Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики Фрэнкс Билл

Говоря о том, что неудача допустима, я вовсе не утверждаю, что никто не должен за нее отвечать или что к ней нужно стремиться. Это означает, что попытки применить действительно новую и инновационную аналитику не могут быть успешными на все 100 %. Например, в бейсболе даже 30 % удачных попыток считается большим успехом. Когда главное внимание уделяется поиску причин провала аналитического процесса, а внедренные системы позволяют быстро тестировать результаты поиска, издержки неизбежных неудач будут сведены к минимуму. Кроме того, извлеченные из неудач уроки могут положительно отразиться на будущих действиях, поскольку это позволит в дальнейшем избежать ведущих к провалу факторов.

Корпоративная культура организации призвана поощрять людей, с тем чтобы они не принимали аналитические результаты на свой счет. Вполне возможно, анализ выявит, что блестящая, по вашему мнению, идея на самом деле абсолютно неработоспособна. Но это вовсе не означает, что вы идиот и не отдаете отчета в своих действиях. Просто аналитика выявила, что вам следует поискать другую идею. Разумеется, придется постараться, чтобы убедить людей в том, что они могут свободно предлагать идеи, пусть те потом и окажутся неработоспособными. Во многих организациях люди стараются предлагать только те идеи, в которых они более чем уверены, поскольку опасаются негативного к себе отношения, если их будут ассоциировать с провалившимися идеями. Корпоративная культура не должна такого допускать. Лучше поощрять людей рисковать и вносить свою лепту в общее дело, чем позволять организации безопасно стагнировать.

Неудачи по незнанию неприемлемы

Наконец, еще один важный аспект аналитической культуры, связанный с преодолением неудач, заключается в понимании людьми того, как правильно использовать любые результаты аналитики. Неверное истолкование и неправильное применение аналитических результатов неприемлемы. Старая поговорка гласит: недоученный хуже неученого. Когда недостает знаний о том, как использовать результаты аналитического процесса, это тоже плохо.

В одной из популярных статей в моем блоге обсуждается тревожный пример, который наглядно иллюстрирует опасности использования аналитики без надлежащего понимания или обучения{92}. Руководство находящейся недалеко от моего дома школы решило использовать для оценки курсовых работ учащихся специальную программу проверки на плагиат. Так вот, беспроблемный прежде класс с углубленным изучением школьной программы и со множеством отличников программа уличила в обмане. Всем учащимся завернули курсовую работу, что негативно отразилось на их годовых оценках. Когда мне сообщили детали, я понял, что причина была в неправильном использовании ПО. Например, совпадение фраз из трех слов в двух работах маркировалось как тревожный сигнал. Скажем, если двое учащихся написали фразу: «Автор предполагает, что…», их работы отмечались как подозрительные. При таких нестрогих критериях можно ожидать множество случайных совпадений. Если работа набирала определенное количество красных флажков, она считалась плагиатом. Преподаватели, не имевшие опыта в использовании такого рода анализа, отстаивали оценки «экспертного» ПО, даже если видели явно нелогичные и несправедливые выводы. Все это больно ударило по репутации учащихся, негативно повлияло на их годовые оценки и потенциально на возможность поступить в колледжи по их выбору.

Как и любой другой инструмент, аналитика может быть мощной и полезной при правильном применении, но может и причинить серьезный вред, если используется людьми, которые не умеют правильно ее применять. Все мы сталкивались в бизнесе с ситуациями, когда статистика или показатели предоставляются руководителям вне полного контекста и без необходимых пояснений. Увидев показатели вне контекста, руководитель может принять непродуктивное или ошибочное решение. Крайне необходимо подготовить сотрудников к правильному использованию аналитики в рамках своих рабочих обязанностей. Как уже говорилось выше, рядовым сотрудникам не нужно разбираться в работе алгоритмов. Но они должны в точности знать, как правильно обращаться с результатами анализа, проведенного алгоритмами.

Неправильное использование аналитики может принести больше вреда, чем ее полное отсутствие

Убедитесь, что каждый человек в вашей организации обучен правильному использованию аналитики на том уровне, который требуется для его работы. Неправильное применение аналитических инструментов, методик или результатов может принести больше вреда, чем пользы.

Давайте рассмотрим несколько действий, которые должны стать стандартными при создании и использовании аналитики. В свою очередь, корпоративная культура призвана требовать соблюдения этих стандартов:

• Кто-то из сотрудников должен полностью разбираться в каждом анализе, знать его сильные и слабые стороны. Не всем сотрудникам надо разбираться в таких тонкостях, но кто-то обязательно должен.

• Параметры и опции, используемые в процессе, должны выбираться с обоснованием. Не стоит предполагать, что настройки по умолчанию подходят для любого случая.

• При появлении неожиданных результатов необходимо провести дополнительное исследование и поставить необходимые вопросы, прежде чем делать выводы. Ни один алгоритм или пакет программ не является всеведущим. Неожиданные результаты могут привести к значимым инсайтам в аналитическом процессе и в поддерживающих его данных.

• Если обнаруживаются дополнительные факты или данные, которые противоречат первоначальным выводам, необходимо уделить им серьезное внимание. Главное – найти правильный ответ, а не защищать исходные предположения.

• Разрешите сотрудникам выполнять и использовать только те виды анализа, для правильного применения которых они подготовлены. Иначе сотрудники могут забраться в темный лес, сами того не осознавая.

Возвращаясь к вышеописанному примеру с плагиатом, можно сказать, что желание учителей использовать аналитику, безусловно, достойно похвалы. Однако они совершили серьезную ошибку, начав использовать ее без должного понимания того, что делают. Учителя не знали, как правильно настроить алгоритмы и как интерпретировать результаты. Этот пример наглядно иллюстрирует, как неправильное использование аналитики может принести больше вреда, чем пользы, если применять ее вне контекста или вне обозначенного масштаба. Вот почему так важно, чтобы организация предоставила своим сотрудникам надлежащие обучение и поддержку. Неудача по незнанию неприемлема ни при каких условиях.

Подведем итоги

Наиболее важные положения этой главы:

• Не застревайте в ловушке сделанных вслепую предположений, как блоха в банке. Регулярно подвергайте предположения сомнению, чтобы проверить, по-прежнему ли они актуальны.

• Поддержка аналитики и специалистов-аналитиков должна начинаться с уровня генерального директора. Никто не захочет оставаться в организации, где не ценят его работу.

• Когда люди чувствуют угрозу со стороны операционной аналитики и сопротивляются ей, используйте метод игрофикации. Придумайте игру, где победа достигается за счет эффективного использования нового аналитического процесса.

• Улучшения, предлагаемые аналитикой, не должны служить обвинением в том, что прежние решения принимались неправильно. Дайте сотрудникам понять, каким образом использование аналитики поможет им лучше выполнять свою работу.

• Операционная аналитика предполагает делегирование полномочий, а не их потерю. Делегирование полномочий по принятию решений надежному алгоритму мало чем отличается от делегирования полномочий доверенным людям.

• Небольшие изменения могут существенно повысить аналитическую эффективность организации. Успешная бизнес-модель современных магазинов йогуртов построена на небольших, но трансформационных изменениях по сравнению со старой моделью. ИТ-службы точно так же должны перейти от режима обслуживания к режиму содействия.

• Без свободного испытания аналитических процессов, которые впоследствии не заработают, невозможен свободный поиск процессов, которые впоследствии заработают. Не зацикливайтесь на предотвращении появления плохих идей; лучше сосредоточьтесь на содействии появлению хороших.

• Поощряйте людей искать новые неожиданные способы использования существующих данных и аналитических процессов.

• Протестируйте новый аналитический процесс на группе ранних последователей, которые вместе с тем оказывают сильное влияние на коллег. После того как ранние последователи приобретут успешный опыт, они увлекут своим примером и других людей.

• Для того чтобы люди поддержали идею, изменяющую их статус-кво, их нужно убедить в ее полезности. Будьте готовы потратить много времени на продвижение новой аналитической идеи и на ее принятие организацией.

• С учетом низкой стоимости и простоты тестирования новых аналитических процессов будет разумным протестировать даже кажущиеся безумными идеи. Если идея может быть протестирована, дайте ей шанс.

• Неправильное использование аналитики может принести больше вреда, чем пользы. Все сотрудники должны быть обучены ее применению на том уровне, который требуется для выполнения их работы.

Заключение

Присоединяйтесь к революции!

Да, революция началась! Теперь вы должны понимать всю важность промышленной революции в аналитике, и, я надеюсь, готовы присоединиться к этой революции сами. Аналитика слишком значима, чтобы оставлять ее на уровне ручного, кустарного производства. Если организация хочет полностью извлечь выгоды, скрытые в данных и аналитике, она должна перейти к операционной аналитике. Сегодня аналитические процессы трансформируются лидерами отрасли в интегрированные, встроенные, автоматизированные, предписывающие компоненты как операционных систем, так и поддерживаемых этими системами бизнес-процессов.

Моя книга охватывает широкий круг вопросов. Давайте окончательно суммируем наиболее важные принципы и рекомендации, соблюдение которых позволит вам и вашей организации присоединиться к революции:

• Необходимо понимать и учитывать разницу между встроенной, автоматизированной, предписывающей операционной аналитикой и операционным применением традиционной пакетной аналитики. В том и другом случае создаются ценности, но это не одно и то же.

• Операционная аналитика должна опираться на прочный фундамент. Не думайте, что вам удастся впрыгнуть в операционную аналитику, не располагая надежными аналитическими возможностями.

• Сегодня аналитика все чаще выступает главным фактором при принятии решений о покупке, а внедрение аналитики в продукты размывает традиционные границы между отраслями. Ищите возможности использовать операционную аналитику для дифференциации и преобразования своей бизнес-модели.

• «Различность» больших данных может создавать проблемы посерьезнее, чем их «огромность», а анализ больших данных требует масштабирования по многим параметрам. Однако большие данные содержат настолько ценную новую информацию, что все усилия по их «укрощению» себя оправдывают. Начните использовать большие данные уже сегодня.

• Сегодня многие примеры применения операционной аналитики включают очень простые алгоритмы и правила, но со временем это изменится. Без колебаний начинайте с простых подходов – постепенно вы сможете их усложнить.

• Серьезно подойдите к разработке бизнес-кейса для операционной аналитики. Убедитесь, что вы учли все затраты, включая затраты на оплату труда, в течение всего инвестиционного цикла.

• В условиях сегодняшнего сложного технологического ландшафта, вам, возможно, придется встраивать несколько разных компонентов в единое аналитическое окружение, призванное поддерживать операционную аналитику. Это нужно, чтобы избавить пользователей от беспокойства по поводу того, где именно хранятся и обрабатываются данные.

• В будущем Интернет вещей станет важным компонентом операционной аналитики. Учитесь пользоваться им уже сейчас и задумайтесь над тем, как включить его в планирование своей деятельности.

• Убедитесь, что ваша организация понимает и учитывает различные требования, предъявляемые к процессу обнаружения данных и к процессу их операционного внедрения. Процесс обнаружения затормозится, если будет происходить в рамках операционных ограничений.

• Не пренебрегайте управлением. Автоматизированный аналитический процесс должен тщательно контролироваться. Подобно реальной производственной линии, операционно-аналитический процесс со временем будет давать сбои. Надлежащее управление позволяет уменьшить частоту ошибок и их воздействие до приемлемого уровня издержек при ведении бизнеса.

• Соблюдение конфиденциальности – серьезная проблема. Убедитесь, что вся аналитика, используемая вашей организацией, является законной, этичной и приемлемой для широкой общественности. Кроме того, необходимо разработать гораздо более гибкие и детализированные правила и параметры конфиденциальности.

• Способность применять и сочетать многочисленные аналитические дисциплины – необходимое условие успеха. Позвольте различным дисциплинам усиливать друг друга.

• Будьте готовы пожертвовать некоторой аналитической мощностью ради требуемого операционного масштаба. Сосредоточьтесь на оптимизации воздействия процесса на принятие всех решений, а не на оптимизации принятия каждого решения по отдельности.

• Наем нужных людей имеет первостепенное значение. Поставьте директора по аналитике во главе аналитической команды с гибридной структурой. Затем убедите членов команды взять на себя роли консультантов, наставников и инструкторов.

• Для того чтобы преодолеть сопротивление переменам со стороны корпоративной культуры, необходима поддержка по всей вертикали управления начиная с генерального директора. Сделайте акцент на преимуществах операционной аналитики для каждого заинтересованного лица и позиционируйте аналитику как ведущую к делегированию полномочий, а не к их потере.

Благодаря непрерывному росту вычислительных мощностей, постепенному совершенствованию алгоритмов и постоянно увеличивающемуся пулу данных с каждым днем расширяются возможности аналитики. В прошлом операционная аналитика не занимала много места в портфелях большинства организаций, но теперь эта ситуация быстро меняется. Настало время и для вашей организации войти в мир операционной аналитики.

Если в вашей организации аналитика все еще опирается на ручные, кустарные, разовые процессы, то такой подход необходимо оставить в прошлом. Подобно тому как промышленная революция преобразила индустриальное производство, так и операционная аналитика преобразит способы разработки, внедрения и применения аналитики. Промышленная революция в аналитике уже идет. Готовы ли вы к ней присоединиться?

Об авторе

Билл Фрэнкс – директор по аналитике в компании Teradata, где он занимается изучением трендов в аналитике и пространстве больших данных, а также разработкой корпоративной стратегии компании в этих областях. Фрэнкс консультирует клиентов, объясняя им, как Teradata и ее специалисты могут поддержать их деятельность. Он уделяет много внимания переводу сложных аналитических концепций на язык, понятный для бизнес-пользователей, и помогает организациям наладить эффективное использование аналитики. Его работа охватывает многие отрасли и компании, начиная с крупнейших из списка Fortune 100 и заканчивая мелкими некоммерческими организациями.

Фрэнкс является автором книги «Укрощение больших данных» (John Wiley & Sons, 2012). В ней он опирается на свой 20-летний опыт работы с клиентами по реализации крупных аналитических проектов, чтобы вывести закономерности достижения успеха в современном мире больших данных и аналитики. В 2014 г. книга вошла в список «Обязательных к прочтению» Тома Питерса и в Топ-10 самых влиятельных переводных книг в области технологий по версии сети для программистов CSDN в Китае.

Он преподает в Международном институте аналитики, основанном ведущим экспертом по аналитике Томасом Дэвенпортом, а также является востребованным лектором – только за последние несколько лет он был приглашен в качестве основного докладчика на десятки мероприятий. Его блог «Аналитика имеет значение» (Analytics Matters) посвящен преобразованиям, необходимым для трансформации аналитики в ключевой компонент принятия бизнес-решений.

Фрэнкс получил степень бакалавра в области прикладной статистики в Политехническом университете Виргинии и степень магистра в области прикладной статистики в Университете штата Северная Каролина. Подробнее о нем можно узнать на сайте: http://www.billfranks.com

Страницы: «« 12345678

Читать бесплатно другие книги:

О системе технического анализа, которая отлично известна на Востоке, а на Западе лишь робко изучаетс...
Из начала двадцать первого века – в конец века девятнадцатого. Да полно, а только ли отсюда туда? С ...
Цель этой книги – увидеть за внешней оболочкой тела органы и системы жизнеобеспечения, понять, как и...
Екатерина Мурашова – известный семейный и возрастной психолог. Помимо своей основной, консультационн...