Исаака Ньютона не только полностью подтвердили правоту Коперника, но и привели к созданию теории движения планет в виде законов Ньютона о движении и гравитации. Эти законы представляли собой лучшее описание движения «блуждающих звезд» и вообще всех объектов (от вращающихся галактик до артиллерийских снарядов) под воздействием гравитации. Такую картину мира не ставили под сомнение до 1915 года, когда была сформулирована общая теория относительности Эйнштейна.
Постоянно меняющееся представление о положении Земли, планет и их движении по небу должно послужить уроком для тех, кто абсолютно убежден в каком-то своем знании. Есть много теорий об окружающем мире, которые на первый взгляд кажутся самоочевидной истиной, и одна из них – о нашей неподвижности. Будущие наблюдения могут нас удивить и озадачить, что во многих случаях и происходит. Хотя мы не должны болезненно реагировать на то, что природа часто вступает в противоречие с интуитивными представлениями племени наблюдательных потомков приматов, представляющих собой углеродную форму жизни на небольшой каменной планете, вращающейся вокруг ничем не примечательной немолодой звезды на задворках Млечного Пути. Теории пространства и времени, которые мы обсуждаем в этой книге, на самом деле могут оказаться (и, скорее всего, окажутся) не более чем частными случаями пока еще не сформулированной более глубокой теории. Наука приветствует неопределенность и признает, что это ключ к новым открытиям.
Галилео Галилей, родившийся через 20 лет после того, как Коперник предложил свою гелиоцентрическую модель Вселенной, глубоко задумывался о смысле движения. По всей вероятности, его интуитивные представления не отличались от наших: хотя Земля кажется статичной, движение планет в небе – очень серьезный довод против этого. В момент великого озарения Галилей сделал чрезвычайно важный вывод из этого парадокса. Мы считаем, что неподвижны, хотя на самом деле движемся по орбите вокруг Солнца, поскольку не существует никакого способа даже теоретически решить, что именно находится в состоянии покоя, а что движется. Иными словами, имеет смысл говорить только о движении относительно чего-то еще. Это крайне важная концепция, но для того чтобы оценить ее в полной мере, необходимо немного поразмышлять. Она кажется очевидной, потому что, когда вы сидите с книгой в самолете, книга неподвижна относительно вас. Если вы положите ее на столик перед собой, расстояние между вами и нею меняться не будет. И конечно, с точки зрения человека на земле книга движется по воздуху вместе с самолетом. Истинный смысл озарения Галилея в том, что эти утверждения – все, что мы можем сказать. А если все, что мы можем сказать о книге, – это то, как она движется относительно вас, когда вы сидите в кресле самолета, или относительно земной поверхности, или относительно Солнца или Млечного Пути (всегда относительно чего-то другого), то абсолютное движение становится бесполезной концепцией.
Это довольно провокационное утверждение звучит достаточно поверхностно, как часто бывает с изречениями в стиле дзен, которые произносят предсказатели. Однако в данном случае речь идет о действительно великом озарении – Галилей достоин своей репутации. Чтобы понять, почему, давайте попытаемся определить, полезна ли с научной точки зрения сетка координат Аристотеля, которая позволила бы нам судить, находится что-либо в абсолютном покое или в абсолютном движении. Польза с научной точки зрения означает, что идея имеет наблюдаемые последствия, другими словами, что присутствует некий эффект, который может быть выявлен путем эксперимента. Под экспериментом мы подразумеваем любые измерения: качания маятника, цвета пламени свечи или столкновения субатомных частиц в БАК (мы еще вернемся к этой теме). Если у идеи нет наблюдаемых последствий, то она не нужна для понимания устройства Вселенной, хотя и может иметь некую призрачную ценность.
Это очень эффективный способ отделить зерна от плевел в мире, изобилующем разнообразными идеями и мнениями. Посредством аналогии с фарфоровым чайником философ Бертран Рассел[3] проиллюстрировал бесполезность концепций, не имеющих наблюдаемых последствий. Рассел заявил, что, по его мнению, между Землей и Марсом по орбите летает маленький фарфоровый чайник, который настолько крохотный, что его не могут обнаружить даже самые мощные из существующих телескопов. Если же будет построен телескоп побольше и после исчерпывающего (и требующего массы времени) изучения всего неба он тоже не найдет никаких доказательств существования такого чайника, Рассел заявит, что чайник немного меньше, чем ожидалось, но все еще находится там. Хотя чайник может так и остаться необнаруженным, по мнению Рассела, со стороны рода человеческого было бы неприемлемо сомневаться в его существовании.
На самом деле человечество должно уважать позицию Рассела, какой бы абсурдной она ни казалась. Он не пытался защитить свое право на личные заблуждения, а имел в виду, что построение теории, которая не может быть ни доказана, ни опровергнута посредством наблюдений, бесполезно в том смысле, что ничему нас не учит, как бы страстно мы в нее ни верили. Вы можете придумать какой угодно объект или идею, но, если нет способа изучить их или их последствия путем наблюдения, вы не сделаете никакого вклада в научное понимание Вселенной. Аналогичным образом идея абсолютного движения будет что-то значить в научном контексте, только если мы сможем провести эксперимент, обнаруживающий такое движение. Например, мы могли бы создать физическую лабораторию в самолете и проводить высокоточные измерения всех мыслимых физических явлений в последней доблестной попытке обнаружить свое движение. Мы могли бы измерять период качания маятника, проводить электрические эксперименты с батареями, электрическими генераторами и двигателями, наблюдать протекание ядерных реакций и измерять полученное в результате излучение. В принципе, имея в своем распоряжении достаточно большой самолет, мы могли бы повторить любой физический эксперимент, когда-либо проводившийся в истории человечества. Вот ключевой момент, который лежит в основе этой книги и представляет собой один из краеугольных камней современной физики: если такой самолет не ускоряется и не замедляется, то ни один из экспериментов не покажет, что мы находимся в движении. Даже взгляд в окно ничего нам не скажет, потому что совершенно корректным утверждением может быть то, что это земля летит под нами со скоростью тысяча километров в час, а мы по-прежнему неподвижны. Лучшее, что можно сделать, – сказать, что мы неподвижны относительно самолета или движемся по отношению к поверхности Земли. В этом и состоит принцип относительности Галилея: не существует такого понятия, как абсолютное движение, потому что оно не может быть выявлено экспериментально. Скорее всего, это не будет таким уж потрясением, поскольку на самом деле мы уже знаем это на интуитивном уровне. Хорошим примером будет ситуация, когда мы сидим в неподвижном поезде, а состав на соседнем пути начинает медленно двигаться: на какую-то долю секунды у нас возникает ощущение, что движение начали мы. Нам очень трудно обнаружить абсолютное движение, потому что его попросту не существует.
Все это может показаться просто философскими размышлениями, но на самом деле они ведут к глубоким выводам о природе самого пространства и позволяют сделать первый шаг на пути к теории относительности Эйнштейна. Так какой же вывод о пространстве можно извлечь из рассуждений Галилея? А вывод такой: если обнаружить абсолютное движение невозможно в принципе, значит, концепция некой особой координатной сетки, которая определяет понятие «находиться в состоянии покоя», бессмысленна, соответственно, и концепция абсолютного пространства также не имеет смысла.
Это важно, поэтому давайте обсудим все более подробно. Мы уже установили, что в случае принятия специальной аристотелевской сетки координат, охватывающей всю Вселенную, движение относительно этой сетки можно было бы определить как абсолютное. Мы также утверждаем, что, поскольку провести эксперимент, который позволил бы нам определить, находимся мы в движении или нет, невозможно, мы должны отбросить идею такой сетки – просто потому, что никогда не сможем выяснить, к чему она должна быть привязана. Но как же тогда вычислить абсолютное положение объекта? Иными словами, где наше место во Вселенной? Без концепции сетки координат Аристотеля эти вопросы не имеют научного смысла. Все, о чем мы можем говорить, – это позиции объектов относительно друг друга. Таким образом, способа определить абсолютное положение в пространстве не существует, а значит, и само понятие абсолютного пространства не имеет смысла. Представление о Вселенной как о гигантском ящике, в котором движутся различные объекты, не предполагает экспериментального подтверждения. Переоценить важность этих рассуждений невозможно. Великий физик Ричард Фейнман[4] однажды заметил, что независимо от того, насколько красива ваша теория и насколько вы умны или известны, если она не согласуется с экспериментом, она неверна. Это утверждение – ключевое в науке. Если взглянуть на него с другой стороны, то можно сказать, что если некая концепция не поддается проверке экспериментальным путем, что не позволяет убедиться в ее достоверности, то такая концепция в любом случае лишена значимости. Конечно, это не мешает нам стоять на своем и продолжать продвигать свою идею, но опасность такого предположения заключается в том, что мы рискуем воспрепятствовать будущему развитию науки, придерживаясь предвзятого мнения. Следовательно, из-за отсутствия каких-либо возможных средств определения специальной координатной сетки мы освобождаемся от понятия абсолютного пространства, подобно тому как избавились от концепции абсолютного движения. Что же дальше? Освобождение от оков абсолютного пространства сыграло решающую роль в разработке Эйнштейном теории пространства и времени, но это подождет до следующей главы. Пока же мы просто получили свободу, но еще не воспользовались ею. Чтобы подогреть интерес, давайте лишь укажем, что при отсутствии абсолютного пространства нет никаких причин, почему два наблюдателя должны обязательно видеть одинаковый размер объекта. Что вас действительно поразит, так это то, что диаметр мячика четыре сантиметра без абсолютного пространства может таким и не быть.
Пока что мы рассматривали некоторые детали взаимосвязи между движением и пространством. А что можно сказать о времени? Движение выражается как скорость, а скорость может быть измерена в километрах в час, то есть как расстояние, пройденное в пространстве за определенный промежуток времени. Таким образом, понятие времени уже фактически вошло в наши рассуждения. Что же мы можем сказать о времени? Есть ли какой-то эксперимент, который мог бы доказать, что время абсолютно, или мы должны отбросить и эту, еще более глубоко укоренившуюся концепцию? Хотя Галилей отверг понятие абсолютного пространства, в его рассуждениях нет ничего, что объяснило бы нам концепцию абсолютного времени. Согласно Галилею, время неизменно. То есть мы можем представить себе маленькие идеальные часы, синхронизированные таким образом, чтобы показывать одно и то же время в любой точке Вселенной. Одни часы могут быть на самолете, другие на Земле, третьи (очень прочные) на поверхности Солнца, еще одни – на орбите вокруг далекой галактики. При условии, что эти часы – идеальные приборы для измерения времени, они показывают одно и то же время – ныне и вовеки веков. Удивительно, но это на первый взгляд очевидное предположение вступает в прямое противоречие с утверждением Галилея о том, что эксперимент не может нам сказать, находимся ли мы в состоянии абсолютного движения. Каким бы невероятным это ни казалось, экспериментальные доказательства, окончательно уничтожившие понятие абсолютного времени, получены в ходе экспериментов, которые многие из нас помнят по школьному курсу физики: батарейки, провода, двигатели и генераторы. Чтобы разобраться в понятии абсолютного времени, нам придется вернуться в XIX столетие, золотой век открытия электричества и магнетизма.
2. Скорость света
Майкл Фарадей, сын йоркширского кузнеца, родился в Южном Лондоне в 1791 году. Он был самоучкой, бросившим школу в 14 лет, чтобы стать учеником переплетчика, но удача улыбнулась ему на научном поприще. Это случилось после посещения в 1811 году в Лондоне лекции корнуоллского ученого сэра Гемфри Дэви. Фарадей отправил Дэви заметки, которые делал на лекции, и тот был настолько ими поражен, что предложил Фарадею место ассистента. С этого началась карьера одного из столпов науки XIX столетия и величайшего физика-экспериментатора всех времен. Дэви говорил, что Фарадей – его крупнейшее научное открытие.
Ученые XXI столетия с завистью оглядываются на события начала XIX века. Фарадею не надо было сотрудничать с 10 тысячами ученых и инженеров в CERN[5] или запускать на орбиту телескоп размером с два автобуса, чтобы сделать выдающиеся открытия. CERN Фарадея вполне помещался на его столе и позволял ему вести наблюдения, приведшие к разрушению понятия абсолютного времени. Безусловно, за многие столетия масштаб науки изменился – отчасти потому, что те аспекты окружающего мира, которые не требуют высокотехнологичного оборудования для проведения наблюдений, уже досконально изучены. Нельзя сказать, что в современной науке нет примеров, когда простые эксперименты дают важные результаты, но в общем случае, чтобы раздвинуть границы познания, нужна сложная техника. В Лондоне начала викторианской эпохи Фарадею не требовалось ничего более экзотического или дорогого, чем моток проволоки, магниты и компас, чтобы получить первые экспериментальные доказательства того, что время представляет собой совсем не то, чем нам кажется. Он собрал их, занимаясь тем, что больше всего нравится ученым, – просто работал с недавно открытым электричеством, играл с ним и внимательно наблюдал. Вы можете представить эти темные лакированные столы с тенями от проводов, колеблющимися в свете газовых ламп. Хотя Дэви и поразил публику демонстрацией электрического света в 1802 году в Королевском институте, миру пришлось ждать почти до конца столетия, пока в 1870 году Томас Эдисон не создал пригодную для применения лампочку накаливания. Но в начале XIX века электричество было совершенно новой областью физики и инженерного дела.
Фарадей обнаружил, что если двигать магнит через катушку провода, то во время перемещения магнита в проводе генерируется электрический ток. Он также заметил, что если передать импульс электрического тока по проводу, то стрелка компаса, расположенного вблизи этого провода, отклонится от равновесного состояния. Компас представляет собой не более чем детектор магнитного поля. При отсутствии электрических импульсов в проволоке он выравнивается по направлению магнитного поля и указывает на северный полюс Земли. Таким образом, электрические импульсы создают магнитное поле, такое же, как и магнитное поле Земли, хотя и более мощное – поскольку оно сильно отклоняет стрелку компаса во время прохождения импульса электрического тока. Фарадей понял, что обнаружил глубинную связь между магнетизмом и электричеством, двумя явлениями, которые на первый взгляд кажутся абсолютно не связанными друг с другом. Что общего у электрического тока, проходящего через лампочку, когда вы щелкаете выключателем на стене в гостиной, с силой, притягивающей магнитные игрушки к двери вашего холодильника? Безусловно, такая связь неочевидна, но все же Фарадей посредством внимательных наблюдений установил, что электрический ток создает магнитное поле, а движущиеся магниты генерируют электрический ток. Эти два простых явления, которые сегодня известны как электромагнитная индукция, лежат в основе как производства электроэнергии на всех электростанциях, так и работы любых электродвигателей, используемых нами каждый день, – от компрессора в холодильнике до механизма извлечения диска в DVD-плеере. Вклад Фарадея в развитие индустриального мира трудно переоценить.
Однако достижения в фундаментальной физике редко связаны только с экспериментами. Фарадей хотел понять механизм, лежавший в основе его наблюдений. «Как может быть, – спрашивал он себя, – что магнит, физически не подключенный к проводу, тем не менее генерирует в нем электрический ток? И как может импульс электрического тока заставить повернуться стрелку компаса?» Для этого сквозь пустое пространство между магнитом, проволокой и компасом должно пройти какое-то воздействие: катушке проволоки необходимо почувствовать магнит, проходящий через нее, а стрелке компаса – протекающий на расстоянии ток. В наше время это воздействие известно как электромагнитное поле. Мы уже использовали слово «поле» в контексте магнитного поля Земли. Поскольку это слово употребляется в повседневной жизни, вы, вероятно, не обратили на него никакого внимания. На самом деле поля – одно из наиболее абстрактных понятий в физике. С ними также связана одна из самых плодотворных концепций, необходимых для развития более глубокого понимания природы. Уравнения, лучше всего описывающие поведение миллиардов субатомных частиц, из которых состоит эта книга, а также рука, которой вы ее держите перед глазами, и сами ваши глаза – это уравнения полей. Фарадей представлял себе поля в виде совокупности линий (он их называл линиями тока), исходящих из магнитов и токоведущих проводов. Если вы когда-либо подносили магнит под лист бумаги, на который насыпаны железные опилки, то наверняка видели эти линии. Простым количественным примером поля, с которым вы ежедневно сталкиваетесь, может служить температура воздуха в вашей комнате. Возле радиатора воздух будет горячее, возле окна – прохладнее. Представьте, что вы измерили температуру воздуха в каждой точке комнаты и записали это огромное количество чисел в таблицу. Эта таблица – формальное описание температурного поля в вашей комнате. В случае магнитного поля вы можете представить, что фиксируете отклонение стрелки компаса в каждой точке помещения и составляете формальное описание магнитного поля в комнате. Поле субатомных частиц еще более абстрактно. Его значение в той или иной точке пространства говорит о вероятности обнаружения частицы в этой точке в тот момент, когда вы на нее посмотрите. Мы снова встретимся с этими полями в главе 7.
Вы можете задать вполне резонный вопрос: зачем вообще вводить абстрактное понятие поля? Почему бы не работать с тем, что поддается измерению, – с электрическим током и отклонением стрелки компаса?
Фарадей нашел эту идею привлекательной, потому что в глубине души был практиком – черта, свойственная многим великим экспериментаторам и инженерам времен промышленной революции. Он инстинктивно создал в воображении механическую картину связи между движущимися магнитами и катушкой провода, и поля в его представлении служили мостами, устанавливавшими физическую связь между объектами, которая, согласно его экспериментам, обязательно должна существовать. Однако имеется и более веская причина того, почему поля необходимы и почему современные физики считают их такими же реальными, как электрический ток или отклонения стрелки компаса. Ключ к этому глубокому пониманию природы лежит в работах шотландского физика Джеймса Максвелла. В 1931 году, к столетию со дня рождения Максвелла, Эйнштейн описал его труды по теории электромагнетизма как «самые глубокие и плодотворные работы в физике со времен Ньютона». В 1864 году, за три года до смерти Фарадея, Максвеллу удалось вывести систему уравнений, описывающую все электрические и магнитные явления, которые обнаружил и скрупулезно задокументировал Фарадей и многие другие ученые в первой половине XIX столетия.
Уравнения – самый мощный инструмент физиков, помогающий им в стремлении познать окружающий мир. Но в то же время это одна из наиболее кошмарных вещей, с которыми большинство из нас сталкивается в школьные годы. Прежде чем продолжить, мы должны обратиться к тем читателям, у которых появились дурные предчувствия. Понятно, что у вас разная математическая подготовка и вы по-разному относитесь к формулам и уравнениям. Мы просим тех, кто уверен в себе и своих знаниях, проявить терпение и надеемся, что вы не почувствуете себя слишком уязвленными нашей подачей материала. На простейшем уровне уравнение позволяет предсказать результаты эксперимента даже без необходимости его проведения. Очень простой пример, который мы будем использовать в книге для доказательства всяких невероятных фактов о природе пространства и времени, – знаменитая теорема Пифагора, связывающая длины сторон прямоугольного треугольника.
Пифагор утверждал, что квадрат гипотенузы равен сумме квадратов катетов. Математически теорему Пифагора можно записать как x + y = z, где z – длина гипотенузы (самой длинной стороны прямоугольного треугольника), а x и y – длины двух других сторон, называемых катетами (рис. 1). Символы x, y и z рассматриваются как заполнители для фактических длин сторон, а x – математическая запись, означающая x, умноженный на x. Например, 32 = 9, 72 = 49 и так далее. В использовании символов x, y и z нет ничего особенного. Мы могли бы применить в качестве заполнителя любой символ. Возможно, теорема Пифагора покажется вам более понятной, если мы запишем ее как . В этот раз длина гипотенузы представлена смайликом. Вот пример применения теоремы: если длины катетов прямоугольного треугольника равны трем и четырем сантиметрам, то, согласно теореме Пифагора, длина гипотенузы этого треугольника будет равна пяти сантиметрам, поскольку 32 + 42 = 52. Безусловно, числа не обязательно должны быть целыми. Измерение длин сторон треугольника с помощью линейки – это эксперимент, хотя и довольно скучный. Пифагор избавил нас от проблем, выведя уравнение, позволяющее вычислить длину третьей стороны прямоугольного треугольника, зная длины двух других. Ключевой момент состоит в том, что для физика уравнения выражают отношения между физическими объектами и представляют собой способ точного описания происходящего в реальном мире.
Рис. 1
Уравнения Максвелла намного сложнее с математической точки зрения, но, по существу, выполняют ту же работу. Например, они могут сказать вам, в каком направлении станет отклоняться стрелка компаса при прохождении по проводу импульса электрического тока, – без необходимости смотреть на компас. Однако самое замечательное в уравнениях то, что они позволяют выявить глубокие связи между величинами, не являющимися непосредственными результатами экспериментов, и могут привести к гораздо более глубокому пониманию природы. К уравнениям Максвелла это утверждение относится в полной мере. Центральное место в математическом описании электрических и магнитных явлений у Максвелла занимают абстрактные электрическое и магнитное поля, впервые описанные Фарадеем. Максвелл записал свои уравнения на языке полей просто потому, что у него не было иного выбора. Поля были единственным способом объединить широкий спектр электрических и магнитных явлений, обнаруженных Фарадеем и его коллегами, в единый унифицированный набор уравнений. Подобно тому как уравнение Пифагора выражает связь между длинами сторон прямоугольного треугольника, уравнения Максвелла демонстрируют связь между электрическими зарядами и токами, а также электрическим и магнитным полями, которые они создают. Гениальность Максвелла в том, что он вывел концепцию полей из тени и положил ее в основу теории электромагнетизма. Если бы вы, например, спросили Максвелла, почему батарея дает текущий по проводу ток, то он ответил бы следующее: «Потому что батарея создает в проводе электрическое поле, а поле заставляет ток перемещаться». Если бы вы поинтересовались, почему стрелка компаса отклоняется под воздействием расположенного поблизости магнита, он мог бы ответить так: «Потому что вокруг магнита есть магнитное поле, которое приводит к отклонению стрелки». А на вопрос, почему движущийся магнит вызывает протекание тока в катушке провода, Максвелл мог бы дать такое объяснение: «Изменение потока магнитного поля внутри петли из провода обусловливает появление электрического поля, которое вызывает движение тока». В случае каждого из этих очень разных явлений описание всегда возвращается к наличию электрических и магнитных полей и их взаимодействию друг с другом. В физике введение новой объединяющей концепции нередко дает возможность упростить и уточнить представления о нескольких явлениях, которые на первый взгляд кажутся не связанными друг с другом. Впрочем, это относится не только к физике, но и к науке в целом. В случае Максвелла такой подход привел к простой и унифицированной, к тому же прекрасно работающей – в том смысле, что она позволяет пояснить и предсказать результаты любых новаторских экспериментов Фарадея и его коллег, – картине всех наблюдаемых электрических и магнитных явлений. Это достижение замечательно уже само по себе, но во время работы над уравнениями произошло нечто еще более замечательное. Максвелл был вынужден включить в них дополнительный фрагмент, не продиктованный экспериментами. С его точки зрения, это требовалось исключительно для того, чтобы уравнения были математически последовательными. Это стало одним из самых глубоких и в некотором смысле самых таинственных озарений в современной науке. Физические объекты в реальном мире ведут себя предсказуемо, следуя несколько более сложным математическим законам, чем те, о которых знал Пифагор, когда доказывал свою знаменитую теорему. Это эмпирический факт, который ни в каком смысле нельзя назвать очевидным. В 1960 году лауреат Нобелевской премии, физик-теоретик Юджин Вигнер написал знаменитое эссе под названием «Непостижимая эффективность математики в естественных науках», в котором утверждал, что способность человека к открытию законов природы гораздо менее удивительна, чем само существование таких законов. Опыт учит нас, что законы природы, закономерности в поведении вещей и явлений на самом деле существуют и эти законы лучше всего формулировать на языке математики. Это приводит к тому, что наряду с физическими наблюдениями при создании физических теорий можно опираться и на математические закономерности – и такое случалось неоднократно на протяжении всей истории науки. В этой книге мы также познакомимся с подобными случаями, и то, что так действительно происходит, – одна из удивительных тайн нашей Вселенной.
Но вернемся к нашей истории. В поисках математической согласованности Максвелл включил в уравнение, описывающее экспериментальные наблюдения Фарадея по отклонению стрелки компаса при протекании электрического тока в проводах, дополнительный член, известный как ток смещения. Ток смещения не был необходим для описания наблюдений Фарадея, а уравнения Максвелла и без него прекрасно характеризовали экспериментальные данные того времени.Однако поначалу Максвелл даже не осознавал, что это простое дополнение позволяет его замечательным уравнениям сделать нечто гораздо большее, чем описать работу электродвигателей. При наличии тока смещения возникает глубокая связь между электрическими и магнитными полями. В частности, уравнения в новой форме можно переписать в виде, известном ученым как волновое уравнение, которое, как следует из названия, описывает движение волн. Уравнения, описывающие распространение звука, – это волновые уравнения, так же как и уравнения, описывающие перемещение океанских волн к берегу. Совершенно неожиданно уравнения Максвелла, описывающие эксперименты Фарадея с проводами и магнитами, предсказали существование перемещающихся волн. Но в то время как океанские волны представляют собой возмущения, перемещающиеся в воде, а звуковые волны создают движение молекул воздуха, волны Максвелла состоят из осциллирующих электрических и магнитных полей.
Каковы они, эти загадочные осциллирующие поля? Представьте себе, что электрическое поле начинает расти, потому что Фарадей генерирует импульс электрического тока в проводе. Мы уже знаем, что при этом создается магнитное поле (если вы помните, Фарадей заметил, что стрелка компаса вблизи провода отклоняется). На языке уравнений Максвелла изменение электрического поля создает изменение магнитного поля. Фарадей также утверждал, что при изменении магнитного поля (например, при прохождении магнита через катушку провода) создается электрическое поле, вызывающее ток в проводах. Максвелл сказал бы, что изменение магнитного поля создает изменение электрического поля. Теперь представьте, что мы уберем провода и магниты. У нас останутся только поля, колеблющиеся назад и вперед, поскольку изменения одного поля приводят к изменениям другого. Волновые уравнения Максвелла описывают взаимосвязь этих колеблющихся полей и предсказывают, что эти волны должны двигаться вперед с определенной скоростью. Как и следовало ожидать, эту скорость обусловливают различные величины, которые измерял Фарадей. В случае звуковых волн скорость волны составляет примерно 330 метров в секунду – ненамного больше скорости пассажирского самолета. Скорость звука определяется взаимодействием между молекулами воздуха, которые несут звуковые волны. Она изменяется с изменением атмосферного давления и температуры, которые, в свою очередь, описывают, насколько близко молекулы воздуха располагаются друг к другу и как быстро они отскакивают друг от друга. В случае волн Максвелла скорость равна соотношению сил электрического и магнитного полей, и это соотношение легко измерить. Силу магнитного поля можно вычислить путем измерения силы взаимодействия двух магнитов. Слово «сила» будет время от времени появляться в нашей книге; под силой мы подразумеваем количественную характеристику, с которой что-то толкают или тянут. Силу можно измерить и охарактеризовать количественно, и если мы стремимся понять, как устроен мир, то должны понять и происхождение различных сил. Существует простой способ измерить силу электрического поля, зарядив два объекта и вычислив силу их взаимодействия. По всей вероятности, вы невольно испытывали на себе такой процесс «зарядки». Возможно, вы ходили в сухой день по нейлоновому ковру, а затем получали удар электрическим током при попытке открыть дверь с металлической ручкой. Этот неприятный опыт открытия двери связан с тем, что в процессе трения вы перенесли электроны (элементарные частицы электричества) с ковра на подошвы своей обуви и стали электрически заряженными, а это означает, что между вами и дверной ручкой возникло электрическое поле. Когда вы взялись за ручку двери, это поле вызвало протекание электрического тока, как в экспериментах Фарадея.
С помощью таких простых экспериментов ученые могут измерять сильные электрические и магнитные поля, а уравнения Максвелла предсказывают, что соотношение силы этих полей дает скорость волн. Так чему же равно это соотношение? Что предрекли измерения Фарадея в сочетании с математическим гением Максвелла? Это один из многих ключевых моментов в нашей истории и прекрасный пример, объясняющий, почему мы говорим о физике как об очень красивой, мощной и глубокой науке: электромагнитные волны Максвелла распространяются со скоростью 299 792 458 метров в секунду. Удивительно, но это и есть скорость света: Максвелл наткнулся на объяснение природы самого света. Вы видите окружающий мир, потому что электромагнитное поле Максвелла несется сквозь тьму в ваши глаза со скоростью, предсказанной экспериментами с катушкой проволоки и магнитом. Уравнения Максвелла оказались щелью в двери, через которую свет проник в нашу историю о пространстве и времени. Существование в природе такой особой, единой и неизменной скорости, равной 299 792 458 метров в секунду, приведет нас в следующей главе (так же, как привело Эйнштейна) к отказу от концепции абсолютного времени.
Внимательный читатель заметит определенную нестыковку или как минимум некоторую небрежность с нашей стороны. С учетом сказанного в главе 1 нет никакого смысла говорить о скорости без указания, относительно чего она определяется, а в уравнениях Максвелла нет ни одного упоминания об этой проблеме. По всей видимости, скорость волн (то есть скорость света) выступает в качестве константы природы, соотношения сил электрического и магнитного полей. Нигде в этой элегантной математической структуре нет места для скорости источника волны или ее приемника. Максвелл и его современники, конечно же, знали об этом, но это не слишком их беспокоило. Дело в том, что большинство ученых того времени (если не все) считали, что все волны, включая свет, должны распространяться в какой-то среде. Должно быть какое-то «реальное вещество», переносящее колебания. Это были практичные парни, похожие на Фарадея, в понимании которых ничто не могло колебаться само по себе без какой-либо поддержки. Волны на воде могут существовать только в присутствии воды, а звуковые волны распространяются исключительно в воздухе или в другом веществе, но определенно не в вакууме: «В космосе никто не услышит ваш крик».
Так в конце XIX столетия возобладало мнение, что свет должен проходить сквозь некую среду, известную как «эфир». Скорость, появившаяся в уравнениях Максвелла, в те годы получила естественную интерпретацию как скорость света по отношению к эфиру. Это прямая аналогия с распространением звуковых волн в воздухе. При неизменной температуре и давлении воздуха звук всегда распространяется с постоянной скоростью, зависящей только от деталей взаимодействия между молекулами воздуха и не имеющей ничего общего с движением источника волн.
Однако, если подумать, эфир – очень странное вещество. Он должен пронизывать все пространство, поскольку свет проходит через пустоту между Солнцем и Землей и далекими звездами и галактиками. Когда вы идете по улице, вы должны двигаться через эфир, и сама Земля должна перемещаться сквозь эфир в своем путешествии вокруг Солнца. Все, что движется во Вселенной, должно проходить сквозь эфир, который при этом не должен оказывать никакого (или практически никакого) сопротивления движению твердых объектов, в том числе таких больших, как планеты. В противном случае движение Земли во время каждого из 5 миллиардов оборотов вокруг Солнца замедлялось бы подобно тому, как замедлился бы подшипник в банке с медом, а продолжительность наших земных лет за это время постепенно изменилась бы. Единственное разумное предположение, которое можно сделать, – это что Земля и вообще все объекты в эфире перемещаются беспрепятственно. Вы можете посчитать, что это делает невозможным доказательство существования эфира, но экспериментаторов викторианской эпохи такой пустяк не смущал. Во время серии высокоточных экспериментов, начавшихся в 1881 году, Альберт Майкельсон[6] и Эдвард Морли[7] попытались обнаружить то, что на первый взгляд казалось не поддающимся обнаружению. В основе этих экспериментов лежал на удивление простой замысел. В своей прекрасной книге по теории относительности, написанной в 1925 году, Бертран Рассел уподобляет движение Земли через эфир прогулке в ветреный день: в какой-то момент вам придется идти против ветра, а в какой-то – по пути с ним. Поскольку Земля проходит через эфир по мере вращения вокруг Солнца, а Земля и Солнце вместе летят сквозь эфир в своем путешествии вокруг Млечного Пути, то в какой-то момент на протяжении года Земля должна двигаться против эфирного ветра, а в какой-то – вместе с ним. И даже в том маловероятном случае, когда Солнечная система в целом находится в покое относительно эфира, движение Земли будет по-прежнему ощущать на себе эфирный ветер при путешествии вокруг Солнца, подобно тому как в совершенно тихий день вы чувствуете, как ветер обдает лицо, когда высовываетесь из окна движущегося автомобиля.
Майкельсон и Морли поставили перед собой задачу измерить скорость света в разное время года. Они (как и все остальные) были уверены, что в течение года она меняется, пусть и на малую величину, потому что скорость Земли (а вместе с ней и их экспериментальной установки) по отношению к эфиру должна постоянно меняться. В эксперименте использовалась очень чувствительная методика под названием «интерферометрия». За шесть лет экспериментов Майкельсон и Морли довели ее чувствительность до небывалого уровня, но ко времени публикации в 1887 году полученный результат был однозначно отрицательным. Не отмечалось никакой разницы в скорости света в любом направлении и в любое время года.
Если гипотеза эфира корректна, этот результат очень трудно объяснить. Например, представьте себе, что вы решили погрузиться в реку с быстрым течением и поплыли по ней вниз. Если вы плаваете со скоростью пять километров в час относительно воды, а река течет со скоростью три километра в час, то относительно берега вы плывете со скоростью восемь километров в час. Если вы развернетесь и поплывете вверх по течению, то относительно берега станете перемещаться со скоростью два километра в час. То же происходит и в эксперименте Майкельсона и Морли: роль пловца в данном случае играет луч света, река – это эфир, по которому он плывет, а берег реки – экспериментальное оборудование Майкельсона и Морли, находящееся в покое на поверхности Земли. Теперь вам должно быть понятно, почему результат Майкельсона и Морли оказался таким сюрпризом. Это выглядело, как если бы вы всегда плыли со скоростью пять километров в час по отношению к берегу реки, независимо от скорости ее течения и направления вашего движения.
Таким образом, Майкельсону и Морли не удалось доказать присутствие эфира, протекающего через их установку. Вот очередной вызов нашей интуиции: учитывая то, что мы видели до сих пор, нужно смело отбросить понятие эфира, потому что его влияние не поддается наблюдению, – так же как мы отбросили понятие абсолютного пространства в главе 1. Кстати, с философской точки зрения эфир всегда был довольно неуклюжей концепцией, поскольку стал бы во Вселенной той точкой отсчета, которая позволила бы определить абсолютное движение, что противоречит принципу относительности Галилея. По-видимому, такова была личная точка зрения Эйнштейна, поскольку он, похоже, мало что знал о результатах экспериментов Майкельсона и Морли, когда смело отказался от концепции эфира при формулировке своей специальной теории относительности в 1905 году. Однако на самом деле философские тонкости нельзя считать надежным ориентиром для понимания устройства Вселенной, поэтому в конечном счете самое веское основание для отказа от концепции эфира – то, что экспериментальные результаты не подтверждают его существования[8].
Отказ от концепции эфира можно оправдать с эстетической точки зрения и поддержать экспериментальными данными. Но если мы предпримем этот решительный шаг, то окажемся лицом к лицу с серьезной проблемой: уравнения Максвелла дают очень точный прогноз для скорости света, но не содержат никакой информации о том, относительно чего ее следует измерять. Давайте ненадолго примем уравнения Максвелла такими, какие они есть, и посмотрим, куда это нас приведет. Если мы получим в итоге бессмыслицу, то всегда сможем вернуться и попробовать другую гипотезу, удовлетворившись тем, что отрицательный результат тоже результат. Уравнения Максвелла предсказывают, что свет всегда движется со скоростью 299 792 458 метров в секунду, и в них нет упоминания о скорости источника или приемника света. Создается впечатление, будто эти уравнения действительно утверждают, что скорость света неизменна независимо от того, насколько быстро источник и приемник света движутся относительно друг друга. Словом, уравнения Максвелла говорят нам о том, что скорость света – фундаментальная константа природы. Это действительно непростое утверждение, так что давайте потратим еще немного времени на уточнение его смысла.
Представьте себе луч света фонарика. Согласно здравому смыслу, если бы мы бежали достаточно быстро, то теоретически могли бы догнать переднюю часть движущегося вперед пучка света. Здравый смысл даже позволяет предположить, что мы могли бы бежать вместе с лучом света, если бы нам удалось перемещаться со скоростью света. Но если следовать уравнениям Максвелла, то независимо от того, как быстро мы бежим, луч света опережает нас со скоростью 299 792 458 метров в секунду. Если это не так, то скорость света различна для человека с фонариком и бегущего человека, что противоречит результатам эксперимента Майкельсона и Морли, а также нашему утверждению, что скорость света – фундаментальная константа природы, имеющая одно и то же значение независимо от движения источника или наблюдателя. Похоже, мы оказались в смешном положении. Конечно, здравый смысл будет требовать от нас отвергнуть или по крайней мере пересмотреть уравнения Максвелла – возможно, они верны лишь отчасти? Это предположение не выглядит неразумным, поскольку движение любой реальной экспериментальной установки повлекло бы за собой только крохотное отклонение от скорости в 300 миллионов метров в секунду, которая появляется в уравнениях Максвелла. Это отклонение настолько крохотное, что вполне могло остаться незамеченным в опытах Фарадея. В качестве альтернативы можно просто принять уравнения Максвелла и тот факт, что мы никогда не сможем догнать луч света. Эта идея не просто оскорбляет наш здравый смысл, но и, как покажет следующая глава, подразумевает также, что мы должны отвергнуть само понятие абсолютного времени.
Современному человеку разрушить привязанность к абсолютному времени столь же трудно, как и ученым XIX столетия. Наша интуиция целиком и полностью говорит в пользу абсолютного пространства и времени, но мы должны осознавать, что это всего лишь интуиция. Кроме того, данные понятия лежат в основе законов Ньютона, которые по сей день используются в работе многих инженеров. В XIX веке законы Ньютона казались попросту неприкасаемыми. В то время как работы Фарадея по электричеству и магнетизму уже лежали в Королевском институте, Изамбард Брюнель[9] руководил строительством Большой западной железной дороги из Лондона в Бристоль. В 1864 году, когда Максвелл завершил свой блестящий синтез работ Фарадея и раскрыл секрет света, Брюнель завершил строительство легендарного Клифтонского подвесного моста[10]. Бруклинский мост был открыт спустя восемь лет, а в 1889 году над Парижем вознесся шпиль Эйфелевой башни. Все великолепные достижения века пара были спроектированы и возведены с использованием концепций, сформулированных Ньютоном. Ньютонова механика была далека от абстрактных математических размышлений. Символы ее успеха вырастали по всей Земле и становились свидетельствами постоянно растущего господства человечества над законами природы. Представьте себе, какое смятение произошло в умах ученых конца XIX века, когда они столкнулись с уравнениями Максвелла и их скрытой атакой на сами основы ньютоновского мировоззрения. Разумеется, победитель может быть только один. Безусловно, господствовать должен победоносный Ньютон и концепция абсолютного времени. Тем не менее начало XX столетия ознаменовалось тем, что проблема постоянства скорости света по-прежнему нависала темной тучей: Максвелл и Ньютон не могли быть правы одновременно. Так продолжалось до 1905 года, когда работа до тех пор никому не известного физика по имени Альберт Эйнштейн наконец не показала, что природа на стороне Максвелла.
3. Специальная теория относительности
В главе 1 нам удалось установить, что интуитивное представление Аристотеля о пространстве и времени перегружено устаревшими понятиями. Другими словами, мы показали, что нет необходимости рассматривать пространство как фиксированную, неизменную и абсолютную структуру, в которой находятся разные объекты и происходят разные события. Мы также увидели, как Галилей понял неуместность понятия абсолютного пространства, при этом твердо поддерживая идею универсального времени. В предыдущей главе мы немного отклонились от основной темы, переместившись в XIX столетие, чтобы познакомиться с физиками Фарадеем и Максвеллом и узнать, что свет – не что иное, как симбиоз электрического и магнитного полей, движущихся вперед в идеальном соответствии с красивыми уравнениями Максвелла. Где нам предстоит расстаться с накопленным багажом? И если мы отвергаем идею абсолютного пространства, то чем должны ее заменить? И что означает упоминание о возможном отказе от понятия абсолютного времени? Цель этой главы – дать ответы на эти вопросы.
Вне всяких сомнений, Альберт Эйнштейн – знаковая фигура современной науки. Его растрепанные седые волосы и небрежные манеры соответствуют современному представлению о профессорах: попросите ребенка нарисовать ученого, и получите изображение, напоминающее Эйнштейна в старости. Однако идеи, изложенные в этой книге, – это идеи молодого человека. На рубеже XX столетия, когда Эйнштейн размышлял о природе пространства и времени, ему было немногим больше 20 лет, он имел молодую жену и ребенка. У него не было ни академического звания, ни работы в каком-либо университете или исследовательской лаборатории, хотя он регулярно, часто допоздна, обсуждал физические вопросы с небольшой группой друзей. Печальным следствием очевидной изолированности Эйнштейна от официальной науки стало стремление рассматривать его как индивидуалиста, который выиграл с ней схватку. Мы считаем это следствие печальным, потому что оно вдохновляет немало безумцев, которые полагают, что в одиночку открыли новую теорию Вселенной, и не могут понять, почему никто к ним не прислушивается. На самом деле Эйнштейн был достаточно тесно связан с научными учреждениями, хотя его академическая карьера действительно начиналась непросто.
Что в нем поражает, так это упорство в изучении важных научных проблем того времени, притом что он оставался незамеченным в университетских и академических кругах. После окончания Швейцарского Федерального технологического института (ETH) в Цюрихе в возрасте 21 года Эйнштейн получил диплом преподавателя математики и физики и занимал ряд временных преподавательских должностей, что позволило ему выкроить время для работы над докторской диссертацией. В 1901 году, в период работы в частной школе в Шлаффхаузене в Северной Швейцарии, Эйнштейн подал диссертацию в Цюрихский университет, но она была отклонена. После этой неудачи он переехал в Берн и начал карьеру в качестве технического эксперта третьего класса в швейцарском патентном бюро. Относительная финансовая стабильность и свобода, которые давала эта должность, сделали эти годы его жизни наиболее продуктивными в научном плане, а возможно, и наиболее продуктивными в жизни ученого за всю историю.
Большая часть этой книги посвящена работе Эйнштейна, которая привела его к золотому 1905 году, когда он впервые написал уравнение E = mc, наконец получил докторскую степень и завершил работу по фотоэффекту, за которую впоследствии был награжден Нобелевской премией. Поразительно, что в 1906 году, когда его труды навсегда изменили наше представление о Вселенной, Эйнштейн все еще работал в патентном бюро и даже был повышен до технического эксперта второго класса. Свою «надлежащую» академическую должность в Берне он получил только в 1908-м. Хотя может возникнуть соблазн задаться вопросом, каких высот Эйнштейн мог бы достичь, если бы в течение этих лет не был вынужден заниматься физикой только в свободное время, сам он всегда вспоминал жизнь в Берне с нежностью. В своей книге The Science and the Life of Albert Einstein[11] друг и биограф Эйнштейна Абрахам Пайс описывает период его работы в патентном бюро как дни, «когда он был ближе всего к раю на земле», потому что у него было время размышлять о физике.
На пути к формуле E = mc Эйнштейна вдохновляла красота уравнений Максвелла, которые произвели на него такое впечатление, что он всерьез воспринял прогноз о постоянстве скорости света. С научной точки зрения это не такой уж спорный шаг: уравнения Максвелла основывались на прочном фундаменте экспериментов Фарадея, поэтому как можно было спорить со следствиями, которые из них вытекают? Все, что стоит на нашем пути, – это лишь предубеждение против того, что что-то может двигаться с одной и той же скоростью, независимо от того, насколько быстро мы за ним гонимся. Представьте, что вы едете по дороге со скоростью 80 километров в час, а проезжающий мимо вас автомобиль мчится со скоростью 100 километров в час. Кажется очевидным, что вы видите, как второй автомобиль удаляется от вас со скоростью 20 километров в час. Но думать об этом как об очевидном – всего лишь предубеждение, которому мы должны противостоять, если намерены последовать за Эйнштейном и признать, что свет всегда удаляется от нас с одной и той же скоростью, независимо от того, насколько быстро мы двигаемся. Давайте пока что считать, подобно Эйнштейну, что наш здравый смысл может ввести нас в заблуждение, и посмотрим, к чему это нас приведет.
В основе специальной теории относительности Эйнштейна лежат два предположения, которые на языке физики называются аксиомами. Аксиома – это утверждение, которое считается истинным без доказательства. Имея набор аксиом, мы можем получить из них следствия для реального мира, которые можно затем проверить с помощью экспериментов. Первая часть этого метода очень стара и восходит к Древней Греции. Наиболее тщательно она разработана в «Началах» Эвклида[12], где он изложил свою систему геометрических понятий, которая преподается в школах по сей день. Эвклид построил свою геометрию на основе пяти аксиом, которые принял как самоочевидные истины. Как мы увидим позже, на самом деле геометрия Эвклида – лишь одна из многих возможных геометрий, а именно геометрия плоского пространства, такого как поверхность стола. Геометрия поверхности Земли не является эвклидовой и определяется другим набором аксиом. Еще один пример (как мы скоро узнаем, еще более важный для нас) – геометрия пространства и времени. Вторая же часть, проверка следствий на практике, древними греками не использовалась (а ведь если бы они это делали, современный мир мог бы быть совершенно иным). Этот, казалось бы, простой и естественный шаг был введен в науку исламскими учеными в XI столетии и распространился в Европе намного позже, в XVI–XVII веках. С появлением эксперимента в качестве якоря наука наконец получила быстрое развитие, что повлекло за собой технический прогресс и процветание.
Первая из аксиом Эйнштейна заключается в следующем: уравнения Максвелла справедливы в том смысле, что свет всегда распространяется в пустом пространстве с одной и той же скоростью независимо от скоростей источника и наблюдателя. Вторая аксиома гласит: мы должны придерживаться мнения Галилея относительно невозможности проведения эксперимента, который позволил бы идентифицировать абсолютное движение. Вооружившись только этими предположениями, мы можем поступить так, как и должны поступать настоящие физики: проанализировать следствия из этих постулатов. Как всегда в науке, окончательная проверка теории Эйнштейна, выведенной из этих двух аксиом, заключается в ее возможности предсказывать и объяснять результаты экспериментов. Позвольте привести еще одну цитату Фейнмана, на этот раз более развернутую: «В общем случае мыищем новый закон следующим образом. Сначала делаем предположение. Потом вычисляем следствия, вытекающие из этого предположения, чтобы увидеть, к чему оно приведет, если окажется верным. Затем с помощью эксперимента или опыта сравниваем результат вычисления с окружающим миром и сопоставляем его непосредственно с наблюдениями, чтобы увидеть, работает ли новый закон. Если наше предположение не соответствует результатам эксперимента, значит, оно ошибочно. В этом простом утверждении кроется ключ ко всей науке. Не имеет значения, насколько красива ваша гипотеза. Равно как не имеет значения, насколько умен тот, кто ее выдвинул, или насколько известно в науке его имя, – если предположение не согласуется с результатами эксперимента, то оно ошибочно». Эта замечательная цитата взята из лекции, которую Фейнман прочитал в 1964 году – рекомендуем посмотреть ее запись на YouTube.
Таким образом, наша цель на нескольких следующих страницах – вывести следствия из аксиом Эйнштейна. Начнем с применения метода, которым часто пользовался сам Эйнштейн, – с мысленного эксперимента. В частности, мы хотим изучить следствия того, что скорость света постоянна для всех наблюдателей независимо от их перемещения относительно друг друга. Для этого нам необходимо представить себе довольно громоздкие часы, состоящие из двух зеркал, между которыми движется луч света. Назовем эти часы световыми. Мы можем использовать это устройство в качестве часов, подсчитывая количество отражений пучка света от зеркал. Например, если зеркала расположены на расстоянии метра друг от друга, то свету требуется около 6,67 наносекунды для одного цикла[13]. Вы можете проверить это самостоятельно: свет проходит расстояние два метра, двигаясь со скоростью 299 792 458 метров в секунду. Это очень точные часы, миллион тактов которых соответствует одному сердцебиению.
Теперь представим, что световые часы находятся на поезде, который проносится мимо наблюдателя, стоящего на платформе станции. Вопрос на миллион долларов: как часто тикают часы на поезде с точки зрения человека на платформе? До Эйнштейна все предполагали, что они идут точно в таком же темпе – один такт каждых 6,67 наносекунды.
На рис. 2 показано, как выглядит один такт часов в восприятии человека, стоящего на платформе. Поскольку поезд движется, с точки зрения наблюдателя на платформе свет должен пройти более длинный путь за один такт. Другими словами, начальная точка путешествия светового луча не совпадает с конечной, поскольку часы перемещаются. Чтобы частота тиканья часов оставалась одной и той же и для наблюдателя в поезде, и для наблюдателя на платформе, луч света должен двигаться немного быстрее, в противном случае он не успеет завершить свое путешествие за 6,67 наносекунды.
.
Рис. 2
Это именно то, что происходит в ньютоновой Вселенной, потому что свету помогает ускориться движение поезда. Но – и это принципиальный шаг! – исходя из логики Эйнштейна свет не может ускориться, потому что скорость света должна быть одинакова для всех наблюдателей. В результате такт движущихся часов в действительности должен занять больше времени просто потому, что свет с точки зрения человека на платформе должен пройти более длинный путь. Этот мысленный эксперимент говорит о следующем: если мы утверждаем, что скорость света – фундаментальная константа природы (как пытаются сказать нам уравнения Максвелла), то получается, что время идет с разной скоростью, в зависимости от нашего движения по отношению к кому-то другому. Иными словами, концепция абсолютного времени не согласуется с понятием универсальной скорости света.
Важно подчеркнуть, что этот вывод касается не только световых часов. Нет никакого существенного различия между световыми часами и часами с маятником, работающими благодаря его колебаниям между двумя положениями каждую секунду. Или, если на то пошло, эти часы ничем не отличаются от атомных часов, которые генерируют такт, подсчитывая количество вершин и впадин волны света, испускаемой атомом. Даже скорость распада клеток в вашем теле может использоваться в качестве часов, и выводы при этом будут одинаковыми, потому что все эти устройства измеряют течение времени. Световые часы на самом деле представляют собой старый трюк в преподавании теории Эйнштейна, который провоцирует бесконечные обсуждения из-за их непривычного вида. Может возникнуть искушение отнести полученный нами странный вывод на cчет необычного вида часов, вместо того чтобы признать его проникновением в природу самого времени. Поступить так значило бы совершить большую ошибку, поскольку единственная причина выбора световых часов вместо любых других состоит в том, что это позволяет нам делать выводы с учетом требования Эйнштейна о том, что свет должен двигаться с одинаковой скоростью для всех наблюдателей. Любой вывод, полученный в ходе мысленного эксперимента со световыми часами, должен быть применим к часам любого другого типа по следующей причине. Представьте себе, что мы запечатали в коробку световые часы и часы с маятником, синхронизированные друг с другом. Если это очень точные часы, то они останутся синхронизированными и будут показывать одно и то же время всегда. Теперь давайте поставим коробку на движущийся поезд. Согласно второй аксиоме Эйнштейна мы не способны определить, движемся ли. Но если световые и маятниковые часы ведут себя по-разному, то их рассинхронизация оказалась бы тем экспериментом, который мог бы указать, что ящик с часами движется[14]. Поэтому маятниковые и световые часы должны измерять время одинаково, а это означает, что если движущиеся световые часы с точки зрения наблюдателя на платформе замедляются, то точно так же должны вести себя и все остальные часы. И это не оптическая иллюзия: течение времени на поезде замедляется с точки зрения наблюдателя на платформе.
Получается, что либо мы должны уцепиться за утешительное понятие абсолютного времени и отбросить уравнения Максвелла, либо отбросить концепцию абсолютного времени в пользу Максвелла и Эйнштейна. Как определить, какое из этих действий правильное? Мы должны подыскать эксперимент, в ходе которого, если Эйнштейн прав, можно будет наблюдать замедление времени для движущихся объектов.
Чтобы разработать такой эксперимент, надо сначала выяснить, как быстро что-то должно двигаться, чтобы можно было обнаружить предполагаемый эффект. Совершенно очевидно, что перемещение со скоростью 100 километров в час по шоссе в автомобиле не вызывает заметного замедления времени, поскольку, оказавшись дома после поездки в магазин, мы не заметим, что наши дети выросли и стали старше нас, пока нас не было. Конечно, это преувеличение, но именно это должно происходить согласно Эйнштейну, и мы наверняка заметили бы разницу, если бы могли путешествовать достаточно быстро. Но что означает «достаточно быстро»? С точки зрения человека на платформе свет движется вдоль двух сторон треугольника, показанного на рисунке. Эйнштейн утверждает, что в этом случае свет проходит большее расстояние, чем в случае, когда часы находятся в состоянии покоя, соответственно, и время течет медленнее, так как их такт длится дольше. Все, что мы должны теперь сделать, – вычислить, насколько больший путь проходит свет (для заданной скорости поезда), – и получим ответ. Мы можем сделать это при помощи Пифагора.
Если вы не хотите перегружать себя математикой, можете пропустить пару абзацев, но тогда вам придется принимать наши дальнейшие слова на веру. Это относится к любым математическим вычислениям, размещенным в книге. Вы можете пропустить математические выкладки и не беспокоиться по этому поводу: математика помогает глубже понять физику, но не является абсолютно необходимой для понимания изложенного в книге материала. Но мы все же надеемся, что вы не станете пропускать математические расчеты, даже если у вас нет соответствующих знаний. Мы пытались максимально упростить математику, чтобы она была доступна читателю с любым уровнем подготовки. Логические головоломки, которые публикуют в ежедневных газетах, решать гораздо труднее, чем все, что мы будем делать в этой книге. Вместе с тем ниже следует один из самых сложных математических расчетов во всей книге, но результат стоит затраченных усилий.
Давайте еще раз посмотрим на рис. 2 и предположим, что время, затраченное на половину такта часов на поезде, измеренное человеком на платформе, равно T. Это время, необходимое свету, чтобы добраться от нижнего зеркала до верхнего. Наша цель – выяснить, чему T равно на самом деле, и удвоить его, чтобы получить время одного такта часов с точки зрения человека на платформе. Зная значение T, мы можем сказать, что длина гипотенузы треугольника равна cT, то есть скорости света c, умноженной на время T, необходимое свету, чтобы добраться от нижнего зеркала до верхнего. Вспомните, что расстояние, которое преодолевает движущийся объект, рассчитывается путем умножения скорости на время движения. Например, расстояние, пройденное машиной, перемещающейся со скоростью 60 километров в час, за два часа составляет 60 2 = 120 километров. Все, что мы сделали, – просто применили формулу «расстояние = скорость время». Зная значение T, мы можем выяснить, какой путь прошел свет за половину такта часов. Если поезд движется со скоростью v, то за полтакта он переместится на расстояние vT. Мы вновь не использовали ничего, кроме формулы «расстояние = скорость время». Это расстояние представляет собой длину одного из катетов прямоугольного треугольника, так что для вычисления расстояния между зеркалами (соответствующего второму катету) воспользуемся теоремой Пифагора. Но мы знаем, что это расстояние равно 1 метру. Итак, согласно теореме Пифагора (cT) = 1 + (vT). Обратите внимание на скобки: в математике они говорят о том, какая операция должна выполняться первой. В нашем случае сначала следует выполнить умножение, а затем возвести полученное значение в квадрат. Вот и все.
Итак, мы почти закончили. Нам известна скорость света c; предположим, что нам известна и скорость поезда v. Тогда мы можем воспользоваться полученным уравнением, чтобы вычислить значение T. Грубый способ сделать это – угадать его и посмотреть, насколько оно подходит. Но, скорее всего, вам это вряд ли удастся, и придется делать новые попытки. Возможно, вам повезет и вы все же в какой-то момент добьетесь своего. Но, к счастью, есть более простой и надежный способ – уравнение можно «решить», выполнив простые математические преобразования и получив T = 1/(c v). Это означает следующее: «сперва вычислите c v, а затем разделите единицу на полученное значение». Здесь косая черта означает операцию деления, то есть = 0,5 и т. д. Если вы хотя бы немного знаете математику, вам сейчас невероятно скучно. Если нет, то вы можете захотеть узнать, как мы вывели формулу T = 1/(c v). Поскольку это книга не о математике, просто поверьте нам. Если хотите – подставьте несколько чисел и убедитесь, что мы правы. Фактически мы вычислили не само время T, а T, что означает T, умноженное на T. Получить значение T можно путем извлечения квадратного корня.
Математически квадратный корень – это число, которое, будучи умножено само на себя, дает нам исходное число. Например, квадратный корень из девяти равен трем, а из семи – примерно 2,646. На калькуляторах есть специальная кнопка для вычисления этого значения. Она обычно помечена символом , а математическая запись имеет такой вид: 3 = 9. Как видите, извлечение квадратного корня – это операция, обратная возведению в квадрат: 4 = 16 и 16 = 4.
Но вернемся к нашей задаче. Теперь мы можем записать время одного такта световых часов с точки зрения наблюдателя на платформе – оно равно времени, необходимому для движения светового луча от нижнего зеркала к верхнему и назад, то есть 2T. Взяв квадратный корень из T и умножив его на два, получим 2T = 2 (c v). Это уравнение позволяет вычислить время одного такта, которое измерил наблюдатель на платформе, зная скорость света и скорость поезда, а также расстояние между зеркалами (1 метр). Но время одного такта для наблюдателя в поезде рядом с часами равно просто 2/с, так как для него свет проходит два метра со скоростью c (расстояние = скорость время, поэтому время = расстояние/скорость). Вычислив отношение этих двух промежутков времени, мы определим, насколько медленнее отсчитывают время часы в поезде с точки зрения наблюдателя на платформе. Они идут медленнее в c (c v) раз, что можно записать после небольшого математического преобразования как 1 (1 v c). Это очень важная величина в теории относительности, обычно обозначаемая греческой буквой (произносится «гамма»). Обратите внимание, что всегда больше 1, если часы движутся со скоростью, которая меньше скорости света c, поскольку v/c меньше 1. При скоростях, гораздо меньших скорости света (то есть для большинства обычных скоростей, так как скорость света, будучи записана в привычных единицах, составляет чуть больше миллиарда километров в час), значение очень близко к 1. И только когда скорость движения составляет существенную долю скорости света, начинает заметно отличаться от 1.
На этом пока завершим математические упражнения – нам удалось выяснить, как именно замедляется время на движущемся поезде по отношению ко времени на платформе. Давайте назовем некоторые цифры, для того чтобы прочувствовать происходящее. Если поезд движется со скоростью 300 километров в час, то, как можно убедиться самостоятельно, значение v/c представляет собой крохотное число и составляет около 0,000000000000077. При этом коэффициент замедления времени равен 1 (1 0,000000000000077 1,0000000000039). Как и ожидалось, эффект весьма незначительный – безостановочное путешествие на протяжении 100 лет на таком поезде удлинит вашу жизнь на 0,0000000000039 года с точки зрения вашего приятеля на платформе, что составляет около одной десятой миллисекунды. Эффект перестанет быть незначительным, когда скорость достигнет 90 % от скорости света. При этом коэффициент замедления времени будет больше двух, то есть часы в таком поезде станут тикать вдвое медленнее часов на платформе. В этом и состоит прогноз Эйнштейна, и, будучи добросовестными учеными, мы должны его проверить экспериментальным путем. А пока все это кажется нам несколько невероятным.
Прежде чем перейти к эксперименту, который предоставит нам необходимые доказательства, давайте ненадолго прервемся, чтобы посмотреть, что мы получили. Взглянем на наш мысленный эксперимент с точки зрения пассажира, сидящего в поезде возле часов. Для него часы неподвижны, и свет в них движется вверх и вниз – в точности как в часах, с которыми в кафе на станции сидит другой человек. Пассажир видит, что один такт его часов занимает 6,67 наносекунды, или 150 миллионов раз на каждое сердцебиение, и совершенно корректно (в духе Галилея) полагает, что часы относительно него неподвижны. Человек на платформе видит, что один такт часов в поезде занимает несколько больше времени, чем 6,67 наносекунды, и после 150 миллионов тактов его сердце делает чуть больше одного удара. Это удивительно: с точки зрения человека на платформе он стареет немного быстрее, чем пассажир в вагоне поезда.
Как мы только что увидели, этот эффект крошечный для реального поезда, который развивает скорость несравнимо меньшую, чем скорость света, но все же он существует. В воображаемом мире, где поезд несется почти со скоростью света по очень длинным рельсам, данный эффект усиливается, устраняя все сомнения, что человек на платформе стареет быстрее с его точки зрения.
В ходе реальных экспериментов, если мы хотим проверить эту неточность в концепции абсолютного времени, следует найти способ изучить объекты, которые могут двигаться почти со скоростью света. Только тогда коэфициент замедления времени будет заметно отличаться от 1. В идеале хорошо бы иметь дело с объектом, у которого есть фиксированный срок жизни, то есть о котором можно сказать, что он умирает. Тогда мы могли бы посмотреть, увеличивается ли продолжительность его жизни при быстром движении.
К счастью для ученых, такие объекты существуют. Фактически сами ученые построены из них. Элементарные частицы представляют собой крошечные субатомные объекты, которые в силу своего небольшого размера легко разгоняются до огромных скоростей. Они называются элементарными, потому что, насколько можно судить исходя из современного уровня развития технологий, являются самыми маленькими строительными блоками во Вселенной. Чуть ниже мы еще поговорим об элементарных частицах. Пока же хотим упомянуть только две из них: электрон и мюон.
Электрон – это частица, перед которой мы все в долгу, потому что мы построены в том числе и из них. Эти частицы бегут по электрическим проводам, зажигают наши электрические лампочки и разогревают наши электронагреватели. Электрон – частица электричества. Мюон во всех отношениях идентичен электрону, за исключением того, что он тяжелее. Почему природа решила дать нам копию электрона, которая (если все, что вы хотите, – это создать планеты и людей) кажется совершенно излишней, физики пока понять не в состоянии. Но независимо от причины существования мюонов они очень полезны для ученых, желающих проверить теорию относительности Эйнштейна. Дело в том, что у мюонов очень короткая продолжительность жизни, а кроме того, они слишком маленькие и легкие, поэтому их можно разогнать до очень высоких скоростей. И если об электронах мы можем сказать, что они будут жить вечно, то мюон, покоящийся рядом с нами, просуществует где-то около 2,2 микросекунды (микросекунда – одна миллионная доля секунды). Когда мюон умирает, он почти всегда превращается в электрон и еще пару субатомных частиц под названием нейтрино, но это уже информация, без которой мы можем обойтись. Для очень красивой проверки теории Эйнштейна был задействован синхротрон со знакопеременной фокусировкой (Alternating Gradient Synchrotron, AGS) в Брукхейвенской национальной лаборатории на Лонг-Айленде в Нью-Йорке. Во второй половине 1990-х годов ученые в Брукхейвене создали устройство, генерирующее пучок мюонов, движущийся по кольцу диаметром 14 метров со скоростью, составляющей 99,94 % от скорости света. Если мюоны живут только 2,2 микросекунды, то при движении по кругу они должны успевать сделать 15 оборотов до своего распада[15]. В действительности они делали более 400 оборотов, что означает увеличение продолжительности жизни в 29 раз – до 60 микросекунд. Это факт, установленный в ходе эксперимента. Похоже, Эйнштейн был на верном пути, вопрос только в том, насколько точен его прогноз.
Вот где пригодятся математические расчеты, выполненные нами ранее в этой главе. Мы сделали точный прогноз величины, на которую скорость движения замедляет скорость течения времени. Давайте воспользуемся нашим уравнением, чтобы определить величину замедления времени при движении со скоростью 99,94 % от скорости света и установить, на сколько при этом увеличивается продолжительность жизни мюонов. Эйнштейн предсказывает, что для мюонов в Брукхейвене продолжительность жизни повышается в = 1 (1 v c) раз, где v/c = 0,9994. Если у вас есть подходящий калькулятор, введите в него числа и подсчитайте результат. Формула Эйнштейна дает = 29, что и обнаружили экспериментаторы в Брукхейвенской лаборатории.
Здесь стоит сделать небольшую паузу и поразмышлять о том, что произошло. Используя теорему Пифагора и предположение Эйнштейна о постоянстве скорости света для всех наблюдателей, мы вывели математическую формулу, которая позволила нам предсказать увеличение продолжительности жизни мюонов при их разгоне в ускорителе частиц в Брукхейвенской лаборатории до 99,94 % от скорости света. Наш прогноз относительно того, что движущийся мюон должен жить в 29 раз дольше мюона, находящегося в состоянии покоя, точно согласуется с наблюдениями ученых в Брукхейвенской лаборатории. Только подумайте, как это замечательно. Добро пожаловать в мир физики! Разумеется, в конце 90-х годов XX столетия теория Эйнштейна уже получила всеобщее признание. Ученых в Брукхейвенской лаборатории интересовали другие свойства мюонов, и увеличение продолжительности их жизни оказалось просто бонусом, позволившим наблюдать за мюонами в 29 раз дольше.
Итак, мы должны сделать вывод об эластичности времени, поскольку об этом говорят результаты эксперимента. Скорость течения времени меняется от человека к человеку (или от мюона к мюону) в зависимости от скорости их движения.
Но оказывается, мы кое-что упустили (как будто нам мало странного поведения времени), и внимательный читатель, возможно, это заметил. Вернемся к мюонам, быстро движущимся в ускорителе. Давайте разместим в кольце небольшую финишную черту и подсчитаем, сколько раз мюоны пересекут ее, прежде чем погибнуть. С точки зрения стороннего наблюдателя они пересекут ее 400 раз. А с точки зрения движущегося мюона? Конечно 400, в противном случае все это было бы полной бессмыслицей. Проблема в том, что если бы мы двигались вместе с мюонами, то, согласно нашим наблюдениям, их жизнь составляла бы всего 2,2 микросекунды. Тем не менее за этот короткий срок мюоны должны успеть сделать более 400 оборотов в ускорителе. Так что же происходит? 400 оборотов за 2,2 микросекунды кажутся совершенно невозможными. К счастью, из этой ситуации есть выход: можно представить, что в восприятии мюона кольцо становится меньше. Чтобы быть полностью последовательными, длина кольца, которую определили вы с мюоном, должна уменьшиться ровно настолько, насколько, с точки зрения стороннего наблюдателя, увеличилась продолжительность жизни мюона. Получается, что изменчиво не только время, но и пространство! Как и замедление времени, это реальный эффект, а не иллюзия. Реальные объекты действительно сжимаются в процессе движения. В качестве несколько гротескного примера представьте себе четырехметровый автомобиль, который пытается втиснуться в гараж длиной 3,9 метра. Согласно Эйнштейну, если автомобиль движется быстрее, чем 22 % от скорости света, то он поместится в гараже – по крайней мере на ничтожную долю секунды до того, как передний бампер упрется в стенку гаража, а задний уже пересечет линию ворот. Если вы проверите математические выкладки, то убедитесь, что 22 % от скорости света как раз хватит. Автомобиль, движущийся с еще большей скоростью, сожмется до размера менее 3,9 метра; но если скорость будет меньше, он не поместится в гараж.
Открытие, что течение времени может замедляться, а расстояние – сжиматься, выглядит достаточно странным даже по отношению к субатомным частицам, но рассуждения Эйнштейна применимы в равной мере и к объектам размером с человека. Однажды нам даже, быть может, придется положиться на это необычное явление ради выживания. Представьте себе жизнь на Земле в далеком будущем. Через несколько миллиардов лет Солнце уже не только не будет стабильным источником света, поддерживающим жизнь на нашей планете, но и превратится в непредсказуемого клокочущего монстра, который может поглотить Землю в своей агонии. Если человечество не погибнет гораздо раньше по иной причине, ему придется покинуть дом предков и искать счастья среди звезд. Млечный Путь, наш местный спиральный остров в космосе, состоит из сотни миллиардов звезд и имеет 100 тысяч световых лет в диаметре. Это означает, что свету требуется 100 тысяч лет, чтобы пересечь галактику, – с точки зрения наблюдателя на Земле. Хотелось бы надеяться, что необходимость в этом уточнении понятна, учитывая всего вышесказанное. Может показаться, что возможное распространение человечества в пределах Млечного Пути всегда будет ограничено лишь крошечной частью звезд, расположенных неподалеку (по астрономическим масштабам) от нашего дома, так как вряд ли можно ожидать путешествия в удаленные уголки галактики, куда сам свет добирается только за 100 тысяч лет. Но нас спасет Эйнштейн. Если бы мы могли пстроить космический корабль, который бы развивал скорость, близкую к скорости света, то расстояние до звезд сократилось бы, причем тем сильнее, чем ближе скорость корабля будет к скорости света. Если мы достигнем скорости в 99,99999999 % от скорости света, то сможем пролететь весь Млечный Путь и даже путь до ближайшей галактики (Туманности Андромеды, находящейся почти в 3 миллионах световых лет от нас) за каких-то 50 лет. Правда, это очень сложная задача, особенно с точки зрения мощности двигателей корабля, необходимой для такого разгона, но главное в том, что искривление пространства и времени позволяет путешествовать в отдаленные части Вселенной за реально воспринимаемое время. Если бы вы входили в состав первой экспедиции к Туманности Андромеды, до которой добрались бы за 50 лет, то ваши дети, рожденные в космосе, могли бы захотеть вернуться в мир своих родителей, чтобы взглянуть на Землю собственными глазами (хотя для них наша голубая планета была бы не более чем красивой сказкой). Если бы вы развернули корабль и вернулись за 50 лет на околоземную орбиту, вся продолжительность экспедиции составила бы 100 лет. Но за это время для обитателей Земли прошло бы шокирующих 6 миллионов лет. Разве пережила бы это время цивилизация-прародительница? Эйнштейн открыл нам глаза на очень странный и удивительный мир.
4. Пространство-время
В предыдущих главах мы проследили исторический пути к теории относительности, и наша аргументация, по сути, была не слишком далека от первоначальных представлений Эйнштейна. Нам пришлось признать, что пространство – это не огромная сцена, на которой разыгрываются события нашей жизни. Точно так же как время не является чем-то универсальным и абсолютным. Вместо этого мы приблизились к гораздо более гибкой и субъективной картине пространства и времени. Большие часы на небе (и в каком-то смысле само небо) отправлены в изгнание. Нам может казаться, что мир – это ящик, в котором мы занимаемся своими делами, поскольку такая картина позволяет быстро и эффективно ее осмыслить. Возможность сопоставить движение объектов с воображаемой координатной сеткой представляет собой то, что можно было бы назвать чувством пространства, которое крайне необходимо для того, чтобы убежать от хищника, найти еду и выжить в опасном и сложном мире. Однако нет никаких причин, по которым эта модель, глубоко внедренная в наш мозг и подкрепленная миллионами лет естественного отбора, должна быть чем-то большим, чем просто моделью. Если некое представление о мире обеспечивает выживание, то оно обязательно станет повсеместным. Научная корректность при этом значения не имеет. Важно следующее: поскольку мы решили принять результаты экспериментов Фарадея и разъяснения Максвелла, то действовали, как подобает ученым, и отклонили удобную модель пространства и времени, которая позволила нашим далеким предкам выживать и процветать на древних равнинах Африки. Эта модель настолько глубоко внедрена в нашу психику и подкреплена миллионами лет опыта, что ее отбрасывание вполне может оказать дезориентирующее воздействие. Такое головокружительное чувство замешательства, за которым (хотелось бы надеяться) приходит прозрение и ясность, – самый притягательный момент науки. Если читатель уже чувствует первое, то к концу книги надеемся обеспечить и второе.
Это не книга по истории. Наша цель – составить как можно более понятное описание пространства и времени, а на наш взгляд, исторический путь, по которому ученые шли к теории относительности, – не лучший способ понять ее суть. Спустя столетие после открытия Эйнштейна мы знаем, что есть более глубокий и уместный способ рассуждений о пространстве и времени. Вместо того чтобы погружаться в устаревшие учебники, начнем с чистого листа. Так мы придем к пониманию того, что имел в виду Минковский[16], когда говорил, что «пространство и время необходимо объединить в одну сущность». Сформировав более элегантную картину, мы достигнем главной цели – выведем формулу E = mc.
Вот наша отправная точка. Теория Эйнштейна может быть почти полностью построена на языке геометрии. Нам не нужно большое количество алгебраических формул – достаточно геометрических рисунков и концепций. В основе этого подхода лежат всего три концепции: инвариантность, причинность и расстояние. Если вы не физик, то два из этих понятий вам, скорее всего, незнакомы, а третье, возможно, известно, но, как мы вскоре увидим, здесь есть свои тонкости.
Инвариантность – это концепция, лежащая в основе современной физики. Оторвитесь от книги и посмотрите на окружающий мир. Теперь обернитесь в противоположном направлении. Ваша комната, конечно же, будет выглядеть из разных точек по-разному, но законы природы одинаковы во всех ее углах. Неважно, у северной, восточной, южной или западной стены вы находитесь – сила тяжести везде окажется одинаковой. Ваш телевизор будет продолжать работать, даже если вы повернете его экраном к стене. Ваш автомобиль будет одинаково ездить по улицам Лос-Анджелеса, Берлина и Москвы. Это все примеры инвариантности в природе. При таком толковании инвариантность кажется совершенно очевидной. Но введение требования инвариантности в научные теории оказалось на удивление плодотворным. Мы только что описали две различные формы инвариантности. Это требование неизменности законов природы при поворотах в разном направлении, которое называется поворотной инвариантностью, и требование неизменности законов природы при перемещении с места на место, называемое трансляционной инвариантностью. Эти вроде бы тривиальные требования стали необыкновенно мощным инструментом в руках Амалии Нётер[17], которую Альберт Эйнштейн назвал самой влиятельной женщиной в истории математики. В 1918 году Нётер опубликовала теорему, продемонстрировавшую глубокую связь между инвариантностью и законами сохранения некоторых физических величин. О законах сохранения мы еще поговорим, а пока просто упомянем о глубине полученных Нётер результатов. То, что при наблюдениях в разных направлениях законы природы остаются неизменными, подтверждает существование некой постоянной физической величины, называемой моментом импульса. (Для трансляционной инвариантности – импульс.) Почему это важно? Давайте вытащим интересный факт из нашей метафорической шляпы и объясним его.
Луна за год удаляется от Земли на четыре сантиметра. Почему? Представьте себе, что Луна находится над поверхностью вращающейся Земли в состоянии покоя. Вода в океанах непосредственно под Луной будет чуть-чуть выгибаться в сторону Луны, потому что гравитация Луны ее притягивает, а Земля под этой дугой будет вращаться со скоростью один оборот в сутки. Это и есть причина океанских приливов и отливов. Наличие трения между водой и поверхностью Земли вызывает замедление скорости ее вращения. Этот эффект невелик, но поддается измерению. Продолжительность суток на Земле постепенно увеличивается, примерно на 0,002 доли секунды за столетие. Физики описывают вращение с помощью момента импульса, поэтому можно сказать, что момент импульса Земли со временем уменьшается. Нётер утверждала, что, поскольку мир выглядит одинаково в каждом направлении (точнее говоря, законы природы инвариантны по отношению к повороту), момент импульса сохраняется, то есть общее количество вращения не должно меняться. Но что же происходит, когда момент импульса Земли уменьшается из-за приливного трения? Ответ прост: он передается Луне, которая ускоряется на своей орбите вокруг Земли, чтобы компенсировать замедление вращения Земли. А это, в свою очередь, приводит к удалению Луны от Земли. Другими словами, чтобы обеспечить сохранение общего момента импульса системы Земли и Луны, Луна вынуждена переходить на более высокую орбиту вокруг Земли, компенсируя замедление вращения последней. Это совершенно реальный и одновременно довольно фантастический факт. Луна велика и удаляется от Земли все дальше – и только потому, что законы природы одинаковы во всех направлениях. Итальянского писателя Итало Кальвино так поразил этот факт, что он написал небольшой расскз под названием The Distance of the Moon («Отдаление Луны»)[18], в котором представил себе далекое прошлое, когда Луна располагалась настолько близко к Земле, что наши предки забирались на нее по лестнице. Но когда с годами Луна удалилась от Земли, с наступлением ночи любителям Луны приходилось делать выбор: оставаться на Луне или возвращаться на Землю. Это удивительное (а в изложении Кальвино – удивительно романтичное) явление можно объяснить с помощью абстрактной концепции инвариантности и глубокой связи между инвариантностью и законами сохранения физических величин.
Трудно переоценить важность идеи инвариантности в современной науке. В основе физики лежит желание получить универсальную интеллектуальную структуру, законы которой бесспорны. Будучи физиками, мы стремимся раскрывать инвариантные свойства Вселенной, потому что, согласно Нётер, это приведет нас к реальным осязаемым физическим теориям. Определение инвариантных свойств не такое уж легкое занятие, поскольку глубинная простота и красота Вселенной зачастую от нас скрыты.
Ни в одной области науки это не соответствует истине в большей степени, чем в современной физике элементарных частиц, занимающейся изучением субатомного мира в поисках фундаментальных «кирпичиков» Вселенной, а также сил природы, которые соединяют их друг с другом. Мы уже встречались с одной из таких фундаментальных сил – электромагнетизмом. Его понимание привело нас к объяснению природы света, подтолкнувшему нас к путешествию по пути к теории относительности. В субатомном мире господствуют еще две фундаментальные силы природы. Сильное ядерное взаимодействие собирает нуклоны в ядра атомов, а слабое – позволяет звездам светиться и отвечает за некоторые типы радиоактивного распада. В частности, радиоуглеродный анализ определения возраста различных объектов основан на слабом ядерном взаимодействии. Четвертая сила – это гравитация: самая знакомая, но и самая слабая сила. В настоящее время лучшая теория гравитации – общая теория относительности Эйнштейна, а также, как мы увидим в последней главе, теория пространства и времени. Эти четыре силы действуют между 12 фундаментальными частицами, из которых в мире построено все, в том числе Солнце, Луна, звезды, планеты Солнечной системы и наши собственные тела. Все это представляет собой удивительное упрощение Вселенной, которая кажется на первый взгляд бесконечно сложной.
Взгляните в окно. Возможно, вы увидите город из стали, бетона и стекла или перед вами откроется сельский пейзаж с пасущимися на зеленом лугу домашними животными. Но что бы вы ни увидели, самое удивительное то, что практически каждый вид из окна – свидетельство вмешательства человека. Влияние нашей цивилизации ощущается повсюду, но все же физика XXI столетия говорит, что это не более чем математический танец горстки субатомных частиц, который более 13,7 миллиарда лет поддерживают всего лишь четыре силы. Сложность человеческого мозга и результаты эффективного синтеза сознания и опыта, которые мы видим за окном, маскируют простоту и элегантность природы. Задача ученого – обнаружить те свойства, которые, подобно розеттскому камню[19], позволят расшифровать язык природы и раскрыть его красоту.
Математика – тот инструмент, который помогает это сделать. Само по себе это утверждение поднимает ряд важных вопросов. В попытке найти правдоподобное объяснение подобной роли математики были написаны целые книги. Юджин Вигнер сказал об этом так: «Это чудесный дар, который мы не понимаем и которого не заслуживаем». Возможно, мы никогда не поймем истинного характера отношений между математикой и природой, но, как показывает история, математика позволяет нам организовать мышление таким образом, чтобы оно было надежным ориентиром на пути к более глубокому пониманию Вселенной.
Как мы уже неоднократно подчеркивали, придерживаясь данного подхода, физики выводят уравнения, представляющие собой не что иное, как описание взаимосвязей между различными «объектами» реального мира. Один из примеров уравнения: скорость = расстояние/время. С ним мы встречались в предыдущей главе, когда рассматривали световые часы. С помощью символов это уравнение записывается как v = x/t, где v – скорость, x – пройденное расстояние, а t – время, необходимое для прохождения расстояния x. Попросту говоря, если за час мы проезжаем 80 километров, значит, наша скорость составляет 80 километров в час. Самые интересные – уравнения, представляющие собой описание природы, приемлемые для всего без исключения. Другими словами, эти уравнения работают только с инвариантными величинами. В таком случае у всех нас, независимо от местоположения и взгляда на Вселенную, были бы одинаковые результаты измерений. В соответствии со здравым смыслом такая инвариантная величина – расстояние между двумя точками пространства, и до Эйнштейна именно так и было. Однако в предыдущей главе мы увидели, что это неверное утверждение. Помните: не всегда можно полагаться на здравый смысл. Течение времени также оказалось субъективным явлением, зависящим от скорости перемещения одних часов относительно других. Эйнштейн нарушил порядок вещей, и теперь при построении надежной картины Вселенной мы не можем полагаться даже на пространство и время. С точки зрения физика, который ищет глубинные законы природы, уравнение v = x/t не дает никакой фундаментальной пользы, поскольку не выражает соотношения между инвариантными величинами. Расшатывая пространство и время, мы поколебали сами основы физики. Что же нам теперь делать?
Один из вариантов – попытаться восстановить порядок, высказав гипотезу. Слово «гипотеза» – это замысловатое обозначение для такого простого понятия, как «догадка». Ученые постоянно выдвигают гипотезы. Не существует никаких наград за интеллектуальность теории, построенной на основе гипотезы. Опирающаяся на факты удачная догадка играет ту же роль, если только она согласуется с результатами экспериментов. Наша гипотеза радикальна: пространство и время можно объединить в одну сущность под названием «пространство-время», причем расстояния в пространстве-времени инвариантны. Это очень смелое утверждение, и его содержание постепенно станет яснее. Немного поразмышляв над ним, вы можете прийти к выводу, что оно не такое уж смелое. Если мы хотим избавиться от вековой определенности абсолютных, неизменных расстояний в пространстве и неизменного течения времени, отсчитываемого большими небесными часами, то, пожалуй, единственное, что можно сделать, – поискать некую унифицированную форму этих двух на первый взгляд не связанных друг с другом концепций. Таким образом, наша непосредственная задача – найти новую меру расстояния в пространстве-времени, которая не изменяется в зависимости от нашего движения относительно друг друга. Мы должны действовать осмотрительно, чтобы понять, как работает синтез пространства-времени. Но что именно это означает в контексте поиска расстояния в пространстве-времени?
Предположим, я проснулся в семь утра и закончил завтракать в восемь. С учетом того, что нам известно из экспериментов, верны следующие утверждения: 1) я могу измерить расстояние в пространстве от спальни до кухни, которое равно десяти метрам, но кто-то, мчащийся мимо на огромной скорости, получит другое значение этого расстояния; 2) мои часы показывают, что я потратил на завтрак час, но часы наблюдателя, мчащегося мимо на огромной скорости, покажут другое время. Наша гипотеза состоит в том, что расстояние в пространстве-времени между тем, как (и где) я встал с постели и как (и где) закончил завтракать, окажется для меня и мчащегося наблюдателя одинаковым, то есть будет представлять собой инвариантную величину. Существование подобного согласия имеет решающее значение, поскольку мы хотим создать набор законов природы на основе только этого типа объектов. Конечно, мы лишь предполагаем наличие такой инвариантной величины и пока не доказали ничего определенного. Мы даже еще не знаем, как рассчитывать расстояние в пространстве-времени. Но чтобы двигаться дальше, нам необходимо сначала объяснить, что мы подразумеваем под вторым из трех ключевых понятий – причинностью.
Причинность – еще одна на первый взгляд очевидная концепция, применение которой будет иметь глубокие последствия. Это простое требование сводится к следующему: причины и следствия настолько важны, что их порядок нельзя обратить вспять. Ваша мать – причина вашего рождения, поэтому ни одна логически последовательная картина пространства и времени не должна предусматривать возможность вашего рождения до появления на свет вашей матери. Теория Вселенной, в которой вы могли бы родиться раньше нее, была бы бессмыслицей и привела бы к возникновению противоречий. Вряд ли кто-то в состоянии спорить с требованием о сохранении принципа причинности, выраженным так просто и понятно.
Следует отметить, однако, что люди способны ежедневно игнорировать это требование. Возьмем в качестве примера пророчества. Перед такими людьми, как Нострадамус, до сих пор преклоняются за то, что они во сне или в состоянии некоего мистического транса якобы способны видеть события, которые произойдут в будущем. Другими словами, события, наступившие через столетия после смерти Нострадамуса, были известны во время его жизни, по крайней мере ему. Нострадамус умер в 1566 году, но считается, что он видел Великий пожар в Лондоне в 1666 году, появление Наполеона и Гитлера, террористические акты в США 11 сентября 2001 года, а также (наше любимое предсказание) приход антихриста в России в 1999 году. Антихрист пока еще так и не появился, но если он придет до выхода книги из печати, мы обязательно внесем поправку в текст.
Однако оставим всю эту забавную чушь в стороне, поскольку нам необходимо познакомить вас с кое-какими важными терминами. Смерть Нострадамуса была «событием», так же как и рождение Адольфа Гитлера или Великий пожар в Лондоне. Для того чтобы Нострадамус мог наблюдать, скажем, Великий пожар, который произошел после его смерти, требуется изменить порядок этих двух событий. То есть, если точнее, мы получим почти тавтологию: Нострадамус умер до Великого пожара, а значит, никак не мог его видеть. Для того чтобы Нострадамус мог его увидеть, это событие должно произойти до события «смерть Нострадамуса», а значит, порядок этих событий должен быть обратным. Здесь есть один важный нюанс: Нострадамус мог стать причиной Великого пожара. Допустим, он оставил в банке приличную сумму для того, кто темной ночью 2 сентября 1666 года подожжет Паддинг-лейн. Это позволило бы установить причинную связь между жизнью и смертью Нострадамуса и Великим пожаром в Лондоне. Как мы увидим позже, в действительности нельзя менять только порядок связанных друг с другом событий (называемых причинно связанными), то есть порядок причины и следствия, который во вселенной Эйнштейна священен.
Некоторые события достаточно удалены в пространстве и времени и не могут оказывать друг на друга никакого влияния. Интересно, что порядок таких событий можно изменить на противоположный. В теории Эйнштейна есть лазейка, позволяющая это делать при условии, что результат никак не отразится на устройстве Вселенной. Позже мы объясним, что имеется в виду под «достаточной удаленностью» событий. Пока же введем концепцию причинности как аксиому, которая будет использована нами при построении теории пространства-времени. Конечно же, верховным арбитром станет успех теории в прогнозировании результатов экспериментов. Отклоняясь от основной линии повествования, заметим, что одно предсказание Нострадамуса точно сбылось. Страдая от особенно острого приступа подагры, он сказал своему секретарю: «Утром вы не найдете меня в живых». На следующее утро мертвого Нострадамуса обнаружили лежащим на полу.
Что же нам дает концепция причинности с точки зрения понимания пространства-времени и, в частности, определения расстояния в пространстве-времени? Вскоре мы обнаружим, что требование о выполнении принципа причинности ограничивает структуру Вселенной до такой степени, что у нас просто не остается выбора в этом вопросе. Есть только один способ связать воедино пространство и время с одновременным сохранением принципа причинности. Любой другой путь приведет к нарушению этого принципа и позволит совершать такие фантастические действия, как путешествия в прошлое, чтобы предотвратить собственное рождение или, как в случае Нострадамуса, избежать того образа жизни, который спровоцировал развитие подагры.
Но вернемся к разработке концепции расстояния в пространстве-времени. Для начала ненадолго отложим разговор о времени и поразмышляем об идее расстояния в обычном трехмерном пространстве – концепции, с которой все мы хорошо знакомы. Предположим, мы пытаемся измерить расстояние между двумя городами на плоской карте Земли. Как известно каждому, кто летал на большие расстояния и наблюдал за отображением полета на карте на экране в самолете, кратчайшее расстояние между двумя точками на земной поверхности выглядит как кривая линия, которую называют большой круг. На рис. 3 показана карта Земли и линия, соответствующая кратчайшему пути от Манчестера до Нью-Йорка. На глобусе эта линия совершенно очевидна, но на плоской карте тот факт, что кратчайшее расстояние между двумя точками не прямая линия, поначалу кажется удивительным. Дело в том, что поверхность Земли не плоская, а выпуклая. Точнее говоря, Земля – сфера. Изогнутость земной поверхности – также причина того, что на некоторых плоских картах Гренландия выглядит куда больше Австралии, хотя на самом деле все наоборот. Идея ясна: прямые линии представляют кратчайшее расстояние между двумя точками только в плоском пространстве. Геометрию плоского пространства часто называют эвклидовой. Однако Эвклид не знал (как, впрочем, и все остальные до XIX столетия), что его геометрия – всего лишь частный случай семейства различных вариантов геометрии, каждый из которых математически непротиворечив, а некоторые могут использоваться для описания природы. Очень удачный пример – поверхность Земли. Она изогнута, а потому описывается с помощью неэвклидовой геометрии. В частности, в ней кратчайшее расстояние между двумя точками – не эвклидова прямая.
Рис. 3
Есть и другие законы эвклидовой геометрии, которым не подчиняется то, что происходит на поверхности Земли. Например, сумма внутренних углов треугольника больше не равна 180 градусам, а направленные с севера на юг линии, которые параллельны на экваторе, пересекаются на полюсах. Но если эвклидова геометрия больше не используется, то как рассчитать расстояния в искривленном пространстве, например на поверхности Земли? Один из способов – работать непосредственно с глобусом и измерять расстояния с помощью веревки. При этом выполняется корректный учет кривизны Земли. Пилот может натянуть кусок веревки между двумя городами на глобусе, измерить его длину линейкой, а затем вычислить ответ, учитывая отношение размеров глобуса и Земли. Но у нас под рукой может и не быть глобуса, или нам нужно написать компьютерную программу для управления самолетом. В любом случае требуется инструмент получше, чем веревка, так что следует вывести уравнение, показывающее, чему равно расстояние между двумя точками на земной поверхности, если известны только их широта и долгота, а также размеры и форма Земли. Такое уравнение вывести несложно, и если вы немного знакомы с математикой, то можете попробовать сделать это самостоятельно. Нам не нужно записывать здесь это уравнение – главное, что оно существует и имеет мало общего с эвклидовой геометрией плоского пространства. Тем не менее оно позволяет вычислить кратчайшее расстояние между двумя точками на сфере почти так же, как теорема Пифагора дает возможность определить кратчайшее расстояние между двумя точками (гипотенузу) на плоскости, если мы знаем расстояние между точками, измеренное вдоль координатных осей. Поскольку термин «прямая линия» относится к эвклидовой геометрии, введем новый термин для кратчайшего расстояния между двумя точками, применимый независимо от того, о каком пространстве идет речь – плоском или искривленном. Такая линия называется геодезической. К категории геодезических линий относится как большая окружность на поверхности Земли, так и прямая линия на плоскости. То же самое касается и расстояний в трехмерном пространстве. Теперь нам нужно решить, как измерять расстояния в пространстве-времени, так что давайте пойдем дальше и добавим к пространству время.
Мы уже ввели необходимые концепции, когда приводили пример с утренним пробуждением и завтраком на кухне. Расстояние в пространстве от кровати в спальне до стола на кухне составляет 10 метров. Можно также сказать (как бы странно это ни звучало), что расстояние во времени между пробуждением и окончанием завтрака равно одному часу. При обычных обстоятельствах мы рассуждаем о времени не так, поскольку не привыкли описывать его на языке геометрии. Мы скорее сказали бы следующее: «От момента, когда я проснулся, до окончания завтрака прошел один час». Точно так же мы говорим: «Встав с кровати, я должен пройти 10 метров до стула на кухне». Пространство есть пространство, время есть время, они не сомкнутся нигде[20]. Но мы поставили перед собой задачу объединить их, потому что предполагаем, что это единственный способ обеспечить соответствие Максвеллу и Эйнштейну. Так что давайте действовать и посмотрим, куда это нас приведет. Если вы не относитесь к числу ученых, то, возможно, эта часть книги окажется для вас наиболее сложной, поскольку мы рассуждаем сугубо абстрактно. Абстрактное мышление обеспечивает силу и мощь науки, но при этом придает ей репутацию очень непростого занятия, ибо в повседневной жизни данный подход требуется крайне редко. Мы уже сталкивались с довольно сложной абстрактной концепцией электромагнитного поля, и по сравнению с ней абстракция, которая необходима для объединения пространства и времени в одно целое, гораздо проще.
Говоря о «расстоянии во времени», мы неявно вводим дополнительное измерение. Мы привыкли к слову «трехмерный», как в выражении «трехмерное пространство», поскольку оно отображает тот факт, что обычное пространство имеет три измерения: вверх-вниз, влево-вправо, вперед-назад. Добавляя в эту схему время, для того чтобы определить расстояние в пространстве-времени, мы, по сути, создаем четырехмерное пространство. Безусловно, размерность времени ведет себя не так, как размерность пространства. Мы обладаем полной свободой перемещения в пространстве и только одним способом перемещения во времени. Кроме того, наше ощущение времени никак не связано с ощущением пространства. Но это не должно быть для нас непреодолимым препятствием. Думать о времени как «еще об одном измерении» – очередной уровень абстракции, который мы должны принять. Если это звучит для вас слишком сложно, попробуйте представить себя плоским созданием, передвигающимся только вперед, назад, вправо и влево. Вы живете в плоском мире, и для вас не существует понятий «вверх» и «вниз». Если кто-то попросит вас представить третье измерение, ваш плоский ум будет неспособен это сделать. Но если у вас математический склад ума, вы можете это принять. В любом случае, даже если вы не в состоянии мысленно представить себе это дополнительное измерение, вы сможете описать его математически. Точно так же люди воспринимают четвертое измерение. По мере прочтения книги вы все больше привыкнете думать о времени как об «еще одном измерении». Когда студенты, планирующие изучать физику, впервые приходят в Манчестерский университет, мы стараемся объяснить им, что каждый может запутаться и увязнуть в каком-то вопросе. Мало кто понимает сложные концепции с первого раза, поэтому единственный способ разобраться в них – двигаться вперед небольшими шажками. То есть, как сказал бы Дуглас Адамс: «Без паники!»[21]
Давайте продолжим, отметив один очень простой факт: в нашей жизни постоянно что-то происходит. Мы просыпаемся, умываемся, готовим завтрак, завтракаем и так далее. Все эти действия мы называем событиями в пространстве-времени. Мы можем однозначно описать событие в пространстве-времени посредством четырех чисел: трех пространственных координат, описывающих, где происходит событие, и временной координаты, описывающей, когда оно произошло. Пространственные координаты можно указать с помощью старой координатной системы – например широта, долгота и высота над уровнем моря. Скажем, координаты вашей кровати могут быть 50°2839,75 северной широты, 30°2041,57 восточной долготы и 172 метра над уровнем моря. Временные координаты определяются с использованием часов (поскольку время не является абсолютным, во избежание неоднозначности мы должны указать, какие именно часы используются), так что время вашего подъема, к примеру, может быть 7:00 по Гринвичу. Итак, у нас есть четыре числа, позволяющие однозначно определить любое событие в пространстве-времени. Обратите внимание, что в конкретном выборе координат нет ничего особенного. Фактически они вычисляются относительно воображаемой линии, проходящей через Гринвич в Лондоне. Это соглашение было принято в октябре 1884 года 25 странами с единственным голосом против (Сан-Доминго; Франция воздержалась). То, что выбор координат не должен иметь никакого значения, – очень важная концепция.
Давайте примем момент пробуждения в качестве первого события в пространстве-времени. Вторым событием может быть окончание завтрака. Мы уже говорили, что пространственное расстояние между этими событиями составляет 10 метров, а временное – 1 час. Для устранения неоднозначности следует добавить нечто вроде «я измерил расстояние между кроватью и столом с помощью рулетки, протянутой по прямой линии между ними» и «я измерил интервал времени с помощью своих часов, отметив их показания в моменты, когда проснулся и закончил завтракать». Не забывайте: мы уже знаем, что эти два расстояния (в пространстве и времени) не универсальны. Для того, кто летит мимо вашего дома на самолете, ваши часы будут идти медленнее, а расстояния – сокращаться. Наша цель – найти такое расстояние в пространстве-времени, с которым будут согласны все. Вот вопрос на миллион долларов: как взять 10 метров и 1 час и построить из них инвариантное расстояние в пространстве-времени? Нам нужно действовать осмотрительно и, так же как и в случае расстояний на земной поверхности, не исходить из эвклидовой геометрии.
При намерении вычислить расстояние в пространстве-времени у нас сразу же появляется насущная проблема, которую следует решить. Если расстояние в пространстве измеряется в метрах, а во времени – в секундах, то как же мы сможем их объединить? Это все равно что сложить вместе яблоки и апельсины, представляющие собой величины разного типа. Однако можно преобразовать расстояние во время и наоборот, если воспользоваться уравнением, с которым мы уже встречались ранее: v = x/t. С минимальным использованием алгебры мы можем записать время как t = x/v или расстояние как x = vt. Другими словами, расстояние и время могут быть взаимозаменяемы подобно разным денежным единицам, а «обменным курсом» будет служить скорость. Давайте введем такую калибровочную скорость и назовем ее c. Теперь мы можем измерить время в метрах, взяв любой временной интервал и умножив его на калибровочную скорость. На настоящем этапе наших рассуждений скорость c может представлять собой привычную скорость: мы еще ничего не говорили об истинном значении этого показателя. В действительности трюк со взаимозаменяемостью времени и расстояния очень распространен в астрономии, где расстояние до звезд и галактик часто измеряется в световых годах, то есть является расстоянием, которое свет проходит за один земной год. Это не кажется странным только потому, что мы привыкли, но в действительности расстояние измеряется в годах, а год – единица измерения времени. В астрономии калибрующая скорость – скорость света.
Рис. 4
Это уже прогресс: теперь у нас есть время и расстояние, измеряемые в одинаковых единицах. Например, в метрах, километрах, световых годах или еще в каких-то единицах такого рода. На рис. показаны два события в пространстве-времени, обозначенные маленькими крестиками. Суть в том, что нам нужно правило, позволяющее выяснять, насколько далеко друг от друга отстоят события в пространстве-времени. Взгляните на рисунок: нам необходимо узнать длину гипотенузы по длинам двух других сторон. Для более точного описания ситуации обозначим основание треугольника как x, а высоту как ct. Это означает, что два события удалены друг от друга в пространстве и времени. Наша задача – ответить на вопрос: чему равна гипотенуза s, выраженная через x и ct? В приведенном ранее примере x = 10 метров (расстояние от кровати до стола на кухне), а t = 1 час (расстояние во времени). До сих пор значение c было произвольным, так что ct также может быть любым, но не думайте, что мы переливаем из пустого в порожнее. Мы продолжим стоять на своем.
Мы должны выбрать инструмент для измерения длины гипотенузы, или расстояния между двумя событиями в пространстве-времени. Следует ли нам выбрать эвклидово пространство (тогда мы могли бы использовать теорему Пифагора) или нечто более сложное? Возможно, наше пространство должно быть искривлено, как поверхность Земли, или иметь какую-то иную сложную форму? В действительности существует бесконечное количество способов, позволяющих вычислять расстояния. Мы поступим так, как многие физики: выдвинем предположение, в основу которого будет положен важный и полезный принцип под названием «бритва Оккама» – по имени английского мыслителя Уильяма Оккама, жившего на рубеже XIII–XIV столетий. Эту идею легко сформулировать, но очень сложно реализовать на практике. В упрощенном виде принцип звучит так: «Не нужно ничего усложнять». Оккам сформулировал его так: «Не следует множить сущности без необходимости» (что тут же приводит к вопросу, почему он не придерживался собственного правила, формулируя утверждения). Бритва Оккама – очень мощный инструмент в контексте рассуждений об устройстве Вселенной. По существу, этот принцип гласит, что первой нужно проверять самую простую гипотезу, и только если она окажется ошибочной, постепенно повышать уровень сложности, пока гипотеза не будет подтверждена экспериментальными данными. В нашем случае простейший способ построения расстояния – рассматривать как минимум пространственную часть пространства-времени как эвклидову (другими словами, считать пространство плоским). Это означает перенос старого, испытанного способа работы с расстояниями между объектами в пространстве в нашу новую схему. Что может быть проще? Остается вопрос: каким образом в эту схему добавить время? Второе упрощающее предположение – что наше пространство-время неизменно и везде одинаково. Это важные предположения. В действительности Эйнштейн ослабил их и позволил пространству-времени постоянно изменяться при наличии материи и энергии, что привело его к общей теории относительности, до сих пор являющейся самой удачной теорией гравитации. Мы познакомимся с ней в последней главе, а пока будем игнорировать все эти тонкости. Раз уж мы придерживаемся принципа Оккама и делаем два упрощающих предположения, у нас остается только два варианта вычисления расстояний в пространстве-времени. Длина гипотенузы обязана иметь вид либо s = (ct) + x, либо s = (ct) – x. Другого выбора нет. Хотя мы этого не доказали, гипотеза о том, что пространство-время должно быть неизменным и везде одинаковым, приводит нас только к этим двум вариантам, и мы должны выбрать либо знак плюс, либо знак минус. Безусловно, есть доказательство или нет, мы можем поступить прагматично и понаблюдать, что произойдет, когда мы испытаем каждый из вариантов.
Смена знака с математической точки зрения означает не слишком большое расширение знаменитого уравнения Пифагора. Наша задача – выяснить, следует ли придерживаться версии уравнения со знаком плюс или использовать версию со знаком минус. На первый взгляд это может показаться довольно странным. Какие вообще могут быть причины для рассмотрения уравнения Пифагора со знаком минус? Но это неверный подход. Формула для расстояния на сфере тоже не имеет ничего общего с уравнением Пифагора, так что все, что мы делаем, – просто играем с идеей о том, что пространство-время может не быть плоским в эвклидовом смысле. Действительно, поскольку версия со знаком минус – единственный вариант, кроме версии со знаком плюс (с учетом сделанных нами предположений), у нас нет логических причин отбросить ее на данном этапе. Поэтому мы должны изучить последствия. Если не подойдет ни одна из версий, значит, мы не получим работоспособную меру расстояния в пространстве-времени. И тогда будем вынуждены начать все с самого начала.
Предупреждаем: сейчас нам придется окунуться в очень элегантную, но достаточно запутанную часть рассуждений. Мы постараемся придерживаться обещания не использовать ничего сложнее теоремы Пифагора, но может так получиться, что вам понадобится прочитать этот текст не один раз. Он того стоит, потому что, внимательно следя за ним, вы сможете испытать чувство, которое биолог Эдвард Уилсон[22] описал как ионическое очарование. Этот термин восходит к работе Фалеса Милетского[23], названного Аристотелем два столетия спустя основоположником естествознания в Ионии в VI веке до нашей эры. Данный поэтический термин отображает убежденность в том, что вся сложность мира объясняется посредством небольшого количества простых законов природы, поскольку природа по своей сути упорядочена и бесхитростна (вспомните эссе Вигнера). Работа ученого – отбрасывать сложности, которые нас окружают, и раскрывать лежащую в их основе простоту. Когда этот процесс приносит желаемые плоды, мы испытываем то самое ионическое очарование. Представьте себе на мгновение кружево снежинки на ладони своей руки. Эта элегантная красивая структура демонстрирует зубчатую кристаллическую симметрию. Не бывает двух одинаковых снежинок, и на первый взгляд этот хаос не может иметь однозначного объяснения. Но наука учит нас, что за очевидной сложностью снежинки скрывается лежащая в ее основе изысканная простота: каждая снежинка представляет собой конфигурацию миллиардов молекул воды H2O. Больше в снежинке ничего нет, а ее поразительно сложная структура образуется, когда молекулы H2O собираются вместе в атмосфере планеты в холодную зимнюю ночь.
Для того чтобы решить вопрос с плюсом или минусом, следует обратить внимание на принцип причинности. Давайте предположим, что уравнение Пифагора применимо и к расстояниям в пространстве-времени, то есть что s = (ct) + x. Теперь еще раз вернемся к нашим событиям – подъему в семь утра и завершению завтрака в восемь – и сделаем нечто такое, от чего у вас побегут мурашки по коже, когда вы вспомните, как сидели на уроках математики в школе и смотрели через окно на футбольное поле, нетронутое и зовущее в солнечный весенний день, – назовем момент пробуждения O, а завершение завтрака – A. Мы делаем это исключительно из соображений краткости, чтобы не описывать каждый раз подробно эти события.
Мы знаем, что пространственное расстояние между O и A равно x = 10 метров, а временное – t = 1 час, если x и t измеряю я. Мы еще не решили, чему равно c, но когда будем знать эту величину, то сможем вычислить и расстояние s в пространстве-времени между событиями O и A. Наша гипотеза заключается в том, что, если кто-то пролетит мимо со скоростью, близкой к скорости света, и выполнит те же измерения, расстояние s останется тем же. Иными словами, x и t для этого наблюдателя могут быть (и будут) другими, но они изменятся таким образом, что значение s останется прежним. Рискуя показаться слишком настойчивыми в подчеркивании важности этой мысли, хотим вам напомнить, что наша цель – всегда строить законы физики с использованием инвариантных объектов в пространстве-времени. Расстоние s – именно такой объект. Если это звучит слишком абстрактно, можем повторить сказанное с меньшим количеством математических терминов: правила природы должны выражать соотношения между реальными вещами, а эти вещи находятся в пространстве-времени. Вещь в пространстве-времени сродни объекту, расположенному в комнате. Пространство-время (или комната) представляет собой арену, на которой живет эта вещь. Природа реальных вещей не зависит от точки зрения и мнения наблюдателя, и в этом смысле мы говорим, что она инвариантна. Трехмерным примером чего-то, что не является инвариантной величиной, может служить мерцающая тень объекта в комнате, освещаемой пламенем из камина. Очевидно, что тень меняется в зависимости от того, как горит огонь и где находится камин, но у нас нет никаких сомнений, что за тень отвечает реальный, неизменный объект. Используя пространство-время, мы хотим вывести физику из тени и отследить соотношения между реальными объектами.
Рис. 5
Тот факт, что два разных наблюдателя могут измерить разные значения x и t, получив при этом одинаковое значение s, имеет очень важное следствие, которое довольно просто визуализировать. На рис. 5 показана окружность с центром в точке O (событие, соответствующее пробуждению в семь утра), с радиусом s. Поскольку пока мы используем формулу Пифагора для расчета расстояния, каждая точка окружности одинаково удалена от O. Это вполне очевидно: расстояние представляет собой радиус окружности. Точки вне круга находятся дальше от O, а точки внутри круга – ближе к O. Но наша гипотеза гласит, что s – это расстояние в пространстве-времени между событиями O и A. Другими словами, событие A может находиться где угодно на окружности, и при этом его расстояние в пространстве-времени от события O будет равно s. В какой же точке окружности должно располагаться событие A? Это зависит от того, кто измеряет x и t. Мне, находящемуся в доме, точно известно, что x = 10 метров и t = 1 час. На диаграмме эта точка отмечена как A. Для наблюдателя в летящей с огромной скоростью ракете расстояние в пространстве x и расстояние во времени t изменятся, но если s при этом останется неизменным, событие должно по-прежнему находиться где-то на окружности. Так что разные наблюдатели будут указывать разные положения в пространстве и времени для одного и того же события, но при этом станут подчиняться одному ограничению – все они будут находиться на указанной окружности. Обозначим два возможных положения события как A и A. Что касается положения A, то оно малоинтересно, а вот положение A заслуживает внимания. Здесь действительно происходит нечто весьма любопытное. A имеет отрицательное расстояние во времени относительно O. Другими словами, A происходит до O. Оно теперь находится в прошлом относительно O. Это мир, в котором вы завершаете завтрак до того, как просыпаетесь! Такое обстоятельство – очевидное нарушение принятой нами аксиомы о выполнении принципа причинности.
В качестве отступления заметим, что такие изображения, как на рис. 4 и 5, называются пространственно-временными диаграммами и очень часто помогают нам разобраться в происходящем. В действительности они довольно просты. Крестики на пространственно-временной диаграмме обозначают события. Мы можем опустить из события вертикальную линию до оси, обозначенной как «пространство», чтобы выяснить, как далеко в пространстве отстоит данное событие от события O. Аналогично горизонтальная линия от события до оси, отмеченной как «время», говорит нам о том, сколько времени прошло между данным событием и событием O. Область над осью пространства можно рассматривать как будущее для O (поскольку значение времени положительно для каждого события в этой области), а область ниже этой оси – как прошлое (так как здесь значения времени отрицательны). Проблема, с которой мы столкнулись, заключается в том, что мы построили определение расстояния s в пространстве-времени между событиями O и A, позволяющее событию A находиться как в будущем, так и в прошлом по отношению к событию O в зависимости от того, как именно движется наблюдатель. Другими словами, мы обнаружили, что требование о выполнении принципа причинности непосредственно связано с тем, как мы обозначаем расстояние в пространстве-времени, и простое определение Пифагора со знаком плюс нам не подходит.
Мы столкнулись с тем, что английский биолог Томас Хаксли[24] описал как «великую трагедию науки – убийство красивой гипотезы уродливым фактом». Однажды Уильям Уилберфорс[25] спросил Хаксли, которого прозвали Бульдог Дарвина за беззаветную защиту теории эволюции, по какой линии (отцовской или материнской) тот происходит от обезьяны. Хаксли ответил, что не стыдно иметь в предках обезьяну, стыдно быть человеком, использующим свой великий дар, чтобы скрывать истину. В нашем случае трагическая истина заключается в том, что мы должны отказаться от простейших гипотез, если хотим сохранить принцип причинности, и перейти к гипотезам посложнее.
Наша следующая и, по сути, единственная оставшаяся гипотеза звучит так: расстояние между точками в пространстве-времени вычисляется по формуле s = (ct) – x. В отличие от версии со знаком плюс это мир, в котором неприменима геометрия Эвклида, как и в случае геометрии на поверхности Земли. У математиков для пространства, в котором расстояние между двумя точками описывается приведенным выше уравнением, есть свое имя: гиперболическое пространство. Физики же называют его пространством-временем Минковского. Читатель может принять это название как намек, что мы находимся на верном пути! Теперь наша главная задача – определить, не нарушается ли в пространстве-времени Минковского требование о выполнении принципа причинности.
Для того чтобы ответить на этот вопрос, нужно еще раз взглянуть на линии в пространстве-времени, точки которых находятся на одинаковом расстоянии s от точки O (то есть мы хотим рассмотреть аналоги окружностей в эвклидовом пространстве-времени). Единственное отличие – знак минус вместо знака плюс. На рис. 6 показаны наши старые знакомые – события O и A, а также линия точек, равноудаленных от точки O. Очень важно то, что эти точки больше не лежат на окружности. Сейчас они расположены на кривой, известной математикам как гипербола. С математической точки зрения все точки на этой кривой удовлетворяют нашему уравнению s = (ct) x. Обратите внимание, что кривая стремится приблизиться к пунктирным прямым линиям, наклоненным под углом 45 градусов к осям. Теперь ситуация в восприятии наблюдателя в космическом корабле совершенно иная, чем в версии со знаком плюс, поскольку событие A всегда находится в будущем по отношению к событию O. Событие A может перемещаться вдоль кривой, но оно никогда не окажется в прошлом по отношению к O. Другими словами, все наблюдатели согласятся, что вы проснулись до того, как позавтракали. Можно вздохнуть с облегчением: принцип причинности в пространстве-времени Минковского не нарушается.
Рис. 6
Это один из важнейших моментов в книге, поэтому его стоит повторить. Если мы решили определять расстояние в пространстве-времени между двумя событиями O и A с помощью уравнения Пифагора, но со знаком минус вместо плюса, то независимо от того, кто именно рассматривает эти два события, событие A никогда не окажется в прошлом по отношению к событию O; оно просто перемещается по гиперболе. Это означает, что если событие A находится в будущем события O для одого наблюдателя, то с этим утверждением согласятся и все остальные наблюдатели. Поскольку гипербола никогда не попадает в прошлое события O, все признают то, что вы отправились завтракать после того, как проснулись.
Итак, мы только что завершили очень тонкие рассуждения. Это, конечно, не означает, что мы были правы, принимая исходную гипотезу о наличии «инвариантного» расстояния в пространстве-времени, которое будет справедливо для всех наблюдателей. Но это означает, что наша гипотеза прошла важную проверку на подчинение требованиям принципа причинности. Мы еще не закончили, потому что не просто играем с математикой. Мы физики и пытаемся построить теорию, описывающую устройство нашего мира. Конечным и решающим ее испытанием будет ее способность делать прогнозы, согласующиеся с результатами экспериментов. Но пока мы к этому не готовы, поскольку не знаем, чему равна калибровочная скорость c. Без чисел мы просто не в состоянии ничего вычислить.
Помните: для того чтобы описать понятие расстояния в пространстве-времени, нам нужно значение c, потому что измерять пространство и время необходимо в одних и тех же единицах. Пока мы не можем точно сказать, что собой представляет скорость c. Есть ли в ней что-то интересное? Ключ к ответу лежит в интригующем свойстве только что построенного пространства-времени Минковского. Эти пунктирные линии под углом 45 градусов к осям очень важны. На рис. 7 мы изобразили несколько других кривых, каждая из которых обладает свойством эквидистантности от O в пространстве-времени. Важный момент: мы можем изобразить четыре типа кривых. Одна находится полностью в будущем относительно O, другая – в прошлом, а две оставшиеся расположены слева и справа. Они внушают некоторую тревогу, поскольку пересекают горизонтальную ось так же, как и окружность, когда мы рассматривали формулу Пифагора со знаком плюс. Тогда нам пришлось отвергнуть гипотезу из-за нарушения принципа причинности. Не оказались ли мы в том же тупике в версии со знаком минус? Нет, потому что на сей раз из тупика есть выход. На рис. 7 показано событие B, расположенное в проблемной области; оно находится в прошлом по отношению к событию O. Однако эквидистантная гипербола, все точки которой размещены на одном и том же расстоянии от O в пространстве-времени, пересекает ось пространства. Это говорит о том, что могут быть как наблюдатели, для которых событие B находится по отношению к событию O в будущем, так и наблюдатели, для которых событие B находится по отношению к событию O в прошлом. Не забывайте: для всех наблюдателей расстояние между событиями в пространстве-времени одинаково, даже если по отдельности расстояние в пространстве и расстояние во времени для них различно. Хотя это выглядит как нарушение принципа причинности, к счастью, это совершенно не так.
Рис. 7
Как же восстановить принцип причинности в нашей теории пространства-времени? Чтобы ответить на этот вопрос, мы должны более серьезно поразмышлять о том, что мы понимаем под причинностью. Следующая часть рассуждений будет включать космические корабли и лазеры, так что вы сможете немного отдохнуть от иссушающих мозг абстрактных понятий. Давайте вернемся еще раз к событию O – утреннему подъему. А если точнее, сопоставим это событие с моментом, когда перестает звонить будильник. Незадолго до этого с одной из планет системы Альфы Центавра, ближайшей к Земле звездной системы, находящейся на расстоянии четырех световых лет, взлетел космический корабль и направился к Земле. Должны ли все наблюдатели согласиться, что корабль стартовал до того, как я проснулся? С точки зрения принципа причинности все зависит от того, насколько быстро может распространяться информация. Если информация может путешествовать с бесконечной скоростью, то инопланетный корабль теоретически способен выпустить лазерный луч, который мгновенно достигнет Земли и уничтожит мой будильник. В результате я просплю и останусь без завтрака. Это, конечно, ужасно, но поскольку мы ставим мысленный эксперимент, давайте отвлечемся от эмоциональных последствий уничтожения моего будильника и продолжим рассуждать. Выстрел боевого лазера лишает меня завтрака, а значит, порядок этих событий не может быть изменен без нарушения принципа причинности. Это легко увидеть, так как, если бы некий наблюдатель мог прийти к выводу, что выстрел состоялся после моего пробуждения, получилось бы противоречие: я не мог бы проспать просто потому, что уже встал. Мы вынуждены сделать следующее заключение: если информация может переноситься с произвольно высокой скоростью, то порядок любых двух событий никогда не может быть изменен без нарушения закона причины и следствия. Однако в наших рассуждениях есть лазейка, которая позволяет менять порядок определенных пар событий на обратный, но только если они находятся вне 45-градусных прямых. Эти прямые действительно начинают выглядеть очень важными.
Давайте еще раз представим себе инцидент с лазером и будильником, но уже с учетом наличия некоторой предельной скорости. Другими словами, теперь мы не позволим лучу лазера бесконечно быстро перемещаться от космического корабля к нашему будильнику. Вернемся опять к рис. 7 и примем выстрел лазера за событие B. Если космический корабль выстрелит лазером (событие B) незадолго до звонка будильника (событие O), но с очень большого расстояния, то зеленые человечки никак не помешают мне проснуться, потому что лазерному лучу просто не хватит времени для того, чтобы преодолеть расстояние от космического корабля до моего будильника. Так будет в случае, если скорость луча лазера не превышает некоторого космического ограничения скорости. В этой ситуации события O и B называются причинно несвязанными.
Как показано на рис. 7, мы предполагаем, что событие B произошло незадолго до события O так, что оно находится в области правого «клина», «опасной» для принципа причинности. Различные наблюдатели могут не согласиться друг с другом в отношении того, происходит ли событие B до события O или после него, поскольку разные точки зрения соответствуют разному положению точки B на гиперболе, пересекающей пространственную ось из прошлого в будущее. Это неизбежно, но принцип причинности может быть сохранен в случае отсутствия какого-либо способа, каким событие B могло бы влиять на событие O. Иными словами, кого интересует, произошло ли событие B в прошлом или будущем события O, если это совершенно не играет никакой роли, потому что события B и O никак не влияют друг на друга? В пространстве-времени Минковского есть четыре области, отделенные друг от друга пунктирными прямыми, проведенными под углами 45 градусов к осям. Если мы хотим спасти принцип причинности, то любое событие, произошедшее в левой или правой четвертях, не должно иметь возможности послать сигнал, который бы мог достичь O.
Чтобы интерпретировать разделяющие линии, давайте еще раз посмотрим на пространственно-временную диаграмму. Горизонтальная ось представляет расстояние в пространстве, а вертикальная – во времени. Следовательно, наклоненные под углом 45 градусов прямые соответствуют событиям, для которых расстояние в пространстве от O равно расстоянию от O во времени (ct). Как быстро должен перемещаться сигнал от O, чтобы он влиял на события, лежащие в точности на 45-градусной прямой? Понятно, что если событие отстоит от O на секунду в будущем, то сигнал должен пройти расстояние c 1 секунду. Если событие отстоит от O на две секунды в будущем, то сигнал должен пройти расстояние c 2 секунды. Иными словами, сигнал должен распространяться со скоростью c. Чтобы сигнал дошел от события B к событию O, он должен перемещаться со скоростью, превышающей скорость c. И наоборот, для любого события, лежащего между 45-градусными прямыми в верхне и нижней четвертях, возможно сообщение между ним и событием O с помощью сигнала, скорость которого не превышает c.
Наконец-то нам удалось интерпретировать скорость c: это предельная скорость во Вселенной. Ничто не может двигаться быстрее, поскольку это могло бы использоваться для передачи информации, которая бы привела к нарушению принципа причинности. Обратите также внимание, что если все наблюдатели сойдутся во мнении о расстоянии в пространстве-времени между двумя событиями, то они должны сойтись и насчет предельной скорости c независимо от их движения в пространстве-времени. Таким образом, скорость c обладает дополнительным интересным свойством: независимо от того, как движутся два разных наблюдателя, при измерениях они всегда должны получать одно и то же значение c. Скорость c сильно начинает напоминать другую особую скорость, с которой мы уже сталкивались в этой книге, – скорость света, хотя мы еще не доказали, что это одно и то же.
Наша исходная гипотеза все еще жива. Нам удалось построить теорию пространства и времени, которая, как нам кажется, способна воспроизвести физику, с которой мы столкнулись в предыдущей главе. Безусловно, существование универсального ограничения скорости подает надежды, особенно если мы сможем интерпретировать это как скорость света. У нас также есть пространство-время, в котором и пространство, и время больше не являются абсолютными и принесены в жертву абсолютному пространству-времени. Чтобы убедиться, что мы построили возможное описание мира, давайте посмотрим, сможем ли мы получить замедление движущихся часов, с которым сталкивались в главе 3.
Представьте, что вы вернулись в пресловутый поезд, сидите в вагоне и смотрите на свои наручные часы. Вам удобно измерять расстояние относительно вашего собственного положения, а время – с помощью часов. Ваша поездка от станции до станции занимает два часа. Так как вы не покидаете своего места в вагоне, вы перемещаетесь на расстояние x = 0. Этот принцип мы установили еще в начале книги. Невозможно определить, кто именно движется, а кто находится в состоянии покоя, так что для вас, сидящего в вагоне, вполне приемлемо решение считать, что вы неподвижны. Следовательно, для вас изменяется только время. Поскольку путешествие длится два часа, в вашем восприятии вы перемещались лишь во времени. Таким образом, в пространстве-времени вы переместились на расстояние s, которое определяется как s = ct, где t = 2 часа (так как измеренное вами расстояние в пространстве x = 0). Пока все просто. Теперь рассмотрим вашу поездку с точки зрения вашего друга, находящегося не в поезде, а сидящего где-то на земле (где именно, не имеет значения, главное, что он пребывает в состоянии покоя относительно дороги, по которой со свистом несется ваш поезд). Ваш друг предпочитает измерять расстояние относительно своего положения, а время – по своим часам. Для простоты предположим, что ваш поезд едет по идеально прямой дороге. Если вы проехали два часа со скоростью v = 100 км/ч, то ваш друг отмечает, что к концу путешествия вы преодолели расстояние X = vT. Мы используем прописные буквы для расстояния и времени, измеренного вашим другом, чтобы отличать их от расстояния и времени, измеренного вами (то есть x = 0 и t = 2 часа). По словам вашего друга, вы преодолели в пространстве-времени расстояние s, определяемое по формуле s = (cT) (vT).
Далее следует очень важный момент: вы оба должны указать одно и то же расстояние для вашего путешествия в пространстве-времени. Согласно вашим измерениям, вы не двигались (x = 0), а ваше путешествие заняло два часа (t = 2 часа), в то время как ваш друг утверждает, что вы проехали расстояние vT (где v = 100 км/ч), а само путешествие заняло время T. Мы обязаны приравнять полученные расстояния в пространстве-времени и выводим уравнение (ct) = (cT) (vT). При преобразовании оно дает T = ct (c v). Таким образом, несмотря на то что, судя по вашим часам, путешествие длилось два часа, по часам вашего друга оно продолжалось несколько дольше, а именно – в с (c v) = 1 (1 v c) раз, что в точности совпадает с тем, что мы получили в предыдущей главе, если принять, что c – не что иное, как скорость света.
Вы начинаете чувствовать ионическое очарование? Мы вывели ту же формулу, которую получили путем рассуждений о световых часах и треугольниках в предыдущей главе. В тот момент мы говорили о световых часах потому, что выполненный Максвеллом блестящий синтез экспериментальных результатов Фарадея и других ученых привел к предположению, что скорость света должна быть одной и той же для всех наблюдателей. Этот вывод был подтвержден экспериментальными работами Майкельсона и Морли и принят в качестве постулата Эйнштейном. В этой главе мы пришли к аналогичному заключению, но без ссылок на историю или эксперимент. Нам даже не понадобилось придавать свету особую роль. Мы просто ввели пространство-время и в результате выявили, что должно существовать понятие инвариантного расстояния между событиями. Кроме того, мы потребовали неукоснительного соблюдения закона причины и следствия. После этого построили простейшую из возможных мер расстояния и получили тот же ответ, что и Эйнштейн. Это рассуждение, пожалуй, один из самых красивых примеров непостижимой эффективности математики в естественных науках. Однако истинная кульминация будет достигнута в следующей главе, а пока можем немного отдохнуть от математики и насладиться тем фактом, что мы успешно открыли новый способ размышлений о теории Эйнштейна. Пространство-время, похоже, в самом деле работает и имеет смысл, как сказал Минковский.
Как представить пространство-время? Реальное пространство-время четырехмерно, но четырехмерная природа – камень преткновения для нашего воображения: наш трехмерный мозг не в состоянии воспринимать объекты в более чем трех измерениях. Кроме того, тот факт, что одна из размерностей – время, выглядит полной бессмыслицей. Но вот картина, которая могла бы сделать все это менее загадочным. Представьте мотоцикл, едущий по холмистой местности. Вся равнина пересечена дорогами, позволяющими мотоциклу двигаться в любом направлении. Пространство-время похоже на такую холмистую равнину. Аналог движения мотоциклиста, едущего точно на север, – движение в пространстве-времени только во времени. Иными словами, такой объект неподвижен в пространстве. Конечно, утверждения наподобие «неподвижен в пространстве» субъективны, так что отождествление «направления строго на север» с «временным направлением» подразумевает определенную точку зрения, но это как раз хорошо. Нам просто следует помнить об этом. Далее, на все пересекающиеся дороги нашей равнины накладывается ограничение – они должны отклоняться от направления на север не более чем на 45 градусов. Дороги, ведущие точно на восток и запад, запрещены, так как, двигаясь по ним, нашему пространственно-временному мотоциклисту придется превысить космическое ограничение скорости в пространстве. Подумайте об этом: если бы мотоциклист мог двигаться строго на восток, он бы переместился в этом направлении на какое угодно расстояние, совершенно не затратив на это время, так как при этом абсолютно не сдвинулся бы в северном направлении. Это соответствовало бы бесконечной скорости в пространстве. Он мог бы попадать из пресловутого пункта А в пункт Б мгновенно. Поэтому дороги построены так, что мотоциклист просто не может двигаться слишком быстро в западном или восточном направлении.
Аналогии можно проводить еще дальше. Очень скоро мы покажем, что в пространстве-времени все движется с одинаковой скоростью. Это выглядит, как если бы у мотоциклиста на мотоцикле дроссельный клапан был зафиксирован в одном положении и он всегда должен был перемещаться по равнине пространства-времени с одной и той же скоростью. Гооря о скорости в пространстве-времени, следует быть осторожным, поскольку это не то же самое, что скорость движения в пространстве. Скорость в пространстве может быть какой угодно – лишь бы она не превышала космическое ограничение: например, наш мотоциклист может ехать в направлении, близком к северо-восточному, и при этом будет нестись со скоростью, сколь угодно близкой к скорости света. Напротив, выбирая дорогу, близкую к направлению строго на север, мотоциклист будет лишь немного смещаться в западном или восточном направлении, а значит, станет перемещаться в пространстве с совсем небольшой скоростью. Утверждение, что все в пространстве-времени движется с одной и той же скоростью, выглядит достаточно сильным и несколько обескураживающим. Это означает, что вы, сидящий в кресле и читающий эту книгу, проноситесь по пространственно-временной равнине с той же пространственно-временной скоростью, что и все во Вселенной. С этой точки зрения движение в пространстве представляет собой тень более обобщенного движения в пространстве-времени. В самом прямом смысле, как мы сейчас покажем, вы точно такой же мотоциклист с фиксированным дроссельным клапаном. Вы движетесь по пространству-времени с фиксированной скоростью во время чтения книги. Поскольку при этом вы спокойно сидите в кресле – ваше движение в пространстве-времени осуществляется по дороге, направленной строго на север. Если вы взглянете на свои часы, то увидите, как они измеряют пройденное вами расстояние в этом направлении. Это звучит довольно странно, так что давайте двигаться дальше очень внимательно и осмотрительно.
Почему в пространстве-времени все перемещаются с одной и той же скоростью? Вернемся опять к нашему мотоциклисту и представим, что согласно его часам прошла одна секунда. За это время он проехал определенное расстояние в пространстве-времени. Однако для всех наблюдателей оно должно быть одинаковым в силу своей универсальности, и это не может быть предметом обсуждения. То есть мы можем спросить мотоциклиста, далеко ли он заехал по пространственно-временной равнине, и ответ, который он даст, будет верным. Но мотоциклист рассматривает расстояния относительно самого себя, и с этой точки зрения он находится в пространстве на месте, а движется только во времени. Он похож на человека из главы 1, который сидит, не вставая, в кресле самолета и потому утверждает, что неподвижен. Он может двигаться по отношению к кому-либо еще – например, по отношению к человеку, стоящему на земле и провожающему самолет взглядом, – но это неважно. Так что с точки зрения мотоциклиста он вовсе не движется в пространстве, и при этом проходит одна секунда времени. Таким образом, он может использовать уравнение для пространства-времени s = (ct) – x с x = 0 (ведь он неподвижен в пространстве) и t = 1 секунда, чтобы выяснить, как далеко он переместился в пространстве-времени. Ответ очевиден: это расстояние в пространстве-времени равно c, умноженному на одну секунду. Итак, мотоциклист говорит нам, что перемещается в пространстве-времени на расстояние c (умноженное на одну секунду) за каждую секунду, отмеренную его часами. И это всего лишь иной способ сказать, что скорость его перемещения в пространстве-времени равна c. Если вы внимательно следили за нашими рассуждениями, то можете возразить, что прошедшая секунда измерена часами мотоциклиста и что тот, кто движется относительно мотоциклиста, измерит другой интервал времени. Это так, но в часах мотоциклиста есть нечто особенное, поскольку он неподвижен относительно самого себя (что, конечно же, тривиальное утверждение). Именно поэтому мы можем подставить x = 0 в уравнение для пространства-времени, и время, прошедшее согласно часам мотоциклиста, оказывается непосредственным способом измерять расстояния в пространстве-времени s. Это очень красивый результат: время, прошедшее на часах мотоциклиста, равно расстоянию его перемещения в пространстве-времени, деленному на c. В определенном смысле его часы представляют собой устройство для измерения расстояний в пространстве-времени, так как расстояние в пространстве-времени одинаково для всех наблюдателей. Следовательно, мотоциклист невольно использует свои часы для измерения чего-то, с чем согласятся все наблюдатели. Поэтому измеренная им пространственно-временная скорость также будет величиной, признанной всеми наблюдателями.
Таким образом, скорость перемещения в пространстве-времени – это универсальная величина, с которой согласны все наблюдатели. Этот новый образ мышления о движении в пространстве-времени может помочь нам получить другое объяснение замедления движущихся часов. При таком рассмотрении пространства-времени они используют какую-то часть фиксированной скорости в пространстве-времени на движение в пространстве и, соответственно, уменьшают часть, остающуюся для движения во времени. Иными словами, движущиеся в пространстве часы не так быстро перемещаются во времени, как покоящиеся (что представляется еще одним способом сказать об их замедлении). Напротив, часы, находящиеся в покое, движутся только во времени и не движутся в пространстве. Следовательно, они идут с максимально возможной скоростью.
Вооружившись концепцией пространства-времени, мы готовы рассматривать одну из наиболее занятных головоломок специальной теории относительности – парадокс близнецов. Ранее в книге мы показали, что теория Эйнштейна позволяет говорить о возможности путешествий в далекие места Вселенной. Например, благодаря ускорению до скоростей, близких к световым, реально добраться до галактики Андромеды за время человеческой жизни, невзирая на тот факт, что лучу света на такое путешествие требуется около 3 миллионов лет. Но здесь присутствует парадокс, о котором мы пока не рассказывали. Представьте близнецов, один из которых стал астронавтом и отправился на таком субсветовом космическом корабле в галактику Андромеды, в то время как второй остался на Земле. Близнец-астронавт движется относительно Земли с очень высокой скоростью, близкой к скорости света, следовательно, его течение времени и вся жизнь замедляются по отношению к жизни его близнеца на Земле. Но ведь мы затратили немало усилий, чтобы на страницах этой книги доказать, что не существует понятия абсолютного движения! Другими словами, на вопрос «Кто движется?» имеется единственный ответ: «Тот, кого вы выберете». Каждый из близнецов вправе решить, что в состоянии покоя находится именно он, а его брат несется по Вселенной со скоростью света. Так может решить и астронавт, находящийся в полете: это он пребывает в покое, а его близнец со скоростью света уносится вдаль вместе с Землей и Солнцем. Кто из них прав? Могут ли оба близнеца стареть медленнее по отношению друг к другу? Теория утверждает, что так и есть. Пока что в этом нет никакого парадокса, поскольку то, что каждый из них наблюдает замедление времени у своего брата, не приводит к реальным проблемам. Дело в том, что вы по привычке цепляетесь за идею универсального времени. Но время не универсально, а значит, пока что никакого противоречия. Парадокс начнется тогда, когда путешествовавший близнец вернется на Землю и встретится с оставленным там братом. Что при этом случится? Очевидно, что оба одновременно не могут быть моложе друг друга. Значит, один из них должен стать старше? Но если так, то кто именно?
Ответ можно найти в нашей трактовке пространства-времени. На рис. 8 отображены пути в пространстве-времени, пройденные близнецами и измеренные с использованием часов и линейки, находящихся в покое относительно Земли. Оставшийся на Земле близнец пребывает в состоянии покоя, а потому его путь направлен вдоль оси времени. Другими словами, вся его скорость расходуется на перемещение во времени. Со своей стороны близнец-астронавт движется со скоростью, близкой к скорости света. Возвращаясь к аналогии с мотоциклистом, это означает, что он перемещается в северо-восточном направлении, используя максимально возможную часть скорости движения в пространстве-времени для достижения скорости в пространстве, близкой к скорости света. На ри. 8 это движение в направлении, близком к 45 градусам по отношению к пространственной и временной осям. Однако в некоей точке этот близнец должен развернуться и направиться обратно к Земле. На рис. 8 показано, что он вновь движется в пространстве со скоростью, близкой к скорости света, но на сей раз – в северо-западном направлении. Очевидно, что близнецы проходят разные пути в пространстве-времени, несмотря на то что стартовали и финишировали в одной и той же точке.
Рис. 8
Так же как и в пространстве, расстояния в пространстве-времени могут отличаться. Даже если все наблюдатели согласны с длиной некоторого пути в пространстве-времени, длины различных путей не должны быть одинаковыми. Это сродни заявлению, будто длина пути от Шамони до Курмайора зависит от того, будете ли вы двигаться в туннеле под горами или перебираться через Альпы. Понятно, что дорога через горы длиннее. В ходе обсуждения мотоциклиста, движущегося по равнине пространства-времени, мы установили, что время, измеренное с помощью его часов, дает возможность непосредственного измерения пройденного им расстояния в пространстве-времени: надо просто умножить прошедшее время на c, чтобы получить расстояние в пространстве-времени. Мы можем взглянуть на это утверждение с другой стороны и заявить, что знаем расстояние в пространстве-времени, пройденное каждым близнецом, что позволяет нам вычислить время для каждого из них. Другими словами, мы можем рассматривать каждого близнеца как путешественника в пространстве-времени, при этом пройденное ими расстояние в пространстве-времени измеряется их часами.
А теперь перейдем к ключевой идее. Взглянем еще раз на формулу для расстояния в пространстве-времени: s = (ct) – x. Оно будет наибольшим, если следовать по пути, на котором x = 0. Все прочие пути должны быть короче, поскольку мы обязаны выполнять вычитание (всегда положительной) величины. Находящийся на Земле близнец движется вдоль оси времени с близким к нулю перемещением в пространстве, поэтому его путь должен быть самым длинным возможным путем. Фактически это просто другой способ сказать то, что мы уже знаем: близнец, оставшийся на Земле, путешествует во времени с максимально возможной скоростью, а потому стареет быстрее.
Пока что наше пояснение давалось с точки зрения земного близнеца. Чтобы полностью убедиться в том, что никакого парадокса тут нет, давайте рассмотрим ситуацию с точки зрения близнеца-астронавта. В его понимании путешествует близнец, оставшийся на Земле, в то время как он сам движется вдоль собственной временной оси. Создается впечатление, что здесь снова наблюдается парадокс: поскольку астронавт покоится относительно своего корабля, получается, что он движется с максимальной скоростью во времени, а значит, должен стареть быстрее. Однако есть один тонкий момент. Уравнение для расстояния неприменимо, если мы намерены использовать часы и линейку близнеца-астронавта. Точнее говоря, это уравнение не будет работать, когда астронавт подвергнется ускорению, разворачивающему космический корабль обратно к Земле. Почему? Аргументы, использованные нами при выведении уравнения, кажутся неопровержимыми. Но если применить ускоряющуюся систему часов и линеек для выполнения измерений (как вынужден поступить близнец-астронавт), то выдвинутое нами предположение о неизменности пространства-времени и о том, что оно одинаково в любом месте, окажется неверным. Во время ускорения близнец-астронавт будет придавлен к своему креслу, как вас вдавливает в кресло автомобиля при нажатии педали газа. В начале движения тем самым выделяется одно из направлений в пространстве: направление ускорения. В уравнении расстояния следует учесть наличие этой силы. Мы не будем излагать вам все математические детали, но итог следующий: когда корабль включает двигатели для разворота, близнец на Земле стареет быстрее астронавта, и это полностью компенсирует тот факт, что он старел медленнее во время фазы равномерного движения. Парадокса не существует.
Мы не можем устоять против соблазна привести кое-какие числовые данные. Большое космическое путешествие наиболее комфортно на корабле, который движется с ускорением, равным одному g, то есть когда путешественникам внутри корабля будет казаться, что они весят ровно столько же, сколько и на Земле. Итак, представим путешествие, в котором десять лет происходит разгон с данным ускорением, десять лет – торможение, после чего корабль разворачивается и полет повторяется в противоположном направлении – десять лет ускорения, десять лет торможения. Все путешествие занимает 40 лет. Сколько же лет при этом пройдет на Земле? Математические выкладки выходят за рамки нашей книги, так что мы просто сообщим окончательный результат: около 59 тысяч лет!
Мы тоже совершили замечательное путешествие по миру пространства-времени и надеемся, что вы следовали за нами. Теперь мы готовы перейти непосредственно к формуле E = mc. Вооруженные пространством-временем и инвариантным расстоянием в пространстве-времени, зададим простой, но очень важный вопрос: существуют ли другие инвариантные величины, которые тоже описывают свойства реальных объектов в реальном мире? Конечно же, важны не только расстояния. Объекты имеют массу, могут быть твердыми или мягкими, горячими или холодными, жидкими или газообразными. Поскольку все объекты находятся в пространстве-времени, можно ли описать весь мир инвариантным способом? В следующей главе мы узнаем, что да и что это влечет за собой очень глубокие последствия, ибо это путь, ведущий нас непосредственно к уравнению E = mc.
5. Почему же E = mc
В предыдущей главе мы продемонстрировали, что объединение пространства и времени в одну концепцию пространственно-временного континуума оказалось хорошей идеей. Основная мысль всех наших исследований состояла в том, что расстояние в пространстве-времени – инвариантная величина, а значит, во всей Вселенной существует консенсус в отношении длины пути, пройденного в пространстве-времени. Эту величину можно было бы даже рассматривать как определяющую характеристику пространства-времени. Нам удалось заново открыть теорию Эйнштейна, но только при условии, что мы будем трактовать предельную космическую скорость c как скорость света. Мы еще не доказали, что c имеет отношение к скорости света, но в этой главе проанализируем значение c гораздо глубже. В определенном смысле мы уже начали раскрывать тайну скорости света. Поскольку эта величина присутствует в формуле E = mc, может показаться, что сам свет – важный элемент структуры Вселенной. Но в контексте пространства-времени это не так. Демократия восстановлена в том смысле, что в пространстве-времени все может перемещаться с одной и той же скоростью c, в том числе вы, планета Земля, Солнце и далекие галактики. Просто свет использует всю квоту скорости в пространстве-времени на перемещение в пространстве и потому движется в пространстве с предельной космической скоростью. Значит, мнимая уникальность света – всего лишь следствие склонности человека воспринимать время и пространство как разные вещи. В действительности существует причина, по которой свет вынужден использовать свою квоту скорости на движение в пространстве, и эта причина непосредственно связана с нашей целью – понять, почему E = mc.
E = mc – это уравнение. Мы изо всех сил старались обратить внимание читателей на то, что для физика уравнения – весьма удобный и эффективный инструмент описания взаимосвязей между различными объектами. В случае E = mc в качестве таких объектов выступают энергия (E), масса (m) и скорость света (c). В более общем смысле элементы уравнения могут представлять либо реальные физические объекты, такие как волны или электроны, либо более абстрактные понятия, такие как энергия, масса или расстояние в пространстве-времени. Как мы уже видели в предыдущих главах, физики весьма требовательно относятся к фундментальным уравнениям в том смысле, что, по их мнению, их должны принять все без исключения во Вселенной, независимо от местоположения, скорости и направления движения. Это вполне обоснованное требование, хотя в какой-то момент в будущем мы можем обнаружить, что придерживаться его невозможно. Такой поворот событий поверг бы в шок любого современного физика, поскольку эта идея оказалась на удивление плодотворной с момента рождения современной науки в XVII столетии.
Хороший ученый всегда должен осознавать тот факт, что природа может без колебаний повергнуть нас в шок, а реальность такова, какова есть. Но пока все, что мы можем сказать, это что мечта остается неизменной. Мы уже исследовали идею всеобщего согласия, представив ее достаточно просто: законы физики должны быть сформулированы с использованием инвариантных величин. Все известные нам фундаментальные физические уравнения соответствуют этому требованию, поскольку отображают взаимосвязи между объектами в пространстве-времени. Что именно это означает? Что представляет собой объект, существующий в пространстве-времени? Можно предположить, что все сущее находится в пространстве-времени, поэтому, когда нам необходимо составить уравнение, например, описывающее взаимодействие между объектом и окружающей средой, мы должны найти способ выразить это в математической форме с помощью инвариантных величин. Только так можно достичь всеобщего согласия.
Хорошим примером может послужить длина куска веревки. Исходя из того, что нам уже известно, можно прийти к выводу, что хотя кусок веревки – это реальный объект, нам следует избегать написания уравнения, отображающего только его длину в пространстве. Пожалуй, нам нужно быть смелее и говорить о длине куска веревки в пространстве-времени, как того требует теория пространственно-временного континуума. Безусловно, физикам, решающим сугубо земные задачи, удобно использовать уравнения, отображающие взаимоотношения между длинами в пространстве и другими вещами подобного рода (инженеры считают такой подход весьма полезным). Уравнение, в котором используется только длина в пространстве или время, измеряемое с помощью часов, вполне корректно рассматривать как допустимое приближение, если речь идет об объектах, движущихся очень медленно по сравнению с предельной космической скоростью, что во многих случаях (хотя и не всегда) верно в контексте решения повседневных инженерных задач. Пример, доказывающий, что это не всегда так, – ускоритель частиц, в котором субатомные частицы движутся по кругу со скоростью, близкой к скорости света, и в результате живут дольше своих покоящихся двойников. Если бы следствия теории Эйнштейна не принимались во внимание, ускорители частиц просто не работали бы должным образом. Фундаментальная физика сводится к поиску фундаментальных уравнений, а это подразумевает необходимость работать исключительно с математическими представлениями объектов, имеющими универсальное значение в пространственно-временном континууме. Прежнее представление о пространстве и времени как о двух отдельных концепциях приводит к формированию картины мира, напоминающей попытку смотреть спектакль, наблюдая только за тенями, оставленными на сцене светом прожекторов. На самом деле в спектакле играют трехмерные актеры, которые передвигаются по сцене, а тени – всего лишь двумерная проекция спектакля. После открытия концепции пространства-времени мы наконец можем оторвать взгляд от этих теней.
Все эти разговоры об объектах в пространстве-времени могут показаться достаточно абстрактными, но в них есть свой смысл. До сих пор мы сталкивались только с одной математической моделью объекта, имеющей универсальное значение в пространстве-времени, – расстоянием между двумя событиями в пространстве-времени. Но есть и другие.
Прежде чем разбираться с объектом нового типа, расположенным в пространстве-времени, давайте вернемся на один шаг и представим себе его аналог в трех измерениях, соответствующих нашему повседневному опыту. С учетом уже прочитанного в этой книге для вас не должен стать неожиданностью тот факт, что любая разумная попытка описать окружающий мир использует концепцию расстояния между двумя точками. Так вот, расстояние – это особый объект, который характеризуется одним числом. Например, расстояние от Манчестера до Лондона – 296 километров, а от вашей ступни до макушки головы (которое принято называть ростом) – примерно 176 сантиметров. Слово, указываемое после числа (сантиметры или километры), просто объясняет, в каких единицах ведется измерение, но в обоих случаях речь идет об одном числе. Расстояние от Манчестера до Лондона – безусловно, полезная информация, которой достаточно для определения требуемого количества бензина, но не совсем достаточно для того, чтобы совершить саму поездку. Без карты мы вполне можем отправиться не в том направлении и оказаться в Норидже.
Несколько сюрреалистичным и совершенно непрактичным решением этой проблемы могло бы стать сооружение гигантской стрелы длиной 296 километров; ее конец можно было бы расположить в Манчестере, а наконечник – в Лондоне. Стрелка – весьма полезный инструмент, часто используемый физиками для описания мира, поскольку она отображает идею о том, что нечто может иметь одновременно и размер, и направление. Очевидно, что существование гигантской стрелы от Манчестера до Лондона имеет смысл, только если она повернута в определенном направлении. В противном случае мы все так же могли бы оказаться в Норидже. Именно это мы и подразумеваем, утверждая, что стрела имеет как размер, так и направление. Стрелки помогают нам описывать окружающий мир. Пример тому – стрелки, которые используют синоптики для иллюстрации направления и скорости ветра: чем больше стрелка, тем сильнее ветер. Скорость ветра, отображаемая на синоптической карте, а также гигантская стрела от Манчестера до Лондона – это двумерные векторы, для описания которых необходимы только два числа. Например, мы можем сказать, что ветер дует со скоростью 65 километров в час в юго-восточном направлении. Показывая нам стрелки только в двух измерениях, синоптики не дают полной картины происходящего – они не сообщают, дует ли ветер вверх или вниз и на сколько градусов, но в большинстве случаев это не так важно.
Векторы также могут существовать в трех или более измерениях. Если бы мы начали свой путь из Манчестера в Лондон в одной из старых деревень в Пеннинских горах к северу от Манчестера, нам пришлось бы направить нашу стрелу немного вниз, поскольку Лондон расположен на берегах Темзы, на уровне моря. Векторы, существующие в трех измерениях обычного пространства, можно описать тремя числами. К настоящему моменту вы, наверное, уже догадались, что векторы могут находиться и в пространстве-времени и их следует описывать четырьмя числами.
Мы уже близки к тому, чтобы раскрыть суть двух оставшихся составляющих на пути к пониманию, почему E = mc. Первая составляющая вряд ли вас удивит: нас будут интересовать только векторы, существующие в четырех измерениях пространства-времени. Эту концепцию легко сформулировать, но она весьма своеобразна: подобно тому как вектор может указывать на север, мы теперь имеем понятие вектора, указывающего в направлении времени. Как всегда при обсуждении пространства-времени, нам трудно мысленно представить себе эту концепцию, но это наша проблема, а не окружающего мира. Аналогия с пространственно-временной равниной, использованная нами в предыдущей главе, поможет вам сформировать мысленную картину, по крайней мере упрощенную картину пространства-времени с одним пространственным измерением. Четырехмерные векторы характеризуются четырьмя числами. Базовый вектор – тот, который соединяет две точки в пространстве-времени. Два примера такого вектора показаны на рис. 9. То, что один из векторов на рисунке указывает в направлении времени и что оба вектора исходят из одной точки, сделано исключительно ради нашего удобства. В самом общем виде вы должны представлять себе любые две точки в пространстве-времени вместе с соединяющей их стрелкой. Такие векторы – не полная абстракция. Если вы ложитесь спать в десять часов вечера и проыпаетесь в восемь часов утра, эти два события в пространстве-времени соединяет вектор, длина которого равна десяти часам, умноженным на с, указывающий в направлении времени. Более того, мы уже говорили об этих векторах в нашей книге, но не использовали такую терминологию. Например, мы столкнулись с одним очень важным вектором, когда говорили об отважном мотоциклисте, путешествующем по холмистой равнине пространства-времени с зафиксированным дроссельным клапаном. Мы пришли к выводу, что этот мотоциклист всегда перемещается в пространстве-времени со скоростью с, а также что он может выбирать только направление движения мотоцикла (хотя даже здесь у него нет полной свободы действий, поскольку ему нельзя отклоняться от северного направления более чем на 45 градусов). Мы можем представить движение мотоциклиста с помощью вектора фиксированной длины с, который указывает, в каком направлении он перемещается по пространственно-временному ландшафту. У этого вектора есть имя – вектор скорости в пространстве-времени. Если использовать правильную терминологию, то следует говорить, что этот вектор скорости всегда имеет длину с и может указывать направление только в пределах светового конуса будущего. Световой конус будущего – это причудливое название области, расположенной между двумя очень важными для сохранения причинно-следственных связей линиями, пролегающими под углом 45 градусов. Мы можем полностью описать любой вектор в пространстве-времени, отметив, какая его часть указывает в направлении времени, а какая – в направлении пространства.
Рис. 9
Мы с вами уже знакомы с положением, что, хотя наблюдатели, которые двигаются с разными скоростями относительно друг друга, по-разному оценивают расстояния во времени и пространстве между двумя событиями, эти расстояния должны меняться таким образом, чтобы расстояние в пространстве-времени всегда оставалось неизменным. Исходя из своеобразной геометрии пространства Минковского это означает, что конец вектора может двигаться по гиперболе, расположенной в пределах светового конуса будущего. В частности, если два события – это лечь спать в десять вечера и проснуться в восемь утра, то находящийся в кровати наблюдатель придет к выводу, что вектор скорости в пространстве-времени направлен вверх по временной оси, как показано на рис. 9, а длина этого вектора – просто количество времени, измеренного по его часам и умноженное на c. Некто, пролетающий мимо на высокой скорости, мог бы воспринять спящего в постели как движущийся объект. В таком случае он включил бы в расчеты еще и движение в пространстве, наблюдая за человеком в постели, а это смещает конец вектора с временной оси. Поскольку длина стрелки не может меняться, ее конец должен оставаться на гиперболе. Эту мысль иллюстрирует вторая, наклонная, стрелка на рис. 9. Как видите, часть вектора, указывающая в направлении времени, увеличилась, а это значит, что с точки зрения быстро движущегося наблюдателя между этими двумя событиями проходит больше времени (другими словами, его часы отсчитывают более десяти часов). Это еще один способ представить странный эффект замедления времени.
Вот и все, что следовало сказать о векторах, – во всяком случае пока (вектор скорости в пространстве-времени понадобится нам снова чуть позже). Несколько следующих абзацев посвящены второму важному фрагменту головоломки E = mc. Представьте себе, что вы физик, пытающийся понять, как устроена Вселенная. Вы уже спокойно воспринимаете идею векторов и даже составили ряд математических уравнений, которые их содержат. А теперь вообразите, что кто-то, скажем один из ваших коллег, говорит вам, что существует особый вектор, который никогда не меняется, что бы ни происходило в той части Вселенной, к которой он относится. Сначала вы, возможно, это проигнорируете: если ничего не меняется, то вряд ли удастся раскрыть суть рассматриваемого вопроса. Но ваш интерес усилится, если коллега уточнит, что этот особый вектор образован посредством суммирования ряда других векторов, каждый из которых связан с отдельной частью объекта, который вы пытаетесь понять. Различные части этого объекта способны перемещаться, и когда они делают это, каждый из отдельных векторов может меняться, но всегда таким образом, что общая сумма всех векторов образует все тот же неизменный особый вектор. Кстати, суммирование векторов – очень легкий процесс, мы еще к нему вернемся.
Чтобы продемонстрировать, насколько полезной может быть идея неизменных векторов, давайте поразмышляем над очень простой задачей: попробуем понять, что происходит с двумя бильярдными шарами в момент их столкновения. Пример из бильярда вряд ли можно назвать жизненно важным, однако физики любят подобные примеры, но не потому, что могут изучать только простые явления или обожают бильярд, а скорее потому, что во многих случаях сложные концепции легче понять, проиллюстрировав их сначала на простых примерах. Но вернемся к бильярду: ваш коллега говорит, что вам следует связать с каждым шаром вектор, который должен быть ориентирован в направлении движения шара. Предполагается, что, сложив два вектора (по одному на каждый шар), можно получить особый неизменный вектор. Это означает, что независимо от того, что происходит в момент столкновения шаров, мы можем быть уверены, что сложение двух векторов, связанных с шарами после столкновения, образует точно такой же вектор, как и полученный из двух шаров до столкновения. Потенциально это очень важный вывод. Наличие особого вектора существенно ограничивает возможные последствия столкновения. Пожалуй, еще большее впечатление произвело бы на нас утверждение вашего коллеги о том, что принцип «сохранения векторов» работает в любой системе событий, происходящих во Вселенной, – от столкновения бильярдных шаров до взрыва звезды. По всей вероятности, для вас не станет неожиданностью тот факт, что физики не используют обозначения «особый вектор», заменив его таким термином, как «вектор импульса», а сохранение векторов широко известно как «закон сохранения импульса».
Остались невыясненными два момента: какова длина векторов импульса и как именно их следует суммировать? Сложение векторов не составляет труда – для этого необходимо разместить один за другим все векторы, которые мы хотим суммировать. Конечный результат состоит в определении вектора, связывающего начало первой и конец последней стрелки. На рис. 10 показано, как это делается для трех произвольно выбранных стрелок. Большая стрелка – это сумма маленьких. Длину вектора импульса можно установить экспериментальным путем, и исторически именно так и было. Сама концепция возникла более тысячи лет назад – просто в силу своей полезности. В приближенном смысле она отображает разницу между ударом теннисного мяча и экспресса, когда оба движутся со скоростью 100 километров в час. Как мы уже говорили, концепция вектора импульса непосредственно связана со скоростью и, как наглядно показывает предыдущий пример, должна быть связана и с массой. Согласно доэйнштейновской физике, длина вектора импульса – это произведение массы и скорости. И, как мы уже знаем, этот вектор ориентирован в направлении движения. Следует отметить, что современное представление об импульсе как о сохраняемой величине имеет отношение к работе Эмми Нётер (мы уже обсуждали это). Затем мы узнали о существовании глубинной связи между законом сохранения импульса и трансляционной инвариантностью. С помощью символов величину импульса частицы с массой m, движущейся со скоростью v, можно описать уравнением p = mv, где p – символ, обычно используемый для обозначения импульса.
Рис. 10
Мы еще не выясняли, что такое масса, поэтому, прежде чем двигаться дальше, необходимо уточнить смысл этого понятия. На интуитивном уровне массу можно представить как величину, измеряющую количество вещества в чем бы то ни было. Два пакета сахара имеют массу, которая в два раза больше массы одного пакета, и так далее. При желании мы могли бы измерять массу всех без исключения объеков в пересчете на массу стандартного пакета сахара, воспользовавшись для этого старинными чашечными весами. Именно так когда-то продавали бакалейные товары в магазинах. Если вам нужно было купить килограмм картофеля, достаточно было положить его на одну чашу весов, уравновесив с килограммовым пакетом сахара на другой чаше весов, – и все согласились бы с тем, что вы купили требуемое количество картофеля.
Безусловно, «вещество» бывает самых разных типов, поэтому «количество вещества» – крайне неточное понятие. Вот более точное определение: мы можем измерить массу посредством измерения веса. Другими словами, объекты с большим весом имеют и большую массу. Неужели все так просто? И да, и нет. Здесь, на Земле, мы можем определить массу любого объекта, взвесив его, – именно это делают обычные напольные весы. Всем знакома идея о том, что мы «весим» определенное количество килограммов и граммов (или фунтов и унций). Но ученые не согласились бы с этим. Путаница возникает из-за того, что масса и вес приблизительно равны друг другу у поверхности Земли. Но что произойдет, если разместить напольные весы на поверхности Луны? По существу, вы бы весили в таком случае в шесть раз меньше, чем на Земле. Ваш вес на Луне действительно был бы меньше, хотя масса осталась бы неизменной. Что действительно изменилось бы, так это «обменный курс» между массой и весом, хотя в два раза большая масса будет иметь в два раза больший вес, где бы ее ни измеряли (мы говорим, что вес пропорционален массе).
Еще один способ определить массу связан со следующим: для того чтобы привести в движение более массивные объекты, необходимо толкнуть их сильнее. В математической форме этот закон природы был выражен с помощью второго самого известного уравнения (после E = mc, конечно): F = ma (Исаак Ньютон опубликовал эту формулу в 1687 году в своей работе Principia Mathematica[26]). Закон Ньютона гласит, что если вы толкаете что-то с силой F, этот объект двигается с ускорением a. Символом m обозначается масса, а значит, вычислить массу объекта можно экспериментальным путем, измерив силу, которую необходимо к нему приложить, чтобы придать ему соответствующее ускорение. Это определение не хуже остальных, поэтому пока давайте придерживаться его. Правда, если у вас критический ум, вас может заинтересовать, как именно следует трактовать понятие силы. Это хороший вопрос, но мы не будем его анализировать. Давайте просто исходить из предположения, что нам известно, как измерять величину толкания, или тяги, также известную как «сила».
Это было достаточно пространное отступление, и хотя на самом деле мы еще не обсуждали, что представляет собой масса на глубинном уровне, все же дали ей описание в рамках версии школьного учебника. Более всеобъемлющий взгляд на само происхождение массы – тема главы 7, а пока давайте считать, что масса просто существует и это естественное свойство вещей. На данном этапе важно принять предположение, что масса – неотъемлемое свойство любого объекта. Другими словами, в пространстве-времени должна быть величина под названием «масса», по поводу которой все приходят к единому мнению. Следовательно, масса должна быть еще одной из инвариантных величин. Пока мы не приводили никаких аргументов, способных убедить читателя в том, что эта величина обязательно должна быть такой же, как и масса в уравнении Ньютона, однако, как и в случае многих других наших гипотез, обоснованность этого утверждения будет подтверждена или опровергнута, когда мы придем к каким-то выводам. А теперь вернемся к бильярдным шарам.
Если в момент столкновения два шара имеют одинаковую массу и скорость, то их векторы импульса будут одинаковой длины, но ориентированы в противоположных направлениях. Сложите оба вектора – и они полностью аннулируют друг друга. Согласно закону сохранения импульса, что бы ни делали частицы после столкновения, они должны разойтись с одинаковой скоростью в противоположных направлениях. В противном случае результирующий импульс не мог бы сойти на нет. Как мы уже отмечали, закон сохранения импульса распространяется не только на бильярдные шары. Он действует во всей Вселенной и именно поэтому так важен. Откат пушки после выстрела пушечного ядра или выброс осколков во всех направлениях после взрыва – оба события подчиняются закону сохранения импульса. В действительности пример с пушечным ядром заслуживает немного больше внимания с нашей стороны.
До выстрела пушки нет никакого результирующего импульса, пушечное ядро находится в стволе, а сама пушка стоит на крепостной стене. Когда пушка стреляет, пушечное ядро выстреливается из ствола с большой скоростью, тогда как сама пушка немного откатывается назад, но все же практически остается на том же месте – к счастью для солдат, которые сделали этот выстрел. Импульс пушечного ядра характеризуется вектором импульса, представляющего собой стрелку, длина которой равна массе ядра, умноженной на его скорость, и ориентирована от пушки в направлении полета ядра в момент его выброса из ствола. Закон сохранения импульса говорит нам, что пушка должна совершить откат с вектором импульса такой же длины, но ориентированным в направлении, противоположном направлению вектора импульса ядра. Но поскольку пушка гораздо тяжелее ядра, она откатывается назад с существенно меньшей скоростью. Чем тяжелее пушка, тем медленнее она движется. Следовательно, крупные и медленно перемещающиеся объекты могут иметь такой же импульс, как и небольшие, но быстро движущиеся. Безусловно, и пушка, и пушечное ядро со временем замедляют движение (и в итоге теряют импульс), а импульс ядра меняется под действием гравитации. Однако это не означает, что закон сохранения импульса не работает. Если бы можно было учесть импульс молекул воздуха, которые сталкиваются с пушечным ядром, а также импульс молекул в опорах пушки и тот факт, что импульс самой Земли немного меняется в процессе взаимодействия с ядром в условиях гравитации, то мы могли бы обнаружить, что общий импульс все же сохраняется. Физикам далеко не всегда удается отследить, как именно перераспределяется импульс при наличии таких факторов, как трение и сопротивление воздуха, поэтому закон сохранения импульса обычно используется, только когда влияние внешних факторов не играет существенной роли. Это несколько ограничивает сферу применения закона, но не приуменьшает его значения как фундаментального закона физики. Но давайте все же попытаемся закончить нашу немного затянувшуюся партию в бильярд.
Для упрощения ситуации представьте себе, что сила трения полностью отсутствует, – чтобы мы могли думать только о самих бильярдных шарах. Закон сохранения импульса, который мы только что открыли, действительно ценен, но это не панацея. На самом деле мы не можем вычислить скорость движения бильярдных шаров после столкновения, зная только факт сохранения импульса, а также массу и скорость шаров до столкновения. Для того чтобы решить эту задачу, понадобится еще один важный закон сохранения.
Мы уже познакомили вас с идеей, что движущиеся объекты можно описать с помощью вектора импульса и что сумма всех векторов импульса остается неизменной. Импульс представляет интерес для физиков именно потому, что сохраняется. Очень важно отдавать себе в этом отчет. Если вам не нравится слово «импульс», вы вполне можете говорить о сохранении вектора. Сохраняющиеся величины, как мы уже начинаем понимать, – весьма распространенное и очень полезное в физике явление. Вообще говоря, чем больше законов сохранения будет в вашем распоряжении при решении задачи, тем легче вам будет ее решить. Но один из законов сохранения выделяется на фоне остальных своей огромной практической ценностью. Инженеры, физики и химики очень медленно раскрывали его суть на протяжении XVII, XVIII и XIX столетий. Речь идет о законе сохранения энергии.
Прежде всего следует отметить, что концепция энергии более доступна для понимания, чем концепция импульса. Подобно импульсу, каждое тело может обладать энергией, но, в отличие от импульса, энергия не имеет направления. В связи с этим она бльше напоминает температуру – в том смысле, что для ее описания достаточно одного числа. Но что такое энергия? Как нам ее определить? Что она измеряет? Импульс в этом отношении был проще: это стрелка, указывающая направление движения и имеющая длину, равную произведению массы и скорости. Энергию труднее определить, поскольку она может принимать разные формы, но итог достаточно очевиден: что бы ни происходило, общее количество энергии в любом процессе должно оставаться неизменным независимо от изменения других факторов. Опять же Эмми Нётер дала нам глубокое объяснение. Энергия сохраняется потому, что законы физики не изменяются с течением времени. Это утверждение не означает, что ничего не происходит – это было бы просто бессмысленно. На самом деле оно означает, что если уравнения Максвелла справедливы сегодня, то они должны быть справедливыми и завтра. Вы можете заменить словосочетание «уравнения Максвелла» любым другим фундаментальным законом физики – постулатами Эйнштейна, например.
Вместе с тем, как и в случае закона сохранения импульса, закон сохранения энергии был открыт экспериментальным путем. История его открытия восходит к промышленной революции. Все началось с работ экспериментаторов-практиков, которые обнаружили множество механических и химических явлений в поисках промышленного Иерусалима. К числу таких людей относился и несчастный граф Румфорд Баварский (рожденный под именем Бенджамин Томпсон в Массачусетсе в 1753 году), работа которого состояла в высверливании каналов в пушечных стволах для армии герцога Баварии. В процессе работы он обратил внимание, что металл пушечного ствола и сверло нагреваются, и справедливо предположил, что вращательное движение сверла превращается в тепло под воздействием трения. Это прямо противоположно тому, что происходит в паровом двигателе, где тепло преобразуется во вращательное движение колес поезда. Казалось вполне естественным связать некую общую величину с теплом и вращательным движением, поскольку, как выяснилось, эти две на первый взгляд совершенно разные вещи взаимозаменяемы. Эта величина – энергия. Румфорда называли несчастным, потому что он женился на вдове другого великого ученого, Антуана Лавуазье, после того как тот во время Французской революции сложил голову на гильотине. Румфорд ошибочно решил, что эта женщина будет делать для него то же, что и для Лавуазье, прилежно записывая все результаты его работы и повинуясь ему, как полагалось хорошей жене в XVIII столетии. Но оказалось, она проявляла кроткость только под давлением железной воли Лавуазье. В своей замечательной книге The Quest for Absolute Zero[27] Курт Мендельсон писал, что эта женщина превратила жизнь графа Румфорда в ад. Но главное не это, а то, что энергия всегда сохраняется, именно поэтому она вызывает такой интерес.
Попросите кого-либо на улице объяснить, что такое энергия, – и получите либо осмысленный ответ, либо кучу всякого вздора в духе нью-эйдж[28]. В массовой культуре существует много разных значений слова «энергия», поскольку оно употребляется очень широко. Следует отметить, однако, что на самом деле есть точное определение энергии, которое нельзя использовать для объяснения лей-линий[29], исцеления кристаллами, жизни после смерти или реинкарнации. Здравомыслящий человек мог бы сказать, что энергию можно хранить внутри аккумуляторной батареи, где она находится в состоянии ожидания до тех пор, пока кто-то не «замкнет цепь». Кто-то другой, возможно, возразит, что энергия – это показатель количества движения и что быстро движущиеся объекты обладают большей энергией, чем более медленные. Энергия, которую содержит море или ветер, – вот еще примеры определений. Вам могут также сказать, что горячие объекты содержат больше энергии, чем холодные. Гигантский маховик, который находится внутри электростанции, может накапливать энергию, которая высвобождается затем в электросеть для удовлетворения потребностей населения в электроэнергии. Кроме того, энергия выделяется в процессе деления атомного ядра. Это только несколько примеров присутствия энергии в повседневной жизни. Во всех этих случаях физики могут представить энергию в количественной форме и использовать эту информацию для подведения баланса при подтверждении факта, что суммарный эффект любого процесса сохраняет неизменным общее количество энергии.
Для того чтобы увидеть закон сохранения энергии в действии, давайте в последний раз вернемся к сталкивающимся бильярдным шарам. До столкновения каждый из них обладает определенной энергией вследствие своего движения. Физики называют такую энергию кинетической. В Оксфордском словаре английского языка слово «кинетический» определяется как «обусловленный или возникающий вследствие движения», так что это правильный термин. Ранее мы исходили из того, что два шара движутся с одинаковой скоростью и имеют одинаковую массу. Затем они сталкиваются и отскакивают друг от друга с равной скоростью в противоположных направлениях. Такой вывод в значительной мере продиктован законом сохранения импульса. Более тщательный анализ ситуации позволяет определить, что скорость движения шаров после столкновения немного меньше их скорости до столкновения. Это объясняется тем, что часть начальной энергии рассеялась во время столкновения. Наиболее очевидное рассеяние энергии – переход ее части в звук. Когда бильярдные шары сталкиваются друг с другом, они воздействуют на молекулы воздуха, и это возмущение достигает наших ушей. Таким образом, часть начальной энергии теряется, из-за чего у шаров после столкновения остается меньше энергии. С точки зрения темы данной книги нам на самом деле не нужно знать, как измерить энергию во всех ее проявлениях, хотя формула кинетической энергии нам все же пригодится немного позже. Каждый, кто изучал в средней школе физику, навсегда запомнил эту формулу: кинетическая энергия = mv 2. Важно понимать, что энергию можно выразить в количественной форме одним числом, а также что общее количество энергии в системе всегда остается неизменным.
А теперь вернемся к нашему разговору. Мы ввели концепцию импульса в качестве примера величины, которая описывается вектором. Наряду с энергией практическая польза импульса обусловлена тем, что это сохраняющаяся величина. Все это было бы просто замечательно, если бы не одна огромная дилемма. Импульс – вектор, существующий только в трех измерениях нашего повседневного опыта. По большому счету вектор импульса может указывать вверх, вниз, на юго-восток или в любом другом направлении движения. Однако всю предыдущую главу мы доказывали, что наша склонность разделять пространство и время – это заблуждение. Нам нужны стрелки, которые указывали бы в четырех направлениях пространства-времени, в противном случае мы так и не сможем составить фундаментальные уравнения с учетом теории Эйнштейна. Позвольте повторить еще раз: фундаментальные уравнения должны включать в себя объекты, существующие в пространстве-времени, а не объекты, существующие отдельно в пространстве или во времени, поскольку объекты такого типа носят субъективный характер. Если вы помните, ни размер объекта в пространстве, ни промежуток времени между двумя событиями нельзя отнести к категории величин, со значением которых согласятся все без исключения. Именно это мы имеем в виду, утверждая, что такие объекты носят субъективный характер. Импульс также представляет собой вектор, направленный куда-то только в пространстве. Такое предубеждение против времени сеет семена его разрушения. Предвещает ли пространство-время крушение этого самого фундаментального из всех законов физики? Вновь открытая структура пространства-времени действительно сеет семена разрушения, но она указывает нам также дальнейший путь: нам необходимо найти инвариантную величину, которая сможет занять место устаревшего трехмерного импульса. А вот и ключевой момент нашего повествования: такая величина существует.
Давайте внимательнее взглянем на трехмерный вектор импульса. На рис. 11 он представлен в виде стрелки, которая может отобажать расстояние, на которое откатывается шар, перемещаясь по столу[30]. Если описывать ситуацию точнее, то предположим, что в полдень шар находится у одного конца этой стрелки, а через две секунды – у другого. Если шар перемещается на сантиметр каждую секунду, тогда длина стрелки равна двум сантиметрам. Получить вектор импульса не составляет проблем. Он представляет собой стрелку, указывающую абсолютно в том же направлении, что и на рис. 11, но ее длина другая и равна скорости нашего шара (в данном случае один сантиметр в секунду), умноженной на его массу, которая составляет, к примеру, десять граммов. Физики сказали бы, что вектор импульса этого шара имеет длину десять грамм-сантиметров в секунду (в краткой форме они записали бы это так: 10 г см/с). Здесь снова целесообразно ввести абстрактные символы, вместо того чтобы использовать конкретную массу или скорость. Как всегда, нам не хотелось бы превращаться в школьных учителей из вашей юности. Но… если x – это символ, которым обозначается длина стрелки, t – промежуток времени, а m – масса шара (в нашем примере x = 2 см, t = 2 с, m = 10 г), то вектор импульса имеет длину mx/t. В физике принято использовать греческий символ (произносится как «дельта») для обозначения разности между двумя значениями; следовательно, t обозначает интервал времени между двумя событиями, а x – длину чего-либо, в данном случае расстояние в пространстве между начальным и конечным положениями шара.
Рис. 11
Нам удалось построить вектор импульса шара в трехмерном пространстве, хотя вряд ли это можно назвать самым увлекательным из всего, что мы сделали. Теперь предпримем смелый шаг и попытаемся построить вектор импульса в пространстве-времени, причем осуществим это точно таким же способом, что и в трехмерном пространстве. Единственное ограничение – мы будем использовать только те объекты, которые носят универсальный характер в пространстве-времени.
Снова начнем со стрелки, на этот раз указывающей направление в четырехмерном пространстве, как видно на рис. 12. Один ее конец показывает, где находится наш шар в начальный момент времени, а другой – где он будет через какое-то время. Длину стрелки необходимо определять по формуле Минковского для расчета расстояния в пространстве-времени, а значит, она задается уравнением (s)2 = (ct)2 – (x)2. Вспомните, что s – это длина, с которой будут согласны все без исключения (то, что ни в коем случае нельзя сказать ни о x, ни о t по отдельности), а значит, именно это расстояние мы должны использовать вместо расстояния x, представленного в определении импульса в трехмерном пространстве. Но чем заменить интервал времени t? (Не забывайте: мы пытаемся найти замену mx/t в четырехмерном пространстве.) Проблема в том, что мы не можем использовать t, поскольку эта величина не инвариантна в пространстве-времени. Как мы неоднократно подчеркивали, интервалы времени для разных наблюдателей различны, а значит, мы не должны использовать временные интервалы в определении четырехмерного импульса. Но какие у нас есть варианты? На что мы могли бы разделить длину стрелки, чтобы вычислить скорость движения шара в пространстве-времени?
Рис. 12
Нам необходимо вывести нечто более совершенное, чем старый трехмерный импульс, а также убедиться, что если мы имеем дело с объектами, движущимися со скоростью, которая гораздо меньше скорости света, то новый импульс приблизительно эквивалентен старому. С учетом этого требования мы должны разделить длину нашей стрелки в пространстве-времени s на величину того же типа, что и интервал времени. В противном случае новый четырехмерный импульс будет представлять собой нечто абсолютно иное по сравнению со старым трехмерным импульсом. Промежутки времени можно измерять в секундах, значит, нам следует получить некую величину, которую тоже можно было бы измерять в секундах. Учитывая инвариантные величины в пространстве-времени, скорость света c и расстояние s, есть только один возможный вариант: число, полученное посредством деления длины стрелки (s) на скорость c. Другими словами, если s измеряется в метрах, а скорость c – в метрах в секунду, то s/c – в секундах. Это и должно быть то число, на которое нам необходимо разделить длину стрелки, поскольку это единственная имеющаяся в нашем распоряжении инвариантная величина, измеряемая в требуемых единицах, – время. Давайте пойдем дальше и разделим s на время s/c. В результате получим просто c (по той же причине, что и в случае, когда результат деления единицы на равен двум). Другими словами, четырехмерный аналог скорости в нашей формуле трехмерного импульса – это такой универсальный показатель, как предельная космическая скорость c.
Все это может показаться вам знакомым, но только потому, что так и должно быть. Мы лишь рассчитали скорость объекта (в нашем примере шара) в пространстве-времени и получили в итоге c. Но мы уже приходили к аналогичному выводу в предыдущей главе, когда анализировали движение мотоциклиста по равнине пространства-времени. В контексте данной главы мы добились большего, поскольку пришли к выводу, что вектор скорости в пространстве-времени можно использовать также в новом определении четырехмерного импульса. Вектор скорости объекта, движущегося в пространстве-времени, всегда имеет протяженность c и всегда указывает в пространстве-времени в направлении движения объекта.
Все, что нам необходимо сделать, для того чтобы завершить построение нового вектора импульса в пространстве-времени, – это умножить вектор скорости в пространстве-времени на массу m. Из этого следует, что наш предполагаемый вектор импульса всегда имеет длину, равную mc, и указывает в направлении движения объекта в пространстве-времени. На первый взгляд этот новый вектор импульса немного скучноват, поскольку его длина в пространстве-времени неизменна. Создается впечатление, что наше начало вряд ли можно назвать удачным. Однако мы не должны останавливаться. Нам еще предстоит выяснить, существует ли взаимосвязь между вектором импульса в пространстве-времени, который мы только что построили, и устаревшим трехмерным вектором, или, если уж на то пошло, пригодится ли он нам в новом мире пространства-времени.
Для того чтобы углубиться в ситуацию, давайте посмотрим на те части нашего нового вектора импульса в пространстве-времени, которые указывают направление в пространстве и времени по отдельности. Увы, здесь нам не обойтись без математики. Приносим извинения читателям, не владеющим глубокими математическими знаниями, и обещаем продвигаться очень медленно. Помните: у вас всегда есть возможность бегло просмотреть уравнения и перейти к заключительным выводам. Математика делает приведенные здесь доводы более убедительными, но вы вполне можете продолжать чтение, не углубляясь в детали. Точно так же хотим извиниться и перед читателями, знакомыми с математикой, за слишком подробное изложение материала. Но ведь нельзя угодить всем сразу!
Ранее мы с вами вывели выражение для длины вектора импульса в трехмерном пространстве – mx/t. Мы исходили из того, что x следует заменить на s, а t – на s/c, для того чтобы получить четырехмерный вектор импульса, который имеет на первый взгляд неинтересную длину mc. Потерпите нас еще один абзац и позвольте написать замену для t, то есть для s/c, в полном виде: s/c равно ((ct) (x)) c. Это несколько громоздкое выражение, однако небольшая математическая манипуляция позволяет записать его в более простом виде: t/, где = 1 (1 v c). Для получения эой формулы мы использовали тот факт, что скорость объекта рассчитывается как v = x/t. В таком случае – это не что иное, как множитель, о котором шла речь в главе 3, выражающий величину замедления времени с точки зрения того, кто наблюдает за быстро пролетающими мимо часами.
В действительности мы уже почти добрались до цели. Смысл всех этих математических выкладок состоит в том, что они позволяют определить, в какой степени вектор импульса указывает направление в пространстве и времени по отдельности. Для начала давайте вспомним, как мы поступали с вектором импульса в трехмерном пространстве. Рис. 11 поможет нам представить себе эту ситуацию. Трехмерный вектор импульса ориентирован в ту же сторону, что и стрелка на рисунке, поскольку он указывает в том направлении, в котором движется шар. Разница лишь в том, что изменится длина вектора, потому что нам необходимо умножить длину стрелки на массу шара и разделить на временной интервал. Аналогичная ситуация складывается и для четырехмерного вектора. Теперь вектор импульса указывает направление в пространстве-времени, в котором движется шар, что соответствует направлению стрелки на рис. 12. В этом случае для получения вектора импульса нам следует изменить масштаб длины стрелки, но на сей раз раз мы должны умножить ее на массу шара и разделить на инвариантную величину s/c (которая, как мы продемонстрировали выше, равна t/). Если вы внимательно посмотрите на стрелку на рис. 12, то увидите, что, если мы захотим изменить длину на определенную величину, сохранив при этом направление, нужно просто изменить часть, указывающую в направлении x (x), и часть, указывающую в направлении времени (ct), в одинаковое количество раз. Таким образом, длина части вектора импульса, которая указывает в направлении пространства, представляет собой x, умноженное на m и деленное на t/, что можно записать как mx/t. Если вспомнить, что v = x/t – это скорость движения объекта в пространстве, то мы получим следующий ответ: часть вектора импульса в пространстве-времени, указывающая в направлении пространства, имеет длину, равную mv.
Теперь все становится действительно интересным: вектор импульса в пространстве-времени, который мы только что построили, никак нельзя назвать скучным. Если скорость v нашего объекта намного меньше скорости света c, значение оказывается очень близко к единице. В этом случае мы снова получаем старый импульс, а именно – произведение массы на скорость: p = mv. Это очень обнадеживает, так что давайте двигаться дальше. В действительности нам удалось сделать нечто гораздо большее, чем просто преобразовать старый трехмерный импульс в новую четырехмерную структуру. Начнем с того, что мы получили, по-видимому, более точную формулу, поскольку значение может быть равным единице, только когда скорость равна нулю.