Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики Фрэнкс Билл

Одним из главных изменений, которые операционная аналитика позволяет осуществить организации, является возможность резко активизировать свои действия. В некоторых случаях аналитика может быть очень простой, в других – весьма изощренной. Описанные в этой главе примеры охватывают весь диапазон случаев, однако во всех них красной нитью проходит свидетельство о том, что операционная аналитика позволяет организации действовать на упреждение, а не реагировать на уже возникшие обстоятельства. Тем самым она позволяет избежать проблем, а там, где сделать это невозможно, операционная аналитика позволяет решать возникающие проблемы оперативно и в автоматическом режиме.

Итак, давайте рассмотрим ряд примеров, иллюстрирующих как очень простые, так и весьма необычные случаи применения операционной аналитики. Примеры изложены в произвольном порядке, без учета затронутой области и уровня сложности анализа. Читатели обратят внимание на то, что многие из них связаны с использованием датчиков, т. е. имеют отношение к теме Интернета вещей, о которой мы говорили во второй главе и которой посвящена значительная часть операционной аналитики.

Улучшение обслуживания потребителей

Одна из областей, где потребители заметят наибольшие изменения в связи с внедрением операционной аналитики, – это их повседневные взаимодействия с организациями. На протяжении многих лет организации стремились всё более персонализировать свои продукты, услуги и маркетинг. Операционная аналитика позволит далее развивать кастомизацию и персонализацию. Следующие примеры дают представление о ее потенциале.

Волшебные моменты про запас

Давайте обратимся к компании Walt Disney Company. В течение многих лет она осуществляет весьма сложный анализ поведения посетителей своих парков развлечений – стремится понять их предпочтения и шаблоны с целью улучшения обслуживания. В том числе Disney вкладывает много ресурсов в изучение передвижения посетителей по паркам и в изучение воздействия этого потока на своих гостей.

В прошлом, опираясь на имеющиеся данные, Disney была вынуждена рассматривать толпу как единичный объект. Другими словами, толпа изучалась как отдельный объект большого размера, находящийся в постоянном движении. Например, утром эта масса людей могла сосредоточиться на одной стороне парка, а в течение дня постепенно перемещаться на другую сторону. Однако введение технологии MagicBand («Волшебный ремешок») позволило компании произвести революцию в своем подходе к управлению потоком посетителей и их восприятием{23}. Данные с MagicBand могут быть использованы как для традиционной, так и для операционной аналитики с целью улучшения обслуживания.

MagicBand – это браслеты со встроенным радиочастотным микрочипом. Disney использует эту технологию, чтобы изменить восприятие посетителей. Начать с того, что посетителям больше не нужно носить с собой билет и кредитную карту. MagicBand – это и есть билет, который дает гостям возможность делать покупки в любом из магазинов и ресторанов парка, а также приобретать билеты Fast Pass («Быстрый проход») для аттракционов. Fast Pass позволяют гостям посещать аттракционы в указанное время без длительного ожидания в очереди.

MagicBand не только облегчают передвижение по парку, но и позволяют компании изучать трафик посетителей на гораздо более детализированном уровне. Вместо того чтобы рассматривать толпу как единый объект, Disney может рассматривать гостей как индивидов, демонстрирующих уникальное поведение. Это дает возможность выделить различные пути людей по парку. Некоторые предпочитают прокатиться на одном-двух аттракционах, после чего сделать перерыв, перекусить, отдохнуть и только потом отправиться на следующий аттракцион. Другие посещают один аттракцион за другим без перерывов. Компания может использовать эту информацию, чтобы управлять шаблонами трафика, добиваясь более равномерного распределения посетителей по парку.

Например, посетителей могут предупреждать о том, что в той или иной части парка наблюдается меньшее скопление народа, чем там, где они находятся сейчас. Или же, если очереди удлиняются, гостей могут поощрить к продлению перерыва, предложив им закуски со скидкой. Разумеется, анализ перемещения толпы может выходить за рамки операционной аналитики, но это уже другая тема.

Благодаря информации, поставляемой MagicBand, Disney также смогла изменить взаимодействие со своими гостями до и во время посещения парка. Давая возможность получать Fast Pass, используя браслет, компания позволяет посетителям тратить меньше времени на стояние в очереди. Тем самым она соблазняет их провести больше времени в магазинах и ресторанах, чтобы они потратили там больше денег. Таким образом, анализируя перемещение гостей по парку и управляя им, Disney способна не только значительно улучшить их восприятие, но и заработать дополнительную прибыль. Люди могут даже не замечать влияния этих технологий, а просто порадуются тому, что им не приходится стоять лишний час в очереди, – и могут потратить этот час на перекус и приобретение очередного сувенира. Все довольны.

Чем больше аналитики, тем лучше восприятие

По мере того как организация собирает все больше информации о наших с ней взаимодействиях, она способна лучше подстроиться к нам. Благодаря запуску процессов операционной аналитики, которые в текущем режиме учитывают все наши последние действия, организация может как персонализировать, так и улучшить восприятие ее нами.

Когда посетители желают воспользоваться функциями MagicBand, например на подходе к кассе или анимированному персонажу, сотрудники парка узнают, кто перед ними. Это легко сделать благодаря устройствам, которые считывают с браслетов уникальные идентификаторы. В нижеприведенном примере косвенно затрагивается неприкосновенность личной жизни, о чем мы подробнее поговорим в шестой главе, а сейчас сосредоточимся на том, как MagicBand может воздействовать на посетителей.

Представьте себе маленького ребенка, который впервые посещает Диснейленд. Одно из самых потрясающих впечатлений для него возникнет, когда к нему подойдет принцесса или Микки Маус и заговорит с ним. Благодаря новым браслетам, при приближении к ребенку Микки Мауса его помощник с помощью планшета считает идентификатор с браслета ребенка и получит на экране примерно следующую информацию: «Это Джон Смит. Он из Атланты, штат Джорджия. Здесь он празднует свой девятый день рождения. Он очень любит конфеты “Мишка Гамми”». Скрытый анализ позволит определить, какие специальные предложения можно сделать, исходя из информации, известной о ребенке и его семье. Эти детали помощник может прошептать на ухо Микки.

Теперь представьте, насколько будет потрясен ребенок, если к нему подойдет Микки и вместо простого «Привет, как дела?» произнесет: «Привет, Джон! Как здорово видеть тебя здесь! Тебе пришлось проделать длинный путь из Атланты, и я очень рад, что ты решил отпраздновать свой день рождения с нами! Если ты сейчас зайдешь вон в ту кондитерскую, то сможешь выбрать там себе подарок – пакетик “Мишки Гамми”. Просто скажи, что это я послал тебя к ним, и ты получишь свои сладости да еще с улыбкой впридачу!» Если теперь семья пойдет в кондитерскую, то кассир увидит на своем терминале предложение бесплатно выдать пакетик сладостей и быстро выполнит операцию. Такая персонализация совершенно изменит восприятие парка ребенком и его семьей.

В этом случае не требуется очень сложная аналитика. Тем не менее аналитический процесс должен определить, кто и какие предложения должен получить, а также гарантировать, что другие многочисленные персонажи в тот же день не сделают аналогичное предложение и что семья не попытается получить бесплатный пакетик еще раз. Обновление информации о гостях должно происходить очень быстро. Такая простая аналитика, опирающаяся на детализированные и быстро обновляемые данные, способна сильно повлиять на восприятие посетителей.

Создание прозрачности для потребителей

Теперь давайте рассмотрим пример того, как датчики могут напрямую обслуживать клиентов. Продукт, в котором образцовое обслуживание выведено на новый уровень благодаря использованию данных и аналитики, – это программа SenseAware («Сведущий разум») от компании FedEx{24}. SenseAware предлагается к продаже в виде оснащенного датчиками устройства, прикрепляемого к пересылаемой таре. Датчики отслеживают несколько параметров окружающей среды, их мы рассмотрим чуть ниже. С учетом его стоимости продукт нецелесообразно использовать при отправке документов и небольших посылок. Однако он настоятельно рекомендуется при отправке дорогостоящего или чувствительного к окружающим условиям груза.

Возьмем предметы искусства и коллекционирования или дорогостоящие скоропортящиеся товары. Один из главных рисков при их покупке связан с транспортировкой. Помещенный в тару и активированный девайс SenseAware в постоянном режиме отслеживает многочисленные важные показатели окружающей среды. Они включают в себя местонахождение посылки, температуру, влажность и даже уровень освещенности и барометрическое давление внутри упаковки. Например, изменение уровня освещенности указывает на то, что упаковка была вскрыта: как только упаковка открывается, в нее попадает поток света, который немедленно регистрируется световыми датчиками.

Все эти данные передаются в режиме реального времени в FedEx, так что клиент может в любой момент проконтролировать, что происходит с его посылкой. Текущий мониторинг недоступен только на борту самолета. В соответствии с правилами все собираемые за время полета данные кэшируются. По приземлении самолета кэшированные данные пакетом передаются в центральную систему, после чего устройство возобновляет передачу данных в текущем режиме. Клиенты могут проверить последние данные в любое время.

Такой сервис снабжает клиентов ценной информацией. Когда вам нужно переслать дорогостоящий или хрупкий груз, разве вы не хотели бы иметь возможность проконтролировать, что перевозчик транспортирует его при правильной температуре и аккуратно на протяжении всего пути? Перевозчик, который обеспечивает такого рода присмотр, будет иметь серьезное конкурентное преимущество перед теми, кто этого не делает.

Разумеется, продукт также полезен для самой FedEx, поскольку, если компанию обвинят в неправильной транспортировке и причинении ущерба, она может использовать данные SenseAware в качестве доказательства, чтобы защитить себя от обвинений. Например, данные могут показать, находился ли груз под контролем сотрудников FedEx в то время, когда температура и влажность поднялись до неприемлемого уровня. Применение SenseAware уместно не во всех случаях. Но, когда уместно, польза от него очень-очень большая. Пусть аналитика здесь элементарная, зато ценная.

Оптимизация обслуживания пассажиров

Операционная аналитика может повысить удовлетворенность клиентов при одновременном снижении операционных издержек. Замечательный пример тому – это перенаправление пассажиров при нарушениях расписания авиарейсов. В прошлом, когда задержавшийся рейс приземлялся в аэропорту, недовольные и раздраженные пассажиры, опоздавшие на пересадку, были вынуждены осаждать местных агентов авиакомпаний и обрывать их телефоны. Свободные места на альтернативных рейсах выделялись по принципу «первый пришел – первый обслужен». Кто первым добирался до агента, тот и получал место на ближайший рейс.

Сегодня процессы, используемые для разрешения таких ситуаций, стали гораздо более утонченными. Если авиакомпания понимает, что рейс будет задержан, она может определить, какие пассажиры столкнутся с проблемами. Например, если мой рейс задерживается на час и пункт прилета является конечной целью моего путешествия, никаких мер принимать не нужно. Точно так же не нужны никакие меры в том случае, если рейс задерживается на 30 минут, а до пересадки у пассажиров есть в запасе два часа. Авиакомпания может определить, кто нуждается в помощи и какие альтернативы доступны. Затем она может расставить приоритеты, распределив эти альтернативы среди пассажиров на основе стоимости билета, статуса постоянного клиента авиалинии, предыдущих нарушений расписания и ряда других факторов. Аналитика, стоящая за этими решениями, способна включать и такие сложные модели, которые прогнозируют вероятную реакцию конкретного пассажира в зависимости от степени нарушений.

Разумеется, полностью предотвратить негативную реакцию пассажиров невозможно, но можно свести ее к минимуму. Сегодня, если рейс прибывает с опозданием, пассажирам, как правило, не приходится стоять в очереди или звонить в офис авиакомпании. Они могут быстро выяснить информацию у агента на входе в аэровокзал или, проверив свое мобильное устройство, удостовериться, что о них позаботились и направили на другой рейс. Если пассажир предпочитает обратиться к агенту, процесс проходит гораздо быстрее и дружелюбнее, поскольку агент просто подтверждает факт изменений в маршруте пассажира и ему не нужно ничего придумывать. Агент также может предложить альтернативные варианты, если выбранный автоматически вариант не удовлетворяет пассажира.

Таким образом, у пассажиров значительно снижается уровень стресса, связанный с нарушением расписания (могу подтвердить это лично!), и они могут расслабиться и перекусить в ожидании нового рейса. В то же время этот процесс значительно снижает операционные издержки для самих авиакомпаний. Решения о перенаправлении принимаются быстро и автоматически, и не нужно привлекать квалифицированных сотрудников авиакомпаний для изменения маршрута. Кроме того, решения являются наиболее оптимальными, поскольку алгоритмы строго следуют руководящим указаниям. Наконец, сокращается количество взаимодействий сотрудников в личном общении и по телефону, что обеспечивает авиакомпаниям дополнительную экономию.

Автоматизированные операционно-аналитические процессы принятия решений о перенаправлении рейсов являются выигрышными как для пассажиров, так и для авиакомпаний. В этом случае аналитика носит более сложный характер, чем в предыдущих примерах. И закончим мы этот раздел примером использования очень сложной аналитики.

Усиление восприятия в онлайне

Есть ситуации, где в операционную аналитику уже повседневно включается высокий уровень сложности. Веб-персонализация – один из таких примеров. Раньше при посещении веб-сайта пользователи видели предложения или настройки, которые были определены задолго до их визита. Хотя сайт и мог адаптироваться под конкретного пользователя, это происходило не в режиме реального времени. Как правило, владелец сайта использовал аналитический процесс на основе пакетной обработки, подсказывавший системе определенные предложения и кастомизацию для каждого пользователя, когда он возвращается на сайт. Если же аналитика выполнялась накануне вечером, то информация о пользователе, которая стала известна по завершении аналитического процесса, никак не учитывалась. Стоит ли говорить о том, что текущие поисковые сеансы пользователей также не принимались во внимание при кастомизации веб-страниц.

Нужно начинать с простого

Большинство операционно-аналитических процессов начинается с довольно простой аналитики, которая служит фундаментом для надстройки. После того как простой процесс успешно внедрен и запущен в действие, аналитику можно постепенно усложнять.

Сейчас многие организации осуществляют веб-персонализацию на совершенно новом уровне, оптимизируя восприятие клиента в режиме реального времени на основе всех данных о нем, вплоть до последнего клика. Буквально любое действие клиента влияет на то, что он увидит в следующую секунду. Здесь применяется гораздо более сложная аналитика, чем во всех предыдущих примерах, приведенных в этом разделе. Современные подходы к веб-персонализации включают сложные алгоритмы оптимизации, опирающиеся на разнообразие статистических моделей и бизнес-правил.

Развитие до таких устойчивых решений нужно начать с простых способов персонализации, а затем утвердить операционные процессы, которые станут обслуживать адаптированный под пользователей контент. Только после того как основы займут свое место, можно будет изощряться. Вот и в этой главе готовьтесь увидеть, как многие приведенные здесь примеры со временем усложняются и усложняются.

Время существенно

Скорость, с которой должны осуществляться аналитические процессы, сжимается. Вот и операционная аналитика должна выполняться с молниеносной скоростью. В некоторых случаях речь идет о секундах и даже миллисекундах. Давайте рассмотрим два конкретных примера операционной аналитики в действии, когда скорость имеет первостепенное значение.

Аналитика обеспечит безопасность

Международная ассоциация воздушного транспорта (International Air Transport Association, IATA) считает, что в будущем за линиями тревожной сигнализации в аэропортах станет наблюдать крайне изощренная аналитика, работающая в режиме реального времени{25}. IATA предвидит создание в аэропортах туннелей безопасности длиной порядка 20 метров. Еще до прибытия каждого пассажира компьютер определит его профиль риска, после чего пассажир будет направлен в туннель с соответствующим уровнем проверки безопасности. Проходя по туннелю со своими вещами, как по обычному коридору, пассажиры будут подвергаться разнообразным тестам и сканированию. При этом им даже не придется замедляться при прохождении металлодетекторов, детекторов взрывчатых веществ и прочего. После выхода из туннеля пассажиры свободно продолжат свой путь дальше, если не сработает сигнал тревоги. Такое предвидение IATA является огромным шагом вперед по сравнению с современными методами, из-за которых пассажирам приходится останавливаться, ждать в длинных очередях, снимать предметы одежды и поворачиваться в сканерах под пристальными взглядами сотрудников службы безопасности.

Задумайтесь на мгновение о том, что потребуется, чтобы сделать предвидение IATA реальностью. Предложенный протокол безопасности всецело основан на данных и аналитике. Всего за десяток секунд, пока пассажир идет по туннелю, потребуется выявить любого рода риск и отреагировать на него. За это время сканеры и сенсоры внутри туннеля должны собрать данные о наличии взрывчатых веществ, запрещенных к провозу жидкостей или животных, оружия или предметов, которые могут быть использованы как оружие, и т. д. После сбора данных они в подавляющем большинстве должны быть автоматически проанализированы для определения наличия или отсутствия угрозы. Если угроза обнаружена, у сотрудников службы безопасности будет 20–30 секунд на то, чтобы перехватить подозрительного пассажира, прежде чем он уйдет.

Операционная аналитика будет решать жизненно важные вопросы

Аналитика уже поддерживает многие решения в сфере безопасности. В перспективе важно будет не «кто», а «что» сканирует и досматривает людей. Большинство сканеров безопасности станет действовать автоматически на основе данных и аналитики.

Весь сбор и анализ данных должен осуществляться в режиме реального времени, а операционно-аналитические процессы – за несколько секунд проанализировать данные и принять жизненно важные решения. Аналитика будет не только очень сложной, но и должна быть в высшей степени точной. Если система пропустит хотя бы одну бомбу или один пистолет, последствия окажутся тяжелыми. Известно, что сегодня сотрудники службы безопасности иногда пропускают оружие из-за усталости или отсутствия концентрации. Автоматизированные же алгоритмы смогут работать непрерывно без снижения точности. Если предвидение IATA осуществится, нам добавится безопасности и мы получим более простые и быстрые процедуры ее проверки. Это операционная аналитика в ее лучшем виде.

Сто миллионов долларов за миллисекунду

Недавно я прочитал очень интересную книгу Кристофера Стейнера «Автоматизируй это: Как алгоритмы будут управлять нашим миром» (Automate This: How Algorithms Came to Rule Our World){26}. В ней рассматривается эволюция компьютеризированной торговли на фондовом рынке. Если вы не в курсе, сейчас компьютеры используют сложные аналитические алгоритмы, которые за миллисекунды принимают решения о покупке или продаже ценных бумаг. Затем они в мгновение ока напрямую размещают ордера на продажу/покупку бумаг. Как правило, цель – поймать крайне малую разницу в ценах и тут же закрыть сделку. Повторите такие действия миллионы раз в день и прилично заработаете, даже если отдельная сделка принесет гроши. Автоматическая торговля ценными бумагами при помощи аналитики с интервалами в миллисекунду – еще один наглядный пример операционной аналитики в действии.

Если еще несколько лет назад автоматизированный трейдинг был в общем-то новинкой, то сегодня на него приходится значительно больше половины всего объема торгов на ведущих биржах{27}. Такой вид операционной аналитики сопряжен как с большой ответственностью, так и с большими рисками. Ведь компьютеры самостоятельно анализируют последние данные и немедленно ставят на кон реальные деньги. Требуется принять на себя серьезную ответственность за то, чтобы гарантировать, что торговые алгоритмы полностью протестированы и отслеживаются на случай, если возникнет непредвиденное отклонение. Риски возникают тогда, когда непредвиденное все-таки происходит, но вовремя не выявляется.

В 2010 г., казалось бы, ни с того ни с сего и без видимых причин произошел так называемый мгновенный обвал американского фондового рынка. Оказалось, что толчок к обвалу дал сбой в автоматической торговой программе{28}. Но к тому моменту, когда источник проблемы установили и приняли меры для ее смягчения, уже был причинен огромный реальный ущерб. Очевидно, что из-за осложнений, возникших в аналитических процессах, которые использовались для сомнительных торговых программ.

Иногда важны даже миллисекунды

Кажется безумием инвестировать сотни миллионов долларов в сокращение на несколько миллисекунд процесса передачи данных. Но с учетом того, на какой скорости работают компьютеризированные торговые программы, эти инвестиции себя окупают. На автоматические алгоритмы, представляющие собой операционную аналитику в ее наивысшем проявлении, сейчас приходится более половины объема торгов на фондовых биржах.

Таким образом, в число проблем, с которыми сталкивается операционная аналитика, входят прием непредвиденных вопросов и работа с ними. Когда организация позволяет алгоритмам с упреждением и автоматически принимать решения, система может разладиться (и разлаживается!). Однако важно помнить, что система может разладиться (и разлаживается!) при любом способе принятия решений. Например, когда люди водят машину, они понимают, что время от времени будут совершать ошибки. ДТП являются неотъемлемым риском вождения. Однако люди не перестают водить машины, поскольку в долгосрочной перспективе выгоды от вождения намного перевешивают риски и издержки периодически случающихся ДТП.

Аналогичным образом будут происходить негативные инциденты с операционной аналитикой. Каждая организация, применяющая операционную аналитику, время от времени будет сталкиваться с глюками и ошибками. Тем не менее в долгосрочной перспективе, если организация правильно осуществляет свои процессы, выгоды намного перевесят любые издержки, которые неизбежны при ведении бизнеса. Несколько отдельных инцидентов не должны стать поводом для отказа от всего подхода.

Что же касается скорости аналитики, интересно посмотреть, каких пределов она может достичь. В книге Стейнера рассказывается о том, как инвесторы вложили сотни миллионов долларов в строительство спрямленной линии связи для передачи данных из Нью-Йорка в Чикаго. Вместо того чтобы прокладывать ее по традиционным полосам отвода вдоль автомобильных и железных дорог, инвесторы приобретали частные участки, лишь бы спрямить маршрут. Сокращение его протяженности на несколько миль, по сравнению с существующей линией, сокращало время передачи данных на несколько миллисекунд. С учетом скорости работы торговых алгоритмов эти сэкономленные миллисекунды со временем вполне могут вылиться в многомиллиардные прибыли. Ведь алгоритмы, использующие более быструю подпитку данными, способны получать, анализировать и применять информацию прежде, чем конкуренты, использующие традиционные линии связи, даже ее получат. Поэтому инвесторы были уверены в том, что их вложение средств с лихвой себя оправдает.

Аналитика делает мир безопаснее

Широкое разнообразие методов операционной аналитики направлено на обеспечение безопасности людей, имущества и продуктов питания. Применяя новые источники данных для создания новых аналитических процессов, можно сделать наш мир безопаснее. В следующем разделе мы рассмотрим несколько таких примеров, в том числе один из государственного сектора. Ведь коммерческие организации не единственные, кто может выиграть от внедрения операционной аналитики. Государственным структурам это тоже по силам.

Предотвращение неблагоприятных событий

Сегодня автомобили становятся все более и более сложными. Современные автомеханики при обслуживании автомобиля должны разбираться не только в его механических, но и в компьютерных системах. Несколько последних инноваций направлены на повышение безопасности вождения за счет предотвращения неблагоприятных событий.

Системы круиз-контроля могут вскоре усовершенствоваться благодаря аналитике, автоматически предупреждающей столкновения. Если, исходя из разницы в скорости между своим и впереди идущим автомобилем, компьютер определяет, что столкновение неизбежно, он автоматически активирует тормоза, опережая водителя. В беспилотных автомобилях (о них мы поговорим чуть дальше) водителям вообще не нужно нажимать на тормоза. Также очень простая аналитика помогает обнаружить людей и объекты при движении задним ходом. Многие автомобили сейчас уведомляют водителей звуковым сигналом о наличии препятствия и информируют о расстоянии до него. Невероятно простая в этом случае аналитика, однако, позволяет спасти жизни, особенно маленьких детей, которые часто остаются незамеченными для водителей при движении вспять.

Вспомните пример из второй главы о датчиках, устанавливаемых рядом с железнодорожным полотном, чтобы в режиме реального времени они отслеживали температуру колес у проходящих составов. Если система обнаруживает перегрев колес, состав получает приказ остановиться. К нему направляется бригада рабочих, чтобы проверить состояние вагона и правильно разместить груз. Для железнодорожной компании гораздо дешевле остановить состав и устранить проблему до схода его с рельсов, чем потом устранять последствия катастрофы. Ведь сход с рельсов не только приведет к серьезной задержке движения, но и может причинить значительный материальный ущерб и даже привести к человеческим жертвам. Использование же сенсорных данных не только делает железные дороги более безопасными, но и бережет средства. Хотя в этом случае используются довольно простые алгоритмы, их роль весьма значительна.

Обеспечение свежести продуктов

Теперь давайте перейдем к производителям свежей продукции. Они обычно хранят ее на поддонах на складе, а затем транспортируют в магазины. В течение всего времени хранения температура продуктов должна оставаться в пределах заданного диапазона наряду с заданным диапазоном влажности. Но что если на одном из участков склада выйдут из строя кондиционеры или обогреватели? Заведующий складом может быстро узнать об этом, поскольку датчики начнут подавать сигналы тревоги, и поручить сотрудникам переместить поддоны с продукцией в другое место. Но производителю также важно знать и то, какие поддоны со свежей продукцией могли пострадать, чтобы проверить их состояние.

В прошлом могло пройти много часов, прежде чем кто-то замечал, что на одном конце склада стало немного теплее, чем должно быть. К этому моменту поврежденная продукция уже могла быть отправлена в магазины. И производителю приходилось уведомлять все магазины, получившие продукцию со склада в тот день, о необходимости перепроверить ее качество.

Сегодня поддоны с испортившейся продукцией могут выявляться до того, как они покинут склад. Бльшую часть времени аналитика используется в основных приборах оповещения, которые сравнивают текущие показания датчиков с заданными пороговыми значениями. Со временем алгоритмы будут развиты до такой степени, что станут учитывать колебания температуры и влажности у каждого поддона и прогнозировать риск порчи продуктов. Нагревание на несколько градусов в течение нескольких минут обычно не вызывает проблем, однако серия небольших отклонений в течение нескольких дней значительно увеличивает этот риск. Для поиска подобных аномалий, несомненно, будут разработаны более продвинутые аналитические процессы.

Правительство тоже может стать операционным

Операционная аналитика предназначается не только для частных компаний. Правительства и некоммерческие организации также могут извлечь из нее пользу. Давайте посмотрим на так называемый предсказывающий контроль, один из наиболее интересных примеров применения аналитики для осуществления государственной функции. Причем предсказывающий контроль сочетает операционное применение традиционной и операционной аналитики.

Давайте начнем с объяснения того, что представляет собой предсказывающий контроль{29}. В течение уже нескольких лет полицейские департаменты и правоохранительные органы всех видов используют аналитику для повышения эффективности своей деятельности. Например, они пытаются выявлять различные закономерности в совершении преступлений, связанные с такими факторами, как неблагоприятные погодные условия, температура воздуха, праздники, особые мероприятия и т. д. В определенное время с учетом прогнозируемого уровня преступности городской департамент полиции может увеличивать или уменьшать количество полицейских в конкретном районе{30}. Это операционное применение традиционной аналитики, поскольку аналитика основана на пакетной обработке данных и используется для составления прогнозов на ближайшую патрульную смену или на несколько дней.

Однако сегодня правоохранительные органы начинают использовать более актуальную информацию, чтобы корректировать прогнозы ближе к режиму реального времени. Другими словами, аналитика становится операционной. Например, на основе прежних закономерностей местный полицейский участок прогнозирует шаблоны преступлений на этот вечер и соответственно распределяет свои силы. Но в результате изменения погодных условий или обнаружения нескольких вечеринок, проводящихся вблизи друг от друга, прогноз может быть пересмотрен, а силы полиции, если потребуется, перегруппированы. Корректировка планов на основе новейшей информации делает аналитику операционной.

Там, где есть неэффективность, есть и потенциал эффективности

Посмотрим правде в глаза. Государственные структуры не отличаются высокой эффективностью и рациональностью. Но именно ввиду масштабности многих действий государства и их печально известной неэффективности государственные органы могут значительно улучшить свою деятельность благодаря эффективному использованию операционной аналитики.

Недавно полиция начала использовать еще одну важную операционную тактику – мониторинг каналов социальных медиа. Оказывается, многие члены преступных группировок, как и все мы, очень активны в социальных сетях. А правоохранительные органы способны определить, когда известные им гангстеры затевают ссору онлайн. Следя за перебранкой, возможно определить, когда ее градус начнет повышаться. Ссоры и насмешки в социальных сетях часто становятся поводом для физических столкновений между бандами. Полиция способна установить, кто нагнетает страсти, выйти на зачинщиков и разрядить ситуацию, прежде чем она перерастет в разборки. При этом одно сообщество ведет себя в сетях бурно, а другое непривычно спокойно. В результате полицейских можно направить туда, где они особенно нужны.

h2>

Повышение операционной эффективности

Одна из областей применения операционной аналитики, где она способна оказать наибольшее воздействие, – это повышение эффективности деловых операций, что особенно верно для тех бизнес-процессов, в которых аналитика традиционно не использовалась вообще или же использовалась очень ограниченно. Для крупных организаций повышение эффективности даже на 1–2 % может вылиться в миллионы долларов дополнительной прибыли. Давайте рассмотрим несколько очень интересных примеров, в том числе относящихся к области эффективного производства и использования энергии.

Максимизация отбора энергии

Ветряные мельницы существуют уже много веков. Сегодня они стали гораздо более эффективными, чем в прошлом, и в них используются поистине удивительные технологии. В конце 2013 г. мне довелось выступать вместе с Биллом Рухом из General Electric (GE) на конференции «Рок-звезды в области больших данных» в Сан-Хосе. Билл рассказал, что сейчас GE оснащает производимые ею ветряные турбины целым набором датчиков, предназначенных отслеживать и оценивать все виды информации о работе и производительности турбин. Сенсорные данные анализируются, и в работу турбин почти в режиме реального времени беспрерывно вносятся необходимые корректировки, чтобы оптимизировать их производительность.

Я был поражен, узнав, что современные ветряные турбины способны реагировать на изменение направления и силы ветра, корректируя положение и угол наклона лопастей таким образом, чтобы обеспечить равномерную предсказуемую выработку электроэнергии. Изменение угла наклона лопастей позволяет повысить отбор энергии ветра на 1–2 %. Хотя это может показаться совсем небольшим выигрышем, но со временем он выльется в огромную дополнительную прибыль, учитывая масштабы ветровых электростанций. По словам Билла, новые технологии позволили GE закрепить за собой лидирующее положение в отрасли. При этом он приписывает подобный успех как техническим инновациям, так и в равной степени софтверному видоизменению, обеспечившему внедрение операционной аналитики в машины.

Оптимизация производства электроэнергии

Большие газовые турбины и генераторы также становятся все более изощренными в использовании операционной аналитики для максимального повышения производства и эффективности. На том же мероприятии Билл Рух рассказал, как в его компании аналитика применяется в производстве электроэнергии газовыми турбинами. Исследования показали, что при определенных рабочих условиях нагревание топлива перед подачей в турбину увеличивает выходную мощность, тогда как при других условиях нагревание топлива снижает ее. GE встраивает в свои турбины датчики, чтобы отслеживать текущие рабочие условия с высоким уровнем точности. Операционно-аналитические процессы мониторят работу турбин и с упреждением нагревают (или нет) топливо перед подачей в турбину, чтобы обеспечить ее максимальную производительность в конкретных условиях. И хотя выигрыш в производительности опять-таки кажется довольно скромным, со временем он принесет весомую финансовую отдачу. Например, увеличение эффективности работы турбины всего на 1 % в течение всего срока эксплуатации электростанции может вылиться в $750 млн дополнительной прибыли.

Небольшие усовершенствования суммируются

Зачастую эффективность любого отдельно взятого процесса повышается при помощи операционной аналитики ненамного – в пределах 1–2 %. Однако в больших масштабах и особенно при ограниченной рентабельности такой выигрыш может иметь серьезное значение. Сочетание нескольких процессов с малым воздействием способно привести к сильному воздействию, которое обеспечит организации весомое конкурентное преимущество.

Повышение топливной эффективности

Выше мы уже рассмотрели несколько способов использования аналитики железнодорожными компаниями. Теперь давайте рассмотрим еще один. Машинисты поездов традиционно стремятся как можно быстрее доставить свои грузовые составы в пункт назначения. В результате они, соблюдая осторожность, все же стараются развивать максимально возможную скорость, пока не достигнут остановки в пути следования. В некотором отношении это похоже на вождение автомобиля. Большинство из нас предпочитают быстро ускоряться и ехать на близкой к разрешенной скорости или даже превышая ее – до следующего красного сигнала светофора, знака «Стоп» или пробки. Однако такой метод езды не является оптимальным с точки зрения эффективности расхода топлива ни для автомобилей, ни для поездов.

Ускорение после остановки требует гораздо больше топлива, чем просто для движения. Кинетическая энергия – мощная сила! Однако, интегрируя GPS-технологии на грузовых составах с уточненной информацией о текущем графике движения поездов по всей сети железных дорог, железнодорожные компании получили возможность экономить больше топлива. Алгоритмы непрерывно просчитывают, с какой скоростью поезд должен ехать, чтобы ему не пришлось задерживаться на следующей остановке в пути следования. Это означает, что на некоторых участках он может двигаться гораздо медленнее, чем возможно, что на первый взгляд может показаться странным. Однако топливо, сэкономленное за счет устранения торможения и последующего возобновлении движения с потерей движущей силы, оправдывает изменения. Кроме того, в конечном итоге поезд прибывает в пункт назначения вовремя, поскольку он двигался медленнее только тогда, когда все равно бы простаивал на остановках.

Когда алгоритмы диктуют выбор скорости, чтобы оптимизировать эффективное расходование топлива, выигрыш опять же получается небольшим. Тем не менее с учетом масштабов железнодорожных перевозок и объемов потребляемого топлива экономия может быть весьма существенной. Также важно отметить, что повышение топливной эффективности при помощи аналитики положительно отражается не только на прибылях компаний. Аналитика служит всем нам, поскольку чем меньше сжигается топлива, тем лучше для окружающей среды.

Повышение эффективности колл-центров

Наконец, последний пример, иллюстрирующий повышение операционной эффективности, принадлежит совершенно к другой области. До того, как мне об этом рассказали, я и понятия не имел, что подобное происходит сегодня. Большинство людей знают, что сейчас колл-центры в обычном порядке записывают все разговоры с клиентами. Как правило, звонящих предупреждают: «Ваш разговор с сотрудником может быть записан для улучшения качества обслуживания или для использования в целях обучения». Другими словами, вам сообщают, что разговор не будет конфиденциальным.

Однако организации вышли за рамки простой записи разговоров с клиентами и перешли к их анализу. Теперь алгоритмы могут сообщить многое о позвонившем клиенте и его настроении, исходя из манеры его речи. Они даже способны определить акцент клиента, и колл-центр переключит его на сотрудника, разговаривающего с похожим акцентом. Но зачем это нужно?

Оказывается, исследования показали, что люди больше доверяют незнакомым людям с похожим, чем с непохожим акцентом{31}. Следовательно, соединение клиентов с сотрудниками, имеющими похожий акцент, увеличивает шансы на успешное разрешение проблемы. Если вы на минуту задумаетесь, то поймете, что в этой идее есть смысл. Только представьте себе, как легко может возникнуть недопонимание в разговоре между жителем города Мобил в штате Алабама и обитателем острова Лонг-Айленд в штате Нью-Йорк, учитывая, как сильно отличается их речь по скорости и манере говорить. Интуиция подсказывает, что менее рискованно будет соединить клиента из Алабамы с сотрудниками из южных штатов, то же касается и ньюйоркцев. Сходный акцент поспособствует установлению доверительных отношений – и для этого надо востребовать операционную аналитику.

Улучшение качества нашей жизни в будущем

Многие примеры, рассмотренные в этой главе, не имеют прямого отношения к нашей частной жизни. Улучшение обслуживания клиентов или восприятия в онлайне, безусловно, приятно, но не добавляет благополучия нашему повседневному бытию. К счастью, в некоторых случаях операционная аналитика будет оказывать на него заметное воздействие. И в этом разделе мы рассмотрим два таких примера, когда операционная аналитика, хотя она еще и находится в периоде становления, уже готова влиять на вашу жизнь и жизнь ваших близких.

Больше свободного времени

Беспилотные автомобили уже стали реальностью{32}. Хотя у вас такой машины еще нет и пройдет несколько лет, прежде чем она у вас появится, но уже существуют технология и аналитика, поддерживающие беспилотные автомобили. Вас удивляет, почему я связал аналитику с беспилотными автомобилями? Здесь нет ничего удивительного. Объем и разнообразие аналитики, призванной помочь автомобилю самостоятельно и безопасно передвигаться по улицам города без участия человека, поражают воображение.

Как беспилотный автомобиль сможет определить, что разметка на дороге разграничивает полосы движения, а не является маркировкой, оставшейся после строительных работ, или же пролитой краской либо грязью? Все сводится к аналитике. Автомобиль сканирует дорогу впереди себя, анализирует изображения в режиме реального времени и решает куда направиться, определив компоненты изображения в качестве разметки полос.

Автомобиль также должен постоянно определять, не нужно ли ему ускориться, притормозить или остановиться. Чтобы остановиться, ему нужно рассчитать, с какой силой жать на тормоза в зависимости от расстояния до объекта, к которому он приближается, и скорости этого объекта. Расчеты должны постоянно обновляться, чтобы учесть любые изменения, например если резко затормозит едущий впереди автомобиль или внезапно выскочит на дорогу олень. Таким образом, беспилотные автомобили требуют многочисленных и зачастую очень сложных аналитических процессов, которые при этом должны быть очень надежными, стабильными и точными, поскольку от них зависит жизнь людей.

Многие пассажиры беспилотных автомобилей не будут знать о том, какую сложную работу выполняют данные и аналитика. Но в этом-то и суть. Хорошо выполненная операционная аналитика способна настолько управлять процессами и восприятием, что людям не надо будет знать о том, какая работа происходит под капотом.

Аналитике не нужно быть заметной, чтобы оказывать воздействие

Одни из самых сильных впечатлений, которые будет производить на нас аналитика, возникнут в тех ситуациях, когда мы даже не осознем ее присутствия. Когда операционная аналитика будет выполнена на должном уровне, как, например, в беспилотных автомобилях, пользователям и не нужно будет знать, что происходит у них под капотом. Они могут просто наслаждаться поездкой.

С заботой о нашем здоровье

Как вы помните, в первой главе мы говорили о растущей популярности фитнес-браслетов. Сфера здравоохранения начинает предлагать широкий спектр возможностей для изменения наших взглядов на здоровье и предоставление медицинской помощи. На стыке медицины, Интернета вещей и операционной аналитики создается огромный потенциал. Через несколько лет мы совсем по-иному будем прибегать к медицинской помощи и пользоваться ею. Давайте рассмотрим сценарий, который будет реализован в ближайшее время. Причем отдельные части этого сценария уже сегодня начинают претворяться в реальность, пусть и в небольших масштабах.

Хронические заболевания, такие как сахарный диабет, не только ведут к серьезным проблемам со здоровьем и ухудшению качества жизни у страдающих ими людей, но и влекут за собой значительные расходы на лечение. Современные глюкометры позволяют легко контролировать уровень сахара в крови. Кроме того, сегодня появились носимые устройства, которые ведут постоянный мониторинг уровня глюкозы, анализируют данные и подают предупредительный сигнал, если требуется вмешательство{33}. Это не только повышает безопасность для пациентов, но и позволяет избежать дорого обходящихся медицинских проблем.

Также пациенты получают возможность проходить реабилитацию после серьезных травм или болезней дома, а не в медицинском учреждении. Многочисленные датчики могут контролировать показатели жизнедеятельности, назначать лекарства и т. д. Состояние пациентов отслеживается автоматически, без постоянного присутствия врачей и медсестер, от которых в реабилитационный период часто требуется только прописывать таблетки или делать уколы. Лекарства могут назначаться автоматически, на основе анализа текущей информации о состоянии здоровья.

Если показатели жизнедеятельности или результаты анализа крови вызывают тревогу, пациенту звонит врач или медсестра, чтобы узнать, в чем дело. Если необходимо, они могут посетить пациента лично. Гораздо дешевле нанять дополнительный штат медсестер и врачей, чем возводить пристройки для размещения дополнительных больничных коек. Больницы могут расширить охват своей деятельности без увеличения физических мощностей. Идея вернуть домашние визиты медицинских специалистов кажется дорогостоящей. Но когда пациенты находятся в стабильном состоянии, необходимость в их посещении возникает редко, и это может стоить намного дешевле, чем длительное пребывание в больнице. К тому же в домашних условиях пациенты чувствуют себя более комфортно и восстанавливаются гораздо быстрее, чем в больнице{34}.

Чтобы предоставить пациентам возможность домашней реабилитации, требуется как очень простая аналитика – например, сравнение показателей жизнедеятельности с пороговыми значениями, так и более сложная – например, расшифровка электрокардиограмм или электроэнцефалограмм. В течение следующих нескольких лет операционная аналитика может открыть новую эру в сфере здравоохранения.

Обнаружение в данных неожиданных сведений

Необходимые для осуществления операционной аналитики данные можно использовать повторно при изобретательном к ним подходе. Это позволит создавать новые источники дохода, которые компенсируют затраты на сбор и анализ данных. Концепция повторного использования особенно пригодна для данных, которые применяются во многих операционно-аналитических процессах. Причем некоторые дополнительные способы использования данных не имеют никакого отношения к операционной аналитике. Однако ценность операционной аналитики состоит в том, что именно она способствовала сбору этих данных.

В каждом из трех случаев, описанных в этом разделе, огромное количество данных изначально собирается для целей операционной аналитики, после чего становится активом, способным создавать доход или сокращать расходы. Поиск творческих способов повторного использования данных и компенсации затрат на их сбор для операционной аналитики позволяет оправдать требуемые инвестиции. Убедитесь, что ваша организация ищет новые способы монетизации собираемых ею данных за рамками их первоначальной операционной области применения. Эта стратегия связана с концепцией превращения аналитики в продукт, которую мы обсуждали в первой главе.

Использование данных о местонахождении для обновления информации о трафике

И сотовые операторы, и провайдеры GPS должны собирать данные о местонахождении каждого абонента в любой момент времени, чтобы предоставлять свои основные услуги. Сотовый оператор знает о местонахождении своих абонентов благодаря тому, что их телефоны подключаются к вышкам сотовой связи. И очевидно, что GPS-навигатор не сможет сообщить пользователям, как им «отсюда» добраться «туда», если не знает, где находится «здесь». Однако те же данные, которые требуются этим организациям для предоставления своих основных услуг, обладают огромной ценостью и для использования в других целях.

Когда вы проверяете информацию о трафике на своем мобильном устройстве, очень часто она извлекается из тех же данных о местоположении абонентов, которые собираются для оказания основных услуг. Когда абонент едет по автомагистрали между штатами, оператор знает, с какой скоростью тот движется. Причем в любой момент времени оператор обладает такой информацией о большом количестве своих абонентов. Сведения о их местоположении обладают и дополнительной ценностью.

Поставщики услуг, собирая данные о местонахождении и скорости передвижения своих абонентов, повторно используют их на агрегированном уровне для поддержки систем слежения за дорожной обстановкой. И абоненты в часы пик могут получить новейшую информацию о трафике благодаря входным данным от тысяч таких же абонентов, которые движутся по тому же маршруту. Причем единственное, что нужно абонентам, так это пользоваться своими мобильными телефонами или GPS-навигаторами.

Использование сенсорных данных для повышения урожайности

Мы уже говорили о том, что детализированные сенсорные данные собираются с автомобилей, самолетов и другой техники. Теперь обратимся к данным, собираемым современными тракторами. Когда фермеры выводят трактор на поле, датчики собирают информацию о его работе. С какой скоростью трактор передвигается по полю? На какую глубину обработки установлен его культиватор? Какова температура почвы и воздуха? И многое другое. Изначально эти данные предназначены для использования в операционных целях, скажем, в виде аналитики для профилактического техобслуживания или контроля за соблюдением условий гарантии. Однако существуют и другие интересные способы применения этой информации.

Ценность данных может быть скрыта на самом виду

На первый взгляд, данные, собираемые для операционной аналитики, по большей части кажутся скучными и временными. Тем не менее зачастую этим данным можно найти творческое и неожиданное применение, которое не будет ни скучным, ни временным.

Постепенно углубляя свое понимание того, как фермеры в разных точках земного шара используют их оборудование, производители тракторов могут определить, какие методы земледелия позволяют получить максимальную урожайность. Они соотносят данные об урожайности, сообщаемые фермерами, с особенностями применяемых ими сельскохозяйственных технологий. Что если путем внесения небольших изменений можно урожайность повысить? Такие знания окажутся очень ценными для фермеров. Например, представьте, насколько полезно фермерам будет узнать о том, что увеличение глубины обработки культиватором всего на 0,3 миллиметра позволяет повысить урожайность. Однако такие знания могут быть получены только благодаря объединению операционных данных о применении оборудования большим количеством фермеров и использованию этих данных новыми способами.

Использование данных о соответствии условиям для увеличения продаж

Производители фасованных потребительских товаров ежегодно тратят огромные суммы денег на рекламу, промоакции и специальные выкладки товаров в магазине. Производители, с учетом высокой стоимости таких выкладок, хотят убедиться в том, что они размещаются в обговоренном месте и на протяжении обговоренного срока. Установка датчиков позволяет производителям контролировать местоположение выкладок без необходимости направлять в магазины своих сотрудников для визуальной проверки. Это дает возможность экономить много денег, а производители будут точно определять, когда была сделана выкладка их товара и как долго она находилась в этом месте.

Сопоставляя данные о местоположении с данными о продажах можно составить более ясное представление об эффективности промоакции. Например, некое место в торговом зале может казаться отличным для привлечения покупателей, а выяснится, что на самом деле это не так. Или же окажется, что выкладка была размещена в непривлекательном месте либо ее убрали на день раньше срока. Аналитика, оценивающая эффективность промоакции, способна принять вышеназванные обстоятельства во внимание. Соответственно при планировании следующих промоакций производитель будет договариваться о выделении лучшего места для выкладки и об оплате с учетом уточненных показателей продаж, привязанных ко времени и месту. Несмотря на то что изначально эти данные собираются с целью контроля за соблюдением условий, они могут использоваться для того, чтобы внести поправки в стратегии продвижения товара.

Создавайте и стратегическую аналитику

Итак, мы обсудили широкий спектр примеров тактического применения операционной аналитики. Однако собранные данные могут быть разнообразно использованы и в стратегической долгосрочной аналитике. Например, многие организации сегодня используют сенсорные данные и аналитику для того, чтобы выявлять возникающие со временем закономерности отказов оборудования. Это особенно характерно для производителей автомобилей, авиационных двигателей и тяжелой техники, такой как тракторы и самосвалы.

Собираемые данные используются для предупредительного техобслуживания – практического применения аналитики с целью опережающего выявления и устранения проблем, прежде чем те приведут к серьезным неполадкам. Мы уже вкратце касались этой темы в первой и второй главах, а теперь давайте рассмотрим ее подробнее, чтобы понять, как одни и те же данные можно использовать и в операционных, и в стратегических целях.

Чтобы проиллюстрировать потенциал подобного подхода, обратимся к такой дорогостоящей технике, как самолет. Сотрудник одной авиакомпании как-то по секрету сообщил мне, что снять крупный коммерческий самолет с рейсов и демонтировать с него двигатель для ремонта обойдется владельцам, по скромным оценкам, в сумму порядка $1 млн. Эта сумма складывается из потерянных доходов за время простоя самолета и стоимости рабочего времени, необходимого для демонтажа и повторного монтажа двигателя. Понятно, что авиакомпании (или военно-воздушные силы) прибегают к такому дорогостоящему ремонту только при крайней необходимости. К счастью, аналитика и данные позволяют радикально изменить подходы к техобслуживанию как на краткосрочном операционном, так и на долгосрочном стратегическом уровне.

Традиционно в случае отказа двигателя механики его осматривали, выясняли, какие симптомы наблюдались непосредственно перед поломкой, и пытались установить, что именно требует ремонта.

Сегодня же производители могут использовать датчики, которые в мельчайших подробностях отслеживают, как двигатель работает по прошествии времени. А когда возникают проблемы, данные анализируются с целью выявить ранние предупреждающие индикаторы. Например, может быть установлено, что поломке конкретного узла двигателя предшествовало усиление трения определенного компонента вместе с небольшим повышением температуры в течение нескольких дней или недель. После чего аналитика будет искать похожую комбинацию в других двигателях и, если обнаружит, подаст предупреждающий сигнал о необходимости проведения профилактического ремонта. Такова суть предупредительного техобслуживания.

Тем самым обеспечиваются два важных стратегических преимущества. Это позволяет производителям, во-первых, лучше понять динамику работы оборудования в реальных условиях и внести необходимые технические изменения, чтобы усовершенствовать оборудование в будущем. Во-вторых, заранее предупреждать серьезные поломки. В идеале такие процессы должны происходить в рамках планового техобслуживания, чтобы свести к минимуму издержки. Техобслуживание к тому же дешевле ремонта.

Обратите внимание, что здесь, помимо операционной аналитики, возникают возможности и для операционного применения традиционной аналитики. Операционная аналитика следит за работой двигателя в режиме реального времени и носит тактический характер. Стратегический компонент вступает в действие при корректировке долгосрочных планов техобслуживания на основе анализа сенсорных данных. Аналитика может быть применена для уточнения рекомендуемых графиков проведения техобслуживания с учетом работы двигателей в прошлом – таково стратегическое операционное применение традиционной аналитики. Данные об истории эксплуатации большого количества двигателей анализируются в пакетном режиме с целью выработать обновленные правила техобслуживания.

Предупредительное техобслуживание на основе аналитики снижает затраты производителей. Также аналитика способствует повышению безопасности для потребителей и уровня обслуживания со стороны производителей. Это еще один пример ситуации, когда в выигрыше остаются все. Организации, которые лучше других преуспеют в определении способов предупредительного техобслуживания и мониторинга работы своих продуктов, выделятся из толпы конкурентов.

Подведем итоги

Наиболее важные положения этой главы:

• Сегодня многие примеры операционной аналитики в действии включают довольно простую аналитику. Со временем уровень сложности будет возрастать.

• Операционная аналитика может обеспечить клиентам совершенно новый уровень сервиса и кастомизации. Преуспела в этом компания Walt Disney.

• Когда нарушается расписание авиарейсов, операционная аналитика позволяет смягчить последствия для пассажиров, а также сэкономить время и деньги для авиакомпаний.

• В некоторых процессах все могут определить миллисекунды. Компьютеризированные трейдеры фондового рынка вкладывают огромные суммы денег в то, чтобы выиграть всего несколько миллисекунд себе для анализа.

• Обеспечивая прозрачность, операционная аналитика может защитить как организации, так и их клиентов. Примером тому – продукт SenseAware компании FedEx.

• Операционная аналитика может сделать более безопасными места, которые мы посещаем и где живем, благодаря предсказывающему контролю и гарантировать качество продуктов питания благодаря использованию датчиков для контроля за состоянием окружающей среды.

• Государственные органы могут значительно повысить свою эффективность за счет внедрения операционной аналитики, учитывая масштабы и пресловутую неэффективность многих их действий.

• Повышение эффективности операций даже на малую долю может принести весомую финансовую отдачу. Это особенно справедливо для таких областей, как энергетика, где GE проделала много соответствующей работы.

• Когда операционная аналитика выполняется хорошо, например как в беспилотных автомобилях или мониторинге состояния здоровья, пользователи даже не замечают ее присутствия. Им просто остается наслаждаться улучшенным качеством жизни.

• Данные и аналитика уже активно преобразуют сферу здравоохранения. Операционная аналитика позволит внедрить новые, более эффективные и дружественные к пациентам процедуры.

• Всегда ищите новые способы использования данных, специально собираемых в операционных целях. Подобно тому, как определение местонахождения при помощи GPS может повлечь за собой улучшение трафика, так и многим другим данным можно найти разнообразное применение.

• В добавление к использованию источника данных в тактической операционной аналитике попробуйте найти способы использовать его и в стратегических целях.

Часть II

Закладываем основу

Глава 4

Хотите бюджет? Разработайте бизнес-кейс!

Внедрение операционной аналитики требует инвестиций – в людей, инструменты и технологии, которые необходимы для успешной реализации операционно-аналитических процессов. Процесс преобразования аналитики в операционную не будет ни дешевым, ни легким, но при соблюдении правил может с лихвой окупиться. Разумеется, добиться выделения инвестиций сегодня ничуть не легче, чем когда-либо в прошлом. Следовательно, разработка бизнес-кейса для операционной аналитики становится важнейшим шагом.

В этой главе мы рассмотрим основные принципы и концепции, которые помогут вам разработать бизнес-кейс для операционной аналитики в вашей организации. Многие из них могут быть применены в более широком плане для обоснования инвестиций в аналитику вообще. Хорошая новость состоит в том, что вы и ваша организация можете преуспеть в своем деле, если уделите время и силы разработке бизнес-кейса с учетом некоторых уникальных аспектов аналитики.

Определение приоритетов

Прежде чем приступать к составлению бизнес-кейса для операционной аналитики, необходимо определить, какие инвестиции он будет предполагать и как будет их распределять. Четкая направленность и форма изложения так же важны для бизнес-кейса, как и факты и цифры для его обоснования. В этом разделе мы обсудим, как правильно в начале определить перспективу, чтобы сразу предоставить вашему бизнес-кейсу максимальные шансы на успех. Ряд небольших улучшений общепринятой практики позволит сделать бизнес-кейс более интересным и убедительным, а следовательно, повысит вероятность его одобрения.

Начните с бизнес-проблемы, а не с данных или технологии

Во второй главе мы уже говорили о том, что необходимо сначала определить бизнес-проблему, а уже потом собирать под нее данные. Запускать сбор данных или приобретать технологию, не имея четкого плана, – заведомо проигрышная стратегия. Соответственно бизнес-кейс надо разрабатывать не ради приобретения нового источника данных или новой технологии, а ради решения реальной проблемы, с которой столкнулась организация. Если повезет, приобретение потрясающего нового источника данных или программного обеспечения действительно может стать необходимым условием для решения обозначенной проблемы. Грамотно составленный бизнес-кейс не предполагает отказа от покупки технологий, инструментов и источников данных, а просто помещает ее в правильный контекст.

Разница между сосредоточением внимания либо на технологиях, либо на бизнесе отражает разницу между обоснованием либо затрат, либо инвестиций. В большинстве организаций гораздо проще заинтересовать людей бизнес-кейсом, который позволяет решить конкретный набор деловых проблем, чем бизнес-кейсом, который позволяет решить конкретный набор технических проблем. Я не понимаю, почему так много организаций продает услуги по приобретению данных или технологий, а не решения проблем. Давайте рассмотрим две гипотетические дискуссии, чтобы проиллюстрировать разницу между этими подходами.

В первом случае вице-президент по информационным технологиям крупной энергетической компании в одиночку приходит на заседание ее правления и говорит: «Нам необходимо организовать сбор сенсорных данных в нашей инфраструктуре умных электросетей. Это обойдется нам в несколько миллионов долларов. Все наши бизнес-партнеры запрашивают эти данные и готовы частично профинансировать проект. Таким образом, мы можем покрыть все расходы на сбор и хранение данных за счет предлагаемых ими средств с небольшим добавлением наших пошаговых инвестиций в ИТ».

Организуйте совместный проект

Сделайте деловое предложение по инвестициям в операционную аналитику в виде совместного проекта бизнеса и ИТ-службы. Сосредоточьтесь на решении конкретной бизнес-проблемы, а не на покрытии затрат на ИТ, которые должны рассматриваться всего лишь как необходимый компонент общего решения.

Во втором случае вице-президент по ИТ приходит на заседание комитета вместе с партнером по бизнесу, также в ранге вице-президента. Совместно они сообщают следующее: «Мы собираемся сделать так, чтобы наши существующие мощности могли удовлетворять спрос потребителей в течение следующих пяти лет, что позволит нам отсрочить строительство нескольких новых электростанций. Мы планируем добиться этого, стимулируя клиентов изменить свои привычные модели потребления, чтобы мы могли снизить уровни пикового спроса путем анализа сенсорных данных от наших умных электросетей. Разумеется, сбор, хранение и анализ этих данных обойдутся нам в несколько миллионов долларов. Но эти расходы будут с лихвой компенсированы теми десятками миллионов долларов, которые, как мы установили, можно сэкономить за счет отсрочки строительства новых электростанций. К тому же мы сможем выполнить много другой аналитики, как только получим данные от умных электросетей».

Первое предложение свелось к затратам и данным, исходило из интересов ИТ-службы и не очень убеждало, несмотря на обещание покрыть расходы. Второе предложение исходило из интересов бизнеса при поддержке ИТ-службы и сосредоточивалось на экономической ценности сбора данных, а не на затратах. Как вы думаете, какое предложение руководство компании сочтет более привлекательным?

Сосредоточьтесь на доходах, а не на затратах

Предыдущие примеры иллюстрируют два подхода к запросу на финансирование. Главное различие между ними состоит в том, что первый просто пытается оправдать себя, делая акцент на нейтральных затратах, тогда как второй стремится извлечь значительную экономическую выгоду. К сожалению, многие заявки на инвестирование, связанные с аналитикой и технологиями, уделяют слишком большое внимание затратам и способам компенсации этих затрат. Полезнее же затраты просто представить в качестве части высокоэффективного решения, как это показано в таблице 4.1.

Отчасти такой акцент на затратах объясняется тем, что в прошлом инвестиции в технологии было принято обосновывать именно таким образом. Эти инвестиции нередко включали в себя огромную предоплату, которой обременяли широкий спектр производств, способных со временем компенсировать затраты. Например, в связи с огромной стоимостью больших ЭВМ в 1980-е гг. инвестиции в них ни за что бы не получили одобрения только ради удовлетворения нескольких аналитических потребностей. Для обоснования такой покупки ЭВМ должна была удовлетворять широкий спектр потребностей в масштабах всей организации.

Сегодня же инструменты и технологии зачастую относительно недороги, так что можно обойтись скромными инвестициями. Выгоды, достигнутые благодаря начальным инвестициям и начальному внедрению аналитики, могут быть использованы для того, чтобы обосновать дальнейшее финансирование. Инвестиции в аналитику больше не превращаются для организации в масштабные затраты, неподъемные для бизнеса. Благодаря сегодняшней гибкой структуре затрат нередко можно начать внедрение аналитики в гораздо меньшем масштабе, и зачастую на уровне бизнес-подразделения вполне можно выполнить простой анализ рентабельности.

Нацельтесь на факторы, определяющие различия, а не на поэтапные улучшения

Захватывающие новые концепции обычно привлекают больше внимания, чем улучшения уже существующих концепций. Это же верно и в случае аналитики. Если новые данные и новая аналитика могут быть использованы для решения новых проблем, будет гораздо легче привлечь внимание к бизнес-кейсу. Решение новых проблем при помощи новых данных зачастую обещает более весомую финансовую отдачу, чем при простом приспособлении существующих аналитических процессов к решению существующих проблем. Вместе с тем нередко можно разработать план, который предусматривает как краткосрочные поэтапные улучшения, так и долгосрочную конкурентную дифференциацию. Такая ситуация особенно благоприятна, поскольку обещает быстрый и наглядный прогресс в ходе достижения крупных долгосрочных преимуществ. Это будет победа сразу в двух измерениях.

Отметим одну из самых замечательных особенностей, связанных с появлением больших данных (см. вторую главу) и Аналитики 3.0 (см. первую главу), – возможности для применения аналитики расширяются и намного превзошли те, что были еще несколько лет назад. Обязательно отразите это при разработке своего бизнес-плана. Вдохновляющий мир больших данных и операционной аналитики открывает перед организациями широкие возможности для того, чтобы сосредоточиться на конкурентной дифференциации, и в то же время вносить поэтапные улучшения в существующие аналитические процессы. Как мы уже убедились, собираемым данным очень часто можно найти самое разное применение. Это означает, что, даже если кейс создан для решения одной-двух конкретных бизнес-проблем, в нем необходимо упомянуть и грядущие выгоды, которые могут появиться и в других областях, даже если пока что они расплывчаты и неопределенны. Процесс поиска новых ценностей называют еще «разговором с данными». Такой «разговор» способен привести к новым знаниям, идеям – и прибылям.

Конкурентная дифференциация обеспечивает поддержку

Сегодня часто можно использовать аналитику для того, чтобы с самого начала сделать организацию несхожей с другими. Даже если вы нацеливаетесь на поэтапные улучшения, постарайтесь обозначить конкурентные дифференциации на будущее.

Давайте рассмотрим следующий пример. Не будет ли интересно ресторанам или магазинам розничной торговли узнать, сколько людей посещают их каждый день и что это за люди? Могу побиться об заклад, что будет интересно, а помогут им данные о местоположении абонентов, создаваемые мобильными телефонами. Если провайдер сотовой связи хочет окупить затраты на хранение в операционных целях детализированных данных о местоположении абонентов, он может рассмотреть и такие альтернативные варианты их применения, как предоставление магазинам и ресторанам информации о потоке посетителей. Провайдер может даже взымать плату с ретейлеров за информацию о том, сколько человек ежедневно проходят или проезжают мимо их магазинов.

Путем сопоставления данных о местоположении с демографическими данными и данными об использовании мобильных телефонов можно предоставлять подобную информацию и с разбивкой людей по категориям. Предложение такой аналитической услуги может стать для провайдера конкурентной дифференциацией, создать новый поток доходности и окупить затраты на сбор для себя операционных данных. Обратите внимание на то, что я не предлагаю провайдерам разглашать любую информацию о любом индивидуальном абоненте. Это было бы нарушением неприкосновенности частной жизни, о чем мы подробно поговорим в шестой главе. Провайдер будет предоставлять агрегированные сведения, например такие: ежедневно мимо дома № 124 на Мейн-стрит в среднем проходят 200 человек, из которых 30 % имеют годовой доход свыше $100 000.

Чтобы созреть для предоставления таких услуг, организации может потребоваться время. Но обсуждение подобного варианта позволяет выявить бльшую ценность нового источника данных, которую он постепенно способен приобрести. Это может сильнее заинтересовать инвесторов, чем первоначальные планы, нацеленные только на извлечение прибыли в краткосрочном периоде. Даже если организация сумеет преодолеть планку рентабельности, установленную на основе первоначальных краткосрочных инициатив, определенный аналитикой потенциал в дальнейшем может поспособствовать одобрению новых инвестиций.

Выбор правильных критериев принятия решения

При разработке бизнес-кейса для операционной аналитики необходимо определить критерии, которые станут играть решающую роль при принятии решения. Другими словами, что именно позволит максимизировать или минимизировать инвестиции? Причем необходимо не только правильно определить критерии, но и учесть все последствия каждой альтернативы. При оценке затрат и выгод от внедрения операционной аналитики следует принимать во внимание множество факторов. Потребуются и новые критерии, которые не так широко использовались в прошлом.

В качестве критериев при принятии решения об инвестициях в аналитику нельзя использовать классические ИТ-метрики, такие как цена за терабайт, узел оборудования, лицензию на рабочее место или время обработки запросов. Разумеется, все эти критерии могут быть приняты во внимание, чтобы убедиться в их соответствии нормам, но не могут быть единственными. Одним из ключевых критериев для аналитики является повышение продуктивности человеческого труда, которое может быть достигнуто при инветировании того или иного варианта. Например, рассмотрите следующие вопросы:

• Насколько быстрее и эффективнее специалисты-аналитики смогут выполнять свои профессиональные обязанности при каждом варианте инвестирования?

• Насколько эффективно организация сможет разрабатывать, тестировать и внедрять новые операционно-аналитические процессы при каждом из вариантов?

• Насколько легко будет экспериментировать с новыми аналитическими техниками?

• Сможет ли оборудование быстро усваивать новые данные и поддерживать стремительные изменения?

• Потребуются ли новые и, возможно, дорогостоящие наборы навыков?

Все эти соображения имеют значение для принятия решений об инвестициях в операционную аналитику и должны применяться для каждого из рассматриваемых вариантов.

Чем быстрее команда аналитиков сможет создать для организации новые аналитические наработки и внедрить их в операционный контекст, тем выше будут доходы. Повышенную цену за терабайт можно оправдать, если команда сумеет выполнять аналитику намного быстрее по сравнению с более дешевым вариантом. Можно заплатить побольше и за лицензию на аналитическое приложение, если оно является более надежным и удобным в использовании. Все это позволит получить результаты наиболее эффективным образом.

Не так уж и сильно отличается это от того, как вы принимаете решение о покупке вещей для личного пользования. Например, многие готовы заплатить подороже за компьютер с бльшим объемом памяти или диска либо другими важными для пользователя характеристиками. А вот самый дешевый компьютер способен значительно затруднить выполнение важных для вас задач. Например, если у него недостаточно места на диске для хранения всех ваших видеоматериалов, его будет трудно использовать как платформу для архивирования и редактирования видео. В этом случае покупка более дорогого компьютера вполне себя оправдает.

Нарисуйте более полную картину

Многие организации в качестве первого шага осуществляют целевую проверку концепции (proof of concept, POC), или, проще говоря, запускают пилотный проект. Это отличная идея, однако важно не ограничиваться рамками пилотного проекта. Частичное решение проблемы вряд ли станет решающим аргументом в пользу выделения инвестиций, особенно если речь идет о значительных капиталовложениях и затратах труда. Другими словами, пилотный проект может сосредоточиться на одном типе анализа в отношении одного набора продуктов. Если же в завершающей фазе планируется инвестиционная поддержка множества типов анализа для всех наборов продуктов, то об этом нужно заявить со всей определенностью. Если же рассматривается только отдача от ограниченного пилотного проекта, то вряд ли достигнутые показатели будут очень впечатляющими. Кроме того, масштаб пилотного проекта вряд ли позволит увидеть всю ценность заложенного в проект потенциала. Вот почему необходимо ясно изложить свой план.

Любой пилотный проект следует позиционировать как всего лишь пример возможного, а не как окончательный результат. Составьте список других бизнес-проблем, как схожих, так и несхожих между собой, которые также могут быть решены в случае одобрения вашего плана. Обязательно подчеркните, что, хотя пилотный проект и не способствует конкретно решению других проблем, есть резон предположить, что примененная к ним аналитика добавит ценности выводам относительно POC. Если же пилотный проект сам по себе принес весомую финансовую отдачу, то наличие дополнительных преимуществ, которые можно включить в общую структуру, только поможет вам получить зеленый свет.

Подтвердите концепцию, не ограничивайтесь частным случаем

Постарайтесь разработать пилотный проект таким образом, чтобы продемонстрировать потенциал более широкого подхода. Используйте искусство возможного, а не стремитесь просто доказывать ценность ограниченного масштаба пилотного проекта. Несмотря на то что за пределами проекта вы не будете располагать объективной статистикой, выявленный вами потенциал добавит достаточно глазури на пирог, чтобы ваше инвестиционное предложение было одобрено.

Мой клиент из крупной медиакомпании рассказал мне о том, как он добился выделения инвестиций под свою инициативу касательно аналитики. (Я не буду называть эту компанию, чтобы защитить его конфиденциальность.) Его команда осуществила ряд успешных пилотных проектов, однако руководство отказывалось выделять более крупные инвестиции, необходимые для масштабирования полученных результатов. Он предположил, что проблема может заключаться в том, что их инвестиционные предложения фокусировались исключительно на масштабе проведенных пилотных проектов. Это было фатальной ошибкой. Сосредоточенность только на отдаче от аналитики, протестированной в рамках ограниченного пилотного проекта, не обеспечивала достаточно большую доходность. Что не менее важно, при таком подходе мой клиент не мог создать более полную картину, способную впечатлить руководителей, принимающих решения. На рис. 4.1 показано, в чем состоит разница между подходами.

Мой клиент решил, что при следующей попытке он представит POC как всего лишь пример, иллюстрирующий возможности инвестиций. При этом четко укажет, что пилотный проект предназначен показать, как в нескольких относящихся к делу сценариях можно иначе использовать новый источник данных в нестандартных аналитических процессах. Многие другие сценарии не могли быть протестированы в рамках пилотного проекта, но логично предположить, что они также будут успешно реализованы, учитывая их сходство со сценариями, уже доказавшими свою работоспособность. Такой подход, который некоторые называют демонстрацией «искусства возможного», является гораздо более действенным.

Время инсайта

При инвестировании в аналитический процесс обнаружения данных я рекомендую учитывать критерий «времени инсайта» – времени, которое проходит с момента появления нового вопроса до того момента, когда будет схвачена суть проблемной ситуации (произойдет инсайт). Этот критерий отчетливо отличается от критериев, применяемых при операционализации инсайта, полученного в процессе обнаружения данных. При операционализации инсайта важны традиционные ИТ-метрики, например, насколько можно увеличить скорость процесса, создающего инсайт, для поддержки операционных решений.

Различные потребности процессов обнаружения и операционализации более глубоко рассматриваются в шестой главе. Сейчас же просто обратите внимание на то, что бизнес-кейс, нацеленный на обнаружение данных, и бизнес-кейс, нацеленный на операционализацию сбора данных, будут отличаться друг от друга. Эту разницу важно осознать, поскольку в каждом случае присутствуют совершенно разные цели и приоритеты. Кроме того, в современном мире более неприемлемы аналитические циклы, измеряемые многими неделями или месяцами. Время инсайта должно составлять от нескольких дней до нескольких недель.

Инвестирование в обнаружение данных

Цель процесса обнаружения данных – быстро найти новые инсайты. Для этого требуется иной взгляд на инвестиции. Вместо того чтобы ориентироваться на исходные вычислительные мощности или их производительность, лучше ориентироваться на такой показатель, как время инсайта. Сама по себе производительность не настолько важна, как совокупное время, которое требуется для поиска инсайта. Время инсайта приведет в соответствие удобство использования, гибкость и производительность аналитики.

Время инсайта включает в себя все – от приобретения до подготовки данных, периода программирования, осуществления аналитического процесса, поиска инсайта в результатах (см. рис. 4.2). Другими словами, это время от старта до финиша. Например, если один вариант требует 60 минут на программирование, 30 минут на выполнение программы и 10 минут на исследование результатов, то время инсайта составит 100 минут. Если другой вариант требует всего 20 мину на программирование, но 60 минут на выполнение программы и еще 20 минут на исследование результатов, то время инсайта также составит 100 минут. Таким образом, у обоих вариантов одинаковое время инсайта, хотя и ведут к нему разные пути. Это значит, что в бизнес-кейсе необходимо учесть различия в стоимости отдельных компонентов двух вариантов. Например, дополнительные затраты труда (программирование) стоят намного дороже, чем дополнительная компьютерная обработка, и человеческий труд зачастую является самым большим компонентом времени инсайта.

Сосредоточенность на времени инсайта позволяет учесть все факторы, влияющие на время построения аналитических процессов. Переход от типичных критериев к другим, наподобие времени инсайта, имеет огромное значение при инвестировании в обнаружение данных. В конце концов новые инсайты и определяют доходную часть бизнес-кейса. Минимизация времени инсайта максимизирует шансы на обнаружение новых идей, которые сгенерируют доход. Сегодня дифференцированный подход к инвестированию в поиск данных еще не стал типичным. Тем не менее постепенно эта практика распространится и станет обычным явлением.

Метрика времени инсайта будет влиять не только на стоимость, но и на удовлетворенность и мотивацию сотрудников. Профессиональные аналитики стремятся создавать эффективные аналитические процессы. Чем быстрее они смогут добраться до нового инсайта, тем быстрее смогут оказать воздействие и перейти к следующему поиску данных. Небольшая средняя продолжительность времени инсайта повысит удовлетворенность и мотивацию аналитиков. Никто не любит трудиться там, где из-за неэффективности работа занимает больше времени, чем необходимо.

Возможность операционализации

В предыдущем разделе мы рассмотрели, насколько такой новый критерий, как время инсайта, востребован при инвестировании в поиск данных. Теперь давайте посмотрим, какие критерии имеют значение при инвестировании в операционализацию аналитических процессов. К сожалению, в этом случае аналитические инструменты невозможно оценивать только на основе их функциональности. Необходимо также учитывать, насколько хорошо инструменты интегрируются с операционным окружением. Инструмент может быть очень надежным с точки зрения функциональности, но если он не может быть легко интегрирован в операционную среду и обеспечить на требуемом уровне масштаб и простоту процесса, то не будет работать.

В операционной аналитике счет часто идет на миллисекунды. В конечном счете лучше выбрать инструмент, который хотя и не дружественен к пользователю, но может быть более эффективно интегрирован в операционные процессы, чтобы принимать тысячи или миллионы аналитических решений в день. Таким образом, при выборе инструмента наряду с функциональностью необходимо оценивать и его возможности в части операционализации.

Это другой взгляд на вещи. Традиционно организации старались выбирать среди аналитических инструментов наиболее дружественные к пользователям и с максимальной функциональностью. Аналитические процессы осуществлялись в офлайне и в четком режиме, когда интеграция не имела большого значения. Однако при переходе на операционные рельсы организация должна уделить первостепенное внимание интеграции, масштабируемости и производительности. Это может потребовать выбора таких инструментов, которые организация не выбрала бы в прошлом. Удобство для пользователя по-прежнему крайне важно для процесса обнаружения данных, но для операционных процессов еще важнее интегрируемость и масштаб. Возможно, для построения операционного процесса с нуля могут потребоваться дополнительные усилия, но они со временем окупятся благодаря возможности ускоренного принятия миллионов решений. Эти различия в требованиях мы подробнее рассмотрим в шестой главе.

При переходе к операционной деятельности одной функциональности недостаточно

Для операционной аналитики функциональность и дружественность к пользователям больше не могут служить главными критериями при выборе инструментов. Инструменты должны эффективно интегрироваться с окружением, чтобы обеспечить применение данных с масштабированием. Имеет смысл пожертвовать функциональностью и удобством ради масштабируемости и облегчения интеграции.

Такой подход, когда функциональность и удобство не ставятся во главу угла, является не столь уж необычным, каким он выглядит. Скажем, при строительстве дома на одну семью применяются удобные в использовании, многофункциональные материалы. Но когда речь идет о коммерческой недвижимости, часто выбираются гораздо более прочные материалы, соответственно гораздо более дорогие и сложные в установке. Они могут выглядеть менее привлекательно и быть менее удобными в применении, но, главное, должны выдерживать высокую интенсивность использования в коммерческой среде. Возьмем, например, дверные ручки. Дешевые и со стандартным креплением будут замечательно служить, если дверь в вашем доме открывается всего три раза в день, но в большом офисном здании они сломаются через несколько недель. Этот же принцип лежит и в основе выбора аналитических инструментов для поддержки операционных процессов.

Учитывая вышесказанное, вам вряд ли удастся найти у одного поставщика единый комплект аналитических инструментов, который удовлетворял бы все ваши потребности. Скорее всего, вам придется использовать разные наборы инструментов для обнаружения данных и для внедрения их в операционный процесс. Разумеется, со временем инструменты будут развиваться, так что будем надеяться на появление наборов инструментов, способных удовлетворять ту и другую потребность с одинаковой эффективностью. Но по состоянию на начало 2014 г. таких пока нет.

Ценность аналитики в сравнении с ценностью технологии

При инвестировании в аналитику важно принимать во внимание два компонента создаваемой ценности. Зачастую они тесно переплетены между собой, однако их важно различать и рассматривать по отдельности. Первый компонент – это ценность самой аналитики. Другими словами, какие бы ни использовались инструменты, технологии или методологии, весомую долю выгоды можно получить, просто добившись результатов. Понятно, что для этого требуются соответствующие инструменты и технологии. Однако важно не увязывать выгоду, полученную от применения аналитики, с выбором конкретных платформы или инструмента.

Например, ценность представляет простой аффинитивный анализ с целью определения возможностей для перекрестных продаж. Независимо от используемых инструментов и платформ его результат ценен сам по себе. Ценность же инструментов и технологий определяется тем, насколько эффективно они, по сравнению с другими инструментами и технологиями, позволяют создать, протестировать и осуществить аналитический процесс, необходимый для аффинитивного анализа. В большинстве случаев, как показано на рис. 4.3, собственная ценность анализа намного превосходит ту дополнительную ценность, которая создается конкретным инструментом или технологией.

Первым делом необходимо определить отдачу от анализа как такового, независимо от любых платформы или инструмента. А после этого можно приступать к определению эффективности различных вариантов проведения анализа с учетом их скорости, продуктивности и затрат. Однако организации часто попадают в ловушку, когда доверяются продавцу, который превозносит огромную доходность инвестиций, обеспечиваемую его аналитическими продуктами. При этом продавец нередко объединяет доходность инвестиций, предлагаемую собственно аналитикой, с дополнительной ценностью, которую обеспечивают его технологии или инструменты. Вот почему необходимо отделять ценность инструментов от ценности базового анализа.

В качестве ремарки: если каждый продавец для каждого варианта, который вы рассматриваете, объединяет ценность анализа с ценностью инструмента, то, по крайней мере, это дает возможность для беспристрастного сравнения вариантов. Поскольку все расчеты будут включать в себя одинаковую изначальную ценность, то возникающая разница будет отражать разницу в дополнительной ценности, создаваемой инструментом или технологией.

Обратите внимание на структуру бизнес-кейса

Ричард Винтер из фирмы WinterCorp опубликовал потрясающую статью «Большие данные: сколько они стоят на самом деле?»{35}. В ней он описывает структуру, в рамках которой можно будет принять во внимание все типы затрат и использовать показатель, названный Винтером “total cost of data” (TCOD) – «суммарная стоимость данных», при инвестировании в аппаратное и программное обеспечение для поддержки аналитики. TCOD отражает общую стоимость широкого разнообразия необходимых компонентов, их мы рассмотрим далее в этой главе.

Обратите внимание на то, что модель TCOD Винтера, а также большая часть этого раздела сосредоточены главным образом на одной стороне баланса, а именно на затратах. Я поступил так преднамеренно, поскольку компоненты затрат в разных организациях довольно схожи, тогда как получаемые за счет их преимущества могут значительно варьироваться в зависимости от конкретных аналитических процессов. Кроме того, когда речь идет об аналитике, точная оценка затрат часто упускается из виду. Вот почему я предлагаю сосредоточиться на этой стороне вопроса.

Большое преимущество модели TCOD Винтера состоит в том, что она не склоняется в пользу того или иного конкретного решения, а просто предлагает способ, который позволяет оценить и принять в расчет различные компоненты стоимости. Например, в статье описываются две различные ситуации, когда использование этой модели привело к двум совершенно противоположным выводам. В первом случае на основе свойств, требуемых для данных и обработки, был сделан вывод о том, что создание массивного параллельного окружения обойдется в три-четыре раза дороже, чем использование Hadoop. В другом случае с учетом свойств, требуемых для данных и обработки, был сделан вывод о том, что инвестиции в Hadoop обойдутся в три-четыре раза дороже, чем создание необходимого окружения.

Использование этой модели, нейтральной по отношению к оценке инструментов и технологий, позволяет объективно учесть все затраты. Применительно к операционной аналитике модель TCOD требует некоторой модификации, поскольку предусматривает слегка иной характер инвестирования. Однако, как мы увидим в следующем разделе, сочетание модели TCOD с дополнительными метриками, привязанными конкретно к операционной аналитике, создает великолепную стартовую позицию.

Каковы совокупные расходы на операционную аналитику?

При рассмотрении вариантов инвестирования в аналитику очень важно точно оценить совокупные расходы. Например, рассматривая инструменты с открытым исходным кодом, организации не должны слишком радоваться, получив бесплатную лицензию на программное обеспечение. Необходимо представить полную картину затрат с течением времени. Да, инструменты с открытым исходным кодом могут оказаться полезнейшим дополнением к аналитической среде. Однако при этом необходимо учесть все совокупные расходы и с осторожностью воспринимать ложные стимулы, чтобы по своему недосмотру не попасть со временем на повышенные издержки.

Страницы: «« 12345678 »»

Читать бесплатно другие книги:

О системе технического анализа, которая отлично известна на Востоке, а на Западе лишь робко изучаетс...
Из начала двадцать первого века – в конец века девятнадцатого. Да полно, а только ли отсюда туда? С ...
Цель этой книги – увидеть за внешней оболочкой тела органы и системы жизнеобеспечения, понять, как и...
Екатерина Мурашова – известный семейный и возрастной психолог. Помимо своей основной, консультационн...