Стратегические игры. Доступный учебник по теории игр Диксит Авинаш
b) Определите уровень приспособленности типов S и T относительно f.
c) При каком значении s у типов F и G одинаковый уровень приспособленности?
d) При каком значении f у типов S и T одинаковый уровень приспособленности?
e) На основании полученных выше ответов начертите график динамики популяций. Отобразите значения f на горизонтальной оси, а значения s — на вертикальной.
f) Опишите все равновесия в этой эволюционной игре, а также укажите эволюционно устойчивые равновесия.
U7. Вспомните упражнение S7. Как оказалось, зайцы весьма заносчивые победители. Каждый раз, когда они обгоняют черепах, они безжалостно высмеивают их медлительность. Бедные черепахи не только проигрывают забег, но и терпят оскорбления со стороны зайцев. Таблица выигрышей в этой игре выглядит так:
a) При каких значениях c уровень приспособленности черепах будет выше, чем у зайцев, если доля черепах t в популяции составляет 0,5? Чем этот результат отличается от ответа, полученного в пункте а упражнения S7?
b) При каких значениях c уровень приспособленности черепах будет выше, чем у зайцев, если t = 0,1? Чем этот результат отличается от ответа, полученного в пункте b упражнения S7?
c) Если c = 1, сможет ли один заяц захватить популяцию, состоящую только из черепах? Объясните, почему да или почему нет.
d) Насколько большим относительно t должно быть значение c в случае черепах, чтобы они были более приспособленными, чем зайцы?
e) Какой уровень t относительно c в полиморфном равновесии? При каких значениях c установится такое равновесие? Обоснуйте свой ответ.
f) Будет ли устойчивым полиморфное равновесие, найденное в пункте e? Почему да или почему нет?
U8 (рекомендуется использовать электронную таблицу). В данной задаче выполняется более глубокий анализ динамики популяции от поколения к поколению, о которой шла речь в упражнении S8. Поскольку математические расчеты могут быстро стать достаточно сложными и громоздкими, рекомендуем выполнить этот анализ с помощью электронной таблицы.
Опять же, рассмотрим популяцию с двумя типами X и Y со следующей таблицей выигрышей:
Вспомните, что динамику популяции от поколения к поколению определяет следующая формула:
где xt — доля X в популяции за период t; xt+1 — доля X в популяции за период t + 1; FXt — уровень приспособленности X за период t; FYt — уровень приспособленности Y за период t.
С помощью электронной таблицы расширьте область этих вычислений на большее количество поколений. (Подсказка: расположите значения xt, FXt и FYt в трех смежных горизонтальных ячейках таблицы, а в каждой следующей строке пусть будут представлены периоды [t = 0, 1, 2, 3, …]. Используйте формулы электронной таблицы, для того чтобы соотнести FXt и FYt c xt и xt+1 в соответствии с представленной моделью динамики популяции.)
a) Если в период 1 (другими словами, когда x0 = 0,5) в популяции имеет место равное соотношение X и Y, какой будет доля X в следующем поколении, то есть x1? Чему равны значения FX1 и FY1?
b) С помощью электронной таблицы выполните соответствующие вычисления для очередного поколения, затем для следующего и т. д. Чему равно значение x20 с точностью до четырех десятичных знаков? Чему равны значения FX20 и FY20?
c) Определите x*— равновесный уровень x. Через сколько поколений популяция будет находиться в пределах 1 процента от x*?
d) Ответьте на вопрос в пункте b при x0 = 0,1.
e) Выполните задание в пункте b при x0 = 1.
f) Выполните задание в пункте b при x0 = 0,99.
g) Возможны ли мономорфные равновесия в данной модели? Если да, устойчивы ли они? Обоснуйте свой вывод.
U9. Рассмотрите эволюционную игру между игроками зеленого и пурпурного типов со следующей таблицей выигрышей:
С учетом параметров a, b, c, d определите условия, которые обеспечивают устойчивое полиморфное равновесие.
U10 (дополнительное упражнение для студентов с хорошей математической подготовкой). Пусть в эволюционной игре с тремя типами, представленной в разделе 5 и на рис. 12.11, q3 = 1 — q1 — q2 — доля агрессивных оранжевогорлых игуан. В таком случае динамику изменения доли каждого типа игуан в популяции можно описать так:
q1 увеличивается тогда и только тогда, когда — q2 + q3 > 0,
q2 увеличивается тогда и только тогда, когда q1 — q3 > 0.
Хотя это и не было оговорено в явном виде в разделе 5, но аналогичное правило для q3 выглядит так:
q3 увеличивается тогда и только тогда, когда — q1 + q2 > 0.
a) Выполните более подробный анализ этой динамики. Пусть скорость изменения переменной x во времени t обозначается посредством производной dx/dt. Далее предположим, что
Проверьте, подтверждают ли эти производные сформулированные выше утверждения в отношении динамики популяции.
b) Определим X = (q1)2 + (q2)2 + (q3)2. С помощью формул дифференцирования сложных функций покажите, что dX/dt = 0, иными словами, продемонстрируйте, что значение X остается постоянным по времени.
c) Мы знаем, что q1 + q2 + q3 = 1. Используя этот факт в совокупности c результатом из пункта b, покажите, что с течением времени точка (q1, q2, q3) движется в трехмерном пространстве по кругу.
d) Говорит ли ответ, полученный в пункте c, об устойчивости эволюционной динамики в популяции пятнистобоких игуан?
Глава 13. Разработка механизмов для задачи «принципал — агент»
* * *
В 1996 году Джеймс Миррлис получил Нобелевскую премию по экономике за новаторскую работу по оптимальному нелинейному налогообложению доходов и связанным с ним политическим вопросам. Многие неэкономисты и некоторые экономисты нашли ее трудной для понимания. Однако журнал Economist дал ей блестящую характеристику, подчеркнув ее важность и значимость, а также отметив, что Миррлис показал, «как иметь дело с тем, кто знает больше вас»[236].
В главе 8 мы уже видели, как асимметричная информация влияет на анализ игры. Но основная задача, которую пытался решить Миррлис, несколько отличалась от ситуаций, рассмотренных нами ранее. В его работе одному игроку (правительству) требовалось составить такой свод правил, при котором стимулы другого игрока (налогоплательщика) соответствовали бы целям первого игрока. В настоящее время модели, применимые к широкому спектру социальных и экономических взаимодействий и основанные на общей концептуальной схеме, в соответствии с которой менее информированный игрок выполняет действия, выгодные для более информированного игрока, существуют в большом количестве. Обычно менее информированного игрока называют принципалом, а более информированного — агентом; соответственно, такие модели обозначаются термином «модель “принципал — агент”». Сам процесс, используемый принципалом для создания правильного набора стимулов для агента, известен как разработка механизмов.
В модели Миррлиса правительство пытается найти баланс между эффективностью и справедливостью; оно хочет, чтобы более продуктивные члены общества вкладывали усилия в увеличение общего объема производства, после чего правительство бы перераспределяло доходы в пользу неимущих. Если бы ему была точно известна потенциальная производительность каждого человека и оно могло бы отслеживать количество и качество вложенных усилий, каждый член общества просто был бы обязан трудиться в соответствии со своими возможностями, а плоды его труда распределялись бы согласно потребностям людей. Но сбор столь подробной информации слишком дорогостоящий, если вообще возможен, кроме того, не меньше трудностей возникло бы с практической реализацией таких схем перераспределения. Каждый человек прекрасно знает свои способности и потребности, поэтому выбирает собственный уровень усилий, но ему выгоднее скрывать эту информацию от правительства. Когда человек делает вид, что у него меньше способностей и больше потребностей, это позволяет ему выплачивать меньше налогов или получать помощь от правительства; при этом стимул вкладывать усилия ослабевает, когда правительство забирает часть дохода. Правительство должно просчитывать свою налоговую политику или разрабатывать налогово-бюджетный механизм с учетом всех этих нюансов с информацией и стимулами. Миррлису удалось решить сложную задачу разработки механизмов в рамках концептуальной схемы «принципал — агент».
Экономист Уильям Викри разделил с Миррлисом Нобелевскую премию по экономике 1996 года, получив ее за разработку механизмов при наличии асимметричной информации. Наибольшую известность Викри принесла разработка алгоритма проведения аукциона, стимулирующего участников делать ставки по истинной стоимости выставленного на продажу объекта (эту тему мы подробно изучим в главе 16). Однако исследования Викри распространяются и на другие механизмы, такие как система дорожных сборов в период пиковой нагрузки (он и Миррлис заложили основу для обширных изысканий в данной области).
Примечательно, что за последние тридцать лет общая теория разработки механизмов получила серьезное развитие. За сделанный в нее вклад Леониду Гурвицу, Роджеру Майерсону и Эрику Маскину в 2007 году была присуждена Нобелевская премия по экономике. Они и многие другие ученые применили данную теорию во множестве разных областей, таких как системы оплаты труда, страховые полисы и, разумеется, шкала налогообложения и аукционы. В этой главе мы проанализируем несколько известных сфер применения теории разработки механизмов, воспользовавшись нашим обычным методом числовых примеров и упражнений.
1. Ценовая дискриминация
Как правило, компания продает свою продукцию различным клиентам с разными уровнями готовности платить. Теоретически она хотела бы получать от каждого клиента максимум, который он готов заплатить. Если бы компания действительно могла назначать каждому клиенту индивидуальную цену, соответствующую его готовности платить, экономисты сказали бы, что она практикует совершенную ценовую дискриминацию, или ценовую дискриминацию первой степени.
Однако совершенная ценовая дискриминация может оказаться невозможной по многим причинам. Самая общая состоит в том, что даже клиент, который готов заплатить много, предпочитает платить меньше. Следовательно, он выберет более низкую цену, и не исключено, что компании придется конкурировать с другими компаниями или торговыми посредниками, которые сбивают ее высокую цену. Но даже при отсутствии прямых конкурентов компания, как правило, не знает, сколько каждый отдельный клиент готов заплатить, поэтому клиенты попытаются сделать вид, что не намерены платить высокую цену, чтобы добиться более низкой цены. Иногда, даже если компания смогла определить готовность платить, может быть незаконно использовать явную дискриминацию первой степени на основании отличительных характеристик клиента. В подобных ситуациях компания должна разработать такую линию продуктов и цен, чтобы выбор клиентами того, что они покупают (а значит, и за что платят), хотя бы в какой-то мере соответствовал ее целям по увеличению прибыли путем ценовой дискриминации.
В терминологии игр с асимметричной информацией, используемой нами в главе 8, процесс, посредством которого компания определяет готовность клиента платить на основании решений о покупке, подразумевает скрининг в целях разделения типов (путем самоотбора). Компания не знает тип каждого клиента (его готовность платить), поэтому пытается получить эту информацию, анализируя его действия. Подход, применяемый для этого авиакомпаниями, — общеизвестный пример. Авиакомпании стараются отделить бизнес-пассажиров, готовых заплатить больше, от туристов, более чувствительных к цене билетов, предлагая низкие цены в обмен на различные ограничения на тарифы, неприемлемые для пассажиров бизнес-класса, такие как требования предварительной оплаты и минимальные условия комфорта[237]. Мы проанализируем этот пример более подробно, чтобы уточнить все эти идеи, сделав их поддающимися количественному определению.
Рассмотрим решения по установлению цен, которые принимает PieInTheSky (PITS) — авиакомпания, обслуживающая маршрут из Поданка в Южную Саккоту; ее самолеты перевозят определенное количество бизнес-пассажиров и определенное количество туристов. За любое место, указанное в авиабилете, пассажиры первого типа готовы платить более высокую цену, чем второго. Для того чтобы с выгодой для себя обслужить туристов, не назначая при этом низкую цену пассажирам, совершающим деловые поездки, компания PITS должна найти способ создания разных версий одного и того же рейса. Кроме того, ей необходимо установить такие цены на билеты, чтобы эти два типа пассажиров выбрали разные варианты. Как уже отмечалось выше, авиаперевозчик может провести различие между двумя типами пассажиров, предложив им тарифы с ограничениями и без. Практика продажи билетов в салоны первого и экономкласса — еще один способ разграничить две группы пассажиров (именно ее мы используем в нашем примере).
Предположим, 30 % клиентов авиакомпании PITS — бизнесмены, а 70 — туристы. В таблице на рис. 13.1 показана максимальная готовность каждого из двух типов клиентов платить за каждую категорию обслуживания плюс затраты на предоставление им услуг, а также потенциальная прибыль, которую можно получить в каждом случае.
Рис. 13.1. Ценовая дискриминация в авиакомпании
Начнем с разработки наилучшей с точки зрения авиаперевозчика системы определения цен на билеты. Допустим, авиакомпании известен тип каждого отдельного клиента; скажем, продавцы определяют его по одежде клиентов, когда те приходят бронировать места. Будем также исходить из того, что не существует правовых запретов на дифференцированное ценообразование и нет возможности перепродать более дешевые билеты другим пассажирам. (Реальные авиакомпании предотвращают такую перепродажу посредством требования о достоверной идентификации каждого пассажира, имеющего билет.) При таких условиях компания PITS могла бы применить совершенную ценовую дискриминацию (ценовую дискриминацию первой степени).
Какую цену назначила бы при этом компания PITS клиентам каждого типа? Она могла бы продать билет каждому бизнесмену в салон первого класса за 300 долларов с прибылью 300–150 = 150 долларов на один билет или продать ему же билет в салон экономкласса за 225 долларов с прибылью 225–100 = 125 долларов на один билет. Первый вариант выигрышнее для PITS, поэтому она захотела бы продавать бизнес-пассажирам билеты в салон первого класса по 300 долларов. Каждому туристу авиакомпания могла бы продать билет в салон первого класса за 175 долларов с прибылью 175–150 = 25 долларов или билет в салон экономкласса за 140 долларов с прибылью 140–100 = 40 долларов. В этом случае для PITS лучше второй вариант, поэтому она захотела бы продавать туристам билеты в салон экономкласса по 140 долларов. Следовательно, в идеале компания PITS предпочла бы продавать билеты первого класса только пассажирам, совершающим деловые поездки, и билеты экономкласса только туристам, в каждом случае по цене, эквивалентной максимальной готовности соответствующей группы пассажиров платить. Общий объем прибыли PITS, полученной за счет этой стратегии в расчете на 100 клиентов, составил бы:
(140–100) 70 + (300–150) 30 = 40 70 + 150 30 = 2800 + 4500 = 7300.
Таким образом, наилучший для PITS исход обеспечивает ей прибыль 7300 долларов на каждых 100 пассажиров, которых она обслуживает.
Теперь вернемся к более реалистичному сценарию, в соответствии с которым PITS не может определить тип каждого клиента или не имеет права задействовать эту информацию в целях явной ценовой дискриминации. Как авиакомпания может использовать разные варианты билетов для скрининга своих клиентов?
Первое, что необходимо понять авиаперевозчику, что разработанная выше система ценообразования далеко не самая прибыльная при отсутствии идентифицирующих данных о каждом клиенте. И самое главное — компания не может назначить бизнес-пассажирам максимальную цену в размере 300 долларов, которую они готовы заплатить за места в салоне первого класса, при цене 140 долларов за билет в экономкласс. Ведь тогда бизнесмены могли бы купить билеты в экономкласс, за которые они готовы заплатить 225 долларов, и получить при этом дополнительную выгоду, или, на языке экономистов, излишек потребителя, в размере 225–140 = 85 долларов, который они могли бы использовать, скажем, на оплату более качественного питания или проживания во время поездки. А максимальная цена 300 долларов не обеспечивает им излишка потребителя, поэтому они предпочли бы билеты экономкласса. Следовательно, в данной ситуации скрининг окажется бесполезным. Прибыль компании PITS в расчете на 100 клиентов упала бы до (140–100) 100 = 4000 долларов.
Максимальная цена, которую PITS сможет назначить за билеты в салон первого класса, должна гарантировать бизнес-пассажирам дополнительную выгоду, не меньше чем 85 долларов, которые они получили бы, купив билет в экономкласс. Стало быть, цена билетов первого класса может составлять максимум 300 85 = 215 долларов. (Возможно, следовало бы назначить цену 214 долларов, чтобы дать бизнес-пассажирам однозначный положительный стимул выбрать первый класс, но мы не будем принимать во внимание столь несущественную разницу.) Компания PITS по-прежнему может установить цену 140 долларов на билеты экономкласса, для того чтобы получить максимальную прибыль за счет туристов, поэтому общий объем ее прибыли (на 100 клиентов) при этом составит:
(140–100) 70 + (215–150) 30 = 40 70 + 65 30 = 2800 + 1950 = 4750.
Эта прибыль больше 4000 долларов, которые авиакомпания получила бы вследствие безуспешной реализации схемы совершенной ценовой дискриминации в условиях ограниченной информации, но меньше 7300 долларов, которые ей удалось бы получить при наличии полной информации и успешном применении совершенной ценовой дискриминации.
Установив на билеты первого класса цену 215 долларов, а на билеты экономкласса 140 долларов, компания PITS может без проблем выполнить скрининг и разделить пассажиров на два типа на основании их самостоятельного выбора одного из двух видов обслуживания. Однако ради достижения такой косвенной ценовой дискриминации PITS должна пожертвовать частью прибыли, которую она потеряет из-за необходимости назначить бизнес-клиентам цену, меньшую, чем та, которую они готовы заплатить. В итоге прибыль PITS в расчете на 100 клиентов сократится с 7300 долларов, которую компания могла бы иметь в случае прямой ценовой дискриминации при наличии исчерпывающей информации о типе каждого клиента, до 4750 долларов в случае косвенной дискриминации, основанной на самоотборе. Разница в 2550 долларов в точности равна 85 30, где 85 — сумма снижения цен на билеты первого класса по отношению к цене, которую бизнес-пассажиры готовы за них заплатить, а 30 — количество бизнес-пассажиров на 100 обслуженных пассажиров.
Согласно нашему анализу, авиакомпании PITS придется поддерживать цены на билеты первого класса на достаточно низком уровне, чтобы бизнес-пассажиры были заинтересованы в выборе данного класса обслуживания. У них есть вариант предпочесть экономкласс, если это обеспечит им более весомую выгоду (или излишек), поэтому компании PITS необходимо найти способ удержать их от этого шага. Такое требование, или ограничение в отношении стратегии скрининга, возникает во всех задачах, связанных с разработкой механизмов, и обозначается термином ограничение совместимости стимулов.
Единственное, что позволит компании PITS назначить бизнес-пассажирам цену на билеты первого класса более 215 долларов, не спровоцировав их переход на другой класс обслуживания, — это повышение тарифа на билеты экономкласса. Например, если стоимость билета первого класса составляет 240 долларов, а экономкласса — 165 долларов, бизнес-пассажиры получат одинаковую дополнительную выгоду (излишек потребителя) при покупке билетов обоих классов: 300–240 долларов в случае билета первого класса и 225–165 долларов в случае билета экономкласса. Следовательно, они предпочтут первый класс, или по 60 долларов в каждом случае. При таких более высоких ценах бизнес-пассажиры по-прежнему готовы покупать билеты только в салон первого класса, что позволит компании PITS получить более высокую прибыль с каждого билета.
Однако цена билетов экономкласса в размере 140 долларов — предельная сумма, которую готовы заплатить туристы. Если компания PITS поднимет ее, скажем, до 165 долларов, она вообще потеряет клиентов этого типа. Для того чтобы сохранить их готовность покупать билеты, механизм ценообразования, используемый PITS, должен удовлетворять еще одному условию — условию ограничения участия.
Таким образом, стратегия ценообразования, применяемая компанией PITS, находится между двумя ограничениями: ограничением участия туристов иограничением совместимости стимулов бизнес-пассажиров. Если компания назначит цену X на билеты экономкласса и цену Y на билеты первого класса, она должна обеспечить выполнение условия X < 140, для того чтобы билеты покупали туристы, и условия 225 — X < 300 — Y, или Y < X + 75, чтобы бизнес-пассажиры выбирали первый, а не экономкласс. Вследствие таких ограничений PITS стремится установить как можно более высокие цены. Следовательно, скрининговая стратегия компании, направленная на максимизацию прибыли, сводится к тому, чтобы сделать значение X как можно более близким к 140 долларам, а значение Y как можно более близким к 215 долларам. Исключив из рассмотрения небольшие различия, необходимые для сохранения знака <, будем исходить из того, что цены на билеты составляют 140 и 215 долларов. В таком случае назначение цены 215 долларов на билеты первого класса и 140 долларов на билеты экономкласса и есть решение задачи PITS по разработке механизма ценообразования.
Оптимальна ли эта стратегия для авиакомпании, зависит от конкретных данных, используемых в этом примере. Если бы доля бизнес-пассажиров была значительно больше, например 50 %, PITS пришлось бы пересмотреть оптимальные цены на билеты. Если 50 % ее клиентов составляют пассажиры, совершающие деловые поездки, убытки в размере 85 долларов на каждом бизнес-пассажире могут оказаться слишком высокими, чтобы оправдать сохранение немногочисленных туристов. Возможно, PITS было бы лучше вообще отказаться от обслуживания клиентов этой категории, то есть нарушить условие ограничения участия туристов ради повышения стоимости первого класса обслуживания. В действительности стратегия ценовой дискриминации посредством скрининга при таком соотношении пассажиров разных типов обеспечивает компании PITS следующую прибыль (в расчете на 100 клиентов):
(140–100) 50 + (215–150) 50 = 40 50 + 65 50 = 2000 + 3250 = 5250.
Стратегия обслуживания только бизнес-пассажиров посредством продажи им билетов по цене 300 долларов гарантирует компании PITS более высокую прибыль (в расчете на 100 клиентов), чем при использовании инструмента скрининга:
(300–150) 50 = 150 50 = 7500.
Таким образом, при наличии относительно небольшого количества клиентов с готовностью платить более низкую цену продавец может предпочесть вообще не обслуживать их, чем предлагать достаточно низкие цены множеству клиентов, готовых заплатить высокую цену, чтобы предотвратить их переход на недорогую версию продукта.
Какая именно доля бизнес-пассажиров занимает промежуточную позицию между этими двумя случаями? Мы предоставляем возможность решить эту задачу вам. Нам же остается заметить, что решение авиакомпании снизить тарифы для туристов может быть ее ответом на асимметричность информации, а не признаком особой привязанности к отпускникам!
2. Некоторые термины
Итак, мы увидели один пример разработки механизмов в действии. Безусловно, есть еще масса других примеров, и мы расскажем о некоторых из них в следующих разделах. А пока сделаем небольшую паузу, чтобы представить несколько специальных терминов, используемых в большинстве подобных моделей.
Существует два широких класса проблем, связанных с разработкой механизмов. Первый, аналогичный ситуации с ценовой дискриминацией в приведенном выше примере, состоит в том, что один игрок лучше информирован (в нашем примере клиент знает свою готовность платить) и от этой информации зависит выигрыш другого игрока (установление цен авиакомпанией, а значит, и ее прибыль). Менее информированный игрок разрабатывает схему, в соответствии с которой более информированный игрок должен сделать выбор, раскрывающий эту информацию, хотя это и повлечет за собой определенные издержки для первого (в нашем примере отсутствие возможности назначить бизнес-пассажирам цену, соответствующую их максимальной готовности платить).
Второй класс проблем разработки механизмов касается действий, предпринимаемых одним игроком, которые не могут отслеживать другие игроки. Например, работодатель не может видеть качество, а порой даже количество усилий, вкладываемых работником; у страховой компании нет возможности отслеживать действия, предпринимаемые застрахованным водителем или домовладельцем для снижения риска аварии или ограбления. В терминах, представленных в главе 8, эта проблема обозначается как моральный риск. Менее информированный игрок разрабатывает схему (например, участие в прибылях для работника или нестрахуемый минимум и участие в оплате при страховании), которая в определенной степени приводит стимулы другого игрока в соответствие со стимулами ее автора.
В каждом из этих случаев механизм разрабатывает менее информированный игрок, которого в стратегической игре называют принципалом. Более информированного игрока называют агентом, что точно отображает суть происходящего в отношении работника, но не столь точно в случае клиента. Тогда данную игру можно назвать проблемой «принципал — агент», или агентской проблемой.
Принципал разрабатывает механизм максимизации своего выигрыша при наличии двух ограничений. Во-первых, ему известно, что агент использует этот механизм для максимального увеличения своего выигрыша (выигрыша агента). Иными словами, механизм принципала должен соответствовать стимулам агента. Как мы уже говорили в разделе 4 главы 4, это условие обозначается термином «ограничение совместимости стимулов». Во-вторых, учитывая, что агент реагирует на этот механизм исходя из собственных интересов, агентские отношения должны обеспечивать ему как минимум такую же ожидаемую полезность, как он бы получил в другом месте, например работая на другого работодателя или отправившись в путешествие на автомобиле вместо самолета. В главе 8 мы обозначили это условие термином «ограничение участия». В ситуации с ценовой дискриминацией в авиакомпании мы видели конкретные примеры этих двух условий; другие примеры и сферы применения будут представлены в следующих разделах данной главы.
3. Контракты «затраты плюс» и контракты с фиксированной ценой
При составлении закупочных контрактов на получение определенных услуг вроде строительства скоростной автомагистрали или офисного здания правительства или компании сталкиваются с теми же проблемами разработки механизмов, которые мы рассматриваем в данной главе. Есть два распространенных типа таких контрактов — «затраты плюс прибыль» и «фиксированная цена». В случае первого поставщик услуг получает сумму, эквивалентную его затратам, плюс вознаграждение в размере нормальной прибыли. В контракте с фиксированной ценой заранее оговаривается конкретная цена услуг, при этом их поставщик оставляет себе всю сверхприбыль, если его фактические затраты меньше ожидаемых, и несет убытки, если фактические затраты оказываются выше.
Каждый тип контракта имеет свои достоинства и недостатки. Контракт «затраты плюс» не обеспечивает подрядчику сверхприбыль; этот аспект особенно важен для государственных контрактов на закупку, где в конечном счете именно граждане оплачивают закупленные услуги. Однако поставщик, как правило, лучше информирован о своих затратах, чем покупатель услуг, поэтому у поставщика может возникнуть желание завысить объем затрат или увеличить их, чтобы извлечь для себя выгоду из необоснованно высоких расходов. Напротив, контракт с фиксированной ценой дает поставщику услуг все стимулы удерживать затраты на минимальном уровне, а значит, и обеспечивать эффективное использование ресурсов. Но при таком типе государственных контрактов обществу приходится платить установленную цену и отдавать поставщику услуг сверхприбыль. Оптимальный механизм закупок должен учитывать оба аспекта.
Рассмотрим пример разработки правительством штата механизма закупок в рамках проекта дорожного строительства. Предположим, планируется построить автомагистраль с привлечением местного дорожного подрядчика и органам власти штата необходимо решить, сколько на ней должно быть полос[238]. Чем больше полос, тем больше пользы в виде более быстрого передвижения и меньшего количества аварий (во всяком случае до уровня, превышение которого нанесет чрезмерный ущерб сельской местности). Мы будем исходить из того, что социальная стоимость V (исчисляемая в миллиардах долларов) от наличия N полос на автомагистрали определяется следующей формулой:
Стоимость строительства одной полосы, в том числе вознаграждение в размере нормальной прибыли, могло бы составить либо 3, либо 5 миллиардов долларов в зависимости от типа грунта на строительном участке. На данный момент будем считать, что правительство штата может определить объем затрат на строительство так же, как и подрядчик. В итоге оно выбирает количество полос N и составляет контракт таким образом, чтобы максимально увеличить выгоду для штата (V) за вычетом вознаграждения подрядчику (назовем его F), то есть цель правительства штата — максимизировать свою чистую выгоду G, где G = V — F.
Допустим, властям штата известно, что фактический объем затрат составляет 3 (миллиарда долларов на одну полосу автомагистрали), следовательно, подрядчику придется выплатить 3N за строительство автомагистрали, состоящей из N полос. Далее правительство выбирает такое значение N, которое обеспечивает чистую выгоду G согласно следующей формуле:
В приложении к главе 5 мы вывели формулу поиска значения для максимизации функции этого вида. В частности, максимум функции
Y = A + BX CX2
будет при X = B/(2C). В данном примере Y — это G, X — это N, A = 0, B = 12, C = 1/2. Применив формулу решения задачи максимизации, получим оптимальный выбор правительством штата значения N = 12(2 1/2) = 12. Следовательно, наиболее целесообразно выбрать автомагистраль на 12 полос, стоимость которой составит 36 миллиардов долларов. Таким образом, правительство предложит следующий контракт: «Мы заплатим 36 миллиардов долларов за строительство 12-полосной автомагистрали»[239]. Эта цена включает в себя нормальную прибыль, поэтому подрядчик охотно его подпишет
Аналогичным образом, если затраты составляют 5 миллиардов долларов в расчете на одну полосу, оптимальным значением N будет 10. Правительство предложит контракт на 50 миллиардов долларов за строительство 10-полосной автомагистрали. И подрядчик примет это предложение.
Теперь представим, что подрядчик знает, как оценить физические условия соответствующей местности, для того чтобы определить объем затрат на одну полосу автомагистрали, а правительство нет; оно может дать лишь приблизительную оценку этих затрат. Будем считать, что, по мнению правительства, объем затрат составит 3 (миллиарда долларов на одну полосу) с вероятностью 2/3 и 5 с вероятностью 1/3.
Что если правительство попытается добиться идеального оптимума и предложит подрядчику два контракта: «12-полосная автомагистраль за 36 миллиардов долларов» и «10-полосная автомагистраль за 50 миллиардов долларов»? Если объем затрат действительно составляет 3 миллиарда долларов в расчете на одну полосу, подрядчик получит больше прибыли, заключив второй контракт, хотя он и предназначен для ситуации, в которой объем затрат равен 5 миллиардов долларов на одну полосу. Истинная стоимость 10-полосной автомагистрали составит при этом 30 миллиардов долларов, и подрядчик заработает 20 миллиардов долларов сверхприбыли[240].
Такой исход нельзя назвать удовлетворительным. Предложенные контракты не предоставляют подрядчику достаточно сильного стимула выбирать между ними на основании объема затрат: он всегда будет отдавать предпочтение контракту на 50 миллиардов долларов. У правительства должен быть более приемлемый способ создания системы заключения контрактов на закупку.
Поэтому допустим, что правительство может разработать более общий механизм, обеспечивающий разделение типов проектов. Скажем, оно предложит подрядчику два контракта: «Контракт L: мы заплатим вам RL долларов за строительство NL полос» и «Контракт H: мы заплатим вам RH долларов за строительство NH полос». Если контракты L и H составлены правильно, при низком уровне затрат (3 миллиарда долларов на одну полосу) подрядчик выберет контракт L («low» — низкие затраты); при высоком (5 миллиардов долларов на одну полосу) — контракт H («high» — высокие затраты). Для того чтобы этот механизм скрининга работал, нужно, чтобы показатели, которые обозначены символами NL, RL, NH, RH, удовлетворяли определенным условиям.
Во-первых, по каждому контракту подрядчик, который несет соответствующие затраты (низкие при контракте L и высокие при контракте H), должен получить сумму (включающую нормальную прибыль), достаточную для покрытия его расходов. Иначе он не согласится с такими условиями и не станет заключать контракт. Следовательно, контракт должен удовлетворять двум ограничениям участия: 3NL RL для подрядчика, когда объем затрат составляет 3, и 5NH RH для подрядчика, когда объем затрат равен 5.
Кроме того, правительству необходимо составить такие два контракта, чтобы подрядчик, зная, что у него будет низкий уровень затрат, не получил выгоду, заключив контракт H и наоборот. Иначе говоря, эти контракты должны также удовлетворять двум ограничениям совместимости стимулов. Например, если истинные затраты низкие, контракт L обеспечит подрядчику сверхприбыль RL — 3NL, тогда как контракт H обеспечит сверхприбыль RH — 3NH. (Обратите внимание, что в последнем выражении количество полос и оплата те же, что и для контракта H, однако затраты подрядчика по-прежнему составляют 3, а не 5.) Для того чтобы удовлетворять ограничению совместимости при низком уровне затрат, контракты должны обеспечивать такое значение второго выражения, которое бы не превышало значение первого выражения. Следовательно, необходимо, чтобы RL — 3NL RH — 3NH. Точно так же, если истинные затраты низкие, сверхприбыль подрядчика в случае контракта L не должна превышать его сверхприбыли от контракта H. Стало быть, чтобы контракты удовлетворяли ограничению совместимости стимулов, нужно, чтобы RH — 5NH RL — 5NL.
Правительство стремится максимизировать чистую ожидаемую общественную выгоду от оплаты услуг подрядчика, поэтому использует вероятности этих двух типов в качестве весовых коэффициентов для вычисления математического ожидания. Таким образом, цель правительства — максимизировать функцию
На первый взгляд может показаться, что это очень сложная задача с четырьмя переменными выбора и четырьмя ограничениями в виде неравенства. Однако ее можно существенно упростить, поскольку два ограничения являются избыточными, а оставшиеся два должны быть представлены в виде строгих равенств, что позволит нам подставить полученные выражения в уравнение вместо двух переменных.
Обратите внимание, что если ограничение участия при высоком уровне затрат 5NH RH, а ограничение совместимости стимулов при низком уровне затрат RL — 3NL RH — 3NH/sub>, выполняются оба условия; в таком случае мы можем получить следующую цепочку неравенств (где мы учитывали тот факт, что значение NH положительное):
RL — 3NL RH — 3NH 5NH — 3NH 5NH 0
Первое и последнее выражения цепочки неравенств говорят о том, что RL — 3NL 0. Поэтому нам нет необходимости отдельно рассматривать ограничение участия при низком уровне затрат 3NL RL, так как оно удовлетворяется автоматически, когда удовлетворяются два оставшихся ограничения.
Кроме того, на интуитивном уровне очевидно, что компания, которая несет большие издержки, не заинтересована заявлять о себе как о компании с низкими издержками, поскольку тогда она получит меньшую оплату при более высоких затратах. Тем не менее этот интуитивный вывод требует проверки согласно строгой логике данного анализа. В связи с этим поступим следующим образом. Сначала исключим из рассмотрения второе ограничение совместимости стимулов, RH — 5NH RL — 5NL, что позволит решить задачу с двумя оставшимися ограничениями. Затем вернемся назад и убедимся в том, что решение задачи с двумя ограничениями удовлетворяет третьему ограничению, исключенному из рассмотрения. Иначе говоря, полученное решение должно также быть решением для задачи с тремя ограничениями. (При наличии более подходящего решения оно должно быть приемлемым и для задачи с меньшим количеством ограничений.)
Таким образом, нам остается проанализировать два ограничения: 5NH RH и RL — 3NL RH — 3NH. Запишем их в таком виде: RH 5NH и RL RH + 3(NL— NH). Обратите внимание, что цель правительства — сделать значения RL и RH настолько малыми, чтобы они были совместимы с указанными выше ограничениями. Такой результат можно получить, представив каждое ограничение в виде равенства. В связи с этим примем такие равенства: RH = 5NH и RL = RH + 3(NL— NH) = 3NL + 2NH. Теперь эти выражения для платежей по контракту можно подставить в формулу целевой функции G. В результате имеем
Целевая функция состоит из двух частей: одна (первые два члена) содержит только NL, а вторая (вторые два члена) только NH. Мы можем применить формулу максимизации отдельно к каждой части. В части NL A = 0, B = 8 и C = 1/3, а значит, оптимальное значение NL = 8/(21/3) = 24/2 = 12. В части NH A = 0, B = 2 и C = 1/6, стало быть, оптимальное значение NH = 2/(21/6) = 12/2 = 6.
Теперь можем использовать оптимальные значения NL и NH, чтобы получить оптимальные значения платежей (R), воспользовавшись формулами для RL и RH, выведенными выше. Подстановка в них NL = 12 и NH = 6 дает нам RH = 5 6 = 30 и RL = 3 2 + 2 6 = 48. Таким образом, мы имеем оптимальные значения для всех неизвестных в целевой функции правительства. Но не забывайте, что мы исключили из рассмотрения одно из ограничений совместимости стимулов, поэтому теперь нам необходимо к нему вернуться.
Мы должны убедиться, что третье ограничение, RH — 5NH RL — 5NL, согласуется с вычисленными нами значениями R и N. На самом деле так и есть. Левая сторона выражения равна 30 — 5 6 = 0, а правая — 48 — 5 12 = –12, а значит, ограничение действительно удовлетворяется.
Наше решение говорит о том, что органам власти штата нужно предложить следующих два контракта: «Контракт L: мы заплатим вам 48 миллиардов долларов за строительство 12 полос» и «Контракт H: мы заплатим вам 30 миллиардов долларов за строительство 6 полос». Как мы можем интерпретировать это решение, чтобы лучше понять его на интуитивном уровне? Интуитивное обоснование наиболее очевидно, если сравнить полученное решение с идеальным решением, найденным в разделе 3.А при наличии полной информации о затратах. На рис. 13.2 представлены данные, позволяющие сопоставить оптимальные значения N и R.
Рис. 13.2. Значения показателей в контракте на строительство автомагистрали
Существует два важных различия между оптимальным механизмом в случае асимметричной и полной информации. Во-первых, хотя контракт, который целесообразно выбрать при условии низких затрат, подразумевает строительство такого же количества полос (12), что и при наличии полной информации, оплата по нему больше в асимметричном случае (48 вместо 36). Во-вторых, в случае асимметричной информации и высокого уровня затрат контракт подразумевает строительство меньшего количества полос (6 вместо 10), но обеспечивает такую же оплату, как и во втором варианте (30 = 6 5). Эти различия позволяют разделить типы.
В случае асимметричной информации у подрядчика может возникнуть соблазн сделать вид, будто он несет высокие затраты, тогда как на самом деле они низкие. Механизм оптимальной оплаты включает в себя как «пряник» для правдивого признания низких затрат, так и «кнут» за попытку симуляции высоких. «Пряник» — это сверхприбыль в размере 48–36 = 12, которую подрядчик заработает в результате косвенного признания низких затрат посредством выбора контракта L. «Кнут» — сокращение сверхприбыли от контракта H за счет уменьшения количества полос, которые будут при этом построены. Идеальный механизм оплаты при высоком уровне затрат подразумевает строительство 10-полосной автомагистрали за 50 миллиардов долларов; подрядчик с низким уровнем затрат заработал бы на таком контракте 50 — 3 10 = 20 миллиардов долларов. Оптимальный контракт с ограниченной информацией подразумевает строительство только шести полос, за что подрядчик получает 30 миллиардов долларов. Если истинный уровень затрат низкий, подрядчик заработает сверхприбыль в размере 30 — 3 6 = 12 миллиардов долларов. Следовательно, в этом случае он получит меньшую выгоду от завышенного уровня затрат (косвенно вытекающего из выбора подрядчиком контракта H, хотя его истинные затраты низкие). В действительности эта выгода сокращается ровно на величину, которую гарантирует часть механизма, соответствующая «прянику», что сводит на нет желание подрядчика завысить уровень издержек.
4. Фактические данные, касающиеся механизмов раскрытия информации
У рассмотренных выше механизмов есть одно общее свойство: агент владеет определенной частной информацией (в главе 8 мы определили этот тип игрока). Кроме того, принципалу нужно, чтобы агент выполнил определенное действие, направленное на ее раскрытие. В терминах из главы 8 эти механизмы представляют собой примеры скрининга в целях разделения типов посредством самоотбора.
Такие механизмы встречаются повсюду. Самые распространенные — механизмы ценовой дискриминации. Пока клиент готов заплатить сумму, превышающую предельные издержки компании на поставку соответствующего продукта, компания может получить прибыль за счет работы с данным клиентом. Однако его готовность платить может быть относительно низкой по сравнению с готовностью других потенциальных покупателей. Если компания должна установить одну и ту же цену всем своим клиентам, в том числе и тем, кто готов платить больше данного клиента, назначение ему цены в соответствии с его готовностью платить означает, что компании придется пожертвовать частью потенциальной прибыли от более платежеспособных клиентов. В идеале компания хотела бы прибегнуть к ценовой дискриминации, предоставив скидку клиентам с меньшей готовностью платить и не предлагая ее тем, кто готов платить больше.
Намерение компании примеить ценовую дискриминацию может ограничиваться не только причинами, связанными с информацией. Такая практика может быть запрещена законом. Компания может остерегаться устанавливать высокие цены некоторым из своих клиентов из-за конкуренции со стороны других компаний. А если продукт покупает один клиент и перепродает другим, то конкуренция со стороны других покупателей может быть не менее эффективным ограничением на дискриминационное ценообразование, чем конкуренция между компаниями. Но мы сосредоточимся на информационных причинах ценовой дискриминации, оставив все остальные причины за рамками обсуждения.
По всей вероятности, в вашем местном кафе действует так называемая карта постоянного клиента: на каждых десять купленных чашек кофе вы получаете одну чашку бесплатно. Почему компания заинтересована делать это? Постоянными клиентами чаще всего становятся местные жители, у которых есть время и стимул искать самые выгодные предложения в районе. Для того чтобы переманить их от конкурентов, данному кафе необходимо предложить достаточно привлекательную цену. Напротив, случайными клиентами чаще всего бывают приезжие или люди, которые куда-то спешат и у них нет ни времени, ни стимула искать более выгодные предложения: когда у таких людей возникает потребность выпить чашку кофе и они видят кафе, они готовы заплатить любую цену (в пределах разумного, конечно). Стало быть, установление более высокой цены и выдача карты постоянного клиента позволяют кафе предоставлять скидку чувствительным к цене постоянным посетителям и не делать ее для случайных посетителей. Если у вас нет такой карты, это говорит о том, что вы относитесь ко второй категории и готовы платить больше.
Точно так же многие рестораны предлагают меню из трех блюд по фиксированной цене и недорогие комплексные блюда наряду с обычными блюдами на выбор. Такая стратегия позволяет ресторану выделить различные типы клиентов, отдающих предпочтение разным супам, салатам, основным блюдам, десертам и т. д.
Книжные издательства, как правило, сначала продают новые книги в твердых переплетах, а версию в мягкой обложке издают только через год. Зачастую разница в цене между двумя версиями гораздо больше, чем разница между себестоимостью двух видов книг. Такая схема ценообразования рассчитана на два типа покупателей: тех, кто хочет прочитать книгу как можно быстрее и готов заплатить за это больше, и тех, кто согласен ждать более выгодной цены.
Мы предлагаем вам поискать примеры подобных скрининговых механизмов ценовой дискриминации, когда будете делать покупки. Их множество. Кроме того, об этих методах есть немало интересных статей. Хороший источник информации такого рода — книга Тима Харфорда Undercover Economist[241].
Существует масса научных работ о механизмах закупок, которые мы представили в разделе 3[242]. В них описываются ситуации, когда покупатель взаимодействует только с одним продавцом, затраты которого относятся к категории конфиденциальной информации. Данный тип взаимодействия полностью отображает процесс разработки крупных контрактов на производство оборонительных систем вооружения или специализированного оборудования: как правило, есть только один надежный поставщик таких продуктов. Однако в реальной жизни покупатели могут делать выбор из нескольких поставщиков, при этом механизмы, создающие конкуренцию между поставщиками, приносят покупателю выгоду. Многие из этих механизмов принимают форму аукционов. Например, строительные контракты часто предоставляются подрядчику, предложившему выполнить соответствующую работу за минимальную цену (с учетом качества и сроков выполнения работы, а также других условий сделки). Примеры таких механизмов и их анализ представлены в главе об аукционах.
5. Стимулирование усилий: простейший случай
Теперь перейдем от первого типа проблем разработки механизмов, в котором цель принципала — добиться раскрытия информации, ко второму типу, в котором присутствует моральный риск. В подобных ситуациях цель принципала — составить такой контракт, который бы стимулировал агента прилагать максимум усилий, хотя их уровень принципалом и не наблюдаем.
Предположим, вы владелец компании, начинающей новый проект, и должны нанять менеджера, который будет контролировать его выполнение. Чем закончится проект — неизвестно, однако эффективный надзор может повысить вероятность успеха. Но менеджеры — обычные люди и будут пытаться прилагать как можно меньше усилий! Если эти усилия наблюдаемы, вы можете составить контракт, предусматривающий такую оплату труда менеджера, которая стимулировала бы его вкладывать достаточный объем усилий в контроль за выполнением проекта[243]. Но если у вас нет возможности отслеживать усилия менеджера, вам необходимо заинтересовать его в успешном выполнении проекта, например, посредством выплаты премии по его завершении. Однако если приложение больших усилий не гарантирует успешной реализации проекта, то эти премии делают доход менеджера неопределенным. При этом менеджер может быть не расположен к риску, а значит, вы должны компенсировать ему возможные издержки в случае его возникновения. Вам нужно разработать такую политику оплаты труда менеджера проекта, которая бы максимизировала вашу ожидаемую прибыль с учетом того, что выбор менеджером уровня усилий зависит от характера и объема вознаграждения. Это и есть задача разработки механизма, решение которой позволит преодолеть проблемы морального риска в связи с возможным уклонением менеджера от выполнения своих обязанностей.
Рассмотрим пример с конкретными числами. Предположим, успешная реализация проекта принесет компании 1 миллион долларов прибыли сверх материальных затрат и затрат на оплату труда. В случае провала прибыль будет равна нулю. При эффективном контроле за выполнением проекта вероятность успеха равна 1/2, а при неэффективном — всего 1/4.
Как отмечалось выше, менеджер проекта не расположен к риску. В приложении к главе 8 мы видели, что нерасположенность к риску можно описать с помощью вогнутой функции полезности. Возьмем в качестве примера простой случай, когда полезность u дохода y (исчисляемого в миллионах долларов) для менеджера определяется функцией квадратного корня: u = y. Допустим, дополнительные усилия, необходимые для эффективного контроля, приносят менеджеру отрицательную полезность 0,1, и если он не будет работать на вас, он может получить другую работу, которая не требует дополнительных усилий и оплачивается в размере 90 000 долларов, или 0,09 миллиона долларов, что обеспечивает полезность 0,09 = 0,3. Таким образом, если вы хотите нанять менеджера, не требуя от него эффективного контроля, вы должны заплатить ему как минимум 90 000 долларов. Если вам необходим эффективный надзор, вы должны обеспечить менеджеру хотя бы такую же полезность, какую он мог бы получить на другой работе. Иными словами, вы должны заплатить ему сумму y, при которой y 0,1 не меньше 0,3, то есть y 0,4, или y 0,16, или 160 000 долларов.
Если усилия менеджера поддаются наблюдению, вы можете заключить с ним один из двух контрактов: 1) я плачу вам 90 000 долларов, и мне все равно, насколько усердно вы будете работать; 2) я плачу вам 160 000 долларов, но вы должны проводить эффективный надзор за реализацией проекта. Выполнение второго контракта может быть обеспечено в судебном порядке, поэтому, если менеджер согласится его заключить, он не будет увиливать от работы. Ваша ожидаемая прибыль от каждого контракта зависит от вероятности успешного завершения проекта при оговоренном уровне усилий. Таким образом, в случае первого контракта ваша ожидаемая прибыль составит (1/4) 1–0,09 = 0,160, или 160 000 долларов, а в случае второго (1/2) 1–0,16 = 0,340, или 340 000 долларов. Следовтельно, вам выгоднее заплатить менеджеру проекта за интенсивность усилий. В идеальном мире при наличии полной информации вы воспользовались бы вторым контрактом.
Теперь рассмотрим более реалистичный сценарий, когда усилия менеджера ненаблюдаемы. Эта ситуация не создает никаких дополнительных проблем, если для вас неважен уровень прилагаемых менеджером усилий и вас вполне устраивает первый контракт. Однако если этот вопрос для вас принципиален, вы должны использовать механизм стимулирования, основанный на единственном поддающемся наблюдению событии, а именно успехе или провале проекта. В связи с этим предположим, что вы предлагаете менеджеру контракт, по условиям которого он получит x в случае успешной реализации проекта и y вследствие его провала. (Обратите внимание, что x может быть равным нулю, но если это оптимальное значение, оно должно присутствовать в решении. На самом деле это значение не будет равным нулю по причине нерасположенности менеджера к риску.)
Для того чтобы побудить менеджера выбрать более высокий уровень усилий, вы должны гарантировать, что ожидаемая полезность, которую он при этом получит, превысит ожидаемую полезность в случае уклонения. При высоком уровне усилий менеджер может обеспечить успешное выполнение проекта с вероятностью 1/2, а значит, вероятность неудачи также равна 1/2. При обычном уровне усилий он может гарантировать успешную реализацию проекта только с вероятностью 1/4 (вероятность неудачи 3/4). Таким образом, ваш контракт должен обеспечивать выполнение следующего условия:
(1/2)y + (1/2)x 0,1>(1/4)y + (3/4)x, или (1/4)(y x) 0,1,
или y x 0,4.
Это выражение представляет собой ограничение совместимости стимулов в данной задаче.
Далее вы должны убедиться, что менеджер получит достаточную ожидаемую полезность и будет готов работать на вас так, как вы хотите (прилагая большие усилия), вместо того чтобы принимать другое предложение. Тогда ожидаемая полезность менеджера от принятия вашего предложения о работе должна превышать полезность от альтернативной работы; таким образом, ваш контракт должен удовлетворять следующему условию:
(1/2)y + (1/2)x 0,1 0,3, или y + x 0,8.
Это выражение представляет собой ограничение участия в случае контракта, цель которого — добиться от менеджера повышения усилий по контролю за выполнением проекта.
С учетом этих двух ограничений необходимо максимизировать ожидаемую прибыль П. Вы рассчитываете ее, исходя из того, что выполнение указанных выше ограничений позволит вам добиться от менеджера качественной работы. В связи с этим вы надеетесь, что ваш проект будет успешно выполнен с вероятностью 1/2, а ваша ожидаемая прибыль определяется формулой
П = (1/2)(1 — у) + (1/2)(0 — х) = (1 — у — х)/2.
Математические вычисления в этой задаче существенно упрощает использование квадратных корней x и y вместо самих x и y (другими словами, значений полезности дохода, а не показателей дохода). Запишем эти значения полезности как X = x и Y = y, то есть x = X2 и y = Y2. Далее необходимо максимизировать функцию П = (1 — Y2 — X2)/2 с учетом ограничения участия Y + X 0,8 и ограничения совместимости стимулов Y — X 0,4.
В формуле ожидаемой прибыли X и Y указаны со знаком минус, а значит, необходимо сделать оба значения настолько малыми, насколько допускают ограничения. В конечном счете ограничение участия выполняется в случае равенства, когда X и Y имеют малые значения. А как насчет ограничения совместимости стимулов? Если оно не выполняется в случае равенства, то оно не ограничивает выбор значений переменных и его можно исключить из рассмотрения. Предположим, именно так мы и сделали. Тогда мы можем подставить X = 0,8 — Y из ограничения участия в формулу определения прибыли и записать следующее выражение:
П = (1 — Y2 — X2)/2 = [1 — Y2 —(0,8 — Y)2]/2 = (1 — Y2 — 0,64 + 1,6Y — Y2)/2 = (0,36 + 1,6Y — 2Y2)/2 = 0,18 + 0,8Y — Y2.
Чтобы максимизировать функцию прибыли, мы снова воспользуемся формулой из приложения к главе 5. Мы имеем B = 0,8 и C = 1, что дает нам значение Y = 0,8/(2 1) = 0,4. Тогда X также равно X = 0,8–0,4 = 0,4.
Это решение подразумевает, что при исключении из рассмотрения ограничения совместимости стимулов оптимальный механизм требует равной оплаты труда менеджера как при успехе, так и при провале проекта. Такой оплаты достаточно, чтобы обеспечить менеджеру полезность 0,4 = 0,3 + 0,1 (полезность от легкой работы в другом месте плюс компенсация за отрицательную полезность дополнительных усилий в целях эффективного надзора за выполнением проекта) для выполнения ограничения участия. Этот результат подтверждается на интуитивном уровне и согласуется с анализом оптимального риска в разделе 1 главы 8. Менеджер не расположен, а вы нейтральны к риску (все, что вас интересует, — это ожидаемая прибыль), поэтому вам выгоднее взять весь риск на себя и исключить элемент случайности из дохода менеджера[244].
Но если менеджер получает один и тот же доход независимо от того, как завершится проект, у него нет стимула прилагать ненаблюдаемые усилия. При этом не принятое во внимание ограничение совместимости стимулов не будет выполняться автоматически, и нам необходимо убедиться в том, что X и Y действительно удовлетворяют ему. Следовательно, оба ограничения должны выполняться в случае равенств Y + X = 0,8 и Y — X = 0,4. Объединив их, получим 2Y = 1,2, или Y = 0,6; этот результат сразу же дает нам X = 0,2. В переводе с полезности на денежные суммы имеем x = X2 = 0,04 и y = Y2 = 0,36. Таким образом, менеджеру нужно заплатить 40 000 долларов, если проект завершится провалом, и 360 000 долларов — если успехом. Это меньше оговоренных в контракте 1 (подразумевающем низкий уровень усилий) 90 000 долларов в случае провала и больше оговоренных в контракте 2 (высокий уровень усилий в ситуации с полной информацией) 160 000 долларов в случае успеха. Это означает, что менеджера ожидает сочетание «кнута» (низкая оплата в случае провала проекта) и «пряника» (высокая оплата в случае успеха проекта), как это было с подрядчиком в примере со строительством автомагистрали в разделе 3.
При такой схеме вы (владелец) получите ожидаемую прибыль П = (1–0,36 — 0,04)/2 = 0,03, или 300 000 долларов. Эта сумма меньше 340 000 долларов, которые вы бы заработали в идеальной ситуации с полной информацией, когда могли бы составить поддающийся принудительному исполнению контракт, требующий высокого уровня усилий. Разница в размере 40 000 долларов — неизбежные издержки в связи с асимметричностью информации.
Схему оплаты труда менеджера можно описать так: базовая заработная плата в размере 40 000 долларов и премия за успешное выполнение проекта в сумме 320 000 долларов, или (что то же самое) 40 000 заработной платы и доля 32 % в операционной прибыли в размере 1 миллион долларов. Нецелесообразно полагаться только на участие в прибылях, не предложив менеджеру базовую зарплату. Почему? Если бы базовая зарплата равнялась нулю, то в случае успешного выполнения прокта вам пришлось бы выплатить менеджеру сумму y, которая определяется формулой (1/2)y 0,1 = 0,3 или y = 0,64, или 640 000 долларов, чтобы обеспечить его участие. Ваша ожидаемая прибыль составила бы при этом: П = (1–0,64 — 0)/2 = 0,18, или 180 000 долларов, что на 120 000 долларов ниже, чем если бы вы предложили базовую ставку зарплаты и премию (а также на целых 160 000 долларов меньше, чем в ситуации с полной информацией).
Такое снижение прибыли обусловлено нерасположенностью менеджера к риску. Премиальная система оплаты делает его доход весьма рискованным, поэтому, чтобы обеспечить его участие в проекте, вам необходимо назначить настолько большую премию, что это сократит вашу прибыль. Оптимальная система оплаты в условиях асимметричной информации создает приемлемый баланс между «кнутом» и «пряником», обеспечивая менеджеру достаточный стимул для повышения усилий по надзору за выполнением проекта, но не подвергая при этом его доход существенному риску.